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Abstract 

The emergence of high-throughput genomic data provides new opportunities for genetic analysis. 

Especially, in terms of genetic improvement of animals, genomic tools provide new tools for 

animal selection, while still suffering from some statistical issues due to the high-dimension of the 

genomic data.  

 In my thesis work, I aimed to better interpret available genomic data by integrating 

information from various sources (e.g. different types of data) and knowledge in different areas 

(e.g. genomics, statistics and animal science), and attempted to make better use of high-throughput 

genomic data in the genetic analysis of pigs, especially in the context of genetic improvement. 

More specifically, the objective of the thesis work is twofold: 1) to improve the detection power 

and precision in two genome-wide association studies (GWAS), one for meat colour of pork and 

one for fetal response to PRRSV challenge in pigs; and 2) to explore a new strategy for 

constructing linkage maps. I worked toward this goal in four studies. For the studies about GWAS 

(Chapter 2-4), I discussed the issue about detection power and precision due to the high dimension 

of genomic data. In the study about the adaptive LASSO (Chapter 2), I assessed its performance 

and discussed how it may help to increase the detection power in GWAS. In the GWAS of fetal 

response to type 2 PRRSV challenge (Chapter 3), I made use of permutation to improve the 

precision of the results, and used transcriptomic data to further scan for candidate genes. In the 

TDT study (Chapter 4), I improved the precision of GWAS by integrating raw genotyping data 

(fluorescence intensity data) into the analysis. In the study about multiple sperm typing (Chapter 

5), I proposed a new model for the allele dosage data of haploids, in order to improve the efficiency 

of linkage map construction.  
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 In the thesis work. Twenty candidate genomic regions were found to be associated with 

meat colour of pork (Chapter 2), and 21 candidate regions were found for fetal response to PRRSV 

challenge in pigs (Chapter 3). These candidate regions may lead to new genetic markers for 

marker-assisted selection in the future. Some results implied better performance of the methods 

used in the GWAS, in terms of higher detection power and/or higher precision, which provides 

valuable experience in the analysis of high-dimensional genomic data. In addition, a new strategy 

was proposed to construct linkage maps using allele dosage data of sperm cells, which showed 

good accuracy in simulation studies (Chapter 5). The good performance in the simulation studies 

implied its application in animal genomics. Especially, its potential ability to genotype 

chromosome structural variations (CSVs) and estimate recombination rate on an individual level 

may provide additional materials for genetic improvement. 
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Preface 

Chapter 2 of this thesis is a part of a research collaboration (Project name “Whole genome 

association analysis for pork quality in both cross- and pure-bred populations”). The project is a 

partnership between the University of Alberta and two pig breeding companies (Hypor Inc., 

Regina, SK, Canada, and Genesus Inc., Oakville, MB, Canada). The animals used in this study 

were raised as part of commercial pork production. The proposed work was reviewed by the 

University of Alberta Animal Care and Use Committee and considered as Category A (little or no 

animal manipulation) and no formal ethics approval was required. No other specific permissions 

were required for the work as the animals were produced as part of commercial pig breeding and 

pork operations and cared for according to the Canadian Quality Assurance Program, see 

http://www.cqa-aqc.com/index-e.php, which includes attention to animal health and well-being 

and is in line with the Canadian Council on Animal Care guidelines. 

 Section 2.2 in Chapter 2 has been accepted by the Canadian Journal of Animal Science, as 

Tianfu Yang, Zhiquan Wang, Younes Miar, Heather Bruce, Chunyan Zhang, and Graham Plastow, 

A Genome-wide Association Study of Meat Colour in Commercial Crossbred Pigs. I was 

responsible for designing and conducting the GWAS as well as the manuscript composition. G.P. 

conceived and designed the experiments. H.B., C.Z. and Y.M performed the experiments. C.Z. 

and Z.W. aided in the data analysis. All authors contributed to the manuscript. 

 

Chapter 3 and Chapter 4 of this thesis are a part of a research collaboration (Project name 

“Application of genomics to improve swine health and welfare”). The project was led by Graham 

Plastow at the University of Alberta, with John Harding at the University of Saskatchewan and 

Bob Kemp at the PigGen Canada Inc. being the lead collaborators. The experiment described in 
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these chapters was approved by the University of Saskatchewan’s Animal Research Ethics Board. 

It adhered to the Canadian Council on Animal Care guidelines for humane animal use (permit 

#20110102) 

 Chapter 3 of this thesis has been published as Tianfu Yang, James Wilkinson, Zhiquan 

Wang, Andrea Ladinig, John Harding and Graham Plastow, 2016. A genome-wide association 

study of fetal response to type 2 porcine reproductive and respiratory syndrome virus challenge, 

Scientific Reports, 6: 20305. I was responsible for designing and conducting the GWAS as well 

as the manuscript composition. J.H., G.P., A.L. and J.W. designed and performed the PRRS 

pregnant gilt challenge experiment. A.L. and J.H. analyzed the phenotypic responses in fetuses 

and dams including assessment of viral load. J.W. conducted the transcriptomic experiment. Z.W. 

and G.P. oversaw the data analysis. All authors contributed to the manuscript.  

 

Preliminary results of the study described in Chapter 5 has been published as Tianfu Yang, Zhiquan 

Wang, Zhiqiu Hu and Graham Plastow, 2014. A New Method to Estimate Recombination Rate 

Based on SNP Allelic Dosage Data. in Proceedings of 10th World Congress of Genetics Applied 

to Livestock Production. ASAS. 
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Chapter 1 Introduction 

 

Scientists have been sending out warnings of a deluge of genomic data for more than 20 years 

(Aldhous 1993), while the volume of genomic data keeps increasing even faster than expected. 

For example, the whole genome shotgun (WGS) sequences processed at GenBank (in bases) 

increased more than 2,000 times in 14 years (http://www.ncbi.nlm.nih.gov/genbank/statistics/). 

The increase in genomic data was driven primarily by advances in high-throughput technologies, 

which result from developments in molecular biology and other related research fields, such as 

nanotechnology and chemistry. 

 Another significant change in genomic data is the fast increase of dimension, e.g. the density 

of genotype data. The advances in molecular biology and genetics have revealed a bigger and more 

complete picture of the genome, which implies a more complex structure of genomic data. One 

example of the challenge in high-dimensional data analysis is the issue of power analysis and 

significance testing in genome-wide association studies (GWAS) (Dupuis and O’Donnell 2007). 

 Fortunately, even though handling the data deluge is challenging, genomic research is still 

afloat and keeps moving forward. The rapid increase in genomic data significantly speeds up the 

development in applications of genomics, and impacts the experimental design and interpretation 

of results from genomic analysis. As researchers are facing more complicated scenarios, more 

tools in mathematics and computer sciences have been introduced for practical genomic data 

analysis (Xu 2013). The integration of methodologies from different disciplines provides 

opportunities to look at traditional questions in a new way, such as the application of directed 

acyclic graphs (DAGs) in pedigree comparison (Kirkpatrick et al. 2012). 
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 In this Ph.D. program, I aimed to better interpret accessible genomic data by integrating 

different types of data and knowledge in different areas (e.g. genomics, statistics and animal 

science), and explore the possibility of better application of high-throughput genomic data in the 

genetic analysis of pigs. There are four studies in my thesis work, mainly concerning quantitative 

trait loci (QTL) mapping for pork quality and resistance to porcine reproductive and respiratory 

syndrome virus (PRRSV), and high-throughput genome mapping methodology. This chapter aims 

to provide a general introduction and literature review for the studies, including three sections: 1) 

genomic data, 2) application in livestock breeding, and 3) outline of the following chapters. 

 

1.1 Genomic data  

In this section, I first give a brief summary of the development of sequencing technology. Even 

though genomic data can also be produced by bio-technologies other than DNA sequencing (such 

as bead-based SNP genotyping microarrays), these technologies still depend on information 

provided by DNA sequencing to a degree. Then I focus on data generated from single nucleotide 

polymorphisms (SNPs), as this kind of data provided important information about genetic variation 

across individuals in my thesis work. Finally, I summarize existing DNA quantification methods, 

which have been increasingly used for genomic research recently and which play an important role 

in Chapter 5. 

 

1.1.1 Genome sequencing 

Genome sequencing does not have a very long history. Since the discovery of DNA structure in 

1953 (Watson and Crick 1953) and the beginning of the interpretation of the genetic code in 1961 

(Crick et al. 1961), people started to notice that the nucleotide sequence within the DNA molecule 
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carries specific genetic information. The first success in sequencing a complete gene was achieved 

in 1972, when Min Jou et al. established the entire nucleotide sequence of the coat gene of 

bacteriophage MS2 by characterizing RNA fragments (Min Jou et al. 1972). One of the most 

important sequencing methods, Sanger sequencing, was invented in 1975 (Sanger and Coulson 

1975). The method was also called “plus and minus”, which is based on a chain-terminating 

technique and radio-labelled nucleotides. With this powerful tool, Sanger et al. sequenced the full 

genome of bacteriophage PhiX174 (Sanger et al. 1982) in 1977. This method was then improved 

and ultimately automated in 1987 (Gocayne et al. 1987). Sanger sequencing is usually grouped as 

one of the “First generation sequencing methods”, which also includes other sequencing 

technologies, such as Maxam–Gilbert sequencing (Maxam and Gilbert 1977) and fluorescent 

sequencing (Smith et al. 1986). However, these other methods were not used as widely as Sanger 

sequencing. 

 Even though Sanger sequencing had been the most favored sequencing technique for 20 

years, its throughput did not increase as fast as needed. The advent of next-generation sequencing 

(NGS) methods then marked a new era. These methods include Pyrosequencing (Ronaghi 2001), 

Illumina sequencing, SOLiD sequencing, and semiconductor sequencing (e.g. Ion next generation 

sequencing). All of them outperform Sanger sequencing in one or more of four aspects: 1) 

sequencing cost, 2) sequencing speed, 3) degree of automation, and 4) sequencing accuracy (El-

Metwally et al. 2014). Evaluations reported that each of these methods has certain advantages over 

others as well as its own limitations (Nakamura et al. 2011; Luo et al. 2012). Among these 

methods, Illumina sequencing is thought to be an “industry standard” for NGS and widely 

accepted, which may partially be explained by its low cost, high throughput, and the huge amount 

of available software for the data analysis. 
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 However, the read length of these methods is usually no longer than 600 base pairs (bp) 

and often less (e.g. 2150 bp for Illumina Hiseq 4000 System), which is low in some scenarios 

such as de novo sequencing. In de novo sequencing, there are no available genome maps, and 

genome assembly greatly depends on the information provided by only those reads (Chaisson et 

al. 2015). Overlaps between longer reads tend to be larger, which helps in ordering the reads and 

in the reconstruction of DNA sequence. On the other hand, longer reads from resequencing (i.e. 

sequencing with reference map available) can be mapped to reference maps more easily as they 

carry more information. As a result, some new sequencing methods mainly focus on obtaining 

extra-long reads (e.g. longer than 10,000 bp), such as PacBio sequencing (Zhu and Craighead 

2012), Nanopore sequencing (Branton et al. 2008) and GemCode technology (Zheng et al. 2016). 

These sequencing technologies, however, still suffer from their high cost, and their error rate is 

also higher in part due to the greater read length. 

The development of sequencing technologies keeps increasing the throughput, and plays 

an important role in many significant whole-genome sequencing projects. The first one of these 

projects was the first sequencing of the human genome, also known as the human genome project 

(HGP) (Lander et al. 2001; Venter et al. 2001). One outcome of the HGP was the discovery of a 

huge number of SNPs in the human genome (Sachidanandam et al. 2001), which directly enabled 

GWAS in human, especially those studies about human disease (Collins 1999; Collins and 

McKusick 2001). Whole-genome sequencing is also a powerful tool for livestock studies. For 

example, the bovine genome sequencing project (Elsik et al. 2009) contributed significantly in 

mapping bovine SNPs, which also enabled other genomic studies such as those about the genetic 

structure of cattle breeds (Bovine HapMap Consortium et al. 2009). The latest assembly of the 

swine genome (Sscrofa10.2) was constructed in 2011 through a hybrid approach combining BAC 
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derived sequencing and whole genome shotgun sequencing (Archibald et al. 2010; Groenen et al. 

2012), and its output enables a part of the analysis in my thesis work. A new version of the swine 

genome (Sscrofa11) has been reported subsequently, which made use of the Pacbio sequencing to 

improve the sequence assembly (Warr et al. 2017). 

 

1.1.2 Genetic markers and SNP  

The discovery of a huge number of SNPs marked a new era in genomic studies, as it provides 

abundant genetic markers that are relatively easy to genotype. Before the wide use of SNPs, many 

other types of genetic markers were applied in genetic analysis, such as RFLP (Kan and Dozy 

1978), VNTR (minisatellites) (Jeffreys et al. 1985; Nakamura et al. 1987), SSR (microsatellites) 

(Litt and Luty 1989; Weber and May 1989;), RAPD (Williams et al. 1990) and AFLP (Vos et al. 

1995). The discovery and genotyping of these genetic markers did not require extensive DNA 

sequencing information, and therefore is easy to implement without high-throughput sequencing 

technologies. Even though the cost of whole genome sequencing keeps decreasing currently, these 

genetic markers are still being used in some species. Another kind of genetic marker, or variation, 

that was discovered extensively with whole genome sequencing is chromosome structural 

variations (CSVs) (Pinkel et al. 1998; Korbel et al. 2009; Alkan et al. 2011; ).  Generally, CSVs 

include copy number variations (CNVs), insertion/deletion (indel), translocations and inversions. 

It has been reported that CSVs underlie many heritable traits of importance. Efficient genotyping 

of CSVs is still challenging currently, and its analysis is one of the targets of my thesis work 

(Chapter 5). Some genetic variants may be grouped into multiple kinds of genetic markers 

mentioned above. For example, SSR is a specific type of CNV.  
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Among these genetic markers, SNPs show advantage over these other types of genetic 

marker in terms of density (most abundant in the genome), stability (stable inheritance over 

generations), and throughput of genotyping. The discovery of a huge number of SNPs provided a 

very important tool for genomic analysis. SNPs themselves are potential causative factors. For 

example, the HAL-1843 mutation is responsible for porcine stress syndrome (Fujii et al. 1991). 

More importantly, SNPs may serve as genetic markers of other common genetic variations among 

individuals (International HapMap Consortium et al. 2007), partially because of their high density. 

This property of SNPs directly enables GWAS as well as other advanced applications like genomic 

selection (Meuwissen et al. 2001). All the 4 studies in my thesis work (Chapter 2-5) involved SNP 

data in the analysis.  

 Currently, high-throughput SNP genotyping is mainly conducted with array-based methods 

and increasingly genotyping-by-sequencing (GBS) techniques. Among the array-based methods, 

two technologies are most popular. One of them was developed by Affymetrix (Santa Clara, USA) 

in 2003 (Kennedy et al. 2003). The latest version of the technology makes use of a semiconductor 

based photo-lithographic technology in order to increase the call rate. The other technology was 

first proposed in 2005 (Gunderson et al. 2005) and then improved in 2006 (Steemers et al. 2006) 

by Illumina (San Diego, USA). It is based on a two-color BeadArray and generates SNP allele 

dosage data to determine the genotypes of samples (Steemers et al. 2006; Hackett et al. 2013). As 

allele dosage data is one of the key concepts in Chapter 5, we also introduce it with more detail in 

the next sub-section (DNA quantification). 

 For GBS techniques, even though it was a whole-genome sequencing technology that helps 

discover a huge number of SNPs, the idea of whole-genome SNP genotyping by sequencing was 

not widely applied at first (Elshire et al. 2011). However, with the decrease of the cost for NGS 
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and the development of related statistical tools, GBS started to show advantages over array-based 

methods in some fields (Nielsen et al. 2011). By applying NGS to pooled DNA samples, GBS is 

able to achieve a high level of multiplexing, and significantly reduce the cost of genotyping per 

sample (De Donato et al. 2013). In addition, the GBS technique combines the discovery of new 

SNPs and the genotyping step, which is more cost-effective and efficient (De Donato et al. 2013). 

The advantage of no requirement for pre-discovered SNPs also makes GBS a better choice when 

reference sequence is not available (Elshire et al. 2011). On the other hand, currently, the analysis 

of NGS data may require additional investment such as bioinformatics training and computational 

infrastructure, which should also be taken into consideration for cost estimation. 

 

1.1.3 Nucleic acid quantification  

Another important type of genomic data used in my thesis work is nucleic acid quantification data. 

Compared with qualitative genotyping data, which are mainly about typing different sequences, 

quantification data carry information of the quantity/dosage of sequences. Common applications 

of nucleic acid quantification data include gene expression measurement (Schena et al. 1995), copy 

number variation detection (Pinkel et al. 1998), and pathogen detection (Strain et al. 2013). 

Currently, technologies for nucleic acid quantification include bead-based quantitative genotyping 

technology, sequencing methods, and PCR-based methods. 

 The aforementioned Illumina genotyping platform (e.g. Illumina PorcineSNP60v2+ 

Beadchip) is an example of quantitative genotyping. This method quantifies alleles for high-

density whole-genome SNPs with a high throughput, which results in a low cost both financially 

and in experiment time. However, as the technology was originally designed for genotyping rather 

than DNA quantification, more bias may be introduced in the measurement compared with other 
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quantification techniques. For example, it has been reported that the result of DNA quantification 

may be biased because the use of different dyes in the Illumina Infinium II assay (Staaf et al. 2008).  

 Sequencing technology started to be widely used for gene expression measurement in 2008 

as a quantification method (Marioni et al. 2008). The basic idea is that the number of sequencing 

reads containing a locus in a given sample can be a measurement of the abundance of the locus 

(Tarazona et al. 2011). Even though there are still some concerns about the accuracy of using 

RNA-seq in gene expression measurement, the results of many studies has provided support on its 

performance (Bullard et al. 2010; Griffith et al. 2010). For DNA quantification, there are few 

previous studies about applying sequencing in this way. One of the known biases during this 

process is introduced by amplification (a PCR step) incorporated in the sequencing protocol, as 

the PCR amplification rates for different loci may vary (Rhodes et al. 2014). A possible option 

may be the TruSeq PCR-free technology developed by Illumina, which does not incorporate PCR 

in the sequencing (Rhodes et al. 2014). 

 For nucleic acid quantification, the most commonly used methods are PCR-based 

technologies, such as real-time PCR (also known as quantitative PCR, qPCR) and digital PCR 

(dPCR). While these methods may have a relatively low throughput compared with the two 

methods mentioned above, they are able to achieve a higher accuracy in quantification. Indeed, it 

is still the case that reviewers request validation of RNA-seq results by this approach (qPCR). 

Among these methods, droplet digital PCR (ddPCR) provides the best accuracy currently. This 

technology was first proposed in 2011 (Pekin et al. 2011). By making use of the advances in 

nanofluidics, it performs PCR in a large number (e.g. millions) of droplets simultaneously. 

Previous evaluation showed that ddPCR provided absolute quantification of target sequences with 

high accuracy, dynamic range, and reproducibility (Hindson et al. 2013). Commonly used 
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platforms for ddPCR include the RainDrop system developed by Raindance (Billerica, USA), and 

the QX100/200 system developed by Bio-Rad (Hercules, USA). Some other dPCR platforms are 

also available in this field. Biomark HD provided by Fluidigm, for example, has been reported to 

have comparable quality in DNA quantification to the QX100 system in certain scenarios (Pavšič 

et al. 2016). 

 Other than these technologies, some other solutions are also available and may find a new 

(not necessarily better though) balance between throughput and accuracy, such as the nCounter 

system developed by nanoString (Seattle, USA). This method was reported to perform well in 

sensitivity, reproducibility and robustness for quantification, while keeping a relatively high 

throughput (Veldman-Jones et al. 2015). However, this technology is not able to distinguish 

sequences with minor differences, such as two different alleles for a SNP, which limits its 

application to a degree. 

 

1.2 Application of genomic data in livestock breeding 

The availability of high-throughput genomic data brings new opportunities for genomic studies 

especially in livestock. It significantly enhances our ability for detecting genetic mutations behind 

or underlying traits and improves our understanding of the biology of traits. In the context of 

livestock breeding, the genomic data also plays a special role. In this section, I give a brief 

introduction of two applications of genomic data in livestock, which are also the two main topics 

in this thesis. They are 1) QTL mapping and animal genetic improvement, and 2) genome mapping. 
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1.2.1 QTL mapping and animal genetic improvement  

An important application of animal genomics in agriculture is to improve the genetic merit of 

animals. Depending on the underlying genomic structure of different traits, the strategy for genetic 

improvement can be different. My thesis work described in Chapter 2-4 is mostly involved in QTL 

mapping and GWAS, which may be applied in the genetic improvement of pigs. This section aims 

to give a review about some related topics discussed in the following chapters, while also including 

a brief introduction about other applications of genomic data in genetic improvement, such as 

genomic analysis of Mendelian traits and genomic selection. 

 

1.2.1.1 Genetic improvement for Mendelian traits and complex traits  

Genetic improvement in livestock refers to organised genetic changes in a desired direction in a 

population, resulting from artificial selection and breeding. Strategies for genetic improvement are 

slightly different between Mendelian traits and complex traits. 

 For Mendelian traits, their inheritance follows Mendel's laws and are controlled by a single 

genomic locus. Example includes a deleterious allele of gene RYR1 (also known as the “Halothane 

gene”) causing porcine stress syndrome (Fujii et al. 1991), which was  the first genetic marker 

used in pig breeding. The genetic improvement for these traits can be done by reducing the 

frequency of the deleterious alleles. Mendelian traits usually showed clear pattern of inheritance, 

and it is relatively easy to find carriers of deleterious alleles even without genomic tests (e.g. 

through test mating). However, genomic tests have exclusive advantages in some cases, such as 

early stage tests for inherited disorders. Traditional genomic methods for mapping genes 

underlying Mendelian traits includes linkage analysis, which detects co-segregation of genetic 

markers and phenotypes in designed mapping population, such as the analysis of dwarfism in pigs 
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(Nielsen et al. 2000). The application of high-density SNP genotype data further enables the 

GWAS of Mendelian traits. Compared with linkage analysis, GWAS make use of the linkage 

disequilibrium (LD) between genetic markers and causative mutations, and does not require well-

designed and specifically constructed mapping population to infer recombination fraction, which 

significantly reduced the cost of data collection (Ott et al. 2015). Successful examples of GWAS 

of Mendelian traits in animals includes the mapping of genes underlying congenital muscular 

dystonia in Belgian Blue cattle (Charlier et al. 2008).  

Meanwhile, many traits of interest in livestock production are complex traits, such as milk 

yield or meat quality. They are commonly affected by multiple genetic variants with low-to 

moderate effects (Falconer and Mackay 1996). The joint average effect of these genetic variants 

that can be passed on to the next generation (also called breeding value) can serve as the 

measurement of genetic merit for animal selection. Genetic improvement can be achieved by 

selecting animals with high breeding value. Similar to Mendelian traits, this process can be done 

without genomic tests. Random effect models and BLUP (best linear unbiased prediction) have 

successfully been applied to estimate breeding value using phenotypic and pedigree information 

in the past decades (Robinson 1991). However, the genomic tools provided new opportunities in 

genetic improvement, including marker-assisted selection (MAS) (Smith 1967; Meuwissen and 

Goddard 1996) and genomic selection (GS) (Meuwissen et al. 2001). The genomic analysis leads 

to more possibilities in animal genetic improvement, such as reducing generation interval and 

improving selection accuracy. As a result, the genomic tools have advantages especially for some 

traits that are difficult to improve in traditional selection program, e.g. invasive recording or those 

requiring progeny test. 

 



 

 12 

1.2.1.2 QTL mapping and marker-assisted selection (MAS) 

Genomic loci that are associated with complex traits are also called quantitative trait loci (QTL). 

The development of QTL mapping has been largely driven by increasing accessibility of genomic 

data. Early efforts to map QTL suffered from the low density of available genetic markers, and 

therefore applied interval mapping to improve the detection power in QTL mapping (Lander and 

Botstein 1989). This method exploits available genetic linkage maps to infer the genotype of 

unobservable loci between two genotyped markers, and thereby overcomes the issue of low density 

to a degree. However, the resolution of mapping is usually low (e.g. 20 centimorgans), as the 

genotype information is very limited. Recent developments in molecular genetics have made it 

possible to efficiently genotype large amounts of genetic markers in the genome, and therefore 

enables genome-wide association studies (GWAS). By directly associating phenotypes with 

available high-density genotypes, GWAS has successfully identified QTL for many important 

complex traits, such as body composition and structural soundness traits in pigs (Fan et al. 2011) 

and milk fat yield in cattle (Jiang et al. 2010). More discussion about methods of GWAS that relate 

to my thesis work can be found in section 1.2.1.4. 

Through GWAS, it becomes possible to identify genetic markers associated with traits of 

interest. These markers may be the functional genetic mutations underlying variation in those 

traits, or, in most cases they are more likely in LD with the functional mutations. The key idea of 

MAS is to use associated genetic markers (usually only those with statistically significant effects) 

to predict the genetic merit of animals, and then the predicted genetic merit can be used to make 

selection decisions. In MAS, not only validated causative mutations can be used, but all candidate 

SNPs showing great association with the trait can be integrated into the prediction. Even though 

part of the association may highly depend on the linkage disequilibrium (LD) between the SNPs 
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and real causative mutations, those SNPs still improve the predictability of genetic merit (Hayes 

and Goddard 2003).  

This strategy has been applied in the selection of various livestock species (Goddard and 

Hayes 2009). For example, genetic markers have been used to improve traits of interest in the pork 

industry, such as pork quality, reproductive traits and animal health (van der Steen et al. 2005). 

For dairy cattle, MAS has been helping in the genetic improvement of reproductive traits, milk 

yield and milk quality (Dekkers 2004).  

 

1.2.1.3 Genomic selection (GS) 

As the density of available polymorphisms has increased, a different strategy, termed genomic 

selection (GS), was first introduced in 2001 (Meuwissen et al. 2001) and enabled in 2007 (Snelling 

et al. 2007). The idea behind this strategy is to use all the markers across the genome to predict 

breeding value, rather than selecting only significant markers. It is extremely important in those 

cases where the traits of interest are determined by many genetic variants with small effect 

(Meuwissen et al. 2016). In MAS, genetic variants with small effect are usually not statistically 

significant due to lack of statistical power (also see section 1.2.1.4.2). By using GS, all effects can 

be taken into consideration to achieve a better prediction. This strategy has dramatically increased 

the rate of genetic improvement in dairy cattle, which may result from the application of large 

reference populations (Hayes et al. 2009; Wiggans et al. 2011). Genomic selection is also being 

implemented in beef cattle and pigs (Lillehammer et al. 2011; Lourenco et al. 2015), however, its 

advantage over the traditional selection is not as great as that achieved in dairy cattle (Meuwissen 

et al. 2016). 
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Genomic selection does not require mapping specific QTL, or in other words, it captures 

all QTL along the genome without any selection (or previous identification) to predict the breeding 

value (Goddard and Hayes 2009). However, fine mapping of QTL may serve as prior information 

and help to improve the accuracy of GS, especially when huge amount of biological and genomic 

data are available (Hickey 2013). One current example to achieve this goal is BayesRC, a method 

to incorporate biological information into GS (MacLeod et al. 2016).  

 

1.2.1.4 GWAS 

This section aims to give a brief introduction of three more specific topics related to my thesis 

work. They are 1) contingency-table test for binary traits 2) multiple testing, and 3) linear 

regression for continuous traits. 

 

1.2.1.4.1 Contingency table test 

“Contingency-table” test is a family of tests in classical contingency table analysis, such as 

Pearson’s Chi-square test and Fisher’s exact test. These tests are usually used in the analysis of 

binary traits, i.e. traits with only two possible phenotypic values. The basic idea of these tests is to 

test the dependency between the phenotype and allelic frequency or genotypic frequency. If an 

allele or a genotype for a polymorphism has quite different frequencies for the two groups of 

animals, it is likely that the polymorphism is associated with the binary trait. Significant tests can 

then be used. 

 The transmission disequilibrium test (TDT) can be treated as a special type of contingency-

table test. In TDT analysis, the genotype data are only available for animals with one certain 

phenotype, which is not uncommon in disease related studies. In this case, it is impossible to 
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directly test the dependency between phenotype and allelic / genotypic frequency. Instead, TDT 

analysis requires the parents’ genotypes, and detects possible transmission disequilibrium 

(distortion from the Mendelian segregation) in the animals with genotype data, which can be used 

as a sign of association between the genetic marker and the trait (Spielman et al. 1993). More 

discussion about TDT can be found in Chapter 4. 

 The contingency-table test also suffers from some drawbacks. In most situations, the 

contingency-table test is conducted separately for each single SNP, i.e. single marker association. 

For complex traits that are affected by multiple genetic factors, single marker association is not 

able to provide optimal solutions, as the effects of all other SNPs are ignored during the calculation 

for a certain SNP. In other words, the simple (single marker) model is not able to describe the 

complex relationship between the phenotype and the underlying genetic factors. On the other hand, 

it is difficult to adjust for systematic effects, such as age, sex, population stratification, in most 

contingency-table tests. A common approach to deal with this problem is to obtain samples using 

a balanced design, where the individuals with the two phenotypes have identical (or at least similar) 

distribution of age, sex, genetic background and/or other known information. However, it is 

usually prohibitively difficult to match sampled individuals, and requires very good experimental 

design. Some methods have also been proposed to solve this problem (Reich and Goldstein 2001), 

but it is still very challenging when multiple factors need to be integrated in the analysis. 

 

1.2.1.4.2 Multiple testing 

In addition, when high-density SNP data are used, single-marker association is faced with the 

dilemma of choosing a significance level (𝛼). The significance level determines how stringent the 

criteria we use to decide the significance of SNPs. With a higher significance value (i.e. higher 
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threshold of p-value), it is likely that more SNPs are detected to be significant in GWAS, at a cost 

of more false positives. On the other hand, a lower significance level means more false negatives 

(i.e. lower power). Generally, a lower significance level should be used when multiple tests are 

conducted simultaneously. Otherwise, the decision error (probability of false positives) tends to 

accumulate as the number of tests increase, and result in an unacceptably serious false positive 

error. The high density of SNPs introduced new statistical issues for GWAS. One issue for multiple 

marker association will be discussed in the next section. For single-marker association, denser 

SNPs suggests a larger number of tests, and the multiple testing problem is therefore more severe.  

Existing methods of adjustment for multiple testing include a family of adjusting 

procedures, such as Bonferroni procedure and Dunn-Sidak procedure (Quinn and Keough 2002). 

The Bonferroni procedure is a widely used technique in GWAS, which provides a great control of 

false discovery. This method, however, has been criticized to be too conservative and reduce the 

power in the association analysis. The reason is not only its own statistical property, but also the 

fact that the number of independent tests in GWAS is usually overestimated due to the existence 

of LD between SNPs (Gao et al. 2009). It has been reported that false discovery rate (FDR), another 

statistic used in multiple testing, can successfully handle the LD between SNPs and is more 

powerful than the Bonferroni procedure (Benjamini and Hochberg 1995; Yekutieli and Benjamini 

2001). This method was used in my thesis work (Chapter 4) for multiple testing in TDT. Another 

option to obtain higher detection power is resampling-based adjustment (e.g. permutation test) 

(Westfall and Young 1993; Westfall et al. 1993). While this method gives a good solution to the 

multiple testing problem, it can be extremely time-consuming in practice. 

Another way to deal with the multiple testing issue is to reduce the number of tests. Some 

efforts have been made to correct the overestimation of the test number. The estimated number of 
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independent tests (also called as “effective number of independent tests”) highly depends on the 

distribution of LD along the genome, but is usually much lower than the number of SNPs used in 

the estimation (Duggal et al. 2008; Gao et al. 2009; Li et al. 2012). It is also reported that the 

negative impact of multiple testing on high-density SNP data analysis can be reduced by 

haplotype-based methods to some degree, as the haplotype phasing also takes account of the LD 

between SNPs. This method also depends on the distribution of LD along the genome (de Bakker 

et al. 2005). 

Even though methods have been proposed to handle the multiple testing issue in GWAS, 

their effectiveness is still controversial. The dilemma of choosing significance level may be 

partially rooted in the huge number of potential genetic variations and the limited information 

available in the association analysis, and there may be no simple solution to this issue in the trade-

off between increasing statistical power and reducing false positives. On the other hand, with the 

help of advanced statistical tools, biological information from other studies (e.g. transcriptomics, 

proteomics and metabolomics studies) may be another key in providing a satisfactory answer to 

our question. The aforementioned haplotype-based methods can serve as an example of 

successfully achieving better performance through integrating genomic information and 

knowledge (LD information) into the analysis. Another example is Multi-trait GWAS, which 

applies prior knowledge about the functional connection between traits in the analysis to improve 

power (Heid and Winkler 2016). Some advanced statistical tools may also help to integrate prior 

functional information into GWAS. For example, the aforementioned BayesRC has been reported 

to increase the accuracy of QTL mapping using prior biological information (MacLeod et al. 

2016). 
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1.2.1.4.3 Linear regression 

Compared with the contingency-table test, linear regression provides a more general solution to 

association analysis, as it is one of the best-studied statistical tools used in a wide range of fields. 

Especially, when the phenotypic value is continuous, modelling the phenotype in a discrete way 

and using contingency-table test may lose important information. 

Linear regression aims to detect a possible linear relationship between a dependent variable 

and one or more independent variables. In the context of GWAS, it is usually, though not always 

(Li and Yin 2008), used to detect the linear relationship between phenotypic value (dependent 

variable) and SNP effects (independent variables). In a simple scenario, the analysis can reveal 

allelic substitution effects of SNPs, i.e. the average effect on the phenotype when one allele was 

replaced by the other allele at the same locus (Falconer and Mackay 1996). In addition, by 

appropriately constructing independent variables, linear regression techniques can also be used to 

model different types of genetic effects, such as dominance or epistatic effects (Gao et al. 2014). 

By extending the common linear model into a generalized linear model (GLM), linear 

regression techniques can also apply to other traits, such as categorical traits (Xing et al. 2014). 

The most commonly used technique in the GLM family is logistic regression, where the logit (i.e. 

natural logarithm of the odds for a particular outcome) of a binary trait is treated as the dependent 

variable (Liu et al. 2009). This technique has been successfully used in a wide range of GWAS 

analyses (Sullivan et al. 2008; Wu et al. 2009; Ayers and Cordell 2010), and provides evidence for 

its flexibility in the application of linear regression. 

Some drawbacks of single-marker association can also be solved by multiple regression, 

where more than one genetic effect can be estimated and tested simultaneously (Basu et al. 2011). 

This property is very desirable in GWAS of complex traits, as genetic factors with small effect on 
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complex traits they can be very hard to detect in single-marker association. Multiple regression 

can take into account the joint effect of the genetic factors, and increase the power of detection. In 

this case, multiple regression also provides better estimation of the size of genetic effects. 

Even though multiple linear regression is a very powerful tool for GWAS, high-

dimensional genomic data analysis is still a challenge. This problem is also known as “regression 

for high-dimensional data”, which refers to the situation where the number of observed records for 

a dependent variable is lower than the number of independent variables in the regression 

(Bühlmann and van de Geer 2011). From a statistical point of view, this kind of data does not 

provide enough degrees of freedom for multiple regression techniques like ordinary least squares 

(OLS). Solutions for high-dimensional regression models is one of the hot topics in statistics at the 

moment. A set of techniques has been developed, such as variable selection techniques, shrinkage 

methods, and dimension reduction techniques (Hastie et al. 2009). However, these methods also 

bring some other concerns at some points, such as difficulty in providing a significance test. In my 

thesis work, we did some exploration in the application of LASSO (least absolute shrinkage and 

selection operator) and its extensions, which is an important member of the shrinkage methods. 

More introduction can be found in Chapter 2 and Chapter 3. 

 

1.2.2 Genome maps 

High-throughput genomic data can also speed up the construction of genome maps, which provides 

information about the relative positions of genetic markers, and has been widely used in genomic 

studies. In the rest of this section I introduce existing methods for the construction of linkage maps 

and physical maps, and their application in livestock genomics. 
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1.2.2.1 Linkage maps 

The concept of genetic linkage was first introduced by Bateson, Saunders and Punnett in 1905 

(Bateson et al. 1905). It was then further developed in Morgan's work in Drosophila (Morgan 

1911). These works laid the foundations for the development of the first linkage map (Sturtevant 

1913). A linkage map contains the relative positions of markers, as well as information about inter-

marker distance. The construction of linkage maps greatly depends on the estimation of inter-

marker genetic distance, and it is essentially based on detecting meiotic recombination.  

The most widely used method for linkage mapping is based on pedigree information and 

the genotypes of individuals in a population. The pedigree-based method usually uses a multi-

generation design, and applies to construct medium-density linkage maps (Rohrer et al. 1994; 

Barendse et al. 1994; Archibald et al. 1995; Groenen et al. 2000). However, these methods require 

high cost, long time scales (depending on generation interval), or have high technical difficulty 

associated with them (Hoh and Ott 2005). In addition, the maps are constructed based on 

population averages, so they are not able to reveal differences in recombination rate between 

individuals. 

A better way for fine mapping using linkage is the single-sperm typing method (Li et al. 

1988), which can also greatly reduce the cost and time associated with building and maintaining 

the mapping population. This method uses the genotypes of a large number of individual sperm 

cells to achieve a high resolution (Li et al. 1988; Cui et al. 1989; Lazzeroni et al. 1994). In 1988, 

Li et al. proposed a single-sperm typing method, which uses the genotypes of 80 single sperm cells 

to infer the recombination rate between 2 markers (Li et al. 1988). This method was then extended 

to whole-genome multipoint linkage mapping with the invention of the whole-genome single-cell 

amplification technique in 1992 (Zhang et al. 1992). The throughput of the single-sperm typing 
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strategy has kept increasing in the following two decades. Currently it is possible to genotype a 

single sperm using whole-genome single-cell sequencing. In 2012, Lu et al. create a linkage map 

with about 1.4 million heterozygous single nucleotide polymorphisms (SNPs) through sequencing 

99 single sperm cells (Lu et al. 2012).  

While the extremely high density of available markers reflects a significant increase in the 

throughput of linkage mapping, the resolution can be achieved in single sperm typing remains 

limited. It is essentially because the number of meioses that can be observed in practice is relatively 

small. As the occurrence of genetic recombination for a specific genomic locus is random (i.e. not 

guaranteed to appear in small samples), high-quality linkage maps require a fair number of sperm 

cells being genotyped, which can be labor-intensive and inefficient. In the aforementioned work, 

Lu et al. estimated that at least 1,000 sperm are required to achieve the power for detecting personal 

difference in recombination rate (Lu et al. 2012). In Chapter 5, I introduce our work on a multiple 

sperm typing method, which aimed to achieve an even higher throughput.  

 There are also some other methods using high-throughput genomic data in genetic 

mapping. In 2001 a new estimator of recombination rate was proposed, which is based on 

genotypic data from a population (Fearnhead and Donnelly 2001). The advantage of this method 

is that the mapping population does not need to be well designed, and pedigree information is not 

necessary. The method has been thought to be another option for fine linkage mapping. However, 

the estimation in this method greatly depends on some estimated parameters of the mapping 

population (e.g. effective population size), which may be difficult to estimate with a high accuracy.  
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1.2.2.2 Physical maps 

Linkage maps provide important information about the recombination rate between genetic 

markers, however, the recombination rate is not evenly distributed along the genome. In some 

cases, it is important to assess the physical distance between genetic markers, and a physical 

genome map can be very useful. 

 One of the successful approaches for physical mapping is Radiation Hybrid (RH) mapping. 

This method makes use of irradiation technology and cell fusion to prepare samples with DNA 

fragments of chromosome, and measure the inter-marker physical distance with the association 

score (retention rate). The association score can then be used in physical mapping (Cox et al. 1990). 

This strategy then led to the development of HAPPY (HAPloid DNA samples using the 

PolYmerase chain reaction) mapping (Dear and Cook 1993). This in vitro method breaks genomic 

DNA through mechanical shear, irradiation or chemicals, and then using a limiting dilution 

strategy (i.e. most samples contain either one or zero target DNA molecules (Dong et al. 2014)) to 

assess the association score between markers (Dear and Cook 1993). This method has been applied 

in mapping the human genome (Dear et al. 1998) and detecting genome rearrangement (Pole et al. 

2011). However, even though HAPPY mapping is less labor-intensive than RH mapping, it still 

suffers from its low throughput in practice. 

Another physical mapping method, optical mapping, provided an example of how cutting-

edge biotechnologies can make a traditional mapping method new again. Optical mapping was 

first proposed in 1993 (Schwartz et al. 1993), and has been used successfully to construct physical 

maps in both bacteria and plants since then (Lim et al. 2001; Zhou et al. 2009). However, its low 

throughput hinders its application in constructing high quality whole-genome maps. In 2012, with 

the help of technologies in molecular biology, automation, image and data analysis, a high-
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throughput optical mapping method was proposed, which was used in the assembly of the goat 

genome (Dong et al. 2012). 

 Sequencing can also be treated as a physical mapping method, which provides relatively 

accurate positions in base pair of genetic markers. Current mainstream sequencing technologies, 

however, are still not able to construct whole-genome physical maps in a standalone way. Even 

though the reads produced by those technologies have been claimed to be “long enough” (e.g. 

100k -300k base pairs), it is not ready for high-quality genome assembly. New developments in 

sequencing technology lead to the advent of the aforementioned long-read sequencing 

technologies (PacBio sequencing, Nanopore sequencing and GemCode technology). Their ability 

to generate long reads in sequencing may lead to high-throughput physical maps (Branton et al. 

2008), as summarized in the previous section. 

 

1.2.2.3 Application of genome maps in livestock genomics 

In livestock genomics, an important application of genome maps is help in the process of genome 

assembly to produce a more accurate reference map. For example, a map of the bovine genome 

was constructed in 2007, which combined the information from pedigree-based linkage maps, 

bacterial artificial chromosome (BAC) maps, and radiation hybrid (RH) maps. The map was then 

used in the refinement of Btau3.1 draft assembly (Snelling et al. 2007). In the case of pigs, the use 

of BACs in the hybrid sequencing strategy aimed to help address this issue. Efficient construction 

of genome maps may play an even more important role in de novo sequencing, where a reference 

map is not available. A recent example is a linkage map constructed for Asian seabass, which was 

used to assist its de novo assembly (Wang et al. 2017). For genomic analysis (e.g. QTL mapping 

and genotyping imputation), these accurate reference maps are now an essential tool. On the other 
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hand, reference maps are usually constructed based on a representative individual or a small 

representative population, while the true map can be different across populations or even across 

individuals (Marques et al. 2007). If high-throughput genomic data can enable a more effective 

and cost-efficient genome mapping method, it may significantly help with the construction of more 

accurate genome maps for specific populations as needed.  

For individualized genome maps, an additional important application is genome-wide 

genotyping of CSVs, including inversions, translocations, indels and CNVs. More and more 

evidence has been found in the past decade that CSVs may play a causative role in heritable traits, 

including some important animal production traits. For example, an indel close to the prolactin 

gene has been reported to be associated with milking traits in dairy cattle (Cowan et al. 1990), a 

translocation that encompassed the KIT gene has been reported to determine color sidedness in 

beef cattle (Durkin et al. 2012), and association has also been found between CNVs and fatness in 

pigs (Schiavo et al. 2014). An effective and low-cost solution for genome-wide detection and 

genotyping of CSVs will provide easy access to these previously “hidden” genetic variations, and 

thereby significantly enhance the study of such important traits. For animal breeding, better tools 

for CSV studies can help in the exploration of “missing heritability”, and may lead to improved 

performance of breeding in livestock (Bickhart and Liu 2014). 

Genome maps with high quality may also play other important roles in genomic analysis. 

For example, a linkage map can help in recombination hotspot analysis in livestock, which may 

lead to better results in haplotype phasing and genotype imputation (Weng et al. 2014). In terms 

of animal breeding, linkage maps at an individual level may help select animals with relatively 

high recombination rate, which may accelerate the process of breeding. Higher recombination rates 

lead to higher genetic variation with a population over generations, which is essential for artificial 
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selection. A previous simulation study has reported higher efficiency of breeding programs in a 

population with higher recombination rates (Battagin et al. 2016). On the other hand, the loss of 

genetic variation can be a side effect of animal selection, or due to natural processes such as genetic 

drift (Hill 2000). Identifying and keeping animals with high recombination rates may serve as a 

way to enhance or maintain genetic variation for sustainable application. The identification of 

these animals can be done through individualized linkage maps, which provide genome-wide 

recombination information. 

 

1.3 Outline 

This thesis work consists of four independent but connected studies. Chapter 2 explores the 

application of the adaptive LASSO in GWAS, including a performance test and a GWAS of meat 

colour in pigs. Chapter 3 introduces a GWAS of fetal response to type 2 PRRSV challenge using 

a multi-marker generalized linear model. Chapter 4 introduces a genome-wide transmission 

disequilibrium test of fetal autolysis in the same population, which integrated pedigree data that 

was not used in the previous GWAS. The studies in these three chapters used SNP data. Chapter 

5 introduces a study beyond SNPs, where a new genome mapping method is proposed to detect 

whole-genome structural variations. Chapter 6 gives a summary of the four studies, and discusses 

the outputs and future work. 
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Chapter 2 Performance of the adaptive LASSO and its application 

in GWAS of meat colour in pigs 

 

This chapter mainly discusses the application of the adaptive least absolute shrinkage and selection 

operator (“the adaptive LASSO”) in genome-wide association studies (GWAS). The results and 

discussions of this chapter provides useful information for the selection of statistical tools in the 

context of GWAS. 

As reviewed in Chapter 1, multiple linear regression is an important method for genome-

wide association studies (GWAS) because of its ability to model the polygenic nature of 

quantitative traits. However, as the density of available genomic variants is getting higher and 

higher, GWAS using the high-dimensional linear model seems to be an example of the “curse of 

dimensionality” in genomic analysis (Jiang and Neapolitan 2012), where the high dimension of 

genomic data significantly hinders the application of multiple linear regression. While the problem 

can partially be solved through progress in biology and genomics (e.g. better functional annotation 

of genome can narrow down our list of candidate genomic variants), advanced statistical tools also 

provide a toolkit for GWAS with high-dimensional genomic data. The adaptive LASSO has been 

widely used in the analysis of high-dimensional linear regression (Bühlmann and van de Geer 

2011), and may serve as an good option in GWAS. 

 We conducted two studies to explore the application of the adaptive LASSO in GWAS. In 

study one, we tested the performance of the adaptive LASSO in a public simulated dataset 

(QTLMAS2010). The adaptive LASSO showed higher detection power (i.e. higher true positive 

rate) than other methods (e.g. BayesC/CPi), while its precision is relatively low. In study two, we 
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applied adaptive LASSO in the GWAS of meat colour in pigs. A total of 20 genomic regions were 

detected to be associated with multiple meat colour traits. These candidate regions were supported 

by previous GWAS results, known QTL of meat quality and lipid metabolism, and genes 

functionally related to meat colour traits. The study has been accepted by the Canadian Journal of 

Animal Science for publication1. I also contributed to the analysis and helped co-author two 

publications related to study two (Appendix 2). 

 

2.1 STUDY 1 – Evaluation of the performance of the adaptive LASSO 

2.1.1 Introduction 

Currently statistical techniques for high-dimensional regression include traditional model selection 

methods (e.g. stepwise selection), Bayesian regression techniques, and regulation techniques (Berk 

2008). The adaptive LASSO is an important member of regularization techniques. It is an 

extension of the original LASSO (least absolute shrinkage and selection operator), which has been 

widely used as a simple and time-efficient solution for high-dimensional regression (James et al. 

2013).  

The adaptive LASSO inherits the good statistical properties of the original LASSO, 

especially the in-built variable selection mechanism (Zou 2006). It can be important in the context 

of GWAS. The variable selection mechanism tends to shrink most of the estimated SNP effects 

into zero during the regression, and assumes that only a small proportion of SNPs have relatively 

large effect. As a result, the regression can serve as a selector to filter SNPs that are less likely to 

be associated with the traits under investigation. The original LASSO, however, has been reported 

as failing in the control of false positive errors (Bühlmann and van de Geer 2011). The adaptive 

                                                 
1 Tianfu Yang, Zhiquan Wang, Younes Miar, Heather Bruce, Chunyan Zhang, and Graham Plastow, A Genome-wide 

Association Study of Meat Colour in Commercial Crossbred Pigs. Accepted by Canadian Journal of Animal Science. 
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LASSO can be treated as a way to correct for the “overestimate” behaviour of the original LASSO, 

and has been shown to be successful in controlling the false positive issue (Zou 2006). 

Many regulation regression techniques have previously been successfully applied in 

genomic analysis, especially in GWAS. For example, ridge regression has been a powerful tool in 

regression for decades and it also finds a new role in detecting rare genomic mutations (Zhan and 

Xu 2012). In terms of genomic prediction, ridge regression is equivalent to RR-BLUP (Endelman 

2011), which is one version of the widely used genomic BLUP (gBLUP). The first application of 

the LASSO in GWAS was no later than 2009 (Wu et al. 2009), and it also shows great performance 

in genomic prediction (Xu et al. 2014). Elastic net (EN) can be treated as a combination of ridge 

regression and the LASSO, which tries to find a balance between these two methods. An evaluation 

of the LASSO and EN in GWAS was conducted in a previous study, which confirmed their 

advantages in such scenarios (Waldmann et al. 2013). While application of LASSO (and other 

“family members”) in similar analyses has been reported before (such as QTL mapping with 

experimental crosses (Sun et al. 2010)), performance of the adaptive LASSO in GWAS remained 

undetermined. The performance of the adaptive LASSO in GWAS remained vague as well as other 

members in this family, while its application in closely related cases has been reported before, 

such as QTL mapping with experimental crosses  

The current study aimed to test the performance, mainly statistical power and precision, of 

the adaptive LASSO. We applied the adaptive LASSO to a public simulated dataset from 

QTLMAS 2010, and compared its performance with those of other methods in previous studies, 

such as Bayes C/CPi (Mucha et al. 2011).  
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2.1.2 Materials and methods 

2.1.2.1 Simulated Dataset 

Data used in this study came from the QTLMAS 2010 Workshop. More details for this dataset 

were described in the proceedings of QTLMAS 2010 Workshop (Szydlowski and Paczyńska 

2011). In brief, this dataset includes genomic records of 3,226 animals in 5 generations. Each of 

the genomic records consists of genotype of 10,031 SNPs on 5 chromosomes. One continuous trait 

(QT) and one binary trait (BT) were simulated based on 30 additive QTLs, 2 QTL pairs with 

epistatic effect, and 3 imprinted loci. In the current study, we are mainly interested in the 

continuous phenotype (QT) in this dataset. 

In the previous QTLMAS 2010 Workshop, seven QTL mapping methods have been 

evaluated for QTL analysis by different groups using the simulated data (Table 1). The criteria and 

results of the comparison were summarized by Mucha et al. (2011). Basically, a simulated QTL 

was treated as “detected” if it was within 1 Mb from a reported position. For each method in the 

comparison, its detection power (also called true positive rate) was calculated as the ratio of the 

number of detected QTL to the total number of true QTL simulated. 

 

𝑃𝑜𝑤𝑒𝑟 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑄𝑇𝐿

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑄𝑇𝐿
 

 

The precision for the different methods was also evaluated, which is the ratio of the number of true 

positives to the total number of detected regions, where the true positives referred to the reported 

regions within 1 Mb from any simulated QTL. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑔𝑖𝑜𝑛𝑠
 

 

2.1.2.2 The adaptive LASSO 

As the performance of the adaptive LASSO in GWAS was not evaluated in the QTLMAS 2010 

Workshop, it was evaluated here using the simulated dataset with the following multi-marker 

association model. 

𝑦 = 𝜇 +  𝑍𝑠 + 𝜀, 

where 𝜇  is the intercept, 𝑍  is the design matrix associated with SNP effects (𝑠), and 𝜀  is the 

residual in this model. All SNP effects were treated as fixed effects. The adaptive LASSO was 

conducted using package R/parcor (Krämer et al. 2009). All SNPs with non-zero effects were 

treated as detected regions. 

 

2.1.3 Results and discussion 

The result of the analysis was summarized in Figure 2.1 and Table 2.1. Compared with previous 

studies analysing the QTLMAS 2010 data using other methods (Mucha et al. 2011), the adaptive 

LASSO outperformed other methods in detection power, though had a lower precision.  

For the 37 QTLs for the simulated dataset, the adaptive LASSO successfully detected 28 of 

them. For those methods reported previously (Mucha et al. 2011), the BayesC (15 QTL detected) 

and BayesCPi (16 QTL detected) obtained a similar detection power, while the other 5 methods 

mapped no more than 11 QTL. The power of the adaptive LASSO is 33 percentage points higher 

than the most powerful method previously reported (BayesCPi). On the other hand, the adaptive 

LASSO also showed a lower precision than most of the methods previously reported, which 

suggested that the adaptive LASSO might generate more false positive results. 
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There is usually a trade-off between detection power and precision in GWAS, and the 

optimal balance may be case specific. Historically, the high dimension of genomic data has caused 

more concern about the false positives (i.e. type I errors) in GWAS (Johnson et al. 2010), which 

might somehow lead to improved methodology in terms of different aspects (e.g. population 

stratification, multiple testing), in order to remove systematic false discoveries. These opinions 

emphasized more the importance of high precision. On the other hand, concerns also arose about 

possible false negatives (i.e. type II errors) in GWAS (Shi et al. 2011), such as those false negatives 

that result from too stringent criteria in the significance tests (Gao et al. 2009). Especially, higher 

detection power is very helpful for detecting genetic variants with small-to-moderate effect and/or 

low-to moderate frequency, which may be important for some traits such as complex diseases 

(Manolio et al. 2009). 

Based on the results in this study, the adaptive LASSO seems to be a good option for GWAS 

when detection power is of importance. In terms of its precision, it may be feasible to combine the 

adaptive LASSO with additional screening of detected genomic region, in order to reduce false 

discoveries.  

 

2.2 STUDY 2 - A genome-wide association study of meat colour in commercial crossbred pigs 

 

The increased detection power in Study 1 implied possible application of the adaptive LASSO in 

scenarios where detection power has priority over other concerns (e.g. false discovery). Here we 

apply the adaptive LASSO to a GWAS of meat colour in pigs. Using the same dataset, three 

genomic regions had been reported to be associated with three meat colour traits using Bayesian 
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regression (Zhang et al. 2015)2. One aim of the study was to explore the possibility of detecting 

more candidate genomic regions through the application of the adaptive LASSO, while we also 

aimed to investigate if any common genetic basis are underlying multiple meat colour traits in 

pigs. 

 

2.2.1 Introduction 

Meat colour is the most important guide in buying pork, as it has a key effect on the visual 

attractiveness of pork to consumers (Lu et al. 2000; Mancini and Hunt 2005). Meanwhile, meat 

colour measurements can serve as an easy-to-measure indicator of other meat quality traits (e.g. 

drip loss), as they are usually correlated (Warriss et al. 2006; Li et al. 2012; Miar et al. 2014). 

Improving meat colour would be economically important for the pork industry.  

For pigs, meat colour can be affected by a set of environmental factors, with approximately 

10-75% explained by genetics depending on the trait, breed, and population (Sonesson et al. 1998; 

Miar et al. 2014). It has been reported that pork colour can be adjusted through diet 

supplementation of vitamin D3 (Wilborn et al. 2004), altering available space (Gentry et al. 2004), 

or exercise (Rosenvold et al. 2002). Well-known examples of genetic factors include the genes 

PRKAG3 and RYR1 (or CRC1), both of which interact with environmental factors to a degree. The 

gene PRKAG3 (protein kinase AMP-activated non-catalytic subunit gamma 3) was first identified 

as the RN gene (Milan 2000; Ciobanu et al. 2001; Škrlep et al. 2009). This gene has been reported 

to affect the lightness, redness and yellowness of pork (Lindahl et al. 2004), while its effect on 

                                                 
2 I also contributed to the statistical analysis in that study and was a co-author of the publication: Zhang, C., Wang, 

Z., Bruce, H., Kemp, R.A., Charagu, P., Miar, Y., Yang, T., and Plastow, G. 2015. Genome-wide association studies 

(GWAS) identify a QTL close to PRKAG3 affecting meat pH and colour in crossbred commercial pigs. BMC Genet. 

16: 33. 
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pork quality may vary according to different meat processing ingredients, such as phosphate (de 

Vries et al. 2000). The gene RYR1 (ryanodine receptor 1, known widely as the “Halothane gene”) 

gives another example of gene by environment interaction, where the colour of pork was reported 

to be affected jointly by RYR1 and pre-harvest handling and stunning (Fujii et al. 1991; Chang et 

al. 2003; Guàrdia et al. 2009). 

In pig breeding, discovering new genomic regions associated with meat colour can be very 

useful for its genetic improvement as measurement occurs post mortem. Candidate regions provide 

important information for identifying causative mutations, which may ultimately lead to a more 

accurate description of the genetic basis underlying the traits. Even if the causative mutations 

remain unknown, the associated SNPs in the candidate regions are useful for marker-assisted 

selection (Goddard and Hayes 2009). This strategy has been successfully applied in the selection 

of various livestock species. Genetic markers have been used in the genetic improvement of 

different meat quality traits, reproductive traits and animal health (van der Steen et al. 2005; Otto 

et al. 2007).  

 The meat colour dataset used in the current study came from a population of crossbred 

commercial pigs. Two studies, a genetic parameters estimation (Miar et al. 2014) and a GWAS 

using BayesB (Zhang et al. 2015), have been published for the meat colour traits in the same 

population. In the present study, we report the results of a GWAS of meat colour using the adaptive 

LASSO with the same dataset used by Zhang et al. (2015) plus additional 34 animals. One 

objective of the current study is to detect genomic regions associated with meat colour in addition 

to those reported by Zhang et al (2015) through the adaptive LASSO, as the method has shown a 

relatively high detection power in Section 2.1. Meanwhile, medium to high genetic correlations 

had been observed between meat colour traits in the population (Miar et al. 2014), which implied 
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a common genetic basis underlying those traits. In order to investigate this possibility, the current 

study aimed to detect genomic regions that were associated with multiple meat colour traits. 

 

2.2.2 Materials and methods 

2.2.2.1 Meat colour data 

A total of 1,977 crossbred commercial pigs from two breeding companies (Hypor Inc., Regina, 

SK, Canada, and Genesus Inc., Oakville, MB, Canada) were used for this study. These commercial 

pigs were offspring of Duroc boars and F1 hybrid sows (Landrace × Large White). The feeding 

and raising environment for these animals were described previously (Miar et al. 2014; Zhang et 

al. 2015). The animals used in this study were raised as part of commercial pork production. The 

proposed work was approved by the University of Alberta Animal Care and Use Committee. 

Minolta colours L*, a* and b* were used to measure the meat colour. The fresh colours 

were measured at 24 h after exsanguination on the longissimus dorsi muscle (FMCOL) and 

subcutaneous fat above the longissimus dorsi muscle (FCOL) on the fresh loin, and on the muscle 

of gluteus medius (GMCOL), quadriceps femoris (QFCOL) and iliopsoas (ICOL) on the fresh ham 

surface. All the packaged loins in the same batch were simultaneously frozen (−20°C) within 24 

hours after exsanguination and maintained frozen. Prior to thawed muscle measurement, the pork 

loins were thawed for 72 hours at 4 °C. Thawed muscle colours (TMCOL) were measured on the 

thawed loin muscle. In total, 18 meat colour measurements were collected and used for this study 

(Table 2.2). All colour measurements were repeated from three different sites at the same position 

and the average value was made for the final analysis. The colour assessment was made using a 

Konica-Minolta Chroma-meter CR-400 (Konica Minolta Sensing Inc., Japan).  
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The DNA samples of the 1,977 animals were genotyped using Illumina PorcineSNP60 V2 

Genotyping Beadchip (Illumina, Inc., San Diego, CA, USA). SNPs were filtered out if they met 

any one of the following criteria: 1) genotyping call rate < 95%, 2) Chi-square value of Hardy-

Weinberg equilibrium test > 600, 3) minor allele frequency < 5%, and 4) no valid genomic position 

information available. After quality control, 42,721 SNPs remained in the datasets for subsequent 

analysis. And all missing values in the genotypes were imputed using FImpute V2.2 (Sargolzaei 

et al. 2014). 

 

2.2.2.2 Population structure 

We tested the population structure of the 1,977 animals in the combined population. Genetic 

difference among animals was measured as pairwise identity-by-state Hamming distances in Plink 

1.07 (Purcell et al. 2007), and a multidimensional scaling (MDS) analysis was conducted to show 

the top two dimensions of the population structure. A principal component analysis (PCA) was 

also performed by eigenvalue decomposition of a marker-based relationship matrix. The PCA was 

conducted using R/rrBLUP (Endelman 2011). 

 

2.2.2.3 Multiple linear regression 

All phenotypes were pre-adjusted before association analysis as Eq. 2.1, 

 

𝑦∗ = 𝑦 − (𝑠 + 𝑐𝑔 + 𝑟 + 𝑝),                                     (Equation 2.1) 

 

where 𝑦∗ is the adjusted phenotype, 𝑦 is the raw phenotype, 𝑠 is the effect of sex, 𝑐𝑔 is the effect 

of contemporary group (combination of slaughter batch, year and group during the test), 𝑟 is the 
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effect of room, and 𝑝 is the effect of pen. A multiple linear model was then used for association 

analysis. The model used is described in Eq. 2.2, 

 

𝑦∗ = 𝑐 +  𝑍𝑠 + 𝜀,                                          (Equation 2.2) 

 

where 𝑐 is the effect of the source of animals (Hypor Inc. or Genesus Inc.), 𝑍 is the design matrix 

associated with SNP effects (s), and 𝜀 is the residual in this model. All SNP effects were treated 

as fixed effects in the model. 

The linear model (Eq. 2.2) was then implemented using the adaptive LASSO. As the results 

in Study 1 suggested, the adaptive LASSO might have a higher detection power in GWAS than 

other methods. It may therefore be a good choice as the study aimed to extend the number of 

potential candidate genomic regions associated with meat colour. Here we apply the same strategy 

as Study 1. The analysis was conducted using R/parcor (Krämer et al. 2009). 

 

2.2.2.4 Candidate genomic regions detection 

The estimated SNP effects were used to infer candidate genomic regions. We divided the genome 

into windows with a width of 2 mega base pairs (Mbp). Any windows where one or more SNPs 

have non-zero effects were considered as candidate windows. In the case that association was 

found in two adjacent genomic windows, they were combined as one candidate window, as the 

detected association may essentially reflect the effect of the same gene or causative mutation. 

Among the detected genomic regions, we were more interested in the windows that associated 

with more than one meat colour trait. A previous study revealed that the meat colour traits have 

relatively high genetic correlations with each other in the same population (Miar et al. 2014). In 
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this case, genomic regions associated with multiple colours may provide evidence for a common 

genetic basis underlying these traits. 

 

2.2.2.5 Comparison with known QTL 

For those genomic regions associated with more than one meat colour trait, we searched pigQTLdb 

(Hu et al. 2013) for known QTL that may support the association detected in the analysis. Those 

QTL that met these three criteria were selected: 1) overlapping with at least one of the candidate 

regions; 2) spanning no more than 30 Mbp (as those QTLs spanning a larger region provide limited 

support); and 3) reported for functionally related traits, especially meat colour traits.  

 

2.2.2.6 Significance tests 

For the SNPs in those genomic regions associated with more than one meat colour trait, single 

marker association analysis was conducted to test the significance of the association. The analysis 

was conducted with R/rrBLUP (Endelman 2011). In the analysis, a mixed linear model was used 

for the testing, as Eq. 2.3. 

 

𝑦∗ = 𝑐 + 𝑍𝑖𝑠𝑖 + 𝑔 + 𝜀                                  (Equation 2.3) 

 

For the 𝑖th SNP, its effect was modelled as a fixed effect (𝑠𝑖 ) and 𝑍𝑖  is its design matrix. A 

polygenic term (𝑔) was also included to model the rest of genetic effect, and was treated as a 

random effect. Genomic kinship matrix was calculated based on the genotype data, and then used 

in solving the model. The calculated P-values were adjusted using false discovery rate (FDR) for 

every trait. The significance of the associations was determined based on a commonly used 
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threshold of FDR < 0.1 (Li and Ma 2013), i.e. all SNPs with FDR lower than 0.1 were treated as 

significant. 

 

2.2.3 Results and discussion 

2.2.3.1 Population structure 

Figure 1 shows the top two dimensions of the population structure. Circles and Triangles represent 

the animals that came from the two different breeding companies (Hypor or Genesus Inc.). The 

figure shows that the difference in source had obvious contribution to the variation along 

dimension 1, and this factor was already considered in the model described above (Eq. 2 and Eq. 

3). In the PCA, the three highest eigenvalues were 5.18%, 1.53% and 0.97% of the summation of 

all eigenvalues. The latter two were lower than 2%, which implies low population stratification 

within each source so that no additional factors were included in the model. 

 

2.2.3.2 Association results 

In the 1,291 genomic windows constructed in the analysis, we detected 132 genomic windows that 

are associated with at least one of the meat colour traits, and 23 of them showed association with 

more than one meat colour trait. After merging adjacent windows, we found 20 candidate genomic 

regions in total (Table 2 and 3). Eight of them were associated with at least three traits. Two 

candidate regions were associated with one of the fat colour measurements (FCOL b*). They were 

located on SSC1 (268-270 MP) and SSC7 (38-40 Mbp), respectively. The 20 candidate genomic 

regions harboured 1,034 SNPs in the current dataset. Significant associations (FDR < 0.1) were 

found in the single marker association for all the 20 candidate regions.  
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2.2.3.3 Comparison with previous results 

The results were compared with a previous report of the genetic parameters for the same combined 

population (Miar et al. 2014). Candidate regions were found associated with meat colour traits that 

were genetically correlated, even when the phenotypic correlations were relatively low (Table 4). 

For example, the estimated genetic correlation between GMCOL L* and GMCOL a* was -0.42, 

whilst their phenotypic correlation was 0.04. We found two genomic regions (SSC2:154-156 Mbp 

and SSC15:130-134 Mbp) that had significant SNPs for both traits. The detected associations were 

more likely to be due to a common genetic basis underlying the two traits, rather than being caused 

by phenotypic correlation due to environmental factors, as the phenotypic correlation is very low. 

These results supported our hypothesis that there is a common genetic basis underlying these traits. 

We also compared our GWAS results with that reported by Zhang et al. (2015), where six 

genomic regions were found associated with three meat colour traits. Three of them were also 

detected in the current analysis. The major QTL detected in that study, the candidate region on 

SSC15 (harbouring PRKAG3), had large effects on three meat colour traits (QFCOL a*, QFCOL 

b* and TMCOL b). In the current study, we also detected the same association, while there were 

also significant associations (FDR < 0.1) between that genomic region on SSC15 and 7 other meat 

colour traits. The candidate region located around 35 Mbp on SSC1 was associated with three meat 

colour traits in the current analysis. The candidate region located around 1 Mbp on SSCX was 

associated with only one meat colour trait here and was not selected for further analysis and not 

included in Table 2 and 3. The other three candidate regions were not detected in the current 

analysis. On the other hand, 17 new genomic regions showed significance in the single-marker 

test.  
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The difference in the results may reflect the different behaviour and performance of the 

two regression methods used in the analysis (the adaptive LASSO and BayesB), as the two studies 

used almost the same dataset (All 1943 animals used by Zhang et al. were included in the current 

study, with records from 34 additional animals added since then) and the same multiple linear 

model. Similar results were observed in a previous assessment of the adaptive LASSO and its 

comparison with BayesC/Cpi using a public simulation dataset (Section 2.1). In that case, the 

adaptive LASSO detected more QTL but suffered from lower precision (more false positives). The 

candidate regions detected by the adaptive LASSO is overlapping but was not able to detect all of 

the regions detected by BayesC/Cpi tested in the same dataset.  

The different behaviours of the two methods are likely to result from the joint effect of a 

set of underlying and confounding factors during the analysis, such as different basic assumptions 

and/or implementations, with some of the factors not comparable in the current analysis. Here we 

only propose one noticeable possibility. From a Bayesian point of view, one possible reason for 

the difference in results is the different prior assumptions used in the methods. The LASSO family 

gives equivalent estimation of coefficients in linear regression as Bayesian regression but with 

different prior distributions. The adaptive LASSO can be interpreted as Bayesian regression with 

an independent double exponential distribution as the prior distribution (Leng et al. 2014). 

Meanwhile, for the method used in the previous analysis by Zhang et al, BayesB, the prior 

assumption is an independent mixture distribution with a point mass at zero with a given 

probability Pi and a univariate-t distribution with probability 1-Pi. As the prior distributions 

reflects the prior assumptions about the regression coefficients (i.e. marker effects), how close the 

prior distributions are to the true distribution may have a large impact on the result of estimation. 
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This impact may vary between SNPs, which may then result in overlapping but distinct candidate 

regions being detected by the two methods and the two studies.  

 

2.2.3.4 Connection with known QTL 

Seventeen out of the 20 candidate regions overlapped with at least one of known QTL for meat 

colour or related meat quality traits. We found 110 QTL for pork quality from pigQTLdb that 

overlap with our candidate regions. These QTL had been reported for traits including meat colour, 

related pathways (e.g. glycolytic potential, fibre type proportion, pH), and other pork quality 

measurements (e.g. shear force, drip loss). In addition, the two candidate regions associated with 

fat colour overlapped with QTL for fatness and fat composition traits. Twelve QTL for fatness 

overlapped with the candidate region on SSC1 (268-270 Mbp), and 35 QTL for fatness and fat 

composition overlapped with the candidate region on SSC7 (38-40 Mbp). Some of the QTL span 

no more than 5 Mbp or even 1 Mbp, which may provide support to our detected association to a 

degree. 

 

2.2.3.5 Potential candidate genes 

We also searched for genes that are potentially involved in pathways related to meat colour in 

these candidate regions. Genome annotation information was obtained from UCSC Genome 

Browser (Kent et al. 2002) and RefSeq (Pruitt et al. 2007). The distances between the genes and 

those significant SNPs (FDR < 0.1) were taken into consideration, and the maximum distance was 

set as 1 Mbp for the search. The candidate region on SSC7 (26 – 28 Mbp) overlaps with the pig 

major histocompatibility complex (SLA) Class I region, and harboured 56 genes. Other than that 

region, most candidate regions harboured no more than 11 genes in the search. For 11 of the 20 
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candidate regions, we found genes that may be functionally related to meat colour. In this section, 

we use the standard notation of italics for gene names and plain text for the corresponding proteins. 

Muscle colour is related to biological factors such as the redox forms of myoglobin, the 

morphology of muscle structure and the distribution of myoglobin, which may be further affected 

by a set of genetic and environmental factors (Seideman et al. 1984). Among these factors, muscle 

colour is primarily determined by the concentration and chemical forms of myoglobin (Seideman 

et al. 1984; Mancini and Hunt 2005), which has four major chemical forms that results in different 

colours. In total, we found 12 genes within the 20 candidate regions, we found 12 genes 

functionally related to 1) muscle fibre type composition, and 2) glucose metabolism. For the two 

candidate regions associated with fat colour, two genes were found to be related to lipid 

metabolism, and may thereby contribute to the phenotypic variation in fat colour. These genes may 

potentially explain the associations we found between these genomic regions and the meat colour 

traits. 

 

2.2.3.5.1 Muscle fibre type composition 

It has been reported that porcine muscle fibre type composition is functionally related to muscle 

colour. Through histochemical and biochemical methods, muscle fibre can be grouped into 

different types. A commonly used fibre typing system classifies muscle fibres into four types, type 

I, IIA, IIX, and IIB (Klont et al. 1998). As the concentration and chemical forms of myoglobin 

differ between types of muscle fibre, they tend to be associated with different colours. For example, 

type I muscle fibres have a higher concentration of myoglobin than type IIB muscle fibres, and 

therefore muscle with more type I muscle fibre tends to be redder (Seideman et al. 1984). This 

relationship has been supported by previous studies. For example, it has been reported that the 
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amount of type I or IIA muscle fibres is negatively correlated with muscle yellowness in pigs 

(Eggert et al. 2002). The abundance of type IIA and IIX muscle fibres in psoas has also been 

reported to be correlated to high pork quality, while the proportion of type IIB muscle fibres in 

longissimus dorsi was associated with low quality (Chang et al. 2003). The effect of muscle fibre 

type on muscle colour can also be partially explained by the difference in glucose metabolism, 

which will be discussed separately. Ten genes related to muscle fibre type composition have been 

found in our candidate regions. They can be further grouped into three subgroups: 1) genes 

involved in the regulation of MYOD1 (myogenic differentiation 1) in myogenesis; 2) genes 

involved in the GH-IGF (growth hormone 1 and insulin-like growth factor) system; and 3) other 

genes reported to be associated with muscle fibre type composition.  

Myoblast determination protein 1 has been reported to be a critical regulatory factor for 

myogenesis. Especially, MYOD1 has been found to play a key role in determining muscle fibre 

type during muscle differentiation. In rodents, both the gene expression level and protein level of 

MYOD1 showed differences between type I and type II muscle fibres, and MYOD1 affected the 

proportions of muscle fibre types (Hughes et al. 1997; Hennebry et al. 2008). It has been reported 

that two polymorphisms in MYOD1 were associated with muscle fibre composition (Lee et al. 

2012) in pigs. In the present study, we found MYOD1 in one of our candidate regions on SSC2. In 

addition, the candidate regions also harbour two other genes that may be involved in this process. 

One of them encodes myocardin (MYOCD), which has been reported to repress the function of 

MYOD1 during skeletal muscle development (Long et al. 2007). The other one encodes tumour 

necrosis factor (TNF), which may suppress the expression of MYOD1 gene and destabilize 

MYOD1 in the process of skeletal muscle differentiation (Guttridge 2000; Langen et al. 2004). 
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The GH-IGF system also plays a regulatory role in myogenesis. Growth hormone 1 (GH) 

has been reported to be associated with muscle fibre type composition. In hypophysectomized rats, 

growth hormone treatment affected the gene expression level of different forms of myosin heavy 

chain (Loughna and Bates 1994), and increased the proportion of type I muscle fibres (Ayling et 

al. 1989). Similar association was also found in transgenic mouse lines (Schuenke et al. 2008). 

Growth hormone also indirectly affects myogenesis especially through induction of hepatic 

insulin-like growth factor (IGF) gene expression (Florini et al. 1996). The IGFs (IGF-1 and IGF-

2) and their binding proteins (IGFBPs) are critical in myogenesis and associated with pork quality 

(Oksbjerg et al. 2004). For example, the IGF-2 gene has been reported as a candidate gene of the 

percentage of type I and type IIB muscle fibre (Estelle et al. 2008) and meat colour (Rohrer et al. 

2012). Within our identified candidate regions, we found the genes encoding GH and two IGFBPs 

(IGFBP1/3). Both of the IGFBPs serve as carrier proteins for the IGFs in the circulation, prolong 

the half-life of the IGFs, and have effects on IGF-stimulated actions (Florini et al. 1996). Notably 

polymorphisms in IGFBP3 have been reported to be associated with pork colour in previous 

studies (Wang et al. 2009). 

The candidate genomic regions also harbour three other genes that have been reported to 

be associated with muscle fibre type composition. They encode actin (alpha 1) in skeletal muscle 

(ACTA1), TEA domain transcription factor 1 (TEAD1), and nuclear receptor subfamily 4 group 

A member 3 (NR4A3), respectively. ACTA1 is critical for the basic functions of skeletal muscle 

through actin-myosin interaction. It has been found that mutations in ACTA1 were associated with 

congenital fibre type disproportion in human. Individuals suffering from this disorder have 

irregular composition of muscle fibre types (e.g. relatively low proportion of type I muscle fibre) 

due to selective atrophy (Laing et al. 2004; Clarke et al. 2007). TEAD1 is a key regulator of the 
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gene expression in slow muscle. It has been reported to be directly involved in the regulation in 

slow-to-fast muscle fibre type conversion (Zhang et al. 2014). In addition, over-expression of 

TEAD1 in mouse skeletal muscle induces fast-to-slow fibre type conversion (Tsika et al. 2008). 

These observations provide support for the association between TEAD1 and muscle fibre type 

composition. NR4A3 is a transcription factor and may be involved in various biological processes 

in skeletal muscle (Pearen et al. 2006). It has been reported that the activation of NR4A3 in mice 

was associated with muscle fibre remodelling from type IIB muscle fibre to type IIX and type IIA 

muscle fibre (Pearen et al. 2012). NR4A3 may also play other roles in the determination of muscle 

colour and fat colour, which will be discussed in the following sections. 

 

2.2.3.5.2 Glucose metabolism 

Another important biological pathway related to muscle colour is glucose metabolism. It has been 

reported that the glycolytic potential of skeletal muscle, which is a measurement of resting 

glycogen level, is highly associated with post-mortem pH and pork colour (Mancini and Hunt 

2005). The association can be explained by the post-mortem changes in lactate level and pH in 

muscle (Choe et al. 2008). Extremely low pH may trigger a set of changes in muscle tissue (e.g. 

protein denaturation, myoglobin oxidation, and the increasing of light scattering properties) (Klont 

et al. 1998; Mancini and Hunt 2005), and consequently result in a paler pork colour and a lower 

water holding capacity. Conversely, low glycolytic potential may ultimately contribute to a darker 

colour of pork (Seideman et al. 1984). This process has been reported to underlie the association 

between pork colour and known candidate genes. For example, mutations in PRKAG3 may affect 

the muscle glycogen storage in pigs, and thereby lead to changes in pork colour (Milan 2000; 

Ciobanu et al. 2001). 
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In addition to PRKAG3 that had been found in one of our candidate regions on SSC15, we 

also found three genes related to glucose metabolism in detected candidate regions. These genes 

encode glucagon-like peptide 1 receptor (GLP1R), reticulon 4 (RTN4), and NR4A3, respectively. 

Glucagon-like peptide 1 receptor is a protein involved in the signalling pathways related to insulin 

secretion. It has been reported that the accumulation of muscle glycogen significantly increased in 

GLP1R knockout mice when compared with wild-type mice (Ayala et al. 2009), which suggested 

the role of GLP1R in the regulation of muscle glycogen storage. GLP1R is also involved in the 

regulation of plasma glucose level (Doyle and Egan 2007), and therefore functionally related to 

glycolytic potential and muscle colour. Reticulon 4 plays a role in the development and metabolism 

of muscle (Chen et al. 2010), possibly through the regulation of cytoplasmic Ca2+ level (Jozsef et 

al. 2014) and glycolysis (Sutendra et al. 2011). RTN4 has been reported to express differentially 

in prenatal skeletal muscle between Tongcheng and Landrace pigs, possibly due to its role in 

skeletal muscle contraction (Tang et al. 2007). In previous proteomic study, RTN4 was found to 

be associated with ultimate pH in pork (te Pas et al. 2013). Interestingly, it has been reported that 

the level of RTN4 was correlated with the muscle fibre types in pigs under certain circumstances 

(Yang et al. 2014), which implies another connection between RTN4 and pork colour traits. The 

aforementioned gene NR4A3 may also affect the glycolytic potential in skeletal muscle. In a 

transgenic mouse model, evidence was found that NR4A3 enhanced glucose transport and 

utilization in skeletal muscle (Close et al. 2013), and the activation of NR4A3 resulted in an 

increased glycogen content in skeletal muscle (Pearen et al. 2013). The potential connection 

between NR4A3 and meat colour was also supported by another previous study where silencing 

NR4A3 leaded to the accumulation of lactate (Pearen et al. 2008). 
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2.2.3.5.3 Lipid Metabolism 

Fatty acid metabolism and fat deposition process are functionally connected to the colour of fat. 

The correlation between the colour and fatty acid composition in fat tissue has been reported in 

different studies (Wood et al. 2004; Gjerlaug-Enger et al. 2011). The unsaturation of fatty acids is 

associated with their melting point, therefore affecting the firmness of fat tissue, and may 

eventually lead to changes in the colour (Wood et al. 2004).  Additionally, the different ability of 

fatty acids to oxidise may also play a role in the determination of fat colour, as peroxidation of 

body fat results in the accumulation of lipofuscin, a yellow-brown pigment (Ruiter et al. 1978). 

The colour of fat can also be affected by the fat deposition process. Reduced fat deposition may 

lead to higher concentration of connective tissues and pigments (e.g. lipofuscin and carotenoid) in 

the fat tissue, which may ultimately lead to grey or yellow colour, respectively (Wood 1984; Dunne 

et al. 2009).  

The association between our candidate regions and the fat colour can be explained by these 

mechanisms, as the two regions associated with fat colour overlapped with many QTL for fatness 

(e.g. average backfat thickness and fat percentage in carcass) and fatty acids composition. The 

aforementioned genes GLP1R and NR4A3 were located in these two candidate regions, and both 

of them were related to lipid metabolism. GLP1R was previously reported as a candidate gene for 

backfat thickness in pigs (Huang et al. 2011), which may imply its role in lipid deposition. 

Evidence from mice also support the possible relationship between GLP1R signaling and fat mass 

(Nogueiras et al. 2009). It is possible that GLP1R also affected fatty acid composition, as it was 

reported to be involved in the metabolism of fatty acids (e.g. synthesis, oxidation and composition) 

(Doyle and Egan 2007; Svegliati-Baroni et al. 2011; Kawaguchi et al. 2014). NR4A3 has also been 

reported to be involved in lipid metabolism. The expression of NR4A3 was associated with 
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intramuscular fatty acid composition in previous transcriptomic study in pigs (Ramayo-Caldas et 

al. 2012), and altered expression of NR4A3 was also observed in human obesity (Veum et al. 2012).  

 

2.2.4 Conclusions 

Twenty genomic regions were found to be associated with multiple meat colour traits in the 

association analysis using the adaptive LASSO. All the 20 candidate regions were confirmed in 

single marker association, where significant SNPs (FDR < 0.1) were found in all of the candidate 

regions. The results were compared with previous analysis conducted using the same population. 

Three of the six genomic regions that were reported for the population were confirmed, while 17 

new candidate regions showed significant association in the current analysis. For the 20 regions 

detected in the current analysis, 17 of them overlapped with pork quality QTL that had been 

previously discovered, including QTL of meat colour and functionally related pathways. Within 

the candidate regions, 12 genes were found close to at least one of the significant SNPs (less than 

1 Mbp), and functionally related to meat colour. These genes may affect muscle fibre type 

composition and/or glucose metabolism, and ultimately explain part of the phenotypic variation 

observed in meat colour. The results can be used in discovering new genetic causative mutations 

for meat colour traits, and will provide new information for pig breeding. Being consistent to 

previous report, the results also showed additional evidence that adaptive LASSO may help to 

detect extra candidate genomic regions and achieve higher detection power compared with other 

approaches (e.g. BayesB). 
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2.3 Overall conclusions 

Avoiding both false positive and false negative results has been an important topic in GWAS, with 

the dimension of genomic data increases dramatically due to the emergence of high-throughput 

biotechnologies. The two studies in this chapter investigated if adaptive LASSO may help to 

achieve a higher detection power in GWAS. In study 1, we showed that the adaptive LASSO 

outperformed several other methods, including BayesC/CPi, in detection power, while it suffered 

from a low precision. In study 2, we applied the adaptive LASSO in a GWAS of meat colour in 

pigs. Twenty genomic regions showed association with multiple meat colour traits. These regions 

were supported by evidence from single-marker significance tests, previous association studies of 

meat quality, known QTL for meat colour in pigs, and genes functionally related to meat colour. 

Being consistent to Study 1, the results showed additional evidence that adaptive LASSO may help 

to detect extra candidate genomic regions and achieve higher detection power compared with other 

approaches. 
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Table 2.1 Comparison between the adaptive LASSO and previously reported methods in detection 

power and precision 

Method Detection Powera Precisionb 

Adaptive Lasso 28 / 37 (76%) 44% 

BVSMc 10 / 37 (27%) 89% 

BayesCc 15 / 37 (41%) 75% 

PLSRc 2 / 37 (5%) 8% 

GRAMMARc 5 / 37 (14%) 56% 

Haplotype inferencec 7 / 37 (19%) 70% 

DHGLMc 11 / 37 (30%) 78% 

BayesCPic 16 / 37 (43%) 87% 

 

aThe fraction of the 37 simulated QTLs that are close to at least one detected position  

bThe fraction of the detected position that are close to at least one simulated QTL. 

cAnalyses were conducted previously by different groups and summarized by Szydlowski and Paczyńska 

(2011) 
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Table 2.2 List of the 18 meat colour traits used in Study 2 

# Position 

Measurements 

Minolta L* Minolta a* Minolta b* 

1 longissimus dorsi muscle on the fresh loin FMCOL L* FMCOL a* FMCOL b* 

2 thawed loin muscle TMCOL L* TMCOL a* TMCOL b* 

3 

gluteus medius muscle on the fresh ham 

surface 

GMCOL L* GMCOL a* GMCOL b* 

4 

quadriceps femoris muscle on the fresh ham 

surface 

QFCOL L* QFCOL a* QFCOL b* 

5 iliopsoas muscle on the fresh ham surface ICOL L* ICOL a* ICOL b* 

6 

subcutaneous fat above the longissimus dorsi 

muscle on the fresh loin 

FCOL L* FCOL a* FCOL b* 

 

 



 

 

Table 2.3 Associations between the meat colour traits and candidate regions.  
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1 32 36    SA  SA        SA  S   

1 268 270 SA        SA       S   

2 44 46  A   SA              

2 50 54  SA  A SA SA     SA SA    S   

2 154 156     SA S    S SA SA       

3 14 16 SA          A SA       

3 90 92             SA  SA S   

7 0 2    A SA SA       S   S   

7 26 28 SA   SA  S          S  S 

7 38 40     SA    SA          

9 60 62             SA  A    
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Table 2.3 (Continued) 

Chr 

Start 

(Mbp) 

End 

(Mbp) 

T
M

C
O

L
 L

*
 

T
M

C
O

L
 a

*
 

T
M

C
O

L
 b

*
 

F
M

C
O

L
 L

*
 

F
M

C
O

L
 a

*
 

F
M

C
O

L
 b

*
 

F
C

O
L

 L
*

 

F
C

O
L

 a
*

 

F
C

O
L

 b
*

 

G
M

C
O

L
 L

*
 

G
M

C
O

L
 a

*
 

G
M

C
O

L
 b

*
 

Q
F

C
O

L
 L

*
 

Q
F

C
O

L
 a

*
 

Q
F

C
O

L
 b

*
 

IC
O

L
 L

*
 

IC
O

L
 a

*
 

IC
O

L
 b

*
 

10 48 50 SA 
  

A 
              

12 14 16 
   

A 
 

SA 
       

S 
    

12 60 62 
 

A 
  

SA 
             

13 88 90 
    

SA SA 
            

14 64 66 
 

A 
  

SA 
          

S 
  

15 130 134 
  

SA A S S 
   

SA S SA S SA SA S 
  

16 82 84 SA 
    

S 
       

SA 
 

S 
  

17 46 48 S 
 

SA 
 

SA 
             

18 54 58 
   

SA SA SA 
     

SA 
      

Note: Associations detected with the adaptive LASSO are indicated as A, and those detected in the single-marker analysis are indicated 

as S.  
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Table 2.4 Candidate regions associated with multiple meat colour traits 

a The chromosome that the candidate region was located 

b The location of the candidate region. (1 Mbp = 106 bp) 

c The number of traits that were associated with the region in the adaptive LASSO 

Chra Posb # Asso (1)c # Asso (2)d #QTLe Genef Distanceg 

1 32-36 Mbp 3 4 17   

1 268-270 Mbp 2 3 14 NR4A3 808 kbp 

2 44-46 Mbp 2 1 9 MYOD1 66 kbp 

2 50-54 Mbp 6 6 11 TEAD1 160 kbp 

2 154-156 Mbp 3 5 11   

3 14-16 Mbp 3 2 4   

3 90-92 Mbp 2 3 4 RTN4 173 kbp 

7 0-2 Mbp 3 3 0   

7 26-28 Mbp 2 6 5 TNF 100 kbp 

7 38-40 Mbp 2 3 36 GLP1R 4 kbp 

9 60-62 Mbp 2 1 1   

10 48-50 Mbp 2 1 3   

12 14-16 Mbp 2 2 1 GH1 72 kbp 

12 60-62 Mbp 2 1 6 MYOCD 254 kbp 

13 88-90 Mbp 2 2 0   

14 64-66 Mbp 2 2 1 ACTA1 349 kbp 

15 130-134 Mbp 6 10 28 PRKAG3 30 kbp 

16 82-84 Mbp 3 4 4   
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d The number of traits that were associated with the region in the single marker association 

e The number of the related QTL overlapping with the region 

f Gene(s) that may be functionally connected to meat colour in the region 

g The distance between the gene in column Gene (if applicable) and the closest SNP that was 

significant in the single marker association. (1 kbp = 103 bp) 
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Table 2.5 Previous estimates (Miar et al. 2014) of genetic (below diagonal) and phenotypic (above diagonal) correlations, heritabilities 

(diagonal), and their standard error of estimates among the meat colour traits for the same population of pigs.  

Parameters of fat colour traits were not presented as it was not included in the previous study. 

TRAIT 

T
M

C
O

L
 L

*
 

T
M

C
O

L
 a

*
 

T
M

C
O

L
 b

*
 

F
M

C
O

L
 L

*
 

F
M

C
O

L
 a

*
 

F
M

C
O

L
 b

*
 

G
M

C
O

L
 L

*
 

G
M

C
O

L
 a

*
 

G
M

C
O

L
 b

*
 

Q
F

C
O

L
 L

*
 

Q
F

C
O

L
 a

*
 

Q
F

C
O

L
 b

*
 

IC
O

L
 L

*
 

IC
O

L
 a

*
 

IC
O

L
 b

*
 

TMCOL 

L* 

0.28 

(0.06) 

–0.19 

(0.03) 

0.65 

(0.02) 

0.23 

(0.03) 

0.03 

(0.03) 

0.15 

(0.03) 

0.22 

(0.03) 

0.02 

(0.03) 

0.18 

(0.03) 

0.18 

(0.03) 

–0.00 

(0.03) 

0.14 

(0.03) 

0.12 

(0.03) 

–0.01 

(0.03) 

0.10 

(0.03) 

TMCOL 

a* 

–0.36 

(0.16) 

0.26 

(0.09) 

0.43 

(0.04) 

0.01 

(0.03) 

0.37 

(0.03) 

0.19 

(0.04) 

–0.02 

(0.03) 

0.25 

(0.04) 

0.10 

(0.05) 

0.00 

(0.03) 

0.23 

(0.03) 

0.11 

(0.04) 

0.02 

(0.03) 

0.11 

(0.03) 

0.06 

(0.04) 

TMCOL 

b* 

0.60 

(0.10) 

0.59 

(0.16) 

0.31 

(0.06) 

0.17 

(0.03) 

0.19 

(0.03) 

0.21 

(0.03) 

0.16 

(0.03) 

0.13 

(0.03) 

0.18 

(0.03) 

0.15 

(0.03) 

0.11 

(0.03) 

0.17 

(0.03) 

0.08 

(0.03) 

0.02 

(0.03) 

0.08 

(0.03) 

FMCOL 

L* 

0.20 

(0.16) 

–0.21 

(0.17) 

–0.03 

(0.16) 

0.31 

(0.06) 

0.23 

(0.03) 

0.77 

(0.01) 

0.34 

(0.02) 

0.04 

(0.03) 

0.30 

(0.02) 

0.30 

(0.02) 

–0.01 

(0.03) 

0.24 

(0.02) 

0.24 

(0.03) 

0.06 

(0.03) 

0.23 

(0.03) 

FMCOL 

a* 

–0.30 

(0.15) 

0.76 

(0.16) 

0.19 

(0.14) 

–0.40 

(0.15) 

0.36 

(0.06) 

0.72 

(0.01) 

0.02 

(0.03) 

0.42 

(0.02) 

0.18 

(0.03) 

0.08 

(0.03) 

0.29 

(0.03) 

0.17 

(0.03) 

0.04 

(0.03) 

0.19 

(0.03) 

0.11 

(0.03) 
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Table 4 (Continued) 

TRAIT 
T

M
C

O
L

 L
*

 

T
M

C
O

L
 a

*
 

T
M

C
O

L
 b

*
 

F
M

C
O

L
 L

*
 

F
M

C
O

L
 a

*
 

F
M

C
O

L
 b

*
 

G
M

C
O

L
 L

*
 

G
M

C
O

L
 a

*
 

G
M

C
O

L
 b

*
 

Q
F

C
O

L
 L

*
 

Q
F

C
O

L
 a

*
 

Q
F

C
O

L
 b

*
 

IC
O

L
 L

*
 

IC
O

L
 a

*
 

IC
O

L
 b

*
 

FMCOL 

b* 

–0.10 

(0.18) 

0.32 

(0.19) 

0.11 

(0.18) 

0.51 

(0.12) 

0.46 

(0.13) 

0.20 

(0.06) 

0.22 

(0.03) 

0.24 

(0.03) 

0.31 

(0.02) 

0.24 

(0.02) 

0.13 

(0.03) 

0.26 

(0.02) 

0.20 

(0.03) 

0.14 

(0.03) 

0.24 

(0.03) 

GMCOL 

L* 

0.35 

(0.17) 

–0.29 

(0.18) 

0.03 

(0.17) 

0.45 

(0.15) 

–0.42 

(0.16) 

–0.06 

(0.20) 

0.22 

(0.05) 

0.04 

(0.03) 

0.80 

(0.01) 

0.31 

(0.02) 

–0.01 

(0.03) 

0.24 

(0.02) 

0.24 

(0.03) 

–0.04 

(0.03) 

0.18 

(0.03) 

GMCOL 

a* 

–0.19 

(0.14) 

0.43 

(0.16) 

0.14 

(0.14) 

–0.30 

(0.14) 

0.55 

(0.11) 

0.13 

(0.17) 

–0.42 

(0.15) 

0.38 

(0.06) 

0.48 

(0.02) 

0.09 

(0.03) 

0.32 

(0.03) 

0.19 

(0.03) 

0.12 

(0.03) 

0.26 

(0.02) 

0.21 

(0.03) 

GMCOL 

b* 

0.23 

(0.21) 

0.13 

(0.23) 

0.32 

(0.21) 

0.33 

(0.19) 

0.03 

(0.21) 

0.39 

(0.21) 

0.56 

(0.14) 

0.34 

(0.17) 

0.12 

(0.05) 

0.25 

(0.02) 

0.13 

(0.03) 

0.29 

(0.02) 

0.26 

(0.02) 

0.10 

(0.02) 

0.30 

(0.02) 

QFCOL 

L* 

0.40 

(0.17) 

–0.28 

(0.20) 

0.06 

(0.29) 

0.66 

(0.14) 

–0.18 

(0.18) 

0.28 

(0.20) 

0.74 

(0.15) 

–0.20 

(0.17) 

0.36 

(0.22) 

0.19 

(0.05) 

–0.03 

(0.03) 

0.74 

(0.01) 

0.24 

(0.03) 

0.03 

(0.03) 

0.19 

(0.03) 

QFCOL 

a* 

–0.40 

(0.15) 

0.69 

(0.18) 

0.09 

(0.16) 

–0.16 

(0.16) 

0.53 

(0.13) 

0.19 

(0.18) 

–0.18 

(0.18) 

0.52 

(0.12) 

0.24 

(0.21) 

–0.46 

(0.17) 

0.27 

(0.06) 

0.53 

(0.02) 

–0.06 

(0.03) 

0.23 

(0.02) 

0.06 

(0.03) 
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Table 4 (Continued) 

TRAIT 
T

M
C

O
L

 L
*

 

T
M

C
O

L
 a

*
 

T
M

C
O

L
 b

*
 

F
M

C
O

L
 L

*
 

F
M

C
O

L
 a

*
 

F
M

C
O

L
 b

*
 

G
M

C
O

L
 L

*
 

G
M

C
O

L
 a

*
 

G
M

C
O

L
 b

*
 

Q
F

C
O

L
 L

*
 

Q
F

C
O

L
 a

*
 

Q
F

C
O

L
 b

*
 

IC
O

L
 L

*
 

IC
O

L
 a

*
 

IC
O

L
 b

*
 

QFCOL 

b* 

0.04 

(0.23) 

0.19 

(0.23) 

0.27 

(0.21) 

0.67 

(0.17) 

0.19 

(0.21) 

0.71 

(0.19) 

0.70 

(0.22) 

0.05 

(0.21) 

0.87 

(0.25) 

0.67 

(0.13) 

0.20 

(0.21) 

0.10 

(0.04) 

0.13 

(0.03) 

0.12 

(0.02) 

0.18 

(0.02) 

ICOL L* 
0.16 

(0.16) 

0.03 

(0.17) 

0.03 

(0.15) 

0.39 

(0.14) 

–0.15 

(0.15) 

0.30 

(0.17) 

0.24 

(0.16) 

–0.06 

(0.14) 

0.36 

(0.18) 

0.09 

(0.18) 

–0.18 

(0.16) 

0.10 

(0.22) 

0.32 

(0.06) 

0.17 

(0.03) 

0.83 

(0.01) 

ICOL a* 
–0.21 

(0.19) 

0.16 

(0.20) 

–0.13 

(0.19) 

0.06 

(0.19) 

0.43 

(0.16) 

0.44 

(0.19) 

–0.34 

(0.20) 

0.58 

(0.15) 

0.11 

(0.25) 

0.01 

(0.22) 

0.38 

(0.17) 

0.21 

(0.26) 

–0.29 

(0.19) 

0.16 

(0.05) 

0.52 

(0.02) 

ICOL b* 
0.12 

(0.17) 

0.03 

(0.18) 

–0.01 

(0.16) 

0.31 

(0.15) 

–0.00 

(0.16) 

0.48 

(0.17) 

0.13 

(0.18) 

0.04 

(0.15) 

0.46 

(0.18) 

0.04 

(0.19) 

–0.11 

(0.17) 

0.31 

(0.39) 

0.92 

(0.03) 

0.00 

(0.21) 

0.26 

(0.06) 

Note: Significant correlations are highlighted in bold (P < 0.05). 
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Figure 2.1 Manhattan plot from the GWAS for QT (QTLMAS 2010 dataset). 

Each blue data point represents a 1-Mb SNP window. Red Points indicate QTLs along the genome, 

and the variance of their effects are represented by red lines (solid lines for additive effects and 

dashed lines for non-additive effect).  
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Figure 2.2 Multidimensional scaling result for assessing the structure of the population. The shape 

of the points (circle or triangle) indicates the source of the animals (Hypor Inc. or Genesus Inc.). 
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Chapter 3 A GWAS of fetal response to type 2 PRRSV challenge  

 

In Chapter 2, we discussed the application of the adaptive LASSO in the GWAS. Even though the 

method resulted in an improved detection power, it failed to provide a quantitative measurement 

(such as P-value) about the probability that the detected associations were actually true (i.e. not 

happened by chance). Such measurement can help to determine the relative importance of multiple 

associations. In this Chapter, we introduce a GWAS of fetal response to type 2 PRRSV challenge, 

where we applied permutation tests to improve the precision of the original LASSO, and reported 

empirical P-values. The contents of this Chapter have been published in Scientific Reports1. I also 

helped co-author a review related to the GWAS2. 

 

3.1 Background 

Porcine reproductive and respiratory syndrome is one of the most serious threats to pig production 

worldwide (Islam et al. 2013). Caused by PRRS virus (PRRSV), family Arteriviridae (Faaberg et 

al. 2012), it results in reproductive failure in sows, such as late-term abortion, premature delivery, 

stillborn or mummified fetuses, elevated preweaning mortality, and respiratory disease in neonatal 

and young pigs. Because of its widespread distribution, high mortality in infected herds, and poor 

performance in recovered herds (Rossow 1998), this disease is economically very important for 

                                                 
1 Tianfu Yang, James Wilkinson, Zhiquan Wang, Andrea Ladinig, John Harding and Graham Plastow, 2016. “A 

genome-wide association study of fetal response to type 2 porcine reproductive and respiratory syndrome virus 

challenge”, Scientific Reports, 6: 20305 
2 John C.S. Harding, Andrea Ladinig, Predrag Novakovic, Susan E. Detmer, Jamie M. Wilkinson, Tianfu Yang, Joan 

K. Lunney, and Graham S. Plastow. 2017. “Novel Insights into Host Responses and Reproductive Pathophysiology 

of Porcine Reproductive and Respiratory Syndrome Caused by PRRSV-2.” (in press) 
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the swine industry. The estimated annual economic loss caused by PRRS in the US is more than 

500 million US dollars, and its impact increased during the years 2005-2013 (Neumann et al. 2005; 

Holtkamp et al. 2013). 

At present, developing effective vaccines against a wide range of PRRSV strains is still a 

challenge, as there is a gap in the knowledge of PRRS biology, pathogenesis and immunity 

(Karniychuk et al. 2012). Genomic tools may provide an alternative opportunity to explore the 

mechanisms behind PRRS, and to select animals resistant, or with reduced susceptibility to 

PRRSV (Lunney and Chen 2010). For example, a major quantitative trait locus (QTL) on SSC4 

associated with host response to PRRSV has been reported (Boddicker et al. 2012) in a genome-

wide association study (GWAS). Further analysis showed that estimated breeding values (EBV) 

based on this QTL were sufficiently accurate for potential use in animal selection to reduce the 

effects of PRRSV in growing pigs (Boddicker et al. 2014). In addition, a QTL on SSC7 associated 

with reproductive traits and PRRS IgG antibody response was discovered, and was subsequently 

confirmed in an unrelated population (Serão et al. 2014; Serao et al. 2014). However, since these 

important advances in our understanding of PRRS host responses were obtained from piglets post-

weaning and dams, respectively, knowledge of the genetic basis of fetal response to PRRSV 

infection is still scarce. 

To explore the mechanisms of reproductive PRRS, an experimental pregnant gilt challenge 

model (PGM) was undertaken (Ladinig et al. 2014d), and several phenotypic responses in dams 

and fetuses associated with PRRS severity were revealed (Ladinig et al. 2014a, 2014c, 2014b, 

2015). The objective of the current study was to explore the genetic basis of fetal response to 

PRRSV infection, including viral load in thymus (VLT), viral load in endometrium (VLE), fetal 

death (FD) and fetal viability (FV), through GWAS using fetal samples from this challenge model. 
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3.2 Materials and methods 

3.2.1 Animal resources 

Samples and data used in the current study were obtained from a PRRS pregnant gilt challenge 

model, previously described in detail (Ladinig et al. 2014d). The experiment was approved by the 

University of Saskatchewan’s Animal Research Ethics Board and adhered to the Canadian Council 

on Animal Care guidelines for humane animal use (permit #20110102). In brief, 114 purebred 

Landrace gilts (Fast Genetics Inc., Spiritwood, Canada) were artificially inseminated using 

homospermic semen from one of 24 Yorkshire boars, and inoculated with type 2 NVSL 97-7895 

PRRSV on gestation day 85  1 and 19 similarly mock inoculated gilts. All were humanely 

euthanized 21 days post inoculation (dpi). In total, 1,422 fetuses obtained from the PRRSV-

inoculated gilts were categorized based on their preservation status as: viable (VIA, n = 697), 

meconium-stained (MEC, n = 125), decomposed (DEC, n = 111), autolysed (AUT, n = 459), or 

mummified (MUM, n = 30). All AUT and MUM fetuses were excluded from the present analyses 

as poor DNA yield and quality prevented genotyping. VIA were alive until termination and 

externally normal, whereas MEC were alive but clearly showed pathologic changes. It is estimated 

that DEC died 3-5 days prior to termination based on their fetal size and primarily normal external 

appearance (more than 50% white skin, lack of generalized subcutaneous edema and emphysema).  

 

3.2.2 Phenotypic data 

The viral load (VL; target RNA concentration per mg tissue) in fetal thymus (VLT) and 

endometrium (VLE) were measured in VIA, MEC and DEC fetuses using an in-house quantitative 

real-time PCR (qRT-PCR) (Ladinig et al. 2014d) targeted at a highly conserved region of the C-
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terminal end of ORF7 of NVSL 97-7895. Endometrium was collected from the umbilical stump 

of each fetus and included the adherent fetal placental layers. RNA was extracted from 10-20 mg 

tissue using the RNeasy extraction kit (Qiagen, Toronto, Canada) as per the manufacturer's 

instructions. However, previous analysis showed that both VLT and VLE were considerably lower 

in DEC fetuses than in VIA and MEC, likely due to viral RNA degradation during the period of 

decomposition (Ladinig et al. 2014d). As the degree of RNA degradation was hard to measure and 

model, the VLT and VLE in DEC fetuses (n = 111) were excluded from the association analysis. 

The random errors of raw phenotypic values for VL traits were assumed to follow a lognormal 

distribution (Islam et al. 2013), and were log-transformed (base 10) before the analysis (a 

phenotypic value of 0 was given to negative records). Two binary traits were also defined based 

on the fetal preservation: 1) fetal death (FD), where all DEC fetuses were coded as “dead” and all 

VIA and MEC fetuses were coded as “live”, and 2) fetal viability (FV), where all VIA fetuses were 

coded as “viable” and all MEC and DEC fetuses were coded as “non-viable”. We presumed that 

the genetic basis behind these two binary traits were different, so they were analyzed separately.  

The phenotype of VLT and VLE for genotyped fetuses was summarized in Table 3.5 and 

Figure 3.1. It is noticeable that the VLT and VLE are not symmetrically distributed, but appear to 

follow a mixture of two distributions, one with high density near zero and the other roughly normal 

but spread over higher values.  

Some other traits were also measured as potential environmental effects on fetal response 

to PRRSV. Inoculated dams were genotyped for the WUR10000125 SNP (Dam-WUR-SNP), 

which was associated with the SSC4 QTL (Boddicker et al. 2012). Their serum viral load was also 

measured at day 0, 2, 6, 21 post-inoculation (Dam-VL-0, 2, 6, 21), using qRT-PCR and the same 
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primers used for fetal viral load measurement. The area under the curve (Dam-VL-AUC0-21) was 

calculated from 0 to 21 dpi. 

 

3.2.3 Genomic data 

In total, 928 fetuses with high DNA quality were genotyped using the PorcineSNP60 Genotyping 

BeadChip v2 (Illumina, San Diego, CA, USA) containing 61,565 SNPs. SNPs were filtered out 

when they: 1) had a call rate less than 90%; 2) had a minor allele frequency (MAF) less than 0.05; 

or 3) demonstrated a significant deviation from Hardy-Weinberg equilibrium (HWE) with a Chi2-

value higher than 600. After the quality control, 45,255 SNPs remained in the dataset, with a 

missing call rate of 0.32%. 

 

3.2.4 Population structure 

To assess the potential impact of population stratification, the population structure of the fetuses 

was tested before the association analysis using Plink 1.90 (Chang et al. 2015) and R/rrBLUP 

(Endelman 2011). Genetic difference among fetuses was measured as pairwise identity-by-state 

(IBS) Hamming distances in Plink, and a MDS analysis was conducted to construct the 2-D plot, 

which shows the first 2 dimensions of the population structure. A PCA by the eigenvalue 

decomposition of marker-based relationship matrix was also performed using R/rrBLUP. As there 

was no evidence that the population was substantially stratified, the population structure was not 

modelled in the following analysis. 

 

3.2.5 Model 

A generalized linear model was used in the analyses: 
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Two link functions (f) were used to transform the expectation of phenotypes (E(y)) to the linear 

predictor. For continuous phenotypes (VLE, VLT), an identity link function was used which was 

equivalent to a general linear model. For the two preservation traits (FD, FV), a logit link function 

was used to model the binary phenotype. 𝜇  was the intercept. X was the design matrix for 

environmental fixed effects, and 𝛽 was the vector of environmental fixed effects, which included 

two litter factors (litter size and litter fetal mortality rate), three factors measuring maternal disease 

status (Dam-WUR-SNP, Dam-VL-21, Dam-VL-AUC0-21), three factors related to maternal 

uterine environment (relative fetal position within uterine horn increasing incrementally from tip 

to body [POS], nINF, nDEAD), and two other factors (fetal sex, experimental repetition/group). Z 

was the design matrix associated with SNP effects (g). In the design matrix, genotypes were coded 

as 1/0/-1 for genotype AA/AB/BB, respectively. All SNP effects (g) were treated as fixed effects. 

The model was fitted using the least absolute shrinkage and selection operator (LASSO), 

which was reported to be appropriate for fitting fixed effects models in GWAS and genomic 

prediction (Wu et al. 2009; Usai et al. 2009; Ayers and Cordell 2010; Xu et al. 2014). The analysis 

was performed using R/glmnet package (Friedman et al. 2010), and the tuning parameter (𝜆) was 

selected to minimize the mean square error (MSE) in a 10-fold cross validation (CV) for each run. 

As the package does not accept design matrix with missing values, all missing genotypes were 

imputed as the overall average value of the marker. After the fitting of the model, the total genetic 

variance explained by all 45,255 SNPs (2
g,total) and the genetic variance explained by each single 

marker (2
g,marker) were calculated using the estimated SNP effects (Fernando and Garrick 2013).  

ZgXyEf  )]([
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3.2.6 Permutation test 

Since R/glmnet has a very high computational efficiency (Friedman et al. 2010), the significance 

of those non-zero SNP effects were tested through permutation, by randomly shuffling the 

phenotype while keeping the genotype intact thereby destroying the association between the 

phenotype and genotype. Then, the permutated data were analysed with the same procedure to 

generate a null-distribution that was used to determine empirical test criteria underlying the null 

hypothesis (Hayes 2013). One thousand runs were conducted for each trait. In each run, the 

2
g,marker for each marker was calculated. The highest 2

g,marker in each run (“highest-2”) was used 

to construct the null distribution. For each SNP, its P-value was calculated as the proportion of 

highest-2 that were greater than the genetic variance explained by that SNP. When the proportion 

was equal to zero, it implied a P-value less than 0.001. The 99th and 95th percentiles (corresponding 

to an empirical P-value of 0.01 and 0.05) of the null distribution were used as the two critical 

values to test the result for that trait. Given the limited sample size in the current dataset (less than 

1,000 fetuses) and our relatively robust test strategy, the 90th percentile (corresponding to an 

empirical P-value of 0.1) was also calculated to explore more potential SNPs.  

 

3.2.7 Transcriptomic analyses 

To provide a functional context, GWAS results were compared with that of two differential gene 

expression experiments, in order to detect genes close to the candidate SNPs whose expression 

was altered in response to PRRSV infection. The results of the transcriptomic analyses came from 

a related study (Wilkinson et al. 2016) that investigated the fetal transcriptomic response to 

PRRSV infection, and used the same population of fetuses. In brief, for each of the two 
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experiments, the gene expression profiles of two groups of fetuses (n = 12 per group) were 

compared. The first experiment compared fetuses from mock-inoculated control gilts (CON) to 

viable, qRT-PCR positive fetuses from PRRSV-inoculated gilts (INF). The second experiment 

compared INF fetuses to viable, uninfected (qRT-PCR negative) fetuses from PRRSV-inoculated 

gilts (UNINF). All differentially expressed genes located within a 4Mbp window (2Mbp upstream 

or downstream) of any of the candidate SNPs were identified. The results may provide support for 

possible QTLs in those regions, and aid in the identification of the causative SNP if it affects gene 

expression. Although those genes without differential expression may also contain causative 

polymorphisms, this functional analysis was mainly focused on those differentially expressed 

genes, as they are more likely to play a role in the fetal response to PRRSV.  

The location of all SNPs were based on Illumina Pig 60k SNPs mapped to pig genome 

assembly 10.2 (Groenen et al. 2012). The searching of genes near candidate SNPs was performed 

using BioMart, an online service that integrated the information from top bioinformatic databases, 

and R/Bioconductor package biomaRt, an R interface for BioMart (Durinck et al. 2005, 2009).  

 

3.3 Results and discussion 

3.3.1 Population structure 

Figure 3.2 presents the result of multi-dimension scaling (MDS) and provides a visualization of 

the pairwise genetic distances among the fetuses. There was no evidence of population 

stratification based on the 2-dimensional plot. This conclusion was also supported by the principal 

component analysis (PCA) result. The eigenvalues for the top three principal components were 

only 2.49%, 2.45% and 2.26% of the summation of all eigenvalues, which implies a lack of 

population stratification.  
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3.3.2 Association results 

In the regression analysis, 24 candidate SNPs were found associated with at least one of the four 

traits (VLT, VLE, FD, FV). Twenty-two could be mapped to the porcine genome and are located 

across 10 chromosomes. We also evaluated the contribution of these SNPs to the phenotypic 

variation, both individually and collectively. The results are grouped below by the four traits 

analyzed. 

 

3.3.2.1 Viral load - thymus (VLT) 

Results of the associations between SNPs and VLT were summarized in Table 3.1 and Figure 3.3a. 

One single nucleotide polymorphism (SNP) on each of Sus scrofa chromosome (SSC) 1 

(ASGA0005344, P = 0.021) and SSC14 (DIAS0000654, P = 0.044) were significantly associated, 

and another SNP on SSC12 (ASGA0055300, P = 0.069) showed suggestive association with viral 

load. The three associated SNPs explained 5.58%, 4.16%, and 3.45% of 2
g,total (total genetic 

variance explained by all SNPs passed quality control, see Methods section), respectively; and 

13.0% collectively. 

For these three associated SNPs, a simplified linear model was used to investigate their 

genetic contribution. In this model, only two non-zero environmental effects, number of adjacent 

PRRSV-infected fetuses (nINF) and number of adjacent dead fetuses (nDEAD), and the three 

SNPs were fitted. All three SNPs were significantly associated with VLT (P < 0.001) in the 

regression. The least-square (LS) means for the SNPs were also calculated (Figure 3.4). For the 

SNP ASGA0005344 on SSC1, the difference in LS mean between the two homozygous genotypes 

was 1.35 (log10 copies/mg). For the SNP ASGA0055300 on SCC12, the LS mean for the 
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heterozygotes was obviously deviated from the average of the LS means for homozygotes, which 

implies the existence of a dominance effect. However, it should be noted that the number of fetuses 

with genotype AA is relatively small and the estimate of viral load may be an underestimate so 

that the true effect is additive. 

We also explored the distribution of the phenotypic values, to determine the interaction 

among the three SNPs. For each SNP, we determined the favoured allele, which was associated 

with a lower VLT. Fetuses were grouped based on how many favoured alleles they had across the 

three SNPs. The distribution for each group is shown in Figure 3.5. It is evident that the proportion 

of fetuses with high VLT decreases when more favoured alleles were present in individual fetuses, 

which supports the conclusion that the effect of the three SNPs was additive.     

 

3.3.2.2 Viral load - endometrium (VLE) 

No SNPs were significantly or suggestively associated with VLE (Figure 3.3b; P > 0.1). However, 

the top SNP on SSC15 (ALGA0115095, located at ~134Mbp) was very close to a candidate SNP 

associated with FD. 

 

3.3.2.3 Fetal death (FD)  

SNPs associated with FD are summarized in Table 3.2 and Figure 3.3c. Sixteen SNPs were 

significantly associated with FD: seven SNPs with P < 0.01 and nine other SNPs with P < 0.05. 

Four additional SNPs had a suggestive association (P < 0.1). The P-values for each SNP were 

listed in Table 3.2. Two SNPs were unmapped in the latest genome map (build 10.2). In total, the 

18 mapped candidate SNPs accounted for between approximately 1% and 4.4% of the genetic 
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variance (2
g,total) each and 35.4% of the variance overall, while the 7 most significant SNPs 

explain 20% of the genetic variance. 

To explore if the associated genes interacted, the fetuses were grouped based on the number 

of favoured alleles they had and three plots were generated (Figure 3.6) corresponding to sets of 

mapped SNPs: 1) seven SNPs with P-value lower than 0.01, 2) fifteen SNPs with P-value lower 

than 0.05, and 3) eighteen SNPs with P-value lower than 0.1. The proportion of viable (VIA), 

meconium-stained (MEC) and decomposed (DEC) fetuses was then compared for fetuses grouped 

by the number of favoured alleles they possessed. Whereas VIA fetuses appeared developmentally 

normal, MEC fetuses showed early signs of PRRS-related pathology, and DEC had died an 

estimated 3-5 days prior to termination (Ladinig et al. 2014d). Across all three plots, the proportion 

of DEC decreased as the number of favoured alleles increased. This trend was consistent regardless 

of the number of SNPs used in the analyses or their level of significance. This could be partly due 

to the low number of fetuses with an extreme number of favoured alleles in the dataset. Thus, a 

larger population may help to more accurately reveal the distribution for fetuses with extreme 

genotypes. In addition, the number of favoured alleles did not appear to affect the proportion of 

MEC fetuses, which support our assumption that the two traits, FD and FV, may each have a 

different genetic basis to a degree. 

 

3.3.2.4 Fetal viability (FV)  

Results of GWAS for FV were summarized in Table 3.3 and Figure 3.3d. Only one SNP on SSC7 

was found to be significant (P = 0.018), which accounted for a considerable amount (34.0%) of 

total genetic variance (2
g,total).  
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3.3.3 Overlap with previously discovered QTL 

Some of the SNPs were found to be linked to candidate regions identified in previous studies. For 

example, the associated SNP located at 97-98 Mbp on SSC7 was very close to one of the candidate 

regions found associated with percentage of piglets born dead (PBD) in a commercial farm 

experiencing a PRRS outbreak (Serao et al. 2014). Even though PBD was a trait measured at the 

litter-level and was associated with the genotype of sows, it is still noteworthy as both FD and 

PBD relate to fetal death. Based on a pigQTLdb search (Hu et al. 2013), seven of the SNPs 

identified here were located within QTLs reported to be associated with pig disease resistance. 

One SNP associated with VLT is within a QTL of C3c serum concentration, which is a 

measurement of complement activity in innate immunity (Phatsara et al. 2007). Six SNPs 

associated with FD are located in previously described QTL that are related to leukocyte subset 

percentage, interferon level, Toll-like receptor level, pathogen count and reproductive traits 

(Phatsara et al. 2007; Galina-Pantoja et al. 2009; Lu et al. 2011b, 2011a; Onteru et al. 2012). More 

information about the pigQTLdb comparison is summarized in Table 3.4. However, we did not 

find any associated SNPs within the major QTL detected on SSC4 associated with viral load and 

growth rate in a PRRS nursery pig model (Boddicker et al. 2012) nor the genomic region on SSC7 

associated with antibody response in a PRRS reproductive outbreak (Serao et al. 2014). 

 

3.3.4 Potential link with PRRS 

An association suggests that there are mutations in a gene or genes in these regions that explain 

the observed phenotype. In order to investigate this further, we identified genes within the 

candidate regions to determine if there was support for a functional basis of the observation. 
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We defined 21 regions for the 22 candidate SNPs with map locations (SNP ASGA0055300 

and M1GA0017106 are close together and therefore share the same candidate region). Then we 

searched for genes that were differentially expressed in an ongoing related transcriptomic analyses 

of fetal response to PRRSV infection (see Methods section). For one of the candidate regions on 

SSC1 (~197Mbp), all four genes identified in this region were excluded due to their very low level 

of expression in fetal thymus (in the related transcriptomic analysis). Candidate regions on SSC13 

(~64Mbp) and SSC14 (~86Mbp) do not harbour any differentially expressed genes in the 

transcriptomic analysis. However, we found differentially expressed genes in all of the other 18 

candidate regions. In the following sections, we propose some hypotheses about the potential 

functional links between those differentially expressed genes and the fetal response to PRRSV 

challenge. 

 

3.3.4.1 Mechanisms of reproductive PRRS 

Recent pathogenesis and immunological studies provide new information about the biology of 

fetal response to PRRSV infection. PRRSV has the capability to replicate in the fetus at any stage 

of gestation, as demonstrated by direct intra-fetal inoculation, but in a natural infection must first 

cross from dam to fetus via the placenta. The precise conditions required for transplacental 

infection are not fully understood, but are largely restricted to late in gestation (Karniychuk and 

Nauwynck 2013). In the current study, gilts were inoculated in late gestation (day 85 ±1), which 

resulted in the death of about 40% of fetuses (Ladinig et al. 2014d). Previous studies suggested 

that PRRSV may cross the placental barrier through maternal macrophage migration (Karniychuk 

and Nauwynck 2013). Moreover, larger fetuses, which tend to have larger placentae, exhibit higher 

PRRS viral load and therefore appear to be more susceptible to PRRSV infection (Ladinig et al. 
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2014a). It seems likely that damage to the placental attachment site contributes to the reproductive 

pathology observed in PRRS. PRRSV-induced macrophage apoptosis in the placenta may lead to 

focal detachment and degeneration of the fetal placenta, resulting in fetal death (Karniychuk et al. 

2011). However, events in the fetus itself may also influence the outcome of fetal infection. It has 

also been shown that both the status of adjacent fetuses, and the presence of PRRSV RNA 

(particularly at high levels in the fetus), are associated with fetal death, which suggests key roles 

for inter-fetal transmission and viral replication within fetuses (Ladinig et al. 2015). Fetuses are 

immunocompetent as early as 79 days of gestation (Butler et al. 2014). However, it is reported that 

immunity may remain dysregulated even in fetuses surviving in utero infection of PRRSV (Aasted 

et al. 2002; Nielsen et al. 2003). These results provide the basis for investigating the potential 

function of the regions identified here. 

 

3.3.4.2 RIG-I pathway 

Deconjugation of ubiquitin and ISG15 (IFN-stimulated gene product of 15kDa) is involved in one 

of the modulation mechanisms by which PRRSV evades host immune responses (Frias-Staheli et 

al. 2007). As ISG15 plays an important role in antivirus defence through protein ISGylation, 

deconjugation of ISG15 leads to further inhibition of downstream signalling and innate immune 

responses, such as NF-kappa-B activation (Sun et al. 2012). In one of our candidate genomic 

regions, we found the gene UBA7 (also known as UBE1L, encoding Ubiquitin-Like Modifier 

Activating Enzyme 7, located at ~36Mbp on SSC13). The encoded enzyme catalyzes the 

conjugation of ISG15, and is critical in the protein ISGylation process (Madani et al. 2002). These 

findings suggest the possibility that a mutation in this region of the genome may alter the 
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expression of UBA7 or the function of the encoded enzyme, and therefore modulate the host 

response to PRRSV. 

 

3.3.4.3 Monocyte/macrophage lineage cells 

PRRSV shows a strong tropism for monocyte/macrophage lineage cells, and it is reported that the 

differentiation and activation of these cells critically affect their susceptibility (Duan et al. 1997). 

In our candidate regions, we found a set of genes critically involved in processes related to the 

differentiation and activation of monocytes to macrophages. They are gene ACKR2 (also known 

as CCBP2, encoding atypical chemokine receptor 2, located at ~29Mbp on SSC13), CSF1 (also 

known as M-CSF, encoding macrophage colony-stimulating factor 1, located at ~121Mbp on 

SSC4), MST1 (also known as MSP, encoding macrophage stimulating 1, located at ~35Mbp on 

SSC13), and MST1R (also known as RON, encoding macrophage stimulating 1 receptor, located 

at ~36Mbp on SSC13). Gene variants in these regions may result in changes to related pathways 

and ultimately to differences in the host's innate and adaptive immune responses. 

For example, ACKR2 is one of the receptors of CCL2 (Lee et al. 2014), chemokine (C-C 

Motif) ligand 2 (also known as MCP1). CCL2 is a key pro-inflammatory chemokine involved in 

the activation of monocytes (Ford et al. 2014) and ACKR2 may act antagonistically due to its 

ability to scavenge extracellular chemokines including CCL2 (Lee et al. 2014). A previous study 

also suggested associations between circulating monocyte count and two missense variants within 

the gene ACKR2 in humans (Crosslin et al. 2013). In addition, Ladinig et al. previously reported 

for this challenge study that serum CCL2 levels in the gilts following PRRSV challenge were 

positively related to VL in serum and lung, but were not associated with the odds of fetal death 
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(Ladinig et al. 2014c). A hypothesis based on these results is that a mutation within gene ACKR2 

results in fetal death, through the interference of ACKR2 in the functioning of CCL2.  

It is reported that CSF1 is involved in the maturation and differentiation of monocytes into 

macrophages (Pixley and Stanley 2004), and CSF1 injections significantly increase macrophages 

and circulating monocytes in mice (Hume et al. 1988).  

Macrophage stimulating 1 (MST1) and its receptor (MST1R) establish the MSP-RON 

signalling system (Lutz and Correll 2003) and mediate second messenger pathways within 

macrophages, including the Phosphatidylinositol-3-kinase (PI3K) pathway and mitogen-activated 

protein kinase (MAPK) pathway (Yao et al. 2013), both of which are reported to be involved in 

host response to PRRSV (Hou et al. 2012; Wang et al. 2014). The interaction between MST1 and 

MST1R may strongly modulate the production of interleukins (ILs), especially IL-12, IL-15 and 

IL-18 (Morrison et al. 2004). All three ILs have been reported to modulate the activities of NK 

cells, such as their apoptosis, development and survival (Gately et al. 1998; Waldmann and Tagaya 

1999). 

 

3.3.4.4 Natural killer (NK) cells 

It is reported that NK cell-mediated cytotoxicity was significantly decreased in pigs infected with 

PRRSV VR2332, a prototype type 2 PRRSV strain, and it appears to result in the suppression of 

IFN- production (Manickam et al. 2013). In our candidate regions, we found two genes that may 

be related to the activity of NK cells. They are CXCR2 (encoding chemokine [C-X-C Motif] 

Receptor 2, located at ~133Mbp on SSC15) and NKTR (encoding natural killer triggering receptor, 

located at ~29Mbp on SSC13, although this gene was not differentially expressed in the 
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transcriptomic analysis). These may play protective roles in PRRSV-induced immunosuppression, 

or be related to the modulation mechanism.  

The product of CXCR2 is a receptor that binds to a set of chemokines including IL-8 (also 

named CXCL8), which was reported to be a key factor in virus-induced selective chemotaxis of 

NK cells in humans (Burke et al. 2008). A previous study suggested that IL-8 is one of the 

important cytokines involved in the clearance of virus from serum in PRRSV-infected pigs 

(Lunney et al. 2010). In the related cytokine profiling study by Ladinig et al., however, IL-8 level 

was not associated with viral load or fetal death, although it was significantly increased in PRRSV-

stimulated peripheral blood mononuclear cells (PBMC) from infected pigs (Ladinig et al. 2014c).  

NKTR is a cyclophilin-related protein, and the gene is exclusively expressed in NK cells 

(Anderson et al. 1993). The protein is believed to have an important role in NK cell cytotoxicity, 

and induce the production of IFN- (Frey et al. 1991). As NK cell cytotoxicity and production of 

IFN- are both involved in PRRSV modulation of host innate immune response, it is tempting to 

speculate that NKTR may be part of this process.  

 

3.3.4.5 T-cells 

PRRSV is able to modulate host T-cell responses. One mechanism is reported to be upregulation 

of the frequency of Foxp3+ T-regulatory cells (Tregs), which secrete IL-10 and transforming 

growth factor  (TGFB) that suppress the host immune response (Manickam et al. 2013). A protein 

in the integrin family, E7-integrin (also known as CD103), can help to retain Tregs and therefore 

may be key to this process (Campbell and Ziegler 2007). We found the gene ITGB7 (encoding 7-

integrin, one of the two components of E7-integrin) located in the candidate region at ~19Mbp 

on SSC5. Further ITGB7 is one of the target genes of Foxp3+, and it is possible that Foxp3+ has a 
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direct effect on the expression of ITGB7 (Campbell and Ziegler 2007). In this case, ITGB7 may be 

involved in the PRRSV-induced upregulation of Foxp3+ Tregs. On the other hand, 7-integrin is 

also related to the production of 47-integrin, which is involved in T-cell migration (Agace 

2006). Gene TMPO (encoding thymopentin, located at ~90Mbp on SSC5), may also have an 

impact on the PRRSV-induced modulation of host adaptive immune response, as thymopentin may 

be involved in the regulation of T helper cells, both Th1 and Th2, and their related cytokines, such 

as IFN- (Cillari et al. 1992). 

 

3.3.4.6 IRF3/7 signalling 

In a candidate region on SSC15 (~145Mbp), we also found genes encoding three members of the 

nuclear antigen SP100 family (SP100, SP110 and SP140), which may be related to the suppression 

of interferon (IFN) production by PRRSV. It is reported that PRRSV is able to inhibit the activation 

of interferon regulatory factor 3 (IRF3), and thereby suppress the synthesis of interferon- (IFN-

) (Sun et al. 2012). A previous study showed that SP100 may play a significant role in enhancing 

the production of IFN- in IRF3/7 signalling (Schmid et al. 2014). Further evidence also suggests 

a role of the SP100 family in antiviral response through promyelocytic leukemia protein nuclear 

body (PML-NB) (Bloch et al. 2000), especially for viruses whose proteins localize to the nucleolus, 

such as PRRSV (Hiscox 2002). 

 

3.3.4.7 Apoptosis and JNK signalling 

Apoptosis is a critical process in the pathogenesis of PRRSV and the fetal response to PRRSV 

challenge. Evidence implies that PRRSV may be able to regulate the progress of apoptosis 

enhancing viral replication (Huo et al. 2013). It was also proposed that the PRRSV-induced 
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apoptosis at fetal implantation sites is a primary mechanism of fetal death (Karniychuk et al. 2011). 

Previous studies showed that c-Jun NH(2)-terminal kinase (JNK) pathway is critical to apoptosis, 

and that activation of the JNK pathway is required for PRRSV-induced apoptosis (Yin et al. 2012). 

The JNK pathway can be activated by either of two MAPK kinases (MAP2Ks), and these two 

MAP2Ks can be activated by a total of fourteen MAPK kinase kinases (MAP3Ks) (Dhanasekaran 

and Reddy 2008). In our candidate genomic regions, we found two genes encoding kinases in this 

list. They are gene MAP2K4 (encoding MAPK kinases 4, located at ~60Mbp on SSC12) and 

MAP3K12 (encoding MAPK kinase kinases 12, located at ~19Mbp on SSC5). Neither showed 

differential expression in the transcriptomic analysis. MAP3K12 is not a kinase for MAP2K4, but 

activates another MAP2K, MAP2K7. We also found gene MAPKAPK3 (encoding MAPK-

activated protein kinase 3, located at ~36Mbp on SSC13) in a candidate region, which was also 

not differentially expressed. MAPKAPK3 catalyzes the phosphorylation of heat shock proteins B1 

(HSPB1) (Paul et al. 2010), which is able to reduce the activity of JNK and thereby protect stressed 

cells from apoptosis (Kennedy et al. 2014). Mutations of any of these three genes may have an 

effect on the activation of JNK and PRRSV-induced apoptosis, potentially leading to differential 

fetal responses, especially fetal death. 

 

3.3.4.8 Response to secondary infection 

In the candidate regions we also found a set of genes that function in the host response to 

pathogens, but have not been reported to be involved specifically in the response to single strand 

RNA viruses like PRRSV. These genes are TLR9 (encoding toll-like receptor 9, located at ~38Mbp 

on SSC13), TREX1 (encoding the prime repair exonuclease 1, located at ~35Mbp on SSC13), and 
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SLC11A1 (also known as NRAMP1, encoding solute carrier family 11 member 1, located at 

~133Mbp on SSC15). 

As a member of the TLR family, TLR9 recognizes CpG motifs common to both bacterial 

and viral DNA and RNA:DNA hybrids (Rigby et al. 2014). The stimulation of TLR9 triggers the 

production of type I interferons (IFN), cytokines that play an important role in controlling viral 

infections (Akira and Takeda 2004). Protein TREX1 is targeted as a microbial evasion strategy. 

This exonuclease can digest cytoplasmic single-stranded DNA decreasing its concentration 

thereby avoiding the stimulation of innate immune response (Yan et al. 2010). Protein SLC11A1 

protects macrophages and is reported to be involved in resistance to bacterial infection in pigs 

(Peracino et al. 2006).  

Given that PRRSV is able to modulate the host immune response, increasing the host's 

susceptibility to secondary infections (Calzada-Nova et al. 2010), these genes may have an indirect 

impact on fetal responses to PRRSV challenge, although they would not necessarily be expected 

to be associated with fetal outcome in this challenge model. 

 

3.3.5 Limitations and future work 

Although the potential genomic regions and their genes and pathways discussed above may 

provide important clues for the fine mapping of specific causative mutations, additional research 

is required to confirm the roles of any these genes. It should also be noted that although this GWAS 

was based on a relatively large number of fetuses, only one type 2 PRRSV strain and one 

termination time-point were used in the challenge experiment. Thus, the results may be specific to 

the experiment. Careful validation with different time-points and PRRSV strains, including type 1 
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PRRSV, are needed before generalizing the results. Some of this validation work is underway, 

including a new experiment with type 2 PRRSV using earlier time-point(s) for termination.  

 

3.4 Conclusions 

In this GWAS of fetal response to PRRSV challenge, specifically fetal viral load (VLT, VLE) and 

fetal death and viability (FD, FV), we found 21 candidate regions located on 10 chromosomes, 

with four of these regions being on SSC13 and three regions on SSC7. Eighteen of the 21 candidate 

regions harbour genes showing differential expression associated with fetal PRRSV infection in a 

related transcriptomic study, and 7 candidate regions overlap with previously reported QTLs 

involved in fetal health and host responses to pathogens. Within these regions, we found genes 

that are involved in a variety of immune processes, including cytokine signalling, leukocyte 

activities, and innate immunity, and a number of them are functionally linked to known PRRSV-

related immune response pathways. The results may provide new evidence to help explain the 

genetic basis of the fetal response to PRRSV infection and may ultimately lead to alternative 

control strategies to reduce the impact of reproductive PRRS. However, it should be noted that 

only one type 2 PRRSV strain was studied; effects would need to be tested with other strains.  
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Table 3.1 Summary of fetal viral load measured in fetal thymus (VLT) and fetal viral load 

measured in endometrium (VLE) for genotyped fetuses 

The PRRS virus concentration (target RNA copies / mg) has been log-transformed (base 10). Zeros 

were given to negative records. 

 

Trait No. of 

observations 

Mean Standard 

Deviation 

Minimum value Maximum value 

VLT 817 3.06 3.20 0 8.80 

VLE 817 3.35 2.35 0 7.61 
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Table 3.2 Top SNPs associated with viral load in fetal thymus (VLT) 

The locations of SNPs were based on Illumina Pig 60k SNPs mapped to pig genome assembly 

10.2 (http://www.animalgenome.org/repository/pig/). Empirical P-values were calculated 

with a 1,000-run permutation analysis. σ2
g,marker means the genetic variance explained by the 

single marker, and σ2
g,total means the total genetic variance explained by all 45,255 SNPs. 

 

Marker ID 

Location 

P σ2
g,marker/ σ2

g,total (%)  

Chromosome Position (bp) 

ASGA0005344 1 197,479,988 0.021 5.58 

ASGA0055300 12 59,921,056 0.069 3.45 

DIAS0000654 14 85,991,839 0.044 4.16 
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Table 3.3 Top SNPs associated with fetal death (FD)  

The locations of SNPs were based on Illumina Pig 60k SNPs mapped to pig genome assembly 

10.2 (http://www.animalgenome.org/repository/pig/). Empirical P-values were calculated with a 

1,000-run permutation analysis. σ2
g,marker means the genetic variance explained by the single 

marker, and σ2
g,total means the total genetic variance explained by all 45,255 SNPs.  

 

Marker ID 

Location 

P 

σ2
g,marker/ σ2

g,total (%) 

 Chromosome Position (bp) 

MARC0003250 1 144,155,620 0.005 2.33 

ASGA0021980 4 119,682,308 0.073 0.98 

MARC0042986 5  18,071,917 < 0.001 4.35 

ASGA0026553 5  87,726,880 0.002 2.60 

DRGA0007745 7  71,531,707 0.012 1.80 

ASGA0035226 7  97,430,037 < 0.001 3.36 

ALGA0053793 9  78,113,024 0.048 1.16 

ALGA0061607 11  26,560,250 0.036 1.32 

MARC0089129 11  77,708,385 0.026 1.53 

M1GA0017106 12  59,174,296 0.027 1.49 

MARC0077450 12  61,568,245 0.074 0.97 

ALGA0069106 13  28,741,495 0.005 2.29 

ASGA0057175 13  36,517,366 0.033 1.36 

ALGA0070448 13  63,937,862 0.002 2.60 

ALGA0070951 13  82,891,929 < 0.001 3.97 
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M1GA0018773 14  65,422,608 0.018 1.66 

MARC0055746 15 132,949,028 0.065 1.04 

ALGA0087932 15 144,250,933 0.015 1.73 

MARC0076503 - - 0.047 1.19 

ALGA0032154 - - 0.067 1.02 
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Table 3.4 Top SNPs associated with fetal viability (FV) 

The locations of SNPs were based on Illumina Pig 60k SNPs mapped to pig genome assembly 

10.2 (http://www.animalgenome.org/repository/pig/). Empirical P-values were calculated with a 

1,000-run permutation analysis. σ2
g,marker means the genetic variance explained by the single 

marker, and σ2
g,total means the total genetic variance explained by all 45,255 SNPs. 

 

Marker ID 

Location 

P 

σ2
g,marker/ σ2

g,total (%) 

 Chromosome Position (bp) 

DRGA0008048 7 109,279,352 0.018 34.6 
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Table 3.5 QTLs overlapping with candidate regions 

The QTL information was based on pigQTLdb (Hu et al. 2013). Only QTLs spanning no more 

than 30Mbp were listed in the table, as those QTLs spanning a larger region provide limited 

support. Associated traits include viral load measured in fetal thymus (VLT) and fetal death (FD). 

SNP ID 

(Associated 

Trait) 

QTL Information  

Chromosome Span (bp) Trait 

ASGA0021980 

(FD) 

4 119,299,797 -120,509,810 

CD4-positive, CD8-negative 

leukocyte percentage; CD4-

positive leukocyte percentage 

ASGA0026553 

(FD) 

5 85,756,451 - 90,130,141 Interferon-gamma level 

MARC0089129 

(FD) 

11 73,438,559 - 78,480,320 

CD4-positive leukocyte 

percentage 

ASGA0057175 

(FD) 

13 36,281,164 - 36,541,751 Mummified pigs 

DIAS0000654 

(VLT) 

14 83,873,248 - 93,372,131 C3c concentration 

M1GA0018773 

(FD) 

14 53,465,935 - 81,745,465 

Salmonella count in liver and 

spleen; Salmonella count in 

liver 

MARC0055746 

(FD) 

15 135,157,314 -149,797,711 Toll-like receptor 2 level 
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Table 3.6 Genes potentially linked to PRRSV infection 

Related Biological Processes Genes 

RIG-I pathway UBA7 

Monocyte/macrophage lineage cells activity ACKR2, CSF1, MST1, MST1R 

Natural killer (NK) cells activity CXCR2, NKTR 

T-cells activity ITGB7, TMPO 

IRF3/7 signaling SP100, SP110, SP140 

Apoptosis and JNK signaling MAP2K4, MAP3K12, MAPKAPK3 

Response to secondary infection TLR9, TREX1, SLC11A1 

  



 

 138 

Figure 3.1 Distribution of viral load in fetal thymus (VLT) and endometrium (VLE) of live fetuses. 

Concentration of NVSL 97-7985 PRRSV RNA (log 10) per mg tissue measured by in-house 

quantitative real-time PCR. 
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Figure 3.2 Population structure of the fetuses. 

The genetic distance was calculated using the genotype of 45,255 SNPs with Hamming distance. 

The plot was built with 2-D multi-dimension scaling (MDS), and presents the top 2 dimensions 

(C1 and C2) of the population structure. Colors of the points represent fetal preservation status: 

green for viable (VIA), red for meconium-stained (MEC), and black for decomposed (DEC). No 

substantial stratification was evident.  
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Figure 3.3 Manhattan plot for viral load in fetal thymus (VLT), viral load in fetal endometrium 

(VLE), fetal death (FD) and fetal viability (FV) 

The association analysis was conducted with the least absolute shrinkage and selection operator 

(LASSO). A generalized linear model was used. The Y-axes shows the percentage of total genetic 

variance (calculated as the variance of GEBV calculated using 45,255 SNPs) that can be explained 

by each single SNP. Thresholds corresponding to different empirical P-values were calculated 

with a 1,000-run permutation analysis. 
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Figure 3.4 Least-square (LS) means of viral load in fetal thymus (VLT) for individuals with 

different genotypes for each of three SNPs showing significant (P < 0.05) or suggestive association 

(P < 0.1) with VLT. 

The error bars represent the 95% confidence interval. The numbers above the X-axis represent the 

total number of animals with that genotype. 
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Figure 3.5 Distribution of viral load in fetal thymus (VLT) grouped by number of favoured alleles 

present in live fetuses. 

For each of the three SNPs showing significant (P < 0.05) or suggestive (P < 0.1) association with 

VLT, a favoured allele was determined. For each individual fetus, the total number of favoured 

alleles across the three SNPs was determined. The Y-axis represents the proportion of the fetuses 

(number of fetuses in that VL window divided by the number of all the fetuses in the group); X-

axis represents PRRSV RNA concentration (logarithm 10 target copies per mg). The distribution 

shows the trend that a lower proportion of individuals had high VLT when more favoured alleles 

were present. 
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 144 

Figure 3.6 Distribution of fetal preservation status grouped by number of favoured alleles. 

For each of the SNPs significantly (P < 0.05) or suggestively (P < 0.1) associated with fetal death 

(FD), a favoured allele was determined. For each individual fetus, the total number of favoured 

alleles was determined, and the results displayed for set of SNPs based on their level of 

significance in the asociation analysis: a) 7 SNPs with P < 0.01, b) 15 SNPs with P-values < 0.05 

or < 0.01, c) 18 SNPs with P-values < 0.1, < 0.05 or < 0.01. In each plot (A, B, C, n = 928), the 

area of each bar is proportional to the number of fetuses, with preservation status represeted by 

colour (green for viable [VIA], red for meconium-stained [MEC] and black for decomposed/dead 

[DEC]). The distribution shows the trend that the proportion of dead fetuses (DEC, black 

rectangles) decreases when more favoured alleles are present. However, the same trend was 

evident regardless of the number of SNPs included in the analyses (i.e. plots A, B, C look similar), 

and the number of favoured alleles did not affect the proportion of MEC fetuses (red rectangles), 

which remained relatively constant. 



 

 145 

 

  



 

 146 

Chapter 4 A Transmission disequilibrium test of fetal autolysis in 

porcine reproductive and respiratory syndrome virus challenge 

 

In the genome-wide association study (GWAS) described in Chapter 3, we explored the genetic 

basis of the variation in fetal response to type 2 PRRSV within non-autolysed fetuses. In this 

chapter, we describe a genome-wide transmission disequilibrium test (TDT), which aimed to 

detect candidate genetic variation associated with fetal autolysis. The results were validated 

subsequently with genotypes from some of the autolyzed fetuses.  

 I also contributed to the analysis of two related studies (Appendix 3). Along with the 

contingency-table test described in Section 4.3.6, the two studies composed a minor part of my 

work in the Ph.D. program, which aimed to detect candidate genomic regions associated with 

binary traits, using the contingency table test (see Section 1.2.1.4.1) and data from populations 

with relatively small size. 

 

4.1 Background 

A GWAS using the pregnant gilt model (PGM) (Ladinig et al. 2014b) was described in Chapter 3. 

In the PGM, fetuses with discoloured skin and liquefied internal organs were labelled as autolysed 

(AUT). It was hypothesized that the AUT fetuses died before the decomposed (DEC) fetuses, and 

we were interested if there was any genetic factor underlying the early death of these AUT fetuses. 

They might be even more susceptible to the type 2 PRRSV than the DEC fetuses due to genetics, 

or just happened to be infected earlier and therefore died earlier. If any associations can be found 

between fetal autolysis and genetic variants, they may help to confirm some of the detected 
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genomic regions in Chapter 3. In addition, the new associations and potential functional connection 

may shed new light on a general genetic basis of the fetal response to type 2 PRRSV. 

 However, the regression-based method described in Chapter 3 was not suitable for the 

analysis of fetal autolysis at first, due to the lack of the genomic data of AUT fetuses. For the 

binary traits (fetal viability and fetal death) in Chapter 3, the generalized linear model and 

regression require the genomic data from fetuses with each of the two different phenotypes. For 

fetal viability, we used data from both viable and non-viable fetuses. Similarly, for fetal death, we 

used data from both dead fetuses and live fetuses. However, this was not feasible for fetal autolysis, 

as the AUT fetuses did not have genotype records due to poor DNA yield and quality from these 

fetuses. Available genomic data included genotypes from the challenged gilts, the service sires, 

and the non-autolysed fetuses. Therefore, a TDT was conducted instead to detect possible 

candidate genomic regions without the genotypes of AUT fetuses. 

 The TDT was first introduced in detail in 1993 (Spielman et al. 1993), and has been widely 

applied in family-based genetic analysis since then. By taking advantage of the genotypes of 

parents, the TDT is able to detect genetic associations even when data are not available for 

offspring with one of the two possible phenotypic outcomes (Spielman et al. 1994). The basic idea 

of the TDT is to compare the observed genotypic frequencies in offspring to their expectations, 

which can be calculated using the genotype of the parents. If the observed genotypic frequencies 

do not fit their corresponding expectations (i.e. transmission disequilibrium), it may imply that 

there is an association between the genotype and the trait (Ott et al. 2011). The original TDT was 

also extended to other situations, such as sib-TDT (Spielman and Ewens 1998) and sib-

disequilibrium test (SDT) (Horvath and Laird 1998), to make better use of different types of family 

data. A principal limitation of the TDT is that it is not very robust to undetected genotyping errors, 
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which can be solved to a degree by TDTae, a robust extension of the original TDT (Barral et al. 

2005). 

 Its ability for analysing datasets with only affected individuals gives the TDT an advantage 

in studies of human disease, where the data of affected individuals are usually more accessible 

than those from unaffected individuals (Spielman et al. 1994). For example, in the aforementioned 

TDT study, Spielman (1993) detected association between a genetic marker and diabetes using 

data from only affected children. In a study about schizophrenia published in 1996, the TDT was 

applied to a dataset from only 178 patients but no unaffected individuals, and an associated 

polymorphism was detected (Li et al. 1996). The TDT has also been successfully applied to animal 

QTL mapping. For example, a generalized TDT was used to test the effect of gene MC4R on 

production traits in pigs in 2003 (Hernández-Sánchez et al. 2003).  Other similar ideas about 

genotype frequency disequilibrium have also been applied in animal genomics, such as a study 

about the absence of homozygous haplotypes in cattle in 2012 (VanRaden et al. 2011), where the 

expected genotype frequencies were calculated based on population data and absence of recessive 

homozygotes were detected. 

 In the current study, we conducted a TDT of fetal autolysis and applied raw genotyping 

data (fluorescence intensity data) in avoiding false positive results. Following this, a new DNA 

extraction approach resulted in genotypes for 155 of the AUT fetuses, and they were used as a test 

population to validate the results from the TDT. 
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4.2 Materials 

4.2.1 Phenotypic data 

Data used in the current study were also obtained from the PGM described in a previous study 

(Ladinig et al. 2014b) and Chapter 3. Phenotypic data were collected from the same 1422 fetuses 

obtained from the PRRSV-inoculated gilts, as described in Chapter 3. In addition to the viable 

(VIA, n = 697), meconium-stained (MEC, n = 125) and decomposed (DEC, n = 111) fetuses used 

in the GWAS described in Chapter 3, the AUT fetuses (AUT, n = 459) were also included in the 

current analysis. All the AUT fetuses were dead at termination, with more than 50% of surface 

discoloured and liquefied internal organs. Based on the severity of their autolysis, it has been 

hypothesized that the AUT fetuses were dead for at least 1 week prior to termination, and that they 

died before DEC fetuses (Ladinig et al. 2014a). 

 Pedigree information was available for the fetus population. In total, 873 non-autolysed 

fetuses from 105 litters had records of both of their parents, and 155 autolysed fetuses from 74 

litters had records of both of their parents. 

 

4.2.2 Genomic data 

In addition to the genotype data from the 979 non-autolysed fetuses (VIA, MEC or DEC) used in 

the GWAS described in Chapter 3, 107 gilts and 24 service sires were also genotyped using the 

PorcineSNP60 Genotyping BeadChip v2 (Illumina, San Diego, CA, USA) containing 61,565 

SNPs. For AUT fetuses, a new procedure for DNA extraction from autolysed samples was 

proposed by the Genomics and Proteomics Unit in the Department of Agricultural, Food and 

Nutritional Science, University of Alberta. Although the new procedure was more laborious, 

essentially using phenol/chloroform DNA extraction, it successfully enabled the genotyping for 
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some of the AUT fetuses. In total 155 AUT fetuses were genotyped using the Geneseek-Neogen 

GPPHD 80K SNP chip containing 68,528 SNPs. Based on the rs ID of SNPs, we found 47,874 

common SNPs in the two genotype datasets.  

 

4.3 Statistical methods 

Methods used in the analysis included 1) the detection of genotyping errors in Mendelian 

inheritance (MI), 2) the detection of transmission disequilibrium, and 3) validation tests for the 

detected SNPs using litter information, raw genotyping data (fluorescence intensity data) and 

available data from AUT fetuses. 

 

4.3.1 Genotyping errors in Mendelian inheritance (MI) 

We first scanned the genomic data for possible genotyping errors in Mendelian inheritance. 

Normally, the alleles for a specific SNP in an individual must be received from its parents, unless 

de novo mutations have happened at that locus. The probability of de novo mutations at a given 

locus is extremely low and can be ignored. Given the genotypes of the parents, the possible 

genotype of the offspring for this SNP must follow Mendel’s law of segregation, otherwise it may 

be a genotyping error. For each SNP, we calculated the possible genotype of offspring based on 

the genotype combination of parents for every trio. If the offspring in a trio showed a genotype 

which is impossible in Mendelian inheritance (Table 4.1), we labelled this trio as “MI error” for 

the SNP and removed the trio from the following TDT (treated as missing genotype). The “MI 

error score” was also calculated for each SNP as the proportion of “MI errors” trios in all trios, 

which was used as one of the measurements for the reliability of the genotype data.  
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4.3.2 Transmission disequilibrium test (TDT) 

The basic idea of TDT in the current study is to scan for transmission disequilibrium within trios 

of non-autolysed fetuses. For each SNP, we can calculate its expected genotype frequencies in 

both non-autolysed fetuses and autolysed fetuses based on their parents’ genotype.  If a SNP has 

no association with fetal autolysis, the observed genotype frequencies should obey expectation in 

both fetus populations. However, if one or more genotypes is associated with autolysed fetuses, it 

would show enrichment in autolysed fetuses and appear less in non-autolysed fetuses. Deviation 

in genotype frequencies in non-autolysed fetuses was what we were trying to detect in the analysis. 

 

For the 873 trios with non-autolysed fetuses, we calculated the expected genotype frequencies in 

the fetuses for every SNP as: 

 

[

𝑝𝑒𝑥𝑝,𝐴𝐴

𝑝𝑒𝑥𝑝,𝐴𝐵

𝑝𝑒𝑥𝑝,𝐵𝐵

] =  

[
 
 
 
 
1

𝑛
∑ 𝑝𝑒𝑥𝑝,𝐴𝐴,𝑖𝑖

1

𝑛
∑ 𝑝𝑒𝑥𝑝,𝐴𝐵,𝑖𝑖

1

𝑛
∑ 𝑝𝑒𝑥𝑝,𝐵𝐵,𝑖𝑖 ]

 
 
 
 

, 

 

where 𝑝𝑒𝑥𝑝,𝐴𝐴,𝑖 , 𝑝𝑒𝑥𝑝,𝐴𝐵,𝑖, 𝑝𝑒𝑥𝑝,𝐵𝐵,𝑖 is the expected genotype frequency in the 𝑖th trio, and n is the 

number of trios with valid genotype for the SNP. The expected genotype frequencies were then 

compared with the observed genotype in the fetuses using Pearson's chi-squared test: 

 

𝜒2 = ∑
(
𝑂𝑔𝑒𝑛𝑜

𝑛 − 𝑝𝑒𝑥𝑝,𝑔𝑒𝑛𝑜)
2

 

𝑝𝑒𝑥𝑝,𝑔𝑒𝑛𝑜𝑔𝑒𝑛𝑜
, (𝑔𝑒𝑛𝑜 = 𝐴𝐴, 𝐴𝐵 𝑎𝑛𝑑 𝐵𝐵) 
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where 𝑂𝑔𝑒𝑛𝑜 is the observed number of fetus genotypes. The chi-squared statistic measures the 

degree to which the observed genotype frequency fit the expected value. For most of the SNPs, all 

three genotypes (AA, AB and BB) were possible in the fetuses, as the expected frequencies for the 

three genotypes were all non-zero. In this case, the statistic would follow a chi-squared distribution 

with two degrees of freedom. For the other SNPs, only two of the three genotypes are possible for 

the fetuses, then the degree of freedom would be set as one. A P-value was calculated for each 

SNP based on the determined distribution for statistical hypothesis testing. False discovery rates 

(FDR) were used to adjust the p-values for multiple testing. All SNPs with a FDR lower than 0.1 

were selected as candidate SNPs that had transmission distortion.  

 

4.3.3 Candidate SNP test using call frequency and MI error score 

As genotyping quality is one of our main concerns, we used the MI error score and call frequency 

for all candidate SNPs for validation. As described before, MI error score measures how the 

genotype is obviously wrong in a family-based test, and the error may be introduced in producing 

raw data or genotype calling. The call frequency is the proportion of all genotyped samples that 

had a genotype assigned during genotyping, which can serve as one of the measurements of the 

reliability of genotyping. All candidate SNPs were evaluated based on these two values, and SNPs 

with relatively low quality were removed from further analysis. 

 

4.3.4 Litter-level test  

The detected transmission disequilibrium was checked at a litter-level. In the TDT described 

above, we detected SNPs showing transmission disequilibrium at the population level (i.e. shows 

disequilibrium when all litters are combined together). One assumption is that a SNP associated 
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with fetal autolysis should show transmission disequilibrium in all litters evenly. Extreme 

transmission disequilibrium in only a few litters is more likely to be a false discovery due to 

genotyping error of the parents in those litters. For each candidate SNP, we calculated the 

disequilibrium in each litter, and tested the parents using raw genotyping data as described in the 

next section. 

 

4.3.5 Candidate SNP validation using raw genotyping data 

Raw genotyping data provided another way for us to evaluate the possibility that the detected 

associations were due to genotyping error, especially clustering error. In the analysis, we plotted 

the normalized intensity R (the total intensity of both alleles) to the normalized theta (the ratio 

between the intensity of the two alleles), both of which had been used in the genotyping clustering, 

and checked if an alternative clustering results could better explain the observation of genotype in 

fetuses. Based on our prior knowledge, we believe that genotyping error is more likely to happen 

than “real transmission disequilibrium”. In this case, if the raw genotyping data showed the 

possibility of genotyping error, and the error could well explain the transmission disequilibrium 

we had observed, we would treat it as “false discovery due to genotyping error”.  

 

The possibility of “false discovery due to genotyping error” was assessed using the likelihood 

function below: 

 

𝐿(𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠) =  𝑃(𝑔𝑒𝑛𝑜𝑐ℎ𝑖𝑙𝑑 | 𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠), 
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which equals the probability of the observed genotype of the fetuses given their parents’ genotype. 

This likelihood function describes how a certain set of parents’ genotype can explain the 

observation in the fetuses’ genotype. In our calculation, the likelihood function can be calculated 

as the production of the probabilities for all possible combination of parents’ genotype  

 

𝐿(𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠) =  ∏ 𝑃(𝑔𝑒𝑛𝑜𝑐ℎ𝑖𝑙𝑑,𝑖|𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠,𝑖)𝑖 .  

 

By adjusting the threshold of clustering, we were able to evaluate how good an alternative 

clustering is using likelihood ratio (LR) and log of the odds (LOD) as 

 

𝐿𝑂𝐷 = log10 𝐿𝑅 = log10

𝐿(𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠)𝐴

𝐿(𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠)0

, 

 

where LR is the ratio of the likelihood of alternative clustering (𝐿(𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠)𝐴
) to that of 

original clustering (𝐿(𝑔𝑒𝑛𝑜𝑝𝑎𝑟𝑒𝑛𝑡𝑠)0
). 

 

4.3.6 Candidate SNP validation using trios with autolysed fetuses 

The candidate SNPs were also tested in trios with autolysed fetuses. For those candidate SNPs 

found in TDT, we presume that their deviation in genotype frequencies within autolysed fetuses 

was reflected in the association between their genotype frequencies with fetal autolysis, i.e. the 

genotype frequencies are significantly different between autolysed and non-autolysed fetuses. By 

using the genomic data of the 155 autolysed fetuses, we tested the hypothesis and evaluated our 

result from the first part of the analysis (the TDT).  
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 In addition, as another method of testing association between genomic regions and fetal 

autolysis, an association study was conducted using a small subpopulation of 280 fetuses. We 

applied stratified sampling in selecting the animals. i.e., for each autolysed fetus with available 

genotype record, a viable full-sibling was selected as a control (if there is). In total, 140 viable-

autolysed sibling pairs were selected. The matched case-control design made use of the genomic 

data of available autolysed fetuses, however, the relatively small population size may limit its 

statistical power. Pearson's chi-squared test were used to detect genomic regions that showed 

different genotypic frequencies between viable and autolysed fetuses. 

 

4.4 Results and discussion 

4.4.1 Transmission disequilibrium test (TDT) – autosomes 

On autosomes, 54,846 SNPs were tested for transmission disequilibrium. The result was shown in 

Figure 4.1 as a Manhattan plot. Using a criterion of FDR less than 0.1, Sixteen SNPs were found 

significant in the statistical test (Table 4.2). One of the SNPs (MARC0013088) was deemed to be 

unreliable due to obvious clustering error; four of the SNPs showed low call rate (less than 20%); 

one of the SNPs showed high MI error rate (higher than 20%); three SNPs showed good call rate 

but non-zero MI error rate, and the other 7 SNPs shows high call rate without any MI error. These 

seven SNPs were then tested with raw genotyping data and trios with autolysed fetuses. 

 

4.4.2 Transmission disequilibrium test (TDT) – allosomes 

For the X chromosome, 1,557 SNPs were tested for transmission disequilibrium. Fifty SNPs were 

found to have significant disequilibrium in transmission. The distribution of the call frequency and 

MI error frequency of these SNPs was shown in Figure 4.2. None of the 50 significant SNPs 
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showed a good call frequency and MI error score. The highest “valid call rate” is only 49.5%, and 

all significant SNPs showed MI error to some degree. For the Y chromosome, we found 9 SNPs 

in the genotyping panel. No further analysis was conducted as none of them have a good call 

frequency in males (call rate < 5%).  

 

4.4.3 Litter-level test and raw genotyping data analysis 

For the 7 SNPs showing high call rate without any MI error, we conducted a litter-level test and 

checked the raw genotyping data. For 5 of the 7 SNPs, we found the transmission disequilibrium 

was mainly driven by a few litters, and the raw genotyping data also showed the possibility of 

clustering error. They are ASGA0076852, MARC0113898, ASGA0097612, MARC0111071, and 

MARC0038959 (Figure 4.3). For all the five SNPs, only two genotypes appeared in fetuses. In the 

R-Theta plot of their fluorescent intensity, however, we can find that there seemed to be three 

clusters for each of these SNPs, as the AB group is formed by two groups of points. The likelihood 

analysis showed that clustering error can greatly explain the transmission disequilibrium for these 

five SNPs. For each of them, we tested all possible clustering, and the one that maximized the 

LOD value was treated as the best “alternative clustering” (Figure 4.3). The maximum LOD values 

for the five SNPs are listed in Table 4.3. For the other two SNPs (ASGA0004971 and 

MARC0058459), there was no obvious sign that the transmission disequilibrium was mainly 

driven by only a few litters. In the R-Theta plot (Figure 4.4), all three genotypes appeared as 

discrete clusters. There is no evidence that the genotype was biased due to clustering error.  

 Previous studies has reported that undetected genotyping error may contribute to false 

positives in TDT (Mitchell et al. 2003). Genotyping errors occurring for the parental samples may 

lead to incorrect expectation of genotypic frequencies for the offspring, and those errors happening 
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in offspring may result in incorrect observed genotypic frequencies. In both of the two cases, the 

goodness of fit between expectation and observation decreases, which causes false transmission 

disequilibrium. Genotyping errors can be modelled as a random event in some cases (Douglas et 

al. 2002; Sobel et al. 2002), and those models has been reported to help in the TDT (Gordon et al. 

2001, 2004). However, the genotyping errors in the current study (those due to mis-clustering) 

were not absolutely random, as incorrect genotypes were more likely to have extreme Theta value 

in the raw genotyping data. We took advantage of this property and detected five candidate SNPs 

that may be false. The result may also imply the possibility of a model of genotyping error that is 

based on raw genotyping data, and its application in the TDT. 

 Another difference between the current study and a typical application of TDT is that the 

family size in the current study (i.e. litter size) was larger. In this case, the negative effect of 

genotyping error in parents on the results was also increased, as the genotype of a parent was used 

to calculate the expected genotype frequencies for offspring in one or more litters. On the other 

hand, the larger family size provided more information in inferring mis-clustering in the parents, 

which makes the analysis of raw genotyping data more reliable. 

 

4.4.4 Candidate SNP validation using trios with autolysed fetuses  

The two SNPs (ASGA0004971 and MARC0058459) were further tested using trios with autolysed 

fetuses. The first one (ASGA0004971) did not have any valid call in any of the 155 autolysed 

fetuses, and it was therefore not possible to confirm its genotype frequency. The same pattern were 

observed in the autolysed fetuses for the other SNP (MARC0058459), which did not meet our 

expectation from the TDT. This result, however, may imply the possibility that there was a 

transmission disequilibrium in all born fetuses (including non-autolysed and autolysed fetuses), 
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which may be irrelevant to the PRRSV challenge in the current study. This is discussed further 

below in relation to the genes identified in this region. 

 Four SNPs showed significant associations in the small subpopulation of 280 fetuses, not 

including ASGA0004971 and MARC0058459. Evidence were found that the four associations 

were suspicious as MI were found for all of them. Further investigation may be conducted for these 

four associations, in the current study, however, they failed to provide support to the results of the 

TDT. 

 

4.4.5 Functional analysis 

We also explored the regions around the two SNPs for previously discovered QTLs or genes that 

are possibly related to the associated trait. All QTL information were obtained from PigQTLdb 

(Hu et al. 2013). 

 Two genes around SNP ASGA0004971 were found to be related to immune response and 

apoptosis, which can be related to PRRSV infection. One of them is BCL2, which encodes B-cell 

CLL/lymphoma 2. This protein has been reported to play a role in the regulation of apoptotic cell 

death, and its homologues has been used by virus (e.g. African swine fever virus) for regulating 

apoptosis (Neilan et al. 1993; Kennedy et al. 2014). It has been reported that BCL2 is not able to 

prevent the apoptosis induced by a recombinant vaccinia virus expressing GP5 of PRRSV (Suárez 

et al. 1996). However, a previous study also showed that PRRSV infection reduced BCL2 

expression level (Lee and Kleiboeker 2007). The other gene close to ASGA0004971 is PHLPP1. 

This gene encodes pleckstrin homology leucine-rich repeat protein phosphatase 1, which also plays 

a role in apoptosis (Qiao et al. 2010) and immunomodulation (Alamuru et al. 2014). 
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 For SNP MARC0058459, we found two QTLs overlapping with the SNP, with one for 

reproductive tract weight (Rosendo et al. 2012) and the other one for total number born alive 

(Mucha et al. 2013),. This region harbors an important gene related to reproductive traits, such as 

fetal loss, in mammals, which encodes leukemia inhibitory factor (LIF). This factor has been 

reported to be expressed in blastocysts (Murray et al. 1990), and plays a critical role in implantation 

of the blastocyst (Stewart 1994). The observed transmission disequilibrium that happened in all 

born fetuses may be explained by variants within this gene.  

 

4.5 Conclusion 

We conducted a TDT of fetal autolysis using data obtained from the PGM. Seven SNPs showed 

significant transmission disequilibrium, while having a relative good genotyping quality (with a 

high call rate and a low MI error rate). Raw genotyping data analysis suggested that five of the 

seven SNPs may be mis-clustered in genotyping the parents, which may result in false transmission 

disequilibrium for these five SNPs. The other two candidate SNPs showed valid transmission 

disequilibrium in the current study. Testing using AUT fetuses did not provide further support for 

the two SNPs. One of them was deemed to be associated with general fetal loss rather than the 

fetal autolysis due to PRRSV challenge. Genes and previous reported QTLs overlapping with the 

two candidate regions were found to be related to apoptosis, immune response and reproductive 

traits.  
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Table 4.1 Genotype combinations treated as “MI error” (Autosome) 

Genotype Combination of Parents “Impossible” Genotype of Offspring 

AA + AA AB or BB 

AA + AB BB 

AA + BB AA or BB 

AB + AB (None) 

AB + BB AA 

BB + BB AA or AB 

 

Table 4.2 Genotype combinations treated as “MI error” (X chromosome) 

Sire’s Genotype Dam’s Genotype 
“Impossible” Genotype of Offspring 

Male female 

A AA B AB or BB 

A AB (None) BB 

A BB A AA or BB 

B AA B AA or BB 

B AB (None) AA 

B BB A AA or AB 

 

Table 4.3 Genotype combinations treated as “MI error” (Y chromosome) 

Genotype Combination of Sire “Impossible” Genotype of Male Offspring 

A B 

B A 

 

  



 

 165 

Table 4.4 Significant SNPs detected on autosomes with call rate and MI error 

SNP Chr  Position  #MI_error #VALID Comments 

ASGA0004971 1 176,096,880 0 813 No MI error and high call rate 

ASGA0009146 2 12,082,068 9 810 Low MI error rate 

MARC0111071 2 29,644,443 0 881 No MI error and high call rate 

MARC0113898 2 53,317,766 0 826 No MI error and high call rate 

ASGA0010636 2 86,601,289 5 888 Low MI error rate 

ALGA0116161 2 160,111,983 0 141 Low call rate 

MARC0001070 3 32,120,448 0 141 Low call rate 

ASGA0097612 6 34,035,458 0 873 No MI error and high call rate 

MARC0026980 8 70,937,913 69 67 Low call rate 

ASGA0093792 12 26,564,113 200 666 High MI error rate 

ASGA0055965 13 11,778,021 112 28 Low call rate 

ALGA0070715 13 73,041,071 13 857 Low MI error rate 

MARC0013088 13 140,497,748 0 819 Clustering error 

MARC0058459 14 52,227,402 0 888 No MI error and high call rate 
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Table 4.5 The maximum log of the odds (LOD) obtained in raw genotyping data analysis  

SNP Maximum LOD 

MARC0113898 52.6 

ASGA0076852 23.6 

ASGA0097612 12.5 

MARC0111071 2.13 

MARC0038959 19.8 
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Figure 4.1 Manhattan plot for the transmission disequilibrium test (TDT) on autosomes 
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Figure 4.2 Histogram for the number of MI errors and valid calls of the significant SNPs on the X 

chromosome 
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Figure 4.3 Raw genotyping data analysis (Part 1) 

The upper plots show the original clustering of individuals for a certain SNP, and the lower plots 

show the clustering suggested by the family-based inference (i.e. maximizes the LOD value). Each 

point represents a parent, and is colored based on the genotype (red for AA, green for AB, blue for 

BB, and blue for missing). 

 

a. SNP: ASGA0076852                                                 b. SNP: MARC0113898 
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c. SNP: ASGA0097612                                                d. SNP: MARC0111071 

 

 

e. SNP: MARC0038959 
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Figure 4.4 Raw genotyping data analysis (Part 2) 

The R-Theta plots (upper plots) show the clustering of individuals for a certain SNP. Each point 

represents a parent, and is colored based on the genotype (black for AA, red for AB, green for BB, 

and blue for missing). 

a. SNP: ASGA0004971 

 

b. SNP: MARC0058459 
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Chapter 5 A statistical model for allele dosage data of sperm and its 

application in constructing individualized linkage maps 

 

In Chapter 2 – 4, I mainly focused on how genomic data, especially SNP genotype data, can be 

used to explore the genetic basis of interesting traits in livestock production. In this chapter, we 

would like to introduce another approach to the use of cutting-edge biotechnologies and new types 

of genomic data, in order to deepen our understanding about the genome itself. Here we are going 

to propose a new method for linkage mapping, which may serve as a more efficient tool to 

construct better genome maps and discover new genomic variants on an individual basis. This 

approach may have potential for the development of personalized genomic-based treatment for 

human as well as animal health. 

 

Preliminary results of this study has been published in the Proceedings of 10th World Congress on 

Genetics Applied to Livestock Production (WCGALP 2014). A manuscript based on this chapter 

has been prepared for submission. 

 

5.1 Background 

Linkage maps reveal the relative positions of genetic markers along the genome, using the degree 

of linkage as the measurement of the inter-marker distance. It has been more than 100 years since 

the first attempt of linkage mapping (Sturtevant 1913), and linkage maps are still one of the most 

essential tools in genetic and genomic studies. Their application includes serving as a scaffold in 

de novo DNA sequence assembly (Fierst 2015), providing information of genetic linkage in studies 
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about genomic evolution (Naruse et al. 2000) and recombination hotspots (Jeffreys et al. 2000; 

Auton and McVean 2007), and enabling linkage-based association studies (e.g. interval mapping) 

(Lander and Botstein 1989). Recent efforts to construct linkage maps mainly aim to make better 

use of new genotyping technologies such as RAD-sequencing (Gonen et al. 2014), as well as to 

apply the maps in sequence assembly (Xu et al. 2015). 

 

Most linkage maps are constructed at a population level, where the relative position of genetic 

markers is inferred as an average result in a mapping population. This property is sufficient in 

some scenarios, such as building a reference genome to cover the majority of individuals for a 

species. Meanwhile, constructing a linkage map at an individual level (i.e. a linkage map specific 

for a certain individual) has an exclusive advantage as there can be significant variation in the 

relative positions of genetic markers between individuals even for the same species. Examples 

have been found in different species, such as human (Giglio et al. 2001), C. elegans (Hillier et al. 

2008), and cattle (Marques et al. 2007; Snelling et al. 2007). An important one of these variations 

is chromosomal structural variations (CSVs) (Sudmant et al. 2015), such as rearrangement, 

insertion/deletion (indel), and copy number variations (CNVs). Individualized genome maps can 

serve as a way to type genome-wide CSVs, and play a critical role in many related genomic studies. 

Individualized linkage maps are also able to detect variation in recombination rate between 

individuals, which has been reported to be common in human and animals (Kong et al. 2010; 

Decker 2015). These variations may apply to animal breeding, as recombination may increase the 

response to artificial selection (Groenen et al. 2008). 
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Currently, few methods are perfectly suitable for constructing genome maps at an individualized 

level, even when methods for constructing physical maps are taken into consideration as well. 

Firstly, methods that require a mapping population, such as pedigree-based methods (Dear 2001) 

and linkage disequilibrium based methods (Fearnhead and Donnelly 2001), are not feasible for 

individualized genome mapping. Secondly, methods leading to low resolution may not be able to 

type minor chromosomal structural variants, and therefore have relatively limited application. 

Thirdly, methods with low-throughput, such as single sperm typing (Arnheim et al. 1991) and 

radiation-hybrid (RH) mapping (Cox et al. 1990), may not fit the needs in practice. For example, 

lower throughput means greater difficulty in screening a large number of individuals, and medical 

genomic tests may be expected and/or needed to produce timely results in some cases. Lastly and 

maybe most importantly, a good method for individualized genome mapping is supposed to have 

a low cost, which ensures the technology can be delivered successfully into practical applications. 

Even though some of the existing methods, such as optical mapping and long-read sequencing, 

provide relatively suitable solutions for individualized genome mapping, they are not yet perfect 

and there is still room for other competing approaches or technologies. Here we propose a strategy 

(“multiple sperm typing”) for constructing individualized linkage maps using allele dosage data of 

sperm cells. This may potentially achieve a high throughput while keeping the cost at a desired 

level. 

 

5.2 Methods 

Generally, the construction of genetic linkage maps would include three parts: the estimation of 

pairwise inter-marker recombination rates, the grouping of markers, and the ordering of markers 

(Cheema and Dicks 2009). As inter-marker recombination rates carry information about the 
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relative positions of markers, the estimation of them greatly determines the resolution and accuracy 

of genome mapping. Our proposed methods mainly aim at improving the accuracy of the 

estimation.  

The multiple sperm typing methods can be treated as a generalization of the traditional 

single sperm typing method (Arnheim et al. 1991), which genotypes individual sperm cells to infer 

the occurrence of recombination events during meiosis. Even though it performs well in 

constructing fine linkage maps, its low throughput greatly limited its application in practice (Pole 

et al. 2011). Instead, our new methods are designed to extract recombination information from a 

“sperm population” with a large number of individual sperm, without the need to genotype each 

single sperm cell. The estimation of recombination rate may achieve high accuracy as the number 

of sperm cells integrated into the analysis can be large. 

In this section, we mainly describe the conclusions of the method, with the detailed 

statistical derivations provided in the Section 5.6. Here we first introduce allele dosage data, which 

is a new type of genomic data that has not previously been used in sperm typing. Single nucleotide 

polymorphisms (SNPs) are used as an example of genetic markers in the introduction and 

discussion. Then we propose two estimators of recombination rate under a simplified scenario. A 

standardization method is then introduced to fit a more general scenario. We also proposed a 

parametric hypothesis testing method to test for the existence of linkage, which can be used in 

marker grouping. Related topics about ordering markers will be discussed in later sections. 

 

5.2.1 Allele dosage data  

The SNP allelic dosage in a sample of sperm cells refers to the number of each possible allele on 

the genome. For pairwise recombination rate estimation, we only need to consider a pair of SNPs, 
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denoted as SNP A (with possible allele A1 and A2) and SNP B (with possible allele B1 and B2). 

For each sperm cell, there are four possible SNP genotypes at the two loci: A1B1, A1B2, A2B1, 

A2B2 (Table 1). The recombination rate between SNP A and SNP B, 𝑟𝐴𝐵, can be estimated using 

a set of sperm samples. Now, we use ns to denote the number of sperm samples, and 𝑁𝑡 =

( 𝑛𝑡,1, 𝑛𝑡,2, … , 𝑛𝑡,𝑛𝑠
) to denote the number of sperm cells in the samples. Then, the allele dosages 

for the four possible alleles (A1, B1, A2, and B2) in the sperm sample are denoted as 𝑁𝐴1, 𝑁B1, 

𝑁A2, and 𝑁B2, respectively. Similarly, in the ith sperm sample, the number of the four possible 

alleles are denoted as 𝑛𝐴1,i, 𝑛𝐵1,i, 𝑛𝐴2,i, and 𝑛𝐵2,i. The relation between 𝑁𝑡 and allele dosage is: 

 

𝑁𝑡 = 𝑁𝐴1 + 𝑁𝐴2 = 𝑁𝐵1 + 𝑁𝐵2                            (Equation 5.1) 

 

5.2.2 A simplified scenario 

In a simplified scenario, we assume that all sperm samples have the same number of sperm cells: 

 

𝑛𝑡,1 = 𝑛𝑡,2 = 𝑛𝑡,𝑛𝑠
= 𝑛𝑡                                  (Equation 5.2) 

 

Then we can estimate the recombination rate (𝑟𝐴𝐵) as a function of the correlation coefficient 

between 𝑁𝐴1 and 𝑁𝐵1 (𝜌𝑁𝐴1,𝑁𝐵1
): 

 

𝑟𝐴𝐵 = {

1− 𝜌𝑁𝐴1,𝑁𝐵1

2
, 𝑖𝑓 𝜌𝑁𝐴1,𝑁𝐵1

≥ 0

1+ 𝜌𝑁𝐴1,𝑁𝐵1

2
, 𝑖𝑓 𝜌𝑁𝐴1,𝑁𝐵1

< 0
                          (Equation 5.3) 
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In the following description, we call Eq. 5.3 as Method I or Cor-Method. When allele A1 and B1 

are on the same haplotype, it will be observed that 𝜌𝑁𝐴1,𝑁𝐵1
> 0 , then the first estimator, 

1− 𝜌𝑁𝐴1,𝑁𝐵1

2
, is applicable, otherwise 

1+ 𝜌𝑁𝐴1,𝑁𝐵1

2
 should be used.  

We can also estimate 𝑟𝐴𝐵 as a function of the variance of 𝑁𝐴1 − 𝑁𝐵1 (𝜎𝑁𝐴1−𝑁𝐵1

2 ): 

 

𝑟𝐴𝐵 = {

𝜎𝑁𝐴1−𝑁𝐵1
2

𝑛𝑡
, 𝑖𝑓 

𝜎𝑁𝐴1−𝑁𝐵1
2

𝑛𝑡
≤ 0.5

1 −
𝜎𝑁𝐴1−𝑁𝐵1

2

𝑛𝑡
, 𝑖𝑓 

𝜎𝑁𝐴1−𝑁𝐵1
2

𝑛𝑡
> 0.5

                    (Equation 5.4) 

 

We call Eq. 5.4 as Method II or Var-Method. Similar to Method I, we have two estimation 

equations for Method II. When allele A1 and B1 are on the same haplotype, the recombination rate 

can be estimated as 
𝜎𝑁𝐴1−𝑁𝐵1

2

𝑛𝑡
≤ 0.5, otherwise 1 −

𝜎𝑁𝐴1−𝑁𝐵1
2

𝑛𝑡
 should be used. 

 

5.2.3 Standardized allele dosage data 

When the assumption Eq. 5.2 is not true, we can standardize the allele dosage data for the 

estimation. The standardized allele dosage of allele A1, B1, A2, and B2 are denoted as 𝑁′𝐴1, 𝑁′𝐵1, 

𝑁′𝐴2, and 𝑁′𝐵2, respectively, and the number are denoted as 𝑛′𝐴1,i, 𝑛′𝐵1,i, 𝑛′𝐴2,i, and 𝑛′𝐵2,i for the 

ith sperm sample. The standardization can be described as: 

 

𝑛′
𝐴1,i = (𝑛𝐴1,i −

𝑛𝑡,𝑖

2
)/√𝑛𝑡,𝑖,                           (Equation 5.5) 

 

then Method I and Method II can be modified using the standardized data as:  
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𝑟𝐴𝐵 = {

1− 𝜌𝑁′𝐴1,𝑁′𝐵1

2
, 𝑖𝑓 𝜌𝑁′𝐴1,𝑁′𝐵1

≥ 0

1+ 𝜌𝑁′𝐴1,𝑁′𝐵1

2
, 𝑖𝑓 𝜌𝑁′𝐴1,𝑁′𝐵1

< 0
                    (Equation 5.6) 

 

and  

 

𝑟𝐴𝐵 = {
𝜎

𝑁𝐴1
′ −𝑁𝐵1

′
2 , 𝑖𝑓 𝜎

𝑁𝐴1
′ −𝑁𝐵1

′
2 ≤ 0.5

1 − 𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 , 𝑖𝑓 𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 > 0.5
                    (Equation 5.7) 

 

5.2.4 Marker grouping and Student t-test  

In genome mapping, markers need to be grouped into linkage groups when the chromosome 

location is unknown. In our methods, we use a student’s t-test to determine whether two markers 

are in the same linkage group or not. The null hypothesis (H0) of the test is: there is no linkage 

between two given markers, which is equivalent to the event that the recombination rate between 

the two markers (𝑟) is equal to 0.5. Based on our Method I, it is obvious that the correlation 

coefficient (𝜌) is equal to zero when 𝑟 is 0.5.  The null hypothesis can be tested with the following 

t statistic (Gayen 1951): 

 

𝑡 = 𝜌𝑁′𝐴1,𝑁′𝐵1√
𝑛−2

1−𝜌𝑁′𝐴1,𝑁′𝐵1
2 ,                            (Equation 5.8) 

 

which follows a student’s t distribution with a degree of freedom of 𝑛 − 2. The t statistic can be 

used to test the null hypothesis (no linkage). If the null hypothesis is rejected, an alternative 

hypothesis of existence of linkage can then be accepted. 
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5.2.5 Simulation experiments 

Four simulation experiments were conducted to test the performance of our new method. In the 

first two experiments, we tested the accuracy of recombination rate estimation under a two-locus 

model. In the third experiment, we validate the null distribution of our estimators. In the fourth 

experiment, we simulated allele dosage data for 6,584 SNPs on porcine chromosome 1 (SSC1), 

estimated their inter-marker pairwise recombination rates, and tested the performance of our 

method in a more realistic genome mapping example. In the simulation experiments we assumed 

that allele dosage could be measured without error. The relaxation of this assumption will be 

discussed in Section 5.3.4. 

 

5.2.5.1 Two-locus model and simulation experiments of estimation accuracy 

In the first two experiments, we simulated allele dosage data for sperm samples where all sperm 

cells had a pseudo-genome with only two SNPs. The genotypes of each single sperm cell were 

simulated. However, the genotype of single sperm cells remained unknown and was not directly 

used in the estimation. Only allelic dosage data, the total number of each of the four possible alleles 

in each sperm sample, were available for the following analysis. The allele dosage data were 

simulated with different levels of sample number (𝑛𝑠), sperm cell number in each sample (𝑁𝑡), and 

true value of the recombination rate (𝑟𝐴𝐵) (Table 2a). For each combination of the parameters, both 

Method I and Method II were used to estimate rAB. The simulation and analysis was repeated 600 

times. The performance of estimation was measured by mean square error (MSE), which is a joint 

measurement for accuracy and precision (Walther and Moore 2005). 

 

MSE =  ∑( rAB − rAB,true )
2 600⁄                         (Equation 5.9) 
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The differences between the first two experiments were the assumptions used in the simulation: 

Experiment 1 In this experiment, all data were simulated under the simplified scenario 

described before, i.e. all sperm samples had the same number of sperm cells as the parameter 𝑁𝑡. 

For this experiment, we would like to evaluate Method I and Method II without standardizing the 

allele dosage data.  

Experiment 2 In this experiment, the number of sperm cells is not identical to the 

parameter 𝑁𝑡, but followed a normal distribution whose expectation is the parameter 𝑁𝑡: 

 

𝑁𝑡,𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑~𝑁𝑜𝑟𝑚𝑎𝑙 (𝑁𝑡, (
𝑁𝑡

10
)
2

)                        (Equation 5.10) 

 

We set the coefficient of variation (CV) as 10%, so the standard deviation of the simulated cell 

number in each sample is 
𝑁𝑡

10
. With this experiment, we would like to test the performance and 

robustness of our method after the data standardization in a more realistic scenario (samples of 

unequal sperm cell number).  

 

5.2.5.2 Hypothesis testing and null distribution 

We also tested the null distribution of the estimated linkage using the two-locus model. As 

mentioned above, we can test the linkage between markers using a t-test, where the null 

distribution is a student’s t distribution with a degree of freedom of 𝑛𝑠 − 2. This statistical property 

may lead to a parametric way of testing linkage and grouping molecular markers into linkage 

groups.  
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To validate this statistical property, we simulated DNA quantification datasets under the 

two-locus model and repeated it 600 times, where the recombination rate between the two loci was 

set as 0.5 (i.e. no genetic linkage). Estimations were conducted using both Method I and Method 

II. The estimated recombination rates were used to calculate the t statistic and to build empirical 

null distributions. The observed null distributions were compared with the theoretical distribution 

through Q-Q (quantile-quantile) plots.  

 

5.2.5.3 Genome map of SSC1 

The fourth experiment was conducted to test how our method fits the objective of genome mapping. 

Instead of focusing on the absolute value of accuracy of the estimation of inter-marker 

recombination rates, this experiment was designed to test if the new estimation is good enough for 

linkage mapping in practice. 

 In this experiment, we simulated data of sperm samples from a heterozygous boar. In each 

sperm sample, there are 104 sperm cells whose genome contains only one chromosome. In total, 

6583 heterozygous markers are simulated. Marker positions were set based on the position of real 

markers on the first chromosome of pigs (Illumina PorcineSNP60 SNP panel). True inter-marker 

recombination rates were calculated based on an approximation between recombination rate and 

physical distance (1 centimorgan = 106 base pairs). With this map, we simulated sperm samples, 

estimated inter-marker recombination rates, ordered SNPs, and constructed linkage maps for SSC1. 

The number of sperm samples were set as 15, 20, 25, 30, 35, 40, 45, and 50. For each setting of 

the sample number, we repeated the simulation and analysis 20 times. The estimation was 

conducted using Method II, as it outperformed Method I in the first two experiments. The ordering 

method used in the analysis is described in Section 5.7. 
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 To evaluate the constructed maps, we reviewed the data to detect all misplacements of 

blocks of markers. For a certain block on the chromosome, if all the SNPs within this group are 

ordered perfectly, it is defined as a good block with a correct placement. Those blocks located 

between these “good blocks” are defined as misplacement blocks, and SNPs within misplacement 

blocks are ordered in an incorrect way. The size and number of these misplacement blocks can be 

used as a measurement of the quality of constructed linkage maps. The fewer and smaller the 

misplacement blocks there are, the better the mapping result.  

 

5.3 Results and discussions  

5.3.1 Estimation accuracy 

The results of simulation experiment 1 and 2 were presented in Figure 1 and Figure 2, respectively. 

No evidence of an obvious difference in their accuracy was found between experiment 1 and 2. So 

we will not distinguish between them when we discuss how the three parameters (𝑁𝑡, sample 

number, and inter-marker recombination rate) impacted the accuracy of the estimation.  

As we expected increasing 𝑁𝑡  improved the accuracy of estimation. Traditional sperm 

typing methods only make use of data from single sperm cells, which is equivalent to allele dosage 

data with only one sperm cell in each sperm sample. Through including more sperm cells in each 

sample, our method was able to outperform the traditional single sperm typing method in accuracy. 

As the recombination rate was essentially estimated using recombination events detected in the 

genotype data, a larger number of sperm cell means more available recombination events that can 

be used for estimation and therefore results in greater accuracy. The improvement, however, 

slowed down when 𝑁𝑡 was higher than a certain value, which implied that the improvement that 
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can be achieved through increasing 𝑁𝑡  has an upper bound, and we can optimize 𝑁𝑡  to find a 

balance between the accuracy and the cost of data collection. 

The degree of the improvement through increasing 𝑁𝑡  also varied across different 

parameter combinations. When the inter-marker recombination rate was 0.001, the improvement 

started to slow down when 𝑁𝑡 is higher than 103; when the inter-marker recombination rate was 

0.1, increasing 𝑁𝑡  did not really help after 𝑁𝑡 > 102 . It was possibly due to the different 

frequencies of recombination events. For a recombination rate of 0.001, the recombination event 

was very rare in the simulated data when 𝑁𝑡 is low, so increasing 𝑁𝑡 is very important and useful. 

When the recombination rate was 0.1, it was supposed to have a fair number of recombination 

events even when 𝑁𝑡 was low. Thus, with relatively small 𝑁𝑡, the accuracy of estimation was good 

enough and did not leave much room for further improvement. This observation implies that the 

advantage of our method is greater when the inter-marker recombination rate is smaller, which is 

very important in constructing high-resolution genome maps. 

Another way to improve the estimation accuracy is to increase sample number (𝑛𝑠). Within 

the range of 𝑛𝑠 we set in the two experiments (10 - 160), a higher 𝑛𝑠 almost always led to higher 

accuracy. Increasing 𝑛𝑠 had little effect on the relationship between the accuracy and 𝑁𝑡. However, 

high 𝑛𝑠 usually means a higher cost for data collection, which will be an important factor during 

experimental design in practice. 

The comparison between experiment 1 and 2 also provides information on the impact of 

𝑁𝑡. In experiment 2, the assumptions were less strict than experiment 1 as the cell numbers across 

samples (𝑁𝑡) were variable, and a standardization method was applied to adjust for that variability. 

As both Method I and Method II achieved an accuracy in experiment 2 that was very close to that 
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in experiment 1, we may conclude that our methods seem robust after data standardization, and 

they can be applied to a more realistic scenario where values of 𝑁𝑡 are variable. 

In terms of comparison between Method I and Method II, we can see that Method II 

outperformed Method I in most cases, especially when 𝑁𝑡 is high (e.g. greater than 102).  

 

5.3.2 Null distribution of the estimator and marker grouping 

The Q-Q plot comparing the observed null distribution to the expected null distribution (Student’s 

t-distribution) were presented as Figure 3 (Method I) and Figure 4 (Method II). The dashed lines 

on these Q-Q plots had an intercept of 0 and a slope of 1.  In Figure 3, most of the points were 

located approximately along the dashed lines, which suggested that the observed empirical null 

distributions fitted the theoretical distribution well. In the tested range, 𝑁𝑡  did not have any 

obvious impact on the distribution. When the sample number (𝑛𝑠) was low, however, there are 

more outliers deviating from expectation in the observed dataset. 

We also tested the null distribution of Method II using the simulated datasets (Figure 4). 

The observed null distribution did not fit Student’s t-distribution as well as that of Method I, which 

is not surprising given that the theoretical distribution was derived based on Method I. From the 

Q-Q plots, we found that the approximate slope of the points was lower than expectation, which 

implied that the null distribution of Method II was wider than expected. Some of the null 

distributions were right-skewed, especially when sample number (𝑛𝑠) was low.  

Testing the existence of linkage between markers is not always necessary. For human as 

well as most widely-used species in genomic studies, there usually are reference maps with fairly 

good quality, in which case the linkage group (or chromosome) is mostly clear. However, the 

grouping of markers can be critical for de novo sequencing, where the reference maps for these 
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sequences may not be available. In addition, even with the help of a reference map, the testing of 

linkage may help with detecting and mapping chromosome structural variation, such as 

chromosomal translocations or crossovers, where the information provided by reference maps can 

be very limited. For Method I, the goodness of fit of our estimator to the theoretical distribution 

enabled a traditional parametric hypothesis testing method for marker grouping. For Method II, 

even though the t-test is not feasible, it may be possible to construct empirical null distribution and 

test the linkage with Monte-Carlo methods in practice (not tested in the current study). 

 

5.3.3 Performance in genome mapping 

The results of simulation experiment 4 showed that the increase of sample number significantly 

reduced the number of mismatches, the average number of SNPs within each mismatch block, and 

the average size of mismatch blocks (Figure 5 and 6). Especially, when 50 samples were used, 

96.3% of the mismatch blocks were small misplacements between two adjacent SNPs. The 95th 

percentile of the size of the mismatch blocks was 27,450 base pairs, i.e., 95% of the mismatch 

blocks were no larger than 0.02745 centimorgan. The results confirmed that the estimation 

provided by our method is qualified for the construction of linkage maps.  

 

5.3.4 Variance partitioning model  

In the estimation described above it was assumed that allele dosage could be measured without 

error, which will not be realistic in practice. We also constructed a variance partitioning model for 

Method II, in order to model possible error introduced during DNA quantification. Under an 

assumption of variance homogeneity for the measurement error, we can estimate the variance of 

random measurement error (𝜎𝑒
2). Then we have: 



 

 186 

 

(𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 )
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

= (𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 )
𝑡𝑟𝑢𝑒

+ 2𝜎𝑒
2,           (Equation 5.11) 

 

which implies that the observed variance of (𝑁𝐴1 − 𝑁𝐵1) is always greater than the true value when 

there is measurement error.  

 This model may allow us to adjust the estimation for possible measurement error and leads 

to more robust estimation. However, the real distribution of the measurement error is usually 

unknown or varies greatly according to the DNA quantification technology used. Further 

optimization based on this model is possible but it is beyond the discussion of the method at this 

time. 

 

5.3.5 From sperm cells to other haploids 

Even though the proposed model is based on allele dosage data of sperm cells, the method can also 

apply to all gametes (e.g. eggs or pollen) of diploid organisms, if the gametes are available in 

sufficient numbers. The application of the proposed method is therefore not limited to male 

animals. The model can potentially be integrated into the HAPPY (HAPloid equivalents of DNA 

and the PolYmerase chain reaction) mapping strategy as well, which uses DNA samples containing 

approximately 1 haploid genome equivalent as an analogue of real haploids like gametes, and 

thereby constructing physical genome maps (Dear and Cook 1993). The proposed model is also 

able to model the data of such haploid analogues by replacing the “recombination rate” with 

“probability of breakage”. As a result, a “multiple HAPPY mapping” method has the potential to 

expand applications to somatic cells including characterization of genome modification in tumors. 
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5.3.6 Future work: From in silico experiments to benchtop experiments 

Given the evidence for the theoretical potential of the new approach, significant challenges remain 

to reduce the method to practice. This strategy can be tested in three stages in new studies: 1) 

develop an optimized protocol of low-cost sample preparation and data collection, 2) develop an 

integrated analysis toolset for data manipulation, statistical analysis and map construction, and 3) 

create high-resolution individualized genomic maps of a model animal. In the first two stages, we 

can evaluate to what degree current DNA quantification platforms are able to support our method, 

and illustrate the feasibility of the mapping strategy. Based on these results we may be able to 

generate high-resolution whole-genome genetic maps using model species in the third step. It may 

ultimately lead to personalized maps for human and livestock applications. 

 An important component in the application of this method is selecting the quantification 

platform, in order to improve the quality of allelic dosage data and accuracy of mapping. So far, 

potential platforms for DNA quantification includes 1) bead-based quantitative genotyping 

technology (e.g. Illumina PorcineSNP60v2+ Beadchip), 2) droplet digital PCR (ddPCR) 

technology (e.g. Raindance Raindrop system), 3) nCounter, another digital quantification platform, 

and 4) next-generation sequencing (see Section 1.1.3). The evaluation should include the accuracy 

of DNA quantification, throughput of the system, and the economic cost. 

 Further optimization of DNA quantification may consider the DNA preparation step. We 

can explore the best protocol for DNA preparation from sperm to achieve the best performance in 

quantification and mapping. Theoretically, the use of more sperm will lead to more accurate 

estimation and higher resolution of the resulting maps. However, this may not be realistic in 

practice due to the physical aspects of DNA preparation and other factors such as quantification. 

These experiments will help us to find the best parameters for the DNA extraction and 
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quantification, including the number of sperm or the amount sperm DNA within a sample that suits 

the specific DNA quantification platform.  

 The second stage can be the development of better tools for the analysis stage of the 

mapping. These can be designed in order to generate fast outputs from the data generated by multi-

sperm typing. An integrated analysis toolset can provide the necessary tools for allelic dosage data 

cleaning and quality control, recombination rate estimation, SNP grouping, SNP ordering, and 

genetic map construction and visualization.  

 In terms of high-resolution whole-genome maps, the capability and feasibility of our 

proposed method can be demonstrated by creating a simplified regional genetic map for a well-

characterized rearrangement in a mammalian model. Another excellent model is the genome of C. 

elegans. It has a relatively small and compact genome of 100Mb (hermaphrodite karyotype 5 

autosomal pairs, XX) and the most complete genome assembly of any metazoan organism. Most 

importantly, many isogenic strains are available that have well characterized genetic 

rearrangements and breakpoints defined to the precise base pair, such as translocations, deletions, 

inversions and duplications (Genetic balancers). These models will allow the mapping approach 

to be rigorously tested and validated for all species.  

 

5.4 Conclusion  

We proposed a strategy (“multiple sperm typing”) for inter-marker recombination rate estimation 

and genome linkage mapping using allele dosage data. The methods can serve as a generalization 

of the traditional single sperm typing method. The simulation experiments provided support for 

our hypothesis that the new methods can significantly improve the accuracy of inter-marker 

recombination rate estimation, and the estimates showed good statistical property for marker 
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grouping. Further extensions are possible in practice, such as optimization through adjusting 

random errors and application in other haploid data (e.g. eggs or pollen). Given that our methods 

may give better estimation of recombination rates, reduce the difficulty of data collection, and 

make better use of high-throughput and low-cost technologies, we believe that the methods may 

lead to high-resolution, low-cost linkage maps, and be applied in human medicine and animal 

genomics. 
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Table 5.1 Four different kinds of sperm cells in a two-locus model 

# Sperm Type1 Genotype Proportion2 

1 Parental A1-B1 𝑃11 =
1 − 𝑟𝐴𝐵

2
 

2 Parental A2-B2 𝑃22 =
1 − 𝑟𝐴𝐵

2
 

3 Recombinant A1-B2 𝑃12 =
𝑟𝐴𝐵

2
 

4 Recombinant A2-B1 𝑃21 =
𝑟𝐴𝐵

2
 

1Assuming that allele A1 and B1 are on the same haplotype. 

2𝑟𝐴𝐵 represents the recombination rate between SNP A and SNP B. 
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Table 5.2 Parameters used in the simulation experiment (Two-locus model) 

Parameter Values 

Sample number (𝒏𝒔) 10, 20, 40, 80, 160 

Sperm cell number in each sample (𝑵𝒕) 1, 10, 100, 1000, 10000 

True value of the recombination rate (𝒓𝑨𝑩) 0.001, 0.01, 0.1 
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Figure 5.1 Performance of Method I (Cor_Method) and Method II (Var_Method) under simplified 

scenarios. 

Higher value on y-axis means higher accuracy. 

 

 



 

 198 

Figure 5.2 Performance of Method I (Cor_Method) and Method II (Var_Method) under more 

realistic scenarios.  

Higher value on y-axis means higher accuracy. 
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Figure 5.3 Q-Q plots comparing the observed null distribution to the expected null distribution 

(Student’s t-distribution) for the estimation in Method I (Cor_Method). 

Dashed lines have an intercept of 0 and a slope of 1. 
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Figure 5.4 Q-Q plots comparing the observed null distribution to the expected null distribution 

(Student’s t-distribution) for the estimation in Method II (Var_Method). 

Dashed lines have an intercept of 0 and a slope of 1. 
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Figure 5.5 Distribution of the size of misplacements (in base pairs) in constructed maps of SSC1. 

Error bars represent one standard deviation. 
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Figure 5.6 Distribution of the size of misplacements (in SNP number) in constructed maps of SSC1. 

Error bars represent one standard deviation. 
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5.6 Derivation of Method I (Cor_Method) and Method II (Var_Method) 

5.6.1 Distribution of allelic dosage in the simplified scenario 

Here we consider two SNPs in a two-locus model: SNP A (with possible allele A1 and A2) and 

SNP B (with possible allele B1 and B2). If all sperm samples have the same number of sperm cells 

(nt), then the allele dosage of allele A1 follows a binomial distribution: 

 

NA1~Binomial (𝑛𝑡 ,
1

2
)                                       (Equation 5.11) 

 

Similarly, the allele dosage of allele B1 also follows a binomial distribution: 

 

NB1~Binomial (𝑛𝑡 ,
1

2
)                                       (Equation 5.12) 

 

In this two-locus model, there are four possible types of sperm: two with parental genotypes 

and two recombinants (Table 1). Assuming that allele A1 and B1 are on the same haplotype, i.e. 

parental genotypes are A1-B1 and A2-B2, the joint distribution of the number of these four 

different combinations (𝑁11, 𝑁12, 𝑁21, 𝑁22) would follow a multinomial distribution:  

 

𝑁 = (𝑁11, 𝑁12, 𝑁21, 𝑁22)~Multinomial(𝑛𝑡, 𝑃).                  (Equation 5.13) 

 

, where 𝑃 = (𝑝11, 𝑝12, 𝑝21, 𝑝22) represents the expected proportion of the four kinds of sperm 

(Table 1). A variance-covariance matrix can then be calculated based on the property of 

multinomial distribution. 

 



 

 204 

5.6.2 Method I and Method II in the simplified scenario 

The covariance of 𝑁𝐴1 and 𝑁𝐵1 can be derived from the multinomial distribution: 

 

σnA1,nB1
= σ(n11+n12),(n11+n21)

                                                = σn11
+ σn11,n21

+ σn11,n12
+ σn12,n21

        =
𝑛𝑡

4
(1 − 2𝑟𝐴𝐵)

             (Equation 5.14) 

 

, and then we get: 

 

𝜎NA1

2 = 𝜎NB1

2 =
𝑛𝑡

4

σNA1,NB1
=

𝑛𝑡

4
(1 − 2𝑟𝐴𝐵)

                                  (Equation 5.15) 

 

When 𝑛𝑡 is large enough, the binomial distribution (Eq. 5.13) can be approximated with a normal 

distribution: 

 

(𝑁𝐴1
𝑁𝐵1

) ~ Normal [
1

2
(𝑛𝑡
𝑛𝑡

) ,
1

4
𝑛𝑡 (

1 1 − 2𝑟𝐴𝐵

1 − 2𝑟𝐴𝐵 1
)]                (Equation 5.16) 

 

Then the Pearson’s correlation between 𝑁𝐴1 and 𝑁𝐵1 can be calculated as: 

 

ρ𝑁𝐴1,𝑁𝐵1
=

σNA1,NB1

√σNA1
σNB1

 = 1 − 2𝑟                              (Equation 5.17) 

 

So the recombination rate can be estimated as: 
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𝑟𝐴𝐵 = (1 − 𝜌𝑁𝐴1,𝑁𝐵1
)/2                                    (Equation 5.18) 

 

, which is Method I (Cor_Method) under the assumption that all sperm samples have the same 

number of sperm cells.  

 We can also derive the Method II (Var_Method) from the multinomial distribution. Notice 

that: 

 

𝑁𝐴1−𝑁𝐵1 = 𝑁11 + 𝑁12 − (𝑁11 + 𝑁21) =  𝑁12 − 𝑁21        (Equation 5.19) 

 

, we have: 

 

σNA1−NB1

2 = σN12 – N21

2 = 𝜎𝑁12

2 + 𝜎𝑁21

2 − 2𝜎𝑁12,𝑁21
= 𝑛𝑡𝑟𝐴𝐵       (Equation 5.20) 

 

5.6.3 Estimation using standardized dosage data 

After we standardize the allele dosage data with Eq. 5.5, we have  

 

𝑛′
𝐴1,i = (𝑛𝐴1,i −

𝑛𝑡,𝑖

2
)/√𝑛𝑡,𝑖                            (Equation 5.21) 

 

, where 
𝑛𝑡,𝑖

2
 is the expectation of 𝑛𝐴1,𝑖. Based on Eq. 5.16, the standardized allelic dosage for all 

different sperm samples follows the same normal distribution: 

 

(𝑁′𝐴1
𝑁′𝐵1

) ~ Normal [0,
1

4
(

1 1 − 2𝑟𝐴𝐵

1 − 2𝑟𝐴𝐵 1
)]                (Equation 5.22) 
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The correlation can then be calculated as: 

 

ρ𝑁′𝐴1,𝑁′𝐵1
=

σN′A1,N′B1

√𝜎N′A1
𝜎N′B1

 = 1 − 2𝑟                     (Equation 5.23) 

 

And we will get a generalized estimator that can be used even when the sperm samples we used 

have different amounts of sperm cells: 

 

𝑟𝐴𝐵 = (1 − ρ𝑁′𝐴1,𝑁′𝐵1
)/2                           (Equation 5.24) 

 

In this case, the estimator in Method II can be modified as: 

 

σN′A1−N′B1

2 = σN′12 – N′21

2 = 𝜎𝑁′12

2 + 𝜎𝑁′21

2 − 2𝜎𝑁′12,𝑁′21
= 𝑟𝐴𝐵      (Equation 5.25) 

 

5.6.4 Variance partitioning model  

When measurement error is present, the observed allele dosage of allele A1 and B1 is no longer 

the true allele dosage: 

 

(𝑁′𝐴1
𝑁′𝐵1

)
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

= (𝑁′𝐴1
𝑁′𝐵1

)
𝑡𝑟𝑢𝑒

+ (𝑁𝑒,𝐴1

𝑁𝑒,𝐵1
)                   (Equation 5.26) 
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, where 𝑁𝑒,𝐴1 and 𝑁𝑒,𝐵1 is the random error introduced during DNA quantification for allele A1 

and B1, respectively. In this case, we can calculate the relationship between (𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 )
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

 

and (𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 )
𝑡𝑟𝑢𝑒

: 

 

(𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 )
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

= 𝜎
𝑁𝐴1

′ −𝑁𝐵1
′ +𝑁𝑒,𝐴1+𝑁𝑒,𝐵1

2 = 𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 + 𝜎𝑁𝑒,𝐴1

2 + 𝜎𝑁𝑒,𝐵1

2     (Equation 5.27) 

 

If we assume that the variance of random measurement error is homogeneous and denoted as 𝜎𝑒
2. 

Then we have this variance partitioning model: 

 

(𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 )
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

= (𝜎
𝑁𝐴1

′ −𝑁𝐵1
′

2 )
𝑡𝑟𝑢𝑒

+ 2𝜎𝑒
2                  (Equation 5.28) 
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5.7 Ordering method used in the simulation experiment 

Based on the estimated pairwise inter-marker recombination rates in a linkage group, we can find 

the optimal order of these markers. This kind of problem, which tries to minimize the sum of 

additive distances, can easily be mathematically transformed into a well-studied optimization 

problem: the travelling salesman problem (TSP). There are proven algorithms and software that 

we can borrow and use in the ordering of markers (Karp et al. 1996). Previous studies show that 

this strategy is an efficient way to order markers (Agarwala 2000; Everts-van der Wind et al. 2005). 

In this section, we introduce the analysis conducted in our fourth simulation experiment, as well 

as some background information about TSP that we used in our analysis. 

In this study, we use the sum of adjacent distance (SAD) as the criterion, or called scoring 

function, to evaluate SNP orders: 

 

𝑆𝐴𝐷 =  ∑ 𝑑𝑖,𝑖+1
𝑛−1
𝑖=1                                     (Equation 5.29) 

 

, where n is the number of SNPs, and 𝑑𝑖,𝑖+1 is the inter-marker genetic distance between ith and 

i+1th SNP. The sum of adjacent distance is a widely-used scoring function as it is “additive” (Xu 

2013), which is necessary for the ordering algorithm we used here. For this scoring function, the 

order with a minimum SAD value is the best (Olson and Boehnke 1990). For a linkage map, the 

additive genetic distance between SNPs can be calculated with the recombination rates between 

them (𝑟𝑖,𝑖+1) using map functions. In the study, we choose Haldane's map function as we assume 

no interference between loci in our simulation studies (Liu 1998). So we have: 

 

𝑑𝑖,𝑖+1 =
𝑙𝑛(1−2𝑟𝑖,𝑖+1)

2
                                     (Equation 5.30) 
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After the inter-marker genetic distance was calculated, we transformed our ordering 

problem to TSP. TSP is usually described as a problem to find a round trip with a minimum total 

length visiting each of a set of cities exactly once (Reinelt 1991). If we set the inter-city distance 

in TSP as the inter-marker genetic distance in our analysis, the optimization process would be quite 

similar, except that the order of SNP is a linear path rather than a cycle. To overcome this 

difference, we introduced a dummy SNP. This is a common strategy in TSP-related problems, and 

has been applied in constructing RH maps (Karp et al. 1996). The distance between this dummy 

SNP and any other SNP was artificially set as 0, so that the dummy SNP can serve as a “bridge” 

to connect any other two SNPs. Then our ordering problem was equivalent to a TSP with n+1 

cities.  

Solution to the TSP was then found with CONCORDE, a very effective package for solving 

TSP (http://www.math.uwaterloo.ca/tsp/concorde/index.html).   
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Chapter 6 General conclusion 

 

Nate Silver has emphasized two points in his book, The Signal and the Noise, for people mining 

gold from the increasing volume of data: 1) good interpretation of complex data requires sound 

understanding of the data and the context, as well as appropriate statistical methods; and 2) we 

make progress when we make more attempts and learn from the results (Silver 2012). In my thesis 

work, we aimed to better interpret available high-throughput genomic data into biologically 

meaningful conclusions, by integrating biological information from various sources (e.g. different 

types of data) and knowledge in different areas (e.g. genomics, statistics and animal science), and 

attempted to make better use of high-throughput genomic data in the genetic analysis in pigs. We 

worked toward this goal in the four studies in my thesis work:  

1. For the studies about GWAS (Chapter 2-4), we discussed the issue about detection power 

and precision due to the high dimension of genomic data.  

a. In the study about the adaptive LASSO (Chapter 2), we assessed its performance 

and discussed how it may help to increase the detection power in GWAS.  

b. In the GWAS of fetal response to type 2 PRRSV challenge (Chapter 3), we made 

use of permutation to improve the precision of the results, and used transcriptomic 

data to further scan for candidate genes.  

c. In the TDT study (Chapter 4), we improved the precision of GWAS by integrating 

raw genotyping data (fluorescence intensity data) into the analysis.  

2. In the study about multiple sperm typing (Chapter 5), we proposed a new model for the 

allele dosage data of haploids, in order to improve the efficiency of linkage map 

construction. 



 

 211 

 This chapter aims to summarize the four studies in my thesis work, and discuss how these 

studies may help toward the goal. In the following sections, I first give a brief summary of the four 

studies, as well as our effort to improve the analysis of genomic data. Then I discuss the 

significance of these studies in the context of genetic improvement, followed with some thoughts 

on additional outputs and future work.  

 

6.1 Summary 

Chapter 2 of the thesis discusses the application of the adaptive LASSO in GWAS, and its 

advantage in detection power. We first applied the adaptive LASSO to a public simulated dataset 

from QTLMAS 2010, and compared it with the methods previously published in QTLMAS 2010 

(e.g. BayesC), in terms of detection power and precision. The adaptive LASSO outperformed other 

methods in detection power, though it had a lower precision. We then applied this strategy in a 

GWAS of meat colour in commercial crossbred pigs, as previous results using Bayesian 

approaches were disappointing in terms of the number of regions found to be associated with the 

traits of interest. A total of 20 genomic regions were detected and confirmed, with significant SNPs 

(FDR < 0.1) found in all the candidate regions. The results showed support for three candidate 

regions detected previously using the same population, while extending the number of candidate 

regions for meat colour in this dataset. Seventeen of the 20 regions overlapped with known QTL 

for meat colour in pigs. Twelve genes within the candidate regions were found to be functionally 

related to meat colour and close to the significant SNPs. Related biological pathways included 

muscle fibre type composition, glucose metabolism, and lipid metabolism. 

 The emergence of high-throughput genotyping technology significantly increases the 

density of genotype data. While high-density genotype data enables the analysis on a genome 
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scale, its high dimension causes new challenges. Here we discussed one of the challenges, how to 

find the optimal point in the trade-off between detection power and precision in GWAS. Our results 

show that the adaptive LASSO may be an option for GWAS when higher detection power is 

desired, such as searching for QTL with small-to-medium effects. In the GWAS of meat colour in 

pigs, we also tried to control false discoveries through an additional single marker association. 

Since meat colour traits are genetically correlated, our strategy of only focusing on candidate 

genomic regions associated with multiple traits may also help to filter out false discoveries. The 

analysis did extend the candidate genomic regions for meat colour in this dataset, and our results 

were supported by those obtained by previous studies (e.g. known QTL and candidate genes). We 

comment further on the LASSO below in relation to Chapter 3.  

 

In Chapter 3, we introduce a GWAS using data from 928 fetuses from pregnant gilts 

experimentally challenged with type 2 PRRSV. Fetuses were assessed for four traits, viral load in 

thymus (VLT), viral load in endometrium (VLE), fetal death (FD) and fetal viability (FV). They 

were also genotyped at a medium density (61,565 SNPs). Collectively, 21 candidate genomic 

regions were found in association with these traits, seven of which overlap with previously 

reported QTLs for pig health and reproduction. A comparison with ongoing and related 

transcriptomic analyses of fetal response to PRRSV infection found differentially expressed genes 

within 17 of the candidate regions. Some of these genes have been reported to have immune system 

functions and contribute to host response to PRRSV infection in previous studies. The results 

provide new evidence about the genetic basis of fetal response to PRRSV challenge, and may 

ultimately lead to alternative control strategies to reduce the impact of reproductive PRRS.  
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 Even though the adaptive LASSO showed improved detection power in chapter 2, it failed 

to provide a quantitative measurement (such as P-value) for the probability that the detected 

associations were actually true. Such measurement can help to determine the relative importance 

of multiple associations (i.e. whether some associations are more likely to be truly positive rather 

than others or not). In the study descripted in Chapter 3, we applied a permutation technique to 

correct the “overestimation” behaviour of the original LASSO. Permutation tests take into account 

the structure of datasets, and provide empirical significance test for association analysis, even 

when the dimension of genomic data is very high. Results of a related transcriptomic analysis were 

also integrated into the screening of candidate genes, which provides functional evidence for the 

detected associations in the GWAS. 

 

In Chapter 4, we conducted a TDT of fetal autolysis using data obtained from the same project as 

Chapter 3 (Pregnant gilt model, PGM). Seven SNPs showed significant transmission 

disequilibrium and passed a pedigree-based genotype quality check. However, follow-up analysis 

using raw genotyping data suggested that five of the seven SNPs may be mis-clustered in 

genotyping the parents, which may result in false transmission disequilibrium for the five SNPs. 

The other two candidate SNPs showed transmission disequilibrium in the study may be evaluated 

for further confirmation. 

 In PGM, genomic data were unavailable at first for those autolyzed fetuses in the project, 

which were deemed to be most vulnerable to the challenge. The information about the phenotypes 

(autolysis) carried by these animals might be lost in GWAS if we simply removing them from the 

analysis. Through TDT, we gained ability to exploit these autolyzed fetuses. Pedigree information 

was integrated into the analysis and used for genotype checking.  
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 Raw genotyping data (e.g. fluorescence intensity data) carry much information about 

genotyping quality, but this quality information is rarely used after genotypes are called. Sporadic 

erroneous genotypes will not be a problem in most genomic analysis. Some statistical tools such 

as TDT, however, are more vulnerable to erroneous genotypes. In the study descripted in Chapter 

4, we used a likelihood-based method to analyse the raw genotyping data, and detected suspicious 

SNPs that might be mis-clustered during genotype calling. It is likely that some incorrect 

genotypes passed the pedigree-based genotype quality check in our analysis, and caused false 

positives in the TDT. Integrating raw genotyping data into association studies may help to 

assessing the quality of genotype data and to improve the precision of the results (i.e. reduce false 

discoveries). For example, one possible way is using a normal mixture model to describe the 

genotyping results instead of only genotypes (Hackett et al. 2013).  

 

In Chapter 5, we proposed a method for inter-marker recombination rate estimation and genome 

linkage mapping using allele dosage data. The method can serve as a generalization of traditional 

single sperm typing method, while being able to work with a much higher throughput. Simulation 

experiments provide support for our hypothesis that this new method is able to significantly 

improve the accuracy of inter-marker recombination rate estimation. Further optimization through 

adjusting random errors is possible. This method was compared to other approaches such as 

radiation hybrid (RH) mapping and HAPPY mapping. 

 The allele dosage data of haploids (sperm cells in Chapter 5) have never been used to 

estimate inter-marker recombination rate, Possible reasons include the lack of high-throughput 

DNA quantification technology in the past, and that the statistical model for the allele dosage data 

is not as explicit as those models widely used before (e.g. single sperm typing method or pedigree-
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based method). However, with the development in new biotechnologies (e.g. DNA microarray, 

next generation sequencing), allele dosage data are getting more accessible. The study described 

in Chapter 5 may help to make better use of the allele dosage data, and provide new opportunities 

in constructing high-resolution, low-cost genome maps with high-throughput, and may thereby 

lead to further application in genomic studies. These potential applications including genome-wide 

genotyping of CSVs, low-cost genome assembly and estimation of recombination rates on an 

individual level. 

 

6.2 Significance in genetic improvement 

One output of this thesis work is the potential of genomics in animal genetic improvement, 

especially for pigs in terms of health and product quality. The candidate genomic regions detected 

in the GWAS in Chapter 2 and Chapter 3 may provide new evidence about the genetic basis of the 

traits under investigations (meat colour and host response to PRRSV challenge) in pigs. Genetic 

markers related to the gene PRKAG3 and gene RYR1 (or CRC1) has been successfully applied in 

the animal selection for better meat quality, and our study may potentially provide more materials 

for marker-assisted selection in the future. For host response to PRRSV challenge, genomic tools 

can be an important alternative opportunity to control PRRS, as developing effective vaccines 

against a wide range of PRRSV strains is still a challenge at present. Our result may provide new 

genetic markers that can help select for animals resistant, or with reduced susceptibility to PRRSV. 

In addition, the genomic candidate regions detected in our analysis may be integrated into genomic 

selection in the future, through statistical tools that allow the integration of prior knowledge, such 

as information on causative mutations (e.g. BayesRC).  
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 The statistical model proposed in Chapter 5 may serve as a new way to construct high-

resolution genome maps, which may provide additional materials for genetic improvement. The 

benefit is twofold: 1) high-resolution genome maps may enable genome-wide genotyping of CSVs. 

Including these new genetic markers may help capture the phenotypic variations determined by 

them. It may help to discover the “missing heritability” due to not including CSVs; and 2) Linkage 

maps on an individual level enable the measurement of the recombination rate of single animals. 

As discussed in Chapter 1, that may help to determine animals tending to have more genetic 

recombination events during meiosis, which may potentially speed up the progress of genetic 

improvement.  

 

6.3 Additional outputs and implications  

1. The discussion in Chapter 2 may provide support for the application of the adaptive 

LASSO in GWAS, especially when high detection power is desired. 

2. The results in Chapter 4 implies the possibility to integrate raw genotyping data into 

GWAS, in order to reduce false positives due to mis-clustering in genotyping for platforms 

like Illumina BeadChip.  

3. The new linkage mapping method introduced in Chapter 5 may help construct linkage maps 

with desired cost, which may apply in human medicine and animal genomics. 

 

6.4 Future work 

1. The result in Chapter 2 shows relatively high detection power of the adaptive LASSO, 

while it suffered from a relatively low precision. Some extensions in the LASSO family 

has been reported to have better control of the precision issue, such as multi-step adaptive 
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elastic net (Xiao and Xu 2015). Assessing their performance in GWAS may help explore 

more statistical options in genomic data analysis.  

2. The result in Chapter 3 shows new candidate genomic regions possibly associated with 

fetal response to type 2 PRRSV. These candidate regions may need to be validated in other 

populations. In addition, by sequencing the candidate regions and scanning new genetic 

variants, it is possible to discover causative mutations for the fetal response. 

3. The raw genotyping data in the Illumina BeadChip platform may be directly integrated into 

GWAS through a normal mixture model (Hackett et al. 2013). It may help to taken the 

clustering quality into account in the analysis. 

4. As discussed in Chapter 5, challenges remain in reducing the new statistical model for 

constructing linkage maps to practice. The development and optimization of experiment 

protocol as well as the development of analysis toolkit needs further studies in the future. 

 

6.5 Prospects 

Great changes are happening in both genomics and statistics, which show us brand new 

opportunities of applying genomic data in more and more areas, such as animal production and 

human medicine. In terms of genomics, several large projects, such as ENCODE (ENCODE 

Project Consortium 2012) and FAANG (Andersson et al. 2015), are developing deeper and deeper 

understanding about how the genome regulates biological processes in different species. In 

addition, more powerful tools for genome engineering are emerging, such as CRISPR (Jinek et al. 

2012; Cong et al. 2013). In the meanwhile, even though the complexity of the data keeps 

increasing, fortunately, tools in statistics and data science are also developing rapidly to meet those 

new challenges in data analysis, with many of them already successfully applying in the analysis 
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of genomic data in animals (e.g. Bayesian methods), or being evaluated for possible application 

(González-Recio and Forni 2011).   

 The connection of the changes in both animal genomics and statistics may be the key to 

gold mining from animal genomic data. A sound understanding of questions in practical 

production has been driving the development of statistical tools (e.g. Student’s t-test), while 

introducing or generalizing existing statistical tools invented for other areas for a new application 

may significantly improve the outcomes (e.g. the wide application of BLUP and solutions to 

“travelling salesman problem”). The emergence of high-throughput genomic data is challenging 

existing strategies of analysis in terms of both genomic and statistics. Potential solutions to the 

challenges may be involved in topics across an even more broader spectrum from biology (e.g. 

biological processes underlying a trait, collection of phenotypes, and the depth of phenotypes) to 

statistics (e.g. experimental design, statistical modelling, and statistical prediction methods) and 

informatics (e.g. storing and processing biological data and computational algorithms). My thesis 

work was directly involved in a few interesting statistical topics in the context of genomics, with 

some discussions related to biology, animal science and bioinformatics, and hopefully had some 

outputs in terms of animal production. In the meanwhile, my Ph.D. program has given me an 

appreciation of not only those topics involving my thesis work, but also knowledge across the 

broad spectrum from biology to statistics. 
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Appendix 1 Status of manuscripts related to the thesis (as of May 20, 2017) 

 

1. Based on Chapter 2: 

Tianfu Yang, Zhiquan Wang, Younes Miar, Heather Bruce, Chunyan Zhang, and Graham 

Plastow, “A Genome-wide Association Study of Meat Colour in Commercial Crossbred 

Pigs.” Accepted by Canadian Journal of Animal Science 

 

2. Based on Chapter 3: 

Tianfu Yang, James Wilkinson, Zhiquan Wang, Andrea Ladinig, John Harding, and Graham 

Plastow. 2016. “A Genome-Wide Association Study of Fetal Response to Type 2 Porcine 

Reproductive and Respiratory Syndrome Virus Challenge.” Scientific Reports, 6 

(February): 20305.  
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Tianfu Yang, Zhiquan Wang, Zhiqiu Hu and Graham Plastow, 2014. A New Method to 

Estimate Recombination Rate Based on SNP Allelic Dosage Data. in Proceedings of 10th 

World Congress of Genetics Applied to Livestock Production. Asas. 
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Appendix 2  

I also contributed to the analysis and helped co-author two publications related to the GWAS 

introduced in Chapter 2. One was published in BMC Genetics as “Genome-wide association 

studies (GWAS) identify a QTL close to PRKAG3 affecting meat pH and colour in crossbred 

commercial pigs”. The second was published in PLoS One as “Genome Wide Association Studies 

(GWAS) Identify QTL on SSC2 and SSC17 Affecting Loin Peak Shear Force in Crossbred 

Commercial Pigs”.  

 The studies reported in the two publications laid the groundwork for the GWAS of meat 

colour described in Chapter 2 (Section 2.2). Especially, the results of those two studies aroused 

our curiosity about improving detection power in the analysis. Given the fairly large pig population 

(n = 1977) and the wide range of phenotypic records, we sought to explore the possibilities of more 

candidate regions in addition to the major ones reported in the two publications. The idea directly 

led to our attempt to apply the adaptive LASSO in the dataset of meat colour, as the methods 

showed good detection power in our simulation analysis (Section 2.1). 

 

The abstract of the two publications: 

 

1.  

Genome-wide association studies (GWAS) identify a QTL close to PRKAG3 affecting meat 

pH and colour in crossbred commercial pigs1 

 

                                                 
1 Chunyan Zhang, Zhiquan Wang, Heather Bruce, Robert Alan Kemp, Patrick Charagu, Younes Miar, Tianfu Yang, 

and Graham Plastow. 2015. “Genome-Wide Association Studies (GWAS) Identify a QTL close to PRKAG3 Affecting 

Meat pH and Colour in Crossbred Commercial Pigs.” BMC Genetics 16 (1): 33.  
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Chunyan Zhang1, Zhiquan Wang1, Heather Bruce1, Robert Alan Kemp2, Patrick Charagu3, Younes 

Miar1, Tianfu Yang1 and Graham Plastow1 

1Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB 

T6G 2P5, Canada.  

2Genesus Inc, Oakville, MB, Canada.  

3Hypor Inc, Regina, SK, Canada. 

 

BACKGROUND Improving meat quality is a high priority for the pork industry to satisfy 

consumers' preferences. GWAS have become a state-of-the-art approach to genetically improve 

economically important traits. However, GWAS focused on pork quality are still relatively rare.  

RESULTS Six genomic regions were shown to affect loin pH and Minolta colour a* and b* on 

both loin and ham through GWAS in 1943 crossbred commercial pigs. Five of them, located on 

Sus scrofa chromosome (SSC) 1, SSC5, SSC9, SSC16 and SSCX, were associated with meat 

colour. However, the most promising region was detected on SSC15 spanning 133-134 Mb which 

explained 3.51% - 17.06% of genetic variance for five measurements of pH and colour. Three 

SNPs (ASGA0070625, MARC0083357 and MARC0039273) in very strong LD were considered 

most likely to account for the effects in this region. ASGA0070625 is located in intron 2 of 

ZNF142, and the other two markers are close to PRKAG3, STK36, TTLL7 and CDK5R2. After 

fitting MARC0083357 (the closest SNP to PRKAG3) as a fixed factor, six SNPs still remained 

significant for at least one trait. Four of them are intragenic with ARPC2, TMBIM1, NRAMP1 

and VIL1, while the remaining two are close to RUFY4 and CDK5R2. The gene network 

constructed demonstrated strong connections of these genes with two major hubs of PRKAG3 and 

UBC in the super-pathways of cell-to-cell signaling and interaction, cellular function and 
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maintenance. All these pathways play important roles in maintaining the integral architecture and 

functionality of muscle cells facing the dramatic changes that occur after exsanguination, which is 

in agreement with the GWAS results found in this study.  

CONCLUSIONS There may be other markers and/or genes in this region besides PRKAG3 that 

have an important effect on pH and colour. The potential markers and their interactions with 

PRKAG3 require further investigation. 

 

2. 

Genome Wide Association Studies (GWAS) Identify QTL on SSC2 and SSC17 Affecting 

Loin Peak Shear Force in Crossbred Commercial Pigs1 

 

Chunyan Zhang1, Heather Bruce1, Tianfu Yang1, Patrick Charagu2, Robert Alan Kemp3, Nicholas 

Boddicker3, Younes Miar1, Zhiquan Wang1, Graham Plastow1 

1Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB 

T6G 2P5, Canada.  

2Hypor Inc, Regina, SK, Canada. 

3Genesus Inc, Oakville, MB, Canada.  

 

Of all the meat quality traits, tenderness is considered the most important with regard to eating 

quality and market value. In this study we have utilised genome wide association studies (GWAS) 

for peak shear force (PSF) of loin muscle as a measure of tenderness for 1,976 crossbred 

                                                 
1 Chunyan Zhang, Heather Bruce, Tianfu Yang, Patrick Charagu, Robert Alan Kemp, Nicholas Boddicker, Younes 

Miar, Zhiquan Wang, and Graham Plastow. 2016. “Genome Wide Association Studies (GWAS) Identify QTL on 

SSC2 and SSC17 Affecting Loin Peak Shear Force in Crossbred Commercial Pigs.” Edited by Jian-Feng Liu. PloS 

One 11 (2): e0145082.  



 

 281 

commercial pigs, genotyped for 42,721 informative SNPs using the Illumina PorcineSNP60 

Beadchip. Four 1 Mb genomic regions, three on SSC2 (at 4 Mb, 5 Mb and 109 Mb) and one on 

SSC17 (at 20 Mb), were detected which collectively explained about 15.30% and 3.07% of the 

total genetic and phenotypic variance for PSF respectively. Markers ASGA0008566, 

ASGA0008695, DRGA0003285 and ASGA0075615 in the four regions were strongly associated 

with the effects. Analysis of the reference genome sequence in the region with the most important 

SNPs for SSC2_5 identified FRMD8, SLC25A45 and LTBP3 as potential candidate genes for 

meat tenderness on the basis of functional annotation of these genes. The region SSC2_109 was 

close to a previously reported candidate gene CAST; however, the very weak LD between 

DRGA0003285 (the best marker representing region SSC2_109) and CAST indicated the potential 

for additional genes which are distinct from, or interact with, CAST to affect meat tenderness. 

Limited information of known genes in regions SSC2_109 and SSC17_20 restricts further analysis. 

Re-sequencing of these regions for informative animals may help to resolve the molecular 

architecture and identify new candidate genes and causative mutations affecting this trait. These 

findings contribute significantly to our knowledge of the genomic regions affecting pork shear 

force and will potentially lead to new insights into the molecular mechanisms regulating meat 

tenderness. 
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Appendix 3 Two other studies are related to the GWAS introduced in Chapter 4 

 

Two other studies are related to the GWAS introduced in Chapter 4. One was presented at the 

Canadian Meat Science Association (CMSA) 96th Annual Conference as “A genome-wide 

association study of dark cutting in beef cattle”, and the other one was presented at Plant and 

Animal Genomics Conference XXV as “A Genomic Investigation of Porcine Periweaning Failure 

to Thrive Syndrome (PFTS)”. I contributed to parts of the analysis and co-authored the two 

abstracts. 

 In Chapter 4, we described an alternative contingency-table test (see Section 4.3.6) to check 

if the candidate SNPs found in TDT also showed association in a direct comparison of viable and 

autolyzed fetuses. In addition to the analysis, I also contributed to two studies (Appendix 3) that 

aimed to detect candidate genomic regions associated with binary traits, using the contingency 

table test (see Section 1.2.1.4.1) and data from populations with relatively small size. For the 

contingency-table test described in Section 4.3.6, 280 animals were used in the GWAS of fetal 

autolysis in PRRSV challenge; Sixty-four beef cattle were used in the GWAS of dark cutting; and 

107 pigs were used in the GWAS about PFTS. Moderate suggestive associations were found for 

dark cutting and PFTS vulnerability, however, we did not find major candidate regions for the 

three traits of interest. 

 The results of these studies may be a sign of the low detection power due to limited sample 

size and the high-dimension of genomic data, as briefly introduced in Section 1.4.1.4.2. Further 

investigation may aim to improve the power of detection. For example, in the GWAS of dark 

cutting in beef cattle, we also attempt to pre-screen the SNPs and only select those SNPs close to 

40 previously identified candidate genes, in order to reduce the negative effect of multiple testing 
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on detection power. The pre-screening did result in three more suggestive associations, though still 

not significant (FDR > 0.1). Other possible strategies may be applied to improve the results, such 

as through haplotype-based association. 

 

Study 1. Abstract presented at CMSA 96th Annual Conference 

 

A genome-wide association study of dark cutting in beef cattle 

 

Huaigang Lei1, Tianfu Yang1, Shahid Mahmood1, Bimol Roy1, Changxi Li1,2, Graham S. Plastow1, 

Heather L. Bruce1 

1Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB 

T6G 2P5, Canada 

2Agriculture and Agri-Food Canada, Lacombe Research and development Centre, 6000 C&E 

Trail, Lacombe, AB, Canada T4L 

 

Dark cutting is detrimental to carcass grading because dark cutting carcasses are graded Canada 

B4 in the Canadian Beef Grading System, resulting in economic loss for beef producers. Dark 

cutting beef is caused by depletion of muscle glycogen before slaughtering, which may be affected 

by animal genetics. The current study aimed to identify single nucleotide polymorphisms (SNPs) 

associated with dark cutting through a genome wide association study (GWAS). In total, 64 beef 

cattle, of which 24 were graded Canada AA (normal) and 40 graded Canada B4 (dark), were 

genotyped using GeneSeek Genomic Profiler for Beef Cattle-HD (GGP-HD) featuring 76783 

SNPs. All SNPs with a call rate lower than 90% or a minor allele frequency (MAF) lower than 5% 
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were removed in quality control, resulting in 70675 SNPs for the further association analyses. In 

addition, we tested SNPs in proximity to 40 previously identified candidate regions. Single-marker 

Fisher’s exact test was conducted using PLINK 1.9 to compare the difference in allele frequencies 

between AA (normal) and B4 (dark cutters) carcasses. False discovery rate (FDR) was calculated 

toadjust for multiple testing using R. In total, we detected five SNPs on BTA3, 5, 16, and 28 

showing suggestive association with FDR lower than 0.20. Although the detected SNP 

associations require validation in a larger population than studied, the results suggested the 

possibility of marker-assisted selection in beef cattle to reduce dark cutting. 

Keywords: Genome-wide association study; Dark cutters; Beef cattle 

 

Study 2. Abstract presented at Plant and Animal Genomics Conference XXV 

 

A Genomic Investigation of Porcine Periweaning Failure to Thrive Syndrome (PFTS) 

 

Francesca Bertolini1, Tianfu Yang2, Yanyun Huang3, John Harding3, Max F. Rothschild1,  

Graham S Plastow2 

1Department of Animal Science, Iowa State University, Ames, IA, USA 

2Livestock Gentec, Department of Agricultural, Food & Nutritional Sciences, University of 

Alberta, Edmonton, AB, Canada 

3Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, 

University of Saskatchewan, Saskatoon, SK, Canada 
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Porcine Periweaning Failure to Thrive Syndrome (PFTS) affects young pigs around 2-3 weeks 

post-weaning and it is characterized by anorexia, lethargy and progressive debilitation that 

frequently leads to death. A genetic basis of this syndrome has been recently hypothesized but 

until now only one GWAS analysis has been reported, with a moderate suggestive association with 

the disease. In this experiment, 107 pigs were collected in North America within 2-3 weeks after 

weaning from commercial farms. 

A total of 70 met the PFTS case definition (cases) while 37 were aged-matched penmates (control). 

Cases and controls were balanced across the farms using a 2:1 ratio. All animals were genotyped 

with the 80K porcine SNP chip and 53,810 filtered autosomal SNPs were considered for the 

analyses. Population structure analysis was performed, showing that the samples have a similar 

genetic background even between cases and controls. Then, three analyses were performed 

comparing cases and controls. These included Fst analysis, considering single SNPs and the 

average Fst calculated in 500Kb overlapping windows and logistic regression analysis. Only 

moderate suggestive associations were found. 

A total of four regions not identified previously on chromosome 1, 3 and 11 were concordant for 

at least two types of analyses and contain some genes that are involved in behavior, energy 

homeostasis, caloric intake and growth and mature size. With these limited analyses, we could not 

confirm major regions of difference for PFTS but we identified the presence of novel genomic 

regions that may be moderately associated with this syndrome. 


