
Extraction of a Projected Pattern in a Single Image
using Deep Learning

by

H M Ata-E-Rabbi

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© H M Ata-E-Rabbi, 2021

Abstract

The appearance of an image projected by a projector onto an arbitrary

surface has the potential to appear differently depending on several factors,

e.g., the properties of the surface being projected on, the colors of the light

projected by the projector and the colors and the optical properties of the

surface. Recovering the original colors of the projected image and hence, the

scene structure using a Structured Light (SL) system are challenged by the

aforementioned factors. One of the key aspects of doing 3D reconstruction

using SL systems is to detect the colors of the elements of the projected pattern

in the image captured by the camera which contains important information

needed for decoding the pattern to reconstruct the 3D shape of the object.

However, this can be a challenging task when the colors of the projected lights

interact with the colors of objects in the scene making the detection of the

original colors difficult or when the surface absorbs most of the projected light

making even the detection of the shapes of the elements of projected pattern

difficult, if not impossible. Many off-the-shelf SL devices like the Microsoft

Kinect use infrared (IR) cameras and projectors to get around the issue of

color blending. But IR devices are not as readily available as normal RGB

cameras and projectors which are usually the devices used in cost-efficient do-

it-yourself custom SL systems. In this thesis, we explore the problem of pattern

extraction for SL systems. We first focus on extracting the dots of the Kinect

pattern, without any regard for the colors of the dots as color information is

not used for decoding this pattern, by posing the problem of pattern extraction

ii

as a pixel classification problem and propose a simple encoder-decoder based

model that can surpass the classification accuracy of a straightforward image

processing approach. Because obtaining ground truth to train such models is

expensive and also because many RGB SL systems developed so far use many

different kinds of patterns, we next propose a method, inspired by the ideas

from recent advances in scene decomposition, to extract the elements of any

pattern with original colors in an unsupervised manner at the cost of longer

processing time. Our experiments show that this approach works best with

dense patterns, but has trouble extracting fine details accurately required for

sparse patterns like that of the Kinect’s.

iii

Acknowledgements

I am grateful to my supervisor, Professor Herb Yang, for his continuous

guidance and assistance throughout the research and my exam committee. I

would also like to thank Huawei and NSERC for partially funding this project.

Finally, I am forever grateful to my parents and sister for always being there

for me and to baby Shayan who was a constant source of joy and happiness

making the pandemic a little more bearable.

iv

Contents

1 Introduction 1

2 SL Systems 5
2.1 Related Works . 8

2.1.1 Grayscale Patterns . 8
2.1.2 1D Color Patterns . 10
2.1.3 2D Color Patterns . 15

2.2 Summary . 17

3 Scene Decomposition 19
3.1 Related Works . 20

3.1.1 Single-Object Scene Decomposition 20
3.1.2 General Scene Decomposition 24

3.2 Summary . 29

4 Extraction of SL Patterns using Deep Learning 30
4.1 Extracting the Kinect Pattern 30

4.1.1 Model Architecture . 31
4.1.2 Dataset . 34
4.1.3 Training . 35
4.1.4 Results . 36

4.2 Extracting General Patterns 38
4.2.1 Model Architecture . 38
4.2.2 Differentiable Rendering 40
4.2.3 Dataset . 42
4.2.4 Training and testing 42
4.2.5 Results . 43
4.2.6 Partial Supervision . 47

5 Conclusion 49

References 51

v

List of Tables

4.1 Quantitative evaluation of the pattern extraction method for
three different patterns using unsupervised training. 43

4.2 Quantitative evaluation of the pattern extraction method with
partial supervision using the diamond pattern [33]. 47

vi

List of Figures

1.1 An image captured by the Microsoft Kinect [58]. The dots in
the projected infrared pattern have minimal interaction with
surfaces of different colors and materials and are clearly visible. 2

1.2 Some examples of projected patterns on real scenes using RGB
patterns. (a) is from [33] and (b) is from [57]. 3

2.1 A typical SL system [18]. 5
2.2 An example of color-blending. Inset shows an instance where

the projected bright sky-blue colored stripe mixed with the color
of the object resulting in an emerald color. 6

2.3 Epipolar geometry [43]. 7
2.4 The image on the left is the slit pattern used in [38]. The right

image shows examples of epipolar lines that have endpoints of
multiple slits on them. 9

3.1 An example scene and its associated components [31]. 19

4.1 The original Microsoft Kinect pattern. 31
4.2 The U-Net architecture for extracting the dot pattern. 32
4.3 The encoder block. 33
4.4 The bottleneck block. 34
4.5 Some textures (top row) and object models (bottom row) used

to create the dataset. 35
4.6 Some classification results of the image processing method and

the proposed method. The first row contains images of three
different scenes, the second row contains the respective ground
truth classifications and the third and the fourth rows show
the outputs of the image processing method and that of the
proposed method respectively. Insets, except the white one,
highlight some of the difficult regions where the visibility of the
projected pattern is low. The proposed method can still detect
dots in these regions while the straightforward image processing
solution cannot. The white inset in scene 3 shows a region where
thresholding causes false dot detection in the image processing
solution indicating that just lowering the threshold to detect
more dots in darker regions will cause problems in other areas. 37

4.7 (a) Image of a test scene with associated accuracy maps of (b)
the image processing method and (c) the proposed method. The
accuracy map of the image processing method has more black
pixels, signifying incorrect classification, than that of the pro-
posed method indicating better classification accuracy of the
proposed method. 38

4.8 The model architecture for decoding general dense patterns. . 39

vii

4.9 (a) The de Bruijn pattern, (b) the diamond pattern [33] and (c)
the MS Kinect pattern. 44

4.10 Two examples of extracted de Bruijn patterns. Top row shows
the captured images and the bottom row the extracted patterns.
The yellow insets demonstrate the difficulty of the model to deal
with no light projection corresponding to black pixels in the
projected pattern or occlusions. There are also regions marked
by the red insets where influence of the background texture still
remains in the extracted patterns. 45

4.11 Extraction results for (a) the diamond pattern [33] and (b) the
Microsoft Kinect pattern. Top row shows the captured images
and the bottom row the extracted patterns. The extracted pat-
terns are more noisy in areas where the patterns are less visible,
e.g. the areas around the junctions of the wall and the floor. . 46

4.12 Pattern extraction results for the same scene of (a) the model
trained with both the supervised and the unsupervised losses
and (b) the model trained with only the supervised loss. The
pattern extracted by the model trained with only the supervised
loss exhibits more noise due to residual background texture in
challenging areas such as the area around the junction of the
wall and the floor. 48

4.13 Some examples of extracted patterns using a trained model.
The extracted patterns closely match the ground truths. . . . 48

viii

Glossary

Bidirectional Reflectance Distribution Function (BRDF)

Convolutional Neural Network (CNN)

infrared (IR)

Maximum a Posteriori (MAP)

Peak Signal-to-Noise Ratio (PSNR)

Red Green Blue (RGB)

Single-Shot Structured Light (SSSL)

Structural Similarity Index Measure (SSIM)

Structured Light (SL)

ix

Chapter 1

Introduction

One of the effective methods of 3D reconstruction of a scene is to utilize a

Structured Light (SL) system. An SL system uses a projector to project light

onto an object. Based on the projected pattern, the 3D shape of the object can

be determined. However, one major issue in an SL system is the extraction of

the projected pattern, which may appear differently from the original pattern

because of the interaction of the projected light with the scene object. SL

systems are similar to stereo systems, but with one key difference - one of the

two cameras in a typical stereo system is replaced by a projector in an SL

system. The projector in an SL system projects a single pattern or a sequence

of patterns on the scene being reconstructed and the camera in the system

captures images of the scene for each of the projections. Some advantages of SL

systems include their high accuracy and applicability to textureless surfaces.

SL reconstruction algorithms analyze the spatial distortion of the pattern and

also the change in the pattern over time if a sequence of patterns is projected

to establish the correspondence between the pixels of the image captured by

the camera and that of the image of the pattern projected by the projector.

Once the correspondence is established, the SL system can, for all intents and

purposes, be considered as a stereo system and standard stereo algorithms

may be applied to do 3D reconstruction.

The success of an SL system largely depends on detecting and isolating the

pattern that is projected onto the scene so that it can be matched with the

actual image of the pattern used by the projector to establish correspondence.

1

Figure 1.1: An image captured by the Microsoft Kinect [58]. The dots in the
projected infrared pattern have minimal interaction with surfaces of different
colors and materials and are clearly visible.

One of the challenges of detecting a pattern in a scene is to recover the colors of

the pattern itself in the captured image because the colors of the light projected

by the projector blend with the scene colors to produce composite colors that

may be different from the colors that are projected. One of the most popular

SL 3D reconstruction consumer devices, the Microsot Kinect [58], attempts to

avoid this problem by using infrared (IR) projectors and cameras because the

projected IR light does not interact with the scene colors making the pattern

easily distinguishable. Figure 1.1 shows an image captured by the Microsoft

Kinect. The dots in the projected pattern are clearly visible in the captured

IR image.

While IR devices are an option, they are not as widespread and cheap as

regular Red Green Blue (RGB) cameras and projectors. So, RGB cameras

and projectors are still preferable for cost-efficient custom SL systems. There

are previous works of using RGB patterns in SL systems, but these meth-

ods perform best in controlled environments where the projected patterns are

clearly visible and easily distinguishable. Figure 1.2 shows some examples of

2

(a) (b)

Figure 1.2: Some examples of projected patterns on real scenes using RGB
patterns. (a) is from [33] and (b) is from [57].

experimental setups of methods using RGB patterns where the illumination

is carefully controlled to maximize the visibility of the projected patterns and

surfaces being scanned cause minimal color-blending. While some of these

methods do have some error-correction mechanism like assuming uniform re-

flectance, using local neighbourhood information, defining empirical methods,

assuming constant reflectance in each of the three color bands etc. to account

for small undetected pattern sections, complicated interactions between the

the projected pattern and the scene colors still pose a problem [13] which is

one of the main reasons why modern off-the-shelf depth sensing devices like

the Microsoft Kinect use IR cameras and projectors. Successfully addressing

this problem should make the use of normal RGB cameras and projectors more

effective and feasible for cost-efficient do-it-yourself SL systems which is the

main motivation of our work.

In this thesis, we investigate the problem of pattern extraction for RGB

SL systems. Despite its importance, there is no existing published work that

is focused on this problem. We first propose a method for extracting the Mi-

crosoft Kinect pattern by posing the problem of pattern extraction as a pixel

classification task and training an encoder-decoder based model which can

achieve better classification accuracy than a straightforward image processing

3

approach. Due to the lack of a publicly available dataset, we have developed

a script to generate realistic physically-accurate synthetic data using the Mit-

suba 2 renderer [41] to train the model.

Next, we go beyond the Kinect pattern, as there are many existing SL

methods with their own unique patterns which may be more desirable in a do-

it-yourself system due to the ease of pattern generation or the implementation

of the decoding process, and propose a method for extracting any projected

pattern from images. There have been many works in recent times such as

[1], [5], [12], [17], [31] that decompose a scene into its constituent components

- reflectance, shading, lighting, textures, albedo etc. Inspired by the success

of these approaches, we treat the projection of a pattern in the scene image

as a component of the scene and focus on extracting this additional compo-

nent. While decomposing a scene into components is an ill-posed problem and

usually requires labelled data for training, we show that with only two images

of the same scene, one with the projector turned on and one off, we can ex-

tract the pattern component using an approach similar to that of the recent

scene decomposition methods in an unsupervised manner which can overcome

the difficult task of obtaining ground truth data for training the model in the

first approach at the expense of a longer processing time for the optimization

process to converge.

The organization of this thesis is as follows. We briefly discuss SL systems

and various scene components and also present some foundational informa-

tion as well as recent works done in these areas in chapter 2 and chapter 3

respectively. Then, chapter 4 describes the two new methods that we propose

along with the experimental results. Finally, in chapter 5 we summarize our

contributions and discuss possible future research opportunities.

4

Chapter 2

SL Systems

An SL system is used to do 3D reconstruction of a scene similar to that of

a stereo camera system. However, unlike a stereo system, one of the cameras

in an SL system is replaced by a projector which is used to project a single or a

sequence of known patterns onto the scene. SL systems that project only one

pattern are called single-shot systems while the ones that project a sequence

of patterns are known as multi-shot systems. Figure 2.1 shows the setup of

a typical SL system. SL systems have the advantages of being more accurate

and better than normal stereo systems at scanning textureless surfaces as the

projected pattern itself provides the texture. However, the projected pattern

can also be a disadvantage when scanning textured or colored objects as the

projected light will mix with the scene colors making the pattern detection

process harder. An example of color-blending is shown in figure 2.2.

Figure 2.1: A typical SL system [18].

5

Figure 2.2: An example of color-blending. Inset shows an instance where the
projected bright sky-blue colored stripe mixed with the color of the object
resulting in an emerald color.

The camera in the system captures image(s) of the scene with the pro-

jection(s) from the projector which are then analyzed to find pixels in the

projected pattern(s) that correspond to as many pixels in the captured im-

ages as possible. The naive approach of searching the entire projected image

for each pixel in the captured image to find its correspondence is intractable

especially in case of high-resolution images. The complexity of finding corre-

spondences can be reduced to searching along just one row of pixels instead

of a full 2D image, thus making the process much more efficient using the

theories of epipolar geometry which is illustrated in figure 2.3. OL and OR are

the optical centers of the two devices used in a stereo system, the two blue

planes are the image planes corresponding to the two devices, X is a point of

interest in the scene and XL and XR are the images of point X in the left and

the right images, respectively. The line segment OLOR connecting the two

optical centers intersects the left image plane at eL and the right image plane

at eR which are called the epipolar points. The plane OLXOR intersects the

two image planes at lines that are known as the epipolar lines, one of which

6

Figure 2.3: Epipolar geometry [43].

is shown as the red line in figure 2.3. Pixel XR in the right image is called

the corresponding pixel of pixel XL in the left image because they are both

images of the same scene point X. Epipolar lines constrain the search for cor-

responding pixels because, as can be seen from the image, the corresponding

pixel XR for pixel XL lies on an epipolar line and vice versa.

The process of modifying two images so that the epipolar lines of the

image planes “line up” with each other is called rectification. Rectification

simplifies the task of finding the correspondence for a pixel in an image in a

stereo system by ensuring that the corresponding pixel lies in the same row

in the other image. This also simplifies the design of SL patterns as the same

feature for encoding points in a scene can be repeated across rows without

giving rise to any ambiguity. Many different algorithms for rectification have

been proposed over the years [15], [16], [22]. Some rectification algorithms

may require calibration which refers to the process of finding out the camera

parameters that describe the camera’s focal length, principal points, pose and

location in the world among other camera features and in the case of stereo

calibration, the relation between the two cameras in a stereo system. Again,

calibration is a well-researched field with many different algorithms available

[22]. In an SL system, the projector is modeled similar to a camera but

7

with the direction of the rays reversed [39] which makes traditional calibration

algorithms applicable to SL systems as well.

Given a rectified SL system, the depth z of a pixel in the captured image

can be computed from the displacement d in the pixel space between that

pixel and its corresponding pixel in the projected image, the distance b, called

baseline, between the center of the camera and that of the projector and the

focal length f of the camera as,

z =
bf

d
.

2.1 Related Works

The design of SL patterns and their associated decoding methods require

careful consideration of important aspects such as the colors used in the pat-

tern, the number of patterns used to encode a scene, structure of the pattern

elements etc. Here we discuss some works that demonstrate various design

choices made for building SL systems over the years.

2.1.1 Grayscale Patterns

Some of the earliest works on SL 3D reconstruction [48], [49], [54] utilize

binary coded black and white patterns to assign a code to each point in the

scene. Because the pattern is binary, each point can be encoded and decoded in

a robust manner, even in the case of color-shift due to noise or color-blending,

by estimating the direct illumination component corresponding to the pro-

jector and global illumination component corresponding to ambient light of

a scene using multiple patterns with thin stripes [40]. However, approaches

using binary coded patterns require a sequence of images to be captured with

each image containing a unique pattern making these approaches unsuitable

for moving objects.

Single-Shot Structured Light (SSSL) systems benefit from the fact that

they need only one image for doing 3D reconstruction. However, this advantage

comes at the cost of requiring precise detection of the projected pattern. One

8

Figure 2.4: The image on the left is the slit pattern used in [38]. The right
image shows examples of epipolar lines that have endpoints of multiple slits
on them.

of the earliest works in this category is the method proposed by Maruyama and

Abe [38] that uses a pattern with vertical slits with slit cut into many short line

segments of random lengths. Stereo correspondence is established between the

endpoints of slit-segments in the captured image and those in the projected

image along the epipolar lines. Since two or more slit-segments may have

their endpoints on the same epipolar line, not all epipolar lines can uniquely

identify a single slit-segment. Figure 2.4 shows the pattern used in the method

proposed by Maruyama and Abe and some epipolar lines containing endpoints

of mutiple slit segments. The algorithm first establishes correspondences by

matching slit-segments along those epipolar lines that have only one segment

endpoint on them. Then, for other epipolar lines that have multiple slit-

segments on them, either by design or because of false endpoint detection

due to occlusion or noise, the method uses information from neighboring slit-

segments to resolve ambiguities and propagate correspondences. While this

approach allows the method to account for small local inconsistencies, it is not

suitable for correcting errors when a large portion of the pattern is undetectable

due to occlusion or color-blending because it only uses the nearest 6 neighbours

of any particular endpoint, spanning a small local area, to resolve ambiguity.

Moreover, the method uses simple binarization and edge-thinning techniques

to detect the line segments which cannot recover slit-segments in the presence

of color-blending.

Durdle et al. [11] proposed a method that uses three different intensity

9

levels - white (W), black (B) and gray (G) - to build a pattern as BWG, WBG,

WGB, GWB, GBW, BGW where B=bbbb, W=wwww, G=ggggg, b=one pixel

of intensity level 0, g=one pixel of intensity level 127, w=one pixel of intensity

level 255. This sequence of 72 pixels is repeated vertically 9 times and the last

8 pixels are discarded to create a column of 640 pixels and then the column

is repeated horizontally 480 times to create the final 640x480 pattern. The

decoding process takes advantage of the uniqueness window property of the

pattern (i.e. each 72 or more pixels in a column of the captured image must

contain the selected sequence of colors that were used to build the projected

pattern) and utilizes template matching to find the start of the pattern in each

column of the captured image and then a second template matching is applied

to find subcodes like BWG, WBG and GBW to refine the decoding. Because

this method is designed to be applied on the human trunk, the authors only

report results of experiments done on human skin where the pattern is easily

detectable.

2.1.2 1D Color Patterns

The first method to use colored-stripes to build patterns was proposed by

Boyer and Kak [8]. The pattern used in this method is formed using multiple

subpatterns each of which contains N colored-stripes where the colors are

chosen from a set of size γ. The authors propose a distance metric on the

subpatterns defined as the number of same colored-stripes in the same position

in two subpatterns and show that for a given threshold distance of d, the set

of all possible subpatterns that are at least d apart from each other has an

upper limit of γ(γ − 1)N−1−d on its maximum size. An algorithm is proposed

to generate all possible such patterns but the number of patterns found by the

algorithm is much less than the upper bound. Subpatterns are then chosen

from the generated set as required and concatenated to create the final pattern.

The decoding of the algorithm follows a “crystal growing” scheme where for

each subpattern in the projected pattern, the captured image is scanned from

left to right and all matching positions are saved in subpattern-specific lists.

These matches then act as the “seed crystals” where for each subpattern and

10

for each match for that subpattern, the captured image is scanned from the

start of the match towards the left and the starting position of the match

is decreased as long as there is a match between the projected pattern and

the captured image. The same procedure is repeated from the endpoint of

the matches towards the right. This is termed as “crystal growing”. Finally,

the authors propose an algorithm that does “crystal fitting” to produce the

final matching result. The algorithm keeps two lists - one that contains all

the crystals grown in the previous step sorted by their lengths and a second

list that keeps the final chosen crystals sorted by their ordinal positions. The

algorithm iterates until there is no more crystal left in the first list. In each

iteration, the algorithm removes the first crystal in the first list, which has the

largest length of all the crystals in the first list, and puts that in the second

list and sorts the second list according to the ordinal positions of its crystals.

It then removes all the crystals that are in the first list that are grown from

the same seed as the chosen crystal. Finally, the crystals in the first list are

trimmed so that none of them has any overlap with any of the crystals in the

second list. The color assigned to each camera pixel is red if the red channel

in the input image pixel has the maximum value, blue if the blue channel in

the input image pixel has the maximum value or green otherwise. Such a

simple scheme does not work for color-blending that can change pixel colors

significantly.

Another early work that uses colored-stripes as the pattern is by Hugli

and Maitre [24]. The sequence of colors chosen to build the coding scheme

in the pattern is based on the theories of random sequences [47] which state

that the maximum length of an N -unique sequence, a sequence for which all

subsequences of length N are unique, containing elements from a set of Q

colors is QN . However, for structured light patterns, in order to make stripe

detection easier, no two neighbouring stripes should have the same color. This

constraint reduces the maximum length of N -unique patterns that do not have

the same color in two consecutive positions in the sequence to Q(Q − 1)N−1.

Hugli and Maitre do not provide any proof of the existence for such N -unique

patterns. But they use an algorithm to generate such patterns and verify their

11

validity for various values of N and Q and do not find any failure cases for the

different values of N and Q that are tested. The decoding process begins by

assigning an index to each of the detected color subsequences. The detected

color subsequences are divided into two categories - disturbed and undisturbed.

An undisturbed color subsequence is a subsequence whose elements have a true

one-to-one mapping with only one subsequence in the projected pattern. A

disturbed colored subsequence may also have a one-to-one mapping with a

subsequence in the projected pattern due to occluded or undetected colors in

the captured image or they may not have any mapping if they have invalid color

sequences that do not appear in any subsequences in the projected pattern.

The authors prove that an N -unique pattern is also an N + 1-unique pattern

and use this principle to filter out as many disturbed subsequences as possible

because longer subsequences have a lower probability of producing a valid

color sequence. As the subsequences index applies to all of its constituent

elements, each stripe in the pattern gets assigned at most N different candidate

indices. To select an index from the candidate indices, a rule-based algorithm

is suggested that first assigns to each stripe-index a pair of two values - the

length of the segment indicated by the index and the number of elements that

is assigned to that segment. Based on these two values, several different rules

are defined to select a final index for each of the stripes which establishes the

required correspondence with the projected pattern. While this approach has

some mechanisms to account for occluded colors, the authors mention that

they do not have any way of correcting incorrectly detected colors.

The method from Caspi et al. [10] proposes a scene-adaptive SL multi-

shot system that uses colored pattern instead of multiple grayscale patterns

as used in typical multi-shot systems to encode the points in a scene. This

method has three parameters out of which the user has to specify at least

two. The parameters are the number of columns in each pattern, the number

of patterns to project and a noise immunity parameter. The method first

takes an image of the scene without any projection and then another image is

taken with pure white light projected from the projector. Then the method

calculates the missing parameter if the user provided only two parameters and

12

generates the required number of patterns using a novel algorithm that uses

the noise immunity parameter and the two images taken of the scene. These

two images are also used to calculate the scene reflectivity and thus handle

color-blending. While this is better than the other methods which require

scenes with not much color variation, they still make the assumption that the

reflectivity of the scene is approximately constant within each of the red, green

and blue color bands which does not hold in complex scenes. The reflectivity

calculation also requires careful calibration of the camera and the projector to

find their color responses and in case of the projector the transformation from

the projection instruction, the colors of the digital image that is sent to the

projector, to the actual colors of the light that is transmitted by the projector.

Similar to the work by Hugli and Maitre, Zhang et al. [57] use a pattern

with multiple colored-stripes. The authors argue that using a pattern with

smoothly varying intensities is not ideal for SL systems because the color-

blending between the projected pattern’s color and the scene’s color can affect

the variations significantly and so they use piecewise-constant illumination

pattern. However, unlike [24], the sequence of colors chosen for the stripes in

this work is selected according to de Bruijn sequences [14]. First a represen-

tation of the projected pattern is defined where each edge between any two

consecutive stripes is expressed as a list of 3 numbers - one number each for

the three color channels. For each channel, if at the edge the intensity rises in

the next stripe, it is assigned +1. If the intensity remains the same in both

the stripes around an edge, it is assigned 0. Otherwise, the edge is assigned a

value of -1. A representation like this allows for 27 unique edges but the edge

(0,0,0) is discarded because it does not represent any valid transition between

two stripes of different colors. Since the number of unique valid edges is only

26, for dense reconstruction one way to create a pattern is to repeat the same

sequence of edges as much as necessary. This poses a problem, however, be-

cause when an object is larger than the width of the 26 edges, the same object

will have multiple repetitions of the same pattern on it making the decoding

process ambiguous as there are multiple valid matchings. To get around this

issue, the authors resort to using de Bruijn sequences to take advantage of

13

their unique-window property which means that each subsequence of size N

in these sequences is unique within the entire sequence. While creating the

pattern, aside from the unique-window property, they also add an additional

restriction that no two consecutive stripes can have the same color. Then an

algorithm is presented to generate a sequence with these restrictions that first

maps the colors to base-2 numbers and then cleverly applies the XOR opera-

tion. The pattern used for the experiments has 5 different colored-stripes and

a unique-window size of 3 which results in a pattern with 125 stripes. While

the edges in the projected pattern are represented by lists having the discrete

values -1, 0 and 1, the edges in the captured images are instead assigned lists

each containing three fractional values - the actual difference in the color val-

ues in each of the three channels between two consecutive patterns around

each edge. To match these fractional values representing the edges in the

captured image with the discrete values representing edges in the projected

pattern, a scoring function with tunable parameters is proposed. Finally, a

dynamic programming approach that utilizes the scoring function to do the

actual matching is proposed. While the previous works used only a single-pass

dynamic programming, the authors argue that a single-pass approach assumes

monotonicity (i.e. the order of projected transitions and detected edges is the

same) which is violated by occlusions and surface discontinuities. To address

this issue, they propose a multi-pass algorithm that applies the original dy-

namic programming algorithm multiple times - each pass operating on the

remaining unmatched edge-pairs from the previous pass until there is no more

matches to be made. The method proposed in this work addresses mismatches

due to occlusions but the authors mention that their method still has the re-

striction that the surface reflectance should not change the reflected colors too

much. While the parameters of the scoring function can be tuned to address

color-blending, the parameters have to be adjusted manually for each different

scene making the process tedious.

14

2.1.3 2D Color Patterns

Another form of patterns used in structured light systems is a 2D grid

pattern with intersection horizontal and vertical lines. One of the more re-

cent works that makes use of such a pattern is by Ulusoy et al. [53] where

the pattern is created using intersecting horizontal blue lines and vertical red

lines. The horizontal and vertical lines are differentiated from each other using

channel-wise color thresholding. The decoding process first detects stripes in

the captured images and then uses them to construct a 2D graph encoding

the position of the intersection points. Due to occlusion, discontinuities, noise

or failure of image processing to detect the stripes, there may be multiple

disconnected 2D graphs that are recovered from the captured images. The

decoding process is applied to each connected graph independently of each

other. The authors show that grid patterns have the advantage of reducing the

correspondence-finding problem to finding just a single correspondence. Once

a correspondence for an intersection point is determined, using the epipolar

constraint it is possible to find the correspondences for all of its neighbouring

intersection points. These neighbouring points can then propagate correspon-

dences to their neighbours recursively until all of the intersection points in a

connected graph have been assigned their correspondences. The initial cor-

respondence for an intersection point in a graph can have multiple candidate

correspondences because all the points in the projected image belonging to the

same epipolar lines are viable options. This gives rise to multiple candidate

solutions to the correspondence-finding problem for a particular connected

graph. For an intersection point u in the captured image and one of its candi-

date corresponding points s in the projected image, the actual corresponding

point in the projected image may not necessarily be located exactly at s due

to noise in measurement, error in calibration or in image processing. Ulu-

soy et al. assume that the true corresponding point is one of the four nearest

neighbours of s in the projected image and define a cost function as the min-

imum Euclidean distance of a nearest neighbor of s to the epipolar line of u.

The solution that minimizes the sum of costs for all the intersection points is

15

chosen as the true solution. They show that a regularly spaced grid causes

the function to be minimized to have many local minima close to the global

minima. To avoid this issue, they propose creating an irregularly spaced grid

where both the vertical and horizontal spacings between the stripes follow a

De Bruijn sequence and show that this has a much better robustness to se-

lecting the wrong solution. While this method can work even in the case of

undetectable intersection points due to color-blending as it will simply skip

processing problematic areas, its accuracy can be improved by some prepro-

cessing step that addresses color-blending and extracts the projected pattern

as much as possible so that more intersection points are available for process-

ing.

Lin et al. [33] use both color and geometrical features to create a pattern.

The pattern consists of rhombus-shaped elements arranged in a 2D grid in a

way such that any two adjacent elements are touching each other at a sin-

gle point. The authors justify the usage of rhombic elements by stating that

rhombic elements arranged in the way that they propose allow for two adjacent

elements to have the same color and the local symmetry property provides ro-

bustness to perspective projection and distortion due to surface discontinuity

and also makes decoding the pattern easier. There are two types of elements -

one type which has geometrical features inlaid in it (a smaller white rhombus

in their proposed pattern) and another type which is a solid rhombus with

uniform color. Each type of element can have one of 4 different colors giving

rise to 8 different unique elements which make up the complete pattern. Using

the principles of pseudorandom arrays [36], the authors use these 8 distinct

elements to create a 65x63 grid pattern with a unique window property of

2x2 which allows successful decoding of any local area of the pattern if only

4 elements are successfully detected (i.e. have their types and colors deter-

mined). The decoding process then focuses on detecting the 2x2 windows in

the pattern. It starts by first detecting all the intersection points of the ad-

jacent rhombus-shaped elements in the pattern. The intersection points are

detected by converting the image to grayscale and then applying a cross-mask

to all the candidate intersection points in the image detected by some tradi-

16

tional key-point detection algorithm like SURF [6]. The authors empirically

set a threshold value to filter out most of the candidate points. Finally, circu-

lar regions centered around the remaining candidate points are extracted and

then each of these regions is assigned a score, taking advantage of the local

symmetry property, by comparing with its own 180◦ flipped image. Again a

threshold value is used to select the final intersection points. After the inter-

section points have been detected, a topological map of all the detected points

is built to facilitate finding neighbouring points easier. The final step is to ac-

tually detect the types and colors of the two rhombic elements associated with

each intersection points. The types of elements are determined by comparing

border pixel values with central pixel values. The elements that have white

rhombi inlaid in them will have larger pixel values around the central area in

the corresponding grayscale image than the border pixels. This determines

the type of the elements. Next a revised HSV model-based color representa-

tion method is proposed as well as empirical values for detecting each color in

the new representation. Some constraints based on epipolar geometry are also

proposed to provide additional robustness to noise. While the proposed color

detection mechanism with the suggested empirical values works for surfaces

with not much texture variation like the human skin, the values for detecting

colors are scene-specific and require manual tuning for each new scene.

2.2 Summary

In this chapter, we have briefly discussed the basics of SL systems and

also some works SL demonstrating various design techniques of these sys-

tems. Grayscale patterns can be reliably detected in the captured images if

the number of shades of gray used to build a pattern is small (e.g. 2 or 3) and

the shades are sufficiently distinct from each other. However, using a small

number of different shades of gray severely restricts the amount of available

information that can be used to encode a scene with just a single pattern.

Thus, to perform 3D reconstruction with high spatial resolution, a sequence

of grayscale patterns is required to encode scenes which is why these patterns

17

are more prevalent in multi-shot SL systems. Using different colors instead of

just different shades of gray to build patterns allows for more information to

be encoded in scenes with just a single pattern making a colored-pattern more

suitable for single-shot SL systems. 1D stripe patterns have the advantage of

being simpler to design and decode than their 2D grid counterparts. How-

ever, 2D patterns have the advantage of being able to utilize neighbourhood

information to correct erroneous decoding to a degree that may occur due to

occlusion or color-blending.

While many of these methods have some mechanism to address the color-

blending issue, the simplifying assumptions they make can be violated in com-

plex scenes and so it is still a major problem for most of the methods. Thus,

methods for extracting patterns in the presence of color-blending can be ben-

eficial for any RGB SL system.

18

Chapter 3

Scene Decomposition

The scene decomposition task involves breaking down an image of a scene

into its constituent components. There are many ways a scene can be decom-

posed and different works focus on different types of decomposition. Popular

choices of desired scene components are albedo, normals, depth, lighting and

roughness. Albedo is a measure of diffuse reflection that is given by the ratio

of reflected light to incident light. A surface’s normal defines the direction

the surface is facing which is commonly used to represent the geometry of a

scene. Lighting describes the light sources in a scene which is vital to provide

shading of a scene, on which different components of a scene depend. Lighting

in a scene can be modeled by different representations such as environment

maps [7], spherical harmonics [9], spherical Gaussian lobes [20] etc. Compo-

nents like albedo and roughness are usually specified in functions known as

the Bidirectional Reflectance Distribution Function (BRDF) to model diffuse

and specular reflections. Figure 3.1 shows an example scene and its different

components.

Figure 3.1: An example scene and its associated components [31].

19

3.1 Related Works

Earlier works in scene decomposition rely mostly on defining rules based

on observing how different components behave under various scenarios that

occur in the natural world and making simplifying assumptions that make

optimization tractable. Later, with the advent of deep learning, the methods

take advantage of physically-based rendering engines to create large datasets

that accurately resemble real-world scenarios to train deep learning models.

Here we give a brief overview of some of the methods proposed for scene

decomposition. First, we present works that focus on simpler scenes consisting

of just a single object which constitute some of the earlier works in this field.

Next, we present works that are applicable to general scenes which represent

the current research trend in scene decomposition.

3.1.1 Single-Object Scene Decomposition

Barrow and Tenenbaum [4] proposed one of the first works on scene de-

composition in which they present a method to calculate depths, normals,

incident lights and reflectances for all the points in a scene given an image

of the scene. They make some assumptions about the nature of the scene to

simplify the problem such as surfaces being mostly continuous and so hav-

ing constant reflectances and continuous depths and normals except at edges

corresponding to surface boundaries. They also assume that the incident illu-

mination changes smoothly except at shadow or surface boundaries and that

straight edges correspond to planar surfaces and ellipses correspond to circles

viewed from oblique angles in man-made environments. They then create a

simple experimental environment where these assumptions hold and based on

the assumptions, rules are defined to classify image regions as various types

of surfaces such as curved, planar, shadowed, non-shadowed etc. In the same

vain, edges are classified into several types such as object boundaries, shadow

boundaries etc. by checking the image intensities on both sides of the edges

and across the edges and also by doing “tangency tests” to check whether

reflectances derived at several points on an edge are consistent to provide in-

20

formation on occluding objects. They also compile all the various types of

surfaces, intensities and edges to construct a catalog which is used to calculate

the intrinsic properties of input images. For an input image, first the edges

are detected and assigned types according to the catalog created from the

simplified experimental environment. Then, intrinsic properties for the edges

are assigned according to the catalog and finally these values are propagated

throughout the image using continuity assumptions. This approach works for

very simple scenes due to the oversimplification of the problem domain. The

authors discuss some strategies to relax some of the assumptions made so far

but note that the method is still not suitable for complex real-world scenes.

One of the more recent works on single-image scene decomposition is pro-

posed by Lombardi and Nishino [35] where images of objects of known shape

taken under natural unknown illumination are decomposed into scene re-

flectances and illuminations. They argue that the spatial layout and the color

distribution of natural illuminations are structured and provide cues for re-

flectance estimation. The method represents the natural illumination as a

2D illumination map where the y-axis corresponds to the inclination angles

and the x-axis corresponds to the azimuth angles in the spherical coordinate

system. This representation allows flexible discretization of the scene illumi-

nation and thus controls the level of details. As Huang and Mumford [23]

pointed out that the distribution of gradients of natural images has a heavy

tail, Lombardi and Nishino [35] model the 2D illumination map as a hyper-

Laplacian. To constrain the space of possible illuminations, they point out the

fact that scene reflectance attenuates the incident illumination and empirically

show that because the reflectance blurs the incident illumination, the entropy

of the reflected radiance increases. This observation led them to constrain the

estimated illumination to have minimum entropy so that the entropy of the re-

flected illumination matches that of the captured images. To model the space

of reflectance, they make the assumption that an isotropic BRDF sufficiently

represents the majority of different reflectances observed in the natural world

and that the space of reflectance is modelled with the Directional Statistics

BRDF [42] to make the model of reflectance adaptable to data. Then they

21

provide a Bayesian formulation for the image formation process relating the

reflectance, the shape and the illumination in the scene allowing for the Maxi-

mum a Posteriori (MAP) optimization to jointly estimate the scene reflectance

and illumination.

The method proposed by Oxholm and Nishino [45] jointly estimates the

reflectance and the geometry of an object. They show that it is possible to

extract the scene geometry and reflectance from the real-world with uncon-

strained, natural and known illumination in some cases and for other cases

the problem space is not constrained enough to do geometry and reflectance

extraction. The proposed method can leverage favourable lighting conditions

to do accurate reflectance and geometry estimation if possible. Because this

is an ill-posed problem, the authors adopt a probabilistic framework to opti-

mize the geometry and the reflectance of a scene jointly by defining a Factorial

Markov Random Field [27] with latent variables, associated with each other

by their joint contribution on the observed appearance layer, for representing

the reflectance and the object geometry. The usage of a probabilistic ap-

proach also helps integrate some prior knowledge in the optimization process

and reduces the search space. These priors constrain orientations of surfaces

according to the observed appearance of pixels, use occlusion boundaries to

constrain surface orientations near boundary regions, make sure that the es-

timated gradient is consistent with the observed image gradients, penalize

sharp changes in geometry and adopt a zero-mean multivariate Gaussian prior

to model reflectance. The optimization is done using an expectation maxi-

mization framework where the reflectance and the geometry are estimated in

turns.

Georgoulis et al. [19] propose a method that models the foreground object

in an image as a highly imperfect mirror and attempt to estimate the environ-

ment map from multiple reflectance maps of the foreground object assuming

that it is not perfectly diffuse. The method first uses previous works to extract

multiple reflectance maps - one each for the 100 different possible materials

that the method is designed to work with - and segments the foreground and

the background in the input image. Then, a Convolutional Neural Network

22

(CNN) is used to estimate the environment map. The CNN has three com-

ponents - an independent encoder to encode the background, several encoders

that share parameters to encode the multiple reflectance maps and a decoder

that takes the concatenated encodings from the encoders to produce the final

environment map.

Another prominent method for scene decomposition is proposed by Barron

and Malik [3] where a scene is decomposed into shapes, reflectances and illumi-

nations. They define an image formation model using these three components

and pose the estimation of these components as optimizing a function relat-

ing priors on these components under the constraint of the image formation

model. They then provide several hand-crafted priors for each of these com-

ponents. For reflectance, they assume piecewise constancy which is modeled

by minimizing local variation of log-reflectance of images. They also mini-

mize the number of colors required to form an image by minimizing the global

entropy of log-reflectance. Finally, they give preference to some colors over

others. For shapes, they assume that objects are smooth by minimizing the

variation of mean curvature and by assuming that objects have the same prob-

ability of facing any direction which reduces to a flatness prior and that the

normals near boundaries of objects are more likely to be facing towards the

boundary edge. They also propose another optional prior on the shapes that

models uncertain and noisy measurements by the measuring device. They use

a spherical-harmonic model of illumination and the prior they impose on the

illumination model is that it follows a multivariate Gaussian distribution which

they find to be a good approximation. Finally, they propose an optimization

technique generalized from multigrid methods [52] to take into account the

priors they defined.

The method proposed by Li et al. [32] estimates the diffuse albedo, specu-

lar roughness, surface normal and depth of a scene from a single image of the

scene taken under natural illumination and flash. A bright light source like

the flash of a camera removes shadows and makes it easier to observe high

frequency specularities. But unlike most previous works, the authors use a

deep learning approach to achieve the task. They created a synthetic dataset

23

with objects of procedurally generated shapes and complex reflectance that

resemble real world scenarios closely which they used to train their proposed

deep learning model with cascaded structure that can reason about the inputs

at multiple scales to extract important features. The first part of the proposed

model is an encoder-decoder architecture that produces an initial estimate of

the four desired scene components. The decoders share the features extracted

by the encoder. Next, the authors attempt to estimate the global illumination

of the scene. Because traditional radiosity methods are expensive and difficult

to evaluate and are not always differentiable, they again use a deep learning

approach to estimate global illumination. They use an analytical rendering

layer to estimate direct illumination or the first-bounce image from the esti-

mated scene components from before. Then they use another encoder-decoder

model that takes the first bounce image along with the estimated scene com-

ponents to produce the second-bounce image. They repeat this with a final

encoder-decoder model to produce the third-bounce image. The total global

illumination is then calculated as these three bounce images which the authors

found to produce good enough approximations of the ground truth. Finally,

they use a series of encoder-decoder models arranged in a cascade structure

that each take the outputs of its previous model as inputs to produce succes-

sively more refined outputs.

3.1.2 General Scene Decomposition

Here we discuss some works that apply to general scenes that have occlu-

sions and spatially-varying illuminations, not only scenes with single objects.

One such work is by Barron and Malik [2] that takes a single RGB image along

with a rough estimate of the scene depth measured with devices like the Mi-

crosoft Kinect and produces an improved depth map along with scene normals,

reflectance, shading and illumination. The proposed method is an extension of

their earlier work [3] to allow scene decomposition of natural scenes. As such,

the optimization function [3] is extended so that the priors are defined over

multiple depthmaps corresponding to multiple shapes instead of just the one

shape as was done previously [3] and similarly the priors over illumination are

24

extended to multiple illuminations. The effect of different shapes and illumi-

nations on each pixel is modeled by two probability maps - one for the shapes

and one for the illuminations - that are used to extend the previously defined

priors for one instance of shape and illumination to many. The probability

maps are computed from a special embedding of the input RGB image that is

computed from the eigenvectors of the normalized Laplacian of a graph corre-

sponding to the input image in a manner similar to the work of Maji et al. [37].

The authors found that such embedding is superior to using plain superpixel

embeddings in their application. The optimization process is similar to that

of their earlier work [3].

A method for object insertion in a scene was proposed by Karsch et al.

[26] where the user could simply drag and drop objects in images and the pro-

posed method would place the objects correctly in 3D and apply appropriate

lightings. To achieve this, the proposed method estimates the scene geometry,

illumination, albedo and camera parameters using an algorithm that can esti-

mate visible and invisible illuminations as well as a depth estimation algorithm

that takes the scene geometry into consideration. The depth estimation algo-

rithm adopts a label transfer approach that does not require any assumption

on scene composition. They created a large database of RGB images that also

include a depthmap for each scene. Given an input image, they use GIST [44]

to extract features from the image and compare the features with the precom-

puted features of each of the images in their database. The top 7 matched

candidate images with their depthmaps are selected from the database and

warped using SIFT Flow [34] to establish pixel-to-pixel correspondences with

the input image. Then an optimization function is defined that is minimized to

produce the depthmap estimate for the input image. The optimization func-

tion includes a term that is the weighted sum of the difference between the

warped depthmaps and the estimated depthmap as well as the difference be-

tween their gradients in the horizontal and the vertical direction to make sure

that the estimated depthmap is similar to the warped candidate depthmaps.

To infuse geometric constraints in the optimization process, they adopt ideas

from the the work by Lee et al. [29] and include terms to enforce a Manhat-

25

tan scene structure, to constrain the orientations of planar surfaces and to

encourage the estimation to be smoothly-varying. The method proposed by

Lee et al. also estimates three vanishing points in a scene which the authors

of this method use to estimate the camera parameters using well-established

calibration algorithms [22]. The scene reflectance is estimated using the color

Retinex algorithm proposed by Grosse et al. [21] which projects an input im-

age into its brightness subspace and chromaticity subspace, which is the null

space of the brightness subspace, and then thresholds these two images to

assign the reflectance of each pixel as the brightness subspace projection or

zero. For estimating visible illumination, they use the SUN360 dataset where

they first segment the images into superpixels and extract features from each

of the superpixels to train a binary classifier that classifies whether or not

a superpixel is emitting or reflecting a significant amount of light. To esti-

mate out-of-view illumination, they use the intuition that two images that

appear similar should have similar illuminations. They annotate the SUN360

panaroma dataset [56] to include light positions and distances and propose an

algorithm to match the input image with the images in the dataset to estimate

out-of-view illumination.

The work proposed by Li and Snavely [30] attempts to address full scene

decomposition by training deep learning models. Using the Mitsuba renderer

[25], they create a physically-based synthetic dataset of 20,000 images with as-

sociated ground truth designed to resemble realistic images closely with high

sample counts that takes 6 months to create more than 10000 images with a

cluster of 10 machines. They also tonemap the high dynamic range images

from the renderer to get low dynamic range images that resemble images of

real cameras by finding the 90th percentile intensity value and mapping that

to 0.8 of the low dynamic range value and then applying gamma correction

and clipping to make sure that the final values are within the range [0, 1]. The

proposed model architecture is an encoder-decoder architecture with one en-

coder and two decoders - one for the shading and the other for the reflectance.

The loss functions for training the model include the mean squared errors of

the predicted reflectance and shading and the mean squared errors of their

26

gradients. These loss functions are applied to multiple scale outputs taken

from the various stages of the decoders. The authors also make use of a re-

construction loss that is the mean squared error of the image reconstructed

from shading and reflectance prediction. They show that the proposed model

trained on synthetic data can surpass the accuracy of state-of-the art methods

trained on real data and that augmenting the training with real data improves

the performance further.

Other deep learning approaches for scene decomposition include the method

by Sengupta et al. [50]. They propose a model which can be trained to ren-

der synthetic images with complex effects and thus can be fine-tuned for real

data in a self-supervised manner using reconstruction loss after training the

model on synthetic data. The proposed model has an encoder-decoder archi-

tecture that first estimates scene albedo, normals and environmental lighting.

Albedo and normals predictions are supervised with ground truth data from

the synthetic dataset. Ground truth environmental lighting cannot be used

for supervision because only parts of the environment map are visible through

doors or windows. To provide a form of weak supervision, they train a separate

residual block based model that can approximate the ground truth environ-

ment lighting by first training the model to estimate direct indoor illumination

supervised using the images generated by a direct renderer that uses ground

truth albedo, normals and randomly sampled indoor lights. Then the model

is fine-tuned using a reconstruction loss between raytraced images and images

produced by the direct renderer from ground truth albedo and normals and

lighting prediction from the model. Fine-tuning the model for real data can

be done using a simple reconstruction loss between real images and the images

generated by the direct renderer using the model outputs. However, a direct

renderer cannot model complex effects such as inter-reflections, cast shadows

or near-field illumination. To address this problem, they propose a separate

encoder-decoder based model that learns to estimate the residual image which

is added to the image from the direct renderer to generate the final image

which then can be used in the reconstruction loss. This model is trained us-

ing synthetic data and then kept fixed when fine-tuning the whole model for

27

real data. Although this approach can model many complex effects found in

real-world indoor scenes, it does not account for spatially varying lighting.

A method for general indoor scene decomposition that produces scene ge-

ometry, spatially varying lighting and complex spatially varing BRDF was

proposed by Li et al. [31]. They designed a custom renderer that can render

physically-based realistic images faster than currently available off-the-shelf

renderer like Mitsuba and used that to generate a dataset containing more

than 70,000 images and associated ground truth. This new dataset is cre-

ated by taking an existing dataset [51] that does not have realistic textures

or reflectance model and by improving them with semantically correct tileable

texture and also by replacing the unrealistic specular reflectance with a more

realistic spatially varying BRDF model. Their proposed model is a cascaded

encoder-decoder architecture similar to that proposed by Li et al. [32] which

has a shared encoder and 4 separate decoders - one each for estimating the

scene albedo, roughness, normals and depth. The outputs of the first model

is successively refined by the later model in the cascade. To estimate spatially

varying lighting, they model the environment illumination as the sum of mul-

tiple spherical Gaussian lobes that can approximate lighting with a smaller

number of parameters than environment maps or spherical harmonics. They

propose a separate encoder-decoder model that takes the estimations from the

first model as well as the original input image and produces the parameters of

each of the Gaussian lobes. We use a similar architecture as that proposed in

this work for extracting the projected pattern in an SL system. However, as

we are not concerned with accurately estimating the various scene components

such as normals, albedo, depths or lighting as doing so is intractable with an

unsupervised extraction method that we desire, we make many simplifying

assumptions in the proposed method that still produces reasonable results.

If supervision with ground truth data were possible, our additions for han-

dling projector lighting could easily be combined with ideas from this method

making it a physically-accurate pattern extracting method.

28

3.2 Summary

In this chapter, we have discussed some of the different methods for scene

decomposition which is the task of decomposing a scene into its constituent

components like normal, albedo, reflectance, depth, lighting etc. Earlier works

were mostly concerned with simpler scenes with single objects which was later

improved upon to handle more general scenes. More recently, deep learning-

based approaches have made it possible to avoid many simplifying assumptions

and handcrafted rules used by previous optimization-based methods by learn-

ing complex scene features from large datasets. We use a model with the same

architecture as MGNet0 [31], a recently proposed deep learning based super-

vised model, with the projector added as a separate component of the scene in

addition to the other already existing scene components the model estimates

and optimize it in an unsupervised manner. The modular nature of the model

would make it straightforward to create a physically-accurate pattern extrac-

tion method by training the model in a supervised manner if training data

were available.

29

Chapter 4

Extraction of SL Patterns using
Deep Learning

In this chapter, we present two new methods for extracting SL patterns

from RGB images. Section 4.1 details a method for extracting dot patterns

used in many commercial IR-based depth sensing devices. Then in section 4.2,

we describe a method that can extract any RGB pattern.

4.1 Extracting the Kinect Pattern

One of the most widely-used patterns for SSSL is the sparse dot pattern

shown in figure 4.1 which is used in Microsoft Kinect family of devices. All

of the commercial mainstream devices work with IR images where the limited

interaction of the projected IR light with the surface textures in the scene

makes it relatively easy to detect the projected pattern’s dots in captured

images of IR cameras.

But when the pattern projected is composed of colors in the visible spec-

trum (e.g. projected with a normal off-the-shelf RGB projector), the projected

light interacts with the scene colors which can make detecting the projected

pattern in the captured RGB images quite challenging in some scenarios. In

this section, we demonstrate that a simple encoder-decoder based pixel clas-

sification model can be used to detect such dot patterns in RGB images with

high accuracy. As such, applying the proposed model as a preprocessing step

can allow building Kinect-like SL systems with low-cost RGB cameras and

30

Figure 4.1: The original Microsoft Kinect pattern.

projectors.

4.1.1 Model Architecture

The pixel classifier model has a U-Net architecture comprised of an encoder,

followed by a bottleneck and finally a decoder that is connected with the

encoder by layer-wise skip connections. More specifically, for two inputs Ioff

and Ion that are the images of the same scene with the projector turned off

and on respectively, an encoder E, a bottleneck B and a decoder D, we have,

Eout = E(Ioff , Ion; θE),

Bout = B(Eout; θB),

Dout = D(Bout; θD),

where Eout, Bout, Dout are the outputs of the encoder, the bottleneck and

the decoder and θE, θB and θD are their parameters, respectively. Figure 4.2

visualizes the model architecture.

31

Figure 4.2: The U-Net architecture for extracting the dot pattern.

Encoder

The encoder consists of five residual blocks that each halves the spatial

resolution of its input. The first block takes as input two images - one image

of the scene with the projector turned off and one image of the same scene

from the same viewpoint with the projector turned on projecting the Kinect

pattern. It outputs 32 channels while the subsequent blocks double the number

of output channels from their respective previous blocks. Each of these residual

blocks contains two convolutional layers.

The first convolutional layer has a 3x3 kernel, a stride of 2 to half the spatial

resolution of the input and the same number of output channels as the block’s

desired number of output channels. It is followed by a batch normalization

layer and a ReLU activation layer. The second convolutional layer has a 3x3

kernel, a stride size of 1 to preserve spatial resolution and the same number

of output channels as its input. It is again followed by a batch normalization

layer and a linear activation layer.

The input is passed through the first convolutional layer the output of

which is then passed through the second convolutional layer. The original

input and the output of the second convolutional layer are then added together

to produce the final output of the whole block. Figure 4.3 shows an encoder

block.

Bottleneck

The bottleneck takes the output of the encoder and performs 2D convo-

lutions while preserving the spatial resolution and the number of channels.

32

Figure 4.3: The encoder block.

It consists of three residual blocks each of which contains two convolutional

layers. These layers are similar to the two layers of the residual blocks in the

encoder, however both of these layers have a stride of 1 to preserve spatial

resolution. Also, unlike the layers in the encoder’s residual blocks, the layers

in the second and the third bottleneck blocks perform 3-dilated and 5-dilated

convolutions respectively to increase the receptive field of the model. Figure

4.4 shows a decoder block.

Decoder

The decoder takes the output of the bottleneck and upsamples the output

back to the original spatial resolution through a series of upsampling blocks. It

consists of five upsampling blocks, one each for the five downsampling residual

blocks in the encoder, that doubles the spatial resolution and halves the num-

ber of channels and one final block to produce the final classification output.

Each upsampling block consists of a transpose convolutional layer, followed

by a batch normalization layer and a ReLU activation layer. The output of

each upsampling block is concatenated with the output of its corresponding

downsampling block in the encoder and then fed to the next upsampling block.

The final block takes the output of the last upsampling block and passes it

33

Figure 4.4: The bottleneck block.

though a 2D convolutional layer with a kernel size of 3x3, stride of 1 and a

channel count of 2. This output is then passed through a batch normalization

layer and a ReLU activation layer to produce classification logits.

4.1.2 Dataset

We have created a synthetic dataset using the Mitsuba 2 renderer [41] to

train the proposed model. The dataset consists of images of scenes where

objects are placed in an enclosed room in random poses and orientations. The

textures on the walls of the room and the objects are randomly selected from a

pool of 56 different textures and the object models are selected from a pool of

31 different models. The room has a ceiling light whose position and brightness

are randomised for each image render. Figure 4.5 shows some of the textures

and object models used for generating the dataset.

Instead of creating a dataset with a fixed number of images, we take ad-

vantage of the Mitsuba 2 renderer’s capability of seamless integration with

PyTorch [46]. During training, the renderer is queried in real-time to gener-

ate image renders of randomised scenes along with the corresponding ground

truths. To generate each render, an SL rig, consisting of a projector on the left

and a camera on the right, is placed in a random pose in the scene pointing

34

Figure 4.5: Some textures (top row) and object models (bottom row) used to
create the dataset.

at the objects and then two images are captured with the camera - one with

the projector turned off and one with the projector turned on projecting the

Kinect dot pattern. For each render, each of the dots in the projected pattern

is assigned a random color. Using the associated ground truth depth-map, we

calculate the positions of the dots in the images captured by the camera to

classify pixels in two categories - pattern pixels corresponding to dots in the

projected pattern and background pixels. The baseline of the SL system is

also randomised for each render to be in the 5cm to 20cm range. We use 39

of the 56 textures and 25 of 31 object models while generating the training

data and use the rest for generating the test data. We purposefully keep the

number of samples per pixel parameter of the Mitsuba 2 renderer to a very

low value of 8 to achieve fast rendering as well as to generate noisy images to

simulate noise that is likely to be present in real world images, especially in

low-light conditions.

4.1.3 Training

The model is trained in an end-to-end manner. We use the Adam optimizer

[28] with a starting learning rate of 0.001 and train the model on a total of

6000 images. After 2000 and 4000 images, we set the learning rate to 0.0001

and 0.00001 respectively. On a machine with 32GB RAM, Intel Core i7 6900k

CPU and an Nvidia Titan RTX GPU, the training, including rendering all the

data required to train the model, takes about 5 hours. The model classifies

35

each pixel as belonging either to a dot or to a background pixel. We use

the binary cross-entropy loss as the loss function to train the model. More

specifically, for the ground truth label yi of pixel i, which is 1 for a dot pixel

and 0 otherwise, and the model-predicted probability p(yi) of pixel i being a

dot pixel, the loss L is calculated by taking the average across all N pixels as,

L = − 1

N

N∑
i=1

yi log(p(yi)) + (1 − yi) log(1 − p(yi)).

The training updates the model parameters θE, θB and θD using gradient

descent by calculating the gradients ∂L
∂θE

, ∂L
∂θB

and ∂L
∂θD

with the backpropagation

technique.

4.1.4 Results

We generate 100 images using our test data generation method with associ-

ated ground truths to measure the effectiveness of the proposed method. The

classification accuracy of our trained model on this test set is 96.3%. We also

calculate the accuracy of a straightforward image processing approach where

we first subtract the image of the scene with the projector off from the image of

the same scene with the projector on and then apply thresholding to produce

a binary image. A linear search on threshold values was performed for the

100 generated images and the threshold value of 40 was found out to have the

highest average accuracy which was selected to threshold all the images. The

classification accuracy of this approach on the same test set is 93.1%. Figure

4.6 shows some of the classification results of both methods.

Figure 4.7 shows the accuracy map of the proposed method as well as

the image processing method. The black pixels in the accuracy maps signify

incorrect classification. The proposed method performs better in challenging

areas where the visibility of the dots is low (e.g. around the junction of the

wall and the floor or the long dark stripes on the floor that do not reflect the

projected dots very well) evidenced by lower amount of black pixels implying

that the proposed method has learnt to reason about the structure of the

pattern to provide better classification results.

36

Figure 4.6: Some classification results of the image processing method and the
proposed method. The first row contains images of three different scenes, the
second row contains the respective ground truth classifications and the third
and the fourth rows show the outputs of the image processing method and that
of the proposed method respectively. Insets, except the white one, highlight
some of the difficult regions where the visibility of the projected pattern is
low. The proposed method can still detect dots in these regions while the
straightforward image processing solution cannot. The white inset in scene
3 shows a region where thresholding causes false dot detection in the image
processing solution indicating that just lowering the threshold to detect more
dots in darker regions will cause problems in other areas.

37

(a) (b) (c)

Figure 4.7: (a) Image of a test scene with associated accuracy maps of (b) the
image processing method and (c) the proposed method. The accuracy map
of the image processing method has more black pixels, signifying incorrect
classification, than that of the proposed method indicating better classification
accuracy of the proposed method.

4.2 Extracting General Patterns

The method in section 4.1 works for a very particular type of pattern and

requires training data for supervised training. But obtaining high-quality and

accurate training data for real-world applications is costly. Moreover, this

method may require domain adaptation for every different environment. In

this section, we propose a general unsupervised iterative method that works

with any pattern. This method relaxes the requirement of obtaining training

data and performing domain adaptation for different scenes at the cost of more

processing time for the optimization process to converge.

4.2.1 Model Architecture

We adapt the ideas from scene decomposition to break a scene down to

different components including the pattern we are interested in extracting.

Similar to that proposed by Li et al. [31], the model has one shared encoder E

and multiple decoders for estimating different components of the scene. Figure

4.8 shows the architecture of the model.

The proposed model has one decoder DR to estimate the scene reflectivity

R, one decoder DN to estimate the scene normals N, one decoder DD to

estimate the scene depth D and one decoder DP to estimate the distorted

pattern P as it appears in the captured image. The encoder E takes as input

two images of the same scene - one with the projector off (Ioff) and one with

38

Figure 4.8: The model architecture for decoding general dense patterns.

the projector on projecting the desired pattern (Ion) - as well as R, N, D and

P. Each decoder takes the output of the shared encoder E and estimates the

component it is responsible for. More specifically,

X = E(Ioff , Ion, R,N,D, P ; θE),

R = DR(X; θR),

N = DN(X; θN),

D = DD(X; θD),

P = DP (X; θP),

where θE, θR, θN, θD and θP are the parameters of E, DR, DN, DD and DP,

respectively.

Encoder

We use the same architecture for the encoder as in MGNet0 [31] with slight

alterations to account for using different inputs. Along with the two images

Ioff and Ion, the encoder takes as input the scene reflectance R, the scene

normal map N, the scene depthmap D and the extracted pattern P. The

encoder consists of six 2D convolutional layers that each doubles the number

of its input channels, except for the first one which outputs 64 channels and

the fourth one which preserves the number of channels, while halving the input

spatial resolution except for the last one which preserves the spatial resolution.

The first five convolutional layers use 4 × 4 kernels while the last one uses a

3 × 3 kernel.

39

Decoders

Following the work of Li et al. [31], we use a similar architecture for all

the four separate decoders and only change their output layers to account

for different output types. Aside from the output layer, each decoder has six

blocks. The first block takes the output of the encoder and halves the number

of channels while preserving the spatial resolution. The next 5 blocks up-

scale their corresponding inputs to double the spatial resolution using bilinear

upsampling and then apply a 2D convolutional layer to half the number of

input channels, except the third block which preserves the number of input

channels. The first five blocks all have a ReLU activation layer following their

corresponding convolutional layers. The blocks in the decoder are connected

to their corresponding spatially equivalent layers in the encoder using skip

connections. The output of the decoders DR and DP are passed through a

sigmoid activation layer to constrain their outputs to be in the [0,1] range.

The output of the decoder DN is normalized so that the output normals have

unit length. Finally, the output of the decoder DD is passed through a sig-

moid layer and then scaled to the range [0.2,2.0] corresponding to a minimum

depth of 20cm and a maximum depth of 2m. We found that constraining the

outputs of the different decoders as described helps the optimization process

to converge faster.

4.2.2 Differentiable Rendering

We use the estimations made by the model to render a synthetic image in

a fully differentiable manner that is compared with the actual image captured

by the camera to define a loss function. When rendering a synthetic image, we

assume that the projector of SL rig is located at the origin projecting towards

the positive z-axis. We begin by calculating the 3D coordinates of points

corresponding to each pixel in the camera image. For a pixel p, the camera

origin r0 and the direction of the ray rp from the camera origin r0 through the

pixel p, we calculate the 3D coordinates cp of the world point corresponding

to pixel p as,

40

cp = r0 + rp × dp,

where dp is the estimated depth of pixel p. Then, for each pixel p, we calculate

the light falloff effect lfp as

lfp =
1

c2pz
× (−̂lp · ẑ),

where cpz is the z-coordinate of the 3D point cp, l̂p is a unit vector pointing

from the world point cp to the projector center and ẑ is the unit vector along

the z-axis. Next, for each pixel p, we calculate the light contribution lp from

the projector as

lp = Pp × lfp ,

where Pp is the output for pixel p of the decoder DP. The final color in the

synthetic image Isp corresponding to pixel p is calculated as

Isp = Ioffp + Rp × lp × Np · l̂p,

where Ioffp is the value of pixel p in the image of the scene captured with

the projector turned off, Rp is the reflectance for pixel p calculated from the

output of the decoder DR and Np is the output of the decoder DN for pixel

p. We assume that we are dealing with a scene with only diffuse reflections

and so do not estimate environment maps to handle complex reflections that

may occur in the presence of specularity. We also assume that Ioffp is formed

as,

Ioffp = Rp × Lp × ap, (4.1)

where, Lp is a single light source approximating all the light sources present

in the scene and ap is a light attenuation term accounting for the position and

41

the distance of the single approximating light source. Equation 4.1 can be

rewritten to get,

Rp = Ioffp × σp,

where, σp = 1
Lp×ap

. The output of the reflectance decoder DR is actually

σp which is multiplied with Ioffp to produce the reflectance of pixel p. We

found that this approximation, as well as the utilization of the light falloff

effect which constrains the range of the predicted depth, are crucial for a faster

convergence of the optimization process than without using the approximation

and the constraint.

4.2.3 Dataset

We use the same real-time data generation method to create the dataset

that was detailed in section 4.1. The only difference is that we use two more

patterns in addition to the Kinect pattern to generate the data (see figure 4.9).

4.2.4 Training and testing

The proposed method uses unsupervised training for each scene. For

each scene, we randomly initialize the reflectance R, the normal map N, the

depthmap D and the extracted pattern P and feed these along with Ioff and

Ion to the model to start the training. In the subsequent iterations, we feed

the decoder outputs R, N, D and P along with Ioff and Ion to the model

which is trained for 1200 iterations. The Adam optimizer is used to optimize

the encoder and all the decoders. We found that the optimization process is

highly sensitive to the learning rates of the encoder and the different decoders

of the model. We experimented with different combinations of the learning

rates and observed that setting the learning rates of the decoders DD and DN

to 0.01 and the learning rates of the encoder E and the other decoders (DR

and DP) to 0.001 result in successful convergence of the optimization process.

We use the mean squared error of the synthetic reconstructed image Is and the

42

image captured by the camera as the loss function to guide the optimization

process. More specifically, the loss L is defined as,

L =
1

N

N∑
i=1

(Ioni
− Isi)

2,

where, N is the total number of pixels. The optimization process updates θE,

θR, θN, θD, and θP which are the parameters of E, DR, DN, DD and DP,

respectively, by calculating ∂L
∂θE

, ∂L
∂θR

, ∂L
∂θN

, ∂L
∂θD

and ∂L
∂θP

using the backpropa-

gation technique in each iteration.

4.2.5 Results

We generate 100 images each for three different patterns using our data

generation method. The three different patterns are a vertical stripe pattern

created according to de Bruijn sequences [14], the diamond pattern [33] and the

Microsoft Kinect pattern which are shown in figure 4.9. We report the mean

Peak Signal-to-Noise Ratio (PSNR), which is an objective quantification of

the error between the extracted pattern and the ground truth, across the test

set in table 4.1. A higher PSNR value corresponds to a lower error and PSNR

values above 20 are considered good for many applications. However, higher

PSNR values do not always correspond to more visually pleasing outputs. To

quantify the perceived similarity between two images, another metric known

as the Structural Similarity Index Measure (SSIM) [55] is used which has a

range from 0 to 1 with 1 signifying an identical pair of images. We also report

the mean SSIM values in table 4.1.

Pattern PSNR SSIM
de Bruijn 17.39 0.76

Diamond pattern [33] 16.11 0.72
MS Kinect 13.46 0.57

Table 4.1: Quantitative evaluation of the pattern extraction method for three
different patterns using unsupervised training.

Next we present a couple of examples of the extracted de Bruijn patterns

to analyze the effectiveness of the proposed method on scenes with complex

43

(a) (b) (c)

Figure 4.9: (a) The de Bruijn pattern, (b) the diamond pattern [33] and (c)
the MS Kinect pattern.

textures and objects of different shapes in figure 4.10. While the method can

successfully extract the projected patterns from the camera images with their

original colors, some influence of the scene colors still remains in the extracted

pattern. Moreover, there is a significant amount of noise present in areas where

the pattern is not visible enough, e.g. near the junction of the floor and the

back wall where the pattern in almost faded out or in regions occluded from

the point of view of the projector, e.g. in the area behind the object where

there is no projection, or in areas corresponding to the black-colored pixels of

the pattern which may require pattern-specific post-processing to clean up.

Next we try extracting different patterns. Figure 4.11 shows the extrac-

tion results for the diamond pattern [33] (figure 4.9b) and the Microsoft Kinect

pattern (figure 4.9c). We see that the results are similar to that using the de

Bruijn pattern. Areas with low pattern visibility, occluded areas or areas cor-

responding to black pixels in the projected pattern have a significant amount

of noise whereas the other areas are comparatively cleaner. However, the dots

in the extracted Kinect pattern do not have the same colors as the ones in

the actual projected pattern. Moreover, applying binary thresholding to the

extracted Kinect pattern to produce a binary image and comparing that with

the ground truth classification shows that this method has a classification ac-

curacy of only 39% for the Kinect pattern. This suggests that this method

may not be suitable for sparse patterns like the Kinect pattern as the method

is very sensitive to scene noise and cannot recover fine details required for

sparse patterns.

44

(a) (b)

Figure 4.10: Two examples of extracted de Bruijn patterns. Top row shows
the captured images and the bottom row the extracted patterns. The yellow
insets demonstrate the difficulty of the model to deal with no light projection
corresponding to black pixels in the projected pattern or occlusions. There
are also regions marked by the red insets where influence of the background
texture still remains in the extracted patterns.

45

(a) (b)

Figure 4.11: Extraction results for (a) the diamond pattern [33] and (b) the
Microsoft Kinect pattern. Top row shows the captured images and the bottom
row the extracted patterns. The extracted patterns are more noisy in areas
where the patterns are less visible, e.g. the areas around the junctions of the
wall and the floor.

46

4.2.6 Partial Supervision

We also ran some additional experiments where we trained the proposed

model in a supervised manner by defining a mean-squared error loss between

the estimated pattern and the ground truth pattern for the diamond pattern

[33] with 2000 images. The diamond pattern [33] was chosen specifically as

it has a significant amount of white regions which easily highlight residual

background effects in the extracted patterns. We conducted these experiments

to understand the effects of the unsupervised loss better by studying how it

improves upon pure supervised training. In one experiment, we only used the

supervised loss and in another, we also kept the unsupervised loss. The ground

truth normal, depth or reflectance were not used in the training. Table 4.2

presents the quantitative results.

Loss PSNR SSIM
Supervised only 20.64 0.89

Supervised & unsupervised 22.79 0.92

Table 4.2: Quantitative evaluation of the pattern extraction method with
partial supervision using the diamond pattern [33].

We can see that just with supervision data alone, without any notion of a

model of the projector from the unsupervised loss, the results are good. But

adding the unsupervised loss improves the results by helping the model to

focus on learning only the additive light from the projector which eliminates

the residual background textures in the extracted patterns as can be seen in

figure 4.12. Figure 4.13 shows some examples of the extracted patterns using

the model trained with both losses.

47

(a) (b)

Figure 4.12: Pattern extraction results for the same scene of (a) the model
trained with both the supervised and the unsupervised losses and (b) the
model trained with only the supervised loss. The pattern extracted by the
model trained with only the supervised loss exhibits more noise due to residual
background texture in challenging areas such as the area around the junction
of the wall and the floor.

Figure 4.13: Some examples of extracted patterns using a trained model. The
extracted patterns closely match the ground truths.

48

Chapter 5

Conclusion

In this thesis, we propose two novel methods for extracting patterns used

in SL systems. The first method, specific to the Microsoft Kinect pattern,

trains a U-Net model to classify the dots in the projected pattern. Experi-

ments on synthetic data show that our model can exceed the accuracy of a

straightforward image processing approach, especially in challenging areas in

a scene where the visibility of the dots in the projected pattern is low. Then

we propose another method that can theoretically extract any pattern from

images captured by the camera in a SL system without any training at the cost

of a longer processing time. The proposed model follows the same approach

as one of the state-of-the-art deep learning scene decomposition methods by

adding a model of the projection from a projector to the image formation

process. As accurately estimating all the different components of a scene such

as reflectance, normals, depth etc. is intractable in an unsupervised method,

several simplifying assumptions are made to constrain the solution space as

much as possible and to only focus on extracting the pattern. Our results

show that the proposed method is reasonably good at extracting the pattern

in areas where the visibility of the pattern is good with minor influence of the

background texture present in the extracted pattern. Areas with low pattern

visibility or where there is no light from the projector at all, e.g. black pix-

els in the projected pattern or areas occluded from the projector’s view, are

the most problematic areas where the patterns extracted by our method show

significant errors.

49

As was demonstrated by Li and Snavely [30], deep learning models trained

on a high-quality physically accurate dataset can outperform models trained

on real data even in real-world scenes. Then, Li et al. [31] propose an improved

method of generating a synthetic dataset that resembles real-world scenarios

more closely than all other existing datasets and achieve state-of-the-art per-

formance by training a model with the proposed dataset. Inspired by the

success of these approaches, we believe that the next step for pattern extrac-

tion methods is to build a physically-accurate synthetic dataset that closely

resemble real-world scenarios for SL systems to allow for training deep learn-

ing models that extract the projected pattern. We have shown that training

with just partial supervision can already produce very good results for diffuse

scenes. A model trained on a complete dataset with full supervision should be

able to handle complex cases such as occlusions, inter-reflections, specularity

etc. as evidenced from the recent success of deep learning models trained on

physically-accurate synthetic datasets on the scene decomposition task even

for real-world scenes.

Although there is a scarcity of works focused on pattern extraction, it is

an important task for building improved SL systems using RGB cameras and

projectors. We believe that the ideas from recent data-driven approaches in

scene decomposition have the potential of addressing many failure cases of SL

systems such as color-blending or specularity. While we do not take advantage

of data in this work, our proposed method for extracting general patterns is

additive and can easily be adapted to augment supervised physically-accurate

scene decomposition methods to create faster and more accurate pattern ex-

tractors.

50

References

[1] J. T. Barron and J. Malik, “Intrinsic scene properties from a single rgb-
d image,” in 2013 IEEE Conference on Computer Vision and Pattern
Recognition, 2013, pp. 17–24. doi: 10.1109/CVPR.2013.10.

[2] ——, “Intrinsic scene properties from a single rgb-d image,” in 2013
IEEE Conference on Computer Vision and Pattern Recognition, 2013,
pp. 17–24. doi: 10.1109/CVPR.2013.10.

[3] ——, “Shape, illumination, and reflectance from shading,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 37, no. 8,
pp. 1670–1687, 2015. doi: 10.1109/TPAMI.2014.2377712.

[4] H. G. Barrow and J. Tenenbaum, “Recovering intrinsic scene character-
istics from images,” 1978.

[5] A. S. Baslamisli, H.-A. Le, and T. Gevers, “Cnn based learning using
reflection and retinex models for intrinsic image decomposition,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 6674–6683. doi: 10.1109/CVPR.2018.00698.

[6] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-
tures,” in Computer Vision – ECCV 2006, A. Leonardis, H. Bischof,
and A. Pinz, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 404–417, isbn: 978-3-540-33833-8.

[7] J. Blinn, “Texture and reflection in computer generated images,” Com-
munications of the ACM, vol. 19, no. 10, Oct. 1976. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
texture-and-reflection-in-computer-generated-images/.

[8] K. L. Boyer and A. C. Kak, “Color-encoded structured light for rapid
active ranging,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-9, no. 1, pp. 14–28, 1987. doi: 10.1109/TPAMI.
1987.4767869.

[9] B. Cabral, N. Max, and R. Springmeyer, “Bidirectional reflection func-
tions from surface bump maps,” in Proceedings of the 14th Annual Con-
ference on Computer Graphics and Interactive Techniques, ser. SIG-
GRAPH ’87, New York, NY, USA: Association for Computing Machin-
ery, 1987, pp. 273–281, isbn: 0897912276. doi: 10.1145/37401.37434.
[Online]. Available: https://doi.org/10.1145/37401.37434.

51

https://doi.org/10.1109/CVPR.2013.10
https://doi.org/10.1109/CVPR.2013.10
https://doi.org/10.1109/TPAMI.2014.2377712
https://doi.org/10.1109/CVPR.2018.00698
https://www.microsoft.com/en-us/research/publication/texture-and-reflection-in-computer-generated-images/
https://www.microsoft.com/en-us/research/publication/texture-and-reflection-in-computer-generated-images/
https://doi.org/10.1109/TPAMI.1987.4767869
https://doi.org/10.1109/TPAMI.1987.4767869
https://doi.org/10.1145/37401.37434
https://doi.org/10.1145/37401.37434

[10] D. Caspi, N. Kiryati, and J. Shamir, “Range imaging with adaptive color
structured light,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, no. 5, pp. 470–480, 1998. doi: 10.1109/34.682177.

[11] N. Durdle, J. Thayyoor, and V. Raso, “An improved structured light
technique for surface reconstruction of the human trunk,” in Conference
Proceedings. IEEE Canadian Conference on Electrical and Computer
Engineering (Cat. No.98TH8341), vol. 2, 1998, 874–877 vol.2. doi: 10.
1109/CCECE.1998.685637.

[12] D. Eigen and R. Fergus, “Predicting depth, surface normals and seman-
tic labels with a common multi-scale convolutional architecture,” in Pro-
ceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), ser. ICCV ’15, USA: IEEE Computer Society, 2015, pp. 2650–
2658, isbn: 9781467383912. doi: 10.1109/ICCV.2015.304. [Online].
Available: https://doi.org/10.1109/ICCV.2015.304.

[13] D. Fofi, T. Sliwa, and Y. Voisin, “A comparative survey on invisible
structured light,” SPIE Electronic Imaging-Machine Vision Applications
in Industrial Inspection XII, San José, USA, vol. 5303, pp. 90–97, May
2004. doi: 10.1117/12.525369.

[14] H. Fredricksen, “The lexicographically least de bruijn cycle,” Journal
of Combinatorial Theory, vol. 9, no. 1, pp. 1–5, 1970, issn: 0021-9800.
doi: https://doi.org/10.1016/S0021-9800(70)80050-3. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0021980070800503.

[15] A. Fusiello and L. Irsara, “Quasi-euclidean epipolar rectification of un-
calibrated images,” Mach. Vis. Appl., vol. 22, pp. 663–670, Jul. 2011.
doi: 10.1007/s00138-010-0270-3.

[16] A. Fusiello, E. Trucco, and A. Verri, “A compact algorithm for rectifica-
tion of stereo pairs,” vol. 12, Oct. 2000. doi: 10.1007/s001380050120.

[17] M.-A. Gardner, K. Sunkavalli, E. Yumer, X. Shen, E. Gambaretto, C.
Gagné, and J.-F. Lalonde, “Learning to predict indoor illumination from
a single image,” ACM Trans. Graph., vol. 36, no. 6, Nov. 2017, issn:
0730-0301. doi: 10.1145/3130800.3130891. [Online]. Available: https:
//doi.org/10.1145/3130800.3130891.

[18] J. Geng, “Structured-light 3d surface imaging: A tutorial,” Adv. Opt.
Photon., vol. 3, no. 2, pp. 128–160, Jun. 2011. doi: 10.1364/AOP.3.
000128. [Online]. Available: http://aop.osa.org/abstract.cfm?URI=
aop-3-2-128.

[19] S. Georgoulis, K. Rematas, T. Ritschel, M. Fritz, T. Tuytelaars, and L.
Van Gool, “What is around the camera?” In 2017 IEEE International
Conference on Computer Vision (ICCV), 2017, pp. 5180–5188. doi: 10.
1109/ICCV.2017.553.

52

https://doi.org/10.1109/34.682177
https://doi.org/10.1109/CCECE.1998.685637
https://doi.org/10.1109/CCECE.1998.685637
https://doi.org/10.1109/ICCV.2015.304
https://doi.org/10.1109/ICCV.2015.304
https://doi.org/10.1117/12.525369
https://doi.org/https://doi.org/10.1016/S0021-9800(70)80050-3
https://www.sciencedirect.com/science/article/pii/S0021980070800503
https://www.sciencedirect.com/science/article/pii/S0021980070800503
https://doi.org/10.1007/s00138-010-0270-3
https://doi.org/10.1007/s001380050120
https://doi.org/10.1145/3130800.3130891
https://doi.org/10.1145/3130800.3130891
https://doi.org/10.1145/3130800.3130891
https://doi.org/10.1364/AOP.3.000128
https://doi.org/10.1364/AOP.3.000128
http://aop.osa.org/abstract.cfm?URI=aop-3-2-128
http://aop.osa.org/abstract.cfm?URI=aop-3-2-128
https://doi.org/10.1109/ICCV.2017.553
https://doi.org/10.1109/ICCV.2017.553

[20] P. Green, J. Kautz, W. Matusik, and F. Durand, “View-dependent pre-
computed light transport using nonlinear gaussian function approxima-
tions,” in Proceedings of the 2006 Symposium on Interactive 3D Graphics
and Games, ser. I3D ’06, Redwood City, California: Association for Com-
puting Machinery, 2006, pp. 7–14, isbn: 159593295X. doi: 10.1145/
1111411.1111413. [Online]. Available: https://doi.org/10.1145/
1111411.1111413.

[21] R. Grosse, M. K. Johnson, E. H. Adelson, and W. T. Freeman, “Ground
truth dataset and baseline evaluations for intrinsic image algorithms,”
in 2009 IEEE 12th International Conference on Computer Vision, 2009,
pp. 2335–2342. doi: 10.1109/ICCV.2009.5459428.

[22] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vi-
sion, 2nd ed. USA: Cambridge University Press, 2003, isbn: 0521540518.

[23] J. Huang and D. Mumford, “Statistics of natural images and models,”
in Proceedings. 1999 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (Cat. No PR00149), vol. 1, 1999, 541–
547 Vol. 1. doi: 10.1109/CVPR.1999.786990.

[24] H. Hugli and G. Maitre, “Generation And Use Of Color Pseudo Random
Sequences For Coding Structured Light In Active Ranging,” in Industrial
Inspection, D. W. Braggins, Ed., International Society for Optics and
Photonics, vol. 1010, SPIE, 1989, pp. 75–82. [Online]. Available: https:
//doi.org/10.1117/12.949215.

[25] W. Jakob, Mitsuba renderer, http://www.mitsuba-renderer.org, 2010.

[26] K. Karsch, K. Sunkavalli, S. Hadap, N. Carr, H. Jin, R. Fonte, M. Sittig,
and D. Forsyth, “Automatic scene inference for 3d object compositing,”
ACM Trans. Graph., vol. 33, no. 3, Jun. 2014, issn: 0730-0301. doi:
10.1145/2602146. [Online]. Available: https://doi.org/10.1145/
2602146.

[27] J. Kim and R. Zabih, “Factorial markov random fields,” in Computer
Vision - ECCV 2002, 7th European Conference on Computer Vision,
Copenhagen, Denmark, May 28-31, 2002, Proceedings, Part III, A. Hey-
den, G. Sparr, M. Nielsen, and P. Johansen, Eds., ser. Lecture Notes
in Computer Science, vol. 2352, Springer, 2002, pp. 321–334. doi: 10.
1007/3-540-47977-5_21. [Online]. Available: https://doi.org/10.
1007/3-540-47977-5%5C_21.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y.
Bengio and Y. LeCun, Eds., 2015. [Online]. Available: http://arxiv.
org/abs/1412.6980.

53

https://doi.org/10.1145/1111411.1111413
https://doi.org/10.1145/1111411.1111413
https://doi.org/10.1145/1111411.1111413
https://doi.org/10.1145/1111411.1111413
https://doi.org/10.1109/ICCV.2009.5459428
https://doi.org/10.1109/CVPR.1999.786990
https://doi.org/10.1117/12.949215
https://doi.org/10.1117/12.949215
https://doi.org/10.1145/2602146
https://doi.org/10.1145/2602146
https://doi.org/10.1145/2602146
https://doi.org/10.1007/3-540-47977-5_21
https://doi.org/10.1007/3-540-47977-5_21
https://doi.org/10.1007/3-540-47977-5%5C_21
https://doi.org/10.1007/3-540-47977-5%5C_21
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

[29] D. C. Lee, M. Hebert, and T. Kanade, “Geometric reasoning for single
image structure recovery,” in 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2009, pp. 2136–2143. doi: 10.1109/CVPR.
2009.5206872.

[30] Z. Li and N. Snavely, “Cgintrinsics: Better intrinsic image decompo-
sition through physically-based rendering,” in European Conference on
Computer Vision (ECCV), 2018.

[31] Z. Li, M. Shafiei, R. Ramamoorthi, K. Sunkavalli, and M. Chandraker,
“Inverse rendering for complex indoor scenes: Shape, spatially-varying
lighting and svbrdf from a single image,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 2475–
2484.

[32] Z. Li, Z. Xu, R. Ramamoorthi, K. Sunkavalli, and M. Chandraker, “Learn-
ing to reconstruct shape and spatially-varying reflectance from a single
image,” ACM Trans. Graph., vol. 37, no. 6, Dec. 2018, issn: 0730-0301.
doi: 10.1145/3272127.3275055. [Online]. Available: https://doi.
org/10.1145/3272127.3275055.

[33] H. Lin, L. Nie, and Z. Song, “A single-shot structured light means
by encoding both color and geometrical features,” Pattern Recognition,
vol. 54, pp. 178–189, 2016, issn: 0031-3203. doi: https://doi.org/
10.1016/j.patcog.2015.12.013. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0031320315004720.

[34] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense correspondence across
scenes and its applications,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 5, pp. 978–994, 2011. doi: 10.1109/
TPAMI.2010.147.

[35] S. Lombardi and K. Nishino, “Reflectance and natural illumination from
a single image,” in ECCV (6), 2012, pp. 582–595. [Online]. Available:
https://doi.org/10.1007/978-3-642-33783-3_42.

[36] F. MacWilliams and N. Sloane, “Pseudo-random sequences and arrays,”
Proceedings of the IEEE, vol. 64, no. 12, pp. 1715–1729, 1976. doi: 10.
1109/PROC.1976.10411.

[37] S. Maji, N. K. Vishnoi, and J. Malik, “Biased normalized cuts,” in CVPR
2011, 2011, pp. 2057–2064. doi: 10.1109/CVPR.2011.5995630.

[38] M. Maruyama and S. Abe, “Range sensing by projecting multiple slits
with random cuts,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 15, no. 6, pp. 647–651, 1993. doi: 10.1109/34.
216735.

[39] D. Moreno and G. Taubin, “Simple, accurate, and robust projector-
camera calibration,” in 2012 Second International Conference on 3D
Imaging, Modeling, Processing, Visualization Transmission, 2012, pp. 464–
471. doi: 10.1109/3DIMPVT.2012.77.

54

https://doi.org/10.1109/CVPR.2009.5206872
https://doi.org/10.1109/CVPR.2009.5206872
https://doi.org/10.1145/3272127.3275055
https://doi.org/10.1145/3272127.3275055
https://doi.org/10.1145/3272127.3275055
https://doi.org/https://doi.org/10.1016/j.patcog.2015.12.013
https://doi.org/https://doi.org/10.1016/j.patcog.2015.12.013
https://www.sciencedirect.com/science/article/pii/S0031320315004720
https://www.sciencedirect.com/science/article/pii/S0031320315004720
https://doi.org/10.1109/TPAMI.2010.147
https://doi.org/10.1109/TPAMI.2010.147
https://doi.org/10.1007/978-3-642-33783-3_42
https://doi.org/10.1109/PROC.1976.10411
https://doi.org/10.1109/PROC.1976.10411
https://doi.org/10.1109/CVPR.2011.5995630
https://doi.org/10.1109/34.216735
https://doi.org/10.1109/34.216735
https://doi.org/10.1109/3DIMPVT.2012.77

[40] S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar, “Fast sep-
aration of direct and global components of a scene using high frequency
illumination,” ACM Trans. Graph., vol. 25, no. 3, pp. 935–944, Jul. 2006,
issn: 0730-0301. doi: 10.1145/1141911.1141977. [Online]. Available:
https://doi.org/10.1145/1141911.1141977.

[41] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob, “Mitsuba 2: A
retargetable forward and inverse renderer,” Transactions on Graphics
(Proceedings of SIGGRAPH Asia), vol. 38, no. 6, Dec. 2019. doi: 10.
1145/3355089.3356498.

[42] K. Nishino, “Directional statistics brdf model,” in 2009 IEEE 12th In-
ternational Conference on Computer Vision, 2009, pp. 476–483. doi:
10.1109/ICCV.2009.5459255.

[43] Nordmann, Arne. (2007). “Epipolar geometry.” [Online; accessed 13-
July-2021], [Online]. Available: https://en.wikipedia.org/wiki/

File:Epipolar_geometry.svg.

[44] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” International Journal of Com-
puter Vision, vol. 42, pp. 145–175, 2001.

[45] G. Oxholm and K. Nishino, “Shape and reflectance from natural illumi-
nation,” in Computer Vision – ECCV 2012, A. Fitzgibbon, S. Lazebnik,
P. Perona, Y. Sato, and C. Schmid, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 528–541, isbn: 978-3-642-33718-5.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.
Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc.,
2019, pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-

deep-learning-library.pdf.

[47] W. Peterson, W. Weldon, W. Peterson, E. Weldon, E. Weldon, and E.
Weldon, Error-correcting Codes. Cambridge, MA, 1972, isbn: 9780262160391.
[Online]. Available: https://books.google.ca/books?id=5kfwlFeklx0C.

[48] J. Posdamer and M. Altschuler, “Surface measurement by space-encoded
projected beam systems,” Computer Graphics and Image Processing,
vol. 18, no. 1, pp. 1–17, 1982, issn: 0146-664X. doi: https://doi.org/
10.1016/0146-664X(82)90096-X. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/0146664X8290096X.

[49] K. Sato, “Range imaging system utilizing nematic liquid crystal mask,”
1987.

55

https://doi.org/10.1145/1141911.1141977
https://doi.org/10.1145/1141911.1141977
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1109/ICCV.2009.5459255
https://en.wikipedia.org/wiki/File:Epipolar_geometry.svg
https://en.wikipedia.org/wiki/File:Epipolar_geometry.svg
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://books.google.ca/books?id=5kfwlFeklx0C
https://doi.org/https://doi.org/10.1016/0146-664X(82)90096-X
https://doi.org/https://doi.org/10.1016/0146-664X(82)90096-X
https://www.sciencedirect.com/science/article/pii/0146664X8290096X
https://www.sciencedirect.com/science/article/pii/0146664X8290096X

[50] S. Sengupta, J. Gu, K. Kim, G. Liu, D. W. Jacobs, and J. Kautz, “Neural
inverse rendering of an indoor scene from a single image,” in Interna-
tional Conference on Computer Vision (ICCV), 2019.

[51] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser,
“Semantic scene completion from a single depth image,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 190–198. doi: 10.1109/CVPR.2017.28.

[52] D. Terzopoulos, “Image analysis using multigrid relaxation methods,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
8, no. 2, pp. 129–139, 1986. doi: 10.1109/TPAMI.1986.4767767.

[53] A. O. Ulusoy, F. Calakli, and G. Taubin, “One-shot scanning using de
bruijn spaced grids,” in 2009 IEEE 12th International Conference on
Computer Vision Workshops, ICCV Workshops, 2009, pp. 1786–1792.
doi: 10.1109/ICCVW.2009.5457499.

[54] R. Valkenburg and A. McIvor, “Accurate 3d measurement using a struc-
tured light system,” Image and Vision Computing, vol. 16, no. 2, pp. 99–
110, 1998, issn: 0262-8856. doi: https://doi.org/10.1016/S0262-
8856(97)00053-X. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S026288569700053X.

[55] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality as-
sessment: From error visibility to structural similarity,” IEEE Trans-
actions on Image Processing, vol. 13, no. 4, pp. 600–612, 2004. doi:
10.1109/TIP.2003.819861.

[56] J. Xiao, K. A. Ehinger, A. Oliva, and A. Torralba, “Recognizing scene
viewpoint using panoramic place representation,” in 2012 IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2012, pp. 2695–2702.
doi: 10.1109/CVPR.2012.6247991.

[57] L. Zhang, B. Curless, and S. M. Seitz, “Rapid shape acquisition using
color structured light and multi-pass dynamic programming,” in The 1st
IEEE International Symposium on 3D Data Processing, Visualization,
and Transmission, Padova, Italy, Jun. 2002, pp. 24–36.

[58] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE MultiMedia,
vol. 19, no. 2, pp. 4–10, Apr. 2012, issn: 1070-986X. doi: 10.1109/

MMUL.2012.24. [Online]. Available: https://doi.org/10.1109/MMUL.
2012.24.

56

https://doi.org/10.1109/CVPR.2017.28
https://doi.org/10.1109/TPAMI.1986.4767767
https://doi.org/10.1109/ICCVW.2009.5457499
https://doi.org/https://doi.org/10.1016/S0262-8856(97)00053-X
https://doi.org/https://doi.org/10.1016/S0262-8856(97)00053-X
https://www.sciencedirect.com/science/article/pii/S026288569700053X
https://www.sciencedirect.com/science/article/pii/S026288569700053X
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2012.6247991
https://doi.org/10.1109/MMUL.2012.24
https://doi.org/10.1109/MMUL.2012.24
https://doi.org/10.1109/MMUL.2012.24
https://doi.org/10.1109/MMUL.2012.24

	Introduction
	sl Systems
	Related Works
	Grayscale Patterns
	1D Color Patterns
	2D Color Patterns

	Summary

	Scene Decomposition
	Related Works
	Single-Object Scene Decomposition
	General Scene Decomposition

	Summary

	Extraction of sl Patterns using Deep Learning
	Extracting the Kinect Pattern
	Model Architecture
	Dataset
	Training
	Results

	Extracting General Patterns
	Model Architecture
	Differentiable Rendering
	Dataset
	Training and testing
	Results
	Partial Supervision

	Conclusion
	References

