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ABSTRACT

The main results of the thesis are two constructions con-

nected with hereditary properties of infinite-dimensional

Banach spaces. We transfer an Asymptotic Biorthogn-

nal System to general real interpolation spaces. We also

construct a hereditarily indecomposable Banach space all

of whose closed infinite-dimensional subspaces fail the

Gordon--Lewis property.,
proj A
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Chapter 1
Introduction And Notation
1l.a. Introduction

Recent progress in the theory of infinite-dimensional Banach spaces, which brought,
solutions of many problems open for decades, is based on new understanding of
phenomena taking place in every infinite-dimensional subspace of a given Banach
space. These phenomena are geometric by nature, but they also have a deep effect
on hereditary structural properties of underlying Banach spaces (that is, structural

properties shared by all infinite-dimensional subspaces of the Banach space).

Recall one of the fundamental notions in the Banach space theory—the notion
of a Schauder basis. It provides us with a coordinate system in a Banach space.
Not. every separable Banach space has a basis, this deep result was proved only in
1973. However, it is a classical result that every Banach space contains an infinite-
dimensional subspace with a basis.

Among important possible properties of a basis is unconditionality. A basis is
unconditional if the norm of a vector essentially does not depend on the signs of its
coordinates. For instance, an orthonormal basis of a Hilbert space is unconditional.
An unconditional basis gives the space in question a certain symmetry, which greatly
facilitates its analysis. However, in general it is not easy to find such a basis, and
even some classical spaces (like L;[0,1] or C[0,1]) do not have it, although they
have a Schauder basis. It was hoped for a long time that every Banach space at
least admits a subspace with an unconditional basis. Only recently (1991) this
turned out not to be true as demonstrated by an example by W. T. Gowers and
B. Maurey ([GM]). They constructed a Banach space such that its all closed infinite-
dimensional subspaces do not have an unconditional basis.

We remark that the Gowers-Maurey space has a stronger property, it is Hered-
itarily Indecomposable. This means that none of its subspaces can be written as
a topological direct sum of two closed infinite-dimensional subspaces. Using simi-
lar methods, many examples with interesting properties were constructed; however,
their discussion is beyond the scope of this introduction.

Another circle of problems solved recently is connected with behaviour of uni-
formly continuous functions on spheres of infinite-dimensional Banach spaces. We
focus on the case of equivalent norms. A Banach spac: X is called distortable
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if there is an equivalent norm for which the maximal ratio of its values on the
unit sphere of the original norm cannot be made ar bitrarily close to 1 by passing
to infinite-dimensional subspaces. That is, there exists A > 1 so that for every
infinite-dimensional subspace Y of X, the cquivalent, norm oscillates at least, A
on the original unit sphem of Y. We will give the precise definition in the see-
ond chapter. In 1991, T. Schlumprecht built the first ex cample of an arbitrarily
distortable Banach space ([Sl]) by a construction related to the classical and well-
known definition of Tsirelson’s space ([T]). This result was the st arting point for the
Gowers-Maurey construction mentioned above and many other results. Tn partic-
ular, in 1992, E. Odell and T. Schlumprecht proved that, the space fo s arbitrarily
distortable, thus solving another long-standing problem ([OS]). This shows that

if a Banach space X is isomorphic to the Hilbert space g,

it does not necessarily
contain subspaces almost isometric to 5.

The geometric concept underlying all these results is the notion of an Asymptotic
Biorthogonal System introduced by Gowers and Maurcy. An Asymptotic Biortho-
gonal System in a Banach space X provides an infinite sequence of subsets of the
unit sphere of X which are weil separated and cach set almosi intersects eve ry
infinite-dimensional subspace of X. The presence of such a system in a Banach
space has many consequences for its geometry and hereditary properties. As one
of prehmmary results of [GM] Gowers and Maur(,y constructed an A%yumtul ic Bi-
ar bltrarlly dlstcxrtable They a.lsxj pmvcd that this mlpllcs poor unconditional prop-

erties Df every infinite-dimensional subspace. We will give precise statements in the

This brings us back 7o the unconditionality. It is usually difficult to determine
whether a given Banach space has an unconditional basis. There are very few
general conditions known which would ensure the existence of such a basis or prove
that the space does not have one. An important step in this dircction was made in
the early 70’s by Y. Gordon and D. R. Lewis, who introduced what is now called
Gordon-Lewis property (usually referred to as the GL-property). This property is
in an essential way weaker than the existence of an unconditional basis; however, in
many situations it is easier to handle. It also behaves well with respect to passing
to complemented subspaces. We remark that this is definitely not the case with an
unconditional basis: it is still an open problem whether a co ymplemented subspace

of a space with an unconditional basis needs to have an unconditional basis. The



GL-property became a standard notion and an eflective tool in the local theory of
Banach spaces.

The Gl-property was used by Gordon and Lewis ([GL]) to investigate uncondi-
tional nroperties of certain spaces of operators on £3. In particular, they showed
that the classical Schatten classes do not have the GL-property. We recall that the
spaces C[0,1] and L]0, 1] have the GL-property but do not have an unconditional
basis. It is not known whether the Gowers-Maurey space without an unconditional
basic sequence has a closed infinite-dimensional subspace with the GL-property.

Im this thesis we study the two notions we introduced last, in the context of hered-
itary propertics. In the second chapter we prove that an Asymptotic Biorthogonal
Systemn can be transferred to some general real interpolation spaces from the space
serving as a pattern space for our interpolation method. This generalizes an earlier
construction by Maurey ([M]). In the third chapter we construct a Banach space
all of whose closed infinite-dimensional subspaces fail the GL-property. Thus we

answer in the negative the questinn rai'sed by W. B. Johnson ([J]) whether every

1.b. Notation

We will use the standard Banach SPacc notation as found e.g. in [LT] and [T-J].
By Bx we mean the closed unit ball of a Banach space X, Sx stands for its unit
sphere. By a basic sequence we mean a sequence {Ei}_l_=1 in a Banach space X such
Z 8 e

and n. < m € IN. The smallEst such s the basu: constant of {e;}. A basic

Z a;e;

i=l

andl1<l<k<n<melN. A bas,u: sequence {e;} c‘; X is called a basis of X if
spati{e} = X.

that for some A > 0 we have i€;|| for all scalars ay,...,an

for all scalars ay,...,an

sequence s i€;

A sequence {e;} is ralled an unconditional basic sequence if there is K > 0 such
1

Z gia:ei|l < K Z a;e;

i=1

m € IV arbitrar y. The smallest such K is denoted by ubc{e;}—the unconditional

that ‘ for all scalars a; and signs g; = +£1,i=1,...,m,

basic constant of {e;}.
By an interval of natural numbers we mean a set {a,a+1,...,b} for some natural

numbers e < b. Let X be a Banach space with a bimonotone basis {e;}. For a vector
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z = (z;) with a finite number of non-zero coordinates we write ran(x) to denote
the range of z, that is, the smallest interval of natural numbers so that i ran(x)
whenever 2; # 0. By 2 < 3 we mean that ranges of @ and ¥ are successive in
IN, max(ran(z)) < min(ran(y)). We say that vectors Ty, ®ay ... Are successive if
i< Ta=<....

By a block basic sequence we mean a sequence of successive non-zero vectors
(which must be a basic sequence), the subspace spanned by such a sequence is
called a block subspace. For an interval E of natural numbers wo consider, the

corresponding projection in X and denote it by E again, that is, F(e¢;) = ifi e I
and E(e;) = 0 otherwise,

Let X,Y be Banach spaces. By an operator A: X — Y we mean i conlinuous
linear map from X to Y. Finally, unless specified otherwise, by a “subspace” we

mean a closed infinite-dimensional subspace.

=N



Chapter 2
Asymptotic Biorthogonal Systems
2.a, General Background on ABS

Let X be o Banach space and consider sets Ay, € Sy, A, C Bx- for ke IN.

Definition 2.a-1.

The sels A, Ay, k € IN, form an ABS--an Asymplotic Biorthogonal System—if

lhere is 8 > 0 and a sequence e N\, 0 such that the sels satisfy:

(a) Ag are asymplotic, i.e. dist(Y, Ag) = 0 for every k and every infinite-dimensi-
onal subspace Y of X,

(h) A} is S-norming for Ay for every k € IN, that is, for every x € Ay, there is
xt € A} such that X*(x) > 6,

(¢) Jorall k # 1 and @ € Ay, x* € A} we have |

This notion was introduced by W. T. Gowers and B. Maurey 1n [GM]. It turned
out, Lo be very important in recent developments of the Banach space theory because
of its conneetion with unconditionality and distortions. Gowers and Maurey proved
that if a separable space X contains an ABS, then given K, one can find an equiv-
alent norm on X so that for every unconditional basic sequence {zr} in X we have
ube{an} 2 I with respect to the new norm ([GM]). E. Odell and T. Schlumprecht
showed in [OS] that a separable space which admits an ABS can be also renormed,

of all n-dimensional Banach spaces with a monotone basis. N. Tomczak-J aegermann
observed that these copies are uniformly complemented.

Consider a numerical invariant a(-) of Banach spaces that satisfies the following
conditions:

—there is a function f: IR* = IR such that o(X) < f(d(X, Y))a(Y) for all
isomorphic Banach spaces X, Y, where d(X,Y) denotes the Banach-Mazur distance,

~—there is a function g: IRY — IR such that a(Z) < g(C)a(Y) whenever Z is a

C-complemented subspace of ¥,

~=there is a sequence of finite-dimensional spaces E,, with bimonotone bases such
that () = oo,

Many parameters used and investigated in the local theory of Banach spaces satisfy
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conditions of this kind. Representing the spaces E,, in asuitable renorming as above

we obtain the following theorem by Tomezak-Jaegermann:

If X is a separable Banach space that admits an A BS, then given K, there is
an equivalent norm || - | on X such that «(Y, || - ) > K for cvery closed infinite-

dimensional subspace Y of X .

Of equal importance is the connection between an ABS and distortions. Reeall
that given an equivalent norm || - || on a Banach space X, its level of distortion is

defined by

d(l- 1) = inf sup{l=ll/ Nyl =, 4 € Sy},

where the infimum runs over all closed infinite-dimensional subspaces Y of X, We
are interested in the casc when d(|| - [I) > 1, that is, || - || does not stabilize to a
constant on unit spheres of infinite-dimensional subspaces of X. If there exists such
an equivalent norm on X, we say that X is distortable. It was shown in the late 807
by Odell that the Tsirelson space is distortable. In 1991, Schlumprecht, constructed
an arbitrarily distortable space, that is, a space that admits cquivalent, norns whose
levels of distortion go to infinity ([SI]).

Notice that the existence of a distorted norm on a Banach space X implies the
existence of two well separated asymptotic sets in a certain subspace Y of X; the
existence of these sets in Y in turn implies that Y is distortable. Let us prove these

facts.

If || - || is a distortion on X, for every § € (0, 1) one can find a subspace Y of X,
sets A, B C Sy, A* C Sy-, and € < (2~ 6)/d(]| - ||) such that

—A, B are asymptotic,

—A* is 6-norming for A,

~|z*(x)| < € for every z* € A* and z € B. _

Indeed, given § > O,Iﬁx n > 0 to be determined later. Let A be the infimum of
numbers sup{|ly|l; ¥ € Sz} taken over all infinite-dimensional subspaces 7 of X,
Since || - || is an equivalent norm, we have that A > 0. Fix a subspace Y such that,
sup{llyll; ¥ € Sy} < A(1+mn). Thus ||y| < A(1+7) for every y € Sy. Note that for
|l > A(1—7).
Using the definition of the level of distortion we also find a vector z ¢ Sz such that,

every infinite-dimensional subspace Z of Y there is z € S5 such that,

z|
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Izl < (14 m)?A/d()f - [l). We define

A={z€Sy; ||zl > A1 - n)},

B = {z€Sy; Izl < AL +n)2/d(] - )}.
It follows from our observation above that both sets are asymptotic. Let

C = {z* € Bix .- thereis z € A such that 2*(z) = ||z},
AY = {y* = ."E*/”.‘T;‘*”i & Sy-; z* e C,.'},

norm of (Y, |- |-

Let 2 € A and let, 2* € C L such that 2*(z) = |lz|. From |- || < A1 +7)| || on
¥ we conelude that ||« [ly < AL+ 95)|| - ||+, that is, ||z*]l« < A(1 4+ 5). On the other
hand, |lz*)|. = z*(2)/||z]| = =] > A1 - 7).

It, follows that,
v'(a) =t @)/ lall 2 M=)/ (A1 + ) = 12
Also, for any y € B, |
o , , | 77 2
" < Myl - Bl B/l e < AL+ 202/ d() - /A = p) = (<11+- :;))d(ml* n

Choosing 7 > 0 small enough we obtain the desired estimates.

as above, we define

lyll = llyll v sup{z*(y)/e; =~ € A*}.

particular, if a Banach space has an ABS, then it is arbitrarily .listortable.

Gowers and Maurey observed that Schlumprecht’s space actually contains an ABS,
which is probably stronger than being arbitrarily distortable. This was an impor-
tant observation as, unlike norms, the sets forming an ABS can be often trans-
ferred to other Banach spaces if we have a suitable map. This is how Odell and
Schlumprecht showed that £ is arbitrarily distortable; they transferred an ABS

from Schlumprecht’s space into £,.

An ABS can also be transferred if the connection between the spaces is not given

by a map, but one space is determined in some sense by the other. This is the

case when spaces are built by means of interpolation, which we address in the next

section.



2.b. Interpolation Spaces And ABS

In this section we consider a class of general real interpolation spaces and prove
the existence of ABS on such spaces. Since we work in o general context which is

not covered by standard references, we first briefly prove some basic facts.

Let Xo, X1 be Banach spaces that are subspaces of some linear space (so that,
Xo + X1 makes sense). For this couple, denoted by X = (Xo, X1), let ¥X denote

Xo + X1 endowed with the norm

llz|| = inf {“ED“xE +llw]lx,; ®= a0+ 21,20 € X, 21 € X }.

Similarly, by AX we denote the space XN X, with the norm max(] - [ xos |- lx,)-

We also write X* for the couple (X3, X?).

Forie IR, let

K(t,z) = inf {||zo||x, + tl|z1||x,; = =20+ 21,2; € Xi}  forxe XX,

J(t,z") = max(||z*|| x,, tl|z* || x,) for z* € AX™.

These are the standard functionals used in the interpolation theory. For a fixed «
they define an increasing function of ¢; and for a fixed ¢ they define equivalent, norins
on £X and AX*, respectively. We also have (X, K(t,))" = (AX*, J(t~1, ")) for
every t > 0.

Fix 6 € (0,1). For every integer n € Z we define the following functions:

kn(2) = inf {279 ||zo|| x, + 27|24 ||x,; 2 = 2o + @1, ; € Xi} forze XX,
in(z*) = max(zgﬂllzz*llxg , 2(9‘1)”“1:*“;5;) forz € AX".

That is, kn(z) = 27K (2",z) and j,(z*) = 2°%J(2-",2*). Thercfore k,, and
Jn are equivalent norms on £X and AX*, respectively, and we have the duality
result (£X,k,)* = (AX¥,j,), in particular |z*(z)] € kn(x)jn(=*) for 2z € X and
z* € AX*

Let E be a Banach space of two-sided sequences and let {en}nem denote the
standard unit vector basis of E. Assume that {e,} is 1-unconditional, shrinking,
e < G”{u’ﬂ}ﬂEESHE for every

and also C-translation invariant, i.c. [[{entm}nez
{an}nez € Eand m e Z.



In particular, /7'is a discrete Banach lattice, and we will use the following standard
notation. For z = {an}nez € FE, we use |z| to denote {|an|}nez. Obviously,

|| € E and || |z| ||z = ||z]|g. The analogous convention is used in E* as well,

Definition 2.b-1.
Let X be a couple of Banach spaces. The K -real inlerpolation space Xg JE:K COnsists
of all vectors = € X for which {kn(z)}nez is in E; we define the interpolation

norm by ||z|lo,z;x = [|[{kn(7)}nezllE-

Theorem 2.b-2.
Let 0 € (0,1) and 12 be as above. The functor X — Xg p.ic is an interpolation

method of cxponent 0.

Proor: Let X be a couple of Banach spaces. It is easy to show that fg, EjK 15 a
Banach space. Using K(1,z) < min(1, s)K (s, ) we readily obtain

l2llsx < 127" min(1, 2%)}nlle - l12llo, z:xc

and the norm of {27"% min(1, 2")},, is clearly finite. Thus we get that Xomx CELX
and the inclusion is continuous. Using the inequality K (¢, z) < min(1, t)||z|| ,5 we
similarly see that AX ¢ X, o,;x and the inclusion is continuous.

In order to prove that fX_g E;k 18, indeed, an interpolation space of exponent 0, we
consider a linear mapping T: X — %Y such that T[ X is a continuous operator
into Y; for ¢ = 0,1. Let M; be the operator norm of T]X € B(X;,Y;). We want to
show that Tlx— s 1S an operator into Yo,k and that ||T: Xg px — Yo px| <

Let x € }f 0,E;I Using the boundedness of T restricted to Xy, X; we observe that
K(t,T(x)) < MoK (tM1/My,: z). Since K (s,z) is increasing in s, we may denote
m = [logy(M1/Mp)] + 1 and estimate k,, (T(z)) < Mg2™k, 1. (z). Since the basis
of I is 1-unconditional and C-translation Lzlvafiatlt, we get

IT@)g, .. < GMDZ""SHZPIIEE;E < C2O ML Mfu:zn:fmﬁ;

O
We will also require a duality result. For this, we define X *4 -,7 as the space
consisting of vectors z* € £X* that can be written as a sum z* = Z T} in X+



such that 27, € AX™* and {j,(z})}n € E*. For such vectors we define l*|lo, 2.0 a8
the infimum of [|{jn(2};)}ull£+ over all possible decompositions of 2* as above.

Theorem 2.b-3.

Let 0 € (0,1) and E be as above, let X be a couple of Banach spaces. If AN s
dense in _X;g‘E;]:{, then every u € iﬁiE‘;J defines an clement a* € (fg}"};;]\')‘ and
Foll | < llu*|lg. g=.s.

=" 1%, 5« < I1ule, 5=

ProoF: Consider u € X* g,g~:g and let u = Z ay, be a decomposition as in the

definition. We will show that this vector defines a continuous functional on the

)}n”E‘f

Indeed, let € AX. Then using the duality of k,, and ,j“ we obtain

space (AX, || - |lo,z:x), whose norm is bounded by C

1LE§5 HEE*'

< Han (@) }all - 1k (2) bl -

Let Ay, A}, be an ABS in a Banach lattice X. It is called unconditional provided
for every k € IN we have z € Ay iff |z] € A and z* € A}l o] € A} Let A}
denote {|z|; 2 € Ax}. In the following lemma we identify properties of unconditional

ABS needed in our next construction.

Lemma 2.b-4.
Let E be a Banach space with a 1-unconditional and shrinking basis {e, Ynem. Let
Ag, A, be an unconditional ABS in E. Then for every k € IN the Jollowing is lrue:
— giwen € > 0 and vectors uy,ug,... with disjoint supports and non-negalive
coordinates, there are numbers ay,...,ay > 0 such that dist (Y aiui, AY) <€,
— let 6 > 0 be the constant from (b) in the definition of ABS; if © € A, then

there is * € A}, such that z* has non-negative coordinales and z*(xz) > 4.

PROOF: Since dist(5pan{u;}, Ax) = 0, there are scalars ¢y, ..., ep and @ € A such
that || 3 c;u; —z||g < €. As u; have disjoint supports and non-negative coordinates,
we have for every coordinate l(z c:iui)nl =Y |¢:i[('u,i)n3 hence

[(3leilu; — ]:zzl)nl < (e — :1:)ﬂ|i

10



Therefore

[ Sleus Il < v — ] < e

and |z| € A} as needed.

The second property follows easily from z = |z for z € A} and

z*(z) < |2*](J=])-

O

We will now transler an unconditional ABS from E into ?g' E;k- The construction
was used by Maurey in [M. It is interesting to note that it depends only a little on
the interpolation couple X.

Theorem 2.b-5.

basis {en}nez is 1-unconditional, shrinking and C-translation invariant. Assume
that Ay, A} in an unconditional ABS in E. If X = ,_X-giE;;{ is an interpolation
space for some 0 € (0,1) such that AX is dense in X and X is totally incomparable
with X, then X admils an unconditional ABS.

Proor: Let 8’ > 0 and p, N\, 0 be constants associated with the ABS Ay, Af, we
may assume that 4 = max(u,) < ¢'. Define sets U;, U by

U - {m € £X; dist({kn(x)}n, AF) < ,Ji} (distance in E)

Ut = {:z::"' € SX*; there is {z}}nez C AX® s.t. z* = 3z%, {jn(z)}n € A:‘}

We immediately see that sets U; are uniformly bounded in X, and U} are uni-
formly bounded subsets of X* by Theorem 2.b-3. If we show the properties (a)-(c)
of ABS for these sets, we get in particular that U; are uniformly bounded from
below, we therefore obtain an ABS by normalizing U; and U?. The sets are clearly
unconditional.

We prove (c) with &; = 2. Let z € Uj, o* € Uf, i # j. Then there is {b,} € A;
such that |[{kn(2)}n = {du}nlle < ti < pming,j) and a sequence {z}%} € AX*

11



< 1 and

satisfying z* = Y a7 and {j,(a3)}, € Aj. In particular, ||{j,, (a

In

Sinlzt )b, < Kmin(i,j). Using the duality t:)f k, and j,, we can vstmmlv

|z (@)] < D lan(@)] < 3 Jn (@) ka ()
- ZJH(Z")bﬂ + Zjﬂ(mn (kn(jf) = by,)

< Mmin(i,5) + ”{Jfa(a:z)}n”E“ HEn(2)} — {bn}nlle < Emin(i, i)+

The property (b) will be established with the constant § = (0"~ p)/2. Let & € U;.
By definition, there is {b,}, € AJ such that {kn(2)}n — {bu}ulle < g By Lemma
2.b-4, there is {cp}, € A} such that 3 e,by > & and ¢, > 0. By the duality of
kn and j,, for every n € Z there is 2% € AX* such that, an (@) 2 3 ky(x) and
Jn(®n) = 1. Set 2* =37 cazy. Then {j, (caz?)}n = {cnln € Af, 50 2* e Ur. Also,

[ Y . 1 .7
z*(z) = chzﬂ(ﬂf) Z’j 3 ZE’" k,.(z)
= %Z‘:ﬂbn + %Z Cn’.(kn(z) - Z‘n)
2 . - %”{Cﬂ}nl E"I {k71($)}11 - {bu}n”E
2 (0" — p)/2.

It remains to show that (a) holds. Let ¥ be an arbitrary closed infinite-dimensional
subspace of X and let m € IN. Set v; = 2~iu,, /4. We will define inductively
vectors z; € Sy for which the corresponding sequences {kn(z:i)}nez in I have
essentially disjoint supports. To be precise, we also construct a sequence of intervals
0 =Go C Gy C ... of Z such that for every i € N, ||{k, (.1:1)}[5, ”F < 1;/2 and
ien(@) g, I < 472

Indeed, assume that we have vectors z1,...,z;,_; € Sy and intervals Gy C -++ ¢

Gi-1. Consider the equivalent norm ||z|l; = Y kn(z) on £X. Since this space
neqd;

is tatallv incomparable with X and, on the other hand, the injection i: X +— £X
is continuous (Theorem 2.b-2), there must be z; € Sy such that lz:ill: < /2. We
then let G; D G, to be an interval of Z such that Il{kﬁ(ml)}lg\gi e < /2.

Let F; = G; \ Gi—1. Clearly, F; are mutually disjoint subsets of Z and every
{kn(z:)}n is essentially supported by F;. For i € IN define ki = ky(z;) if n e F
a'nd ki = D otherwise. Then the vectors u; = {k,‘;}ng z € E have diajc’)int suppurts
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numbers ay,...,apn > 0 and {b,} € A, such that “{bn}n = > ai{ki}n

i=1

5 < lim /2.
Note that Ja;| < 14 p < 2.

M
We claim that 3 a;z; € U; Y. It is enough to show that

t=1

M ' M
“Z ai{ky}n ~ {kn(zaiﬂii)} “ < pm /2,
=1 i=1 nllE
that is,

“}ji (Li{kn(.’l:'i)}lm - {kn (iéa,-xi) }n“E < /2.

Let df, = kn(z;) — K for i € IN and n € Z. We have ||{di}n]lg < v;. First, if
n ¢ Gp then

M M M Mo
kn(z:ai:vi) < Zai kn(z;) < 2an(:vi) = Bng
i=1 i=1 i=1 i=1
If n € Fj for some 1 < j < M, then

|k" (iéai.’l?i) — aj kn(:ltj)‘ <k, (%ail‘i)
< Z a; kn (1'1)
i£]
M
<2 di.
i=1

M M
Therefore the n-th coordinate of {kn (Zai:ci) } = ai{kn (1:,,)}| . 16 always boun-
=1 ot

i=1

M
ded by 2 3 d},. By the 1-unconditionality of {e;},
i=1

M
'.; ai{kn(z:)}|f, — {kn (ig:laiivi) }n

M
E < “{zigldn}“”’g
Mo
<2 [{di}nlle
i=1

M
<2 Vi < pim/2.

t=1

This compietes the proof.
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Chapter 3
Banach Space without GL-Property Hereditarily

It is usually difficult to determine whether a given Banach space has an uncondi-
tional basis. There are very few general conditions known which would ensure the
existence of such a basis—indeed, in most cases this is shown by actually construct-

ing a concrete basis, and then proving that it has the desired unconditionality.

It is equally difficult to prove directly that a Banach space does not have an
unconditional basis. An important step in this direction was made in the carly
70’s by Y. Gordon and D. R. Lewis, who related the unconditionality of a Banach
space X to operator ideal norms of operators from X to f5. The property which
is now called the GL-property is in essential way weaker than the existence of an
unconditional basis, still it became a standard notion and an effective tool in Lhe

local theory of Banach spaces.

The GL-property was used by Gordon and Lewis ([GL]) to investigate uncondi-
tional properties of certain spaces of operators on Z5. In particular, they showed
that the classical Schatten classes do not have the GL-property. It is easy Lo show
that if a Banach space has an unconditional basis, then it has the GL-property;
Banach lattices also have this property. If X has the GL-property and Z is a com-
plemented subspace of X, then Z has the GL-property as well. Since the Schatten

classes fail the GL-property, they are not isomorphic to complemented subspaces of

Banach lattices. We recall that the spaces C[0, 1] and L]0, 1] have the GL-property
(as Banach lattices) but not an unconditional basis.

As noted in the introduction, it is not known whether the Gowers-Maurey space
with the GL-property. The properties of the Gowers—Maurey space were proved
directly by constructing, in every infinite-dimensional subspace, a sequence of badly
unconditional vectors. This would not help in showing the failure of the GL-property
that requires estimating certain operator ideal norms. We therefore need to find
some connection between the structures similar to the ones found in the Gowers—
Maurey space and the GL-property. In this chapter we find such relation and then
construct a Banach space all of whose subspaces fail the GL-property. This space
is also hereditarily indecomposable.

Defining the GL-property requires several preliminary definitions. Let X and Y

14



be Banach spaces and let r € [1,00). An operator A: X — Y is called r-summing

if there is €' > 0 such that for all vectors z4,...,z,, n € IN, we have

n \1/r n 1/r ,
(Z ||A(:r,)“§,) < Csup{ (Z |:v*(:1:i)|") ; o* € By }
i=1 i=1
The smallest, C with this property is called the r-summing norm of A and denoted
by m.(A).

An operator A: X — Y is called L,-factorable if there are operators u: X — I
and v: Ly — Y** such that 10 A = vou, where 7 is the canonical embedding of Y into
Y**. By L)-factorable norm -, (A) we mean the infimum of ||ul| ||v||, where u and
v give a factorization as above. Similarly we define the notion of an L, -factorable

operator and the norm 74, (A).

Definition 3-1.

A space X is said to have the Gordon-Lewis property (GL-property, in short) if
every 1-summing operator T': X v+ £y is Ly-factorable. In thal case we define the
GL-constant of X, gl(X), as the smallest number K so that v1(T) < Km(T) for
every 1-summing operator T: X — €. '

Now we state precisely two facts discussed above. If a Banach space X has an
unconditional basis {z;}, then gl(X) < unc{z;}. If Z is a C-complemented subspace
of a Banach space X possessing the GL-property, then gl(Z) < Cgl(X).

One of the main advantages of the GL-property is that in many cases it is pos-
sible to determine the order of quantities involved. It usually involves identifying
complemented finite-dimensional subspaces with dimensions growing to infinity, for
which we can estimate asymptotic order of the appropriate operator norms. In
particular, the GL-property became an important tool for ruling out the existence

of an unconditional basis.
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3.a. Lower Estimate for GI.-constant

In this scction we address the problem of estimating the GL-constant. of a Banach
space Y from below if we know that there are some badly unconditional vectors
in Y. As an inspiration we mention a beautiful result by C. Schiitt [Sii]. Let

Y1,1y- - > YM,p be an M x M matrix of vectors. We say that this matrix of vectors
M
> ERMOk Yk

WM
’ < lir“ > i—lk,ll‘lkil'
k=1 ! k=1

ak,t and signs eg, 1 = 1. Assume morcover that these voctors form a basis of

for all scalars

is K-tensor unconditional if '

a Banach space Y when ordered lexicographically into a sequence {mi} (that. is,

Y(k—1)M+L = Yk,1). Schiitt proved that we then have
unc{y;}M, < eK gl(Y),

where ¢ is an absolute constant.

However, these assumptions arc too strong for our purposes.  We will use an
approach of G. Pisier from [P], which allows us to deduce a stronger estimate of a
similar type.

First, let us recall several facts about Rademacher functions r; on [0,1]. They arce
defined by r;(t) = sign(sin(2‘rt)). We consider their products ry,(s)ri(t) acting on
[0,1] x [0,1], and we write such a product simply as riry, that is, (rare)(s,1) =
ri(s)ri(t).

For p > 1 let L, denote the space Ly ([0, 1] x [0, 1]) with the norm || - Ny =1l 1ls,-
By R, we denote the space span{rgr}, where the completion is in the norm I l,-
It follows from the classical Khintchine inequality that all spaces It for 1 € p < oo
are isomorphic; moreover, it is easy to check that {reri} is an orthonormal basis
of the Hilbert space Ry. For h € span{rgri} we have ||h]|; < [|hll2 < K(1,2)2||h]|
and [[hllz < [kl < K(2,7)%||h|l2 for r > 2, where K (1,2) and K(2,7) denote the
appropriate Khintchine constants.

Suppose that we have a Banach space Y and vectors Y- Yl pree UMM N
Sy-, let us denote G = (span{y; ,},| - [lv-). We consider any renorming of ¢
(we will call the renormed space Gz) such that there exists a continuous linear
retraction J: Y* — Gy, that is, there exists a linear map that is continuous as a
map from (Y*,| - [ly-) to (G, * |lg,) and it is the identity when restricted to ¢
as an algebraic map from Y* to G C Y*. For these two norms on S]}%Lﬁll{?j;;‘l} we
will consider the following constant: EDER(Ld(Z]gJ, Gz,G) is defined as the smallest,
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C > 0 satisfying the following inequality for every choice of signs ¢ = *£1:

(//“ i ’/’k,l7'k(3)n(l‘)?/;:‘,“iz ds dt)% < C'(//” i rk_(s)*r,(t)y,:f‘,”zds dt) %,

k=1 k=1
We then have the following estimate:

Theorem 3.a-1.

There is an absolule constant C > 0 such that

uncraa(Yr,1, Gz, G) < CllJ|| In(M) gI(Y).

Proor: Sct ¢ = 2In(M) and r = 2¢q. Fix arbitrary signs ¢y ; = £1. We consider
an operator w: Ly — Gz defined by w = Y ¢ iy ® Yi1» that is, for f € Ly
we let w(f) = Z‘/’k,l(ff ri(s)ri(t) f(s,t) ds di)yz, As in [P], using a well-known
estimate for the 7-summing norm and then Maurey’s generalization of Grothendieck

theoremt on operators from Lo, to a space of cotype g, we get
r 1/r o -
([ trarerui[ dse)” < mofw) < GG @ ryrow)
. Z

where Cy(Gz) is the cotype constant of the space Gz and K (g, 7) can be taken equal
to ¢(1/q)(1/q — 1/r)~Y/"" with ¢ > 0 being an absolute constant (cf. e.g. [T-J]).
Substituting the value for r we get K(q,7) = ¢(1/q)(1/29)~Y"" < ¢(1/9)(1/2¢)~! =
2¢. Since r > 2, we can finally write

([I1Z teamma|], dsde)™ < cCuGarrotw). M

We denote by w the same algebraic operator as w, going into Y*, w: L. — Y™*.
Then 1D*|Y: Y — L, is given by the formula 12:*[}, = > PkaYk @ Tk71, that is,
W (y)(s,8) = 3 beawi  (¥)ra(s)ri(t) fory € Y. Observe that w = J o1, where J is
the linear retraction, and also that (1D*|y)* = 1. Thus

Yoo (W) = Yoo (J 0 W) < Yoo (W) ||J]|| < ”J”"Yl(i’*ljf)

Formally @*{,, acts from ¥ to L,, but it takes values in R,. Consider an op-
crator w: Y — Ry which is algebraically the same as zi:*ly Let A:Y — L,,

B: Ly — Rj be an arbitrary factorization v = Bo A. By B': L; — R, denote
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the same algebraic operator as B but acting into R,. By the Khintchine inequal-
ity discussed above we get ||B'|| € K(2,7)2||B|. Since @ y = B'o A we have
Y1(@*|y) < K(2,7)2||A|| | B]l. Since uw = Bo A was an arbitrary factorization, this
yields *’yl(*zb*l};) < K(2,7)%y1(u). By the definition of the GL-constant we obtain

that vy (u) < gl(¥)m; (u), which implics
Yoo () < K (2, 7Y I]| (Y )y (1), (2)
Finally, definc v: Y = Ry by v = 5 Yk @ 11y For y € ¥ we have
e, .. 2 1/2
luwlle = ( [[]3 dasi draon ] asae)
— . o) 172 - . \ 1/2
= (ClnaiaP) " = (T lwtal?)
I

<K1,27 [[|Sstuwraan

dsdt = I£(1,2)|lv(y)]s

and therefore

> lluw)llz < K (1,22 S o)y
< K(1,2)%m (v) sup{ Sy (0)]; 9" € By-}.

This implies that m(u) < K(1,2)%m; (v). Since v is taking values in subspace of

Ly, we can estimate its 1-summing norm (as in [P]) to get

% [JIS i, v ([ o)
Therefore

mi(u) < K(1, 2)%//“?7‘1:71?1;‘,”1 ds dL) 1/2. | (3)

Now we put the estimates (1)-(3) together. First, we can incorporate the constant,
K (1,2)? into c. The space G z is M2-dimensional, therefore we can use the classical
estimate for the cotype constant C\(Gz) < (M?)V1 = M2/2WM) ¢ we also use
a classical estimate for the Khintchine constant, K (2,7) < =20 M (¢f. cp.
[T-J]), and finally we get that

unCrad(Yi1, Gz, G) < C||lJ]| In(M) gl(Y).
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The connection with unconditionality becomes clear when we observe the simple

inequality

Observation 3.a-2.

For arbitrary signs ¢ = 1 we have

mm Eu/, Dk 1Y, < unered(ye 1, Gz, G , max Ekum
kYKt , Yeu ) k!

e =1 kp==1
kM ky

Thus, if vectors yi 1,47 o, .. -y Y. a taken as a sequence are badly unconditional
for some signs ¢ = +£1, and vectors Yi,10-- Yo and 1,197 1, - - S OM MY M
are tensor sign-unconditional (i.c. the condition above with ax; = 1), then we get
a lower cstimate for gl(Y).

The interplay between the linear structure and the matrix structure of vectors will
be also used in the next section. We will frcely switch between the matrix notation
{w1}¥_; and the linear notation {w;}M for vectors and functionals, with the
correspondence given by the lexicographic order, that is, Wi = Wk-1)M+1- We
will often write N for M2.
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3.b. Definition of the Space And Some Lemmas

We now restrict our attention to a class of spaces whose norms salisfy a lower
estimate connected with a certain function f. First lot us specify the set of funetions
we consider:

Definition 3.b-1.
By F we denote the family of all functions f: [1,00) = [1,00) satisfying the follow-
ing properties:
(1) f is increasing and f(1) = 1,
; o ) = - eve
(2) ml_l_)rglo(JJ [f(x)) = oo for every ¢ > 0,
(8) [ is submultiplicative,

(4) z/f(x) is concave and non-decreasing.

It is easy to observe that for instance f(z) = log,(a: -+ 1) satisfies the above
conditions.

Definition 3.b-2.
Let X be a space with a bimonotone basis and [ €F. We say that X salisfics a

lower f-estimate if for every vector x and successive intervals Ey<. . < E, of IN
we have

R 1 k¢) ":1‘
llz]| > }-(T);”Ez I

Let f be from F. By X; we denote the set of all Banach spaces with a bimonotone
basis that satisfy the lower f-estimate. We also define M r(n) = f71(36n2). Now
we identify several structures that are important in this context.

Definition 3.b-3.

Let X be a Banach space with a basis. A vector z is called an 1 -vector with

1
constant C if there are successive vectors T, < --- < Zy such that x = 3 x; and

iz=]
llz:ll < Cllzll/n. If moreover ||z|| = 1, then it is called an 2 ~average. The number

n is called the length of an £}, -vector, resp £7 . -average.

Letfe Fand X € Xy. Letzy < .. < zn be norm-one vectors in X that are also
1% -averages with constant (1 +1n). We say that this sequence is a R.LS. (Rapidly
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Increasing Sequence) of length N with constant (14n) if the sequence {n;} satisfies

the following condilions:
1479 M;(N/y)
1) ny 22
o DN

(2) 2y/f(niy1) = |ran(z;)| fori=1,...,N - 1.

A functional z* in X* is called an (M, f)-fe .:rm if ||*]] € 1 and there are successive

unctionals 23 < - < a%, such that z* = 3.zt and ||zt < 1/f(M). M is called
] M = i

1=

s length.

Observe that il we take functions f,g € F such that g(M) < f(M), then ev-
ery (M, f)-form is also an (M,g)efnrm Consider X € A for some f € F and

take successive functionals -f: { z3y € Bx.. From the lower f-estimate it
immediately follows that z = Z ;7 is an (M, f)-form.

I, was proved in [GM] (as Lemma 3, 4, 5, and 7) that the structures defined above

have the following properties:

Lemma 3.b-4.

Let X € Xy for some [ € F. Then for every block subspace Y of X, everyn > 0

and n € IN there exists x € Sy that is an L7} -average with constant (1 + 7).

Lemma 3.b-5. N

Let X € Xy for some f € F. Let zy < --- < zn be vectors in X and z = i zi, let
€ X* and E be an interval of IN. We have the following: =

(i) If x is an £, average with constant (14 17) and z* is an (M, f)-form, then

]+77

o (B2)| < 78

~—<(1+2M/N).

(i) If x1 < -+ <zy is a R.IS. with constant (1 +n), =* is an (M, /F)-form and
M > Ms(N/n), then
|2*(Ez)| < (1 + 2n)

Note that we can use (ii) for (M, h)-forms whenever h € F satisfies h(M) >

J (M), since such a form is also an (M, \/f)-form as noted above.
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Ty N )
Having a fixed R.IS. 2y < - -+ < oy, where 2 = 3 @y are £14 -averages, we define
' t'::li o o
a function of fractional length of an interval £ ¢ IN. Set, jp = max{s; Fay # 0},

ig = min{i; Ex; # 0}, and sp = max{#; Exj. # 0}, rp = min{t; Exy, 0}
SE 'K
We define A(E) = jp —ip + & — 'E

Njp N

Lemma 3.b-6.

Let X € Xy for some f € F. Let h € F be such that h- > /. Letay < -+ < N
N
be a R.LS. with constant (1 + 7). Set y = o iwi, where ¢y = 1. If for cvery

i=1
interval B of IN with 1 < A(E) we have
| Byl < sup{lz*(Ey)|; «* is an (M, h)-form, M > 2},

then

N
lyll < (1 + 271),L(N)

This lemma was enough to establish an upper estimate in [GM]. Tts proof went, by
induction on A(E). Unfortunately, we will see later that in our space we cannot, hope
to have its assumptions satisfied. We therefore need a lemma of more complicated
form, however, it will be clear from its proof that it actually describes the sane

phenomenon:

Lemma 3.b-7.
Let X € Xy for some f € F. Let g and h be functions from F such that g, h >
and h = g on [1, Ky for some Ko > 1. Letz1 < --- < zn be a R.I.S. wilh constan!

(1+m7). Sety = id)ixi’ where ¢; = +1.
If for every int;;val E of IN with 1 < A(F) < Ky we have
1Byl < sup{|z*(Ey)|; =* is an (M, g)-form, M > 2}
and for every interval E of IN with Ky < A(E) we have
|Ey|| < sup{|z*(Ey)|; z* is an (M, h)-form, M > 2},

then ||Ey|| < (1 + 277){(/1/\((—127))—) whenever A(E) > 1, in parlicular

N

< ——
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Proor: It is casy to observe that ¢z < -+ < ¢dyzy is a RIS, with constant
(1 + 7)) again, so we can assume that ¢; = 1. The proof goes by induction on
A(12). First, if A(E) < K, then only (M, g)-forms appear in our assumption. By

Lemma 3.b-6 we therefore get || Ey|| < (1 + En)%, which is what we want as
9(M(E)) = MA(F2)).
If A(F) > Ky, we repeat the proof of Lemma 3.b-6, now with the function h.

O

This concludes the preliminary work. Fix numbers p,q € IV such that 0 < p/g < %
and set € = {7’ This € will be fixed throughout the rest of our construction. We

claim the following:

Proposition 3.b-8.

There exist funclions [,g,he € F, a number K > 0, an increasing sequence
J = {jx}i2, of natural numbers, and functions hy € F for N € J such that
the following hold (we denote K = {jox—1}52;, £ = {Jar}i2,):

(i) 1(z) = logh(z +1) and g(z) = log(z + 1) on [K,00), g > V7.

(i) g < ho < f, ho=f on [n34,n] for allm € L and hg = g on K.
(iii) for N = ji, € J the function hy satisfies hy = g on [1, N*/*|U [jx41,00) and

9 < hy < f. The sequence {hy} satisfies Ngéﬁm(m) = c0.

(iv) K < min(J), (2/€)*% < min(J), and N, N/ are natural numbers for
NeJ

N4/5
(v) 2N3/1 4 4 < —I-V—L;L for every N € J
JNA7E =) "
(1-+¢) M, (k/e)

A

(vi) (1 4—25)%‘@ <efk?, - - < e/k?, and j§,{_64 >2 for every
2k “*

2
f(iar) ~
ke IN
(vii) 2N/M¢/%% <1 and M > M;(N/e) for M > N € J

Note that (2) in the definition of F (Definition 3.b-1) shows that (v) is again a

condition on min(.7).

The proof will be postponed until the last section of this chapter, since it is a
rather complicated but elementary real analysis. Let us shortly comment on why
is the construction of hy difficult. In [GM], functions similar to our kg and Ay are
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constructed. The main difference with condition (iii) above is that in the case of
[GM], the functions corresponding to hy for N = Jk € J are required to be equal
to g only on [1, jx—1]U[jrt1,00) and then to be of higher order then gl ge. 10T s
sufficiently lacunary, that is, the gaps between ji—, and j, are large enough, such
functions can be constructed using relatively soft estimates. However, this requires
the gap after jx_1 to be at least e/*-'. On the other hand, here we require that,
hy = g at N*/® and that hy(N) is already large cnough to beat ¢(N) by nich
more than In(N). This forces us to analyze in detail the construction used in [GM]

in order to get sharper estimates.

Now we define our space.
Let © denote the set of all finitely supported scalar sequences with rational coor-
dinates of magnitude less or equal to one. Fix an injection o from the set of finite

sequences of successive vectors from @ to £ satisfying the following property:
If {2}, are successive in @, z=Y_ 2, then sf(o(z),. ., 2,)%) > | ran(z)].
In our next definition we will use the agreed upon identification of linear and

matrix sets of vectors. For a normed space X = (cgp, || - ||), 2 € IN and n € K we
set,

m
A (X) = {f(m)_IZa:;; 2y <-or < ap,, x5 € B;{-}
j=1

X o 3 F o F * R 'AR
Fn _—_{(m’{,, . '1:1::1); m: << .’17:, €9, T € A;g,, (-X)! i € Aﬁ(;ﬁ!‘i.“,:n;)("}‘)}

* 1 * * L# - ,
Bn(X) = {Hn_)k;IEkUlmk’l; (2:1, i,ﬂzﬂ) & Ff, Eg, i = j:l}.

Sequences from I'¥ are called special sequences of length #n, functionals from

B}, (X) are called special functionals of length n.
We define implicitly
1 n
lz|| = ||$||wVSup{m Z |E:z||; By < -+ < B, intervals and n > 2}
i=1 '

Vsup{|z*(Ex)|; * € Bi(X), k € K and E interval}.

The existence of such a norm is standard by now, see e.g. [GM]. Note that this
definition gives a norm on cgp in which the canonical basis {¢;} is bimonotone. Let,

X be the completion of (coo, || - ||). We immediately get that X € X,
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. 1z 0o - ,

Note that an expression o) 2. || Eiz|| from the definition of our norm can be
) i=1

obtained as z*(z), where z* is an (n, f )eft)rm. Indeed, we can take norming func-

, 1 o . -
tionals = for ||[F;z|| and set z* = -==-=)- x}; by our observation, this is an
n i=
(n I)- ﬁm(,tional On the other hand, for Lvery (n, f)-form z* we have |z*(z)| <

f( 3 2 Z | Z:x||. Thus

lll = llzllooV sup{Ja* (@)f; =* an (n, f)-form}
v sup{|z*(Ez)|; z* € Bi(X), k € K and E interval}.

Note that special functionals are (M, g)-forms. Consequently, in our space X the
norm of every z € X is given by [|z||co, by some (n, f)-form or by some (M, g)-form.
Since every (n, f)-form is also an (n,g)-form as g < f, we have that the norm of
cvery x € X is given cither by ||z]|e or by (n, g)-forms.

This will give us an upper estimate for the norm using Lemma 3 b-6. Let z; <

Z ;. Let E be

- < zy be a R.LS. with constant (1 + n), where 7 < §, set -

an interval with A(F) > 1. We observe that |Fz|l. < HE;;:” Indecd since every

x; is an £} -average with constant (1 -+ 7), we get

1+n 147 14 n)
oo < 40 < 122 QT
' ™ 2

On the other hand, it is easy to see that [|Ez|| > n if A(E) > 1, because E covers
big parts of some £}, -averages. We used here that n < 1/6.

This shows that when dealing with the sum of a R.L.S., we need not consider
the supremum part of the definition of the norm. This immediately leads to the

following estimates {we always assume 7 < %)

Corollary 3.b-9.

, , N
Let 1y < --- < zy be a R.IS. with constant (1+1n). Setx = Y z;. Then we have
i=1

If there its n € L such that N € [n 3/4 ] then

lell < 1+ 20) 77



Proor: Assumptions of Lemma 3.b-6 are satisfied with (M, g)-forms, thus the first

claim follows.

To prove the second part we use the function /iy from Proposition 3.b-8 (ii). We
claim that for an interval E with A(E) > 1, the norm | B|| is done by (M, hy)-
forms. We know that it cannot be given by its supremum norm. Then there are
the sums that can be identified with actions of (M, f)-forms, but these are also
(M, ho)-forms as hy < f. -Fimﬂly, the special functionals are (M, g)-forms, but, in
this case M € K and hy = g on K. Applying Lemma 3.b-6 we get. the statement, as
ho = f on [n3/4 n].

|
Corolla ry 3.b-10.
Let z * <N be a R.IS. with constant (1 + 1), where N € L. Lel M = N7,
Then Z z; s an L34 vector with constant (1 + G4n).
i=1
] o ) Jm N
PROOF: Set m = N/M = N'"". Let y; = > @, denote @ = 3 .
i=(j=1)mn-+1 i=1
Then z = Z yj. Note that every y; is a R.LS. of length m € [N%/4, N], therefore
i=

ly;ll < (1 + Qn)f( ) by Corollary 3.b-9. On the other hand, by the lower J-

estimate, ||z|| > ——. Thus we get

oy
m_J(N) I(N) Jl2]
sl < (14 2m) 70 SR ol = (14 2 ZL T

But for our f we have f(m) > (1 — 7)) f(N), also (14 29)(1 — )~ < (1 + 64y)

using 7 < %. Thus we get ly;ll < (1 + 6477) =l , that is, = is an M -vector with
constant (1 + 647).
Ol

In the following lemma we find one of the crucial tools for our further computi-
tions.
Lemma 3.b-11.
Let M,]\ﬁffé L and M,M > jan for some N € IN. Let Ty < <umpy bea RS

— M

of length M with constant (14 ¢/64) and z* be an (M, f)-form. Set z = 3 xi and

z=g/||z||. If M # M, then |z*(E2)| < e/N? for every interval E le IN.
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PRrRoOOF:
If M > M then from (vii) in Proposition 3.b-8 we get M > My(M/e). By Lemma
3.b-5 (ii) it follows that [z*(Ez)| < (1 + 2¢). But from from the lower f-estimate
M J(M)
, 80 |z* (E2)| < (14 2¢)°
from M = jon and (vn) in Proposition 3.b-8.

. The estimate then follows

we have that ||zf| >

For the case M < M we use that z is also an &Y, -average with constant (1 + ¢),
where N = M¢/6% (Corollary 3.b-10). Therefore (vii) in Proposition 3.b-8 implies

gjj\\;j 1. Lemma 3.b-5 (i) shows that |z*(Ez)| < (1 +¢€) Again, M > Jan

2
F(y’

and the claim follows from Proposition 3.b-8, (vi).
0

Next arguments require an additional “matrix-sequence” notational convention.
For a subset 7 € {1,...,M} x {1,...,M}, let I ¢ {1,..., M2} denote the same
set under lexicographic ordering, that is, I = {(k — )M + ; (k,1) € I}. Note
that T is an interval if and only if I consists of several (or none) full rows and two
possible rows that are not complete; from these incomplete rows, I contains an “end

interval” of the first row and an “initial interval” of the second.

For M € IN we consider the set ®ps of all sequences of signs {pr. = ﬂ;l}{‘;ﬂzl

| 3 enndng| < amr?
(k,Der

for every choice of signs ex,1; = +1 and every set I C {1,...,M} x {1,...,M}
such that I is an interval.

Note that if a sequence of signs {¢x,} belongs to ®,s, then for arbitrary signs

€k, = £1 we have {c;bkilskzq}k 1=1 € Pur.

Lemma 3.b-12.
For every M € IN we have ®pp # (.

PROOF:
A simple probabilistic argument shows that there exist signs ¢y ; = +1 so that for

arbitrary ey, 1y = £1 we have

‘ Z Ekuzrzﬁkill < 2M3/2,
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Indeed, let ¢y = 1 be M? independent Bernoulli random variables, that is, every
$r, has the distribution IP(¢y; = 1) = P(prp = —1) = 1/2. The well-known tail
estimate states that for arbitrary scalars {ou 1} and every ¢ > 0 we have

H’({IZ g | > f}) < 2cxp(—t.2/2Za'f,‘,).

It follows that for fixed signs ey, 1 = +1, k,l=1..., M we have

P({IZ eku”/)k'gl > t]\/.f}) < 2exp(—t2/2),

we used g, = exyy /M. We may assume that e; = 1, hence 2231 possible choices
of e, vy remain to be considered. Thus we get

P({|Zskw¢k,l| > tM for some g, 1/,}) < 22M“120xp(—t2/2).

Setting ¢ = 2M'/2 we get 2M In(2) — t2/2 < 0, hence the last probability is less
than 1. This means that there exist a choice of signs ¢y = +1 which doces not,
belong to the set considered, hence for all g, 1y = +1 we get, IZ ekuu/)k,ll < 2M¥2,

So now assume that I = {(k,I); ke J, 1 <1< M} for some J C {1,...,M}. For
any signs ex,v; = *1 let €}, = ¢y, for k € J, €, = —€x for k ¢ J. Then by the first
estimate we get

M M
1
l E ExUPr| = 5' E ExPr + E ELVM/)k,tl <2M32,
(keI k=1 k=1

Finally, let I C {1,..., M} x {1,...,.M } be such that T is an interval. Denote by
J the set of all rows contained in I and let I’ = {(k,1); ke J, 1 <1< M}. As we
observed, [T\ I'| < 2M. Thus

, Z E’“"‘¢’°”l < l Z Ek”“/’kyll + , Z 5kvt¢k,zl <2M3E oM < AMY2,
(ke (k,l)él’ (keI

[}
As in [GM], to prove our main result we will consider N successive vectors of a
complicated structure described in the next lernma, let z be their sum. In the space

constructed in [GM], the norm of Ez for intervals F with A(EE) > 1 could not be
given by special functionals of length N. This implied that ||Fz{| was realized by
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(M, h)-forms, where I € F was a function satisfying f > b > /f, h = g on K\ {N}
and h(N) = f(N). Thus an upper estimate for ||z|| followed from Lemma 3.b-6.

In our space we can exclude special functionals of length N only for A(E) large.
This difliculty is overcome by using the more complicated Lemma 3.b-7.

Lemma 3.b-13.

Let N = M? € K and yi,.. Uy be a special sequence of length N, that is, each
yi is an (My, [)-form, My = jan and M;y1 = o(y},... yUi). letzy < -+ < 2y
be a sequence of vectors such that each z; is a normalized R.1.S. of length M; with
constant (1 + €/64). Assume that |3 — y}(2:)| < 1/N for every i. Then for every

{1} € Pas we have

|32t < 020720

k=1

PROOF:

Set z = ) ¢ 2ky. First we show that for any interval E with A(E) > N4/5,
the norm ||Ez|| cannot be given by special functionals of length N; more precisely,
there is § < ||Ez|| such that for every interval F and every z* € B} (X) we have
|z*(FF(Ez))| < 4.

Fix an interval E with A(E) > Ky. Then jg —ig — 1 > N*/5 — 2 is the number
of vectors zy; fully covered by E and we know from the lower f-estimate that then

~ip—1 N4/5 9
f(_?E=ZE 1) = f(N/E -2)

1E2]] =

I

On the other hand, let 2* = g(N)~?! >_€xMz; be a special functional of length N
and let I be an arbitrary interval. By the definition of I'Y we have 2} € A, (X)),
and there is ¢ so that y} = 2{, ... ,yf_, = z/_,, but 2} # y*. First note that
[1/2 = 2}(2;)| < 1/N for 1 < i < t. Next, every 2! is an (l\z,f)éfarm, My = jon
and .ZTff.H = 0(2},...,2!). Observe that M, = Jan for 1 < 4 < N. Indeed, by the
deﬁ"nitinn of o we have ::T(zf, I :‘_ ) > Iran(g§)] > jgjv as :51 € A;EN (X) Since

M, ?é j\l Thelefam Iz (FEE:,)| < g:/N2 fcn‘ i % jori=g>t by Lemma 3. b 11.
Clearly |27 (FEz)| < 1 for every 3.

Set J={j; 1<j<t, FEz; = z;j}and I = {j; 1< j < t, FEz; # 0}. Let
J and I be the corresponding subsets of {1,...,M} x {1,...,M}. Since FE is an

29



interval, [I'\ J| = |I\ J| < 2. Thus

|2*(FEz)| = |(g(N)™? Zé‘szz,z) (Z bk FEz )]
<| Xt FEa)+ Y e (PR + Y e

(ke (kD)EINJ
1 1 -~ A \ £
< 5' Z ¢k,tskml + Z N + L |25 1 (FEzy )| + Z NG
(ke (k,1yes (kIS '
1 5 .
< 5' > braekm|+ 14246 < 2M32 4= aN 4y,
(kl)ed
N4/5_ 9

Since 2N3/4 4 4 < m by (v) in Proposition 3.b-8, the estimates above

yield that |{2*(FEz)| < é§ < ||Ez|| for a suitable 4.

Now the required estimate will follow from Lemma 3.b-7. We know that the
norm ||E%|| is not equal to the supremum norm. As we observed above, for an
arbitrary interval E' with A(E) > 1, the norm ||Ez|| is given by some (m, g)-form.
Furthermore, the first part of the proof shows that if ME) > N5 = K, then
| E2]| has to be realized either by a special functional of length 1 # N or by an
(m, f)-form; it follows that in this case the norm |1 B2]} is given by some (m, hy)-
form. All this shows that the assumptions of Lemma 3.b-7 are satisfied and so our
conclusion follows.

]

Note that in the situation of Lemma 3.b-13, we can consider a special functional

1 M
T = —— ExVYr ;- We estimate
g(N) k,tz=1 ol
M M
1 1\ N
“ &'kl/[Zk,[“ > IB*( Z €kU[Zk,l) > (—- — -——) —
k=1 k=1 2 N _!](N)
M N
Together with Corollary 3.b-9 it shows that “ > ekz/lzk,,” RS ———,
k=1 (](N)
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3.c. Subspaces of X Do Not Have GL-Property

Let Y be an infinite-dimensional subspace of X. We recall (Lemma 3.b-4) that if
X € &y for some f € F, then in every infinite-dimensional block subspace Y of X
we can find an £, -average with constant C for any n and C > 1. In particular, in
our space X, for an arbitrary block subspace Z of X, 7 > 0 and N € IN, there are
vectors 3 < -+- < £y € Z forming a R.LS. of length N with constant (1 4+ 7).

Fix N € K. A standard approximation argument shows that for every 5 > 0 there
is a block subspace Z of X such that for every 2 € Sz we have inf ||z—y|| < n, where
the infimum runs over all y € Sy. Therefore, we can repeat the Gowers-Maurey

construction inside Z and find by induction vectors yy,...,ynv € Sy, 21 < -+ <
Zn € Sz, and functionals y,...,yk € X* with the following properties:
-yl € Qs an (M, f)-form, |yf(z) — 1/2] < 1/N; My = jan and My =
a(yi, - ui)
= z; is a normalized R.LS. of length M; € £ with constant (1 + £/64)
- ran(y;) = ran(z;)
— |lvi = 2|l <e/(12N?) and (1 +¢€/3)" < ”Z ¢izi
arbitrary ¢; = £1.

< (1 +¢/3) for

/I

Note that from the conditions on M; it immediately follows that {y;} € I'%,
that is, it is a special sequence of length N. Also, each z; is an Eﬁ average with
constant (14-€), where N; = M; /64 (Corollary 3.b-10), and § f(Niy1) > | ran(z)]
by the definition of . Thus the vectors z; < -++ < 2y form a R.LS. of length N

with constant (1 + ). We can also see that y; and 2; satisfy the assumptions of

Lemma 3.b-13.

Let us define the following spaces:

F = (span{y:}IL 1, | - l|x)

F* = (span{y? HLy, Ily*ll - = max{y*(4); y € Br})

G = (span{y; 1L, " lle = max{y*(y); y € By})

Gr = (spanfui e I o = max{ &), g, = 11}
y (20 diz)
1> bl

F is a subspace of ¥ and G is a subspace of Y*; the spaces Gy and Gz are two

¢:,—,:fi1})i

Gz = (span{y{}i{;l, ly*lla, = max
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renormings of G. We claim that || - |la, < (1+¢)]l - |la,. Let us briefly outline the
proof.

For simplicity, write v = e/(12N?) and 5 = g/3. Let y* = S by! € G. Clearly,
ly*|l < Nmax|b;]. Next, pick 1 < k& < N such that max lbi] = |be|. Set g; =
sign(y*(y:)), and let y = Y &;%;. Then ||1/|| < N and hence

Iy*lley 2 Ty* @I/l 2 1y* @l/N = (5 )] = Wl = 2e)l)/N
> [bl(1/2 = 1/N — Nv)/N = b (1/2 - 1N — e/(IEN))/N.

Now pick z = 3 ¢iz; with ¢; = £1, such that Iy ||G/ = y*(2)/|lz]l. Setting
Y= Zqﬁ,zj, we have [ly|| < (1 +n)|lz||, also note that |jy|| > 1. ’l hus
Iyl < ” i = (O 4 Iy My = 2:0) < (40 (e + (N bel) (V)
N2y

< (1 +7’) (1 + 1/2 _ l/N—- E/(12N-))”y “GY'

Since N € K is large, we note that 1/2 — 1/N — ¢/(12N) > ]/?1, also ANy = ¢/3
and (1+¢/3)? <1+¢, so we conclude that [|y* ez < (L+e)lytllay -

Note that we only used the lower estimate for IZ d),-z,-” / 3 (/),-yi” in this proof.
Using the upper estimate we similarly show that ||-||g, < (1+€)]|- llgz, that, is, these
two norms are (1 + ¢)-equivalent. This is not needed to rule out the GL-property,
but it will be used to give us some further properties of the space X.

The space F* is isometric to the space Y* /P, in particular the quoticnt map J
from Y* to F* satisfies J(y7) = y| .. From [I-lla, < (1+€)]|- iy < (1+€)]|- -
we have that there exists a retraction J: Y* — G such that 1] < (1 -+ ¢&). Thus
we use Theorem 3.a-1 and Observation 3.a-2 to get for arbitrary (/)k; = 1

M
i o <a+ec ; , “ ’[
qg}lznil” ;1 EkV¢¢k,tm,z|I o, = (1+¢€)CIn(N) gl(Y) sAT, ax Z EXMYR

On the other hand, fix any sequence {¢ry} € ®pr. For every ex, i = 41 we
see that z;, ¥y}, and {sku,¢k,,}£{l=] satisfy assumptions of Lemma 3.b-13. Setting

M N _ 7
z= ) exliruzis we get ||z]] < (14 2)-——~—. By our construction we have
k,l=1 h‘N (N)
M
2 exUbkayi (z) > N(3 — L), so by definition
k=1

“ Z ExVIPi 1Yf, 1“ 2 ngVWk,ty,:’,(z) > hn (N) (1 __]_) ~ ,’FN(N)

2] S (1+2)\2 N/ = a0+ 2)

k=1



. - hn(N
Thus mm{“Leku,(/)k,ly,:’,H(;;z; Ex, v = %1} > 4—(—1%

We also have

‘ > ey '“x < g(N) for every eg, 1 = %1 as {y!} is a special
k=1 -
sequence. Using ||+ |lg < ||+ ||x- we get max{|| 2 exvyrllas ex, v = 1} < g(N).

Comparing the upper and lower estimate we get that

ILN(N ,
2 4(1 + 2e)g(N) e;\l,gimil ’ Z ERVIYL, z“

min “E EL.VI‘/)LI7/LI

g4y ==%1

Conscquently, there is a constant ¢ depending on € only so that
| Y, g A

hn(N)
8(Y) 2 ey

Since the expression on the right hand side tends to infinity as N € K — 00, it
follows that Y does not have the GL-property.
0

We now show that our space X is hereditarily indecomposable, that is, no two
closed infinite-dimensional subspaces add as a topological direct sum. Indeed, if Y7
and Y, are two closed infinite-dimensional subspaces with ¥; NY; = {0}, we can fix
¢ € P and find a sequence 2; < -+ < zy, vectors ¥; and functionals y} as in the
previous construction, such that y; € Y1 if ¢; =1 and y; € Ya if ¢; = —1. Let v be
the sum of those y; that are in Y; and let w be the sum of y; from Y5. By a lower
estimate for |lv + wl| as in the remark after Lemma 3.b-13 and an upper estimate

for |lv — w|| as above we get

[lv + w]| . N N _ hN(N)
o —wll = “©5m / v Oy

completing the proof.

iFrom the estimate above it follows that vectors Yr, are badlv unconditional,

N =
1 {:Nz(g) )(N) On the other hand, we were free to change signs

namely unc{y;

}—4(

in a tensor fashion. Actually, it can be shown that for every €, v = £1 we have

] +4E) < “ Z €k1/z:l/“” = “ Z EM/IJu”, < g(N)

k=1 k=1
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and we also have analogous inequalitics for the norm Il lla,-
We can achieve a similar behaviour for veetors {z:} and {wi}. As shown alter
Lemma 3.b-13, we have

M

(d -l sy

:whereas signs {¢;} € 57 and Lemma 3.b-13 imply that une{z} > e (N
L , - Tos q
Using the closeness of norms of 3" diy; and Y iz we obtain an dogous statements

for {u;}.
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3.d. Proof of Proposition 3.b-8

Now we prove Proposition 3.b-8. By {(x) we denote logy(z+1) = In(2)~! In(z+1).
Let p 2 1, an easy argnment, shows that the function [(z)? is submultiplicative. We

have:
(’ﬂ:{{ 7)’ _ @) (z)(xz+1)-pa
W/ U@)p+iin(2)(z +1)
50 R’T is increasing al « i“ll(.’l;%*”;;- = p. The function on the left is increasing
n)r ) a .

on [1,00), henee there is N(p) > 1 such that is decreasing on [1, N(p)] and
inereasing on [N(p),00). Note that N(2) > 1.

Also,

T
I(z)P

( @ s)n _ p(p -+ Da/In(2) - p(z + 2)i(x) |
I(a)r ]n( Y(m 4 1)21 () +2 )

f PR ss g r+
and similar argument, with the condition In(z + 1)
T

[y

2 . .
~ > p+ 1 shows that there

is M(p) > N(p) such that l(q:r’ is convex on [1, M (p)] and concave on [M(p), o).
Note that if ¢ > p, then N(q) > N(p) and M(g) > M(p). The function z/l(z) is

concave and increasing on [1, 00), that is, N(1) = M(1) = 1.

Iirst, let us construct f and g. Consider a(z) = l(z)4, b(:z.) = U(x)?, c(z) = I(z).
Clearly a(1) = b(1) = ¢(1) and ¢ € b < a. Set A(z) = a@) B(z) = 1) C(z) =
w

and C is also concave.

We readily get that A < B < C, all three functions are supermultiplicative,

v,

We will need the cquation of the tangent line TA to A at y, which is

zl(y)In(2) — z4% + 2

TA 1) = + J+1 y+1
y (& 1(y)5In(2)

Note that such a tangent line is always increasing, moreover, 7 TA(1) = oo as
y — 00. Similar formula gives the tangent line TB to B at y.

By the concave envelope of a function ¢ we mean a function h > ¢ that is the
smallest. concave function dominating ¢. It is easy to observe that the concave
envelope to a supermultiplicative function is again supermultiplicative (see [GM]).

Let J” be the concave envelope of A and let G be the concave envelope of B. Since
C itsell is concave, we get that F < G < C, and F, G are supermultiplicative. Recall
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that functions A and B look in the following way: A(1) = B(1) = 1, they are first
convex and decreasing, then convex and increasing, then concave and increasing,
Thus I is a straight line from (1,1) to (47, A(Py)) for some Py (precisely, Py is such
that T4 (1) =1) and F' = A on [P;,00). Similarly we work with B, introducing
the r(.spcctwe point P,;. We can observe that P, < P;. Note that the formula for

fZ"';"Et now gives the tangont line to F at y for y > Py.

Define f(z) = ( y 9(x) = ) It follows that f(x) = I(x)* on [Pf,00),
g(z) = l(x)? on [J:;73 00), and both fum,.tiuns are in F, The fact that [ (resp. g) is
increasing follows by a general argument using the concavity of x/f(x). We now
show that ¢ > /T.

First, g = /f on [Py, c0). Also, g(2) = loga(a: 4+ 1) on [, 7], while f(x)
1(3522(7“ + 1) there, so g > /T there as well. I*um.lly, let T3, be the line connecting
(1,1) with (P, B(P,)) (i.e. T = TP ) and T4 be the line connecting (1, 1) with
(Pg, A(Fy)). Wc have that T, = G and "f -ii Fon [1,P,]. Thus it is enough to
show that z/T,(z) > \/z/T;(z).

F/A”

Let us denote P = P, and A = b(P). We can write Ti(x) =1+ (x—-1) —p ”l -

and Ty(z) = 1+ (z - 1)_1/44,1 We substitute it into the inequality, simplify and
obtain the inequality (1 — 1/A)2a(z) > 0, where a(x) = —Pu? + PP +- 1 — P2,
So we want o > 0 on [1, P]. This follows from the fact that (1) = a(l’) =0 as
expected and /(1) = P2 - P > (.

Now we prove the existence of hg, hy and 7. First note that the conditions on
J in Proposition 3.b-8 either require that J starts far enough, or have lacunarity
character, that is, they are of this form:

There is a function g: IN — I’ such that ifalln < m e J satisfy . = o(n), then
J is good for our purposes.

The construction of hg and Ay .t follows will require two additional lacunarity
type conditions on 7 and another lower bound for min(.7). We will state them as
we proceed with the constructions and at the end we choose for J any sequence

satisfying these requirements.

Let J = {jx} be an increasing sequence in IN with min(J) 2 Py, recall that
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K = {jon-1} and L = {ja,,}. We set
B { flz) z¢K
w(x) =

glz) zek.

Then g < w < f. Let ¢ be the non-decreasing submultiplicative hull of w, that
is, the largest non-decreasing submultiplicative function dominated by w. Such a

function is given by the formula
(x) = inf{w(z) - ... w(wn); 2, > 1, 21z, >z}

Since g is non-decreasing, submultiplicative and dominated by w, we obtain that
9 < ¢ <, in particular ¢ = g on K. Let k& < [ be successive numbers from K, that
is, (k,1)NK = @. Consider x such that (k1)* < 2 and f(x) < g(I). It was proved in
[GM] that then ¢(z) = f(x).

x x

Set, W(z) = —, ®(z) = —.

@) = oy ¥ = 5@ |

¢ is supermultiplicative. Also, for & < [ successive in K and z as above we have
d(z) = F(x).

Let H be the concave envelope of @. Then H is concave and supermultiplicative

and ¢ < H < G as G is concave and dominates ®. Define ho(z) = Then

Then F <W <P <G, &=0Gon K, and

R
H(x)
hy € F and g < hg < f, we also have hy = g on K. We want to identify points
between K where hg = f, that is, H = F. But this is rather easy.

Let k€ K, k = jou— for some n. Recall that the tangent lines Tf to F' at points
y satisfy T,;“(l) — 00 as y — oo and they are increasing, therefore there exists
a > (k!)? such that tangent lines T;* for y > o dominate G on [1, (k!)*]. Assuming
that the next number [ after k in K is very far, we know that F' = & around «, so
TA arc tangent lines to @ as well. Take jo, > a4/3. Since the function G grows
slower than any line, there is a number 8 > j,, such that G is dominated by 1}2“ on
[B,00). Finally, there is [ > 3 such that f(8) < g(I). Thus, depending on k = jan_1

we chose the next ja,, and jopy1 > 1.

Now, since every = between (k!)* and 3 satisfies the condition above, we know
that & = F on [(k!)*, 8]. Thus the tangent lines to ® at points of this interval agree
with tangent lines to F' and as this function is concave, these tangent lines dominate
F = ® on [(k!)4, 6. In particular this is true about points from the interval [e, j2,],
but the corresponding tangent lines dominate G and hence ® on [1, (kD) U [B, 00)
by our construction. This says that for y € [j23,/14, Jjan], the tangent line T; to @
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dominates ¢. Consequently, the concave envelope H of @ is dominated by T} as
well, in particular F(y) < H(y) < TAw) = Fy), that is, f(y) = ho(w). This
completes the mnstructmn of hy.

Now we construct the functions hy. For computational reasons we start with a
number N that is as big as needed later, for a start we require N 2 Py to avoid
complications, and we will show that there exists a function hy € F such that

hy = gon [I,N], g < hy < f, and for the resulting sequence {hy} we have

’IN(N'“‘/%)
H —_— = 1 8 il 3 H 3 ‘ H i L]
A}lm q(N*’/“) ln(NE/“‘) = 00. In the end we will use a general argnment to show

that these functions can be constructed so that also hy = g on [pn,00) for some

on > N. The construction will be similar to that of ha.

Define wy (2) = b(z) = I(z)? for = € [1,N] and wy () = a(x) = {(x)? for & > N.
This function satisfies b < wy < a. Let ¢ be the non-decreasing submultiplicative
hull of wy. Since b is non-decreasing, submultiplicative and bounded by wpy, we

get that b < ¢y < wn, in particular, gy = b on [1, N].

Recall that ¢ is given by the formula
¢n(z) = inflwn (1) ... wn(zn); @21, 2100wy, > ).
Let us consider the following functions:
¢n1(z) = inf{b(z1)---b(zx); k€N, 1 <2 <N, 3y = x}
¢n2(z) = inf{b(z1)---b(zx)a(y); k€N, 1<a; <N, y> N, Y = a).

Since wy is increasing on {1, 00) and submultiplicative on (N, 0o), we observe thal,
¢n (z) = min(¢n1(z), dn2(2), wy ().
Consider the function D!(:l:) = In(z + 1) In(L/z + 1) for some L > 15. Wt‘ have
o(z)= ((z+1)(1 +z/L))" (B(L/:I;) B(z)), where p(z) = In(x + I)—;m Since
B is increasing, the point = = v/L is the only local extrem of a. Since /(1) >

we have that a has a lacal maximum aft \/L I‘hls means that for ,my interval [, 6]

same can be s,hnwn about b(:z:)a(L/:z:). Uamg this I‘m fu,nu,mna f/)m , hne we gel the

foilowing formulas:

Lemma 3.d-1.
Let x > N. Let k € IN satisfy N* < 2 < N¥*1, Then dn1(z) = b""(N)b(:::/N"’);

38



Furthermore, gng(z) is equal to the smallest of numbers b5+ (N)b(z/N¥) for k as
above or V"™ (N)a(z/N™) for m € IN such that N1 < gz,

Thus we know how the functions ¢ and ¢ps look like and we can estimate them.
Set, = logy(3). Note that for every 2 > 2 we now have log,(z) < I(z) < Rlog,(z).
Lemma 3.d-2.

Let No be such that for every N > Ny we have logh(N) > R2(k + 3)2 for every
keIN. Fit N> Ny, let z > N.

(1) Ik € IN satisfies N* < z < N¥*1 then b5 1 (N)b(z/N*) > dn1(z).

(2) If m € IN satisfies Nt < g, then Y™ (N)a(z/N™) > wy(z).

(3) For every z > N* we have pn1(z) > wy(z).

Proor: Since b*(N) < b¥+1(N), the first estimate in (1) follows.

To prove (2) we show that log3*(N) logh(z/N™) > R?log2(z). Denote A = log,(x)
and B = logy(N). Then we want to show that the function a(A) = B™(A-mB)2—
12 A? is non-negative for A > (m+1)B. We have o/ (4) = A(2B™—2R?)—2mB™m+1,
Since o'(z) = 2(B™ — R?) > 0, o is an increasing function in A. Observing

o/((m +1)B) = 2B(B™ — R*(m + 1)) > 0 we get o/ > 0 for A > (m + 1)B. Thus

a(A) 2 a((m+1)B) = B4(B™ — R*(m +1)?) > 0.

Finally, (3) follows from k > 3 and

wn(z) = l(x)* < R*logj(z) < R*logh(N¥+1)
= R*(k +1)*logy(N) < logd*(N) < I(N)* log}(z/N*)
< oni(z).
O
Thus ¢n2 2 min(¢ny, wn) on [N,00) if N > Ny, that is, ¢y = min(¢n1, wy) on
[1,00). We may assume that Ny > Py. We observe that ¢n1 < wy on [N, N?, so
recalling (3) above and the definition of wy we get
b(z) z< N
o én1(z) N <z < N?
d"N(iE)Z s A 9 - AT3 "
min(¢n1(z),a(z)) N?<z< NP

a(z) N3<g
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We also know that for 1 € [N, N?] we have ¢y (z) = I(N)? 1(a:/N)?, and for 2 ¢
[N2, N3] we have ¢y (z) = L(N)*1(x/N?)2.
I T tes BH .
P = ——— and Wy (x) = ———, recall that
. o (w) ( )’ - wi(@) PN () N () wy ()
Az) = ('7*) and B(z) = b( ) Clearly A < Wy < & < B. The de rseription of ¢y

Denote Oy (z) =

above transforms in the obvious way into the description of . Note that dy,(2) =
N N?
B(z/N) for z € [N, N?] and dn4(a B(z/N?) on [N, N3, that i
G BN N, %) and (o) = 7o B/NE) on [N, N9, i i,
the “shape” of ®pn; on each of these intervals is the same as the “shape” ol 3
n [1,N]. In particular, since N > P;, in cach interval [N, N?] and [N? N9
the function ®p1 is first decreasing and convex, then it becomes increasing and

eventually concave.

Arguments in the part that follows say that something holds if N is large enough,
We will use the notation a(N) ~ B(N) to say that ®(N)/B(N) = 1if N = oo,
Recall that for the function [ we have [(N) ~ logy(N), hence | (N*) ~ EI(N). Using

this we see that &y, (N?) = N2(N)~4 ~ 16Wn (N?) and &y (N3) = N3[(N)~6 ~
81 -
(N3

on [N3,00) and the fact that the tangent lina to F' Lt)nhld(;l"(;d ab pmnt.s going to
infinity will eventually dominate G on [1, N3] (sce above), we get that Hy = I on
[Mp,00) for My large enough, clearly My > N3,

Define hy(z) = 3’ then by € F and g < hy < f, we also have hy = = g on

oz

HN(:E
[1, N] and hyy = f on [My,00). We now prove that the functions {hn} satisfy the
limit condition.

Consider functions @y, $p1, Hy and hy constructed as above for N > N,.
Let Sy be the tangent line to &y = Opy at yy = N5 We want, to show that

D (2 n
Py £ Sy. Fix zy = 2N? and define “test functions” Un(z) = A(a )M—)x

Az )
b 1 , : ,
Note that we can estimate M =Ci =2 6.4, therefore Uy ~ 6.4 A.
A(zn) R?2

Lemma 3.d-3.
There is Ny > Ny such that for N > Ny we have Oy < Un on [zn,c0).

Proor: Clearly ®y; < A < Uy on [N3,00). We will show that dp, < Un on
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[zn, N?]. Consider R(x) = On;(x)/A(z) on [N?, N3], We sec that

R(z) = — 2U(z)3

(@I U /N2 (@ + (@ + N7 )

where a(z) = 2l(z/N?)(z + N?) - {(z)(z 4+ 1). Then In(2)e/(z) = In(e(z)) + 1,

242
where g(z) = -(-S(F%N)) ,From z > N? we have
IR (T’*‘Nz) 2 .
) = -N“+2)20
o (z) :L,H)g( +2) 20,

therefore g is increasing and

(N +1)2

fl"'(:l!) < Q’(Nii) = ]ng(ﬁ

)+1(2)

The fraction ingide goes to zero, so if N is large enough, we will have o/ (N?) < 0,

that is, & will be decreasing on [N2, N3], In this case we have
a(z) £ a(N?) =4N? - [(N?)(N? +1) < N%(4 - I[(N?)),
which is negative for N large.

Thus we find N1 = Ny such that for N > Ny, the ratio R(z) is decreasing on
[N?2, N3]. In particular, for N > N,

max{®y, (2)/A(2); @ € [on, N} = By (zn)/Alen).

That is, on [zy, N3] we indeed have ®p; < Uy. Put together, we know that
Py £ Uy on [zy,00), also A < Uy, hence Py < Uy on [z, 00).

0

Note that @1 on [N?, z] has the same behaviour as B on [1, 2], therefore check-
ing on B we see that @ is convex on [N? »ZN]. Let us consider the left tangent
Sn1 to Py at N2, its slope is Oy (N?) = (I(N 1n(2) }\‘,_'_1)/!(]\/“)5

Lemma 3.d-4.
There is No > Ny such that for N > Ny we have dy < Sn1 on [N2,0).

Proor: Since ®n1L (N?)/Un'(N?) goes to R? > 1 as N — oo, for large N we have
Sn1'(N?) > Un'(N?); also,

Un(N?) ~ T AN?) < 16A(N?) ~ Oy (N?) = Sy1(N?),
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so by the concavity of Uy on [N?, 00) we got that Uy < Sy; on [N2, 00). Therefore
also &y < Syi on [z, 00).
On the other hand, for large N we get Pyi(zn) < Syi(zn) by comparing their
ratio, also ®n1(N?) = Sn1(N?) and dp, is convex on [N?, an], hence Dpy < Sy,
there. We observe that A < Uy < Sn; on [N2, 2] as well, so dy < Sy on
[Ng,:EN],
]

Recall that yy = N°/* and Sy is the tangent line to &y = Gy at gy, it is given
by ,
T N1/4 2 -

Sn(z) = Z(N)zl(Nl/q)ﬂ + Nl/q 5;71 III(E)Z(N)zl(ﬁI/f)T (jvii/dﬁ - :lf)—,

Lemma 3.d-5.
There is N3 = N3 so that for N > N3y we have Oy < Sy on [1,00).

PROOF: Recall that the behaviour of @5 on [yny N?] corresponds to that of 13 on
[N'/4, N]. Hence ®y is concave on [yn, N %] for large N, then we have by < Sy
on [yy, N?|. By the concavity we also have Syq < SN on [N?,00), hence ®pn < Sy
on [N?,c0) by Lemma 14. We check that ®n(N) = B(N) < Sn(N) for large N,
QN (yn) = Pn1(yn) = Sn(yn), therefore by first convexity and then concavity of
®n = Py inbetween we get Py < Sy on [N, yn].

Finally, one can show that Sy(1)/B(N) — oo, therefore for large N we obtain
that Sy(1) > B(N). Since max{B(z); = € [1,N]} = B(N) and Sy is increasing,
&y =B < Sy on [1,N] as well.

O

Corollary 3.d-6.
For N = N3 we have hy(N%/%) = ¢ (N5/%) = |(N)2I(N1/4)2,
hN(NS/d)

In particular, hj};g ;:j(NS/‘i)ln(N —7— 0.

PROOF: Since & < Sy, it follows that Oy < Hy < Sy. But dy(yn) = Sn( (un),
hence Hy(yn) = @n(yn), that is, hy (N5/4) = I(N)2(N/")2, Consequently
h(N5/%) L(N)H(NV)? 4 UN)!

g(N®/%) In(N5/1) ~ [(NS/4Y2In(N5/%) ~ 125 In(2) [((N)?

—¥ CO,
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‘The functions we constructed still do not satisfy one condition of Proposition 3.b-
8 (iii). This will be done using a general argument similar to the one used in the
construction of hy. Recall that given M > 1, there is a namber m(M) > M such
that the tangent line Ty to F at M dominates G on [m(M),00). Then there is
o(M) > m(M) such that f(m(M)) < g(o(M)). We have the following observation:

Lemma 3.d-7.

Let € F o salisfiecs g < b < f and h = f on a neighbourhood of some M > 1. Then
there is a funclion b € F satisfying g < h < f, h = h on [1, M] and ho= g on
[o(M), 00).

The functions Ay satisfy these assumptions, in particular we found My > N3
such that hy = f on [My,00), therefore functions hy obtained by Lemma 3.d-7

will satisfy Proposition 3.b-8 (iii).

PROOF: Let, us define w(z) = h(x) for z € [1, o(M)] and w(z) = g(z) on (o(M), c0).
Let ¢ be its non-decreasing submultiplicative hull. We get that g < ¢ < w, in par-
ticular ¢ = g on [p(M ), 00). Observe that if z < m(M), then w(z) < f(m(M)) <
g(e(M)) = w(p(M)), also, w = h is submultiplicative and non-decreasing on
[1,m(M)], so0 it follows that ¢ = w = h on [1,m(M)] by checking on the formula

for ¢.
. . x z T x

Consider functions F(z) = 7@ G(z) = 7@)’ H(z)= sz—), D= (/)—(:;:—); we have
that F < H <@ <G, ®=Hon[l,m(M)] and ® = G on [p(M),o0). Recall
that F*, G and H are supermultiplicative, non-decreasing, and concave. Let H be
the concave envelope of ®. It follows that @ < H < G, in particular H =G on
[0(M),00). Consider the tangent line Ty to F at M. By our assumption, it is
also a tangent line to H at M, in particular H < Tps. Consequently, ® < Ty on
[1,m(M)]. On the other hand, by our choice of m(M) we know that ® < G < T
on [m(M),o0). Consequently, ® < Ty, hence as in Corollary 16 we show that
(M) = &(M) = H(M).

Using the concavity of H and the tangent line T, to H at z € [1, M] we similarly
show that H = H on (1, M]. Taking h(z) = I}:f ) we conclude the proof.

T

O
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