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ABSTRACT

This investigation considers a modified formulation of the St. Venant equations for 

natural channels, which has been manipulated into a fully conservative form by revising 

the momentum flux term accounting for the topographic variation in the momentum 

equation. The accuracy implications for this approximate formulation are examined using 

an error analysis. Furthermore, an energy loss analysis is performed to illustrate the 

validation of the approximate formulation. Instead of using the average water surface 

elevation, a general formula is proposed to calculate the constant water surface elevation 

when evaluating the pressure acting on the wetted boundary surface. Using the 

Characteristic-Dissipative-Galerkin finite element scheme, accurate results are obtained 

for hydraulic jumps and steep surge wave propagation. Application of the model is 

illustrated for flood routing of the 1995 event on the Oldman River in southern Alberta. 

The computational results are in good agreement with the observed data.
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NOTATION

A wetted cross-sectional area;

A convection matrix;

AA difference o f wetted area;

b channel width at elevation z  ;

B bottom width of channel;

Bj, B2  bottom width at section 1 and 2, respectively;

C, non- dimensional Chezy coefficient;

F flux vector;

Fj Froude number at section 1;

G c source term of conservative forms;

G n source term of non-conservative forms;

f  source vector;

f  basis function;

g  gravitational acceleration;

gi upwinding function;

h water depth;

h constant water depth over control volume;

h, depth from the free surface to the centroid of difference o f area;

hd downstream water depth;

hf local head loss;

hu upstream water depth;
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H  elevation of water surface (stage);

Hi, H2  water surface elevation (stage) at location xi and x?, respectively;

H  average stage within control volume;

// first moment of the wetted cross section with respect to the free surface;

I2 spatial variation of first moment;

I]fj first moment of the wetted cross section with respect to the average free surface

H ;

K stiffness matrix;

K  local loss coefficient;

L boundary o f domain;

4 left boundary location of element;

m side slope o f the trapezoidal channel;

N e number of elements;

N( basis function matrix;

nx x component of unit vector outward normal to F0;

p  pressure acting on bottom boundaries;

p n pressure acting on bottom boundaries with average constant free surface H ;

P max maximum end pressure force;

Pi, P2 pressure force at section 1 and 2, respectively;

P pressure force at side wall;

Q discharge;

re right boundary location o f element;
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R hydraulic radius;

S mass matrix;

divergent slope of side wall;

S f friction slope;

S„ bed slope;

Sw slope of water surface;

t temporal coordinate;

u average cross-sectional velocity;

V/, v2 velocity at section 1 and 2, respectively;

Vi test function;

w upwind matrix;

X space coordinate;

X i , X 2 left and right boundary of the control volume;

z depth integration variable;

Z o lowest elevation of the cross section;

Z 1 Bed elevation at cross section x/;

r S side wall boundary;

r B bed boundary;

r„ wetted boundary surface;

o solution vector;

a weighting coefficient;

£ absolute error;
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E P
relative error;

£s error in pressure force of side wall owing to width variation;

<P the angle the bed makes with the horizontal;

e implicitness;

p density o f water;

T x component of the boundary shear stress;

CO upwinding coefficient;

Ax space step;

At time step.
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CHAPTER 1

INTRODUCTION

Over the past few decades, considerable attention has be addressed to the development of 

stable, accurate shock capturing schemes for the numerical solution o f the Saint Venant 

equations for one-dimensional dynamic open channel flows (Liggett and Cunge 1975; 

Katopodes 1984; Fennema and Chaudhry 1987; Hicks and Steffler 1994; Tseng et al. 

2001). However, the primary effort has focused on simple channel geometries, most 

typically rectangular cross sections, whereas natural channel geometries present the more 

common scenario in practical applications.

The main issue in extending the previous work to natural channel application is in terms 

of momentum conservation. For the rectangular channel case, investigators have found 

that conservative formulations generally provide more stable and accurate solutions than 

non-conservative formulations, due to better conservation accuracy (Hicks and Steffler 

1994). This is particularly important when modeling highly dynamic events, such as dam 

break floods or ice jam  release surge propagation. Therefore, it is desirable to discretize a 

conservative formulation of St.Venant equations for propagating shocks. Although a 

number of conservative formulations of the St. Venant equations can be derived for the 

simple rectangular channel case, a fully conservative formulation for natural channel 

geometries does not exist due to its irregular topography (Blackburn 2000). 

Consequently, much of the numerical research has focused on developing numerically 

robust solution schemes which display stable and accurate solutions for the conventional

1
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natural channel formulations (Garcia-Navarro and Vazquez-Cendon 2000; Sanders 2001; 

Tseng et al. 2001; Sanders et al. 2003; Ying et al. 2004) To implement a conservative 

formulation in natural channel, a key problem is the treatment of irregular bathymetry, 

namely the treatment of the source terms accounting for the hydrostatic pressure force 

caused by the longitudinal width variation and bed slope.

Sanders (2001) introduced a scheme to solve the St. Venant equations using a Godunov- 

type finite volume, in which bed slope and variable channel width effects are treated as 

source, rather than flux, terms. The source term accounting for varying channel width is 

quantifies the hydrostatic pressure exerted by the sidewalls by assuming a constant depth 

within the control volume. The constant depth used in this calculation is the depth at the 

centre of the control volume (as shown in Figure 1.1). Sanders did not assume this 

constant depth in treating the source term associated with the bed slope.

Capart et al. (2003) undertook a different approach, proposing a fully conservative 

approximation to the natural channel equations, and solving it with a finite volume 

method. Unlike Sanders (2001) treatment, in which a constant water depth is assumed in 

the control volume, in the Capart et al. (2003) approximation, a constant water surface 

elevation is assumed throughout the control volume (shown in Figure 1.2). Rather than 

treating the irregular geometry effects as source terms, they modified the momentum flux 

term to account for channel slope and variation of sidewall. (Capart et al. 2003). This 

approach leads to a formulation which defaults to a fully conservative form for the simple 

case of rectangular channels o f constant width, and in the case of a horizontal water

2
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surface (for any geometry). For the natural channel case with non-horizontal water 

surface slope, the error is negligible for mild channel slopes and small sidewall 

inclination (Capart et al. 2003). They validated their model for the steady flow case of a 

hydraulic jump in an expanding channel and the unsteady flow case o f a dam break wave 

propagating over a dry bed. As Capart et a/.’s (2003) approximate formulation is a fully 

conservative formulation; it may have some numerical advantages.

In this investigation, the validity of Capart et al.’s (2003) approximate formulation is 

further investigated by quantifying the limits of applicability for practical situations. The 

formulation proposed by Capart et al. (2003) adapts ideally to solution by the finite 

element method, and this is illustrated by solving the equations using the Characteristic- 

Dissipative-Galerkin (CDG) finite element scheme (Hicks and Steffler 1992). Model 

simulations are used together with the error relationship, to quantify the error associated 

with cases of extreme water surface slope and sidewall inclination.

Chapter 2 presents detailed development of the numerical model, which is called 

RIVER1D. Firstly, the derivation of the approximate momentum equation used in 

RIVER1D is illustrated. An error analysis is then conducted for the case o f a rectangular 

channel of variable width, and an approach for arbitrary channel geometries is suggested. 

Also, an energy loss analysis for the approximate formulation is performed for sudden 

expansions and contractions in rectangular channels. The detailed CDG finite element 

implementation is also presented.
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Chapter 3 deals with the validation of the proposed model for both steady flow and 

unsteady flow. In the steady flow case, transition from a mild to a steep slope is modeled 

to demonstrate the robust handling of transcritical flows. Then, a hydraulic jump in an 

expanding channel is simulated, and compared to Capart et al. ’s (2003) solution of the 

same problem. For the unsteady flow case, a classical dam break situation is simulated to 

demonstrate the shock capturing ability of the proposed model. Further, the unsteady 

flow simulation is extended to model a dam break in a converging and diverging channel, 

comparing to the experimental results of Bellos et al. (1992).

In chapter 4, the application o f the RIVER ID model to an actual natural river is 

demonstrated, performing a flood routing simulation in Oldman River in southern Alberta 

for the 1995 (1:100) flood event. A sensitivity analysis is conducted as well. The results 

are compared to Water Survey of Canada (WSC) gauging records and field survey data 

obtained from Alberta Environment. Chapter 5 summarizes the conclusions of this study, 

and provides recommendations for further research.
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Datum

Figure 1.1 Approximate water surface profile used by Sander (2001).

Datum

Figure 1.2 Approximate water surface profile used by Capart et a l (2003).

5
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CHAPTER 2 

NUMERICAL MODEL DEVELOPMENT

2.1 Equation Formulation

Based on conservation o f mass and longitudinal momentum principles (control volume as 

shown in Figure 2.1), the St.Venant equations describing one-dimension unsteady flow in 

an open channel are written as (Cunge et al. 1980):

^  +  =  0 (2.1)
d t dx

dQ d_f  
dt dx —■ + glA = g^{S,-Sr) + gh (2.2)

in which, // is the first moment of the wetted cross section with respect to the free surface

/, = ^  ( H - z ) b ( x ,z ) d z  (2.3)

and h  is the spatial variation of the first moment:

I2 = ^ ( H -  z ) db{x' z )dz (2.4)
‘‘o

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Here, A= cross-sectional area perpendicular to the flow, Q= discharge, H  = elevation of 

the water surface, h= water depth, S0= bed slope, S/= friction slope, g=gravitational 

acceleration, z0= lowest elevation of the cross section and 6(x,z,)=cliannel width at 

elevation z.

These equations were derived based on the following assumptions:

(1) The flow is one dimensional and the water level across the section is horizontal.

(2) The pressure distribution is hydrostatic.

(3) The velocity distribution is uniform over the cross section.

(4) The effect of boundary friction in unsteady flow can be accounted for through 

resistance laws applicable for steady flow.

(5) The variables Q and A are continuous differentiable functions.

(6) The bed slope is small so that sin <p =tan cp, where <p is the angle the bed makes 

with the horizontal.

For a trapezoidal channel

(2.5)

I2 = h2
(  1 dB h d m \

(2 .6)+
v2 dx 3 dx

1
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where B is the bottom width of the channel, and m is the side slope of the trapezoidal 

channel.

For rectangular channels, m = 0, and /, and / 2 reduce to

Ah Ah dB 
2 B dx

(2.7)

Substitution of equation (2.7) into (2.2) yields the conservative formulation for 

rectangular channel employed by Flicks and Steffler (1990):

f  + f  m + § -  C f V f f f  = SAS„~gAS,
at ox ox v 2 )  2B dx

(2 .8)

where U= uniform cross-sectional velocity.

However, for natural channels, due to their irregular topography, direct integration of the 

term g h  in equation (2.2) can be problematic and difficult. The result is that it is not 

possible to manipulate the St. Venant equations for natural channels into a fully 

conservative formulation. However, Capart et al. (2003) proposed and alternative 

version o f equation (2.2) which is suitable for manipulation into a fully conservative form, 

as discussed next.

For the same control volume as shown in Figure 2.1, assuming a relatively uniform 

velocity distribution (i.e. momentum correction coefficient,/?, approximately equal to 1.0)

8
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and a hydrostatic pressure distributions at a section, the integral horizontal momentum 

equation (per unit mass) :

where x is the longitudinal coordinate, t is time, x/ and x? are the left and right boundaries 

of the control volume, respectively, r  is the longitudinal component of the boundary 

shear stress, p  is the density of water, p  is the pressure, r o is the wetted boundary

surface, and nx is the horizontal component of the unit vector outward normal to Fo

The third term in equation (2.9) represents the net pressure force acting on the 

downstream and upstream end sections of the control volume, while the fourth term 

represents the net longitudinal pressure acting on the control volume lateral and bottom 

boundaries. Taken together, these two terms represent the net pressure force acting on the 

water in the control volume. Evaluation of the end pressure terms using equation (2.3) is 

relatively straightforward for arbitrary cross-sections, as long as a table of widths as a 

function of elevation is available. Direct evaluation of the internal pressure term (the third 

term) can be problematic for arbitrary geometry because assumptions about the channel 

bathymetry between cross-sections must be made.

Capart et al. (2003) introduced a convenient approximation for the lateral and bottom 

pressure force term. Essentially, they made the approximation

(2.9)

9
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p
|  pnxdT  * ~  |  p RnxdT (2 . 10)

where the pressure p  in the wetted boundary surface integral is approximated with a 

pressure, p n , which is calculated by assuming a constant water surface elevation,

where Hi, H2  are the water surface elevations at location x\ and X2 , respectively, and a is 

a weighting coefficient, 0 < a  < 1, which default to Capart et aids formula when a=0.5. 

Then, since the total hydrostatic pressure force acting on a control volume with a 

horizontal water surface is zero, the internal force can be calculated from the net force on 

the end sections as

H  = —( / / ,+  / / 2) , over the control volume. In this investigation, instead of

using H  = —(//, + H 2) , a formula is proposed to estimate H  as follows:

H  = a H ] +(1 - cc)H 2 (2 .11)

(2 .12)

where I xR is calculated from

(2.13)

10
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With this approximation, the momentum conservation equation becomes

d__
dt

r Qdx + 9 L
A

+ [ s { ^ - ^ K = - [ 2s A S f dx (2.14)

where the friction slope, S f , has been introduced for the boundary shear stress term. In

equation (2.13), the evaluation of the boundary pressure force along the control volume 

uses the same calculation procedure and data as the evaluation of the end pressure forces. 

In addition, the boundary pressure term has been converted from a source term to an 

apparent flux term, which may have numerical advantages.

2.2 Error Analysis

Clearly, the magnitude of the error introduced by the approximation in equation (2.10) 

depends on the water surface slope and the specific channel geometry. It is instructive to 

quantify the error for the simple case of a rectangular channel of varying width. An 

approximate method for evaluating the error in general cases (e.g. irregular shaped 

channels) is also suggested.

Consider a control volume of length Ax in a rectangular channel with bed slope S0 , 

divergent side wall slope SB, and water surface slope Sw (shown in Figure 2.2). The 

actual pressure force acting on bottom boundary is

11
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p
[  p n ,d T  = * [ ( / / ,  - z,) ’ S ,  + (H, - z,)S„B, Ax

1s.  (H ,S .  + z,S„ - z ,S „ ,) - S s (H ,-z ,)B ,S „  + -B ,S „ (S „ -S, ) Ax (2.15)

+
3 6

Ax'

The approximate bottom boundary pressure force is

P
[  P i,» ,d r  = g[ (H,  - z ,  )2 S„ +(H,  - z ,  )S„B, Ax

S , ( // ,S „  + z,S„ -  H A  -  z.S,,) -  S , (ff, -  z ,) S A  + i  S A  (s„, -  s „ ) Ax2 (2.16)

+ Ax

where Bj and z/ is width of channel and bed elevation at location xj, respectively.

The absolute error

£ = I pnxdT  -  [  p„ « ,d r  = ^  p g  (Az)J SB Sw (Sw -  4S , ) (2.17)

The relative error in the boundary pressure force term can be expressed by normalization 

using the maximum end pressure force

12
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where e is absolute error, e is relative error, Pmax is the maximum end pressure force, 

AB = 2AxSB , AH = AxSw , and AZ = So Ax . B and h are the width and depth o f the 

channel (taken at the section with the greater total pressure force).

For a horizontal rectangular channel, S0 = 0

^ = (2.19)

and the relative error is

^ P ^ aB ( a H ) 2 
„ _ g _ 1 2 ^ 2  V ’ 
p ~ " p  — Bh2 

2
12

AB_ 
B

A  H  
h j

(2 .20)

As noted by Capart el al. (2003), the error vanishes when either the water surface is 

horizontal or the channel is prismatic and rectangular. The third power reduction in error 

with control volume length is also encouraging as this rate o f convergence is better than 

the convergence rate for most numerical schemes commonly used for the St. Venant 

equations.
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From equation (2.18), it is clear that the error will be relatively small for most situations. 

For example, if  all three ratios on the right hand side of equation (2.18) are as large as 0.5,

hydraulic jumps and steep surge waves.

For comparison, the error for Sanders (2001) approach is evaluated herein as well. As 

mentioned in the previous section, Sanders (2001) only considered the source term 

accounting for pressure caused by the varying width, hence only this term was compared. 

In Sanders approach, the pressure caused by the width variation is calculated using

in which AA is the difference in flow area between the upstream and downstream ends of 

the control volume, using a constant depth (defined at the centre of the control volume), 

hc represents the depth for the free surface to the centroid of this difference in area 

(Figure 2.3), and Ts is the side wall boundary (note that Ts + T B =ro, where rB is the

bed boundary. The error for the varying width pressure term introduced by equation 

(2.21) is then

the relative error is about 1%. This suggests that the method would be accurate even for

(2 .21)

esx= - - PSB(Sw - S 0)2 Ax3 (2 .22)
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while the error introduced by Capart et al. (2003) approximation is

= -  ~ ^ p S s t v  -  S„ p S A ' A x 1 (2.23)

Thus the difference in error associated with the sidewall pressure term approximations

used by Sanders (2001) and Capart et al. (2003) is slight, only - ^ p S BS02Ax3, and both

approximations are equivalent for horizontal varying width channels (for which S0 = 0).

It is also important to note that in the Capart et al. (2003) approximation, the two pressure 

source terms accounting for side wall and bed slope variation are converted to a flux term, 

resulting in a fully conservative formulation.

The preceding analysis for approximate equation in a rectangular channel provides 

general guidance but is not directly useful for general non-prismatic channel geometries. 

In such cases, an approximate error evaluation can be made by exploiting the third order 

convergence o f the pressure approximation. Evaluating the pressure integral by 

subdividing the control volume into two halves, each with its own average water surface 

elevation, provides a more accurate estimation, even if the cross sectional information at 

the control volume midpoint is interpolated from the ends o f the control volume. The 

difference between the single and double control volume estimates then provides a good 

estimate of the error in the original evaluation. For example, returning to the rectangular 

channel of varying width with the added condition of equal bed and water surface slopes, 

the error estimated by this procedure can be shown to be three quarters of the exact error.

15
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The approximate error can then be used as a criterion for refinement of the spatial 

discretization.

2.3 Energy Loss

As implied above, the proposed formulation introduced an approximation for the pressure 

acting on the wetted boundary surface by assuming a constant water surface H , which is 

calculated using formula (2.11). (reproduced here for convenience)

H  = a H i + ( l - a ) H 2 (2.11)

Therefore, is also desirable to evaluate the energy loss for the approximate equation, so as 

to determine the appropriate value of the weighting factor a  to be used in equation (2.11). 

Since expansion and contraction in cross section is the common case o f energy loss, for 

simplicity, considering a horizontal sudden expansion in width in rectangular channel 

without friction shown in Figure 2.4, theoretically, the head loss is obtained with Borda 

formula (Henderson 1966):

hf = K A  _ i f 2
2g 2g

(2.24)

where hf is the local head loss, Vj, V2 is the velocity at section 1 and 2, respectively, and 

K  is the local loss coefficient, usually is taken as 1.
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Referring to Figure 2.4, the momentum equation is written as

PQ(V2- V ]) = P]+P - P 2 (2.25)

in which, Pi, Pi  is the pressure force at section land 2, respectively, P is the pressure 

force at side wall, which is calculated in terms of H

in which, Bj, B2  is the width at section 1 and 2, respectively.

Based on equations (2.25), (2.26), (2.11) and the energy equation, it is obvious that the 

local loss coefficient varies depending upon the value o f a  used. This variation is 

illustrated in Figure 2.5 (a), for an upstream Froude number, F \ , of 0.2, for both a sudden 

expansion (B2/B1 >1) and a sudden contraction (B2/B1 < 1). For the sudden expansion, it 

is seen that the choice of a  = 0.5 (Capart et al. 2003 approximation) is quite different 

from the Borda loss (K = 1). Furthermore, this choice produces a negative loss 

coefficient (energy gain) for the sudden contraction, which is physically unrealistic. 

Based on Figure 2.5 (a), it would seem that a value of a =  1.0 provides the best 

approximation to the Borda loss at this Froude number. Figure 2.5 (b) presents the 

variation in K for Fi = 0.565, where the same tendency is seen. Thus, for sudden

P = - P g { B 2- B , ) H 2 (2.26)
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expansions and contractions, a value of a  = 1.0 seems most appropriate (i.e. the upstream 

depth should be used as the constant depth in the approximation, not the average depth). 

However, in natural channels both gradual and sudden transitions in width may occur, 

and for the latter, a reduced loss coefficient would be expected. Hence, value o f a  

ranging from 0.5 to 1.0 are likely appropriate for natural channels. However, larger 

values are indicated for contractions to avoid negative (i.e physically unrealistic) losses.

2.4 CDG Finite Element Implementation

In equation (2.14), the boundary pressure force apparent flux term is not continuous 

across the boundary between the two control volumes, since it is evaluated with different 

depths in each adjoining control volume. This consideration requires modifications to the 

usual finite element procedure for discretizing the St. Venant equations. The 

Characteristic-Dissipative-Galerkin procedure of Hicks and Steffler (1990) is considered 

in the subsequent analysis but the modification is general to any finite element method.

The differential equation that corresponds to equation (2.14) is

+ f (7i ~ l w ) =~gASf
\

(2.27)
dt dxl^ A
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with the provision that equation (2.27) does not apply at the nodes (taken to be the 

endpoints o f the finite elements) where H  changes discontinuously.

A Petrov-Galerkin weak statement for the differential form of equation (2.1) and equation 

(2.27) can be constructed by assembling weighted integrals over all of the finite elements 

in the domain:

A,. N,
<90

. dt  
A x

—u- W

9F
dx
dN, (<9<D
dx dt

<90
dx

dx — 0 (2.28)

where

<P
A

Q

Q

+ g ( h  -  h a )
(2.29)

G„ =
0 f, o'

N, =gASf 0 f„

f j is the finite element local interpolation (basis) functions, co is the upwinding 

coefficient, usually set to 0.5 (Hicks and Steffler, 1992), and W is upwinding matrix.

The second term in equation (2.28) is the upwinding term and is based on the non­

conservative form o f the St. Venant equations with the convection matrix
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A =
<9F
dx

0 1

- U 2 2U
(2.30)

where U  is the average channel velocity (U = Q/ A).  

The source terms for the non-conservative form are

G„ =
0

d
9 ~dx^ 1 ~ I ^ ) ^ g A S J

(2.31)

Integration by parts o f the flux derivative in equation (2.28) yields

A,

£ ' S .e= l

d t  dx

AX W!—u  W

N,;GC

dN, (d<S>
dx . d t

A

7)—  ̂ "dx

dx + £  ( N .F f  =  0 (2.32)
e= l

which, as a weak form of equation (2.27), admits discontinuous solutions. The element 

boundary flux terms are

(N,F)P =
m

f, (QU + g lx -  gIlB)
(2.33)
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where le and re represent the left and right boundary location of each element e ,

respectively. Normally the flux contributions from adjoining elements offset each other 

on all inter-element boundaries, leaving only the flux contributions at the domain 

boundaries. However, in this formulation, I R is discontinuous across inter-element

boundaries since the average elevation used changes discontinuously from element to 

element. Therefore, the boundary flux term must be evaluated as

N ( r ; ' N c 0 f ,Q
L

E  (N,F)
f i= l

=  E
/„ e=l f A - a h s )

+
f i i Q U  + gl,)

(2.34)
0

where 0 and L denote the boundaries of the domain.

With the additional inter-element contributions in equation (2.34), the global matrices can 

be assembled as usual (Hicks and Steffler, 1990). A variably implicit finite difference 

time stepping scheme is used to develop the final set o f non-linear discrete algebraic 

equations and a Newton-Raphson iterative method is used to solve them at each time step. 

Details of the implementation of the CDG finite element scheme are provided in the 

Appendix A.

2.5 Discretization

Discretization is related to the accuracy and stability o f the numerical scheme. Two 

factors to consider in discretization are the time step increment and the spatial
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discretization. Typically these two are closely tied, related to each other through the 

commonly know Courant condition'.

V At
C = ^ ----  (2.35)

Ax

where, C is the Courant number, Vw is the wave speed, At is the time step increment, and 

Ax is the distance between computational nodes. The required Courant number is 

dependent upon the numerical scheme employed, and has significant implications for 

ensuring solution accuracy (and sometimes stability, as well). For the finite element 

scheme employed in the RIVER1D model, typically a Courant number of 0.5 or less is 

recommended for dynamic problems, with solution accuracy increasing with decreasing 

Courant number.

Typically, this Courant number requirement is a strict issue for dynamic (acceleration 

dominated) waves only. In the case of modeling diffusive (friction dominated) waves, 

such as encountered in the typical open water flood routing situation, quite often good 

solution accuracy can be achieved at significantly higher Courant numbers (with implicit 

models such as these), because the length o f the wave being modeled is typically quite 

large compared to the flow depth (Hicks and Steffler 199). For example, in the original 

application of the cdgl-D  (RIVERID precursor) model for the Oldman River, AB 

(McKay et al., 1996), using a rectangular channel approximation throughout with a
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section spacing of 1 km, it was found that a time step increment o f up to lh  could be 

employed without loss of accuracy (C ~ 15).
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Figure 2.1 Control volume for 1-D open channel flow (adapted from Capart et al. 2003).
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Figure 2.2 Definition sketch of an expanding rectangular channel, 
(a) Profile; (b) Plan view.
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Figure 2.3 Calculated definition sketch in Sanders’ approach (2001).
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Figure 2.4 Plan view of abrupt expansion.
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Figure 2.5 Comparison of local loss coefficient K.
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CHAPTER 3

MODEL VALIDATION 

3.1 Introduction

Four numerical tests were conducted herein to validate the numerical scheme, involving 

both steady and unsteady flow tests. The results obtained using the approximate 

St.Venant equation are also compared to those obtained by other investigators and to 

experimental data. For steady flow, first, the transition at two slope bed was considered; 

then the model was applied to the same steady flow problem tested by Capart et al. (2003) 

(hydraulic jump in an expanding channel) to validate the numerical scheme used herein, 

and to quantify the error associated with the approximate formulation. The unsteady flow 

tests included the classical dam break in a prismatic channel as well as a dam break in a 

converging and expanding channel, with comparison of the latter results to the 

experiment data of Bellos et al. (1992).

3.2 Steady Flow Simulation

3.2.1 Transition from mild to steep slope

One of the attractive properties of the finite element method is that separate algorithms 

are not required for the transition between supercritical and subcritical flow. The 

transition from a mild to a steep sloped channel is one challenging test of this capability
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employed earlier by Hicks and Steffler (1990). The behavior of the proposed approximate 

formulation is first checked for this case.

Upstream and downstream slopes in a 10m wide, 650m long rectangular channel are 

taken as 0.0025 and 0.04, respectively. The effective bed roughness is set to 0.2m. 

Accordingly, for a steady discharge o f 100m /s, the flow in upstream and downstream 

segments corresponds to subcritical and supercritical flow, respectively. The domain is 

discretized into 65 elements each 10m long. Initial conditions for the test are: flow depth 

of 3.5 and discharge o f 100m3/s in entire domain. Normally two boundary conditions are 

required to solve open channel flow problems, one upstream and one downstream 

(subcritical flow) or two upstream (supercritical flow). However, this is a unique 

problem since the flow in the upstream half of the domain is subcritical whereas the flow 

in the downstream half is superctitical. Thus, technically, only a single upstream 

boundary condition is needed (typically a specified flow). This is, in part, what makes 

this a channeling numerical problem.

The unsteady flow routine was used as a means to solve for this steady problem, by 

inputting an arbitrary initial condition for the depths throughout the domain and then 

running the model until a steady state solution was achieved. Figure3.1 presents the 

numerical results using an upwinding coefficient, co, of 0.5 and a time step increment of 

0.5s, which corresponds to a Courant number of about 0.35. These results are nearly 

identical to Hicks and Steffler (1990), with only a slight local oscillation evident at the 

slope break. The maximum discharge error at the slope break is 0.129% for the
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approximate equation, compared to 0.042% for Hicks and Steffler (1990) for the exact 

equation.

3.2.2 Hydraulic jump in an expanding channel

As shown in Figure 3.2, the modeled channel has a horizontal bottom and a rectangular 

cross section with a divergent sidewall, expanding from an upstream width o f 0.155 m to 

a downstream width of 0.460 m. The channel is assumed to be frictionless. The flow 

scenario involves a steady discharge of 0.0263 m3/s. At the upstream boundary (located 

at station 0.30 m) the depth was set to 0.088 m (supercritical flow) while the depth at the 

downstream boundary was set to 0.195 m (subcritical flow), to ensure that a hydraulic 

jump occurs in the channel.

The initial depth conditions within the domain were as follows: a depth o f 0.088 m was 

specified from the upstream boundary to a location of x =1.1 m, and a depth of 0.195 m 

was specified from station x = 1.1 m to the downstream boundary. This places the jump 

initially in approximately the correct location. (Additional tests were conducted and it 

was found that the final steady state solution was not sensitive to the location of the jump 

as an initial condition.) The entire domain was discretized with 0.1m long elements. The 

time step increment was set to 0.01s, corresponding to a Courant number that is less than 

or equal to 0.5 (required to ensure solution stability in this particular case).

The computational results were compared to the experimental data obtained by Khalifa 

(1980) and were in good agreement, particularly in terms o f the location of hydraulic
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jump (Figure 3.3). For comparison purposes, these results are also compared to those 

obtained by Younus and Chaudhry (1994) using a 2-D depth-averaged k-s turbulence 

model, and to those obtained by Capart et al. (2003) using a finite volume approach. 

Clearly the current model performs well in comparison, albeit with small oscillations in 

the vicinity of the jump. Khan and Steffler (1995) have demonstrated that the finite 

element model’s performance in the vicinity of hydraulic jumps, both in terms of 

sensitivity to discretization and local oscillation, is improved by adding a momentum flux 

term to the momentum equation, related to the non-uniform velocity distribution and 

turbulent stress.

Employing equation (2.18) to quantify the error associated with the approximate 

formulation for this problem, it was determined that the maximum percent error, e was

only 0.34%. This demonstrates that this approximate conservative formulation is quite 

valid for this situation, despite the significant sidewall inclination and steep water surface 

slope associated with the hydraulic jump.

3.3 Unsteady Flow Simulation

To demonstrate the approximate formulation’s performance for shock capturing, two 

unsteady flow tests were conducted, including a classic dam break problem in a 

rectangular channel, for both constant and varying width scenarios.
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3.3.1 Dam break in prismatic rectangular channel

Numerous test cases have been developed for an ideal instantaneous failure of dam in a 

frictionless, horizontal, prismatic, rectangular channel (Fennema and Chaudhry 1987; 

Fread 1988; Hicks and Steffler 1990). For this simulation, the test o f Hicks and Steffler 

(1990) is reproduced. It involves a unit width channel (i.e. 1 m wide), consisting o f 80 

elements each having length of 25 m. A zero initial discharge is set to for entire domain. 

The boundary conditions are specified as zero discharge at both ends. The initial flow 

depth is 10m for the upstream half, whereas for the downstream half, two possible depths 

are considered. One is 5 m (/z//zt,=0.5), the other is 0.5 m (h /h u =0.05).

Figure 3.4 shows the initial conditions and result for the first test in which hd/hu = 0.5.

The maximum time step to obtain a stable solution is 1.25 s, corresponding to a Courant 

number of 0.46. Comparison of the computed results to the analytical solution (Hicks and 

Steffler, 1990) shows good agreement. The shock spreads over three elements and only 

small pre- and post-shock oscillations are observed for the progressive wave. Only minor 

damping of the regressive wave is evident.

The result for the second test case, in which hdjhu = 0.05, is presented in Figure 3.5. This

was a much more challenging test case because of the small downstream water depth. 

The situation can lead to negative depths in the solution if there are depth oscillations, 

which is likely to lead to the solution failure. Consequently, the model had to be run at 

the time step increment o f 0.625 s to obtain a stable solution. This corresponds to a 

Courant number o f 0.25. The simulation result illustrates that the proposed formulation is

32

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



stable and reasonably accurate, although there are trailing disturbances appearing for the 

progressive wave. Again the regressive wave shows only minor damping.

3.3.2 Dam break in a converging and diverging channel

The approximate conservative formulation was further evaluated for the propagation o f a 

dam break surge wave in a converging and diverging rectangular channel, with 

comparison to the experimental results of Bellos et al. (1992). Figure 3.6 shows the plan 

view of their experimental setup. The channel was rectangular, with a maximum width of 

1.4m gradually narrowing to 0.6m over a 3.5m length; it then expanded back out to 1.4m 

over the next 8.0m of length. A gate, acting as the dam, was fixed at the location of 

minimum width (x=8.5 m). Water levels were monitored at 5 stations along the centerline 

of flume, as indicated in Figure 3.6.

Because the experimental flume had a gate at the downstream end, the propagating surge 

reflected back up the channel during the experiments. However, the details of this end 

gate configuration were not available, so the computational domain was extended to 

eliminate the effect o f the downstream boundary in the numerical simulation. Each 

element was 0.5 m in length and the time step increment was taken as 0.1s. For the initial 

conditions, a zero discharge was set throughout domain which means the velocity is zero; 

the flow depth upstream of the gate was set to 0.20 m and that downstream of the gate to 

0.101 m as was the case in the corresponding experiment. The upstream and downstream 

boundary conditions were both specified as a zero discharge. Manning’s coefficient was 

set to 0.012 (as suggested by Bellos et al., 1992).
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Figure 3.7 presents a comparison of the water levels obtained with the numerical model 

to the experimental data at 5 different locations where it is seen that the predicted values 

are in good agreement with the experimental data. It should be noted that the numerical 

results differ from the experimental measurements near the end of the simulation at 

locations 13.5 m and 18.5 m, as the reflected wave in the flume was not modeled in this 

simulation. Again, employing equation (2.18), the maximum error was found to be 

0.0064%, which is negligible. Similarly good results were obtained for other ratios of 

upstream and downstream water depth, also comparing to Bellos et al .'s (1992) data (see 

Figure3.8 to 3.10). This demonstrates the validity o f Capart et al .'s (2003) approximate 

conservative formulation.
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Figure 3.2 Schematic diagram of hydraulic jump in an expanding channel.
(a) Longitudinal section; (b) Plan view, (adapted from Younus and Chaudhry, 1994).
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Figure 3.6 Plan view of experimental setup used by Bellos et al..(1992).
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Figure 3.8 Comparison of numerical results with experimental data for hu/h d =1.5. 
(a) x=0.0m; (b) x=4.5m; (c) x=8.5m; (d) x=13.5m; (e) x=18.5m.
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CHAPTER 4 

MODEL APPLICATION 

-FLOOD ROUTING IN OLDMAN RIVER

4.1 Overview

A key purpose motivating the development of the approximate conservative formulation 

is its application in natural channels. To investigate the applicability and reliability of the 

approximate formulation for a real river, the 1995 flood event in the Oldman/South 

Saskatchewan River in southern Alberta was simulated using the new RIVER1D.

Figure 4.1 illustrates the 01dman\South Saskatchewan River basin in southern Alberta. 

The reach modeled for this investigation extends from the Oldman Dam, through the 

communities of Fort McLeod and Lethbridge and downstream to the confluence with the 

Bow River, where the two rivers combine to form the South Saskatchewan River. The 

modeled reach further extends downstream past the community of Medicine Hat a 

distance of 20 km.

In 1995 a major flood occurred in the Oldman River basin, and although the Oldman 

Dam was successful in mitigating the event to some extent, a 1:100 year flood was still 

experienced downstream on the Oldman and South Saskatchewan Rivers. McKay et al. 

(1996) illustrated the application of hydraulic flood routing for that event, by employing a 

rectangular approximation for the channel geometry. They used the precursor to the
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RIVER1D model (known at the time as the cdgJ-D model) which employs the same finite 

element scheme applied to the simpler equation formulation (2.8), limited in applicability 

to rectangular channels. The flood routing conducted for that investigation was limited to 

the reach extending from Lethbridge to Medicine Hat, because of insufficient data on 

tributary inflows upstream. It was found that the cdgl-D  hydraulic model provided good 

estimates of the flood peak magnitude and timing at Medicine Hat, and captured the 

overall shape o f the flood hydrograph there. However, comparison to upstream stations 

could not be conducted because of the missing tributary data. Also, water levels were not 

accurately reproduced with the approximate geometry.

More recently, there have been additional geometric surveys o f the Oldman River and 

these, in combination with earlier surveys at Fort Mcleod, Lethbridge and Medicine Hat, 

potentially provide sufficient data to create a ‘combined geometry’ hydraulic routing 

model of the Oldman/South Saskatchewan Rivers, similar to that developed for the Peace 

River in northern Alberta (Blackburn and Hicks 2002). Such a model would potentially 

have the capability o f providing accurate predictions of both discharge and water level in 

flood forecasting applications. In addition, further details regarding tributary inflows have 

been obtained, facilitating the extension of the modeled reach.
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4.1 Available Data

4.2.1 Channel geometry data

In the earlier study (McKay et al. 1996), river stations, or locations along the channel 

length, were established by marking out 1 Ion intervals on 1:50,000 scale National 

Topographic Series (NTS) maps, using a scale and dividers. The origin (station 0.0 km) 

was specified to be at the downstream face of the Oldman Dam, and river stations were 

specified in river km downstream of this origin. For simplicity, the stations were 

measured along the channel centerline, rather than along the thalweg, as the latter is 

somewhat subjectively determined when cross section data is limited.

Within this reach, there are four areas for which surveyed channel geometry data are 

available, specifically in a reach just downstream of the Oldman Dam (20 cross sections) 

and at the communities o f Fort Mcleod (31 cross sections), Lethbridge (74 cross-sections), 

and Medicine Hat (64 cross-sections). Hicks et al. (2005) provide details of all these 

available cross section surveys, including cross section plots, the corresponding station 

and elevation data, and any known information on the sections’ origin and date of survey. 

All of these cross sections were included in the hydraulic model, with the exception of 

those at Fort Mcleod, as all attempts to incorporate those were unsuccessful. Upon visual 

inspection of the cross section plots it became obvious that there are significant questions 

regarding the accuracy o f these cross-sections, since much of the data looks unrealistic. 

Therefore, in order to complete working models of the river in RIVER1D, the natural 

cross sections at Fort Mcleod were ultimately omitted from the hydraulic model.
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Figures 4.2 to 4.4 provide location maps for the remaining reaches containing natural 

cross sections. The cross-section locations shown in these maps were based on map and 

photo information provided by Alberta Environment. It should be noted that the 

locations of sections 14.1, 21.0 and 57.7 (shown in Figure 4.2 (a) and (b)) are estimated, 

since inadequate information was available with which to accurately locate them.

As done by McKay et al. (1996), between these communities the channel geometry in the 

hydraulic models was approximated by a simple rectangular shape, with the widths 

determined at 1 Ion intervals using 1:50,000 scale National Topographic Series (NTS) 

maps (McKay et al. 1996). The channel bed slope in these unsurveyed reaches was 

approximated from the water surface slopes obtained by identifying locations where 

topographic contours intersected the river channel on these same 1:50,000 scale NTS 

maps (McKay et al. 1996). Table 4.1 presents the water surface slopes obtained by the 

method. Figure 4.5 illustrates the resulting estimated bed profile used in the hydraulic 

model.

Table 4.1 Water surface slopes based on the NTS map data. (McKay et al. 1996)

Reach (km) Water Surface Slope

169 to 205 0.001100

205 to 335 0.000725

335 to 550 0.000400
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4.2.2 Channel Resistance Data

Channel resistance, specifically Manning’s n, is the only calibration parameter required 

for this hydraulic flood routing model. In the context of a limited geometry model (i.e. 

for the routing reaches between communities) this must represent a composite resistance 

of both the channel and floodplain, including the effects o f storage associated with 

floodplain inundation. Initially, a value of 0.030 was estimated for this parameter 

throughout all of the routing reaches, based on an average of channel roughness values 

reported by Kellerhals, Neill, and Bray (1972) for sites along the Oldman and South 

Saskatchewan Rivers.

For the sub-reaches where surveyed channel geometry was available from floodplain 

studies (Lethbridge and Medicine Hat) channel roughness was based on the HEC-2 data 

files from which the channel geometry data were obtained. Thus, they are based on 

values calibrated with a steady flow model for the corresponding floodplain studies.

4.2.3 Hydrologic Data

A key objective o f this investigation was to illustrate (and evaluate) the model’s 

performance for extreme events. The 1995 flood in southern Alberta provided the most 

extreme event documented, and so was ideal for this purpose. Water Survey of Canada 

(WSC) gauges operate within the study reaches at three sites; these are summarized in 

Table 4.2, along with their locations in km downstream of the Oldman Dam. The 

locations of these gauges are also indicated on the maps in Figures 4.2 to 4.4.
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Table 4.2 Water Survey o f Canada gauges on the Oldman and S. Sask. Rivers

WSC Gauge Name Number Location (km)

Oldman River near Brocket WSC05AA024 6.2

Oldman River near Lethbridge WSC05AD007 172.7

Saskatchewan River near Medicine Hat WSC05AJ001 424.5

The WSC gauge record for the Oldman River near Brocket does not contain data for this 

event, likely due to gauge failure, given its proximity to the dam. However, the dam’s 

operational record was provided by Alberta Environment (AENV), and this data provided 

sufficient information to define the upstream inflow boundary condition for the hydraulic 

model. Discharge data from the other gauges further downstream were used to evaluate 

the performance o f the model. Figure 4.6a presents the discharge hydrographs at the 

latter two sites, along with the Oldman Dam outflow record, for the 1995 event. Tables 

of the data are provided in Appendix B (6 h intervals, as provided by AENV).

Water level records for these gauges would also be very useful for model validation. 

Unfortunately, no water level data was provided and such data is not published for these 

records on the WSC public site. Therefore, such comparisons could not be conducted. 

However, high water marks were obtained during the flood, providing at least some 

means of evaluating the model results in this regard.

As Figure 4.6a illustrates, substantial lateral inflows must have occurred between the 

Oldman Dam and Lethbridge and (to a lesser extent) between Lethbridge and Medicine 

Hat, given the obvious differences in direct runoff volume between the three hydrographs.
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As seen in Figures 4.1, there are a number of tributaries within the study reach. There 

was no data available for the 1995 event for two of these tributaries: Willow Creek and 

the Little Bow River. However three of the tributaries are gauged: the St. Mary River 

and Belly Rivers upstream of Lethbridge, and the Bow River downstream of Lethbridge, 

as summarized in Table 4.4. Unfortunately, the gauge on the Belly River nearest the 

confluence (05AD002) was not operational during the event. Lateral inflows on the 

Belly River were therefore estimated by combining the gauge data near Glenwood (Belly 

River: WSC05AD041 and Waterton River: 05AD028). However, this approximation 

does not consider inflows below the gauges. Figure 4.6b presents the discharge 

hydrographs for those gauges that remained operational. The axes are the same as for 

Figure 4.6a, to facilitate comparison. Tables of the data are provided in Appendix B (6 h 

intervals, as provided by AENV).

As Figure 4.6b illustrates, the lateral inflows were relatively small compared to the 

overall event magnitude with the exception of, perhaps, the Bow River. However, in 

comparing them to the outflows from the Oldman Dam, it is clear that comparatively 

similar amounts of water entered the river downstream of the Dam as was released by the 

Dam during this event.

Table 4.3 Water Survey of Canada gauges on the tributaries

Tributary Gauge name Number Longitude Latitude

Belly Waterton River near Glenwood 05AD028 113 28T0" 4926'35"

Belly Belly River near Glenwood 05AD041 113 28'49" 49 2F08"

St. Mary St. Mary River near Lethbridge 05AE006 112 dO'.'S'1 49“34'24" I

Bow Bow River below Bassano Dam 05BM004 112 32'20" 50 45'00"
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4.3 Numerical Model Setup

A RIVER1D input data file describing the channel geometry and resistance characteristics 

was prepared, using the data described above. Natural channel sections were input to the 

RIVER ID  model in terms of top width versus elevation, as this is the format required by 

the model at present.

Hydraulic flood routing essentially amounts to unsteady flow modeling and in order to 

conduct such a simulation, one must specify the initial conditions occurring at the 

commencement of the simulation as well as specifying adequate flow information at the 

boundaries for the whole duration of the simulation. These aspects of the models are 

described below.

4.3.1 Boundary conditions

Two boundary conditions must be specified in any unsteady flow simulation of this type. 

Assuming that the flow is subcritical (as in this case) then this would typically require the 

input o f an inflow hydrograph at the upstream boundary, and a stage hydrograph at the 

downstream boundary. Other inputs may be employed, but this requires significant 

knowledge of unsteady flow hydraulics, and as this would not be done in the typical flood 

routing application, it was not undertaken here.

As discussed earlier, the inflow hydrograph at the upstream boundary was determined 

based on the operational record at the Oldman Dam, since the nearest WSC gauge
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(Oldman River at Brockett) did not provide a record for this event. A comparison for the 

data from both sources, for the period where there is overlap (just before and just after the 

event) indicates they are virtually identical.

The need for a water level hydrograph at the downstream end of the modeled reach 

presents an inconvenience, since one typically does not know what water levels will 

occur when using the models in a forecasting mode. To avoid the necessity for dealing 

with this, an artificial length of river was added at the downstream end o f the modeled 

reach, by repeating the last cross section for an additional 200 km (again on 1 km 

intervals) and employing the same gradient as in the lowermost segment of the South 

Saskatchewan River. The water level at the new (fictitious) downstream boundary was 

then just set to an arbitrary subcritical flow depth. Essentially this new downstream 

boundary was set sufficiently far downstream of the modeled reach, so that it did not 

matter that the specified boundary condition there was inaccurate.

As discussed earlier, lateral inflow data was available for the Bow and St. Mary Rivers 

and inflows from the Belly River were estimated by combining the gauge data near 

Glenwood (Belly River: WSC05AD041 and Waterton River: 05AD028). No inflow data 

for Willow Creek or the Little Bow River was available for this particular event, but it 

would be an easy matter to include this type of data in future application of the models. 

Often gauge sites for tributaries are located some distance upstream of the confluence, 

typically so as to be above the effects of backwater from the main river, although other 

reasons do sometimes apply as well (such as in this case where the lower gauge failed).

In such cases, it is sometimes necessary to adjust flow magnitudes to account for
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additional tributary drainage area downstream of the gauge site, and/or to lag the 

hydrograph to account for travel time from the actual gauge site to the confluence. 

Estimation o f additional inflows downstream of tributary gauge sites was beyond the 

scope of this investigation; however, hydrograph lagging was investigated.

4.3.2 Initial conditions

Any unsteady flow simulation requires as input details of the initial conditions (stage and 

discharge) at every computational node. Initial discharges are easily obtained since they 

are simply the inflow rates (base flows) prior to the flood event. However, the 

corresponding water levels are not typically known at each computational node.

For the RIVER1D model, rather than conducting a separate steady flow water level 

profile analysis to determine these values, one can simply input estimates o f the starting 

water levels and then run RIVER1D using the time stepping unsteady flow simulation to 

achieve the same objective. In this case a constant inflow discharge is specified along 

with a guess of the initial water levels, and the model is run until a steady water level 

profile is achieved. The results at intermediate time steps are not physically meaningful 

and thus not of interest, just the final steady state solution is needed to establish the initial 

conditions for the subsequent unsteady flow simulation. Consequently a lower 

convergence tolerance and/or fewer iterations per time step can be employed to help to 

speed up this preliminary model run. RIVER1D has been set up to do this automatically 

for the user.

53

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



4.3.3 Spatial and Temporal Discretization

As this was the first practical test of the new natural channel equation formulation in 

RIVER1D, a base case was established with the objective o f obtaining a stable and 

accurate solution. As discussed earlier, unlike the earlier cdgl-D  model (which 

employed a rectangular channel formulation) the natural channel formulation employs the 

proposed approximate conservation formulation. The magnitude o f the error introduced 

by the approximation depends on the water surface slope and the specific channel 

geometry. The preceding error analysis provides a means of approximating this error and 

thus provides guidance for estimating appropriate section spacing. However, in general it 

is simplest to determine the appropriate spacing by a trial and error approach. In the 

Oldman River application it was found that, to ensure model stability and accuracy, 

sections spacing increments ranging from 100 to 500 m were necessary. That is, the 

approximate formulation required a reduction in discretization.

As equation (2.35) implies, decreasing section spacing generally requires a corresponding 

decrease in the time step increment to maintain an appropriate Courant number. 

However, as discussed earlier, this applies to the dynamic case and for diffusive waves 

(such as rainfall runoff events propagating over large distances) this stringent 

requirement can usually be greatly relaxed. However, in applying this new natural 

formulation version of RIVER1D to the Oldman River, it was found that time steps in 

excess o f 5s would result in model failure (i.e. the solution would become unstable and 

“blow up”)- This corresponds to a Courant number of only about 0.1. This illustrates a 

clear limitation of the RIVER1D model, since such a small time step is highly inefficient
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(i.e. these simulations each took about 30h to run). The issue appears to be that the 

upwinding component of the model, which is designed to damp high frequency 

oscillations, is based on the dynamic terms in the equation only. Past research found that 

for simple geometry, the model was also stable for diffusive (friction dominated events).

It appears that for the natural channel case, the upwinding component will need some 

redesign to incorporate friction effects into the upwinding.

4.4 Results in RIVER1D

4.4.1 General notes on model implementation

The CDG finite element scheme employed in this model selectively dampens high 

frequency, numerically generated, oscillations without damping actual physical wave 

components when a semi-implicit time discretization is used (Hicks ands Steffler, 1990). 

This corresponds to a 0 of 0.5, which was used in all unsteady simulations conducted for 

the Oldman River. The upwinding parameter, co, was set to 0.25 for this type of 

application, as that is what was recommended by Hicks and Steffler (1990). Although 

they observed that the damping was more selective for co = 0.25 than for <u=0.5, in 

general they found that the impact of varying this parameter was marginal (Hicks and 

Steffler, 1992).

Summarizing, the base case scenario for the RIVER1D  model simulations involved the 

following characteristics:

■ time step increment, At = 5 s
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■ spatial discretization, Ax=  100 to 500 m

■ upwinding coefficient, co= 0.25

■ implicitness, 0=  0.5 (second order accurate)

■ natural geometry used in the reach downstream of Oldman Dam, as well as at 

Lethbridge and at Medicine Hat

■ rectangular channel geometry approximation used elsewhere

■ tributary inflows based on data from gauges listed in Table 4.3, no lagging of 

hydro graphs

It is significant to note that initial tests runs of the RIVER1D model, incorporating natural 

channel geometry for the Fort Mcleod reach, stable solutions could not be achieved. As 

discussed earlier, an investigation o f the nature of the cross sections here raised some 

questions as to whether they are physically reasonable. In the end, the only way to 

actually successfully run the full model was to revert to the rectangular channel 

approximation at Fort Mcleod.

4.4.2 Model results

Figure 4.7 shows the output discharge hydrographs obtained from the RIVER1D model at 

Lethbridge and Medicine Hat for the base case scenario. The measured data is also 

shown for comparison. As the figure illustrates, for the peak flow, the arrival time of 

peak flow at both of the locations predicted by RIVER1D is early than the observed, and 

the magnitude of peak flow is less than the measured flow rate. Table 4.4 presents the 

quantitative errors on the peak magnitudes and arrival times calculated using:
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Predicted value -  Measured value
error = ---------------------------------------------  (4.1)

Measured value

Table 4.4 RIVER1D peak discharge errors for the base case simulation (1995 event)

Location Arrival time of peak flow Peak flow (m3/s) Error on Peak

Measured RIVER1D Measured RIVER1
D

M agnitude
(%)

Timing
(h)

Lethbridge June-8 6:00 June-7 18:00 4836 3849 -12.2 -12

Medicine
Hat

June-9 18:00 June-8 23:00 5345 4358 -18.5 H H H

It is likely that the significant differences in timing and magnitude of peak flows is 

caused, at least in part, by the fact that the tributary inflow data is not only incomplete but 

it has also not been corrected to consider time of travel from the individual gauges to the 

tributary confluences. To explore this possibility, in order to have the clearest possible 

picture of the quality o f the model’s capabilities, additional simulations were conducted 

considering only the reach from Lethbridge to Medicine Hat. This reach contains only 

one significant tributary, the Bow River, for which gauge data was available below the 

Bassano Dam (located approximately 100 km upstream of the confluence with the 

Oldman River). This short reach simulation employed the actual gauge flow record at 

Lethbridge as the upstream boundary condition. Two runs were conducted: the first with 

no lagging of the Bow River inflow hydrograph, and the second involving lagging the 

Bow River hydrograph by 22h (determined as an average time of travel based on an 

analysis of gauge records for previous large floods). Figure 4.8 illustrates that the model 

performance is significantly improved in this case, supporting the assertion that a primary

57

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



source o f error for the full reach simulation was inadequate quantification of tributary 

inflows.

Table 4.5 presents a quantitative comparison of peak magnitudes and timing, where it is 

seen that results are improved for the case where tributary hydrograph lagging was 

employed. However, overall, it appears that lagging the lateral inflow hydrograph for the 

Bow River had a minimal impact on the resulting hydrograph at Medicine Hat. This is 

likely because the inflow component for the Bow River was small compared to the flows 

on the Oldman River (as seen when comparing Figures 4.6 (a) and (b)). However, 

although the peak magnitude did not improve, the forecast timing of the peak was 

considerably better when the tributary hydrograph was lagged. These two factors suggest 

that substantially improved forecasts could be expected if comparable routing models 

were set up for the tributaries as well.

Table 4.5 RIVER]D  peak discharge errors for the short reach simulation of 1995 event 

(with and without lagging of the Bow River)

Bow River Arrival time of peak flow Peak flow (m /s) E rro r  o n  Peak

Measured RIVER1D Measured RIVER1D Magnitude

(%)

Timing

(h)

no lagging June-9 18:00 June-9 7:00 5345 5285 -1.1 -11

lag 22h June-9 18:00 June-9 13:00 5345 5141 -3.8 -5

A key motivation for using natural channel geometry in sub-reaches is to enable the 

accurate determination of water levels for flood forecasting purposes. Unfortunately, 

water level hydrographs were not available at the Lethbridge and Medicine Hat gauges
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(as discussed earlier) to assess the quality of model results in this regard. However, high 

water mark profiles were measured during the 1995 event and thus provide a means for 

comparison to the peak water level profiles. Figure 4.9 presents this comparison, where 

it is seen that the model does reasonably well for the short reach simulation (i.e. when 

lateral inflows are reasonably defined).

4.4.3 Model sensitivity

Manning’s n is the only calibration parameter for the hydraulic model and therefore, it 

was desirable to explore the model’s sensitivity to this parameter. As stated earlier, an 

initial value of 0.030 was estimated for this parameter throughout all o f the routing 

reaches, and for the sub-reaches where surveyed channel geometry was available from 

floodplain studies (Lethbridge and Medicine Hat) channel roughness was based on the 

data from the calibrated floodplain study. Figure 4.10 and Table 4.6 illustrate the 

sensitivity of model results for a variety of resistance values, and suggests that the effects 

of varying resistance are minimal. These results, in combination with those shown in 

Figures 4.7 and 4.8, suggest that the model could be used in a predictive sense with the 

current values for Manning n, provided tributary inflows could be approximated 

reasonably well.
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Table 4.6 Sensitivity of RIVER1D peak discharges to Manning’s n

Location Case Arrival time 
of peak flow

Peak flow (m /s) Error on Peak

RIVER1D Measured RIVER1D Magnitude
(%'i

Timing
ih ,

Lethbridge

n - 0.005 June-7 17:00

4836

3905 -11.0 -13

Base June-7 18:00 3849 -12.2 -12

n + 0.005 June-7 20:00 3774 -14.0 -10

n + 0.01 June-7 21:00 3694 -15.8

O)i

Medicine
Hat

n - 0.005 June-8 19:00

5345

4375 -18.2 -23

Base June-8 23:00 4358 -18.5 -19

n + 0.005 June-9 2:00 4303 -19.5 -16

n + 0.01 June-9 4:00 4228 -20.9 -14

The only other parameter to be varied in the RIVER1D model is co, the upwind weighting 

factor. A sensitivity analysis was also conducted on this parameter for the range of 

possible values (0.25 to 0.50), Table 4.7 and Figure 4.11 show the that the model results 

were visually indistinguishable over this range. Therefore, the default value of 0.25 can 

be used with confidence.

Table 4.7 Sensitivity of RIVER1D peak discharges to upwinding coefficient to

Location Case Arrival time 
of peak flow

o
Peak flow (m /s) Error on Peak

u> RIVER1D Measured RIVER1D Magnitude
(%)

Timing
(h)

Lethbridge

0.25 June-7 18:00
4836

3849 -12.2 -12

0.50 June-7 18:00 3837 -12.5 -12

Medicine
Hat

0.25 June-8 23:00
5345

4358 -18.5 -19

0.50 June-8 23:00 4361 -18.4 -19
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4.4.4 Discussion of results

Clearly the RIVER ID  model provides reasonably accurate discharge and water level 

forecasts, provided the lateral (tributary) inflow hydrographs can be determined to a 

reasonable level o f accuracy. The results here suggest that there may be some merit in 

employing hydraulic routing on the tributaries to facilitate this.

The model did not display any significant sensitivity to the one calibration parameter 

(Manning’s n) nor to the only variable numerical parameter oj (the upwinding coefficient).

Although the results for the RIVER1D modeling effort were promising in terms of 

accuracy, it required a tiny time step increment (A t =5s) to ensure solution stability. This 

results in a simulation period of approximately 3Oh on a typical PC, which is generally 

impractical. Small time steps are a necessary aspect of dynamic flow routing, but should 

not be necessary for modeling diffusive waves. It is believed that this problem is related 

to the upwinding matrix of the CDG finite element scheme, which currently is based on 

dynamic terms only, whereas this application is diffusive (friction dominated). Further 

research is recommended to explore this issue.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

This investigation considers a modified form of the St. Venant equation, in which effects 

of inclination and nonprismaticity are incorporated into an approximate term to ensure 

implementation of the conservative formulation. The source terms accounting for the 

width variation and bed slope are transferred to a flux term, which has the numerical 

advantage of facilitating the implementation of a finite element solution, circumventing 

the difficulty in treatment of lateral and bottom pressure for arbitrary geometry.

An error analysis provides a means of quantifying the error associated with the 

approximate formulation for variable width rectangular channels. The magnitude o f the 

error depends on the water surface slope and the specific channel geometry, and, based 

on typical examples, it is clear that the error will be relatively small for most situations, 

suggesting that the proposed approximate formulation would be reasonably accurate ever 

for hydraulic jumps and steep surge waves. For general non-prismatic channel geometries, 

an approximate error evaluation can be made by exploiting the third order convergence of 

the pressure approximation. The approximate error can then be used as a criterion for 

refinement of the discretization in practical applications.
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Energy loss evaluation for the approximate formulation was accomplished for the case 

sudden expansions and contractions in rectangular channels. Instead of using the average 

water surface elevation, a more general formula is proposed to calculate the constant 

water surface elevation when evaluating the pressure acting on the wetted boundary 

surface. The results indicate that a= l is more accurate than a=0.5 in this case. As the 

variation o f cross section includes gradual and sudden transition in real rivers, the 

weighting coefficient a for natural channel is recommended in a range of0.5 < a  < 1.

The shock capturing capability of the approximate formulation was demonstrated for 

both steady and unsteady flow situations. The implementation was illustrated using the 

finite element method, for which this approximate equation formulation adapts naturally. 

Using the Characteristic-Dissipative-Galerkin scheme, good results were obtained for the 

case of a hydraulic jump in a diverging rectangular channel, with the maximum percent 

error associated with the approximate formulation determined to be only 0.34%. For the 

case of dam break wave propagation in a converging and diverging rectangular channel, 

the model performed similarly well, with the maximum error only 0.0064%. In addition, 

the simulations involving the flow transition (from a mild to a steep sloped channel) and 

for a classic dam break in a prismatic channel, further demonstrated the validity of the 

proposed approximate formulation and finite element implementation.

The primary objective in developing this approximate formulation was to facilitate flow 

simulation in arbitrary geometry natural channels. To evaluate its potential, the proposed 

formulation was applied to a real river-flood routing problem, specifically the
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Oldman/South Saskatchewan River in Southern Alberta. For the full reach, due to the 

inaccurate tributary inflow data, the predicted peak magnitudes are lower than the 

observed, and arrive earlier. To more accurately illustrate the model’s capabilities, a 

shorter reach was simulated as well, one for which tributary inflows could be more 

accurately defined, and this was found to improved model agreement with measured data. 

Additional testing, involving lagging of the tributary hydrograph to account for time of 

travel from the tributary’s gauge site to its confluence with the main river, illustrated the 

importance of accurate tributary data in routing applications o f this type. The model 

itself appears to perform extremely well, and shows no great sensitivity to the only 

calibration parameter (channel roughness) or to the numerical upwinding parameter (co). 

Furthermore, it shows reasonable agreement with the high water marks measured during 

the flood (again, for the case where tributary flows could be reasonably accurately 

determined). Therefore, this model should be useable in a predictive sense.

5.2 Recommendations

The main outstanding limitation in the application o f hydraulic flood routing is the issue 

of determining sufficiently accurate tributary inflows as tributary inflow is a key factor in 

determining accurate forecasts. As gauge failure is a common occurrence during extreme 

floods, consideration should be given to developing similar hydraulic models of the 

tributaries, so that flows could at least be routed down to the confluences.
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In terms of the model itself, it appears that the primary outstanding limitation is in terms 

of computational efficiency. Although the model appears to produce accurate results, the 

time step constraint (particularly on the diffusive wave simulation for the Oldman River) 

is unrealistic. It is believed that this problem is related to the nature of the upwinding 

matrix o f  the CDG finite element scheme, which currently is based on dynamic terms 

only. Flood routing problems are friction dominated and there is no consideration of this 

in the current upwinding matrix. Further research is recommended to explore this issue.
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APPENDIX A

IMPLEMENTATION OF CDG FINITE ELEMENT METHOD

The given conservative St.Venant equations are

dA  3Q  
d t  dx

= 0 (2 .1)

dQ d_ 
dt dx A + * ( W , s ) = ~gAS, (2.27)

And non-conservative forms of momentum equation (2.27) is rewritten as follows

(A.1)

In the Petrov-Galerkin method, the test function is

V = f i + g , (A.2)

in which,

g, =a> W
Ax d f ] 
2 dx

(A.3)
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in which co =upwinding coefficient, W =upwinding matrix, Ax =space step. 

The equivalent Bubnov-Galerkin formulation is

C Ax r„,-| d  
+ co —  [ W]

M dx = {0} (A.4)

in which C  and M  represents the continuity and momentum equation, respectively.

[W] =
waq

w wqa vyqq
(A.5)

Equation (A.4) can be expanded as:

For the continuity equation:

Ax d f  Ax d f  
—  C + co— w — M  = 0 
dx 2 dx

(A.6)

For the momentum equation:

. Ax df, „  Ax df, 
f M  + co —  waa ~  C + co—  waa M  = 

2 qa dx 2 qq dx
(A.7)

Hence, the weak statement for equation (2.1) and (2.27) are
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where R — hydraulic radius, C, =non- dimensional Chezy coefficient.

Integration by part and substitution o f interpolation function Q = fjQ p  A = f j Aj gives

z  I
8A

f j ,  f,Q i ~ d x  +co— w„ot
afj_ 

1 dx
Ax
2

d f
dx

dA, d f
' dt 7 dx

dx

+Z 1 Ax d f  
co —  w ~̂ -L 

2 aq dx

GQ df, d f

d
dx Ah ~gIx\Q) +ffjQj

(A.l 1)
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t  l u d~ l f d x + t  [ f f . Q f l l - t  [ f & P f d* + t

Ne

1 1
dA, 

f — L + Q
J} dt

d f '
J dx J

dx (A. 12)

■I I Ax df,
co —  waa —L 

2 dx f > i f +a« e - f+â' f + £ (g /- “ ^ ) + ■
\dx  =  0

in which

[A]:
0 1 "aq

1

o

1 u 2 2 U -

(A. 13)

Rearrange of the equations above

^  r f , .  Ax rf/ W  ^  f Ax d f  dQ
> f f . + c o — w  —  A  — - £ / x + >  « —  vv — - J : ------
^  i  y,7/ 2 “  dx 1 , dt r  A 2 aq dx 1 8t

dx

V  f A* d f  
+Z-i J aq dx

'  d f: 'a —- 
v qa dx j

N,
a i f Ax d f ■A ,dx + > co— vv —- 

4^ * 2 aq dx dx
( g f - g f n ) dx

■I I d f  Ax d f  d f . Ax d f
dx 2 dx dx 2 dx

(A. 14)

'  df,  ^

v dx j j

e
QMYa [M2;l=0
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v*1 f  dj\ f  dA <• ( Ax d f . )  dQ j ,/ -̂-Waa --//  L d x + }  \ f f i + < 0  w„n fi - dx^  T 9 qu dr 1 Fit ^  J* 1 / 2 qq dx ' J dt

1\

-Z 1.
Ax d f  f  d fco — w —- a —- 
2 qq dx qa dx

W
Ajdx

Ax d f  d f Ax df,, , vu — w — —L + a> — wan — 2 dx dx 2 <ix' df, ^
99 dx ' JJj jj

aqq~ L + ff,

Nv | a; — wAx df, ( d — w —2 qq dx I dx
N,

In matrix notation, equation (A. 14) and (A. 15) rewrite as

5 0
S    + K O , + f  = 0

dt '

Ne
The mass matrix S = X  Se and Sc =

e=\

Sai
Sqa S,

aq

n
, in which

(A. 15)
Qjdx

(A. 16)
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And the stiffness matrix K  = ^ K j; and K t
e = \

K aa
K,a K qq_

in which

K J =
r Ax d f f  d f \  1

J  i a —~ dx
dx v qa dx

d f  Ax dft dfj Ax d f f  d f ,
—L + a>— wnn ^ J- —̂ - + co— w 
dx 2 dx dx 2 dx

W

/
dx

Ax dfi
CO— w —- 

2 qq dx
df;

qa dx \  ux y
dx

4f, d f d f ^ ^ b x ^  d f (  dfj
,,q dx '~j "jU dx +f f ' f ' +(D 2 Wqa dx dx 2 " qq dx

- + co— w„

N '  f  ]The source term f  = f and fe - 1 ° > , in which
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[ f ,  ] = [ / / , Q P \  + [ / ( ? / ,  - 1 f | : ( s ' ,  - < ? ',» ) ) *  (A-19)dx

+ 1

As a result of discontinuity of H  from element to element, the boundary term of element 

] , is incapable o f offsetting for internal element and will appear in the source

term after assembling. The other boundary terms o f element disappear during assemble 

step and only the boundary terms of domain remain. That is

A /

f=2X

V / Jo
/- ^  f Ax df:

- S  1 M-2 dx dx
( g h - g f n ) \d x

[ f J W + m l + t  I dx
dx

(A.20)

The semi-discrete form (A. 16) is then discretized in time by using the 9 implicit finite 

difference approximation.
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(s + 9AtKn+l) ®n+l = (s -  (1 -  e) AtK n) O" -  9Ati'1+1 + (l -  9) At fn

The Newton-Raphson iterative method is used to solve them at each time step.
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APPENDIX B

DETAILS OF KNOWN FLOW DATA FOR THE 1995 FLOOD EVENT

B .l Discharge hydrographs on the Oldman River (Units: m3/s)

| D a te | O ld m a n  d a m | L e th b r id g e M e d ic in e  H a t D a te | O ld m a n  d a m L e th b r id g e M e d ic in e  H a t

1 9 9 5 /6 / 1  0 : 0 0 2 8 2 .6 1 4 4 4 . 0 5 4 8 0 . 9 4 1 9 9 5 / 6 / 7  1 7 :0 0 1 4 3 4

1 9 9 5 /6 / 1  6 : 0 0 2 4 9 . 6 4 4 8 7 . 6 9 5 0 3 . 2 4 1 9 9 5 / 6 / 7  1 8 :0 0 1 4 3 5 2 0 1 0 . 3 0 8 4 6 . 9 2

1 9 9 5 /6 / 1  1 2 : 0 0 2 2 2 . 4 4 5 4 2 .6 6 5 2 9 . 2 0 1 9 9 5 / 6 / 7  1 9 : 0 0 1 4 3 8

1 9 9 5 /6 / 1  1 8 :0 0 2 1 9 . 1 4 5 6 2 . 2 3 5 8 9 .8 1 1 9 9 5 / 6 / 7  2 0 : 0 0 1 4 4 2

1 9 9 5 / 6 / 2  0 : 0 0 2 1 4 . 9 0 5 6 6 . 8 7 6 8 5 . 1 2 1 9 9 5 / 6 / 7  2 1 : 0 0 1 5 0 0

1 9 9 5 / 6 / 2  6 : 0 0 2 1 1 . 9 0 5 6 7 . 3 7 7 2 9 . 7 4 1 9 9 5 / 6 / 7  2 2 : 0 0 1 5 0 0

1 9 9 5 / 6 / 2  1 2 : 0 0 1 9 6 .6 6 5 7 7 .2 1 7 4 2 . 8 3 1 9 9 5 / 6 / 7  2 3 : 0 0 1 4 0 0

1 9 9 5 / 6 / 2  1 8 :0 0 1 8 7 .6 9 5 7 2 .3 1 7 8 4 . 5 4 1 9 9 5 / 6 / 8  0 : 0 0 1 2 0 0 3 6 6 6 . 1 5 9 5 9 . 2 3

1 9 9 5 / 6 / 3  0 : 0 0 1 8 4 .6 0 5 5 9 . 8 2 8 2 8 .6 1 1 9 9 5 / 6 / 8  1 :0 0 1 1 7 2

1 9 9 5 / 6 / 3  6 : 0 0 1 8 1 .8 0 5 6 3 .5 2 8 5 3 . 0 4 1 9 9 5 / 6 / 8  2 : 0 0 1 1 7 2

1 9 9 5 / 6 / 3  1 2 :0 0 1 7 9 .1 1 5 5 8 . 6 2 8 6 3 . 0 7 1 9 9 5 / 6 / 8  3 :0 0 1 0 6 7

1 9 9 5 / 6 / 3  1 8 :0 0 1 7 6 .8 0 5 5 7 . 9 9 8 6 5 . 7 3 1 9 9 5 / 6 / 8  4 : 0 0 9 6 9

1 9 9 5 / 6 / 4  0 : 0 0 1 7 3 .2 1 5 6 0 . 5 0 8 6 4 . 8 2 1 9 9 5 / 6 / 8  5 :0 0 8 6 9

1 9 9 5 / 6 / 4  6 : 0 0 1 7 0 .5 2 5 6 7 . 4 0 8 7 3 . 6 2 1 9 9 5 / 6 / 8  6 : 0 0 7 7 5 4 3 8 6 . 2 6 1 0 7 2 .0 4

1 9 9 5 / 6 / 4  1 2 :0 0 1 6 7 .7 9 5 7 3 . 4 4 8 7 4 . 3 5 1 9 9 5 / 6 / 8  1 2 :0 0 6 0 0 4 2 1 3 . 4 8 1 4 3 0 .1 1

1 9 9 5 / 6 / 4  1 8 :0 0 1 6 5 .3 5 5 8 4 . 1 4 8 6 9 . 0 3 1 9 9 5 / 6 / 8  1 8 : 0 0 5 2 3 3 9 0 6 . 6 0 1 7 6 7 .4 6

1 9 9 5 / 6 / 5  0 : 0 0 1 6 1 .5 6 5 8 0 . 7 8 8 6 7 . 6 6 1 9 9 5 / 6 / 9  0 : 0 0 3 6 8 7 . 8 9 2 6 9 5 . 6 5

1 9 9 5 / 6 / 5  6 : 0 0 1 4 0 .1 4 5 7 1 . 8 8 8 6 1 . 8 8 1 9 9 5 / 6 / 9  6 : 0 0 2 9 6 2 . 6 0 4 3 6 1 . 1 7

1 9 9 5 / 6 / 5  1 2 :0 0 1 2 8 .6 1 5 7 2 . 3 8 8 6 0 .5 1 1 9 9 5 / 6 / 9  1 2 : 0 0 2 3 3 0 . 2 9 5 1 3 4 . 5 0

1 9 9 5 / 6 / 5  1 8 :0 0 1 2 5 .3 0 5 7 4 .6 2 8 6 6 . 5 6 1 9 9 5 / 6 / 9  1 8 :0 0 1 8 8 8 .0 4 5 3 4 5 . 3 7

1 9 9 5 / 6 / 6  0 :0 0 1 2 2 .6 4 5 6 8 . 9 9 8 7 4 . 7 2 1 9 9 5 / 6 / 1 0  0 : 0 0 1 7 8 7 .5 9

1 9 9 5 / 6 / 6  6 : 0 0 1 3 3 .7 2 5 8 7 . 2 9 8 8 6 . 1 7 1 9 9 5 / 6 / 1 0  6 : 0 0 1 5 9 2 .0 8 4 4 0 1 . 2 0

1 9 9 5 / 6 / 6  1 2 :0 0 1 6 6 .8 8 8 8 4 . 5 2 1 9 9 5 / 6 / 1 0  1 2 : 0 0 3 8 0 1 4 5 9 .7 6 3 8 1 0 . 0 0

1 9 9 5 / 6 / 6  1 8 :0 0 3 1 9 6 3 3 . 1 6 8 8 0 .3 1 1 9 9 5 / 6 / 1 0  1 8 : 0 0 3 8 0 1 3 2 1 .7 5 3 2 2 7 . 8 5

1 9 9 5 / 6 / 6  1 9 :0 0 3 2 4 1 9 9 5 /6 / 1 1  0 : 0 0 3 8 0 1 2 3 6 .0 3 2 8 3 2 . 0 0

1 9 9 5 / 6 / 6  2 0 : 0 0 3 3 1 1 9 9 5 /6 / 1 1  6 : 0 0 3 8 0 1 1 3 9 .0 6 2 5 8 9 . 0 6

1 9 9 5 / 6 / 6  2 1 : 0 0 6 0 0 1 9 9 5 /6 / 1 1  1 2 : 0 0 3 5 0 1 0 8 0 .4 5 2 3 8 7 . 7 3

1 9 9 5 / 6 / 6  2 2 : 0 0 8 0 5 1 9 9 5 /6 / 1 1  1 8 : 0 0 3 2 6 9 9 2 . 8 6 2 2 0 3 . 7 3

1 9 9 5 / 6 / 6  2 3 : 0 0 1 0 0 0 1 9 9 5 / 6 / 1 2  0 : 0 0 3 2 4 9 3 6 . 8 6 2 0 7 5 . 3 7

1 9 9 5 / 6 / 7  0 : 0 0 2 4 1 0 7 0 0 . 2 0 8 8 8 .0 1 1 9 9 5 / 6 / 1 2  6 : 0 0 3 2 2 8 6 8 . 1 4 1 9 8 7 .0 0

1 9 9 5 / 6 / 7  1 :0 0 2 7 2 2 1 9 9 5 / 6 / 1 2  1 2 : 0 0 8 3 0 .0 1 1 8 6 0 .8 4

1 9 9 5 / 6 / 7  2 : 0 0 2 7 2 2 1 9 9 5 / 6 / 1 2  1 8 : 0 0 7 9 4 .4 1 1 7 1 4 .0 1
1 9 9 5 / 6 / 7  3 :0 0 2 5 1 7 1 9 9 5 / 6 / 1 3  0 : 0 0 7 4 9 . 2 7 1 5 8 5 .1 0

1 9 9 5 / 6 / 7  4 : 0 0 2 5 2 6 1 9 9 5 / 6 / 1 3  6 : 0 0 2 5 0 . 5 2 7 3 2 . 5 0 1 5 3 7 .2 7

1 9 9 5 / 6 / 7  5 : 0 0 2 5 5 4 1 9 9 5 / 6 / 1 3  1 2 : 0 0 7 3 0 . 7 6 1 4 5 9 .8 4

1 9 9 5 / 6 / 7  6 : 0 0 2 5 5 4 1 0 1 4 .8 8 9 0 5 . 5 3 1 9 9 5 / 6 / 1 3  1 8 : 0 0 7 1 4 . 9 4 1 3 7 4 .5 1

1 9 9 5 / 6 / 7  7 :0 0 2 5 8 1 1 9 9 5 / 6 / 1 4  0 : 0 0 7 0 9 . 2 2 1 3 0 5 .9 0
1 9 9 5 / 6 / 7  8 :0 0 2 5 8 6 1 9 9 5 / 6 / 1 4  6 : 0 0 2 4 4 .9 1 7 0 9 .3 1 1 2 6 7 .8 8

1 9 9 5 / 6 / 7  9 :0 0 2 3 0 2 1 9 9 5 / 6 / 1 4  1 2 : 0 0 2 4 2 . 6 0 7 1 0 . 6 3 1 2 3 5 .9 4

1 9 9 5 / 6 / 7  1 0 :0 0 1 7 0 0 1 9 9 5 / 6 / 1 4  1 8 : 0 0 6 8 8 . 3 2 1 1 7 5 .9 5
1 9 9 5 / 6 / 7  1 1 :0 0 1 4 1 4 1 9 9 5 / 6 / 1 5  0 : 0 0 6 7 2 . 5 6 1 0 9 6 .6 3

1 9 9 5 / 6 / 7  1 2 :0 0 1 4 2 1 1 4 4 4 .3 3 9 2 8 . 0 5 1 9 9 5 / 6 / 1 5  6 : 0 0 2 3 2 . 7 0 6 6 5 . 1 3 1 0 6 5 .2 2
1 9 9 5 / 6 / 7  1 3 :0 0 1 4 2 6 1 9 9 5 / 6 / 1 5  1 2 : 0 0 2 1 5 . 3 0 6 5 9 . 8 0 1 0 6 9 .3 4
1 9 9 5 / 6 / 7  1 4 :0 0 1 4 3 0 1 9 9 5 / 6 / 1 5  1 8 : 0 0 6 5 4 . 4 2 1 0 6 3 .9 7

1 9 9 5 / 6 / 7  1 5 :0 0 1 4 3 2 1 9 9 5 / 6 / 1 6  0 : 0 0 6 4 8 . 2 6 1 0 2 6 .5 0
1 9 9 5 / 6 / 7  1 6 :0 0 1 4 3 3 1 9 9 5 / 6 / 1 6  6 : 0 0 2 0 6 . 3 0 6 2 6 . 7 0 9 7 1 . 5 4
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continued)
D a t e  j O l d m a n  d a m L e t h b r i d g e M e d ic in e D a t e O l d m a n  d a m L e t h b r i d g e M e d ic in e

1 9 9 5 / 6 / 1 6  1 2 :0 0 2 0 1 . 2 0 6 1 5 . 2 3 9 5 0 . 1 9 1 9 9 5 / 6 / 2 3  1 8 : 0 0 4 6 9 .1 1 7 7 9 . 1 8

1 9 9 5 / 6 / 1 6  1 8 :0 0 6 0 3 . 0 6 9 4 8 . 4 5 1 9 9 5 / 6 / 2 4  0 : 0 0 4 6 2 . 9 5 7 6 3 . 7 8

1 9 9 5 / 6 / 1 7  0 :0 0 5 8 6 . 2 3 9 1 2 . 7 3 1 9 9 5 / 6 / 2 4  6 : 0 0 4 5 8 . 0 6 7 5 7 . 9 8

1 9 9 5 / 6 / 1 7  6 :0 0 5 7 6 . 5 4 8 8 6 . 5 4 1 9 9 5 / 6 / 2 4  1 2 : 0 0 4 5 6 . 8 5 7 6 7 .7 1

1 9 9 5 / 6 / 1 7  1 2 :0 0 5 7 0 . 6 7 8 7 7 .8 5 1 9 9 5 / 6 / 2 4  1 8 : 0 0 4 5 1 . 7 5 7 7 1 .6 5

1 9 9 5 / 6 / 1 7  1 8 :0 0 5 6 2 . 3 6 8 7 0 . 9 9 1 9 9 5 / 6 / 2 5  0 : 0 0 4 4 9 . 7 2 7 6 6 . 9 5

1 9 9 5 / 6 / 1 8  0 :0 0 5 5 4 . 3 4 8 4 3 .5 2 1 9 9 5 / 6 / 2 5  6 : 0 0 1 6 0 . 5 6 4 4 7 . 2 3 7 5 3 . 0 6

1 9 9 5 / 6 / 1 8  6 :0 0 5 5 1 . 0 4 7 9 5 .1 8 1 9 9 5 / 6 / 2 5  1 2 : 0 0 4 4 5 . 2 2 7 3 5 . 4 3

1 9 9 5 / 6 / 1 8  1 2 :0 0 5 4 9 .9 7 7 6 5 . 2 5 1 9 9 5 / 6 / 2 5  1 8 : 0 0 4 4 5 . 4 5 7 2 8 .7 0

1 9 9 5 / 6 / 1 8  1 8 :0 0 5 4 6 . 1 3 7 6 9 . 6 8 1 9 9 5 / 6 / 2 6  0 : 0 0 1 4 8 . 1 6 4 4 8 . 2 2 7 3 0 . 1 9

1 9 9 5 / 6 / 1 9  0 :0 0 5 4 0 . 1 7 7 7 3 . 3 9 1 9 9 5 / 6 / 2 6  6 : 0 0 1 5 8 .0 7 4 4 3 . 3 9 7 4 1 .6 1

1 9 9 5 / 6 / 1 9  6 :0 0 1 9 5 .8 0 5 3 7 .8 1 7 6 3 . 4 3 1 9 9 5 / 6 / 2 6  1 2 : 0 0 4 4 1 . 1 9 7 4 9 .5 1

1 9 9 5 / 6 / 1 9  1 2 :0 0 1 6 6 .3 2 5 3 7 . 5 4 7 4 5 .8 1 1 9 9 5 / 6 / 2 6  1 8 : 0 0 4 4 3 . 4 2 7 3 3 . 3 6

1 9 9 5 / 6 / 1 9  1 8 :0 0 5 3 0 .1 7 7 3 2 . 5 2 1 9 9 5 / 6 / 2 7  0 : 0 0 4 4 1 . 3 9 7 0 7 . 7 8

1 9 9 5 / 6 / 2 0  0 :0 0 5 0 7 . 3 4 7 2 0 . 9 0 1 9 9 5 / 6 / 2 7  6 : 0 0 1 7 0 . 1 6 4 1 4 .6 1 6 7 9 . 6 9

1 9 9 5 / 6 / 2 0  6 :0 0 1 7 7 .5 2 4 6 6 . 0 5 7 1 8 . 4 5 1 9 9 5 / 6 / 2 7  1 2 : 0 0 1 6 8 . 0 0 4 2 9 . 1 7 6 6 2 .7 1

1 9 9 5 / 6 / 2 0  1 2 :0 0 1 7 0 .1 6 4 6 2 .3 1 7 3 1 . 7 3 1 9 9 5 / 6 / 2 7  1 8 : 0 0 4 3 4 . 2 7 6 7 4 . 7 9

1 9 9 5 / 6 / 2 0  1 8 :0 0 4 5 7 . 4 7 7 4 5 . 3 2 1 9 9 5 / 6 / 2 8  0 : 0 0 4 4 4 . 3 3 6 8 0 . 7 8

1 9 9 5 /6 / 2 1  0 :0 0 4 4 9 .7 1 7 3 6 . 1 5 1 9 9 5 / 6 / 2 8  6 : 0 0 1 5 4 . 8 0 4 8 2 . 2 0 6 7 4 . 3 6

1 9 9 5 /6 / 2 1  6 :0 0 1 7 2 .0 8 4 6 1 .0 1 7 1 7 . 1 3 1 9 9 5 / 6 / 2 8  1 2 : 0 0 1 5 4 . 3 2 4 8 7 . 6 7 6 5 7 . 6 9

1 9 9 5 /6 / 2 1  1 2 :0 0 1 7 2 .0 8 4 6 6 . 1 5 7 2 3 . 7 4 1 9 9 5 / 6 / 2 8  1 8 : 0 0 4 8 6 . 7 3 6 6 5 . 6 9

1 9 9 5 /6 / 2 1  1 8 :0 0 4 6 5 . 0 4 7 4 3 . 0 0 1 9 9 5 / 6 / 2 9  0 : 0 0 4 7 6 . 8 7 6 7 6 . 3 8

1 9 9 5 / 6 / 2 2  0 :0 0 4 5 9 . 1 5 7 4 5 . 0 3 1 9 9 5 / 6 / 2 9  6 : 0 0 1 5 0 . 9 6 4 6 8 . 4 7 6 9 2 .7 1

1 9 9 5 / 6 / 2 2  6 :0 0 1 7 2 .0 8 4 5 2 . 9 2 7 3 7 . 7 5 1 9 9 5 / 6 / 2 9  1 2 : 0 0 1 5 0 . 9 6 4 5 9 . 1 3 7 1 0 . 6 2

1 9 9 5 / 6 / 2 2  1 2 :0 0 1 7 2 .0 8 4 4 6 . 6 5 7 4 0 . 8 4 1 9 9 5 / 6 / 2 9  1 8 : 0 0 4 3 8 . 0 0 7 1 6 . 6 5

1 9 9 5 / 6 / 2 2  1 8 :0 0 4 4 7 . 2 7 7 6 8 . 5 7 1 9 9 5 / 6 / 3 0  0 : 0 0 4 2 3 . 4 3 7 1 6 . 9 5

1 9 9 5 / 6 / 2 3  0 :0 0 4 6 2 . 5 8 7 8 5 . 0 2 1 9 9 5 / 6 / 3 0  6 : 0 0 4 1 4 . 6 0 7 1 4 . 1 9

1 9 9 5 / 6 / 2 3  6 :0 0 1 7 2 .0 8 4 7 1 . 2 9 7 9 1 . 7 2 1 9 9 5 / 6 / 3 0  1 2 : 0 0 1 5 1 . 4 4 4 1 1 . 3 0 7 0 8 . 8 3

1 9 9 5 / 6 / 2 3  1 2 :0 0 1 7 0 .6 4 4 6 4 . 0 8 7 9 1 . 1 6 1 9 9 5 / 6 / 3 0  1 8 : 0 0 4 0 4 . 0 0 7 1 1 . 2 8
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B.2 Discharge hydrographs on the tributaries (Units: m3/s)

D a te B e ily

R iv e r

W a t e r t o n

R iv e r

S t  M a ry  

R iv e r

B o w

R iv e r
D a te B e lly

R iv e r

W a t e r t o n

R iv e r

S t  M a ry  

R iv e r

B o w

R iv e r

0 1 / 0 6 / 1 9 9 5  0 :0 0 6 1 .0 9 1 1 5 .8 7 6 3 .2 7 2 8 9 .0 4 1 2 /0 6 / 1 9 9 5  6 :0 0 5 9 .7 6 2 1 7 .8 3 1 8 9 .2 0 4 2 9 .2 7

0 1 / 0 6 / 1 9 9 5  6 :0 0 6 4 .6 7 1 2 0 .4 5 6 3 .5 5 3 3 7 .9 1 1 2 / 0 6 / 1 9 9 5  1 2 :0 0 6 2 .3 1 2 1 4 .3 2 1 8 0 .2 2 4 0 5 .2 7

0 1 /0 6 / 1 9 9 5  1 2 :0 0 6 1 .0 3 1 6 2 .4 6 6 4 .3 7 3 4 6 .8 5 1 2 / 0 6 / 1 9 9 5  1 8 :0 0 6 5 .4 1 2 1 0 .8 1 1 4 8 .7 0 4 1 7 .1 0

0 1 / 0 6 / 1 9 9 5  1 8 :0 0 5 6 .7 2 1 6 3 .4 7 6 8 .5 1 3 7 7 .8 9 1 3 / 0 6 / 1 9 9 5  0 :0 0 6 5 .6 0 2 0 7 . 3 0 1 6 5 .3 8 4 2 1 .2 0

0 2 / 0 6 / 1 9 9 5  0 :0 0 5 5 .4 5 1 6 3 .3 9 6 8 .7 8 3 8 2 .0 4 1 3 /0 6 / 1 9 9 5  6 :0 0 6 6 .3 8 2 0 3 .7 9 1 8 9 .3 4 3 7 5 .6 0

0 2 / 0 6 / 1 9 9 5  6 :0 0 5 5 .7 1 1 6 3 .7 6 6 9 .4 8 3 8 1 .1 7 1 3 / 0 6 / 1 9 9 5  1 2 :0 0 7 2 .0 0 2 0 0 .2 8 1 5 7 .2 8 2 9 4 .7 3

0 2 /0 6 / 1 9 9 5  1 2 :0 0 5 4 .6 0 1 6 4 .4 9 6 9 .5 9 3 9 9 .0 0 1 3 /0 6 / 1 9 9 5  1 8 :0 0 6 0 .3 8 1 9 6 .7 8 1 4 1 .6 7 3 0 4 .0 1

0 2 /0 6 / 1 9 9 5  1 8 :0 0 5 2 .6 1 1 6 4 .9 7 6 0 .0 2 4 2 5 .3 3 1 4 / 0 6 / 1 9 9 5  0 :0 0 6 0 .1 9 1 9 3 .2 7 1 4 0 .6 4 3 2 4 .7 0

0 3 / 0 6 / 1 9 9 5  0 :0 0 5 1 .8 9 1 6 5 .3 5 5 7 .9 7 4 2 2 .6 2 1 4 /0 6 / 1 9 9 5  6 :0 0 5 9 .5 6 1 8 9 .7 6 1 4 0 .4 4 3 0 6 .8 5

0 3 /0 6 / 1 9 9 5  6 :0 0 5 2 .0 9 1 6 5 .5 2 5 8 .0 5 4 3 0 .0 4 1 4 /0 6 / 1 9 9 5  1 2 :0 0 6 0 .4 4 1 8 6 .2 5 1 3 6 .0 2 2 9 4 .9 7

0 3 / 0 6 / 1 9 9 5  1 2 :0 0 5 1 .3 8 1 6 5 .8 5 5 8 .3 0 4 4 1 .8 9 1 4 /0 6 / 1 9 9 5  1 8 :0 0 5 9 .1 8 1 8 2 .7 4 1 2 6 .0 3 2 2 4 .9 0

0 3 /0 6 / 1 9 9 5  1 8 :0 0 4 9 . 6 7 1 6 5 .9 0 5 7 .8 4 4 8 8 .9 1 1 5 /0 6 / 1 9 9 5  0 :0 0 5 8 .1 5 1 7 9 .2 3 1 2 5 .6 7 2 7 3 .0 8

0 4 /0 6 / 1 9 9 5  0 :0 0 4 8 . 2 2 1 6 5 .9 1 5 7 .8 0 4 3 4 .7 7 1 5 / 0 6 / 1 9 9 5  6 :0 0 5 6 .7 6 1 7 5 .7 3 1 2 6 .0 7 2 3 4 .7 2

0 4 /0 6 / 1 9 9 5  6 :0 0 4 7 . 1 9 1 6 5 .9 8 5 7 .9 5 4 3 9 .2 1 1 5 /0 6 / 1 9 9 5  1 2 :0 0 5 3 .6 5 1 7 2 .2 2 1 2 6 .3 7 2 2 3 .3 5

0 4 /0 6 / 1 9 9 5  1 2 :0 0 4 5 .7 4 1 5 2 .0 8 5 8 .3 1 4 6 0 .8 6 1 5 /0 6 / 1 9 9 5  1 8 :0 0 5 3 .1 8 1 6 8 .7 1 1 2 6 .5 5 2 2 4 .0 0

0 4 /0 6 / 1 9 9 5  1 8 :0 0 4 4 .3 3 1 5 0 .6 2 5 5 .0 3 4 8 8 .9 1 1 6 /0 6 / 1 9 9 5  0 :0 0 5 2 .5 9 1 6 5 .2 0 1 2 6 .5 3 2 5 0 .7 9

0 5 /0 6 / 1 9 9 5  0 :0 0 4 4 .1 1 1 5 0 .7 7 4 8 .0 5 4 9 8 .1 9 1 6 /0 6 / 1 9 9 5  6 :0 0 5 2 .5 7 1 6 1 .6 9 1 2 5 .5 1 2 4 7 .3 7

0 5 /0 6 / 1 9 9 5  6 :0 0 4 0 . 6 7 1 5 1 .0 4 4 8 .0 2 4 9 8 .1 4 1 6 /0 6 / 1 9 9 5  1 2 :0 0 5 1 .3 8 4 9 . 0 4 1 2 1 .8 5 1 9 9 .1 3

0 5 /0 6 / 1 9 9 5  1 2 :0 0 3 4 .6 1 1 5 1 .4 4 4 7 .6 0 5 1 6 .4 9 1 6 /0 6 / 1 9 9 5  1 8 :0 0 4 9 .9 4 4 9 . 5 0 1 1 0 .0 4 1 8 3 .5 1

0 5 / 0 6 / 1 9 9 5  1 8 :0 0 3 5 .1 1 1 5 1 .8 2 4 6 .4 6 5 1 8 .3 1 1 7 / 0 6 / 1 9 9 5  0 :0 0 4 8 .1 7 5 2 .0 9 1 0 9 .5 3 2 0 9 .0 0

0 6 /0 6 / 1 9 9 5  0 :0 0 3 7 .1 5 1 5 2 .4 7 4 6 .8 3 5 1 4 .2 6 1 7 / 0 6 / 1 9 9 5  6 :0 0 4 8 .3 2 5 1 .1 0 1 0 9 .6 9 2 1 9 .0 0

0 6 / 0 6 / 1 9 9 5  6 :0 0 4 6 .1 5 1 5 7 .3 0 4 7 .6 1 5 1 1 .2 1 1 7 / 0 6 / 1 9 9 5  1 2 :0 0 4 8 .0 3 7 5 .0 7 1 0 9 .7 9 2 1 4 .0 0

0 6 /0 6 / 1 9 9 5  1 2 :0 0 9 3 .9 2 1 7 9 .9 5 5 4 .0 1 5 1 8 .2 1 1 7 /0 6 / 1 9 9 5  1 8 :0 0 4 7 .5 8 1 0 9 .8 4 1 0 9 .3 9 1 9 7 .2 0

0 6 / 0 6 / 1 9 9 5  1 8 :0 0 1 7 7 .0 2 2 6 3 .3 7 6 3 .5 2 5 2 5 .2 4 1 8 / 0 6 / 1 9 9 5  0 :0 0 4 7 .5 5 1 1 3 .5 8 1 0 9 .1 3 1 8 7 .0 0

0 7 /0 6 / 1 9 9 5  0 :0 0 2 7 9 . 8 7 2 7 9 .9 4 2 5 6 .7 3 5 3 4 .2 8 1 8 / 0 6 / 1 9 9 5  6 :0 0 4 8 . 0 8 1 1 8 .2 4 1 0 8 .9 2 1 7 5 .0 8

0 7 /0 6 / 1 9 9 5  6 :0 0 2 5 2 .8 9 2 8 1 .2 3 5 3 2 .8 5 5 8 9 .5 5 1 8 /0 6 / 1 9 9 5  1 2 :0 0 4 7 .9 4 1 4 9 .6 0 1 0 8 .5 2 1 7 8 .1 2

0 7 / 0 6 / 1 9 9 5  1 2 :0 0 1 9 8 .7 6 2 8 1 .5 9 5 7 4 .1 2 7 3 8 .7 8 1 8 /0 6 / 1 9 9 5  1 8 :0 0 4 7 .4 4 1 4 7 .0 5 1 0 8 .7 3 1 9 9 .2 3

0 7 / 0 6 / 1 9 9 5  1 8 :0 0 1 5 9 .3 7 2 7 9 .8 5 6 0 6 .2 0 9 5 8 .3 7 1 9 / 0 6 / 1 9 9 5  0 :0 0 4 7 . 0 0 1 9 8 .8 7 1 0 8 .5 6 2 1 8 .3 0

0 8 /0 6 / 1 9 9 5  0 :0 0 1 3 1 .0 3 2 7 6 .9 3 1 1 2 4 .8 4 1 9 /0 6 / 1 9 9 5  6 :0 0 4 7 .3 2 2 3 5 . 6 5 1 0 8 .8 7 2 1 0 .6 0
0 8 /0 6 / 1 9 9 5  6 :0 0 1 2 7 .0 5 2 7 2 .9 6 1 0 8 1 .8 2 1 9 / 0 6 / 1 9 9 5  1 2 :0 0 4 6 .6 2 2 4 4 .4 2 1 0 7 .3 2 2 0 2 .7 0
0 8 / 0 6 / 1 9 9 5  1 2 :0 0 1 6 3 .4 3 2 7 0 .5 9 4 4 8 .1 7 1 2 4 7 .6 0 1 9 / 0 6 / 1 9 9 5  1 8 :0 0 4 6 .2 2 2 5 6 . 2 3 9 8 .2 6 2 3 6 .8 7
0 8 /0 6 / 1 9 9 5  1 8 :0 0 1 5 1 .3 1 2 6 8 .6 8 4 6 5 . 3 7 1 4 1 8 .2 6 2 0 / 0 6 / 1 9 9 5  0 :0 0 4 6 . 3 4 2 6 1 . 0 2 8 6 .5 2 2 8 6 .2 2

0 9 / 0 6 / 1 9 9 5  0 :0 0 1 3 7 .9 6 2 6 2 .0 9 4 4 3 .4 6 1 2 6 5 .9 8 2 0 / 0 6 / 1 9 9 5  6 :0 0 4 5 .9 8 2 6 1 . 0 2 8 5 .5 5 2 9 0 .3 0
0 9 / 0 6 / 1 9 9 5  6 :0 0 1 2 5 .7 0 2 6 1 .5 5 4 1 4 .9 0 1 0 6 7 .2 4 2 0 / 0 6 / 1 9 9 5  1 2 :0 0 4 4 .7 2 2 6 0 . 9 5 8 4 .0 5 2 9 1 .8 9

0 9 / 0 6 / 1 9 9 5  1 2 :0 0 1 0 9 .0 6 2 6 1 .7 7 3 9 6 .6 7 9 1 8 .0 1 2 0 / 0 6 / 1 9 9 5  1 8 :0 0 4 3 . 3 3 2 6 0 .8 8 7 3 .4 5 2 7 1 .8 3

0 9 / 0 6 / 1 9 9 5  1 8 :0 0 9 0 .8 9 2 1 9 .1 7 3 4 9 .7 4 8 5 0 .9 9 2 1 / 0 6 / 1 9 9 5  0 :0 0 4 2 .2 0 2 6 0 . 8 5 7 8 .6 4 2 8 6 .8 4
1 0 /0 6 / 1 9 9 5  0 :0 0 8 3 .4 9 1 9 6 .2 8 3 5 2 .0 3 7 7 1 .5 2 2 1 / 0 6 / 1 9 9 5  6 :0 0 4 2 .0 0 1 3 0 .5 8 7 9 .3 2 3 2 4 .3 0

1 0 /0 6 / 1 9 9 5  6 :0 0 7 8 .6 1 1 2 7 .1 1 3 4 4 .7 0 6 3 9 .1 5 2 1 / 0 6 / 1 9 9 5  1 2 :0 0 3 7 .0 8 1 0 5 .3 5 7 9 .4 2 3 2 8 .2 7
1 0 /0 6 / 1 9 9 5  1 2 :0 0 7 4 .4 1 1 7 3 .9 7 3 0 4 .7 1 6 4 0 .0 7 2 1 / 0 6 / 1 9 9 5  1 8 :0 0 3 3 .8 9 1 0 5 .4 3 7 9 .5 7 3 4 0 .2 8
1 0 /0 6 / 1 9 9 5  1 8 :0 0 6 9 . 7 0 1 7 4 .2 6 2 6 6 .3 9 6 2 9 .5 1 2 2 / 0 6 / 1 9 9 5  0 :0 0 3 6 .1 5 1 0 5 .9 5 7 6 .1 0 3 4 6 .0 0
1 1 /0 6 / 1 9 9 5  0 :0 0 6 6 .2 8 2 3 5 .3 7 2 5 9 .6 4 6 3 3 .3 9 2 2 / 0 6 / 1 9 9 5  6 :0 0 4 9 .2 9 1 0 6 .6 5 7 3 .3 0 3 3 0 .4 3
1 1 / 0 6 / 1 9 9 5  6 :0 0 6 3 .8 6 2 3 1 .8 6 2 5 2 .4 8 5 9 7 .9 5 2 2 /0 6 / 1 9 9 5  1 2 :0 0 4 1 . 4 3 1 0 7 .4 3 7 3 .4 7 3 0 7 .4 1
1 1 /0 6 / 1 9 9 5  1 2 :0 0 6 2 . 3 0 2 2 8 .3 5 2 2 3 .9 0 4 8 3 .7 9 2 2 / 0 6 / 1 9 9 5  1 8 :0 0 4 7 .7 5 1 1 0 .1 8 7 3 .7 3 2 9 2 .2 8
1 1 /0 6 / 1 9 9 5  1 8 :0 0 6 1 .0 5 2 2 4 .8 4 1 9 3 .5 5 4 3 8 .9 4 2 3 / 0 6 / 1 9 9 5  0 :0 0 4 5 . 5 9 1 1 1 .4 5 7 3 .9 1 3 1 5 .2 3
1 2 /0 6 / 1 9 9 5  0 :0 0 5 9 .6 8 2 2 1 .3 3 1 9 1 .4 5 4 5 5 .8 2 2 3 / 0 6 / 1 9 9 5  6 :0 0 4 4 .1 9 1 1 1 .1 2 7 4 .2 6 3 1 1 .9 5
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(continued)
D a t e B e lly W a t e r t o n S t  M a ry B o w D a te B e lly W a t e r t o n S t  M a r y B o w

R iv e r R iv e r R iv e r R iv e r R iv e r R iv e r R iv e r R iv e r

2 3 / 0 6 / 1 9 9 5  1 2 :0 0 4 2 .6 1 1 1 1 .0 1 7 4 .8 0 3 0 6 .0 5 2 7 / 0 6 / 1 9 9 5 6 :0 0 4 3 .6 9 1 0 7 .8 5 9 6 .5 2 2 3 9 .1 0

2 3 / 0 6 / 1 9 9 5  1 8 :0 0 4 0 .5 3 1 1 0 .6 5 7 4 .9 7 2 8 8 .2 0 2 7 / 0 6 / 1 9 9 5 1 2 :0 0 4 5 .3 3 1 2 1 .4 3 9 6 .2 7 2 3 5 .5 0

2 4 / 0 6 / 1 9 9 5  0 :0 0 3 9 .3 2 1 1 0 .7 1 7 5 .0 5 2 8 0 .2 1 2 7 / 0 6 / 1 9 9 5 1 8 :0 0 4 3 .9 2 1 2 7 .7 0 9 6 .8 2 2 1 4 .2 0

2 4 / 0 6 / 1 9 9 5  6 : 0 0 3 9 .5 0 1 1 2 .4 2 7 5 .5 0 2 8 1 .0 1 2 8 / 0 6 / 1 9 9 5 0 :0 0 4 1 .9 6 1 2 7 .2 7 1 0 7 .9 7 2 0 8 .2 0

2 4 / 0 6 / 1 9 9 5  1 2 :0 0 3 8 .8 1 1 1 1 .2 9 7 6 .0 3 2 8 7 .5 8 2 8 / 0 6 / 1 9 9 5 6 :0 0 3 8 .8 1 1 2 4 .6 0 1 1 0 .0 1 2 1 2 .6 6

2 4 / 0 6 / 1 9 9 5  1 8 :0 0 3 7 .3 6 1 1 4 .6 3 8 0 .5 3 3 1 7 .3 3 2 8 / 0 6 / 1 9 9 5 1 2 :0 0 3 8 .4 5 1 1 9 .8 1 1 1 0 .4 5 2 1 8 .9 0

2 5 / 0 6 / 1 9 9 5  0 :0 0 3 7 .1 1 1 1 4 .1 5 8 1 .5 7 3 2 0 .1 1 2 8 / 0 6 / 1 9 9 5 1 8 :0 0 3 6 .4 9 1 1 3 .9 2 1 1 1 .2 0 2 1 9 .4 0

2 5 / 0 6 / 1 9 9 5  6 :0 0 3 7 .3 9 1 1 3 .5 2 8 1 .6 1 2 8 6 .1 6 2 9 / 0 6 / 1 9 9 5 0 :0 0 3 4 .3 9 1 1 0 .7 0 1 1 0 .0 6 2 3 0 .3 5

2 5 / 0 6 / 1 9 9 5  1 2 :0 0 3 6 .9 1 1 1 0 .6 8 8 3 .5 3 2 3 4 .8 7 2 9 / 0 6 / 1 9 9 5 6 :0 0 3 3 .4 6 1 0 9 .4 3 1 1 0 .1 2 2 5 2 .5 6

2 5 / 0 6 / 1 9 9 5  1 8 :0 0 3 5 .9 7 1 1 0 .5 5 9 3 .6 7 2 1 0 .2 5 2 9 / 0 6 / 1 9 9 5 1 2 :0 0 3 2 .3 5 1 0 6 .7 8 1 0 6 .4 8 2 2 0 .7 5

2 6 / 0 6 / 1 9 9 5  0 :0 0 3 5 .4 6 1 1 0 .1 0 9 3 .7 7 2 3 9 .7 3 2 9 / 0 6 / 1 9 9 5 1 8 :0 0 3 0 .3 5 1 0 7 .9 5 9 3 .6 8 1 9 3 .5 3

2 6 /0 6 / 1 9 9 5  6 : 0 0 3 5 .7 4 1 0 9 .2 5 9 3 .8 1 2 3 8 .4 0 3 0 / 0 6 / 1 9 9 5 0 :0 0 2 8 .6 2 1 0 7 .1 5 9 3 .5 1 1 9 1 .3 3

2 6 / 0 6 / 1 9 9 5  1 2 :0 0 3 5 .5 2 1 0 2 .8 8 9 4 .7 4 2 3 0 .9 0 3 0 / 0 6 / 1 9 9 5 6 :0 0 2 7 .8 2 1 0 5 .8 8 9 3 .6 0 1 9 1 .9 2

2 6 /0 6 / 1 9 9 5  1 8 :0 0 3 6 .5 5 1 0 4 .0 0 9 5 .9 9 2 3 2 .5 0 3 0 / 0 6 / 1 9 9 5 1 2 :0 0 2 7 .3 8 9 4 .5 6 9 2 .3 0 1 9 4 .6 5
2 7 /0 6 / 1 9 9 5  0 :0 0 3 9 .4 9 1 0 4 .8 5 9 7 .0 9 2 3 2 .8 0 3 0 /0 6 / 1 9 9 5 1 8 :0 0 2 6 .2 4 8 4 .3 6 8 1 .6 1 1 9 6 .5 5
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