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with martian meteorites.
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Figure 2: Assimilation and fractional crystallization processes in 
Magma Chamber Simulator. Credit: https://mcs.geol.ucsb.edu/about

Figure 1: Jezero Crater, Mars, and 
Perseverance landing site. Credit: NASA

Research questions: 
1. Why are the compositions of martian 
meteorites and surface rocks so different? 

2. Can they be linked to one another via magmatic 
processes like fractional crystallization and 

assimilation?

Figure 3: Total Alkali Silica (TAS) graph showing the data collected from MCS with the QUE 94201, Yamato 980459 and Montpezat compositions, and 
compositions envelopes of SNC meteorites, Jezero floor compositions, and polymict regolith breccias 

Figure 4: MgO graphs from MCS, with QUE 94201 and Yamato 
980459 compositions

Magma Chamber Simulator (MCS)
• The Magma Chamber Simulator [5] is a software that models open-system magmatic 

processes, providing a holistic view of how a magma body interacts with its surroundings, 
and how the chemistry evolves over time.
• Components:
• Magma composition
• Wall rock composition

• Acts as an input and output machine using Visual Basic in Microsoft Excel
• Uses the MELTS family of algorithms [6-8]. We used Rhyolite-MELTS 1.2 MELTS as it 

works best for fluid-bearing magmas, and has successfully been used for martian 
compositions [9].
• Used the MCS to run models in order to observe how the compositions would change 

depending on certain variables (and ultimately find a combination that would match the 
chemistry seen at the surface of Mars).

• Variables considered when modeling
• Pressure: we used 1, 2, 4, and 6 kbars, representing the upper crust to the shallow 

subsurface [10].
• Oxygen Fugacity (fO2) or Fe2O3 content, calculated separately using MELTS for Excel [11]. 

We used the Fe2O3 equivalent to a starting fO2 of 0 to 3 units below the Quartz-Fayalite-
Magnetite buffer. These values are based on magmatic fO2 estimates of martian 
meteorites [1].

• H2O content (anhydrous to 1 wt% H2O), based on literature values [12].
•Magma compositions used 
• Shergottite Yamato 980459 (Y98) [13], Mg-rich liquid composition
• Shergottite QUE 94201 (QUE) [14], Fe-rich liquid composition
• Calculated parental composition of surface rock Montpezat [M. Schmidt, pers comm]

•Wall rock (assimilated part) compositions used
• Polymict regolith breccia NWA 7034 [15] whose composition is most similar to the 
average crust of Mars.
• Bulk Silicate Mars (BSM) [16], a calculated average of the combined composition of the 

crust and mantle.

• Martian meteorites are the only samples 
available on Earth to study Mars [1], and help 
us understand how processes such as 
magmatism and movement of volatiles, like 
water, have changed over time. Data from 
rovers, landers, and satellites can provide 
additional information on Mars’ geologic 
history [2, 3, 4].

• The rocks observed on the surface of Mars at 
the Jezero crater (Fig. 1) by the Perseverance 
Rover have drastically different chemical 
compositions than the ones observed in 
martian meteorites [1-2]. Martian meteorites 
are Mg and Fe rich, while rocks at the martian 
surface are alkali-rich (Na and K) [1-2].
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• In the TAS graph above, the QUE compositions 
overlap with the Jezero floor compositions (Fig. 
3); thus, we were able to replicate the silica and 
alkali contents seen in the Jezero floor 
compositions. 
• These results show us that the chemical 
compositions observed at the surface of Mars 
can be replicated with shergottites, but only with 
a good amount of water indicating that the 
martian interior may have more water than is 
currently suggested by martian meteorites [15], 
or the possibility of water-rich reservoirs closer 
to the surface.
•Why didn’t the other compositions work?
• BSM: Mg and Fe rich composition because 

it is an average of the mantle and crust of 
Mars [16]

• Y98: when compared with the Montpezat 
and QUE compositions, Y98 has higher Mg 
(more primitive)

• Montpezat: the composition was 
calculated, it is not a measured sample

• The sample that was best able to replicate the 
general composition of Jezero, in terms of its 
chemistry and chemical trends, was QUE which 
represents a direct sample from the mantle. 
However, it’s far from a perfect match, which 
might indicate that the rocks from Jezero did not 
form from a mantle melt directly and perhaps 
required a more complex formation history.

Figure 5: Diagram illustrating Mars’ interior. Credit: NASA

Figure 6: Magmatic processes on Mars [1]
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