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ABSTRACT 

Snow accumulation on roads is a major safety concern during winter. Winter road maintenance is 

an effective approach to maintain roads in good driving conditions and reduce accidents. A 

common approach for a winter road maintenance project is to partition the road network into 

multiple service areas, set one depot in each area, and assign a truck fleet to each depot to clean 

the roads during snow events. To conduct operations effectively, proper planning in both the long-

term and short-term is essential. For planning a project in the long-term, the appropriate fleet size 

for each depot needs to be determined, taking into account operations under different snow 

scenarios. For short-term, lookahead project planning, the operation routes, labor working hours, 

and the required fleet size for the upcoming snow event need to be determined. 

For urban areas, roads usually have similar weather conditions as they are close to each other. 

Thus, the required vehicle fleet sizes are similar between different snow events, and vehicles can 

follow similar routes every time. However, for maintenance operations on highways, regional 

weather events must be considered due to the large spatial scale of the highway network. Different 

snow events can have different impact areas, which can affect the required fleet size and optimal 

operation routes. Moreover, the exact impact area of a snow event is difficult to forecast and 

monitor because of the limitations in weather data. Weather observations and forecasts are usually 

specific to a few locations that have weather stations, so it can be hard to determine the weather 

situation on a road between weather stations with differing weather conditions. Therefore, a 

decision support system is needed to assist project planning for winter highway maintenance 

operations using limited weather data and considering the stochastic nature of weather events.  
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In this thesis, two simulation models were developed to help in planning winter highway 

maintenance operations. The first simulation model uses a performance-based approach to help 

determine the fleet size in the long-term. This model uses road network information, historical 

weather data, and vehicle speed distribution as inputs. Monte Carlo method is used to sample 

random snow areas, and the performance of a certain truck fleet is evaluated by calculating its 

operation time-cost under various snow scenarios. An appropriate fleet size can then be selected 

based on an acceptable confidence level. The second simulation model is developed for short-term 

lookahead project planning. Weather forecast and road network information are used as inputs, 

and the model can provide short-term fleet size forecast, operation schedule, and route suggestions 

based on the input data. This model can also be updated in near real-time and can generate updated 

results based on the operation progress using weather observations and vehicle tracking data. 

Interpolation methods were also used to estimate the detailed weather condition on each road using 

limited weather data. 
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1 CHAPTER 1: INTRODUCTION 

1.1 Background 

Road safety is a major concern in many northern countries during winter. Studies have shown that 

snow precipitation on roads significantly increases accident risk (Andrey, Mills, & Vandermolen, 

2001; Eisenberg & Warner, 2005; Mills, Andrey, & Hambly, 2011), and winter road maintenance 

activities can reduce the accident rate by maintaining safe driving conditions (Usman, Fu, & 

Miranda-Moreno, 2010; Usman, Fu, Miranda-Moreno, & Perchanok, 2012; Usman, Fu, & 

Miranda-Moreno, 2012). In Canada, the annual cost of winter road maintenance is about $1 billion 

(Andrey et al., 2001), and it is over $2 billion in the United States (Transportation Research Board 

& National Research Council, 2004). Since winter road maintenance activities usually involve a 

considerable amount of equipment and high costs, operation planning is crucial for successful and 

efficient operations. According to Perrier, Langevin, and Campbell (2006), decision-making in 

winter road maintenance can be categorized into four levels: strategic, tactical, operational, and 

real-time. The strategic and tactical levels involve partitioning service areas, selecting vehicle 

depot locations, and assigning fleets to depots; these levels are usually updated on a medium-term 

or long-term basis. The operational and real-time levels involve vehicle routing, scheduling, 

staffing the vehicles, and response to sudden changes like the weather. These levels usually require 

day-to-day updates or responses in a short time frame. 

Various research has been conducted on related topics to help decision-makers plan winter road 

maintenance operations. In this thesis, research focused on selecting fleet sizes for long-term 

planning, as well as routing and scheduling for short-term decision-making. This thesis specifically 

focused on winter road maintenance operations on highways. Different from the operations in 
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urban areas, highway networks usually have large spatial scales, and regional weather events must 

be considered. Roads in urban areas are generally close to each other and experience similar 

weather conditions, so operations in different snow events can follow the same operation routes. 

However, on highways, a snow event may only affect a part of a service area. Thus, different snow 

events may require different fleet sizes, and using fixed pre-determined routes can result in low 

operation efficiency. Additionally, available weather data is usually limited to a few weather 

station locations, so it is hard to determine the exact impact area of a snow event or the required 

fleet size. 

1.2 Problem statement 

In winter highway maintenance operations, the highway network is usually divided into multiple 

sectors, with one vehicle depot for each sector that houses vehicles when not in use and stores 

chemicals or abrasives used in sanding operations. One truck fleet is assigned to each depot, and 

the size of the truck fleet depends on the size of its service area. This truck fleet must be enough 

to perform the maintenance operation in a worst-case snow scenario, where all the roads in the 

sector are covered with snow. The fleet must also be able to finish the maintenance work within 

the level of service (LOS) time requirements for each road. However, most of the time, it is 

unlikely that all the areas will be experiencing snow simultaneously. It is possible that only part of 

the service area needs maintenance, and fewer trucks are needed in this case. Therefore, more 

detailed operation planning before each snow event becomes necessary. Based on short-term 

weather forecasts, the operation team estimates how many vehicles will be needed for the operation 

and calls the corresponding operation crew to stand by. The maintenance routes are also planned 

in this process. Since the weather conditions vary each time and the road network is different for 

each service sector, this planning process can create a lot of work. Also, during the operation 
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process, the plowing route is continuously adjusted by truck drivers’ visually assessing the actual 

snow accumulation on the road. If the actual accumulation amount on certain roads is higher than 

expected, the truck will plow these roads to ensure that the road is safe. As for sanding operations, 

trucks are loaded with chemicals or abrasives to apply. Due to limitations of truck capacity, each 

truck can only sand a limited length of roads and must return to the depot to reload. 

When planning for winter highway maintenance operations, the available weather forecasts and 

observations are usually limited to the data collected at Road Weather Information System (RWIS) 

stations. These stations are typically located on the sides of highways, and they can provide 

weather observations and short-term weather forecasts at their locations. However, due to the 

limited number of RWIS stations and the large spacing between these stations, it can be difficult 

to determine the weather conditions for highways between stations. Thus, it is challenging for 

decision-makers to determine the actual operation effort based solely on the information from 

RWIS stations. 

Therefore, a decision support system is needed to utilize the weather data from a limited number 

of weather stations and help the operation planning process. This decision support system must: 

(a) be able to utilize the weather data collected from a limited number of weather stations, (b) be 

generic that can be reused on different projects, (c) generate reliable results to help choose 

appropriate fleet sizes and operation routes. 

1.3 Research objectives 

This research aims to develop simulation models to assist in operation planning in winter highway 

maintenance operations. The objectives are: 



4 

• Develop simulation models to support long-term and short-term lookahead operation 

planning. 

• Develop generic algorithms for snow removal operation planning that can be deployed on 

different service sectors. 

• Use simulation approaches to develop models that consider the uncertainty and randomness 

in operations. 

• Use appropriate methods in the model to utilize the weather forecasts and observations 

collected at a limited number of weather stations. 

1.4 Thesis organization 

This thesis is divided into six chapters to discuss the research methodologies and developed 

simulation models. 

Chapter 1 introduces the background and problem statement of winter highway maintenance 

operations. The research objectives for the thesis are also presented in this chapter. 

Chapter 2 is a literature review for related studies. Current industry practice, different approaches 

for planning winter road maintenance operations, techniques to utilize weather data, and near real-

time simulation methods are discussed in this chapter. 

Chapter 3 introduces a generic simulation model developed in Simphony.NET for long-term project 

planning. It uses a performance-based approach to evaluate the overall fleet performance under 

various snow events, and the user can select a fleet size based on their confidence level. 
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Chapter 4 discusses the benefits of using interpolation approaches to estimate the weather 

conditions on the road network. A case study is provided to compare the results between the 

closest-station method and the kriging interpolation method. 

Chapter 5 introduces a generic, data-driven simulation model for short-term lookahead operation 

planning. This model uses weather forecasts and road networks to create fleet size forecasts and 

operation plans. It can also generate updated results based on operation progress using weather 

observations and vehicle tracking data. Two case studies are presented to demonstrate this model. 

Chapter 6 summarizes this thesis and provides recommendations for future research.  
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2 CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews research methods to plan winter highway maintenance operations. Section 

2.2 discusses the current industry practice in planning winter highway maintenance operations. 

Section 2.3 presents previous studies on related topics, including solutions to select appropriate 

vehicle fleet size, operation scheduling, and vehicle routing approaches. Section 2.4 discusses the 

impact of weather uncertainties. Research about winter road maintenance that considered the 

weather uncertainties are introduced. Section 2.5 presents different interpolation methods that are 

commonly used in meteorological studies to estimate intermediate values when available weather 

data is limited. Section 2.6 discusses approaches to estimate snow accumulation conditions on road 

surfaces. Section 2.7 discusses near real-time simulation approaches, and research that uses near 

real-time simulation for operation planning. Section 2.8 presents the gaps and limitations in 

previous research and gives a conclusion for this chapter. 

2.2 Industry practice 

In Alberta, Canada, the provincial government uses a model developed in Microsoft Excel to 

calculate the required fleet size for each depot and benchmark prospective proposals when hiring 

private contractors for winter highway maintenance operations (Otto, 2004). Contractors also use 

this model to estimate the required fleet sizes and create proposals based on the model result and 

their experience. This model calculates the required number of trucks to complete the maintenance 

work for the entire road network based on the level of service requirements (Otto, 2004). The four 

level of service classes for highways and maintenance standards were stipulated by the provincial 

government (Alberta Transportation, 2018). The limitation of this model is that it is a static model 
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that does not consider the dynamics and randomness in operations. Variations in weather, vehicle 

speed, and operation routes are not considered. Furthermore, contractors find that the actual 

number of trucks used in operation often differs from the model’s prediction. Thus, contractors 

usually adjust the fleet size based on their past experience when bidding and may end up over- or 

under-allocating trucks to the depots. 

As for operation planning in the short-term, the operation schedule is planned manually based on 

weather forecasts from weather stations. In actual operations, truck drivers determine the operation 

route by assessing the actual snow accumulation level on roads. Thus, the operation route could 

be different each time depending on the road conditions and may not be efficient as the drivers 

cannot see the entire operation. This process relies heavily on workers’ experience. Contractors 

want a decision support tool for easier and more efficient operation. 

2.3 Previous research on winter road maintenance operation planning 

Several studies have been conducted to ascertain reasonable fleet sizes for winter road maintenance 

operations. Chien, Gao, and Meegoda (2013) developed a mathematical model to determine the 

required truck fleet size that considered the impact of weather and traffic on truck speed. Fleet size 

is calculated using the total road surface area and the plowing area per plow. The result shows 

required fleet size is reduced when increasing the plowing speed, and a larger truck fleet is needed 

as the precipitation amount increases. However, in this model, the deadheading (vehicle travelling 

without doing any maintenance work) from the depot to the working road section is neglected, and 

the vehicle routing in the road network is also not considered. 

Jafari et al. (2018) proposed a simulation model to select the optimal vehicle fleet size based on 

the maximum reaction time in operations, which is the duration between the snow start time and 
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the time that the snow is plowed. This model uses pre-defined routes and weather information as 

input data. Each road section is assigned to a weather station, and if the weather station indicates 

snow precipitation, trucks will be dispatched from the depot to pre-defined routes. The maximum 

reaction time is evaluated for each route, and the best route with minimum reaction time can be 

selected. The result also shows that the maximum reaction time will remain unchanged after the 

truck fleet reaches a certain size. 

Beaujon and Turnquist (1991) proposed a model to solve the fleet sizing problem in transportation 

operations. This model uses a non-linear objective function to optimize the operation, and it aims 

to achieve the maximum profit by finding the optimal fleet size and vehicle dispatching decisions. 

Uncertainties in operation demand and vehicle travel times are both considered in this model, and 

decisions on fleet size are considered together with the allocation of the vehicle fleet.  

As for operation scheduling, Fu, Trudel, and Kim (2009) proposed a real-time optimization model 

to solve the winter road maintenance scheduling problem. In this research, pre-defined 

maintenance routes and weather information are used as inputs, and fleet size and service level are 

considered as constraints to create the operation schedule. This research also analyzed the impact 

of weather information quality; the road network is divided into multiple zones, and all roads 

within one zone use the same weather information. The results show that operations will have 

better performance when using detailed zone-level weather data as opposed to using averaged 

weather information. 

Mahoney and Myers (2003) proposed a decision support tool for winter road maintenance 

operations. This tool integrates multiple sub-systems, including weather prediction system, 

chemical concentration algorithms, and a road mobility index algorithm. User-defined 
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maintenance routes are used, and the model creates recommended operation plans for each route. 

This system also allows the user to compare operations plans and assess the potential impact of an 

operation plan. 

Many studies have focused on the vehicle routing problem in winter road maintenance operations. 

Wang and Liu (2019) proposed a model to solve the resource location and allocation problem, 

along with the vehicle routing problem, in snow removal operations. This model uses a tabu search 

algorithm that aims to improve the recovery ability of the road network under snow events. The 

uncertainty of snow events is also considered in this model. 

Xie, Li, and Jin (2013) proposed an algorithm to optimize vehicle routes for deicing salt spreading 

operations in winter highway maintenance. The algorithm aims to minimize the total driving 

distance in operation. Road network topology, vehicle capacity, and load balance are considered 

as constraints. 

Zhang (2009) proposed an algorithm to optimize service routes in snow plowing and snow disposal 

operations. This algorithm can be used on road networks with multiple vehicle depots, and its 

objective is to minimize the operation cost by reducing the deadhead travel distance in operations. 

2.4 Weather uncertainties in winter road maintenance operations 

There are various ways to quantify weather uncertainties in simulation models. Resampling 

historical weather data using Monte Carlo simulation is one common approach. The advantage of 

using this method is that multiple weather variables from multiple weather stations can be sampled 

simultaneously while keeping their spatial correlations, which is difficult to do using other 

methods like Markov Chains (Young, 1994). 
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The spatial correlation between weather stations is important when investigating weather impacts 

on winter highway maintenance operations. The highway network usually crosses a large area, and 

sometimes it is snowing on only part of the road network. Therefore, the uncertainties in the area 

of impact can cause changes in maintenance demand (Hajibabai & Ouyang, 2016). Hajibabai and 

Ouyang (2016) proposed a stochastic model to plan winter road maintenance operations that aims 

to minimize the operation cost while maximizing the service level. In this model, random 

maintenance tasks are generated across the road network to represent stochastic snow events, and 

the cost for truck deadheading and repositioning is calculated. 

Mohamed, Jafari, Siu, and AbouRizk (2017) proposed a data-driven simulation model to plan for 

snow removal operations. The model uses historical operation data to find the most used routes to 

plow each area, creates multiple operation scenarios, uses weather data to determine which area is 

snowing, and executes the corresponding operation scenario. Using weather forecast data, the 

model can output plowing hours and truck utilization to facilitate operation planning. 

Wales and AbouRizk (1996) developed a simulation model to forecast construction projects and 

assist in project planning, which focused on estimating the impact of weather on project schedules. 

In this model, a first-order Markov chain was used to model the precipitation events. The 

precipitation amount was sampled from a distribution function based on historical records, and 

neural networks were trained to predict the productivity based on weather conditions. The weather 

impact on the project schedule can be determined using this model. 

2.5 Interpolation methods for limited weather data 

To estimate the detailed weather situation in a given area, interpolation methods have been used 

by researchers (Barnes, 1964). Kriging interpolation (Krige, 1951) has been widely used in 
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meteorological studies to estimate precipitation amounts (Kastelec & Košmelj, 2002), temperature 

(Hudson & Wackernagel, 1994), and solar radiation (Alsamamra, Ruiz-Arias, Pozo-Vázquez, & 

Tovar-Pescador, 2009). It has several variants including simple kriging, ordinary kriging, universal 

kriging, and indicator kriging. Atkinson and Lloyd (1998) compared the accuracy between 

ordinary kriging interpolation and indicator kriging interpolation. The two algorithms are used to 

interpolate the same dataset, and the result shows that ordinary kriging interpolation can provide 

more accurate estimation results.  

Another commonly used interpolation algorithm is inverse distance weighting interpolation. It is 

based on Tobler’s first law that “everything is related to everything else, but near things are more 

related than distant things” (Tobler, 1970). Chen and Liu (2012) used inverse distance weighting 

interpolation to estimate the distribution of rainfall in Taiwan. The result gives a correlation 

coefficient over 0.95 and shows that inverse distance weighting interpolation is suitable for rainfall 

data interpolation. Plouffe, Robertson, and Chandrapala (2015) compared the accuracy between 

four interpolation methods: inverse distance weighting, thin-plate splines, ordinary kriging, and 

Bayesian kriging. Their results show that the month of the weather data and the spatial pattern of 

rainfall can impact the performance of a certain interpolation method. Inverse distance weighting 

interpolation and spline interpolation produce better results than the other two methods when the 

annual rainfall amount is high. 

2.6 Road snow accumulation estimating 

The snow accumulation depth on the road depends on many factors. Several models have been 

developed to estimate the actual snow accumulation depth. Gladysheva (2008) developed a model 

that uses nine meteorological factors and fourteen road factors to calculate the snow accumulation 
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amount on the road surface. Wind, temperature, and shape of the road are all considered in this 

model. Brasnett (1999) proposed a method to estimate the snow depth using precipitation forecasts 

and screen-level temperature data. It calculates the amount of snow being added to accumulation 

and uses a temperature-based algorithm to estimate the amount of snow melted. 

Most accumulation models require a lot of data input. A simpler alternative approach is to directly 

convert the snow water equivalent (SWE) data observed at weather stations to snow depth using 

snow density value. A common approach to converting between snow and water is to assume the 

snow density is 100 kg/m3, so the snow depth can be calculated from SWE amount using the 10-

to-1 rule based on the 1000 kg/m3 water density (Roebber, Bruening, Schultz, & Cortinas, 2003). 

However, this rule of thumb is not always accurate. Williams (1956) analyzed snow density 

observations at different weather stations across Canada, and found that the snow density varies 

by location and can change over time. Judson and Doesken (2000) found that the density of freshly 

fallen snow ranges from 10 to 257 kg/m3, with the peak between 60 and 100 kg/m3. 

2.7 Near real-time simulation 

For short-term lookahead operation planning, the initial simulation result based on the weather 

forecast may not be valid in actual operations due to the dynamic nature of weather (Vahdatikhaki 

& Hammad, 2014). In this case, near real-time simulation can be used to update simulation results 

dynamically.  

Vahdatikhaki and Hammad (2015) proposed a near real-time simulation approach to evaluate the 

safety of earthmoving sites. It considers proximity-based and visibility-based risks in earthmoving 

operations and generates risk maps based on the collected data. Equipment operation paths are 

adjusted to ensure the planned paths are risk-free. 
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Other research by Vahdatikhaki and Hammad (2014) developed a simulation model for 

earthmoving projects using a near real-time simulation approach. The model continuously 

monitors equipment motion and environmental factors on the construction site. If the site data 

differ from the model, the simulation model is updated, and an updated schedule is created. This 

research also pointed out that updating the model too frequently can cause a frequent change of 

results, making it impractical. Thus, an appropriate update interval in near real-time simulations is 

important. 

AlBahnassi and Hammad (2012) proposed a near real-time simulation model for crane motion 

planning. The model considers both the safety requirements and operation efficiency and aims to 

assist crane operators to plan crane paths in near real-time. The dynamics of other cranes are also 

considered in this research. 

2.8 Gaps and limitations 

The literature review presents various approaches that have been developed to plan for winter road 

maintenance operations. The uncertainties in weather, limitations in weather data, and operation 

route optimization are considered by some researchers, but few have considered multiple of these 

factors in a unified model. Approaches to utilize limited weather data and plan for operations that 

dynamically change have also been developed, but these approaches are rarely being used to assist 

operation planning in winter highway maintenance operations. Therefore, a unified model that 

considers the abovementioned aspects is needed. In this thesis, simulation models are designed 

with consideration of these impact factors and limitations. Interpolation methods and near real-

time simulation approaches are used to achieve better simulation results. 
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3 CHAPTER 3: A GENERIC SIMULATION MODEL FOR SELECTING FLEET 

SIZE IN SNOW PLOWING OPERATIONS1 

3.1 Introduction 

Winter road maintenance is challenging for many northern countries (Shi, 2010). Notably, Canada 

spends around $1 billion dollars annually in winter road maintenance activities (Andrey et al., 

2001). In practice, snow plowing plays a significant role in winter road maintenance to remove as 

much loose snow on the roads as possible, and to increase mobility and safety (Perrier, Langevin, 

& Campbell, 2006; Usman et al., 2010). In order to conduct snow plowing activities effectively, 

efforts have been made to improve planning efficiency. One major aspect of optimizing snow 

plowing activities is the selection of the truck fleet size and the plowing routes. In previous studies, 

snow plow routing optimization is considered as a Hierarchical Chinese Postman Problem (HCPP) 

(Cabral, Gendreau, Ghiani, & Laporte, 2004; Ghiani & Improta, 2000). The common solution for 

this problem is to divide the area into several sectors and set one depot at each sector with an 

assigned truck crew. When the snowstorm comes, trucks will depart from the depot to different 

road sections and return to the same depot after all roads are cleaned. Due to the complexity of 

snow plowing operations, however, the challenge is separating a large road network into small 

sectors and determining the crew size at each depot (Stricker, 1970). For example, the size of each 

sector will affect its crew size. Both the crew size and the combination of roads within this sector 

must be considered when selecting the plowing route. Additionally, uncertain weather conditions 

can stall this process because the snow coverage areas by storms are unknown. As such, the roads 

 
 

1 A version of this chapter is published as Li, Y., Xu, S., Lei, Z., Wu, L., AbouRizk, S., & Kwon, T. J. (2019, 

December). A generic simulation model for selecting fleet size in snow plowing operations. In Proceedings of the 

2019 Winter Simulation Conference (pp. 2966-2977). doi: 10.1109/WSC40007.2019.9004954 © 2019 IEEE 
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need to be plowed, and the plowing route varies for each snow event. Considering the random 

nature of weather events is necessary to resolve these problems. The process of developing 

simulation models often requires repetitive efforts; a generic model is needed to incorporate the 

planning process of snow plowing on various road networks. This chapter therefore proposes a 

generic model to simulate snow plowing processes under uncertain weather conditions. This model 

captures the nature of planning, and can be re-used for various project scenarios with minimal 

adjustments. Based on the proposed model, the performance of a given fleet size can be evaluated, 

and a reasonable fleet size can be selected based on a required confidence level. 

3.2 Methodology 

This research proposes a generic model to simulate the snow plowing process (as shown in Figure 

3.1). The model has been developed in the Simphony.NET environment, a simulation engine 

developed at the University of Alberta (AbouRizk, Hague, Ekyalimpa, & Newstead, 2016). This 

model uses the following as inputs: the road network, historical weather data, and the level of 

service (LOS) class for each road section (usually assigned by the government), along with the 

maximum plowing time allowed for each LOS class. By changing the input data, the proposed 

model can be used at different snow removal projects with different road network layouts, weather 

conditions and LOS requirements. This model consists of three major parts: generating a random 

snow area, selecting the plowing route, and calculating the plowing time. First, this model will 

generate a random snow area using historical weather data; next, the plowing work will be assigned 

to trucks based on a selected truck fleet size; finally, the model will simulate when the plowing 

work on each road will finish. If the finish time exceeds the maximum allowed plowing time, the 

work on this road will be considered delayed, and the distance delayed will be calculated. The 

model generates a probability distribution of the total distance delayed as outputs, which can be 
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used to evaluate the performance of a selected fleet size. Moreover, additional adjustments can be 

made based on the confidence level required. 

 

Figure 3.1: Simulation process. © 2019 IEEE 

3.2.1 Assumptions 

The proposed simulation model is developed based on four assumptions: 

1) Only plowing operations are considered in this model. Sanding operations or any other 

activities that require using materials do not apply to this model since the process of truck 

reloading materials are not calculated (this can be included as future work). 
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2) Each road is assigned to its closest weather station. If a weather station indicates 

precipitation, all roads assigned to this weather station are considered as snowing and need 

to be plowed. 

3) All roads are two-way roads. Therefore, trucks are required to return to the starting location 

after plowing each road. 

4) Roads remains passable when covered with snow, and it does not affect the truck speed. 

Both deadhead travel and plowing speed stays the same under all weather conditions. 

3.2.2 Generate random snow area 

Figure 3.2 shows the flowchart of the “generate random snow area” process. Here, the model uses 

historical weather data and Monte Carlo simulation to generate a random snow area. All roads 

within this area will be assigned to trucks for plowing work in the following step. First, the model 

generates a random number and finds a random timestamp from the database using both this 

random number and the sequential IDs of the timestamps; next, the model checks the weather 

status of each weather station at this time. If there is at least one weather station indicating snow 

at this time, the model will output the roads under snowing weather stations for the next step, 

otherwise the model will generate a new random number and repeat this process. 

 

Figure 3.2: Generate random snow area process. © 2019 IEEE 
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3.2.3 Select plowing route 

After a random snow area is generated, the simulation model assigns the plowing work triggered 

by weather events to the trucks. Figure 3.3 shows the flowchart of this process starting with a 

calculation of the road selection factor for each road. This factor is calculated by satisfying 

Equation 3.1 

𝐹𝑅 =
𝐿𝑅 × 𝑁𝐿 × 2

𝑇𝑀𝐴𝑋
 (3. 1) 

where FR = road selection factor; LR = road length; NL = number of lanes; and TMAX = LOS class-

stipulated maximum plowing time. 

 

Figure 3.3: Select plowing route process. © 2019 IEEE 

Roads are assigned to trucks starting from the road with highest road selection factor value. 

Notably, the value of this factor is also the average speed for one truck to plow this road. The 

higher the value is, the less float time the truck has for the work. Since the truck will conduct 

plowing work starting from the first road assigned to this truck, this road assignment order makes 

the best effort possible to avoid work delays. When this value exceeds the average plowing speed, 

there is a high possibility that one truck cannot finish plowing this road in time, considering 

additional deadhead travel may be needed before trucks arrive to this road. Therefore, multiple 
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trucks are assigned to this road and share the plowing work. The number of trucks for each road is 

calculated by Equation 3.2 

𝑁𝑇 = ⌈
𝐿𝑅 × 𝑁𝐿 × 2

𝑇𝑀𝐴𝑋 × 𝑉𝑃
⌉ (3. 2) 

where NT = number of trucks; LR = road length; NL = number of lanes; TMAX = LOS class stipulated 

maximum plowing time; and VP = average plowing speed. 

When a road is assigned to multiple trucks, all trucks equally share the workload on the same road. 

When a road is plowed by one truck, the truck always returns to its starting location after plowing. 

Additional deadhead travel is added to each truck if one road is assigned to multiple trucks. This 

deadhead equals the total distance of the road subtracting the plowing distance for each truck, 

which ensures that the trucks can return to the starting location after plowing part of the road. This 

assignment process also considers a balance of the workload between trucks. The workload for the 

trucks is calculated using Equation 3.3 

𝑊 = 𝐿𝑃 +
𝐿𝐷

2
(3. 3) 

where W = truck workload; LP = total plowing distance; and LD = total deadheading distance. 

To make sure all trucks share a similar workload, a truck selection factor is used in the model to 

decide which road will be assigned to which truck. This factor is calculated using Equation 3.4 

𝐹𝑇 = 𝑊 +
𝐷

2
(3. 4) 
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where FT = truck selection factor; W = trucks’ current workload (calculated by Equation 3.3); and 

D = shortest deadhead distance between the road and the current truck location. 

When calculating the shortest deadhead distance, the widely-used Dijkstra's algorithm determines 

the shortest path in the node-network (Dijkstra, 1959). The model recalculates the truck selection 

factor after every time that a road is assigned to one truck. Each road section is assigned to the 

truck with the smallest truck selection factor value. By using this factor, the priority is given to the 

truck that a) has the smallest workload and b) is closest to the road section. This approach can 

balance the workload between trucks and reduce the total deadheading distance. For instance, if 

the workload value (calculated using Equation 3.3) of truck A is 15 and the workload value for 

truck B is 10, and a road is 5 km away from truck A and 10 km away from truck B, then the truck 

selection factor calculated using Equation 3.4 would be 17.5 for truck A and 15 for truck B. 

Therefore, this road would be assigned to truck B based on the truck selection factor. This causes 

more deadhead travel in the work, but it balances the workload between the two trucks. If truck B 

were 20 km away from the road, however, the truck selection factor for truck B would become 20, 

and truck A would be selected due to a smaller selection factor value. Thus, trucks will avoid long-

distance deadhead travel and can reduce the total workload of the operation. After the road sections 

are all assigned to trucks, the truck carries out the plowing work following the order of roads 

assigned. The time taken on each road section is calculated in the next step (section 3.2.4). 

To be noted that this model aims to estimate the fleet performance instead of proposing optimized 

solutions. Thus, the algorithm proposed in this section does not generate optimized operation 

routes, but to generate a reasonable route that can results in a similar performance as contractors’ 

current practice, so the overall fleet performance can be accurately evaluated. 
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3.2.4 Calculate plowing time 

Figure 3.4 illustrates the process of calculating plowing time. After the plowing route for each 

truck is selected, the model calculates at what time the plowing work on each road will finish. 

Here, a probability distribution function of the plowing speed is used to calculate the plowing time. 

This distribution function is fitted using plowing speed data collected in real construction projects; 

it has a Laplace distribution with a mean of 42.71 and a scale of 10.60. Figure 3.5 shows the 

comparison between the original data and the fitted function. To eliminate extreme situations, a 

lower boundary at the 5th percentile and an upper boundary at the 95th percentile are added to this 

function. The plowing time on each road is calculated using a random deviate of this function. 

Next, the plowing time on each road will be compared with the LOS stipulated time to determine 

whether or not the operation meets the LOS requirement. If the plowing time exceeds the required 

time, the model calculates the distance that was plowed on time, and the rest of the road is output 

as delayed distance. For each snow event generated, multiple simulations of the plowing process 

under this snow event are executed in this model. Through multiple iterations, the model generates 

a distribution of the delayed distance under current selected truck fleet size. With this information, 

further adjustments can be made based on the confidence level required. 

 

Figure 3.4: Process to calculate plowing time. © 2019 IEEE 
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Figure 3.5: Comparison between original data and fitted distribution function. © 2019 IEEE 

3.3 Implementation 

3.3.1 Database structure 

All input data of this model are prepared and stored in a Microsoft Access database following the 

structure shown in Table 3.1. By changing the input data, this model can be reused on different 

projects. Since most of the original data are stored in separate files and have different formats, data 

preprocessing is needed in order to: (1) convert original weather data into a uniform format, (2) 

convert the roadmap into a node-to-node format, and (3) remove redundant weather data to 

accelerate the simulation program. Notably, this model simulates the overall performance of the 

truck fleet within the entire period of available weather data, but the performance of a specific 

season can also be simulated by only using the weather data from that season. Normally, the 

weather data should have a duration that covers most of the snow season, and include various snow 

events with different precipitation levels in order to produce reliable results. This database uses a 

node-to-node format to store the road network information. The road intersections are considered 

as “nodes,” and road sections are considered as connections between two nodes. Each road section 
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should have a consistent LOS class and a continuous number of lanes. If the LOS class or number 

of lanes changes in the middle of a road section, it should be split into two sections and an 

additional node should be added at that position. For roads outside the service area, they can be 

added to the roadmap as “shortcut” roads to let trucks use it for deadhead travelling between nodes. 

“Shortcut” roads are added to the database without being assigned to a weather station; therefore, 

these roads will not be assigned to any truck for plowing, since they do not need to be plowed. 

Table 3.1: Structure of the database. © 2019 IEEE 

Table Name Field Name Description 

GeneralInformation 

NumberOfWeatherRecords Total number of records in the “TimeRange” table 

NumberOfWeatherStations Total number of weather stations under this shop 

NumberOfRoads Total number of roads in the map 

NumberOfNodes Total number of nodes in the map 

StartNode The node where the shop is located at 

NumberOfTrucks Total number of trucks in the fleet 

Nodes 
ID ID of the node 

ConnectedNodes ID of the nodes that this node is connected to 

LOS 
Class LOS class 

MaxPlowingTime Maximum plowing time allowed 

Road 

ID ID of the road 

LOSClass Road’s LOS class 

LengthKm Road’s length in kilometers 

NumberOfLanes Number of lanes in each direction 

WeatherStation The weather station that the road belongs to 

StartNode ID of the road’s one vertex 

EndNode ID of the road’s another vertex 

WeatherStation StationID Name of the weather stations 

TimeRange 
ID ID of the timestamp 

WeatherTime The timestamp of the weather record 

WeatherStationData 
StationID Name of the weather station 

WeatherTime The timestamp of the weather record 

 

3.3.2 Simulation modeling 

This model is developed in the Simphony.NET environment. Figure 3.6 illustrates its schematic. 

Notably, the proposed methodology is not limited to the Simphony.NET platform; other simulation 
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software can also be used to achieve the same result. In Simphony, virtual entities are created at 

the beginning of the simulation process. These entities flow through a series of elements that 

represent different tasks. Calculations are executed when an entity arrives at an element 

(AbouRizk, Hague, & Ekyalimpa, 2016). Simphony provides multiple modeling elements with 

different functions by default; the user can use these elements to represent different tasks in the 

operation by setting unique attributes to each element. Extra codes can also be added to elements 

if additional calculation is required. In this model, entities that represent snow events are created 

at the beginning of the simulation process. The processes of generating random snow areas and 

selecting plowing routes are accomplished in two elements named “Generate Snow Area” and 

“Select Route” using Visual Basic codes. After the plowing route for each truck is selected, new 

entities that represent plowing trucks are created. Next, each entity will go through the “Plow” 

element where the plowing time for each road section will be calculated. The model will then 

collect the delayed distance, and the possibility distribution of this number will be generated 

through multiple iterations. Simphony also allows users to export the simulation result of each 

iteration to a Microsoft Excel file. The mean, median, and the confidence interval of the results 

can be calculated using the exported data. 

This model aims to estimate the overall fleet performance and assist in operation planning in the 

long term. Thus, operation route and schedule are not generated as outputs here as different snow 

scenario creates different routes and schedules, and detailed operation planning for specific snow 

events is not in the scope of this model. 
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Figure 3.6: Simphony.NET simulation model. © 2019 IEEE 

3.4 Illustrative case study 

A case study is provided here to demonstrate the functionality and practicality of the proposed 

model. Figure 3.7 illustrates the road network, shop location, and weather station locations for this 

case study. This road network structure is created based on an actual road network, but this data 

has been normalized. 
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Figure 3.7: Road network for the example case study. © 2019 IEEE 

This road network has 25 roads and 22 nodes; 3 additional shortcut roads are also added to the 

road network, which are shown as dashed lines in Figure 3.7. The shop is located at Node 10. 

Weather data from two weather stations, marked in Figure 3.7 as A and B, are used to determine 

the weather situation in this area, and the weather on each road is determined by its closest weather 

station. The data used here has a 5-minute observation interval within a 108-day period in winter. 

It has a total of 29501 observations after removing some missing data. To be noted that due to the 

limitation in available weather data, this dataset may not cover all types of snow events, and a 

dataset with a longer time duration could result in better simulation results. 

Table 3.2 shows detailed road data. The maximum plowing time allowed for each LOS class is 

shown in Table 3.3. The simulation model was run for 5000 iterations. Table 3.4 and Table 3.5 

show the model output result for fleet sizes ranging from 5 to 9 trucks. The average simulation 

time was about 20 minutes on a computer with 3.2 GHz CPU and 16 GB memory. 
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Table 3.2: Road information for the case study. © 2019 IEEE 

ID LOS Class Length (km) Lanes Weather station Vertex 1 Vertex 2 

1 H 14.2 1 A 1 2 

2 J 10.54 1 A 2 3 

3 C 25.23 2 A 3 4 

4 K 3.06 1 A 4 6 

5 G 0.75 1 A 5 6 

6 G 13.24 1 A 6 7 

7 A 3.01 2 A 4 5 

8 D 6.82 2 A 5 9 

9 B 3.42 2 A 9 10 

10 C 1.06 1 A 8 9 

11 F 6.22 1 A 6 8 

12 H 5.2 1 A 8 10 

13 D 23.63 1 A 10 11 

14 E 8.75 2 A 10 12 

15 I 2.33 1 A 12 13 

16 G 13.35 1 A 13 14 

17 D 8.77 2 B 12 15 

18 I 22.23 1 B 13 19 

19 G 11.18 1 B 17 18 

20 H 9.98 1 B 16 17 

21 F 4.95 1 B 15 16 

22 C 10.11 2 B 15 20 

23 H 9.7 1 B 19 20 

24 F 19.95 1 B 17 22 

25 C 5.02 2 B 20 21 

Shortcut 1 — 42.89 — — 1 11 

Shortcut 2 — 12.22 — — 11 18 

Shortcut 3 — 26.3 — — 21 22 

 

Table 3.3: Maximum plowing time allowed for each LOS class. © 2019 IEEE 

LOS Class A B C D E F G H I J K 

Time (hours) 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 
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Table 3.4: Possibility of the distance delayed in one operation. © 2019 IEEE 

Distance delayed (km) 5 trucks 6 trucks 7 trucks 8 trucks 9 trucks 

0 38.60% 43.75% 51.12% 64.84% 66.41% 

˂ 1 40.05% 45.43% 53.67% 67.26% 68.73% 

˂ 3 42.50% 53.14% 64.15% 72.67% 72.75% 

˂ 5 44.25% 57.14% 67.95% 75.50% 76.59% 

˂ 10 49.32% 66.29% 76.00% 82.35% 83.80% 

˂ 20 63.66% 79.94% 87.72% 89.78% 91.70% 

˂ 30 75.72% 85.80% 91.34% 92.71% 95.35% 

˂ 50 88.20% 90.18% 93.15% 95.58% 98.08% 

˂ 100 93.90% 90.91% 97.74% 99.49% 99.90% 

˂ 200 94.24% 95.19% 99.98% 100.00% 100.00% 

≥ 200 5.76% 4.81% 0.02% 0.00% 0.00% 

 

Table 3.5: Maximum distance delayed in one operation. © 2019 IEEE 

Number of trucks 5 6 7 8 9 

Maximum distance delayed (km) 365.0 307.7 211.2 157.0 113.9 

 

The simulation shows the delay possibilities (for different fleet sizes) of one snow removal 

operation to clean up all snow-covered roads after one snow event. It provides valuable 

information for selecting a reasonable fleet size with different confidence level requirements. Since 

the simulation model provides a range estimation of the performance, criteria can be set at any 

level to find the minimal fleet size required. For example, if having a 60% confidence level is 

required that no road will be delayed in the operation, a minimal fleet size of 8 trucks will be 

needed based on the simulation result. Similarly, if a 70% confidence level is required for having 

fewer than 10 kilometers delayed in a single operation, the minimal fleet size needed will be 7 

trucks. Criteria like “maximum distance delayed” in a worst-case scenario, or “maximum 

possibility allowed” to limit distances delayed can also be used to select a reasonable fleet size. 
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3.5 Validation techniques 

This model is validated using real-world data obtained from a shop with 4 trucks during its 

operations in November and December 2018. For each truck at this shop, an average delayed road 

distance in one trip is calculated using data from 5 trips of the truck. The total delayed distance is 

determined by the sum of the 4 trucks. The simulation model was run for 5000 iterations, the real 

operation data is on the 49th percentile of the simulation result; it has a 1.19% difference with the 

median value and a 16.53% difference with the mean value. Considering the time waiting for 

traffic lights, time spent making turns, and other factors affecting the trucks’ productivity are not 

calculated in this model, this result is considered to be acceptable. It shows that the model can 

mimic the current winter highway maintenance operations, and its result is similar to the fleet 

performance in actual operations. 

3.6 Conclusion 

This study is aimed at selecting a reasonable fleet size under uncertain weather conditions. By 

evaluating the performance of a given fleet size, a reasonable fleet size can be selected based on a 

required confidence level. The simulation approach includes: using the Monte Carlo method to 

sample random snow areas based on historical data, selecting the plowing route for trucks, and 

calculating the time-cost of plowing operations based on real-world speed data. The feasibility of 

proposed model was demonstrated through an illustrative case study. The performance of different 

truck fleet sizes is simulated, and the results show the potential risk of failure for different fleet 

sizes. This model provides a new decision support tool for developing policies and strategies for 

the assignment of different numbers of trucks to a depot. Proposed model can also incorporate 

advanced weather information from a forecast system, which provides detailed weather 
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information for every road section. Future work may include adding a feature to the model to 

automatically select the minimal fleet size for a given confidence level, incorporating the effects 

of truck breakdowns, and generalizing the model for other fleet types, such as sand trucks, to 

include loading and unloading materials. The authors recommend that future studies be conducted 

focusing on these issues. 

  



31 

4 CHAPTER 4: A PREDICTIVE SIMULATION MODEL OF REGIONAL WEATHER 

EVENTS FOR WINTER ROAD MAINTENANCE OPERATIONS2 

4.1 Introduction 

Many construction operations are sensitive to weather conditions, as adverse weather events can 

bring negative impacts to the project. Moselhi et al. (1997) pointed out that labor productivity can 

be affected and work stoppage can occur under abnormal weather conditions. Weather also affects 

the cost of construction projects. Research conducted by Russo Jr. (1966) suggests that appropriate 

use of weather information could potentially save $0.5 to $1.0 billion for the construction industry 

annually. Due to the resulting project delays and cost overruns, weather is one of the main reasons 

for construction claims as well (Moselhi & El-Rayes, 2002). Accurately estimating the potential 

impact of weather on a project before commencing construction operations can save both time and 

money. Multiple studies have been conducted to estimate the weather impact on a construction 

project (Moselhi et al., 1997; Shahin, AbouRizk, Mohamed, & Fernando, 2014), and historical 

weather data is a common component in these approaches. Usually, historical weather information 

is limited to the data collected at weather stations. For a project with a large spatial magnitude, 

which has multiple activities taking place at different locations with various weather conditions, 

detailed weather information between weather stations is sometimes needed to accurately estimate 

the weather impact on each individual task. Breaking down the project this way presents 

challenges: it is difficult, for example, to estimate the weather situation between stations due to 

 
 

2 A version of this chapter is published as Li, Y., Liu, C., Lei, Z., & AbouRizk, S. (2020, March). A predictive 

simulation model of regional weather events for winter road maintenance operations. In Proceedings of 

Construction Research Congress 2020. doi: 10.1061/9780784482865 and has been reprinted with permission from 

the American Society of Civil Engineers (ASCE). 
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their vast spacing. A scientific method is needed to estimate detailed weather situations using 

limited historical data. In this chapter, kriging interpolation is used to generate detailed weather 

information using historical data from weather stations; a simulation model is developed using this 

data to solve the fleet sizing problem in winter road maintenance operations (Perrier, Langevin, & 

Campbell, 2007). The result is compared with the outcome of another approach (using the weather 

information from the closest weather station) to demonstrate how kriging interpolation and 

detailed weather information helps the project planning process. 

4.2 Methodology 

This research proposes a simulation model to estimate the truck fleet size needed in winter road 

maintenance operations. Figure 4.1 shows the framework of the proposed model. Historical 

weather data from weather stations, road network information, and road Level of Service (LOS) 

requirements are used as inputs of the model. Kriging interpolation is used to estimate detailed 

precipitation amounts in the working area. Compared with inverse distance weighting interpolation 

and spline interpolation, kriging interpolation can measure the possible error when estimating 

unknown values, but also requires more data input (Wu & Hung, 2016). A resource scheduling 

approach is used to calculate the fleet size needed for the tasks. Finally, Monte Carlo simulation 

is used to generate a probability distribution of the fleet size as the output result. 
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Figure 4.1: Model framework. 

4.2.1 Kriging interpolation 

Historical observation data from nearby weather stations around the working area are used here as 

inputs. To improve the accuracy in resource scheduling, data observation intervals should be as 

short as possible and should be consistent among all weather stations. In this research, hourly 

precipitation data from Alberta Climate Information Service (ACIS) are used. In each hour during 

a snow event, precipitation amounts in the working area are calculated using ordinary kriging 

interpolation (Cressie, 1988). Equation 4.1 shows the expression of ordinary kriging method 

(Goovaerts, 1997)  

𝑍∗(𝑢) = ∑ 𝜆𝛼(𝑢)𝑍(𝑢𝛼) + [1 − ∑ 𝜆𝛼(𝑢)

𝑛(𝑢)

𝛼=1

]

𝑛(𝑢)

𝛼=1

𝑚(𝑢) (4. 1) 
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where Z*(u) is the estimation value at location u, λα(u) is the weight assigned to datum Z(uα), and 

m(u) is a constant mean of local value. 

Kriging interpolation calculates predicted data as a weighted average of available sample data 

(Kwon, Fu, & Melles, 2017). The weight of each sample data is determined by the semivariogram, 

which gives the relation between the distance between two data points and their semivariance. The 

semivariogram can be modeled by calculating the semivariance between the known data points 

and find the relation between their distance and the semivariance value. 

Kriging interpolation has several variants including simple kriging, ordinary kriging, and universal 

kriging. Among these variants, ordinary kriging is relatively easy to use and requires less input 

data (Kwon et al. 2017), thus it is selected for use in this research. 

4.2.2 Resource scheduling 

In winter road maintenance operations, the LOS class on each road is one of the most important 

constraints in operations as the resources needed in the operation are greatly affected by this factor. 

The class of each road is usually assigned by the government to specify time requirements as well 

as acceptable road conditions in maintenance operations. This research uses two components in 

the LOS classes: trigger-accumulation levels and time requirements. Trigger-accumulation levels 

define when the road needs to be cleaned in a snow event. When the maximum snow accumulation 

reaches the trigger-accumulation level, trucks will be sent to this road for maintenance work. Time 

requirements specify the maximum-allowed duration for the maintenance work. Operation on each 

road section must finish within this duration to minimize traffic disruptions; a contractor’s proposal 

will be rejected if the planned work duration exceeds this limit (Siu, Liu, Wales, & AbouRizk, 
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2017). The proposed model allows users to set multiple LOS classes. Both the trigger-

accumulation level and the time requirement can be set individually for each class. 

Here, a resource scheduling approach is used to find the fleet size needed for a snow event. After 

calculating detailed hourly precipitation during the snow event, the model calculates the snow 

accumulation on each road starting from the beginning of the snow event. Precipitation amounts 

on each road are added up until the maximum accumulation amount reaches the triggering amount 

of snow. A maintenance task is then created and the resources are assigned to this task. Multiple 

trucks can be assigned to one task in order to meet the LOS requirements. Equation 4.2 is proposed 

by the authors to calculate the number of trucks assigned to each task 

𝑅𝑛 = ⌈

𝐿 × 𝑁𝐿 × 2
𝑆 + 𝑇𝑀

𝑇
⌉ (4. 2) 

where Rn is the number of trucks needed for the task, L is the length of the road section, NL is the 

number of lanes in each direction, S is the truck working speed, T is the time requirement value 

for this road, and TM is a maneuvering and operating time for trucks to travel to this road section 

and return back, which is pre-defined and should be related to the distance between the road and 

truck’s original parking location. 

After calculating the number of trucks needed for the task, the authors propose Equation 4.3 to 

calculate the duration of the task 

𝐷 =
𝐿 × 𝑁𝐿 × 2

𝑆 × 𝑅𝑛
+ 𝑇𝑀 (4. 3) 
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where D is the duration of the task, L is the length of the road section, NL is the number of lanes in 

each direction, S is the truck’s working speed, Rn is the truck number for this task (calculated by 

Equation 4.2), and TM is the maneuvering and operating time. 

Following the method presented above, tasks are created at different times throughout the snow 

event. Next, the model calculates the number of trucks needed to finish all tasks on time. Fleet size 

is set to 0 at the beginning of this process. Trucks are assigned to tasks and are occupied until the 

task is finished, and more trucks are added when the fleet size is not enough for the tasks. The total 

resulting fleet size will be the number of trucks needed for the timely completion of all tasks for 

the full duration of the snow event. Random snow events are retrieved from historical weather data 

using Monte Carlo simulation. Each snow event gives a fleet size number for this event and a 

probability distribution of the fleet size is generated as the final output result. 

4.3 Implementation 

The simulation model is developed using the R programming language, a free software 

environment for statistical computing and graphics (R Core Team, 2020). The gstat package is 

used in this model for kriging interpolation calculations (Gräler, Pebesma, & Heuvelink, 2016; 

Pebesma, 2004). Notably, the proposed methodology is generic. As such, other programming 

platforms can also be used to achieve the same result. 

4.4 Illustrative case study 

An illustrative case study is provided here to demonstrate the proposed model. Figure 4.2 shows 

the locations of the weather stations and the roads in this case study. The road network consists of 

14 roads. Weather data from 18 weather stations in Alberta, Canada during a 128-day period in 
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winter are used here as inputs. Table 4.1 shows the trigger-accumulation level and time 

requirements of different LOS classes. Table 4.2 shows the road information in detail. 

Table 4.1: LOS class requirements. 

Class Time requirement (hours) Trigger-accumulation level (mm) 

A 3 0.2 

B 5 0.4 

C 8 0.8 

D 12 1.5 

 

Table 4.2: Road information. 

Road ID 
Length 

(km) 
Lanes LOS 

Maneuvering 

(hours) 

a 15 1 C 0.9 

b 18 1 A 0.7 

c 20 1 B 0.9 

d 25 1 C 0.9 

e 20 1 B 0.7 

f 20 2 C 0.5 

g 15 1 A 0.7 

h 18 1 D 0.5 

i 24 1 D 0.9 

j 24 2 D 0.7 

k 30 1 C 0.5 

l 24 1 C 0.5 

m 15 1 D 0.9 

n 18 2 B 0.7 

 

The model was run for 100 iterations, as additional iterations do not result in a significant change 

to the result. Figure 4.3 shows the simulation result. This result provides decision support in project 

planning and can be used to select the fleet size needed in the area or estimate the possibility of 

delays if not enough pieces of equipment are prepared for the project. It can also be further 
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incorporated with the truck and operation cost to find a balanced fleet size for both performance 

and cost based on the confidence level required. 

 

Figure 4.2: Locations of roads and weather stations. 

 

Figure 4.3: Probability distribution of truck fleet size. 

The same problem is calculated using another approach to demonstrate the benefits of using 

kriging interpolation in project planning. Here, weather data from the closest weather station is 
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used to calculate the precipitation amount on each road section. Figure 4.4 and Figure 4.5 compare 

the predicted precipitation amounts in a one-hour period between the two methods. As shown in 

the figures, only 2 roads are estimated as having precipitation over 0.1 mm if using data from the 

closest weather station compared with 8 roads when using the proposed method. This can result in 

not enough trucks being prepared for the project as the actual number of roads needing 

maintenance can be larger than the predicted number. Notably, the result from kriging interpolation 

is an estimation, and may contain errors; however, the authors predict higher accuracy than the 

closest-station method as the proposed method shows the gradient change in precipitation amounts. 

 

Figure 4.4: Estimated precipitation amount (mm) using kriging interpolation. 

 

Figure 4.5: Estimated precipitation amount (mm) using data from the closest weather station. 
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Figure 4.6 shows the simulation result of 100 iterations using the closest-station method. 

Compared with the result calculated using kriging interpolation, the closest-station result has a 

smaller maximum-truck number, and the frequency at 0 to 5 trucks is relatively higher. This will 

result in fewer trucks being prepared for the operation, potentially causing operation delays and 

cost overruns in a worst-case weather scenario. 

 

Figure 4.6: Simulation result using the closest-station method. 

4.5 Cross validation 

The accuracy of the kriging interpolation method was tested using cross validation. Using weather 

observations at 100 random times from historical data, the residuals was calculated using leave-

one-out cross validation. Figure 4.7 shows the histogram of cross validation residuals, Figure 4.8 

shows the histogram of observed precipitation values, Figure 4.9 shows the histogram of residuals’ 

z-score. 
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Figure 4.7: Histogram of cross validation residuals. 

 

Figure 4.8: Histogram of observed precipitation values. 

 

Figure 4.9: Histogram of residuals’ z-score. 
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The distribution of the residuals has an RMSE of 0.145, the standard deviation of the observed 

precipitation data is 0.186, and over 93% estimations the z-score is between ±2. 

4.6 Conclusion 

This study uses ordinary kriging interpolation to estimate the weather situation in a winter road 

maintenance project area. The resulting detailed weather information is then used to estimate the 

impact of regional weather events on the project. A simulation model is developed to estimate the 

fleet size needed in an operation area. Detailed hourly weather information is used to generate 

tasks in the operation, and a resource scheduling approach is used to find the fleet size needed. A 

probability distribution of the fleet size is generated using Monte Carlo method to provide decision 

support in project planning. Future work may include applying this methodology to other large-

scale construction operations and developing a generic simulation model that will model weather 

events as disruptions, add disruptions to an existing operation schedule, and simulate its impact on 

the project duration and cost. 
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5 CHAPTER 5: A GENERIC DATA-DRIVEN SIMULATION MODEL FOR 

LOOKAHEAD PLANNING IN WINTER HIGHWAY MAINTENANCE 

OPERATIONS 

5.1 Introduction 

For winter highway maintenance operations that cover a large area, project planning must consider 

the snow precipitation variations across the road network and the travel time vehicles spend on the 

road. In this chapter, a generic, data-driven simulation model is proposed to support short-term 

decision making on winter highway maintenance operations. The proposed model uses road 

network information and weather forecasts obtained from weather stations as primary data inputs, 

and it generates the required fleet size forecast and maintenance operation schedule as outputs. 

Using Monte Carlo simulation and considering the variations in vehicle speed due to traffic and 

road conditions, the fleet size forecast can provide an estimate for the number of vehicles needed 

during operation. The maintenance operation schedule suggests vehicle operation routes, as well 

as vehicle departure times and expected return times, to meet stipulated time constraints. When 

the actual operation progress does not match the operation plan, or the actual snow precipitation 

amount is different from the weather forecast, this model can also be updated dynamically during 

operations using weather observation data and vehicle GPS tracking data. The updated results can 

be created based on actual operation progress and weather conditions. 

5.2 Methodology 

The proposed simulation model consists of three main components: road snow accumulation 

forecast, operation scheduling, and operation simulation. Figure 5.1 shows the framework of the 

simulation model. 
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Figure 5.1: Framework of the simulation model. 

The model first uses weather forecast and road network information to forecast the snow 

accumulation progress on each road. Then based on the accumulation forecast and road LOS 

requirements, the model calculates at what time snow removal operations are needed for each road 

section and finds the best operation route to achieve the maximum operation result at this time. 

Truck speed distribution functions are used to stochastically model the duration of each snow 

removal operation task, and tasks are scheduled to meet the time requirements. Using the generated 

schedule, the required fleet size at each time is calculated, and an estimate of the required fleet size 

is created through multiple iterations using Monte Carlo simulation. 

An operation plan is generated using the average truck speed, which provides the operation routes 

and expected vehicle departure and return times. To enhance the accuracy of the operation plan 

due to the potential discrepancy between weather forecast data and the actual precipitation amount, 
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as well as between the generated plan and actual operation, the model can use vehicle tracking 

data and weather observations to dynamically update the plan based on the actual precipitation 

amount and operation progress. 

5.2.1 Assumptions 

The proposed model was developed based on the following assumptions: 

1) The input weather forecasts can accurately forecast the weather conditions in the future; 

actual precipitation amount and snow event duration will be the same as the forecast. 

2) Trucks can remove all snow on the lane that they pass and restore roads to optimal driving 

conditions in one pass. 

3) Plowing and sanding operations are combined as a single maintenance operation. Material 

limitation in sanding operations is considered as a limit in operation route length. 

4) When there are multiple lanes on the road, the truck will plow the one with maximum snow 

accumulation amount. 

5) Trucks will plow the lane they pass if there is snow accumulation, regardless of the amount. 

6) Trucks return to the depot following the same route that they left. 

5.2.2 Road snow accumulation forecast 

In the road snow accumulation forecast process, the model uses weather forecast data and road 

network information to forecast the snow accumulation progress on the roads. Figure 5.2 shows 

the calculation process. 
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Figure 5.2: Road snow accumulation forecast process. 

First, the snow precipitation forecasts from weather stations are interpolated using inverse distance 

weighting interpolation. Compared with ordinary kriging interpolation, the benefit of using inverse 

distance weighting interpolation is that it does not use a semivariogram in the interpolation 

calculations. Using ordinary kriging interpolation requires constructing a semivariogram using the 

available data set. Therefore, when only a small number of data points are available, it is difficult 

to build a reliable semivariogram. For the highways, the number of weather stations around the 

road network area varies by location, and in some cases, only two or three stations are available. 

Thus, inverse distance weighting interpolation is used in this model to accommodate various data 

scenarios. Equation 5.1 shows the expression of inverse distance weighting interpolation method 

(Kalkhan, 2011): 
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𝑝

𝑛
𝑖=1

(5. 1) 

where 𝑍0̂ is the estimated value at a given location; Zi is the observed value at point i; di is the 

distance between observation i and the given location; n is the total number of neighbors used to 

estimate the unknown location; and p is the power parameter. 

For each forecast time interval, an interpolated snow precipitation rate forecast for the working 

area is generated. The entire road network area is divided into 500-m2 grids, and each grid has an 

individual precipitation rate for each time interval. By overlaying the interpolated data on the road 

network, the snow precipitation rate on each road section can be determined. Each road section 

will overlay multiple grids, and the snow accumulation amount on each grid is separately 

calculated using the corresponding grid in the interpolated weather forecast. Accumulation on 

different lanes of the same road section is also calculated separately since their operation progress 

can differ. This approach ensures that the snow accumulation at different locations are calculated 

accurately, so the accumulation situation on long roads can be evaluated correctly. Figure 5.3 

shows an example of the snow accumulation amount on a road lane. 

 

Figure 5.3: An example of the snow accumulation amount on a road lane. 
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Weather stations usually measure snow precipitation as snow water equivalent value. To estimate 

the actual snow accumulation amount on roads, the snow water equivalent value needs to be 

converted to snow depth using snow density. Equation 5.2 shows the relationship between snow 

water equivalent, snow density, and snow depth (Liang & Wang, 2020): 

𝑊 =
𝜌𝑠𝑑

𝜌𝑤
 (5. 2) 

where W is the snow water equivalent, ρs is the density of snow, ρw is the density of liquid water, 

and d is the snow depth. 

This model allows the user to define the snow density value used in calculations. If the snow 

density at the operation area is not known, a default value of 100 kg/m3 will be used based on the 

rule of thumb approach.  

For each road lane, the accumulated snow amount at each forecast time interval can be calculated 

using Equation 5.2, and the snow accumulation progress can be determined by summing the 

accumulated amount over time. The snow depth on each road lane at any time during the forecast 

period can be calculated using this approach. 

5.2.3 Operation scheduling 

Operation tasks are created and scheduled based on the LOS class for each road section. In this 

model, trigger accumulation amount and operation reaction time are used to define the service 

requirements. All lanes in one road section will have the same LOS class, and each class can have 

different trigger accumulation amount and reaction time. 



49 

The trigger accumulation amount defines when the operation is required. When the maximum 

accumulated snow amount on a road lane reaches its trigger accumulation amount, snow removal 

operation is needed. Operation reaction time defines the latest time to start the operation. After the 

maximum accumulation on a road lane reaches its trigger accumulation amount, the snow removal 

operation on this lane must start within the reaction time. Based on these rules, operation tasks are 

created and scheduled following the process shown in Figure 5.4. 

 

Figure 5.4: Create operation tasks and operation scheduling process. 

The model first creates a base-accumulation assuming that the entire road network has no snow 

accumulated at the beginning of the operation. Using the snow accumulation progress forecast, 

newly accumulated snow is added to the base-accumulation, and the time that each road lane 
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reaches its trigger accumulation amount can be predicted. An operation task is created if there is 

at least one road lane that will reach its trigger during the forecast period. 

When creating operation tasks, the model first updates the base-accumulation to the accumulation 

condition when the first lane reaches its trigger accumulation amount (Time T1). Next, an optimal 

operation route for the task is selected. Simple paths in the road network, which do not have 

repeated vertices in the path (Sedgewick & Wayne, 2011), are used as candidate paths for the 

operation. The candidate path is selected from all simple paths in the road network that start from 

the depot vertex. The operation route will start from the depot, travel along the path to its ending 

vertex, and return to the depot following the reversed path. The total travel distances should be 

within the maximum working distance of the vehicles. Thus, only paths shorter than half of the 

maximum working distance are selected as candidate paths.  

The optimal operation route is selected based on the snow accumulation conditions in the base-

accumulation. The objective function is given below: 

Maximize 
∑ ∑ 𝑃𝑖,𝑗

𝑛

𝑗=1𝑖∈𝐼

 
(5.3) 

Subject to 
∑ 𝐿𝑖,𝑗

𝑛

𝑗=1

≤ 𝐿𝑚𝑎𝑥 
(5.4) 

 
𝑃𝑖,𝑗 = {

𝐿𝑖,𝑗

𝑚𝑖𝑛{𝑇𝑖,𝑗,𝑘}
   (𝑚𝑎𝑥{𝑆𝑖,𝑗,𝑘} > 0)

−𝐿𝑖,𝑗               (𝑚𝑎𝑥{𝑆𝑖,𝑗,𝑘} ≤ 0)

 
(5.5) 
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where I = candidate routes set, n = number of road sections in route i, Pi,j = priority factor of road 

j in route i, Li,j = length of road j in route i, Lmax = maximum operation distance, Ti,j,k = the time 

from now to trigger time for lane k on road j in route i, Si,j,k = maximum snow accumulation amount 

on lane k on road j in route i. 

Function 5.3 finds the best route with the largest sum of priority factors on all road sections in this 

route. Function 5.4 limits the route length within the maximum operation distance. Function 5.5 

calculates each road section's priority factor using the time duration before it reaches the snow 

trigger accumulation level, higher priorities are given to long road sections and roads that 

accumulations are close to their trigger accumulation level. 

After an operation task is created, the task is scheduled at a time that meets the service time 

requirements of all road lanes that it passes. The time that the vehicle spends on each road lane is 

calculated using the length of the road and a random deviate from the vehicle speed distribution. 

Historical operation data is used in this model to fit the speed distribution functions, but it can also 

be created based on expert knowledge or experience. Two distribution functions are used in this 

model to represent the vehicle speed at different scenarios. The first one is working speed, which 

is the speed when the vehicle is conducting plowing or sanding work. The other one is deadheading 

speed, which is the speed vehicle travels without doing any maintenance work. The model assumes 

that when a vehicle travels on a road lane that the snow accumulation amount is not zero, the 

vehicle speed will follow the working speed distribution, otherwise, the speed will follow the 

deadheading speed distribution. 

Since vehicles are required to arrive at the road lane within the reaction time once the trigger 

accumulation level is reached, the latest time to depart from the depot can be calculated using the 
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trigger time for each road lane and the duration vehicle spends on each road. Operation tasks are 

scheduled at the latest time possible, allowing more snow to accumulate on the road and increase 

the amount of snow removed in operation, improving the operation efficiency. 

The model then calculates the accumulation conditions after the newly created task and updates 

the base-accumulation. If the operation on any road lane is finished before T1, the base-

accumulation for this lane is updated as the snow accumulated between the operation finish time 

(Time T0) and T1, assuming that at time T0 there is no snow on this lane. If the operation on any 

road lane is finished after T1, the base-accumulation for this lane is updated as the negation of the 

snow accumulated between T1 and operation finish time (Time T2). In this case, snow 

accumulation on this lane will become zero at T2 if new snow precipitations are added to the base-

accumulation, and when this lane reaches its trigger level again can be calculated correctly. 

Using the updated base-accumulation, the model again calculates when each road lane will reach 

its trigger accumulation amount, schedule tasks accordingly, and repeats this process until all lanes 

will not reach their trigger accumulation amount during the forecast period. 

5.2.4 Operation simulation and result output 

The first output of the model is the fleet size forecast, which is a box and whisker plot showing the 

range of required fleet sizes at different times during the forecast period. This result is generated 

through multiple simulation iterations. In each iteration, an operation schedule is created following 

the process described in section 5.2.3, and the required vehicle fleet size for a certain time period 

is the maximum number of tasks being scheduled simultaneously during this time. Since the 

durations for each task are calculated using random deviates from the vehicle speed distribution 

functions, task start time, end time, and operation route can be different between iterations. Using 
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Monte Carlo simulation, different operation schedules are generated from multiple iterations, and 

an estimate of the required fleet size in each time interval can be obtained. The model allows users 

to define the time step interval in the fleet size forecast. Figure 5.5 shows an example of the fleet 

size forecast with a time step interval of 1 hour. Each box encloses the 25th to 75th percentile of the 

fleet size distribution, with the median shown as a black bar; the minimum and maximum values 

are shown as whiskers. 

 

Figure 5.5: An example of the fleet size forecast with a 1-hour time step interval. 

A suggested operation plan is the second output of the model. It is a Gantt chart showing the start 

and end time for the tasks, as well as the operation route ID for each task. This operation plan 

schedule is generated using the average vehicle speed for working and deadheading, or an expected 

speed provided by the user. Figure 5.6 shows an example of the operation plan. 
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Figure 5.6: An example of the operation plan. 

5.2.5 Near real-time result update 

As the fleet size forecast and the operation plan are created based on weather forecasts, the 

usability of these results may be reduced when the forecasts differ from actual weather conditions. 

Hence, to ensure the fleet size forecast and operation plan is accurate and practical, a function was 

incorporated to the model allowing users to update the model in near real-time. 

The updating process starts with estimating the actual snow accumulation amount on the road 

network. Observations from the weather stations are used to calculate the actual accumulation 

amount on each lane since the beginning of the operation (or last time updating the simulation 

model), and a base-accumulation is created. Then, vehicle GPS data are used to track operation 

progress. The model uses the GPS coordinates to determine which roads trucks have been to and 

the trucks’ traveling directions on each road. Every time a truck passes a road section, the lane 

with the largest amount of snow accumulation amount in the truck moving direction is assumed to 

be cleaned, and its base-accumulation is updated to the snow precipitation amount between the last 

time a truck passed and the current time. Next, newly collected GPS data are added to the historical 
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vehicle tracking database, and new speed distribution functions are fitted using all historical speed 

data. Finally, an updated fleet size forecast and operation plan are created using the latest weather 

forecasts and the updated speed distribution functions. 

“Near real-time” update implies time is needed for collecting operation data and model 

calculations. For example, the operation duration on a road section ranges from several minutes to 

more than half an hour, and the operation for the entire route can take several hours. Therefore, 

frequent result updates within a short time is impractical and does not add value because of little 

changes in the model. Also, depending on the complexity of the road network, the length of the 

forecast period, and the computer configurations, the model needs several minutes for simulation 

calculations and cannot provide a result in real-time, so the update process is considered “near 

real-time.” 

The limitation of this process is that the updated fleet size forecast and operation plan are still 

based on the candidate operation routes that start and end at the depot location. Therefore, if any 

truck is not at the depot when updating the model, the process of truck returning to the depot is not 

considered. Thus, it is recommended to only update the model when all trucks are returned to the 

depot. 

5.3 Model implementation 

5.3.1 Database structure 

The model was developed using the R language (R Core Team, 2020). A SQLite 3 database is used 

to store the input data. The database consists of six tables: Road, LOS, Forecast, Observation, 

WeatherStations, and Tracking. 
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The Road table stores the road network information. Table 5.1 shows the structure of the Road 

table. 

Table 5.1: Data structure of the Road table. 

Field Data Type Description 

ID Integer ID of the road section 

Length Double Road section length (in kilometers) 

Lanes Integer Number of lanes in each direction 

LOS Text Level of service class 

Lat1 Double Latitude of the road start location 

Lon1 Double Longitude of the road start location 

Lat2 Double Latitude of the road end location 

Lon2 Double Longitude of the road end location 

Error Double Allowable GPS deviate range 

 

It should be noted that all road sections are simplified to straight lines in this model, and an “Error” 

value is used to determine the allowable deviate range from a GPS coordinate point to the straight 

line. When using GPS data to find the vehicle is located at which road, the closest road from the 

GPS coordinate point is used, and the distance between the coordinate point and the road must be 

within this “Error” range. In the case of a curved road, the “Error” value must also consider the 

tracking point drifting caused by the shape of the road. 

The second table is the database is the LOS table, which stores the service requirements for each 

LOS class. Table 5.2 shows the structure of the LOS table. 

Table 5.2: Data structure of the LOS table. 

Field Data Type Description 

Class Text Level of service class 

Trigger Double Trigger snow accumulation amount 

React Double Operation reaction time 
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The third table in the database is the Forecast table, which stores the weather forecast data from 

all weather stations. Table 5.3 shows the structure of the Forecast table. 

Table 5.3: Data structure of the Forecast table. 

Field Data Type Description 

ID Text Weather station ID 

Lat Double Latitude of the weather station location 

Lon Double Longitude of the weather station location 

ValidTime DateTime The time that the weather forecast record forecasts 

IssueTime DateTime The time that the weather forecast record is issued 

SnowRate Double Snow precipitation rate 

 

The fourth table is the Observation table, which stores the weather observation data form all 

weather stations. Table 5.4 shows the data structure of the Observation table. 

Table 5.4: Data structure of the Observation table. 

Field Data Type Description 

StationID Text Weather station ID 

Lat Double Latitude of the weather station location 

Lon Double Longitude of the weather station location 

Time DateTime Time of the observation record 

PrecipRate Double Snow precipitation rate 

 

The fifth table is the WeatherStations table, which stores the weather station information, such as 

the station ID and location coordinates. Table 5.5 shows the data structure of the WeatherStations 

table. 
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Table 5.5: Data structure of the WeatherStations table. 

Field Data Type Description 

ID Text Weather station ID 

Lat Double Latitude of the weather station location 

Lon Double Longitude of the weather station location 

 

The last table in the database is the Tracking table, which stores the historical equipment tracking 

data. Table 5.6 shows the data structure of the Tracking table. 

Table 5.6: Data structure of the Tracking table. 

Field Data Type Description 

Equipment Integer Equipment ID 

DateTime Date Time of the tracking record 

Latitude Double Latitude of the equipment location 

Longitude Double Longitude of the equipment location 

Function Text Active equipment function  

Speed Double Speed of the vehicle 

 

The “Function” field in this table is used to distinguish the vehicle working speed from the 

deadheading speed, so the tracking equipment installed on vehicles must be able to provide the 

current working status of the vehicle. 

5.3.2 R packages 

Multiple R packages are used to implement the model algorithm. The sp package and the gstat 

package are used for inverse distance weighting interpolation calculations (Bivand, Pebesma, & 

Gomez-Rubio, 2013; Gräler et al., 2016; Pebesma & Bivand, 2005; Pebesma, 2004). The gstat 

package generates the interpolated output result as a SpatialPixelsDataFrame object, which is 
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defined in the sp package. The road network is stored as SpatialLines objects also using the sp 

package. 

The raster package is used to find the overlaying grids between road sections and interpolated 

weather data (Hijmans, 2020). The “mask” function is used to find the overlaying grids, and the 

“crop” function is used to remove redundant cells. 

The geosphere package is used to convert coordinates between the geographic coordinate system 

and the Cartesian coordinate system (Hijmans, 2019). The geographic coordinate system is used 

for original road network data and vehicle tracking data, and all coordinates are converted to a 

Cartesian coordinate system using the geosphere package for interpolation calculations. 

The igraph package is used to store the road network information and find simple paths in the road 

network (Csardi & Nepusz, 2006). 

The fitdistrplus package and the rmulti package are used to fit vehicle speed distribution functions 

(Delignette-Muller & Dutang, 2015; Swihart & Lindsey, 2020). Historical speed data are fitted to 

beta, normal, Laplace, logistic, Weibull, and gamma distributions using maximum likelihood 

estimation, and the best distribution function is selected using the KS test. 

The foreach package and the doParallel package are used to run multiple simulation iterations in 

parallel (Microsoft Corporation & Weston, 2019; Microsoft & Weston, 2020). This approach can 

accelerate the computation speed more than ten times, depending on the computer configuration. 

5.4 Case study and model validation 

Two case studies are provided in this section to demonstrate this model. The first one is an 

illustrative case study to analyze the rationality of the output result. The second case study is based 
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on actual operations, and its result is compared with actual operation data to validate this model. 

Validation techniques, result accuracy, and source of error are also discussed in this section. 

It should be noted that this model was developed based on the assumption that the weather data 

input is accurate. To eliminate errors from the weather forecast data, actual weather observations 

were used in the second case study to validate the model algorithm. If weather forecasts are used 

as inputs, the resulting errors could be higher depending on the quality of the forecasts. 

5.4.1 First case study 

This case study uses a road network with six road sections and four weather stations. All roads 

have one lane in each direction, and the length is 10 km. Figure 5.7 shows the road network, depot 

location, and weather station locations. 

 

Figure 5.7: Road network, depot location, and weather station locations for the first case study. 

Six simple paths in this road network are used to create candidate operation routes. For each route, 

trucks start from the depot, follow the simple path to its ending vertex, and return to the depot 

following the reversed path. Figure 5.8 shows the operation routes in this road network. 
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Figure 5.8: Operation routes in the road network. 

The roads are classified into four LOS classes, and the class for each road section is shown in 

Figure 5.9. Table 5.7 shows the trigger accumulation level and reaction time for each class. 

 

Figure 5.9: LOS class for each road section. 

Table 5.7: LOS class requirements for the first case study. 

Class Trigger Accumulation (cm) Reaction Time (hour) 

A 2 0.5 

B 4 1 

C 5 1 

D 6 1.5 
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The case study assumes there was a snow event on January 7, 2020, and the snow precipitation 

rate was 1 cm/h at all weather stations during this day. It also assumes that the truck speed was 40 

km/h for both working and deadheading and that the optimal operation schedule can be calculated 

based on the road network and LOS requirements. For example, road a is a class A road that has 

2 cm trigger accumulation level and 0.5 hour reaction time. Operation route 2 was the only route 

that includes road a. In this route, a truck needs 0.25 hours to arrive at road a, and it needs another 

0.25 hours to plow one side of the road before it starts to work in the opposite direction. Since the 

reaction time is 0.5 hours, a truck should depart from the depot the same time that road a reaches 

its trigger accumulation level in order to meet the time requirement. Furthermore, road a reaches 

its trigger accumulation level every two hours when the snow precipitation rate was 1 cm/h, and a 

truck needs 0.25 hours to return to the depot after plowing both directions on road a. Thus, the first 

task on route 2 should be scheduled two hours after the snow event starts, and it is optimal to 

schedule tasks on this route with 1.75 hours between tasks. Similarly, it is optimal to schedule 

tasks on routes 3, 5, and 6 with an interval of 4.25, 5.25, and 6.75 hours, respectively. 

Additionally, service requirements on roads c and d can be met by operations on routes 2, 3, 5, and 

6 as they are included in these routes, and tasks on routes 1 and 4 are not needed. Therefore, the 

optimal operation plan does not have any tasks on routes 1 and 4. 

Using this road network and precipitation data, the model-generated hourly fleet size forecast is 

shown in Figure 5.10. Figure 5.11 shows the generated operation plan, and Table 5.8 shows the 

details for each task in the operation plan. 
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Figure 5.10: Fleet size forecast. 

 

Figure 5.11: Operation plan. 
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Table 5.8: Operation plan details. 

Route Start time End time 

2 2020-01-07 02:00:00 2020-01-07 03:00:00 

3 2020-01-07 04:30:00 2020-01-07 05:30:00 

2 2020-01-07 04:45:00 2020-01-07 05:45:00 

5 2020-01-07 05:30:00 2020-01-07 06:30:00 

6 2020-01-07 07:00:00 2020-01-07 08:00:00 

2 2020-01-07 07:30:00 2020-01-07 08:30:00 

3 2020-01-07 09:45:00 2020-01-07 10:45:00 

2 2020-01-07 10:15:00 2020-01-07 11:15:00 

5 2020-01-07 11:45:00 2020-01-07 12:45:00 

2 2020-01-07 13:00:00 2020-01-07 14:00:00 

6 2020-01-07 14:45:00 2020-01-07 15:45:00 

3 2020-01-07 15:00:00 2020-01-07 16:00:00 

2 2020-01-07 15:45:00 2020-01-07 16:45:00 

5 2020-01-07 18:00:00 2020-01-07 19:00:00 

2 2020-01-07 18:30:00 2020-01-07 19:30:00 

3 2020-01-07 20:15:00 2020-01-07 21:15:00 

2 2020-01-07 21:15:00 2020-01-07 22:15:00 

6 2020-01-07 22:30:00 2020-01-07 23:30:00 

 

As shown in the operation plan, operation tasks are scheduled on routes 2, 3, 5, 6, and the interval 

between tasks on each route is the same as the optimal solution. The fleet size forecast takes into 

account the variations in vehicle speed, and it can be used to further support the operation planning 

process for winter highway maintenance operations. 

In conclusion, this case study shows that the model can select appropriate operation routes and 

schedule tasks at proper times based on weather information. The model-generated operation plan 

can meet the optimal solution when only considering operation routes based on simple paths. 
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5.4.2 Second case study 

The second case study is based on a project in Alberta, Canada. In this case study, there are three 

weather stations around the operation area. The road network, depot location, and weather station 

locations are shown in Figure 5.12. 

 

Figure 5.12: Road network, depot location, and weather station locations. 

The observed snow precipitation amount at each weather station from March 27–30, 2020, is 

shown in Figure 5.13. 

 

Figure 5.13: Observed snow precipitation rate from March 27–30, 2020. 
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As shown in Figure 5.13, the snow event started in the afternoon of March 27, 2020, and ended in 

the afternoon of March 29, 2020. At the beginning of the snow event, station A had a higher 

precipitation rate. As time progresses, snow area moved toward the road network and a high 

precipitation rate was observed at station C. Station B observed no snow precipitation during this 

time. 

Using these weather data and assuming the snow density was 150 kg/m3, the model-generated fleet 

size forecast is shown in Figure 5.14, and the operation plan is shown in Figure 5.15. 

 

Figure 5.14: Fleet size forecast. 

 

Figure 5.15: Operation plan. 
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To analyze the efficiency and feasibility of the operation plan, a count of how many times each 

road should be plowed in the operation plan is generated. The plow count of each road section is 

the sum of plow counts on all lanes in both directions. Figure 5.16 shows the planned plow count 

for each road section. Figure 5.17 shows the LOS class for each road section. 

 

Figure 5.16: Plow count for each road in the operation plan. 

 

Figure 5.17: LOS class for each road section. 

The results show that most maintenance tasks focused on class A roads due to their smaller trigger 

accumulation amount. Road sections close to the shop also had a higher plow count as trucks pass 
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these roads when going to other areas. The operation efficiency is also related to the accumulation 

amount on each road, the road should be plowed when it has a high accumulation level, and 

plowing a road when not much snow has accumulated is considered low-efficiency. To analyze 

the overall operation efficiency, a maintenance efficiency factor is used to measure the operation 

efficiency on each road section, which is calculated using Equation 5.6. 

𝑀𝐸 =
𝑆𝑚𝑎𝑥

(
𝑃

𝑁𝐿
+ 1 clean-up plow) × 𝑆𝑇

 (5. 6)
 

Where ME = maintenance efficiency; Smax = maximum snow accumulation amount; P = plow 

count; NL = total number of lanes in both direction; ST = trigger snow accumulation amount.  

This maintenance efficiency factor measures the average amount of snow that a truck plows each 

time. An efficiency factor equal to 1 means the amount of snow plowed is the same as the road’s 

trigger accumulation amount. A higher value means more snow is plowed from the road, and the 

operation is more effective. Figure 5.18 shows the maintenance efficiency value on each road. 

Figure 5.19 shows the cumulative distribution of the factor value. 

 

Figure 5.18: Maintenance efficiency factor for each road section. 
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Figure 5.19: Cumulative distribution of the maintenance efficiency factor. 

The results show that most roads have a high maintenance efficiency value. 70% of roads had an 

efficiency factor higher than 0.5, which means the average amount of snow plowed on these roads 

was at least half of the road’s trigger accumulation amount. The efficiency factor was higher than 

0.6 for more than 50% of roads, and on 35% of roads was higher than 0.8. Less than 20% of roads 

had an efficiency factor lower than 0.4. 

Figure 5.20 shows the road plow count in actual operations, and Figure 5.21 shows the plow count 

difference between the operation plan and the real operation data. Figure 5.22 shows the 

cumulative distribution of the difference between actual data and the model result, and Figure 5.23 

shows the difference range for each LOS class. 
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Figure 5.20: Plow count for each road in actual operation. 

 

Figure 5.21: Plow count differences between actual operation and model result. 
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Figure 5.22: Cumulative distribution of plow count difference between actual operation and 

model result. 

 

Figure 5.23: Plow count difference between actual operation and model result for each LOS 

class. 

When the operation plan is compared with the actual operation data during this period, the results 

show that: 
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• On most roads, the plow count in actual operation was higher than the model predicted. 

• On 70% of roads the plow count difference was less than 5. 

• Two roads in the southeast area had the highest difference. 

There are two possible reasons for the differences in road plow count: 

• The two roads with the highest difference are both class A roads, and both have two lanes 

in each direction. Therefore, to make sure these roads maintained good driving conditions, 

they were plowed more often in actual operations even if the trigger levels were not 

reached. This caused the actual plow count to be significantly higher than the operation 

plan. 

• In actual operations, maintenance started earlier than the operation plan suggested. This 

meant that some roads were plowed before their trigger levels were reached, and less snow 

was removed from the road each time. Therefore, for the same total snow precipitation 

amount, roads need to be plowed more times, increasing the plow count on some roads. 

Figure 5.24 shows a comparison between the actual fleet size used in operation and the model’s 

forecast. As shown in the figure, the truck fleet started to be active in operation earlier than the 

model’s prediction, and the total active time was longer. But the maximum fleet size used was 

three trucks, which was smaller than the model’s forecast. 
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Figure 5.24: Comparison between the fleet size forecast and actual active fleet size in operation. 

The actual operations may have started early because of a limitation in available fleet size. 

Therefore, a different operation strategy was used to complete the operation with limited trucks by 

extending the operation duration, instead of pursuing higher operation efficiency that requires 

more trucks. This model aims to find an operation plan with high operation efficiency, and truck 

availability is considered as an unlimited resource, which may result in a large truck fleet. By 

starting the operation early and cleaning roads before their trigger levels were reached, some roads 

will reach their trigger level at a later time, allowing certain tasks to be scheduled later and reducing 

the required fleet size. But this approach also increases the plow count on some roads and reduces 

the operation efficiency. 

Since the actual operation started early and was different from the operation plan, an updated result 

was generated when the operation was partially complete. Figure 5.25 and Figure 5.26 show the 

updated operation plan and fleet size forecast when the model was updated on March 28, 2020, at 

19:00. 
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Figure 5.25: Updated operation plan. 

 

Figure 5.26: Updated fleet size forecast. 

The updated results show that when the actual operation started early and was different from the 

operation plan, updating the model can create new results based on the operation progress. Some 

tasks are scheduled later, and the required maximum truck fleet size is reduced.  

In conclusion, the model generated operation plan can avoid unnecessary travels and has high 

maintenance efficiency on most roads. When comparing to actual operations, the plow count of 
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the simulation result is similar to that of actual operations on most roads. Differences could be 

caused by (a) a more frequent snow removal operation on important roads, (b) early start of the 

actual operation to reduce the required vehicle fleet size, and (c) errors from the weather 

observation data and snow accumulation calculations. 

5.5 Limitations and conclusion 

In this chapter, a generic, data-driven simulation model was developed, which can be used to assist 

the short-term, lookahead operation planning for winter highway maintenance operations. Weather 

forecasts and road network information are used to generate fleet size forecast and operation plan 

that provide efficient operation solutions. The model is validated by comparing its result with an 

optimal solution and actual operation data. It shows that the model result is similar to actual 

operations on most road sections, and errors caused by different approaches in actual operation 

remain in a reasonable range. This model can also use weather observation data and vehicle 

tracking data to update the results during operations, ensuring that the results remain valid and 

practical in cases where actual operation differ from the operation plan. The framework developed 

in this study is generic and can be adopted for solving problems with similar nature. 

A few limitations exist in this model. First, the model algorithm schedules maintenance tasks as 

close to their deadlines as possible to achieve the highest operational efficiency, but this approach 

might require a large truck fleet. When the available trucks are limited, resource leveling needs to 

be done manually. Second, operation route optimization is simplified in this model, and it may not 

be the most efficient operation route. Further studies can be conducted to identify the optimum 

route considering the operation requirements and constraints. Third, snow accumulation 

calculations are simplified to directly convert the precipitation data to accumulation amount using 
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snow density value. The impact of road surface temperature, wind speed, traffic volume, and other 

factors were not considered in this model. More sophisticated approaches for calculating the snow 

accumulation can be experimented in future to improve accuracy. Fourth, the model is sensitive to 

the quality of weather data; inherent uncertainties in weather data can reduce the result accuracy. 
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6 CHAPTER 6: CONCLUSION AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

6.1 Conclusion 

The objective of this thesis was to develop simulation models to assist the project planning process 

for winter highway maintenance operations. Due to the large spatial scale of highways, regional 

weather events and vehicle routing must be considered for operation planning. Limitations in 

weather data also bring challenges as the data are limited to a few weather station locations. 

Two simulation models were developed in this thesis. Chapter 3 introduces a model that uses a 

performance-based approach to evaluate the overall fleet performance under various snow events. 

This model uses truck speed distributions to simulate the operation process, and the performance 

of certain a fleet size is evaluated by its possible operation delays in operations. An appropriate 

fleet size for the long-term can be selected based on the user’s confidence level. 

The second simulation model is presented in Chapter 5. It uses weather forecasts and road network 

information to forecast the required fleet size and create efficient operation plans for short-term, 

lookahead planning. This model can also be updated during operations using weather observations 

and vehicle tracking data, and updated results are created based on current operation progress. 

The impact of regional weather events was considered in both model, and different approaches to 

estimate the impact area using limited weather data is discussed in Chapter 4. Results using the 

closest-station method and kriging interpolation method are compared, and they show that 

interpolation methods can provide a more reasonable estimation for the weather condition on roads 

between weather stations. 
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To conclude, generic simulation models to support the winter highway maintenance operation 

planning in both long-term and short-term were developed in this thesis, and the research 

objectives are achieved. Both models still have limitations and can be further improved through 

future research. 

6.2 Recommendations for future research 

In winter highway maintenance operations, the operation performance depends heavily on the 

operation route choices. An advanced optimization algorithm can help to reduce the required 

vehicle fleet size while maintaining high operation efficiency. In this thesis, road network and 

operation routes are both simplified, and future research is recommended to focus on route 

optimization to improve the operation efficiency further. 

For short-term, lookahead operation planning, resource leveling approaches can be further 

included in the proposed model. This will allow the user to get a practical simulation result at the 

beginning when resources are limited and a warning if the available equipment is not enough for 

the operations. 

Moreover, research on partitioning service areas and selecting vehicle depot locations are 

recommended. This will assist project planning in the long term, and could be integrated into the 

model to help selecting the optimal fleet size for each depot. 
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