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Abstract.

The localisation of areas of excessive electrical activity in the human brain system by multi­

channel electroencephalography (EEG) recordings is one of the most important problems in Clinical 

Neurophysiology. This activity can be approximated by equivalent dipole [15], which generates the 

potential distribution all over the brain system. The essential part of the source localization proce­

dure is the forward problem solution, i.e. computation of the potential on the surface of the head 

given the location and orientation of the dipole. In this work, the forward problem is solved with 

the use of the Finite Volume Method (FVM). The implementation of the FVM is done in such a way 

that the same algorithm can be applied for the realistic head model made by using Magnetic Reso­

nance Imaging (MRI) scans of the head of the real patient. The main objectives of the research are 

assessment of the errors of the FVM modeling and computational issues such as deflation, properties 

of deflated matrix and acceleration of computations. The forward problem acceleration is especially 

important in practice, hence alternative approaches for the solution of the forward problem would 

be interesting. The Finite Volume Method is implemented in such a way that the deflated matrix of 

the linear system corresponding to the forward problem is symmetric and positive definite. These 

properties allow the use of the Conjugate Gradient Method with Polynomial Preconditioning and 

essential acceleration of the computations. The errors of the numerical solution were studied using 

analytical solutions for three-shell geometry. The realistic three-shell solution derived in this work 

allows to separate the source and sink of the equivalent dipole. This is essential for the FVM tests, 

as with this method the source and sink cannot be infinitely close together. As the radial dipole gets 

closer to the skull, the error of FVM grows. It can be reduced either with the higher resolution grids 

or with better domain decomposition algorithms. The idea of analytical matrix inversion developed 

for one, two and thri-dimensional systems of cubic finite volume elements can have potential for a 

rapid solution of the forward problem provided that it can be extended for deformed and nonuniform 

cases.
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1 Introduction.

1.1 T h e  Forward Problem  in  EEG .

This work addresses the computational aspects of one of the major problems in Clinical 

Neurophysiology - the localization of the areas of excessive neural activity in the human 

brain. These areas of excessive neural firing caused by the external electrical stimulus 

are associated with possible brain tumors, epilepsy, head injuries, infectious diseases, drug 

overdoses, etc. Therefore their accurate localization is very important for diagnostic pur­

poses. It is a well known fact [15] that this neural activity can be fairly well approximated 

by dipole current sources, consisting of closely located ’’source” and ’’sink” of the elec­

trical current of the same intensity. The stationary current dipole source (or sometimes 

the multiple sources) generates the distribution of potential all over the head. In practice, 

only the potential difference between a given point and a chosen reference point can be 

measured. This potential difference is collected by a limited number of sensors through 

the procedure named Electroencephalography or EEG and called the biopotential in EEG 

literature. Combined with Magnetic Resonance Imaging (MRI), which provides informa­

tion about the anatomy of the brain system, EEG is a very powerful and informative tool 

in neural diagnostics.

In EEG literature, the problem of computing the biopotential for such a dipole is called 

the forward problem of EEG source localization. This problem can be posed as follows: 

given the geometry of the human head as well as the location and orientation of single or 

multiple dipole sources, find the potential on the surface of the head. The problem of the 

source localization itself, given the potential on the head surface only, is called the inverse 

problem of EEG. One way to solve the inverse problem is to solve the forward problem 

with a different location and orientation and then try to combine the results in order to

1
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fit the boundary data.

1.2 B iophysics o f  th e  EEG .

Consider the theoretical aspects of EEG. The electro-magnetic field is governed by the 

Maxwell equations (macroscopic version)

V D  = p (1.2 .1)

V x E  = ~  (1.2.2)

V B = 0 (1.2.3)

V x t f  = / - f p  (1.2.4)

where E  - electric field:

D =  eE - electric displacement inside the mass of tissue: 

p - density of electric charge;

B  - total magnetic field;

H  - magnetic field due to free currents;

J  = aE  - density of the electric current.

Here e is the permittivity of the brain tissue, cr is the conductivity. The frequency 

range of the electromagnetic fields in the human brain system is below 100 cycles/second, 

therefore the electromagnetic field changes slowly. In this case, electric and magnetic fields 

can be uncoupled in the first approximation [15].

Uncoupling simplifies the equations for the electric field to

V * D =  p, (Gauss’ Law) (1.2.5)

V x £  =  0, (1.2.6)

dD
J  =  (1.2.7)

2
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By virtue of V x E  =  0, the electric field is of the form

E  = -V 'P .

Consider a control volume V  inside the surface with face 5  containing a current source

J  = aE  = — crV'P.

Integration over S  gives

j  a W - d S  = -  j  JdS  = J  Iv dV ,

where Iy  is the current volume source density, i.e. the charge emitted into a unit

volume for unit time. If a current source is located at a single point,

Iv  =  I0S{x -  x q , y — yo, z — zq),

then

j x r V *  dS = I„. (1.2.8)

For the domains that do not contain the current sources, the right-hand side is zero. 

Combination of (1.2.5) and (1.2.7) result in the conservation of charge

=  (1.2.9)

or equivalently

V • (ctE ) -  -^-(V • eE) = 0. (1.2.10)at ‘

Dividing the biological volume conductor into smaller domains for which a  and e can

be assumed to be constant and making use of (1.2.7), it is possible to get the equation

describing distribution of the potential for every domain,

< r A ¥ - e ^ ^ -  =  0 , (1.2 .11)

3
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where A is the Laplacian operator. The current flow normal to the interface between the 

two adjacent domains does not change, therefore

d*in d'&out
ain~ frT  ~  a<mt~ fr T '

where n  is the normal to the surface of the interface. The first term in (1.2.11) describes 

the resistive current, whereas the second term describes the capacitive current. Under 

certain circumstances, namely when the conductivity is high enough and the polarization 

of tissue is low enough, the second term can be neglected. Assume that the potential is 

periodic in time with field frequency / ,

= 'b(x)e2*ift .

The condition which determines whether the capacitive effects are negligible [15] is

capacitive current 2nfs{f )  _   ̂ (1 9 1 9 )
resistive current a(f )

and generally in the case of frequencies below 100 cycles/second this condition is satisfied.

1.3 Solu tions to  the Forward Problem

The main difficulty of the forward EEG problem lies in the complexity of the anatomy 

of the human head. So far the conventional way of solving the forward problem has been 

to use the three-shell model of the human head, first introduced in [46]. This allows for 

the analytical solutions of the forward EEG problem, however it does not reflect the entire 

complexity of the human head. It was demonstrated in [44] that natural holes in the skull 

such as the eyes, nose, mouth and ears can already cause errors in the source localization 

which are significant enough to hinder practical diagnostics.

The finite and boundary element modeling experiments were conducted in order to 

solve the forward EEG problem numerically ([6], [12], [13], [14], [35], [42]). In these

4
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experiments, the three-shell model was used in order to measure the accuracy of the 

numerical computations. It was found in [35] and [42] that there was a substantial (10-20 

%) increase in the error if the dipole got closer to the skull.

The Finite Volume Method (FVM) seems to be the most acceptable way of solving the 

EEG problem since it allows to take into account the real structure of the human brain, 

skull and scalp. In order to put it into practice, one must have a three-dimensional map 

of the human brain of the particular patient. This practical problem of brain mapping 

by MRI (Magnetic Resonance Imaging) datasets was solved by Koles at al. in [45]. The 

FVM for three-shell spherical model was done in [5]. However, this implementation does 

not allow to model the realistic head based on MRI slices with such an approach.

The inverse EEG problem is a well-developed procedure, whereas the forward EEG 

problem has many aspects that still need thorough study. The source localization given the 

solution of the forward problem was studied in Koles et. al. [2], Mosher et al. [34], as well 

as Raz et al. [7]. Mosher et al. [34] suggested the MUSIC algorithm which localizes several 

dipoles given the value of potential in a limited number of locations on the head surface. 

Prior to the MUSIC algorithm, spatio-temporal decomposition had to be applied to the 

data from EEG electrode recordings. The theoretical considerations, implementation and 

experimental results of this were given in Koles et al. [2]. Besides MUSIC, a Frequency 

Domain Estimation algorithm which does not require spatio-temporal decomposition was 

developed in [7].

1 .4  O bjectives o f  th is Research.

1) To accelerate the numerical solution of the forward problem in a realistic head model.

The issue of computational speed is very important, as one needs systems of the order 

of millions of finite volume elements in order to get the accepted accuracy for source 

localization.

5
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2) To assess the errors involved in the numerical solution of the forward problem by 

comparison to the analytical solution of the problem for the spherical head model.

Hence the FVM solution for the three-shell spherical model should be compared with 

the analytical solution. In the three-shell analytical model one assumes that the distance 

between a source and a sink is infinitely small, although in reality there is a finite distance 

(of the order of a few millimeters). Furthermore, the implementation of the FVM brings in 

a technical obstacle - it is not possible to place both the source and the sink into the same 

finite volume element. In such a case, the forward problem will have a zero right-hand 

side. Therefore it would be convenient to have a three-shell model with a finite distance 

between positive and negative sources of electric current for comparison. Such a model 

must also be compared with the previous one.

3) To look at alternatives to the numerical approach.

For practical source localization, the iterative methods, even accelerated, are too slow. 

Linear systems of the order of millions by millions have to be solved for each candidate 

dipole location and all possible orientations - might be thousands of times. Hence it is 

worth finding at least some alternative ways of solving the forward problem by FVM. For 

example, it would be interesting to consider the forward problem for some “good” geometry 

- a chain, plate or cube consisting of smaller cubes - and see whether the resulting linear 

system allows the analytical inversion of the matrix rather than the numerical inversion.

6
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2 Background Review.

2.1 T hree-shell Spherical M odel.

For most of the practical applications so far the forward problem of EEG has been studied 

with the three-shell spherical head model. The human head is approximated by a sphere 

surrounded by two concentric spherical shells. The inside sphere corresponds to the brain, 

the outside shells represent the skull and scalp. With such an approach it is possible to 

write the analytical solutions for the potential on the surface of the three-layer sphere. 

The three-shell model is important as it allows one to estimate the errors of the numerical 

methods if applied to the three-shell geometry.

First, let us consider the point source of the electric current in an infinite homogeneous 

medium. The potential generated by such a source can be found in a similar way to the 

potential generated by a single electric charge placed into such a medium. The problem 

may be stated as follows: given a point source with intensity /  =  . find the potential on

the surface of the surrounding sphere of radius r. The density J  of the current through 

the element of the surface dS  will be

J  = I d t - ^ / ( d td s ) =  1 rAirr2 47rr2 ||f]|’

Since J  = aE,

P 1 ?
47TOT2 ||f|| ’

where r  is a radius-vector which points from the origin to the point on the surface of the 

sphere with radius r, a  is the conductivity of the medium. Since V 't =  —E. integration 

in one direction gives

9  =  (2 .1.1)
47TOT

Now this result will be used in order to obtain the potential of the dipole in the same 

media. Consider the source and the sink of the same intensity I  located at a distance d

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from each other in order to find the potential on the surface of the sphere that contains 

the dipole.

First assume that the dipole is oriented radially, i.e. both the source and the sink will 

be on the line drawn from the center of the sphere of radius R  in the radial direction (see 

Fig. 1). Such a dipole is called radial in EEG literature, b is the distance between the 

center of the dipole and the center of the sphere. © is the latitude. Consider a point P  on 

the surface of the sphere, r is the distance between the dipole and the point. The ratio £ 

can be represented as Legendre polynomial expansion ([36], [11]),

°° bl 

1=0

Here Pi = F f are Legendre polynomials [11, 36] given by Generalized Rodrigues formula,

;  = E ^ < cose>- <2-12 )

R ( I > =  ~ 1)1 - ( 2 X 3 >

By (2.1.1) and (2.1.2), the potential at point P  is

,  OC ! - / •  . A \ l  / •  A \ i - I

* = ^ E
1 .0
“ r ( 6  +  *)RM  RM

-  £ e w p '<c o s e > -  <2L4)

OC /  ,  V 1 + 1

where nv  =  Id  is the radial component of the dipole.

8
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Figure 1: Radial Dipole. 

Z

If a line connecting the source and the sink is perpendicular to the radius, then the 

dipole is called tangential. The dipole of arbitrary orientation can be considered as a 

vector sum of radial and tangential dipoles. Consider now the dipole which has only a 

tangential component in the infinite media of conductivity a. Now mt = Id  is in direction 

X , and the angles ©i and ©2. by Figure 3, are

el = e + f ,

where

b

The potential of the tangential combination of source and sink is
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- £ d k ( « H e + * ) ) - * M ° - ? ) ) -
_ b lI  { „ (  . d © \ \  „ {  d©>
Ait1=1

using the fact that Pq(x ) =  1.

f .  t f i  , i c o .^ f f l ( « » ( e  +  ¥ ) ) - a ( c « ( © - f ) ) i
^  4waRl+l b \  d© J

bl~lm t dPi(cos0) bl~lm t ,
=  3 e ~ 1 (“ ■«) “ »<»• <2 1 -5)

Here P/(cos©) is the associated Legendre polynomial ([11], [36])

/> /(i ] =  ( 1 - I 2) ^ P 11(i ).

If x = cos 0 , then

P'l( COS©) = (1 -COS2©)S— ^L-P^COS©)a cos©
sin©dP;(cos©) _  dP*(cos©) 
sin © d© d©

Next consider conducting sphere of radius i2 and conductivity a surrounded by an air

of zero conductivity and find the potential generated by the radial dipole on the surface 

of such a sphere. It can be written as a solution of Laplace’s equation, a function of two 

spherical coordinates r  and © with unknown coefficients A[,

* (r ,e )  = j r  Atrl + lp (cos© ). (2.1.6)
z=o * \  /  J

There is no current through the boundary of the sphere, therefore the boundary condition

dr =  0 (2.1.7)
— f t

gives

+ 1)Ai =
47r<riZ2i+1 ’ 

10
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the expression for the potential on the surface of the sphere is

*  = <™ >

The solution of the three-shell model can be obtained in a similar way by matching the 

solutions for each shell through boundary conditions. The three-shell idealistic head is 

shown on Fig. 2. The potentials $1  for the inside brain, ^2  for the skull, #3  for the scalp 

and ^ 4  for the space outside the three-layer system can be written out as follows:

= £ [ ^ '  + 4 ^ 6 5 ' ( ; )

*2  =  +  D i r - (i+ l) |P /(cos© ), (2.1.9)
1=0 L -I

* 3 =  E ^  +  F ^ ^ I p K c o s © ) .  
i=q L ■*

Obviously it can be assumed that the potential of the surrounding air is zero, therefore

* 4  =  0.

The conductivities of the brain tissue and the scalp can be assumed to be equal, 

cri =  <?3 =  a. and the conductivity of the skull is a„. Then the coefficients in (2.1.9) can 

be obtained from the boundary conditions due to the continuity of radial and tangential 

components of the current through the boundary,

8 * 1
r - - - - - - -

Or = cr.8 * 2

dr (TS -
0*2
dr = cr-0 *  3 

dr

0 * 3
dr =  0,

~ R

0*1
o e

0*2 0*2 0*3
o e

r= n
’  o e

r= n r=r2
o e

(2.1.10)

(2.1.11)

11
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Figure 2: Three-layer Spherical Head Model.

\ri

The first three equations due to the boundary conditions (2.1.10) are

+ ' i r 'r ‘  -  “  - H ' 1  -

« jcyrj,-1 -  D , ^ |  =

=  0.

Denote £ =  than these equations can be more conveniently written as

,  m,(l  +■ 1) 61-1 , „ ( i  +  l )
* ------ ~ ; p r  =  «c ' -  f  ■D '- ^ p r

« c , - 5a ^  =  e , - f , ^ | J j i

The other two equations due to the boundary condition (2.1.11) are

=  c r i  +
1

12

(2 .1.12)

(2.1.13)

(2.1.14)

(2.1.15)

(2.1.16)

(2.1.17)

(2.1.18) 

(2.1.19)
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Furthermore, equations (2.1.16) and (2.1.19) can be written as

^  , Pi K i Fi 
1 r f ~  rl2 

„  Di(l +1) KiF[
1 lrf+ l ~  f  ’

where

= + ^iffU+l r2l+l-

_ (/ +  ! ) /  1______ 1_ \
2 I ^ / +l r2l+lJ -

From equations (2.1.20) and (2.1.21), obtain expressions for £); and Cj,

1 2Z + l \  r\ £ / ’

_  Dt(l + 1) K r f  _  (Z + 1) f KjFt _ KaFiX , K 2Ft 
1 Zr| i+1 * (2Z + 1 ) \  H2 (  ) T (  '

It is convenient to write

.  . f r  . . .  (l + l ) ( K i  K2\  K 2C, =  JMcfi, where Me =  -  y  j  +  - p

1 /  ATi A'eN
r U  - « )■

lr2l+lD[ = M qF[, where Mq =  —2— 

Writing (2.1.15) and (2.1.18) as

. mr (Z +  l ) 6i+1 ^ , r „  fZ +  1)
47t<t62 r f +1 ~  ZMqFi ^2/+i

77V , ^ +1 , r w, MflFj
' +  47TO-62 ~  C 1 +  r 2'+i ’

and combining these expressions, obtain the expressions for Fi and E[.

77v(2Z + l)bc~l 1
Fi =

rr
E t =

4ir<T Mc rll+l( l -  0  + M b ( l  +  §iLr 1)
TTlr j l  + 1) (2Z +  l)6*~l _______________ 1____________

lR2M  4™  Mc r f +1(l -  0  + Md ( l  +  ’

13

(2 .1.20)

(2 .1.21)

(2 .1.22)

(2.1.23)

(2.1.24)

(2.1.25)

(2.1.26) 

(2.1.27)

(2.1.28)

(2.1.29)
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Hence the potential on the surface of the sphere will be

*  =  £ { a f i ' + j F r } f l <cose>

Writing out the denominator in the last expression, f\. = h  —

^ d - o + ^ i  +  S i f l l )  -  ( a ) w ( i - o

- 1) ( ^ r i(i -  « ^ ( s n *  - ?) 0  ■* ^
6/ -r (/ -F 1) / g(Z + 1)\

$ ( 2 / +  1) V I )

(1 +  1)
£/(2Z + 1) j / ? m (i -  0 — j —  +  (£ - 1) ( ^ ) 2/+1(1 -  *)*

+ / f i+1(£ -  i ) ( C ( z  + 1) + 1) +  +  i ) ( « i  +  1) +  Z) J .
Finally

*  = 1 v ' ftZ' 1 fiCsz + i )3V - __47TO- [ de(Z 4- 1) _
TTlrPli COS©), (2.1.31)

where

= ( / i *+1 +  / l i+1)  (i - 0 (1  +  « i  + 1))

+Z(1 _  ( A ) 2'+l + (  J L  + 1)  (/ +  £(Z + 1)). (2.1.32)

Now conduct the similar calculations for tangential dipole. It is shown on Fig. 3. For the

uniform conducting sphere of radius R  and conductivity a, the potential inside the sphere

will be

*  = £ ( ^  + £ ^ W < « » 9 ) c ° . ( J .  I2-1-33)

Due to the boundary condition

d *
dr = 0, (2.1.34)
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/ + 1  m t
A t  = I 4traR2l+l '

Therefore,

* = E  r^(«»e)c«/J. (2.1.35)

Hence for the three-shell model, the potentials flfi, *I,2> 4 ,3and^ 4  can be described by equa­

tions

OO r / , \ i-t-li
*1 =  E k '  +  4^ ( ; )  I p / ( c o s © )  cos/?, 

i = i *- \  /  j

4-2 =  ^ [ C |T <+ A r " ('+l)| p i1(co8©)cos/3, (2.1.36)
i=i *- ■*

P/(cos©) cos/?.

The boundary conditions are the same therefore the equations due to these boundary 

conditions will be the same, except (2.1.12) and (2.1.18),

‘’{'4',r‘‘~l -  4̂ 6‘+i^ } = ^ { C'fr,r ‘ -  } <21-37>

V ‘ + ^ f e ) + = ^  + ^ r -  <2138>

Again the above two equations can be more conveniently written as

mtbl^ ( l  + 1) . A (f + 1)
'  4;r a / r f +1 ' * r ? +1f ’ ( }

^  +  47ro*f*1 =  C' +  T p 7' (2'L40)

As before

C i =  M c F i ,

Di — M qFu

where M e  and M q are defined by the formulas (2.1.26) and (2.1.27). The expressions for

coefficients K \  and K 2 in these formulas also remain the same.

15
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Thus

m tbl+l(l + l ) „  MDFi(l + 1)
4  "   {AfcF,' ? r + H  ’

4 , TTltbl ~ l  , r M DFi

1 47Ta/rf+1 C i r ? +l ’

and the new formulas for F/ and Ei will be

m,(2l + l ) t M _____________ 1______________
4ir<ri>f+l Mc r ? +l( l  -  {) + M o ( l  + ’

m ,(l+  1) (2f+  Ljft' - 1_____________ I_______________

The potential on the surface of the three-shell sphere due to the tangential dipole will be

Etrl + Frr " (/+1)
i=i

~  mtbl~l £{21 + i f

P /( cos©) cos/3

< 2 i ' 4 3 )

Finally the following expression describes the potential on the surface of the three-shell 

sphere of radius R

r s2 ( 2  i + 1)3 1 (Zt7vF/(cos©) — m tPi (cos©)cos/3). (2.1.44)Az&i(i + 1)J

Of course the tangential component of the dipole does not necessary need to be oriented in 

direction X.  If it has a component in direction Y  as well, then by the appropriate rotation 

of the coordinates the problem can be reduced to the one described above. In the case of 

multiple dipoles, the forward problem is a superposition of the solutions for each dipole.

The three-shell model cannot adequately describe the complexity of the realistic head. 

Therefore the numerical models as well as advanced brain mapping techniques are needed 

in order to make the source localization procedures applicable for clinical purposes.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.2 F in ite  and B oundary Elem ent M ethods.

The Boundary Element (BEM) and Finite Element (FEM) Methods are already widely 

used in literature ([6], [12], [13],[14]) for the solution of the forward problem. For the sake 

of consistency a brief overview of these methods will be given in this work, although the 

Finite Volume Method will be used for practical computations.

With BEM the governing differential equations are transferred into equivalent bound­

ary integral equations which contain no volume integrals. This is done by using certain 

well known integral identities. Among them are:

1) Gauss-Green Theorem

where a and b are scalar functions.

Sometimes depending on the partial differential equation the transformation to the 

boundary integral equation involves certain known solutions, usually called the funda­

mental solutions to the original differential equation. The boundary of the 3D volume is

(2 .2 . 1)

where nx is the x-component of the unit normal n to the boundary surface 5  of the

domain V;

2) Divergence Theorem,

(2 .2.2)

where f is defined on the domain V;

3) Green’s First Identity

Vb + bAa)dV = J  {bVa-n)dS (2.2.3)

4) Green’s Second Identity

J  (bAa -  aAb)dV = J  (bVa -  aV6) • ndS, (2.2.4)

17
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Figure 3: Tangential Dipole.

18
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triangularized, the discrete integration is performed over the boundary elements (trian­

gles), which results in a linear system from which the values of the biopotential at any 

location within the volume can be determined. For further details on BEM, see [37]. The 

BEM allows to model boundaries and boundary conditions very naturally, it doesn’t re­

quire grids over the entire volume, surface grids are sufficient. BEM also gives rise to quite 

sparse matrices.

Unfortunately the BEM sometimes gives rise to very complicated formulations: since 

it requires integral relation as well as transformation to boundary formulation using the 

fundamental solutions, it also requires substantial integration of complex functions. For 

BEM, nonhomogeneity within the domain causes serious errors, and this is exactly the 

case of the forward problem of the EEG source localization. The matrices obtained by 

BEM are not usually symmetric.

The Finite Element Method envisions the solution as being built up of many small, 

interconnected subregions or elements. The basic idea of FEM is that a solution region can 

be analytically modeled or approximated by replacing it with an assemblage of discrete 

elements. Since these elements can be put together in a variety of ways, they can be used 

to represent exceedingly complex shapes.

The boundary value problem for the biopotential 'P in tri-dimensional domain V 

bounded by the surface 5  can be written in the functional form

L(«) -  /  =  0. (2.2.5)

We assume that the proper boundary conditions are prescribed in S.  The variable $  

is being approximated by the linear combination of certain functions
m

t=i
where Ct- are the unknown parameters and the Ni  are functions such that they satisfy 

the boundary conditions.
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Define the residual or error which results from approximating $  by $  as

R  =  L(9)  -  f .  (2.2.6)

The m  unknowns Ct- are determined in such a way that the error R  over the entire solution 

domain is small. This is accomplished by forming a weighted average of the error and 

requiring that this weighted average vanishes over the solution domain.

Therefore one chooses m  linearly independent weighting functions Wi  and then insists 

that

f  [L(4f)~ f \WidV = [  RWidV  =  0 i =  1,2,..., m. (2.2.7)
Jv  Jv

There are quite a variety of weighted residual techniques because of the broad choice 

of weighting functions (see, p.e., Collatz [2]). The choice of the weighting functions is

commonly referred to as the error distribution principle. The error distribution principle

most often used is known as the Galerkin criterion, or Galerkin’s method. According to 

Galerkin’s method, the weighting functions are chosen to be the same as the approximating 

functions used to r e p re s e n t th a t  is, Wi =  JVj for i =  1,2,..., m. Thus Galerkins method 

requires that

f  [L(#) -  f \NidV =  0, i =  1,2,..., m. (2.2.8)
Jv

Since (2.2.8) holds for any point in the solution domain, it also holds for any arbitrary 

subdomain or element of the smaller domain. In practice the functions Ni  are defined in 

a way that they are nonzero only on a certain subdomain of the domain V,  the finite 

element. Hence for each element there is one interpolating function Ni,  and C,- are 

the nodal values of 4? at the center of each finite element. In the simplest case Ni  =  1 if 

they are within , and zero everywhere else, although in practice Ni  can be defined in 

other ways. The m equations

/  [£(#<*>) -  f ^ \ N ^ ]dV}e) = 0 , i = 1,2, ...m, (2.2.9)
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will result in the linear system from which the biopotential will be determined at chosen 

m locations.

The obvious advantage of the Finite Element Method is its natural way of modeling the 

boundaries and the boundary conditions. FEM does not require structured grids, it can 

accomodate a broad range of elements of different geometries. Unlike BEM, FEM requires 

the integration of simple functions only, which leads to quite sparse, usually symmetric 

matrices. It also allows good enough handling of nonhomogenuities. The technology of 

FEM is quite mature. Those who want to apply the FEM for practical purposes will have 

to face certain difficulties however. They will have to generate volume grids, which can be 

quite arduous in the case of complex geometries. Writing out the discrete relations from 

the weighted residual formulation may be a rather complicated and tedious matter. The 

resolution of the response gradient, if needed, will be tied to the volume mesh refinement.
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2.3  F in ite  V olum e M ethod.

In this work the Finite Volume Method (FVM) [1] was applied for the EEG forward prob­

lem. For this approach the biological volume conductor is decomposed into smaller finite 

volume elements. For each element the conservation laws of charge equation

f  crV * dS = Ia

is written in the form of finite difference equations. The boundary condition of no current 

into the surrounding air is =  0, where n is normal to the boundary. The discretization 

can be done for a generalized curvilinear coordinate system (£,/?, 0 -  The centers of the 

finite volume elements or cells inside the biological volume conductor are indexed with 

respect to each curvilinear coordinate as (i , j , k ), whereas the eight vertices correspond to 

(i ±  j  ±  5 , k  ±  5 ), and the centers of faces are indexed as (i ±  7 , j ,  k), or ( i,j  ±  k),

or ( i , j , k ±  5 ). The faces of cells are given by the normal area vectors S l. where I =  

(£, 77, or 0 -  The values of potential ^ij,k are defined at the cell’s centers. Each cell is a 

hexahedron of arbitrary shape. The area vectors, for example 5^ are calculated as

\  * - i)  x (2-3.1)

where r  is the position vector. The volume of each hexahedron cell is calculated by 

dividing it into three pyramids, each one having the main diagonal of the hexahedron cell 

in common

Vtj* = | ~  • (2.3.2)

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



For each finite volume the integral equation (1.14) is discretized by the second order 

accuracy scheme

(«rV* • S<)(+ , JJ, -  (<rV* • 5 * ) , . ^

+  (<rV* ■ & )SJ+U  ~  ■ f ’h j - i *  (2-3.3)

Each term on the left-hand side represents the current flow through the relevant face,

while the right-hand side equals the total current volume source in the cell. The gradient

for each primary cell is calculated from the integral definition

V *  = f  VdS. (2.3.4)
V Js

Such a definition has advantages over the differential form, as it imposes fewer restric­

tions on the smoothness of the mesh than the finite difference approximation based on the 

differential form of the equation. Discretization yields

V ^ p r ^ ^ S 1, (2.3.5)

where I denotes the face of the secondary cell and is the potential at the corre­

sponding centers of the face. For example the approximation for the (i + l , j ,k )  face of 

the hexahedron is

( y V 9 ) i+yjg = (9Se)i+lJJk -  (*S«)iJt*

+  ( W V  i - ( ^ ) y - i )  t
'  * “ /  t-r-r.A:

+  ((*S < )fc+i - ( * S < ) fc_ i )  (2.3.6)
'  * / i+ s J
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The corresponding flow term in (2.3.3) will be 

V /  t+o ,i.fc V

+  ( (* 5 ’ )i+* - ( * 5 ’ )i _ * )  (2.3.7)
'  * ‘ /  <+i,k

+ (< * * )« .*  -  («S<)M ) .  , ) x S f + . JA-

Similar expressions can be applied for the calculation of fluxes through the other faces. 

Finally one has to work with a discrete equation involving the potential ^ ij,k  in the 

center of the cell under consideration and the potentials at 18 neighboring points, with 

coefficients dependent on the geometry and conductivity only. The conductivities of the 

neighboring hexahedrons may vary, hence one has to take into account the abrupt changes 

in conductivities.

In such a case for the face indexed as (i -F 5 , j , k ), the effective conductivity can be 

defined as

2(fL(fL,,
W - - M  '

\  /  tj,k \  /  i+lj,k

(2.3.8)
eff

(y  j must be used instead of ( y  ) in the formula (2.3.7). It is easy to see that if
' eff V /  i+r;J,k

(Tij,k =  &i+i,j,k and Vijje = Vi+idtk, then ( f )  =  ( f  ) and ( f ) =  ( f  J
V /  eff \  /  i+lj,k \  /  eff V /  ij,k

Otherwise if tfi-f ij,* differs from then I y  J gives some intermediate value between
\  /  eff

I y  J and I y  ) for I 7̂ ) - Without effective conductivity the resulting
V /  ij,k V /  i+l,j,k V /  i+^J,k
distribution of the potential may be distorted. This formula can be trivially generalized 

for the fluxes through the other faces.

The FVM described here is a particular case of the FEM. In order to see this consider
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Ni =

the Method of Weighted Residuals. Recall that for this method

f  [£($) -  f\WidD = f  KWidV  =  0 i =  1 , . . . ,  m,
J v  J v

where $  =  CiNi is an approximation to the solution of the differential equation 

£ ( * ) - /  =  0;

H, =  £(4) — /  is the residual,

X> is the three-dimensional domain bounded by the surface E.

Suppose that Vi are three-dimensional finite elements obtained as a result of decom­

position of the domain V. Require Ni to be

1, {x, y, z) € Vi
(2.3.9)

0, otherwise.

The Galerkin Method requires that Wi =  Ni, so

[  [£($) -  f}NidV  =  /  [ £ ( * ) -  f]dV i= 0,
J v  JVi

hence there are m equations, one for each finite element. If

£('£) =  V • crV't, /  =  —V • j ,  wherej =  — aV'if,

then by the Divergence Theorem

[  (V • crW)dVi = /  a V *  dSi (2.3.10)
JVi JSi

where Si is a surface of three-dimensional finite element Vi. For the right-hand side

-  f  V • JdVi =  -  <fc JdSi = - I q,
Jv, JSi

where Iq is the charge emitted by the point source into a unit volume for the unit time.

Since the FVM is a particular case of Galerkin FEM, the matrices for the FVM will

be symmetric and as sparse as those resulting from FEM formulation. Due to effective
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conductivity (•& ) > the non-diagonal elements of the resulting matrix differ less, hence
V /eff

the condition number of that matrix decreases. Unlike [5], the implementation of FVM 

which will be presented further in this work does not require any singularities, i.e. the 

hexahedrons that have a common boundary with more then 6 neighboring hexahedrons, 

which can worsen the conditioning of the matrix. Futhermore the question of deflation of 

the resulting linear system was not studied in [5], but is discussed in this work.
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2.4 C onjugate G radient M ethod .

The Conjugate Gradient Method (CGM) [43, 37, 40, 31] was first introduced by Hestenes

and Steiffel in 1952. Combined with preconditioning strategies it remains one of the most

efficient iterative methods of solving the linear systems A x = b, where A  is Hermitian 

positive definite matrix (hpd), A  € Mn<n(C). The basic idea of the conjugate directions 

as a whole is to represent the solution x  as a linear combination of vectors px,...,pn 

orthogonal in the metric called A-norm,

(Apupj )  = Sij. (2.4.1)

The solution can be written out as

Tl
x = xo +  ^ ° tP ,- .  (2.4.2)

i=i

The coefficients a,- can be written out explicitely due to the A-orthogonality of pj. Multi­

plying (2.4.2) by A ,

n
A  ̂  a; pi = b — ,4xo =  ro,

i= l

<*i =  (2.4.3)(-4pi, Pi)

In practice there is no need to compute all the vectors pt- and all the coefficients a,-. Only

the approximate solution x» is computed, it can be represented as a last element in the

sequence of the successive approximations to the solution

X o,X x,...,X i,

where xo is an initial vector,

i
X£ =  x0 +  5 1 a k P k  ~  X‘_1 +  “ iP*- (2-4.4)

fc=i
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For each successive approximation, the corresponding residuals r o ,r i , ... are computed

ro =  b  -  .4xo (2.4.5)

r; =  b  — Axi =  b  — j4x£_i — a,.4p; =  r,_ i -  aiApi- (2.4.6)

The approximation x,- is best in the sense that of all vectors of the form u =  xo -+- v, v 6 

span{px,..., pi}, the generalized error function /.4(u) =  (A(x — u), (x — u)), where x is 

the exact solution, will take its least value for x,-. Indeed consider u =  xo 4- £fc=i PkPk-
n i n i

f A(u) =  ( A ( ^ a f c p j f c - 5 ^ , 5 f c P f c ) , ( ^ a fcp fc- 5 ^ / 3 fcp fc))  =
fc=l fc=l Jb=l fc=l

i a n
^2 (a k  -  0k)2{Apk,Pk) + 5 3  aU A Pk,Pk)> 5 3  afc(*4Pfc>P*:)>
fc=l fc=tT-l k=i+1

the equality can be attained only for a* = 0k- Therefore the generalized error function 

decreases with increasing index i. The two lemmas below summarize the properties of the 

direction vectors pj.

Lemma 1.

(ritP i) = 0 ,  (j =  l , . ..,*). (2.4.7)

Proof.

n  = b - A x i  = A ( x - X i ) =  Ap’PpV4pfc-
*=£i (AP*’P*)

Hence (ri, pj) =  0 if j  < i +  1. □

Lemma 2.

fo .P i)  =  (r0,py), (i =  1, —, J — I)- (2.4.8)

Proof.

(r*,P j )  =  ^ ’Pp^)(^ P i,P i)  =  (ro, Py).
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The direction vectors Pi, Pfc+r are constructed successively together with the residuals 

ro,

Pi+i =  r f -  6iPi, (2.4.9)

b_ = (2.4.10)
(Pi, Apf)

The residuals ro, ..., r ,• are mutually orthogonal. In order to see this, consider ( r£, rj), where 

j .  By (2.4.9),

r  i =  Pi+i biPi

Therefore

(rii Tj) = (pi+l, Tj) — bi(pi,Tj),

and both terms are equal to zero by (2.1.13). Each successive vector p,+i will be A- 

orthogonal to p i, ...,pi, which are already mutually A-orthogonal.

(pi+i, Api) = in , Ap») -  ^ (p,, Api) =  0. (2.4.11)
(P i, Api)

Consider (pt+i, Apj), j  =  1,2,.... i -  1.

(P i+ i, Apj) =  (rj, Apj) 4- 6j(p,-, Apj) =  ( r £, Apy),

by A-orthogonality of pi, ...,p£. Since

Apj =  — ( ry - i  -  r j) ,  
aj

(Pi+i, Apj) =  —(r,-, ry - i )  -  —(r,-,rj) =  0, (2.4.12)
CLj d j

since j  — 1 < i, j  < i. It is also possible to derive the recurrent formula for r t-. By (2.1.14),

b — Axt- =  b  — Axt-_i — a,-Apt- 

r, =  r t_ i  -  OiApi. (2.4.13)

Two more useful lemmas will be proved below.
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Lemma 3.

=  (P i.fi-i) _  ( r t - i ,r t_i)
(Pi.^Pi) (pi,Api)

Proof.

(P i.ri-O  =  (ri_ i,ri_ i) +  6i_i(pf_i,ri_ l) =  by (2.1.13).

Lemma 4.

Proof.

hence

A p t  =  —(r£_ £ -  n ) ,di

(r.-Mpi) =  (r£,r £).
CLi

Furthermore

(Pi.-Api) =  ( r i - i , A p i )  + 6 ,-_ i(p i_ i,i4 p i)  =  

{ n - i , A p i )  =  — (r j_ i,r i_ i -  r£) =  — (r .'-i.r ,--!).
CLi CLi

Finally,

(ri, Apj) (r£,r £)bi =
( P i , A p i )  (r£_ i,r£_!)'
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The above considerations result in a classical algorithm of Hestenes and Steiffel. The 

Matlab program pcg.m is based on this algorithm.

Po =  ro, po =  1, 

for k =  l:maxit

Pi =  (***_!, r*_i) (2.4.16)

bk-i = ~  (2.4.17)
Po

P k = ffc-i +  bk-iPk-i (2.4.18)

a/t = (2.4.19)(Pfct-Apfc)

xfc =  x k- i  + akpk (2.4.20)

rk = rjt-i -  akApk (2.4.21)

Po = Pi (2.4.22)

end

So far the forward EEG problem is being solved with the use of a three-shell idealistic 

model. This is then combined with the MUSIC algorithm [35] in order to solve the inverse 

problem. For practical applications the geometry of the head must be taken into account, 

so the Finite Element and Boundary Element methods have been used for the experimental 

modeling. In this work the Finite Volume Method is applied. It allows one to take into 

account the realistic distibution of the conductivities in a natural way. The Conjugate 

Gradient Method is an efficient way of getting the iterative solution of large sparse linear 

systems, provided that the matrix is symmetric and positive definite. The properties of 

the matrix resulting from the FVM implementation will be considered in the next chapter.
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3 Numerical Implementation and Acceleration.

3.1 Form ulation o f  th e  T hesis Problem .

In this work the forward problem of EEG source localization is posed in the following way: 

given the intensity and location of the positive and negative sources of electric current, 

find the potential distribution inside the biological volume conductor, as well as on its 

surface. This problem has to be solved both for the three-shell spherical head model and 

for the head of realistic shape obtained by means of the MRI scans. It is natural to apply 

the Finite Volume Method in this case, since this will allow one to take into account 

the geometry of the realistic head and the conductivity distribution. In this respect it 

is important to study the properties of the matrix of the resulting linear system and to 

determine how the system can be deflated in order to avoid semidefiniteness.

The inverse problem of EEG source localization can be posed as follows: given the 

value of potential for a limited number of surface points, find the location and orientation 

of the dipole source. In order to do this the forward problem has to be solved for all the 

candidate dipole locations. The potential for each particular location has to be computed 

for each of three spatial directions. Therefore it is very important for practical purposes 

to reduce as much as possible the computational time needed for the forward problem 

solution. Below The preconditioning technique will be discussed below.

In fact the three-shell model described above has quite a serious drawback. It assumes 

that the positive and negative sources are infinitely close, which is too idealistic from a 

brain anatomy point of view. Therefore it is important to develop a more realistic three- 

shell model which would allow the comparison of the performance of FVM with theory.
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3.2 R ealization  o f  th e  F in ite  V olum e M ethod  for a  R ealistic  H ead . Dis> 

cretization , D eflation  and P ositive D efin iteness.

Until recently the Finite Volume Method did not have applications in EEG Source Local­

ization, although this method was widely used in Fluid Mechanics [1]. There are quite a 

few technical difficulties one can face while implementing the inverse problem algorithms 

combined with the FVM. While implementing the BEM only the surface of the biological 

volume conductor is triangularized. For the FVM the entire three-dimensional domain of 

the biological volume conductor has to be decomposed. Moreover such a domain decom­

position algorithm has to take into account the differences in conductivities for different 

layers. In order to solve the inverse problem of source localization a regular and dense 

grid is needed. Such a grid has to be adjusted to the real geometry of the human head.

Rosenfeld et al.[5] implemented a forward problem by mapping the sphere onto the 

real volume. The basic idea is the decomposition of the sphere by meridians and parallels 

and then mapping the surfaces of the layers of the realistic head. This approach works 

reasonably well for spherical or ellipsoidal head models, the distribution of potential ob­

tained matched quite well the results for the analytical three-layer head models. However 

there is no indication in the literature that such an approach can work well for a more 

realistic head. First mapping the sphere onto the real head surface is a very complex task 

if we take into consideration the ears, nose, lips, etc. Second such an approach assumes 

the existence of the so-called singularities, i.e. points common to more than 8 neighboring 

finite volume elements. The singularity is shown on Fig. 4. For such a singularity addi­

tional cells must be constructed and additional equations must be written, which makes 

the resulting matrix less sparse and poorly conditioned.

In this work a more simple approach based on the decomposition of the cube is adopted. 

An algorithm which was used for the code generation will now be considered in detail.
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Suppose that the dipole of intensity I  is located somewhere inside the biological volume 

conductor. First the biological volume conductor is enclosed into the cube. Without loss 

of generality we may assume that the length of a side is 2, so the sphere with unit radius 

can be enclosed into such a cube. Divide such a cube into a number of smaller cubes with 

side h. These smaller cubes will form a system of (21 + l)3 finite volume elements, where 

1 is defined as

[•] means the operation of taking the integer part of a number. The coordinates of the 

cubes’ centers can be written as a product of the cube’s size h and the indexes i ,j ,  k for 

each spatial direction

x  =  ih, y = jh , z =  kh, (3.2.2)

i , j ,k  =  -1 ,-1  -H i , . . . ,  - 1 , 0 , 1 , 1 , 1 .

The finite volume elements are numbered with index s

s =  (t +1) (21 +  l)2 + (j + 1)(21 +  1) + k + 1 + 1, (3.2.3)

s =  1, (21 -H l)3.

However only the cubes with centers inside the biological volume conductor are of 

interest for the forward problem computation, since for all other cubes the conductiv­

ity is assumed to be zero. Hence one more index is needed for the cubes with nonzero

conductivity, and the indexing is done in the following way:
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n =  0

for i starting from —I up to I with step 1 

for j  starting from —I up to I with step 1 

for k  starting from —I up to I with step 1

if cube with indexes i, j, k 

has nonzero conductivity, then 

n =  n -I- 1; 

otherwise n does not change

end;

end;

end.

The procedures for assigning the values of for each cube will be described later 

on, as they depend on a particular experiment. There are five important parameters in 

these codes:

s - parameter indexing all the cubes;

n - parameter indexing only the cubes with nonzero conductivity;

i, j , k  - parameters defining the spatial coordinates of the center of the cube.

The computational scheme (2.3.3)

(ffTO • S<)1+iJi4 -  (t V *  • S V j j .*

+  (aV® • — (<tV ¥  •

+ (<rV*.SC)yjt+ i-(<rV*-S<),.J>. i  = /„

is discretized in the following way. Change £ —> x, r/ —> y, £ —■► z,

=  «* = ^  

s ' = s v * = s ;J± iJ, = s ‘ = hfi-
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Here i , j ,k  are unit vectors in three spatial directions. One shouldn't confuse them with 

the scalar indexes

Therefore the expression for the current flow through the face (i +  ? ,j,k )  is

(<rV* • Sx)i+ y ,k =  ~  (3.2.4)

and it was already discussed in the previous chapter that

i+ l j ,k & i j ,k
O  • I-   i - -  - -I  n r ,  .

- J ’ & i+ lj ,k  "t" & ij,k

It is straightforward now to write the expressions for the fluxes through the other faces of 

the cube. Finally

2 a i+ U ,k ( 7 i j ,k  ... \  2(7iJ ,k < T i- lJ ,k  /  - ... \

<Xi+ lJ < k  +  O-ij,k  V l+ U j 'k  l J ’k )  <Ti d ,A: +  0-i-lj.it V tJ' ' J ’ /

{ * « + u  -  { •<** -  * « - w )  <3-2-5)^iJ+Uk + <Tij,k V J <Tij,k + \  J

+ J ig^ <y tt ( « w  -  * « * )  -  T 'i T J V  (*<•** -  * ^ - 0  = ^+  0»j,fc \  J a ‘J,k I-  V /

Singularities and additional equations are no longer needed. Now the computational 

scheme needs to be transferred into the matrix equation

Au =  b.

The dimension of the matrix A  is N x N ,  where N  is the maximum value of the parameter n. 

For each value of n there is only one combination of indexes i ,j ,  k. Such a transformation 

can be represented as a function of i, j, k.

n = f{ i,j ,k ) .
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. Denote rax — n& as the indexes of the adjacent cubes,

ni =  f ( i  + 1, j ,  A:), n2 =  / ( i  -  1 ,j, fc), 

n3 = f(i, j  +  1, k ), n4 =  /( i ,  j  - l , k ) ,

«5 =  k  +  1), n6 =  k -  1).

If the sign of the left and right-hand-side is changed to the opposite the equation (3.2.5) 

has the form

<Tn, +<Tn

+ £ ? & < * »  - * • » )  +  £ & < * «  -  *«>  - - X -

For each value of ra the elements of the n-th row of the matrix A  are
6

(3.2.6)

Ann = 2*n ( V  *"« )  , Ann, =  ~
ant + <̂n J On + O;

(3.2.7)

Since the normal component of the current flux does not change at the interface of the 

biological volume conductor,

O  in
d *
dn — Omit

d*_
dn

ou t

The conductivity of the surrounding air is zero, therefore the current flux at the interface 

is zero. For the computational scheme it means that if the center of the adjacent cube 

with indexes i -f- 1, j, k is located outside the biological volume conductor, then

O i + l J ,k  —  0,

therefore the correspondent terms in (3.2.6) and (3.2.7) become zeros as well.

The matrix A  is symmetric since for two cubes with n-indexes p and t,

2(Tp CTtApt — Atp — Op-bat
(3.2.8)

Now we will study the question of positive definiteness of the matrix A .
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Definition 1. A positive definite matrix A  £ Mn is a nonsingular Hermitian matrix such 

that (Ax, x) > 0 for all nonzero x  € C71.

Here Mn is a set of all n-by-n complex matrixes, C” is a complex vector space of the 

complex n-vectors [25]. If for some nonzero x* 6 C™, (Ax*,x*) =  0, then the nonsingular 

Hermitian matrix A  is called positive semidefinite. In our case matrix A  is Hermitian, 

since it is symmetric and it has only real entries. It is easy to see that for IV-dimensional

vector u = [c, ...,c ]r , where c is a constant, (Au, u) =  0, hence matrix A  is positive

semidefinite. In such a case vector v  =  [c,..., c ]T £ ker(A),and rank(A) < N  — 1.

Lemma 5. rank (A) =  N  -  1.

Proof.

Assume that the opposite is true, i.e. there is another vector w =  ['Pi, 'Po, 'P.v ]r  € 

ker(A) such that for some indices i and j ,  'Pi ^  'Py. This means that for at least one of 

the finite volume elements with index n at least one of its adjacent elements indexed as 

n £ has a different potential. Without loss of generality we assume that P„- > P re. Define 

new indexes n°and n 1 as n° =  n ,n l =  n£. Since

(̂ w)nV = £  2(Tniy  (9ai -  9ni) + Wni -  ̂ no) = o, (3.2.9)
^  o-ni -r crnI 1 a n i +  ano

t = 1

nt 7̂  n°

then there is at least one index n£l* such that >  $ ni. Denote n2 =  nf*. In such a 

way it is possible to construct a sequence n0,/!1, n2, ... of indexes such that P ao < <

'Pn2 <  ... Since the set of the finite volume elements is finite, this sequence must end 

with an index m. For such a finite volume element there are adjacent elements with lower 

potential, however there are no elements with higher potential.
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For this index

/A \ 2<Jn*71 O’y>TTl— 1(Aw)nm =  ----- —fC/nnr -f- Unm—l 
6 O

■ ‘ (^ram -  ®»™)' (3‘2-10)<7nm + <Tnm
f =  1 

n™ 7<̂ nm_1

The first term is greater than zero, the second is greater or equal to zero. Hence 

(Aw)n > 0 and there is a contradiction, w ^  ker(A). There is no vector w linearly 

independent from v  such that w  € ker(A). Therefore dim(ker(A)) =  1, rank(A) =  N  — 1.

This property of matrix A has a clear physical sense. In the absence of the sources 

or sinks of the current the potential is the same everywhere within the biological volume 

conductor.

Consider

(An, u) =  ^  £ ( * „  -  * n (3.2.11) 
J S lS l  <Tn+<Tnt

It is easy to see that for each term with indexes n , nt there is a term

(*„, -  *»)*„. 2~ n̂  - &n > 0nc

The sum of the two results in

~Cn° nt { (*„  -  'I'ne)*n +  (*ne -  *n)*nt } =  (*n ~  * n j 2-On +  (Tnt 1 * &n-r <Tnt

Finally the expression (3.2.11) can be written out as a sum with respect to all the sides

of the finite volume elements,
N  6 0

(Au, u) =  £  £  - ° n° nJ  (ttra -  *nt)2H (nt -  n), (3.2.12)

where H  is a Heaviside function,

- n )  =  J lf  ̂ 0,

n t > n,
f f (n t ;

nt < n.
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It is also possible to prove that any row of the matrix A is a sum of all the other rows, 

taken with the opposite sign. Indeed for the n-th row of A,

Ann = 2(Tnf n = ~ J 2  Antn = -  ] T  A mn. (3.2.13)
t=i <Tn' +<Tn t=i

m = 1 

m ^  n

a _  2<Tne£Tn f  t  V-'  SCnjO-,»̂nn. — — { A « -  £rme _ . . x ,nt >  ̂ &nt “T <Tnt
5 =  1

ns ^  nj
6 at

O-n. ^  <Tnt +  Vn. * m=l
a =  1

ns ^  nt

For all other entries with k ^  n ,k  ^  nt, Am* =  0.

Apparently the linear system will have multiple solutions. However if a certain value 

of the potential is ascribed to one of the finite volumes, then the linear system will have 

a unique solution. Such a practice is called deflation of the matrix A. Without the loss 

of generality the biopotential in the center of the finite volume element with n-index 1 

can be ascribed the value a, then all the other potentials will be measured with respect to 

that potential. It is well known that not just the value of the potential but the potential 

difference makes physical sense. In practice one measures the potential difference with 

respect to the so-called reference electrode. Therefore we can assume that 'ki =  a. Instead 

of Au =  b, there is a system

AdUrf =  b j, (3.2.15)
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A-n A 2N

where A4  = (3.2.16)

A n2 An n

Ud =

4*2 62 A21

• , bd = • — a ■

<t»N bN A m

(3.2.17)

The deflated matrix Aa is positive definite. Assume that are the indexes that

correspond to n  =  1 ,

s i  =  f ( i  +  so =  f ( i , j  +  l , k) ,  , s 3 =  f ( i , j , k  4 - 1).

For any nonzero u^.

{Adiid, Ud) =  ^ 2  2<Jl° St V u 2 +
£ l a i+ a «
N 6
E En=2

t  =  1

20nt<7n
&nt +■ &n

W n - 9 n t )2H { n t - n ) >  0. (3.2.18)

nt £  1

This siim is greater than zero unless $2  =  ^ 3  =  — =  ^iv =  0.

It is further assumed that the human head has three major domains with the same 

anisotropic conductivity - the inside brain, skull and scalp. The brain tissue and scalp 

have the same conductivity of value 0.0029 (flm)-1 . It is quite realistic to assume that 

the conductivity of the skull is much lower. For the numerical experiments it is considered 

to be 3.6 * 10-o (fim)-1 . If the center of the finite volume element is within the domain of
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the brain, the conductivity of the brain is attributed to the entire element, similarly for 

the skull and the scalp. It is assumed that the brain, skull and scalp have clearly outlined 

shapes, so it is possible to determine the conductivity for each particular center.
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3.3 P recondition ing o f  th e  C onjugate G radient M eth od .

3.3.1 The Idea o f Preconditioning.

In order to reduce the computational time for the CGM, one applies preconditioning 

strategies. The basic idea of preconditioning ([30J. [39], [40]) can be described in the 

following way. Instead of the system A^xa = bj, consider the linear system C^AdCRX = 

C^ba- Such a system can be written out as

A x  = b, (3.3.1)

where A  =  ClA^Cr,  b =  C^bd-

The matrixes C l, and Cr are called left and right preconditioners. The choice of 

these matrices depends on the particular preconditioning strategy. The matrix CL,AdCR 

is supposed to have better spectral properties than the original Ad, the details will be 

given below. Such an approach does not require matrix inversion, it does not reduce the 

sparsity of the matrix of the system.

Consider the classical CGM, described in the previous chapter

xo — initial approximation: ?o =  b — .Axb, po =  ?o> Po =  1-

for k =  lrmaxit

Pi = (rfc-itffc-i),

h -  pl Ofc-i — —
Po

Pfc =  ffc_i +  6fc-iPfc-i 

_  (ffc—i, ffc_x)

0fc (Pfc.^Pfc)
Xfc =  X k - i  +  afcPfc 

fit =  ffc_i — afcApfc 

Po = Pi 
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end

The successive approximation vectors Xfc and direction vectors p* of the CGM for the 

system AjXj = b j  are related to the corresponding vectors Xfc and pfc of the preconditioned 

linear system (3.3.1) in the following way

XdJt = CRxk, p/t =  CRx.k. (3.3.2)

For the new residual vectors fit,

r fc =  b — ixfc = Cjrb -  CLAdCRxk =  CL(b -  AdXdk) =  CLrk. (3.3.3)

Now one can derive all the intermediate parameters and vectors for the preconditioned 

CGM,

, _  (rfc-i,ffc-i) _  (CLtk- i ,C c rk~ i) . .
fc 1 (rk-2 ,rk-o) (Cxrfc_o,Cxrjfc_2)

Pfc = ffc-i + 6fc_iPfc_i,

GfiPfc =  CR rjt_i +  bk- iC R Pfc-i,

Pfc = CRClTIc- i -r fefc-lPfc-l-

If C  =  CftCjr, then

Pfc =  Crk- i  + 6fc_ iPfc-i. (3.3.5)

Since

(pfc, Apk) =  (C^lpk, CLA(iCRCft1pk)

= {C'^-pk,C LA<lPk) = (Pk,CAdpk),

(*fc-l,rfc-l) (CLTk-l,CLTk-l) /0
~  (pc ,A pk) (pt ,C A dp k) ■ (3M)

Xfc =  Xfc_! -F OfcPfc (3.3.7)
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ffc =  — akApk,

CLrk =  CiJk-i — QkCc AdCRCft1 pfc.

Therefore

r/k =  rk- i  -  akAdpk. (3.3.8)

Hence for the preconditioned CGM there is a following set of equations, 

xo — initial approximation:

ro =  CL(bd -  >ldXo),

Po =  ro, Po =  1, 

for k =  l:maxit

Pi  =  ( C c r k- i , C c r k- i )

h - p l  Ofc-l — —
Po

Pit =  C r k- i  +  6fc_iPfc_i 

(CLFk-i,C[,rk- i )
(Pfc, CAdpk)

Xfc =  Xfc_i +  afcpfc

r/t =  rfc_! — akAdpk 

PO =  Pl

ak =

end

3.3.2 Polynomial Preconditioning.

For the problem under consideration the polynomial preconditioning ([30], [39]) was ap­

plied. Consider the basic ideas underlying this approach. The left preconditioner Cl is
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chosen to be a matrix polynomial,

Cx(-<4d) = aol +  o.\Ad +  a2-^d +  °3 Ad +  —> (3.3.9)

such that the product Cl {A)A will be close to 1 in Zoo norm on some set S  C <r(Ad), 

where <r(Ad) is the spectrum of matrix Ad- Since Ad is symmetric and nonsingular, it can 

be assumed that 5  is a subset of the real line that excludes the origin. Next let 5  be a 

compact set, and for /  a continuous function on 5, define

||/ | |s  =  max|/(A)|. (3.3.10)

This norm is also called the uniform norm: note its dependence on the set S. We shall seek 

the polynomial which minimizes ||1 — C£,(A)A||5, i.e. the best polynomial approximation 

to 1 from among all polynomials of degree m  or less having a root at zero. If pm = C l ( \ ) \  

is such a polynomial, the problem may be recast as a constrained minimax approximation 

problem

min | | l - p | | s , (3.3.11)
p€irm , p(0)=0

where 7rm =  {p : p is a real polynomial of degree m or less}. Therefore it is desirable to 

choose such pm that the eigenvalues of the preconditioned matrix Pm(Ad) are as tightly 

clustered around 1 as possible. In this way the convergence of the Conjugate Gradient 

Method can be accelerated. Since Pm(-^d) is a preconditioned matrix, pm(A) is called the 

preconditioning polynomial. In order to find a*, we need Chebyshev polynomials of the 

first kind [42], orthogonal on the interval [-1,1] with weight function

hi = —,===?, x € ( - l , l ) ,  
v l  — xz

which provide the solution for the minimax problem [47].

The explicit form for m-th Chebyshev polynomial is Tm =  cos(m arccos x ). In practice 

Chebyshev polynomials are generated by the recurrent formulas

T0(x) =  1, Ti(x) =  x,
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r n+1(z) =  2xTn(x) -  Tn-i(x). (3.3.12)

The leading coefficient of Tn(x),for n > 1, is 2n_1. Therefore the Chebyshev polynomials

with leading coefficient 1 are defined by the formula

Tm(x) = -T m(x) = cos(m arccosx), m > 1. (3.3.13)

The polynomials Tm(x) deviate as little as possible from zero on the interval [-1,1], in

the sense that for any other polynomial Fm(x) of degree m with leading coefficient 1 the 

following is true,

max |-Fm(x)| > max |f m(x)| =  - ^ j - .  (3.3.14)
x € (- l,l)  x€(—1,1) .4 1

Proof of this fact can be found in [47] or [48]. Suppose that [c, d\ =  a{Ad) for a known

positive c and d. Introduce the following coordinate transform.

2x — (c +  d)x = ---- --------- 1, (3.3.15)a — c

then x €  [—1,1]. The Chebyshev polynomial Tm (̂ K - c dl ĵ wil1 minimize H/H5 =

II1 — Plls • order to satisfy the condition / ( 0 ) =  1 one should divide by

Tm taken at A =  0, i.e.

(
c + d —2X \

{ & )
r p  / c - rd —2A \

= 1 -  Tm( § i )  • <3-3'17)

Now the explicit form of Cc(Ad) can be obtained. Since p(Ad) =  Ci{Ad)Ad = AdCtiAd),

where a = b =  —.
d — c d — c

47
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The minimax preconditioning polynomial is attractive for application to large sparse sys­

tems for several reasons. First the minimax preconditioning polynomial pm(A) equioscil- 

lates about 1 over the set S, therefore the preconditioning polynomial C l(A) is unbiased 

in its suppression of the error: no portion of the set S  is preferred over another. Second 

if cr(Ad) C S, then a(pm{Ad)) C [1 -  em, 1 -f- Cm], where em =  ||1 - p m||s . The original 

matrix may even be indefinite, but the minimax preconditioned matrix is positive definite, 

since em < 1.

Define the spectral condition number k(A<i) = ||.<4J1 ||2 ||<Ad| |2 =  The spectral 

condition number of Pm(Ad), k(pm(Ad)), satisfies

k(pm(Ad)) < (3.3.19)

when cr{A<i) C S. This bound yields an estimate of the number of steps the Conjugate 

Gradient Method requires for convergence. One needs approximately

Ml)
ln{CF)

steps to reduce the errors by an amount 8 [31], where

(3.3.20)

CF = CF(j>m(Afi)) =  ^ ^ — 22— L (3.3.21)
y/k(pm(Ad)) +  1

is the convergence factor for the Hermitian positive definite matrix Pm.(Ad)- The esti­

mate (3.3.21) is fairly accurate if the eigenvalues of pm(-f4d) are uniformly distributed 

throughout [1 — em, l  +  em]. Since 1 is not known a different formula for the polynomial 

preconditioner is needed, which would be suitable for practice. Now consider

Tm(al) — Tm(al  — bA).

Here a well known formula can be used,

n—1
x n - t , n = { x -  y)(xn_1 +  xn~2y  +  . . .  +  xyn~2 + yn~l ) =  (x -  y) £  s '1" 1” V (3.3.22)

fc=0
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Hence taking a l  instead of x  and a l  — bA instead of y,

n — 1

(al)n -  (al -  bA)n = b A ^  an- l~k(al -  bA)k. (3.3.23)
fc=0

Now consider

Tm(x) =  to + h *  + 12%2 + — ■+■ tmx m, (3.3.24)

the m-th order Chebyshev polynomial.

m m n —l

Tm(al) -  Tm(al -  bA) =  J 3  ((a / )n “  (a /  ~  bA)”)  = bA  5 3  5 1  “  bAf
n = l  n = l  k= 0
m n—l fc

= bA ̂ 2  tn 5 3  “n_1" fc 5 3  (3.3.25)
n =  1 Jt=0 j = 0

A:!where C, =  —-----  ; are binomial coefficients.(fc — s)!s!

Finally the expression for the m-th order polynomial preconditioner is

, m  n —l

C Lm(A) =  5 3  H  a B- l " fc( a /  -  6 A ) fc
n = l  fc=0

—___________ 2___________ f f T ( c± d) n~l~k T (  + v
( d - c ) c o s ( m a r c c o s ( ^ ) ) f e n 6 S ^ - ^  ^  W -  c)fc *

m—l
=  5 3  Qn^n- (3.3.26)

n=0

By formulas (3.3.12), the coefficients tn should be defined as follows: consider the array 

of coefficients

/°  =  l , / ? = 0  =  / 2° = ... =  / °  = 0 .

These coefficients correspond to Tq(x ) =  1. The coefficients which correspond to Ti(x) =  x  

will be

/o1 =  0 , f t  = 1, f t  = / 31 =  ... = ftn = 0 .

5
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Then the coefficients f™ which correspond to Tm(x) can be obtained in the following

way

for k =  2 : m 

for i =  0 :m

- n Ar—1

end;

end.

Finally,

One more advantage of the Polynomial Preconditioning approach stems from the fact 

that there is no need to generate and store the preconditioning matrix. Moreover there 

is no need to store the matrices A2, .43, ..., Am as well. The CGM computations were 

implemented in the following way,

xo — initial approximation;

ro =  CL{bd -  Aaxo),

Po =  ro, Po =  1,

for k = lrmaxit

Tfc-l =  CcmTk-l,

Pi  =  ( ffc _ i,r fc _ i) ,

h -  pl b k - 1 —  ,
Po

P k  =  ffc_i +  6fc_xpfc_i, 

PA =  CLm Pfc, 
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_ (ffc-i.rfc-t) 
“fc (pk,Adp k) '

Xfc = xfc_i 4- afcPfc,

*■*: =  Tfc_i — akAiPk,

Po =  Pl­

ead

The products of C im times vectors rfc_i and pk are computed only once per iteration 

in the sequential way. For example for rjt_i the multiplication procedure is implemented 

as follows,

f = rfe_i, 

q  = a 0f ,

for k =  lrmaxit

f  =  -4f, 

q =  q +  Qfcf,

end

rfc_i = C£,mrfc_i = q.

The procedure is same for pfc. Such an approach is economical in terms of memory.

3.3.3 Finding the Spectral Bounds.

The approach described in [40] was used for finding the spectral bounds of Ad. The 

Orthodir (Ad, Ad) version of CGM is

xo — initial approximation;

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



po =  ro, e; =  X -  x,-,

(3.3.27)
(AdPt,Pi) (A iP t.P i)

x .+ i =  x,- -F ai Pi, (3.3.28)

r,+ i =  r i -  a i A d P i ,  (3.3.29)

71 =  (3.3.30)(AdPi, Pi)
= ( A ^ P , - . )  (3 .3 .3 !)

(-^ P i-i.P i-l)

Pt+i =  4dP» -  7iPi ~  o’.P i- i-  (3.3.32)

The parameters computed by the first k steps of Orthodir (Ad, Ad) can give the estimates 

of c and d. Let Pfc be the matrix with columns po,..., Pfc-i- 

Then

Pk A i Pk =  Dk =  diag(<Jjfc_i), Sk-i = (AdPk-i,Pk-i)- (3.3.33)

The three-term recursion (3.3.32) gives

Pfc AdAdPt =  DkTk, (3.3.34)

where Tk =  tridiag(l,7fc_1,crfc) is a tridiagonal matrix.

Define the field of values of symmetric positive definite matrix Q with respect to A 

inner product as

^ < e> = {A;A = l O T }  ( 3 ' 3 ' 3 S )

for some x  6  C” . If A is an eigenvalue of Tk with eigenvector x, TfcX = Ax, then

(DfcTfcX, x) (AdgPfcX, Pfcx)
(Dfcx,x) (AdPfcX,Pfcx) e

Hence if [ ci, di] =  cr(Tfc), then [ ci, di] C [ c, d], and ci and di can be used as the 

estimates of c and d.
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Consider

f fc =  D lT kD p  =  t r i d i a g ^ ( ^ i ) 2 ,7fc- i , a fc( ^ - ) 2y  (3.3.36)

The matrices T* and T k  are similar, hence they have the same eigenvalues. Since

_  (AdPk, AlPk-i) _  (AdPk, Pfc ■+ 7fc-iPfc-i +  o'fc-iPfc-2) _  (AdPk,Pk) _  &k 
(A<Pfc-i.Pfc-i) (AdPk—i ? Pfc— 1) (AdPk-i,Pk-i) Sk-i'

< ¥ Y = ( M ’\  Ok * \ 0 k - \ /

then T k  is a symmetric matrix,

Tk = tridiagfy^jfcZY^fc-i, (3.3.37)

A similar procedure can in principle be derived for the classical version of the Conjugate 

Gradient Method. One just has to rewrite the expressions for p* in a similar way.

3.3.4 Jacoby Preconditioning.

The Polynomial Preconditioning is combined with Jacoby Preconditioning for further com­

putational time reduction [39]. This procedure allows one to reduce the difference in the 

absolute values of the entries from different rows for the symmetric positive definite ma­

trix. For the matrix under consideration there is a difference between the rows which

correspond to the inside brain cubes and the ones which represent the cubes from the

skull. Instead of the system,

AdUd =  bd,

one should consider the system

BAdBud =  B bd, (3.3.38)

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where ud =  Bud, B is a. diagonal matrix

1
V ^ l l 0 0 0 . . . 0

0 1
^ 2 2 0 0 0

B  = 0 0
I

\ / “ 33
0 — 0

0 0 0 0 — 1
\A,V.V

where 011, 022, — ,oaw  are the diagonal elements of Ad- The matrix BAdB  is symmetric 

positive definite, its diagonal elements are all equal to 1. The computation of B  can be 

vectorized in practice with the Matlab procedure diag.m. This method does not require 

extra storage or extra CGM operations. It is supposed to improve the conditioning of 

the matrix Ad- By Gersgorin theorem [18], all the eigenvalues of the symmetric positive 

definite matrix are located within the union of n intervals,

l O i *  - ° « i  < ^ ( 4 * ) } = g ( ^ ) ’

where

.v

=  X I I®#!’ l < i < N -
j = 1 j ^ i

The eigenvalues of the matrix BAdB lie within the interval (1,2). The spectral condi­

tion number 's normally less then • Usually the Jacoby Preconditioning

is combined with other preconditioning strategies.

The realization of the Finite Volume Method is simple enough and can be easily repro­

duced for an arbitrary grid resolution. The deflated matrix of the forward EEG problem 

is proved to be positive definite, so the Conjugate Gradient Method can be applied. The 

computational time can be reduced with the use of preconditioning strategies. The Poly­

nomial Preconditioning is chosen and implemented due to its efficiency. The numerical 

results are given in Chapter 6 . An implementation similar to the one here is given in [42].
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It is called the finite difference modeling. It leads to a similar matrix but the positive 

semidefiniteness was not taken into account in [42] and the computational procedures are 

inferior to the one applied here in terms of speed. The ideas underlying the Finite Volume 

modeling will allow to extend the implementation in the case of a nonuniform grid. In 

such a case the deflated matrix will also be positive definite as this property is due to the 

underlying physics of the problem.
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4 Non-iterative Inversion of the System Matrix.

The linear system which corresponds to the forward EEG problem for a single dipole was 

already described in detail in Chapter 2. The right-hand side of this linear system has 

only two nonzero entries, corresponding to the positive and negative current sources.

(4.1)

Here 6, = bj — I  is the intensity of the source. The indices i and j  are defined as follows. 

Assume that and (12 , j 2 , fa) are indices corresponding to positive and negative

current sources (see Chapter 3 for details). Then h is a parameter defining grid resolution, 

/  is a function which defines the correspondence between the indexes numbering the system 

of all the cubes and the system containing only the cubes with nonzero conductivity.

-  0 -  Gi) (=[x]- o ’ - (* + [sD(*[a -* 0

(4.2)

=  ( i2 +  [i]) (2[i] + l )  + ( j2 + [i]) (2[i] + 1)  +  «4 +  [i] + 1,

* =  /(*  l)> 3 =  f ( s 2-
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For the forward problem with a different right-hand side

0

b, = (4.3)

we can write

bji

bi — nii.nw .b , (4.4)

where the matrices 11,-̂  and 11^ are permutation matrices of the form (4.8) with the 

properties

n £ i l  — n £ l £ ,  n f i i  — n £ £ l . (4.5)

If x  is the solution of Ax =  b. the solution of

Ay =  bx =  n ^ n ^ b (4.6)

is related to x  by the formula

y  =  A PAx, where P = n ,n II (4.7)
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I h

n l « l  —

n

o o 

0 1

1 0 

0 0

(4.8)

and IIjjj can be written in the similar way. 

Moreover

y  =  A~lI A x  +  A~l{P -  I )A x  =  x  +  A~l (P - 1)Ax. (4.9)

The matrix P — I  has only 4 nonzero elements. As a result the matrix (P — I) A  has only 

four nonzero rows. Therefore a much faster algorithm for the forward problem solution 

can be developed provided that the structure of the inverse of A is known. In fact for this

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



problem only the columns of A 1 with indexes i, need to be known.

0

- 1  •  1

p - r  =

1 ■ - 1

- 1  •  1

1 •  - 1

Each row of A  has at most 13 nonzero elements and the matrix

{ P - I ) A  =

0 0

Oiii — an a i ^ —Oio

0 0

Oil- Oqi O i2  aij2

0 0

aiii ~  ai i  aii2 — a j 2

0 0

aji — ajx i aj2 — a3\  2

0 0

0

atliV — Oijv 

0

OiN — OtiiV 

0

OjxN ~  Ojtf 

0

ajM — ajuy 

0

(4.10)

(4.11)

has only four nonzero rows.

1) One-dimensional Case.

Let us first consider the one-dimensional case, i.e. one-dimensional chain of N  cubic 

finite volume elements of unit conductivity connected sequentially.
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Figure 4: One-dimensional Case.

For such a system the deflated matrix A  has the form

A =

Recall that

2 - 1 0

- 1 2 - 1 0

0 - 1 2 - 1

- 1

0 - 1

- 1

1

(4.12)

A~l = det A  
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where adjA is the adjoint of A, obtained in the usual way by first taking A({i} , {j} ) to 

be the submatrix of A  without the i-th row and j-th  column, then constructing the matrix 

of cofactors of A,

(—1)*+J det { j} ),

and finally transposing the latter. For the sake of simplicity we use notations B  and bij 

to denote (adjA)£j- and its elements

= (adj A)tj = ( - l ) i+ idetA({*}\ {/}'). 

Denote by A* the principal minors of A, i.e.

(4.14)

Afc =

2 - 1 0

- 1 2 - 1 0 ...

0 - 1 2 - 1 ...

- 1 2 - 1

0 - 1 2

(4.15)

1 < k < N  =  dimA.

Define Ao =  1. and Ai =  det[2] = 2. Expansion of Ak =  llotjlli with respect to the k-th 

row yields:

Afc =

They can be easily computed:

{ 2Afc_i 

Afc_ i ■

- l  -  Afc_2 for k > 2, 

_i — Afc_2 for k = N.
(4.16)

A 2 =  2Ar -  A0 =  2  • 2  -  1 =  3, 

A3 =  2 A 2 -  A i =  2  - 3 -  2  =  4, 

A4 =  2A3 — A 2 = 2 - 4  — 3 =  5, 
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Ajv_x =  N,

A k =  < (4.17)

that is,
r

Jb +  1, k = 1,2, N  -  1 

det.4. =  Aiv-i — A/v—2 =  1, k =  iV.

A is symmetric, and so is adj -4. The cofactors bmn of A, satisfy 6mn = 6nm. If m =  n. 

then by (4.14)

6 n n  =  ( - 1 )
2n

2 - 1 0

- 1 2 - 1 0

0 - 1 2 - 1 0

0 - 1 2 r

= det

2 - 1 0

- 1  2 - 1 0

- 1 2 - 1

0 1

n —I o

Fs-m

where

llo y lir1 =

2 - 1 0  

-1 2 - 1  0

0 - 1 2
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F v—m —

1

10 - 1 0

- 1 2 - 1 0 •

0 - 1 2 - 1  •

•  - 1 2  - 1

1 
" 

"
0 - 1  1

Fv-m  is a matrix of the same structure as A, except that rather than being N by N. it is 

(N-m) by (N-m). Since det Fv-m =  det A;v = 1, we have

bnn — det HOtjIlj — ^ n —1 — n-

Let us now consider nondiagonal elements bmn. More precisely

... 0

(4.18)

&2i =  bu =  (—1)1+2 det

-1 0 

-1

0 Fv —2 = (~ 1)1+2 • (—1) det F v _2 =  1,

631 =*>13 =  (—l)1+3det

- 1 0 •

2 01

0 - 1  •

0 0

0 0

F v —3

= (- l)1+3(-l)3- 1detFiv-3 = l,

bni =  6ln = d e t ( - l ) 1+fc( - l ) fc- 1detF v-„  =  l ,n  > 1. (4.19)
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*>23 =  *>32 =  (~ 1 )2+3

*>24 = *>42 = (-1)2"*"1 det

*>n2 =  *>2n

*>43 =  *>34 =  (—l)3+4det

2 0

-1 - 1

det
0 - 1

• 0

• •

0 0

2 0 •

- 1 -1 0

0 2 - 1

0 0 - 1

• • •

=  2 • (-1)
2+n̂

2 -1 0

- 1 2 0

0 -1 - 1

0 0 - 1

. 0

. . .  0 

0 ••• 0

Fn - z

... o

 0

0 ••• 0

Fn - 4

l )n_2det Fn .

. . .  o 

. . .  0 

0 ••• 0

F iV—4

=  2 • ( — 1)2+3 • (

= 2 • (—1)2+4(

= 2, n > 3.

=  (—l)3+4det

—1) det F [V—3 =  2,

l ) 2 det FjV- 3  =  2.

(4.20)

2 - 1
• (—1) det F y - 4  =  3.

- 1  2
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653=635  =  (—1)3+5 det

2 - 1

-1 2

0 - 1

• 0

0

0

- 1  0

0 - 1

0

0

0

0

F n -5

=  det
2 - 1

-1 2
(—1 ) 'det Fat-5  =  3.

6n3 =  63/1 =  det
2 - 1

- 1  2
det ( - l ) 3+n( - l )n“ 3 det Fjv-n =  3, n > 4. (4.21)

There emerges a pattern,

6nJt — 6j-ji — det

an ai fc-i

“ i t - i  1 • • •  & k-i k - 1

det Fiv-„

=  Afc_i det Fv-n  = A:. (4.22)

which can be easily proved using mathematical induction. The inverse of A  thus has the 

form:

A~l =

1 1 1 1 1 1

2 2 2 2 2 2

2 3 3 3 3 3

2 3 ... ... ...

2 3 ... k -  1 fc — 1 Ar — 1

2 3 ... fc- 1 k fc

2 3 ... f c - l k A: -i- 1

(4.23)

In such a case A  l (P  — I )A  can be trivially computed.
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2) Two-dimensional Case.

Now consider a less trivial case of the conducting square plate broken up into N  x N  

cubic finite volume elements of unit conductivity. In this case the matrix A is  N  x N  and 

has the following block structure.

Ai - I  

- I  A2 - I  

0 - I  a 2 - I
A = (4.24)

- I  Ao - I

- I  A v

where I  is the N  by N  identity matrix, A\ and A2 are tri-diagonal N  by N  matrices of 

the form,

A x =

1

1<M 
1____

1
Co 1

1

-1  3 -1 r«H11

- 1  3 -1
, a 2 =

11

1n1 - 1  4 -1

1
ClH1 -1  3

<4.25)

A  can be viewed as an N  by N  matrix with entries from the (Ai, A l ^-generated ring 

since A2 = A i+ 1 .  Thus block entries of A  are from the minimal ring generated by Ai.
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Figure 5: Two-dimensional Case.

Before we compute A  . let us first invert an N  x N  matrix with scalar entries

M  =

°i - 1  

— 1 02 —1 

- 1  02 - 1

, a2 =  Oi -I- 1,

- 1  02 - 1  

- 1  fli

67
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To do this we introduce notations.

Mi a x

11

s Ol —1

CP II

Ol

- 1

- 1  0 

02 —1 J '•* ?
J — 1 02

0 1
_1

 
►-

 

B r—
1

Mfc =

ai —1

- 1  o2 -1

— 1 02 — 1

— 1 02

, ... , M/v =  M,

and A t =  <
1, fc =  0 

det A/fc, 1 < k < N.

Each three consecutive Afc are related by

Afc =  OfcAfc-i -  Afc_2, where afc =  <
02 , k = 2,.... A’ — 1, 

a i, k = N.

Define

Afc_i

Afc

Then for k < N  (4.30) takes the form:

0 1 

— 1 02 

where

, l < k < N .

& -i =  TSk, T  = = UVU - i

U =
1 1

, 2> =
Ai 0

Ai A2 0 a2
u - '  =

A2 — Ai
A2 -1  

-A i 1

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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and

02 Va.2* — 4 02 \/<i2" — 4Ax =  — H  ----- , A2 = -—----------5----- , ei

are the eigenvalues and eigenvectors of T. 

(4.30) can be explicitely solved,

C .  .  _  T h e .  _  T T ' T l k r T — l e

1 1
and e2 = (4.33)

Ax A2

,3,..., N  -  2 (4.34)

and

Aat- i 0 1 0 1
= &v = &V-1  =

A at —1 a\ — 1 Ox
u v N- 2u - % . (4.35)

The matrix on the right-hand side is

F =
0 1

u v N~2u ~ l =  ,  1  4

/u(Ax, A2,ox) / l 2(Ax, A2,Ox)

— 1 Ox A2 — Ax / 2l(Ax, A2,Ox) / 22(Ax, A2,Ox)
(,4.36)

where

h i  = -  A5' lAi, / i 2 =  AJ- 1 -  A?-1,

/ai =  A”- 2A2(oiAi -  1) -  A2- 2Al(oiA2 -  1), f a  = AJ"2^  -  1) -  A pV iA x -  !)•

Therefore

Aiv = /21 4- / 22Q1 _  1
A2 — Ai A2 — Ai {A^ 2A2(oiAi — 1) — A^ 2Ax(oiA2 — 1)}

Ol
{ \ ^ - 2(ai\2  -  1) -  A f - 2(o 1A1 -  1)}

A2 — At 
1

jV-2 t

A2 — Ax { A f " 2(A2 -  ax)(oiA i -  1) -  A £ - 2(Ai -  ax)(oiA2 -  ! ) }•jV—2/

t2 ao a<i\Jak — 4 , ,a2 \ / a 2 »
Ax =  - t  +   1 = « 2 ( - #  +   ) -  1 = a 2Ax -  1,

2 a% a-iJdk — 4 ,a% J d i  — 4.
A1 =  y  ^ y  1 =  a2(-J ~  “ ---- ) -  1 = 02A2 -  1-
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We can replace the terms (aiAi — 1), (ajA2 — 1), (A2  — a i) and (Ai — ai) in (4.37) with

aiAi — 1 =  (02 — 1) Ai — 1 =  Â  — Ai,

aiA2 — 1 =  (02 ~  1)A2 — 1 = A2 — Ao,

A2 -  a i  =  1 +  A2 -  ao =  1 -  ^  -  — 1 - - ~  =  1 -  Ax,

Ai — a i  =  1 -I- Ai — a 2 =  1 — ^  =  1 -  A2.

This gives us,

1
Ao — Ai

{ A f " 2( l  -  AjXA'f -  AO -  A ^ - ' - ( l  -  A2)(A^ -  A2)}N - 2/

1 - { A f - X A i- l^ - A ^ C A o .- l ) 2}.Ao — Ai 

Note that A1A2 =  1.

Ayv is a polynomial of 02- To determine its form we take

A „  =  J a ^ 1 -  A ?«  -  2 «  -  A?) +  A f- 1 -  A f-11.

and replace Ai, A2 with s and d defined by

Let

=  Ai 4- A2 =  02, d =  Ai — A2 =  y j a \ -  4.

q =  max{m — 1 — k, fc} — min{m — 1 — Ar, k},

Ci =* tl(q — t)V

if m is odd,

m —2 , if m is even.

A f  - A ?  
Ai — A2

m—I
a2 \  v \m—1—k\k

t t t  -  a 1 A2 -
Jfe=0

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

m =

For arbitrary m  > 1, the ratio

E lilf 'C A r- 1-fcA£ +  A ?-1" ^ ) ,  if m is odd,

(4.47)

(4.48)

(4.49)

IlL=o '(Ai* 1 ^A2 +  1 +  A™ 1 fcAi) if m is even. 
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Furthermore using A1A2 =  1

[=§±1
^2  (A™-1" ^  +  X £-l- k\$) =
k= 0

[=5*1
  y *  ^^A 0)m*n{m—1—k,k} ̂ max{m— 1— k,k}—min{m— 1—k,k} ^max{m— 1—k,k}—min{m— 1—

fc= 0

fc=0 fc=0 I )

= E' s  (E +E (-D'ĉ -̂'d'),
fc=0 "  «= 0  £= 0

[=i*l (fl= E  *=T E Cf°2 , ‘ 2'(a* -  4)' = p[ ^ ] ( a2)- (4.51)
f c = 0  “  £ = 0

Here P[ m - 1 j (ao 1 is the polynomial of degree defined by the second last part of the

string of identities above. Hence

A,v =  .P[ .̂](a2) — 2P[* Fii(a2) +  P[Aj=3](a2). 

For I  < k  < N  — I.

(4.52)

Afc_ i 

Afc
=  &  =  T fc_l^! =  U D k~ l U ~ l£\  =  U D k~ l Uifc—lrr— ■ \ k - l T T - i -

1 1 1

1
> 1 »—» 0 a 2 - 1

A2 — Ai

1
Mf~4

<
• 0 A*-12 _A1 1

Ao

A!

1

a i

1 1 1

1OV•

> to 1 > »-» Ai a2 0 aJt1
A2 — ai 

ai — Ai

A2 — Ai

A2 — Ai

1 1 

Ai A2

A ^ a - A o  

A2- l (A2 -  1)

A * -1( 1 - A i ) + A ^ - 1(A2 - 1 )

A f ( l - A i ) + A § ( A 2 - 1 )
(4.53)
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(1 — Ai) -f- A|(A2 -»)
\fc+l   \ k + l  \ k   \ k

=  - \ z £ -  -  T T i  =  P® M  -  P ^ M .

Again let 6ty denote elements of adj M. For the diagonal elements,

(4.54)

0 2  — 1 Ol —1

fen =  det

- 1  o2 - 1

=  det

- 1  o2 - 1

=  A at- i ,

— 1 0 2  —1

— 1 Ol

- 1  o2 - 1

— 1 02

622 = det

a\ 0 

0 a.2 —1

• - 1  ai -1

-1 a2 -1

—1 Ol

=  a 1 det

02 —1 

-1  o2 -1

— 1 02 - 1

- 1  Ol

633 =  det

= aiAiv-2  =  AiAw—2,

— 1 02 —1

— 1 Ol

Ol -1 0 •

-1 02 0 •

0 Q 02 — L 1* 1

0 0 — 1 02 —1 =  det
Ol —1 

— 1 02
Ara- 3  =  ^ 2  An—3
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bu = <

There emerges a pattern

6jv+i-i,jv+i-tA,-_iAjv-i, 2 < i < N  — 1, 

A at- i , i  =  AT.

As far as the nondiagonal 6,-y’s are concerned,

- 1 0 - 

- 1

0 M„_ 2 =  AjV-2,62 1 = 6l2 =  ( - l ) 2+1det

- 1 0 - •

fl2 - 1  0 •

&3i=&i3 =  ( - l ) 3+1det 0 - 1 = det A/„ -3  =  A ti—3 .

• 0 M»_a

bki = 6ife =  ( - l ) fc+l( - l ) ■S1c<1II1e<1I

1 < k  < N.

Ol 0 • •

- 1 - 1 0 r 1

623 =  (—1)2+3 det 0 - 1 (_ 1)2+3 det ax 0

- 1  - 1
• 0 MnN-3

- -

det A/jv_
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(4.56)

.3 =  AiA.v-
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624 =  det

ai 0 

- 1 - 1 0  •

0 ao —1 0 

0 - 1

0 A/jv-4

=  det
ai 0 

- 1  - 1
det M s —4 = Ai Aiv—4

b2k = bk2 = ( - l ) k+2( - l ) k- 2det 

Again a clear pattern

ai 0 

- 1  - 1
A jv-fc =  AiA^v-fc-

bik =  bu  =

emerges and can be proved using mathematical induction. 

In summary:

adjAf —

A iv - i i to M1*<1 I> 1 A r Ao

A jv-2 A jv-2 A i A aT_3Ai r-4
<1•s'1*<1 •• A 1A 1 A i

1*<1 A s -3 & 1 A w _3A 2 A^y—4A 2 A iA o a 2

AjV-4 Ayv-4Ai A^v—4A 2 A^v—4A 3 A 1A 3 A 3

A i A iA i A 1A 2 A 1A 3 -- A i A^v-2 A/V-2

Ao A i A 2 A 3 A at-2 A at_ i

and

M ~l = A^adjAf.

(4.57)

(4.58)

, (4.59)

(4.60)
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Since A1A2 =  A2A1, A  can be thought of as an N  x N  matrix with entries from an 

{Ai, ̂ re g e n e ra te d  ring, which we denote by T . We can construct P-valued determinants

Do, Du Do,.—, Dm

obtained from

A0.A 1.A 2,.... Ajv, 

by replacing 1 with I, a\ with Ai, and ao with A2. Then

/, k = 0

.4i, k = l

AoDk—i — Dk—2 2 < fc < iV — 1

AiD m -i — Dm—2 k = N,

Dk  =  <

and

A '1 =  Djf1

D m -  1 D m - 2  D m - 3  D m -a  

D m - 2 D M -2D 1 D M -2D 1 D m - \D \  

D m - 3  D M -3D 1 D M -3 D 2 D m - \D 2 

D m -a  D m -a D i D m -a D 2 D m -a D s

Dx

Do

DxDx

Di

D\D2

D2

D\D2

Dz

Dx

DxDx

DxD2

D\Dz

Do

Dx

D2

Dz

DxDm-2 Dm- 2 

D m - 2  D m -x

(4.61)

(4.62)

Thus the process of inversion of the N 2 by N 2 matrix A can be replaced with the inversion 

of a much smaller matrix Dm =  Pfm-i jf Ao). If / t- are the eigenvalues of A2 and U is the 

matrix whose columns are the eigenvectors of A,

D ^ = U - d iag lp -L y}  U - \  (4.63)
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For N  =  3,

f i  =  2, /2  =  3, fz  =  5.

For AT =  4,

/ i  =  2, / 2 =  4 / 3 =  4 + ^2, / 4 = 4 - v ^ .

For N  = 5,

7 ±VE n 9 ±y/E
/1,2 -   n > /3 =  2, /4,5 =     •

For large values of N  one needs to compute the eigenvalues of Ao numerically.

3) Three-dimensional Case.

Now consider the three-dimensional case of an JV x N  x N  cube of finite volume 

elements. For such a homogeneous cube the matrix of the forward problem has the form

Gx - /

- I  Go_ - I  

- I  Go - I

A  =

- I  G2 - I  

- I  Gi

where /  is an N~ by N 2 identity matrix, and the matrices G\  and G2 in turn are N 2 x N 2

(4.64)
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blocks, which have the form

G i  =

Si - I

- I  So - I

- I  So - I

(4.65)

- /  S2 - I  

- I  Si

Go =

S2 - I  

- I  S3 - I  

- I  S3 - I

(4.66)

- /  S3 - I  

- I  S2
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with N  x N  blocks Si, S2 , S3  of the form

3 - 1  

-1  4 -1

- 1  4 -1

4 - 1  

- 1  5 - 1  

- 1  5 - 1

•
,  s 2 =

1

7 
«

 ̂
7

1

*

- 1  5 - 1  

- 1  4

5  - 1
- 1  6 - 1  

- 1  6 - 1

S3 =

- 1  6 - 1  

- 1  5

7 8
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Figure 6: Three-dimensional Case.

Due to the equalities Sz = So + 1, S2 = Si + 1 and Go =  G\ + / ,  Gi and G2 commute, 

as do Si,S2,Sz-  We can thus view A  as either an N  x N  matrix with elements from 

the {G2,<J2 l }-generated ring or an N 2 x N 2 matrix with elements from the {52, 

generated ring.

Therefore construction of the inverse of A  for the three-dimensional case can be reduced 

to the construction of the inverse for a much smaller matrix such as for the two-dimensional 

case.
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Define

r k =

I,

Gi,

GoTh-i — Tfc-2, 

G ir ^ - i  — fiv-2,

k = 0: 

k = l;
(4.67)

As before

j - l _  r - l  A ~  1 N

rv _ i  r v _ 2 T iV -3

for k = 2, N  

k = N.

-  i

r  4 Ti To

r  .v- 4r  i • • • TiITi r  i

r v _ 4r 2 ••• r i r 2 r 2

r,v-4 r 3 r i r 3 r 3

r i r 3 ••• r  lTjV-2 i>.
u

r 3 r iV-2 I\v -1

(4.68)

r L r iT i Tir 2

r 0 r r  r 2

Now the process of the inversion of the N 3 by JV3 matrix A is reduced to the inversion of 

the N 2 by N 2 matrix [\v-

The forward EEG problem can be inverted analytically for the particular case of a 

chain of finite volume elements. This can be done regardless of the number of cubes in 

the chain. The basic idea of matrix inversion can be extended to the two-dimensional 

case of the square plate and the three-dimensional case of the cube assembled from the 

elementary cubes. Obviously additional research is needed in order to find out whether 

similar derivations can be carried out for the cube’s deformations in fitting it to the realistic 

head. If so then the forward problem solution can be realized considerably faster than 

the iterative inversion. The right-hand side of each forward problem has only two nonzero 

entries, hence only a few rows of the inverse matrix are needed for its solution. This is 

one more potential opportunity for a reduction of the computational time.
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5 The Three-shell Model with a Realistic Source.

So far the three-shell model of the human head was studied under the assumption that 

the distance between the dipole sources is infinitely small. As we have seen in Chapter 

2, this is one of the key assumptions for the derivation of the potential on the surface of 

the sphere. However anatomy studies show that the distance between the source and sink 

is finite - of the order of several tenths of a centimeter. Therefore for practical purposes 

more realistic model is needed which would take this feature into account. In this chapter 

the expressions for radial and tangential dipole will be derived separately. Then they will 

be combined into a single expression.

Consider the radial dipole with the finite distance d between the source and sink, each 

of intensity I, placed inside the homogeneous media of conductivity cr. The potential on 

the surface of the sphere of radius R  will be the difference of the potentials due to the 

source and the sink, as it was already established in Chapter 2.

* = ^ E ( W - - W - ) « (cose>- (61)

Using the formula

i-1
x l -  yl =  (x -  y)(xi-1 + xl~2y  +  ... +  xyl~2 -t- yl~l) — (x -  y)  Y '  x l~l~kyk (5.2)

k=0

for

X =  1 +  4  y =  1 _ ^ ’ (53 )
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( * - D ' -  ( * - i > '  -  • ' { ( ^  s ) '  -  ( ^ - s ) ' }

r v i ) ‘- (M)
Hence

where

k=0

• - c E ^ « < - e i - S t s S « “ 9 l' <“ >1=0 1=0

l~ l , J \ i-l-* , J , tJ K » > -E (*  + 3 )  ( ‘ “ I )  • (5'6>fc=0

For 6 =  0,

Id ^  1 Pj(C O S © ) — P/(cOS(7T — ©))
_  P '+ i 2

fflf / /l\*+1 Pf(cOS©) — P/(cOS(7T — ©))E/ '^ \  n l c°sw j-n (.co s(i7 r-t> j;
1-1 ^   2 • (0-7)

Since P,(x ) =  J ~ L ( X2 -  1)',

P i(-x ) =  ( - l ) ^ ( x ) ,  (5.8)

henCC *  = 4 ^ 2  £  |zTTP<(cos Q) ■ • (5-9)

It is now possible to write the potential on the surface of a three-shell sphere in a way- 

similar to the previous derivations in Chapter 2. The potentials $ 1, $ 2> $3  and $4  for the 

brain, skull, scalp and the surrounding air can be written out as

*> -  § h r , + ^ /,(i,)G ) ,+l] fi(cose)’

* 2 =  X J [<V  + A r _(i+l)J Pz (cos ©), (5.10)

*3  =  X ^  +  F ^ ^ I p K c o s © ) ,
1=1 *- -I

=  0 .
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The boundary conditions

0*1
d r

0*2 0*2 0*3
drr=ri r=ri a s s r r=ro * dr r=T*o

0*3
dr = 0,

-=rt

0*1
0 ©

result in the following system of equations

m rfi(b )

0*2 0*2 0*3
0©r=n ’ 0©r=n r=ro

0© r=ro

' s j a i r f , - 1 -  =  <r j e ^ - 1 -

Air[ + TTXf*
■Mb) (i)

f+1
=  C,r[ +  - 2 r ,Airab2

r j  , A  _  p  i Fi 
Cir2 +  “i^ r -  A r2 +  T f i-

» 9

Again combining equations (5.14) and (5.17)

A  tfiF,Ci -r .2Z+1

Cl -
D[(l +1)

€ ’

where

* 1 =  £ + M + i
(R2I+1 ,21+ 1 '

_ £+J0/" _ i____L_\
2 _  / r 2i+1 /  '
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(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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it is possible to write the following relations between C[, Dz and Fz,

e-ii (/ +  1) /  /Cl /C2 \  Ko .
Q  = Mc Fi, where Me = ^  +  1) ( 7*-------T  ) +  T * ’L)

; 2/4-1 /  \
Dz =  M dFi, where A/D =  f J . (5.23)

The equations (5.13) and (5.16) can be rewritten as

4 "V *,L\ l  + l V +l «-1 r r> /-» r * +  1 1M -  : LoM b)—,— ojzr = £McFi -  £MdFi47T<t62 ' Z r f +1 Z r f +1
 ̂ p  . MdFz
' 4-Kab2 r2/+1 “  ' r f +1 ’

in order to get Fz and Ei,

9/ 4 .1  / / - i  1
Fz =  mr —T— fl(b)~--------------------------------- 7------ 77—7T, (5.24)

Z 4tt a  Mc r f+ l ( 1 - 0  +  M o (l +

(Z + 1)(2Z +  1)  1_______
‘ Z2/?2/+i * 47raM cr^ + i(1 _ ^  + A./D ^1 +  iU + ny

Since

( s r H ) + <,+(,+i)« 2 / +  l) ’ 

1
M c r f + l ( l  -  0  +  M D ( l  +

( z  - 1 ]  | / i 2 i + l ( i  -  0  ( ? ( i  + 1 )  +  z )  +  ( S  - 1 )  ) " i + 1 ( i  -  0 *

+ / 22i+1( f  -  1 ) ( W  +  ! )  +  / )  +  ( 7 — • + 1 )  (€(* + 1 )  +  0  J .
$Z(2Z +  1)Z

, n  e r2 f l  ~  R , f i  -  R ■

In short

Mc r f+1( 1 -  0  + Md ( l  + SS+11) # (2Z + 1)
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where

/ \ / f \
= f i +ln  -  o  ( a i  + 1 )+ /)  +  u  - 1) ( j )  ( i -  o*‘/ 2>

+ / | l+l(£ ~ !)(€(/ + 1) + 1) + ( j ^ y  +  1 )(S(l +  1) + 1). (5.27)

Hence the potential on the outer surface of the three-shell sphere will be

\e i&
Z=L

+  Fzi T (/+1) Pz(cos©)

ft'-1 Mb) 21 + 1  / l + l \ \  1 n / s\\
^ 4tt<t I ( + I )j Mc r f +l(l -  0 +  MD( l  -j-

y~> Ttlr bl 1 f ^  (2 /+  l)2______________ 1______________
“  4mr +1 1 /2 Afcra+ I(1 _  + a /d ^  +

_  ^  ^ ( 2 /  +  l f f l(b)b1- 1 SK21 +  D Pj(coce, 
^  4ir*Rl+H* (l + l)dz l{ ’

^ m r ( 2 l  + l)3SM bW -1    ------
“  f a - M U T W ^ d T  l{ e ) ‘ (5 8)

It is easy to show that for an infinitely small distance d this formula corresponds to the 

one for the idealistic three-shell model. Since

fc=0 fc=0

Aiz(rl(l + l)R l+ld^

_  Y '  mr(2f -h l)36t-1
^  4tt«t(Z + 1 i( 0 ) ’

and this is the formula for the realistic three-shell model.

For 6 =  0. calculations similar to the ones above result in

£ . m r  (21 +  l)3? ft''1   (1 -  (-I)') .........
* -  L.  to? (i + i)de jy+i'K '” 8 )— 2— ■ <°-29>

For the tangential dipole the situation is a  bit more comlex. The angles ©x and ©2 are 

not necessary close to ©. First the expressions for cos©x and cos ©2 are needed. Consider
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the tangential dipole in an infinite media of the conductivity a  (Figure 3). The potential 

on the surface of the sphere of radius R  is

*■ - £) -  4̂  t  (»2 + (f)’) 'jFTflt-ei) - <*■*»

(Ml)

It is obvious from Figure 7 that

r f = b 2 + ( ^ ) 2 + R 2 -  2 ^  + ( | ) 2flcos©x, (5.32)

r2 =b2 + ( ^ y  + R2 - 2 } J 62 +  ( ^ ) ’ iZcos©2. (5.33)

On the other hand

r2 =  d\ +  (iicos © — 6)2, (5.34)

r\ =  d2 + (-Rcos© — 6)2, (5.35)

where

, 2
d2 = R sin2 © 4- ^—) — dR  sin © cos f3, (5.36)

d2 =  Rsia2 © +  — dRsin©cos(7r — ,8) = Hsin2© +  -r dR  sin© cos /3 . (5.37)

Combining these expressions obtain the formulas for cos©i and cos ©2,

26cos© +  dsin©cos/3 cos©i =  r . J , (5.38)
2

^  26 cos © — d sin ©cos (3
C O S © 2 =  ----------------■ r  : --------- - .  (5.39)

V ^ + ( f )
© — d sin 0
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Figure 7: Tangential Dipole with Finite Distance d Between Source and Sink.

Hence
. 2 \  2

where

T oo ( b2 + (i) Y  r  
9  = 5Z--- r F i--1Pl (kl cos 0 + k2 sin 6 cos

-P i  (fci cos © — k2 sin ©  cos (3 ) }  (5.40)

ki =  —t = L = = ,  k2 = r -  — . n-, q =  (5.41)

In case 6 =  0,

hl

i - i 1
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where

^  . .  26cos0 +  dsin ©cos 3 . _cos ©i =  um --------- ,__ =— — =  sin © cos 0,b—iQ / / ,\ 2
l \ r +(*):
? — dsin©^  .. 26cos© — dsin©cos/3 . _cos ©o = lim ---------. =------  — sin © cos 3.6—fO / /  ,\ 2

Hence

*  =  4 ^ E  ^ T f l ( s i n e c o s « i i - L i f i .

For a homogeneous sphere of radius R  and conductivity a,

00 /  /  (b2 + f?)2) 2 \  f
'P =  ^  yA ir1 + J < Pi cos © -r ko sin © cos 0^

—Pi cos © — sin © cos 0^ | .

The boundary condition

£  = °OT
r= R

results in

1 ~  I 4ircriT“+i 

Therefore the potential for this illustrative case will be

(2Z J -1) +  (f)  ) f / \
9  =  — j— 4 ^ 2 / + 1 | Pt ( fci cos e + k * sin e  cos 0 )

-p ( f c l  cos © -  fc2 sin © cos d ) j .

For the sake of convenience denote

5j(q, 0, ©) =  ^Pj (fci c o s  © + Ai2 sin © cos 0)

~ P i(k i  cos0 - ( ! 2 S m e c o s ,a ) |.
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(5.43)

(5.44)

(5.45)

(5.46)

(5.47)

(5.48)
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In a general case of three-shell sphere with conductivities a  and as,

,2\  5
Si{q,/3, ©),

*2 =  ^ [ < V  + £>rr-(,+l) 
/= !  L

* 3 =  X ) [ ^ r / + ^ r_(/+1)
i=l *-

Si(q, P, ©), 

Si(q, /?,©),

'P.i =  0.

The boundary conditions (5.11)—(5.12) will result in the system of equations (5.14), (5.15), (5.17) 

and the following equations

' { ' Wr" ‘ -  4 ^ ( 62 + ( l i Y ^ }  = 0 » { c w 4 -1 -  

M  + ^ — ^ 1 J -4tt<t r i+ii
_ r  i , Di
~  C'r i +  jTT-• I

(5.49)

(5.50)

Write them as

< ^ V (Z  + l) J _ _ c r > _ c n £ ± m _2/+1 — ^  ^ * { 2Z+1 ■1

/ f c + o o r  , .  o ,At
4 ira  r 21+1l

=  Q  + ,2/+r

As before C/ =  McFi, Di =  M qFl, where C; and Di are given by formulas (5.22) and 

(5.23), K i and K2 - by (5.20) and (5.21). Hence

,2x5

A i -
TTlt ( M O T (1 + 1) 1

47TCT

At +

d

m t
2\ 2

( *  + ( < ) .)  = m c fi + “ b *
4ira d r f+1 2 l + i  ’

(5.51)

(5.52)

Therefore

Fl 4 ir a  I ( b )  M c r 2/+ i ( 1 _ 0 + M D ^1 +  S i+ i i y  (553)
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I  (2/4-1)(/ + 1 )/ l2 t ( d \ \ - ______________ 1_____________
1 47X<T P R X + 1 \  ( 2 /  )  M c r f + i ^ _ ^ + M D ^ 1 + §li+Viy

Eventually the potential on the surface of the sphere is

*  = '£ ) \e 1r 1 
Z=1 L

Sz(g,/?,©)

* I  (2/4-1) /,•) . - .
S  47TO- l2t f + l (  +  ( 2 )  )  m c t \ 1+1{1 -  0  +  M D ( l  +  1 9l

=  V *  J L ( &  4- h V (2< +  i ) 2 ^  +  i ) ?  » A >
^  47TO-V V2/ ) l2Rl+l (I 4- l)dc 5/(9l/3’0 )> 

«  r ( 6 ^ + 1 5 1  ) '  , 0 , , 1  \3

• g * e #

where is already defined by (5.27).

For an infinitely small distance between the dipoles, the expression should be identical 

to the one given in Chapter 2 for the idealistic three-shell model.

Indeed for d —► 0, b ±  0, me =  Id fixed,

mtb I „  ( cos© sin ©cos 8 \

p I cos © sin © cos (3 ^ ^

"  'v̂ c*? ~ f W n

= Um — ^ Pi (cos © 4* sin © cos /3) 

— Pi(cos © — ^  sin © cos f3) | .

Since *2*1 ~  dS,

d . ^  a sin ©d© 1 Jf— sin ©cos/?       ——d(cos©),
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the above expression can be written as

bl~l cos (3
&  ^ - ^ - { ^ ( c o s e - i d C c o s © ) )  

— Pi (cos © -F irf(cos©)^ |  

=  — mtbl~l cos/3. t  _dP/(cos©) rf(cos©)
r n s  f» — i—-i — -

d(cos ©) d©

= — mtbl~lPi (cos ©) cos 3,

hence as a whole,

li y -  I  (*  +  ^  )  (3  + D3t r  , j  0) 
i^o  Rl+l 1(1 + l)d; *i=i

\3,«— mt 6* * (2 /+  1) ^ |=  — >--- --------- - r - r -—----—— P[ (C O S © ) COS 3.^  47T(T Rl+l 1(1 +  l)rf€ 1 V ' '

If 6 = 0.

_ ^  mt hM  (2l + l f t D, . _ (i _ ( _ i / )
*  =  E 4 ^ R F H T (7 T T j5 7 fi<sm ecos/J> j  ' <D06>

Finally combining the expressions for the radial and tangential dipole,

* - 1 4 ^ f T T § ^ r { ^ (6>6" ‘R(cose)

+ /(6 2 +  ( ^ ) 2) 25K9,/3,e ) | .  (5.57)

The numerical implementation of this solution requires not only the radial tjv and the 

tangential mt components to be defined, but also the intensity /  and the distance between 

the sources d to be defined. For the sake of simplicity they are the same for both directions 

in the preceding formula, as it is not a prime consideration. This implementation of the 

analytical model can be combined with minimization algorithms in the same way as it was 

done for the idealistic three-shell model. The new model is more suitable for the tests of 

the FVM modelling. It corresponds to two distance sources located in the centers of two 

different finite volume elements.
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6 Experimental Results.

6.1 C om parison  o f  N um erical and A n alytica l M od els.

For practical source localization it is important to know the accuracy of the computation 

of the potential by FVM. The accuracy can be estimated by applying the numerical model 

for the computation of the potential for the biological volume conductor with geometry 

admitting the known analytical solution. The three-shell spherical models are suitable for 

this purpose.

The three-shell model with an infinitely small distance between the source and the sink 

will hereupon be called the idealistic three-shell model (I3SM), whereas the one described 

in Chapter 5 with the finite distance between the source and the sink will be called the 

realistic three-shell model (R3SM).

The standard three-shell setup representing the human head has the following para­

meters:

n  =  0.87; r2 =  0.92; R =  1.0;

<7 =  0.0029(fim)-1 ; as  = 3.6 • lO ^ f im )" 1.

The system of the finite volume elements with cube size h is defined in the way it was 

described in Chapter 3. The conductivities for each cube with indexes (i , j , k ) are 

x =  ih, y = jh , z =  kh, 

if \J x2 + y2 + z2 < t*i 

o ’i j k  ~  <7; 

else if y /x2 -1- y2 4- z2 < r2 

&i j k  =  &S'-

else if y/x2 + y2 + z2 < R

&ijk =  0"i

else <7ijk = 0.
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In other words if the center of the cube is within an inside sphere representing the 

brain or in the outer shell which represents the scalp, the conductivity a  is described 

for the cube. Otherwise if the center is within an inner layer representing the skull, the 

conductivity of the cube is as-

The values of the potential on the surface of the sphere will be compared for the points 

with the following spherical coordinates

R  =  l;

for m — 1:90

© =  ( l  +  2- ( m -  

for n — 1:90

/3 =  ( l  +  4 • (m -  l ) ) i 5 j:

Hence there are 8100 spatial points in total.
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For a given spatial point P  on the surface of the sphere, the NM potential computed 

for the finite volume element with the center closest to P  is ascribed, 'Pp =  ^ijk- The 

point X  =  1.0, Y  =  0.0, Z  =  0.0 is taken to be a reference point, and the finite volume 

element closest to this point is taken to be a reference finite volume element. The matrix 

of the linear system is deflated with respect to this element in the way it was described in 

Chapter 3. Two systems of finite volume elements were generated, first with Ni =  267761 

cubes, second with N2 =  523305, they correspond to the cube sizes 0.025 and 0.02. These 

systems will be denoted as and Ro.

The potential due to NM was compared to the idealistic three-shell model first for 

radial and tangential dipoles with centers located at

X  =  0.0; Y  =  0.0;

Z = 0.0, 0.1, 0.2,..., 0.7.

For the numerical model the source and the sink are assumed to have a unit intensity 

whereas the distance d between the dipoles is twice the cube’s size, i.e. 0.05 for R\ and 

0.04 for R2. For the I3SM the radial mr and tangential mt components are 0.05 for Ri 

and 0.04 for R2. The radial dipole is oriented in the Z-direction, whereas the tangential 

dipole is oriented in the X-direction.

The scaled difference between the NM and the I3SM for the XZ-plane, Z = 0.1, 0.4, 0.7, 

for the radial dipole is shown on Figure 9. As for the intersection of the surface of the 

sphere and the XZ-plane, the following expression is mapped:

1.0 -1- s (Vk m (&, (3) — V/3sm(©,/3)),

where s is a scaling factor. Apparently for Z — 0.7, i.e. when the dipole is getting closer 

to the skull, the difference V ^m  — VizSM has a positive spike. The value of the potential 

Vn m  is higher for the surface area that is immediately above the dipole. The differences
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1.0 -r s(VtfM — V/3 SAf) for R i and i?2 for are shown in Figure 9. The error norms for the 

radial dipole are given in Table 1. The same scaled difference for the tangential dipoles is 

shown in Figure 10. The error growth for the area under the skull is not as large as for the 

radial dipole. The error norms for the tangential dipole are summarized in Table 2. The 

higher resolution reduced the error for the radial dipole, except for Z  — 0.7. The Boundary 

Element Modeling [35] resulted in 10-20% error for similar multiple-shell models when the 

dipole was located in areas close to the skull. The finite-difference approach taken in [42] is 

very similar to the one taken in this work. The resulting matrix is almost the same except 

the deflation and positive definiteness were not studied. The measure applied in [42] for 

the error estimates is not a proper measure, since the authors applied mean relative error,

^  =  A ., -  ~  W ) ‘ x 100. (6.1)
n  jrf VNMi

Such a norm implies the summation of the positive and negative values of the error, so for 

the same actual error such a norm results in lower values.

It is also important to know where and how the realistic three-shell model differs from 

the idealistic three-shell model. There is the possibility that the increase of the error 

V/va/(©, &) — V/3sa/(©, 0) under the skull for the radial dipole cm  in part be explained by 

the difference between the model with a finite and infinitely small distance between the 

source and the sink. Hence the outputs of the two models for the radial dipoles places at 

the same locations as before were compared.

The scaled difference between R3SM and I3SM for the XZ-plane, Z =  0.1, 0.4, 0.7, 

for the radial and tangential dipoles is shown in Figures 11 and 12, whereas the error 

norms for the radial and tangential dipoles are given in Tables 3 and 3. Apparently the 

difference grows while the radial dipole approaches the skull, but for given resolutions this 

error only is a small percentage of the NM error.

Of course for the radial dipole the error can be further reduced with an increase of
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the resolution, but the capabilities of the SUN Ultra 30 workstation do not allow further 

substantial reduction of h. One can use the following simple estimates of the dimension 

of the arising problem. For the cube which contains the three-shell sphere one needs 

( 2  ■ + 1  ̂ finite volume elements. The ratio of the volume of the sphere of radius h

to the volume of the cube with side 2h is

§ 7 r / l3 7T 1

I h T  ~  6 *  2'

Hence the dimension of vectors which have to be stored is approximately £^2 • j^J 4- l j  . 

The dimension of matrix Ad is approximately ^ (2  • + 1  ̂ . If h = 0.01, then the

dimension of the solution vector should be over 4 million. For h =  0.005, the dimension 

will exceed 30 million.

Nevertheless it is important to know the impact that the error will have on the source 

localization. In order to find the source in the case of the realistic head [45], a certain 

number of candidate dipole locations inside the brain is chosen, and the potential corre­

sponding to the dipoles in X , Y  and Z  directions in those locations is computed. Then 

the best location and direction (i.e. combination of X , Y  and Z  components) is chosen 

[35] in such a way that it is closest to the recorded potential in loc or lo norm. It can be 

seen from the experimental data that there is a growth of the error for the radial dipole 

as it gets closer to the skull. This means that the potential distribution generated by such 

a dipole can become closest in or I2 to the recorded potential for the actual dipole 

which is located even closer to the skull. Nevertheless the effect is significant only for 

that limited area and the error of source localization will be Limited due to geometry - the 

actual dipole does not have much space to go, it can be located within the brain tissue 

only.
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Figure 8: Error Close to the Skull.

6.2 P o lyn om ial P recondition ing R esu lts.

The Polynomial Preconditioning resulted in a considerable reduction of the number of 

iterations needed for reaching the absolute error of 10-10. The numerical experiments 

were made for the matrix corresponding to the R l  grid described above. The spectral 

bounds of the matrix were estimated in the way described in Chapter 3. The number of 

iterations needed for reaching the absolute error of 10“ 10 as well as the error graphs were 

obtained for preconditioning polynomials of the order of 1,2,3,5,7,9,....17,19. The graphs 

of the absolute error vs. the number of iterations are shown on Figure 13. Apparently even 

the preconditioning polynomials of the order of 5 or 7 allow the reduction of the number

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 9: 1.0 +  8.0 • ( v vm — VnsAi) > Radial Dipole.
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Figure 10: 1.0 -r 15.0 ■ — Vnjsir j  ■ Tangential Dipole.
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Figure 11: 1.0 +  1000.0 ■ (Viosm  — F hsv rt. Radial Dipole.
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Figure 12: 1.0 -r 1000.0 • ^ VfnSM — V/3SA/1 i Tangential Dipole.
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Table 1: Errors of Numerical Model, Radial Dipole.

llt'fr.vr —t'nsMlI,* or I I K v M  — Vl3SAlH l or
IIVWlL ’ /0 11 Vnm ll3 ’

z Ri R2 R i r 2

0.0 5.4 5.2 4.9 4.3

0.1 7.4 4.4 5.5 4.3

0.2 9.4 4.2 7.3 4.8

0.3 11.4 5.9 9.4 6.0

0.4 13.3 8.6 11.5 7.9

0.5 15.3 11.7 13.4 10.3

0.6 17.2 15.2 15.1 13.2

0.7 18.2 18.6 16.4 17.0
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Table 2: Errors of Numerical model, Tangential Dipole.

IH'V.v—Vrasjirll"" or
'  W atmI L  ’ /0

z Ri

0.0 3.2

0.1 3.2

0.2 3.3

0.3 3.3

0.4 4.4

0.5 5.1

0.6 5.5

0.7 5.2
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Table 3: Realistic versus Idealistic model, Radial Dipole.

7, IIV/13SW—V/3SAril̂ , Of !|V'h3s.y/—VhsA/IU or
IIWvrlL ’ /0 IIKiwsA/lla ’ ,ij

0.0 0.060 0.044

0.1 0.024 0.016

0.2 0.031 0.018

0.3 0.039 0.022

0.4 0.053 0.030

0.5 0.075 0.042

0.6 0.118 0.065

0.7 0.209 0.117

Table 4: Realistic versus Idealistic model, Tangential Dipole.

Z IIVR2SM ~VI3SM 11̂. Of IIKvAf-V/73SAf II-. Of
IIV'/OSAflloo ’ ,(i l|VV.Vfll2

0.0 0.061 0.042

0.1 0.020 0.014

0.2 0.021 0.016

0.3 0.022 0.018

0.4 0.030 0.022

0.5 0.046 0.030

0.6 0.078 0.044

0.7 0.154 0.077
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of iterations from 210 to 30. The further reduction of the number of iterations gets more

the order of 18-19 is needed. As the order of the preconditioning polynomial increases, the 

computational time needed for a single iteration increases as well. In order to estimate 

the increase in computational time, compare the number of operations per one iteration 

for the CGM with and without preconditioning. The equations needed for only one CGM 

iteration are shown below, as well as the estimates of the number of operations. It is 

assumed below that any vector (p.e. CtTk-i) or scalar product needs to be computed 

only once and can then be stored for further use. For CGM without preconditioning,

time-consuming. In order to reach 10 10 in 18 iterations, a preconditioning polynomial of

Pit = r fc_i 4- bk-iPk-i -> 2N,
(rfc-j.ffc-i)
(pit, AiPfc)

- + 2 N  + 0 ( N ) ,

x k =  Xfc- 1  +  UfcPfc ->  2N ,

r k =  r k - i -  akAdPk  -»  2N ,

po = pi  -*> 1.

For CGM with preconditioning,

P i =  (CLr k - i ,  Cxrjfc-i) ->• 2AT +  -mO(N) +  2N ,

Pk = C Lt k- i  +  b k - i P k - i  -> 2N ,

{CLTk-uC&k-l)
{Pk ,C iAdPk)

->  2N  + 0 { N )  +  m O ( N )  +  2N ,

Xk = X k - 1 +  akPk  2iV,

rk =  r k- i  -  a kA d p k -*■ 2N,

po =  p i —► 1-
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Here N  is the dimension of the vector and m is an order of the preconditioning polynomial. 

0 ( N ) is the number of operations, proportional to N , needed for the multiplication of the 

sparse matrix by an IV-dimensional vector. In both cases one also needs 2N  operations for 

estimating ||rfc||2 in order to determine whether this norm satisfies the stopping criterium.

Hence the ratio of the time needed for one iteration of CGM without preconditioning 

to the one with preconditioning is

t n p r  _ 12N  t  0{N ) -F A
1 ~ = 16N + (2m + l)O(JV) +  A ’

where A is the memory allocation and storage time. The overall gain in time will be 

achieved if

nnpr tnpr .
nit t > 
n p r  l p r

where nffpp and n ĵ. denote the number of iterations needed for getting the desired accuracy 

of 10“ 10 for CGM without and with preconditioning. O(N) depends on the sparsity of the 

matrix. The simple calculations based on the above formula show that up to two times 

the gain can be achieved, depending on the order m  of the preconditioning polynomial. 

It does not make sense to use the polynomials with m more than 9-10. The experimental 

values of the ratio of the computational time for preconditioned CGM over the time for 

CGM without preconditioning are shown on Figure. The condition number for the matrix

resulting from R2 is not supposed to differ much from i21, hence similar results will be

obtained for matrix R2.

In conclusion the error of the FVM numerical modeling increases for the radial dipole 

approaching the skull. However as it was shown before, this error will not affect the accu­

racy of the source localization. The difference between the realistic and idealistic models 

also grows for the radial dipole approaching the skull, but this difference is not significant 

in comparison with the difference between the numerical and analytical m o d e lin g  results.
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The number of iterations and computational time can be substantially reduced thanks to 

the Polynomial Preconditioning. However the computational time here was not reduced 

that much for the reasons described above.
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Figure 13: Relative Error versus the Number of Iterations for Polynomial Preconditioning.
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Figure 14: Time Ratio for Preconditioned CGM versus the Order of P recon d ition in g  

Polynomial.
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7 Summary and Conclusions. Suggestions for future re­

search.

7.1 Sum m ary and C onclusions.

The development of efficient software for high-precision patient-oriented localization of 

the multiple dipole sources remains one of the major purposes of the EEG research. In 

Chapter 1 an overview of the basic concepts underlying the Inverse and the Forward EEG 

problem was given, as well as a very brief overview of the ways of solving it. The objectives 

of this research are:

1) an acceleration of the numerical solution for the realistic head model:

2) an assessment of the errors involved in the numerical solution of the forward problem 

by comparison to the analytical solution of the problem in a spherical head model:

3) a search for alternatives to the numerical approach.

In Chapter 2 a review of known methods relevant to the forward problem is given. The 

three-shell idealistic model allows one to get analytical solutions for a certain geometry. 

It can also be used for the assessment of errors in numerical modeling. The Boundary 

and Finite Element Methods have already been used in EEG literature for the numerical 

solution of the forward problem. In this work the Finite Volume Method for the forward 

EEG problem was implemented in a way suitable for computing the biopotential for the 

realistic head model. The Conjugate Gradient Method is described since it provides an 

efficient way of solving large sparse systems with symmetric and positive definite matrices.

The implementation Finite Volume Method is given in Chapter 3. The approach 

taken in this work provides a uniform grid which is convenient for source localization. The 

matrix for the corresponding linear system is symmetric but semidefinite. This is due to 

the fact that only the potential difference between the given point and a reference point 

makes physical sense. Therefore the solution is defined up to an arbitrary constant. Hence
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the linear system must be deflated. It is proved that the matrix of the deflated system 

is positive definite. The Polynomial Preconditioning allowes one to accelerate the CGM 

forward problem computation by about 2 times in comparison with the non-preconditioned 

CGM. The overall computational procedure becomes much more efficient comparied to the 

implementations given in [42] and [5].

It is desirable to have an inverse matrix for the Finite Volume Method. This would 

allow one to avoid numerous repetitions of the forward problem iterative solution for 

different right-hand sides, needed for the inverse problem of EEG source localization. It 

is much more desirable to have an analytic expression for the inverse matrix. Thus there 

would be no need to store it in memory. The very first step in this direction is the idea 

of the analytic inversion of the forward problem matrix for the uniform cube, given in 

Chapter 4. First the inverse matrix is found for a one-dimensional chain of cubes. Then 

the idea is extended for two-dimensional and tri-dimensional cases. In these cases the 

block matrices are similar to the one-dimensional cases. The analytical expression for the 

inverse matrix could also be valuable due to the fact that only a limited number of entries 

of A-1 is needed for the particular forward problem solution. Certainly this direction of 

research has a potential for a given problem, and such an approach may also be extended 

to a variety of inverse problems of similar nature.

In Chapter 5 a new version of the three-shell analytical model is given. One of the key 

assumptions of the idealistic three-shell model described in Chapter 2 is that the positive 

and negative sources are infinitely close to each other. First this assumption is not realistic, 

as in practice these sources are separated. The distance may vary up to 1 cm. Second 

the FVM implementation of the forward problem is done in a way that the positive and 

negative sources cannot be placed into one and the same finite volume element. In such 

a case the system will have a zero right-hand side. Hence this assumption is removed in 

a realistic three-shell model. As before the solution is a sum of expressions for the radial
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and tangential dipoles. It is shown that as the distance between the sources goes to zero, 

the solution for the realistic three-shell model turns into an expression for the idealistic 

one.

Chapter 6 contains the description of numerical experiments. First the idealistic and 

realistic three-shell models are compared. It is quite surprising that the difference does 

not exceed 1 % in absolute value. The difference is maximal for the radial dipole as 

it gets closer to the skull. Nevertheless the new model is more convenient for testing 

the Finite Volume Method. Second the solutions of the forward problem are compared 

to idealistic and realistic analytical models. The difference between the numerical and 

analytical solutions can be regarded as an error of the FVM. For the radial dipole, there 

is an increase in error as it gets closer to the skull. For the tangential dipole, the increase 

is not very significant. The error of the numerical models cannot be explained by the 

differences between idealistic and realistic models alone. Similar results are obtained in

[35] and [42].
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7 .2  S u ggestion s for Future R esearch

For practical diagnostics, it is important to further reduce the computational time, as 

well as the error of the numerical modeling. Below are the guidelines for an enhancement 

of the forward, as well as the inverse, problem solution.

1) In order to solve an inverse problem, the forward problem has to be solved thousands 

of times with different right-hand sides corresponding to the varying dipole locations and 

orientations. Hence there are parallelization opportunities.

2) A grid with finer resolution is needed for further error reduction. In addition the 

error can be further reduced by adapting the shapes of the finite volume elements to the 

edges of the skull and scalp, keeping the grid uniform in the brain area.

3) The system of the finite volume elements should reflect the realistic geometry of the 

human brain. The conductivity distribution data is obtained through Magnetic Resonance 

Imaging scans of the realistic head. The proper identification of the edges of the skull and 

scalp is quite problematic for these scans. There is already a certain progress in the iden­

tification of the three-dimensional shapes of the human head [45], however it is important 

to identify the outer shapes of the skull and scalp and construct an algorithm which will 

automatically generate the system of finite volume elements with a given resolution for 

the scans of the human head.

4) In order to make the modeling more realistic the FVM system of equations should 

be modified in a way that will allow the anisotropy of conductivities. In reality the 

conductivity of the brain tissue depends on the direction and this fact should be taken 

into account.

The new model can be combined with the MUSIC algorithm for the experimental 

source localization. One can also use it for the estimation of the FVM error while studying
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different domain decompositions.

The analytical matrix inversion has a serious potential for an acceleration of the forward 

problem solution. However in order to put this idea into practice the following should be 

done:

1) calculations like those in Chapter 4 must be extended for the cube under various 

deformations;

2) this idea should be extended to a nonuniform conductivity distribution;

3) the problem of matrix deflation has to be studied for two and three-dimensional 

cases in order to put these solutions into practice.
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