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Abstract

Modelling agent preferences has applications in a range of fields including

economics and increasingly, artificial intelligence. These preferences are not

always known and thus may need to be estimated from observed behavior, in

which case a model is required to map agent preferences to behavior. Tradi-

tional models are based on the assumption that agents are perfectly rational:

that is, they perfectly optimize and behave in accordance with their own in-

terests. Work in the field of behavioral game theory has shown, however, that

human agents often make decisions that are imperfectly rational, and the field

has developed models that relax the perfect rationality assumption. In this

thesis, we take a first step towards estimating agent preferences using this

relaxed assumption. We apply models developed for predicting behavior to-

wards the task of estimating preferences and show that they outperform both

traditional and commonly used benchmark models on data collected from hu-

man subjects. In fact, Nash equilibrium and its relaxation, quantal response

equilibrium (QRE), can induce an inaccurate estimate of agent preferences

when compared against a known ground truth.

A key finding is that modelling non-strategic behavior, conventionally con-

sidered as uniform noise, is important for estimating preferences. To this end,

we introduce quantal-linear4, a rich non-strategic model. We also propose an

augmentation to the QRE model by incorporating a non-strategic component.

We call this augmented model QRE+L0 and find an improvement in estimat-

ing values over the standard QRE. QRE+L0 allows for alternative models of
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non-strategic behavior in addition to quantal-linear4.
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Chapter 1

Introduction

A fundamental assumption underlying modelling agent behavior is that agents

have preferences which drive this behavior. The practice of estimating these

preferences from their behavior goes by many names including but not lim-

ited to inverse game theory, intrinsic motivation, and revealed preferences,

and has applications in economic analysis, the study of human behavior, and

increasingly, artificial intelligence [30]. When in a situation where an agent is

incentivized to be truthful and preferences can be mapped directly to behavior,

backing out the preferences of an agent is straightforward. One such example

would be certain forms of auctions, in which an agent’s private valuation for an

item drives their bid. In contrast, when preferences are not straightforwardly

mapped towards an action, or it may be in the agent’s best interest to not

report their true preference (i.e. they are in a strategic situation), the prob-

lem becomes much harder. Popular card games such as bridge or poker would

be an example of such a situation. The task of estimating agent preferences

in such a situation then requires a model mapping preferences to behavior,

commonly referred to as structural estimation in the economics literature.

Structural estimation has been used widely in empirical economics, or

econometrics, to model relationships and inform decision making. The deci-

sion making process often involves constructing incentives (e.g. public policy,

UX design, or rewards) to induce desired behavior and is known as mechanism

design. A set of incentives for strategic agents is referred to as a mechanism.

One key application of structural estimation is in counterfactual estimation of

1



alternative mechanisms. The accuracy of counterfactual estimation, however,

relies on the accuracy of the model. After inferring preferences from empirical

data, counterfactual scenarios can be evaluated. Such evaluation can be used

in mechanism design for optimizing over many mechanisms to find one with

the best performance. Randomized controlled trials – called A/B testing by

technology firms – can directly evaluate a novel mechanism, but the number

of samples required for a given mechanism can be quite large. Chawla et al. [9]

showed that methods from structural inference have an exponential improve-

ment for sample complexity in mechanism design over randomized controlled

trials, but this improvement comes with the aforementioned reliance on the

accuracy of the model.

A common assumption in economics and game theory is that agents per-

fectly optimize. When all agents are behaving optimally given the behavior

of other agents, they are said to be in equilibrium. A strong equilibrium as-

sumption, that all agents are perfectly optimizing given the behavior of other

agents, is commonly made when inferring preferences from empirical behavior.

In instances approximating equilibrium, such as repeated interactions between

firms [45] or for individual agents repeatedly playing the same game, this is a

reasonable assumption. In situations in which agents are not in equilibrium,

either due to the observed behaviors being early in the decision making process

or from an unstable situation without an equilibrium, this can pose a bigger

problem. Particularly in non-truth telling indirect mechanisms (i.e. mech-

anisms in which agents are behaving strategically, and in which there is no

straightforward mapping of preferences to behavior), it is possible for agents

with di↵ering valuations to produce the same observed behavior, especially

when the action space is small (e.g. in a binary decision process, an infinite

number of agent valuations would map to one of only two possible outcomes).

The more recent field of behavioral game theory has shown that rich, pa-

rameterized models of behavior, including non-strategic behavior, provide bet-

ter predictions of empirical behavior than classical equilibrium models. Par-

ticularly in initial play, i.e., for behavior of players who do not have prior

experience playing a given game, classical notions of equilibrium are poor
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predictors of human behavior while behavioral models o↵er an improvement

in predictive performance. The current result of these e↵orts are behavioral

models in the quantal cognitive hierarchy (QCH) family, which, in addition

to performing better than classical equilibrium models, also outperform other

behavioral models [8, 35] in terms of predicting behavior. A key component

of QCH is the concept of iterated reasoning, which requires some definition

of non-strategic (level-0) agents, conventionally defined to be uniform ran-

domizers [23]. Wright and Leyton-Brown [48] showed that going beyond the

uniform randomization assumption improves performance when predicting be-

havior. The uniform randomization assumption also has another drawback:

it is insensitive to preferences. As past empirical works have shown that a

significant proportion of agents are level-0 [47], not modelling the preferences

of these level-0 agents means that we are in essence discarding information

given by data being generated by them.

This thesis contributes to the study of behavioral models for initial play

and the study of structural inference of preferences from behavior in games.

We develop behavioral models and conduct online experiments within the con-

text of initial play to measure the accuracy of these models in inferring pref-

erences. Our experimental analysis introduces a new level-0 model which is

derived from adding quantal response to the linear4 level-0 model from Wright

and Leyton-Brown [48]. The model that best predicts behavior and admits

the most accurate inference of values is quantal cognitive hierarchy with this

quantal linear4 level-0 model. We compared this model to classical equilibrium

and behavioral models without rich level-0 behavior of Nash equilibrium, quan-

tal response equilibrium [35], and quantal cognitive hierarchy (with uniform

level-0 behavior). We also introduce the concept of considering models of be-

havior to contain both a strategic and a non-strategic component. Under this

framework, existing equilibrium models such as quantal response equilibrium

(QRE) can be augmented with non-strategic models, including but not lim-

ited to the aforementioned quantal-linear4 model. Models containing the new

quantal-linear4 non-strategic specification outperform these classical models

with Nash equilibrium being the worst at both inference and prediction.
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Our experiments highlight the importance of rich level-0 models for model-

ing behavior in initial play. Our results on predicted behavior reinforce those

of Wright and Leyton-Brown [48], showing that rich models of level-0 behav-

ior are better predictors than uniform randomizers. Moreover, and intuitively,

these models take into account payo↵s and, thus, the inferred level-0 behavior

aids in the inference of preferences. In fact, we find that the level-0 model

drives most of the gains in both predicting behavior and inferring preferences,

and the choice of strategic model is not as important.

Our experimental setup considered 3-by-3 bimatrix games with randomly

generated payo↵s. This family of games is commonly studied in the behav-

ioral game theory literature [35, 38]. We assumed payo↵s were derived from

the classical single-dimensional linear model of auction theory where payo↵s

are given linearly in a value for units of a good (i.e., allocations) and a payment

[34]. (Our games allow payments to be negative, i.e., some payo↵s are given by

some units of the good and a negative amount of money.) A key simplification

of our experiment is that the players in our experiments were only aware of

the payo↵s in the game and not of the decomposition of those payo↵s into

allocation and payments. Thus, we do not see in our data behavioral artifacts

related to whether or not the players can do the utility calculations from allo-

cations and payments. Moreover, with such a design we are free in our analysis

to consider counterfactual inference questions with various decompositions of

payo↵s into allocations and payments.

The rest of this thesis is organized as follows. Chapter 2 provides back-

ground on models from behavioral game theory and related works in the task

of inferring preferences and studying initial play. In Chapter 3 we describe

the novel models developed as well as our experimental setup, and report the

results in Chapter 4. We then present a preliminary theoretical analysis of a

surprising result of our experiments in Chapter 5. We o↵er a conclusion and

possible directions for future work in 6.
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Chapter 2

Background

In this chapter, we provide relevant background material for the thesis. First,

we layout a framework of game theoretic concepts. Next, we provide back-

ground on existing behavioral game theory models as well as past works on

inferring preferences from behavior and the study of initial play. Finally, we

go over the existing methodology for collecting datasets online.

2.1 Framework

2.1.1 Normal Form Games

A common abstraction of strategic interactions between agents is the Normal

Form Game.

Definition 2.1.1 (Normal Form Game). A normal form game G consists of

a tuple G = (N,A, u) where

1. N = (1, . . . , n) is a set of N agents

2. A = A1⇥ · · ·⇥An is a set of action profiles, where Ai is the set of actions

available to player i, and a 2 A = (a1, ..., an) is a tuple consisting of an

action ai for each agent

3. U = (u1, . . . , un) is a set of utility functions ui : A ! R, mapping each

action profile to a utility for each player

A mixed strategy si 2 �(Ai) for player i is a distribution over i’s actions. The

utility of a mixed strategy profile s 2 �(A1) ⇥ · · · ⇥ �(An) is the expected

5



utility of an action profile sampled from the product distribution of the mixed

strategies.

2.1.2 Nash Equilibrium

The classical solution concept in game theory is Nash equilibrium, first discov-

ered by Nash in the 1950s [36] and is guaranteed to exist for every a normal

form game. In a Nash equilibrium, every agent is best responding to the

actions of the other agents. Formally,

Definition 2.1.2 (Nash equilibrium). LetBRi(s�i) = {si 2 �(Ai) | ui(si, s�i) �
ui(s0i, s�i)8s0i 2 �(Ai)} be the set of best responses to s�i. Then a mixed

strategy profile s is a Nash equilibrium if every agent i’s mixed strategy si

is a best response to the profile s�i of mixed strategies of the other agents:

si 2 BRi(s�i).

2.1.3 Quantal Response Equilibrium

Experimental evidence shows that human subjects will play actions in normal

form games that have zero probability under a Nash equilibrium [18, 47]. One

popular explanation for this is that rather than responding to utility ui(aj),

agents are instead responding to some utility ˆui(aj) = ui(aj)+✏aj where ui(aj)

is the utility modelled/observed by the analyst and ✏aj is a random variable

representing some unobserved/unmodelled utility or exogenous shock. When

✏ is distributed according to the Gumbel (extreme value) distribution, then

the probability of taking a given action takes the form:

Pr(aj) =
exp[� · ui(aj)]P

a0j2Aj
exp[� · ui(a0j)]

. (2.1)

as shown in Train [44]. Here, � denotes the sensitivity of agents to utility

preferences, with � = 0 corresponding to complete indi↵erence between utili-

ties. This formula is referred to in the decision theory literature as logit and

is analagous to the softmax function commonly used in machine learning. We

refer to it here as quantal best response.
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Definition 2.1.3 (Quantal best response). Let ui(ai, s�i) be agent i’s expected

utility when playing action ai 2 Ai against mixed strategy profile s�i in game

G. Then a quantal best response QBRi(s�i;G,�) by agent i to s�i is a mixed

strategy si such that

si(ai) =
exp[� · ui(ai, s�i)]P

a0i2Ai
exp[� · ui(a0i, s�i)]

. (2.2)

When every agent i 2 N is quantally best responding to the strategies of

other agents, we then have a quantal response equilibrium:

Definition 2.1.4 (Quantal response equilibrium). A strategy profile s of a

game G is a quantal response equilibrium (QRE) with precision � > 0 when

each agent quantally best responds to the strategies of the other agents; that

is, when si = QBRi(s�i;G,�) for all agents i 2 N .

As � ! 1, the quantal best response for agent i coincides with best

response, and so Nash equilibrium can be viewed as a special case of quantal

response equilibrium.

Quantal response equilibrium is attractive as a solution concept because of

its ability to fit a wide range of behavior. In fact, Haile et al. [22] show that

without additional restrictions, QRE does not falsify any behavior in a single

normal form game (that is, any behavior can be explained as a QRE). It is

important to note that other forms of QRE can exist, but logit equilibrium

(as defined previously) is by far the most commonly used form.

2.2 Behavioral Game Theory

It has long been observed that humans do not behave in a fully rational man-

ner. The famous economist John Maynard Keynes wrote of “animal spirits”

which influence human behavior in the 1930s [28]. Examples of behavior in-

consistent with expected utility theory was shown by the Allais Paradox [2].

The work of Kahneman and Tversky in the 1970s, culminating in the model

of prospect theory [27], marked the beginning of the field of behavioral game

theory. Behavioral game theory aims to produce models which better predict
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empirical human behavior compared to traditional game theoretic solution

concepts such as Nash equilibrium.

Within the field, the aforementioned quantal response equilibrium [35], re-

laxes the strict optimization assumption made by Nash equilibrium, while

maintaining the assumption that agents mutually respond to each others’

strategies. This relaxation has been found to produce a much better fit than

Nash equilibrium and has been suggested as a replacement for Nash when

fitting behavioral data [22].

Another line of work is that of iterative behavioral models such as level-

k [43] and cognitive hierarchy [8] models. These models assume that agents

perform a fixed number of iterations of strategic reasoning, starting from a

default strategy called the level-0 strategy. Wright and Leyton-Brown [47]

found that incorporating the quantal error model into a cognitive hierachy,

or quantal cognitive hierarchy, performs best at predicting actual behavior in

empirical data. In later work, they showed that prediction performance can

be further improved by specifying parameterized level-0 models that combine

simple decision rules, instead of the uniform randomization specification that

is most frequently studied [48]. We now discuss each of the di↵erent behavioral

models below.

2.2.1 Level-k and Cognitive Hierarchy

Another key contribution from behavioral game theory is to assume that hu-

mans are performing iterated levels of reasoning. The level-k model [13, 15]

models agents as having a level ki 2 0, 1, 2, ... in which a level-k agent best

responds to the strategy of level-k � 1.

Definition 2.2.1 (Level-k thinking). In a level-k model, each agent i with

level k is best responding to the strategy profile level-(k � 1) Formally,

si,k = BRi(s�i,k�1)

where the first level with no reasoning is considered level-0, and is convention-

ally considered uniform randomization over the support, s�i,0 =
1

|A| .
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The cognitive hierarchy model of Camerer et al. [8] also models hetero-

geneous levels of reasoning, but di↵ers in that level-k agents respond to the

distribution over lower level types rather than only the level immediately be-

low k. When the agents respond in a quantal best response fashion, we end

up with Quantal Cognitive Hierarchy.

Quantal cognitive hierarchy (QCH) is a non-equilibrium model, in which

agents are heterogeneous in the number of steps of strategic reasoning they can

perform. Higher-level agents choose their actions in response to the strategies

of lower-level agents. The lowest level agents (level-0 agents) choose their

actions non-strategically; that is, without reasoning about the actions of the

other agents. Level-0 agents are commonly specified to simply play a uniform

distribution over actions; we evaluate that specification, but we also evaluate

QCH using a richer specification of level-0 behavior (see Section 3.1, below).

Definition 2.2.2 (Quantal cognitive hierarchy). Quantal cognitive hierarchy

with precision � > 0, level distribution L, and level-0 specification f , specifies

that each agent i has a level ki ⇠ L. Let ⇡i,k 2 �(Ai) be the distribution

over actions predicted for an agent i with level k. Level-0 agents play actions

according to ⇡i,0 = f(G), where f is some non-strategic function of the game

payo↵s. Agents with level k > 0 play according to the distribution ⇡i,k =

QBRi(⇡�i,0:k�1;G,�), where

⇡i,0:k =

Pk
`=0

L(`)si,`Pk
`0=0

L(`)

is the distribution over actions induced by conditioning on the level being at

most k.

The overall distribution of actions predicted by quantal cognitive hierarchy

is ⇡i =
P1

k=0
L(k)⇡i,k.

For the distribution of levels in QCH, a truncated Poisson distribution is

commonly used [e.g. 8, 16].

Definition 2.2.3 (Poisson quantal cognitive hierarchy). Poisson quantal cog-

nitive hierarchy is a specification of QCH in which the level distribution L is

specified by a truncated Poisson distribution with the mean parameter ⌧ :
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L⌧ ;0:k =
k=MX

`=0

Poisson(`; ⌧)
Pk

`0=0
Poisson(`0; ⌧)

where L⌧ ;` is the proportion of agents at level ` given mean ⌧ and with

L⌧ ;0:k sums to 1.

2.3 Studying Initial Play and Level-0 Models

Initial play in matrix games has generally been studied with the aim of mod-

elling the behavior, and not for the task of value estimation. Initial play refers

to agents playing normal form games for a short duration before any learning

has been able to take e↵ect or equilibrium has been reached. A common as-

sumption made in these works is that initial play are the actions of a level-1

agent, with level-0 behavior consistently thought of as uniform randomization

[14, 17]. Under this assumption, the first level of reasoning which is of interest

is naturally level-1. With the advent of AI, another popular approach in recent

years has been to model initial play using machine learning techniques [17, 24,

41]. These models often prove to be better predictors of behavior but lack a

straightforward way to map behavior to preferences.

Of works that do attempt to specify a level-0 model, one approach is to

apply the principle of saliency to the payo↵ structure[11, 15], which runs into

the di�culty of defining a precise saliency rule(s), and furthermore deciding on

which rule is most salient. A more systematic approach is that of Wright and

Leyton-Brown [48], which constructs level-0 functions meeting a definition

of non-strategic laid out in a companion paper [49]. The definition of non-

strategic behavior is that which does not take into account the actions of other

agents. This level-0 framework is attractive as it allows for the a definition

of level-0 behavior that is systematic in its sensitivity to preferences, as well

as allowing for an arbitrary definition of level-0 so long as it satisfies the

definition of non-strategic behavior. This allows us to construct a model of

level-0 behavior sensitive to their own preferences.
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2.4 Inferring Preferences from Behavior

The task of inferring preferences from behavior has generally been studied

under the game theoretic assumption that players are in equilibrium [e.g. 3,

4, 20, 39]. In cases where the equilibrium assumption has been relaxed, this

has generally been under the condition of repeated play (i.e. the subjects

play the same game(s) repeatedly). Crawford and Iriberri [15] and Goeree

et al. [19], use non-equilibrium behavioral models (level-k thinking) to ex-

plain a widely-observed behavioral phenomenon—overbidding in private-value

auctions—that is inconsistent with the bidders’ being in equilibrium. How-

ever, their experimental evaluation focuses on estimating parameters of the

behavioral model only, taking the values as known to the analyst. Nekipelov

et al. [37] estimate private values from auction data without an equilibrium

assumptions, instead relying on a weaker assumption that agents use some

form of no-regret learning. Similarly, Ling et al. [31] provide a framework to

learn game parameters from actions in zero-sum games, but do not validate

their results on empirical data.

Perhaps the work that most closely resembles our own is that of Noti [38],

which has a similar objective of inferring preferences from empirical play in

normal form games where the values are known but hidden from the analyst.

Our work di↵ers in one key aspect, however; whereas Noti attempts to estimate

values using player responses over repetitions in a single game, agents in our

scenario only see each game once. None of these aforementioned works study

value estimation in initial play; each relies upon repetition across games.

Value estimation has also been empirically studied under conditions re-

sembling initial play within the field of school matching. Value estimation

is necessary for counterfactual evaluation of mechanisms and there are sev-

eral papers [e.g. 1, 7, 25, 26] which attempt to infer preferences of agents

to evaluate the welfare of alternative mechanisms. The way in which prefer-

ences are modelled vary from an equilibrium model to assuming all agents use

simple behavioral rules. Notably, Calsamiglia et al. [7] construct a model of

strategic and non-strategic agents in which strategic agents best-respond nois-
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ily to all other agents, including non-strategic agents, similar in principle to

our QRE+L0 model. Whereas non-strategic agents directly report their true

preferences in the school choice setting, our framework allows us to consider

scenarios in which there is an indirect mechanism mapping the preferences of

non-strategic agents to actions.

2.5 Online Experiments

The usage of Amazon Mechanical Turk (MTurk) or other online crowdsourc-

ing platforms as a source of experimental data in lieu of university laboratory

experiments has become increasingly prevalent. MTurk workers (commonly

referred to as Turkers) have several advantages over laboratory experiments.

First, the demographic for university laboratory experiments generally con-

sist of university students, whereas Turkers theoretically consist of anyone

with access to a computer and an internet connection, although in reality the

demographic of the average turker skews slightly younger and female [33]. Ad-

ditionally, the subject pool for turkers remains constant throughout the year

in contrast to university subject pools, which are typically largest in the fall.

Second, Turkers are willing to work for lower wages than university subjects,

allowing for the collection of larger amounts of data at the same price point.

Finally, Turkers have a system of requirements and qualifications which allow

researchers to break down their subjects by location, political a�liation, or

other demographics.

Given the anonymity of the platform, as well as the comparably lower pay-

ments, questions about the validity and extensibility of results gathered from

online platforms has arisen. Another concern is the competency of Turkers:

they may not be qualified to perform the task assigned. Finally, concerns arise

about the morality of conducting experiments online: university experiments

require informed consent, which is more di�cult to enforce online.

There are a number of works that address these concerns [33, 42]. On

the issue of lower payments, studies have found that the quality of work pro-

duced between laboratory experiments and Turkers is comparable [29, 40],
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with a possible reason being that the threshold for particpating online is much

lower than participating in a physical laboratory experiment. On the issue

of competency, Amazon itself address this through the Masters qualification,

which is awarded by Amazon through an unknown process. Masters workers

are purported to be more reliable and better at their tasks and the fee Ama-

zon charges the requester is slightly higher for master workers compared to

a regular workers. Sta↵elbach et al. [42] found in a complex crowdsourcing

engineering task that workers with a > 95% approval rating and 1000 HITs

completed performed comparably to masters workers. Similarly, Loepp and

Kelly [32] did a comparative study of masters workers and set the criteria of

their regular workers to have a> 90% approval rating and 100 HITs completed.

Overall, the consensus seems to be that as long as Turkers are paid a su�cient

amount, a verification process is implemented to test their understanding of

the task, and turkers are give their informed consent in accordance with uni-

versity guidelines, online experiments o↵er a viable alternative to laboratory

experiments.
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Chapter 3

Experimental Setup and
Contributions

In this chapter, we outline the main contributions of this thesis: the definition

of quantal-linear4, the separation of models into strategic and non-strategic

components and the resulting augmented behavioral model QRE+L0. We then

provide details on the experimental setup we used to evaluate these models

against the benchmark. Finally, we provide implementation details of our

evaluated models.

3.1 Quantal Linear-4

As noted previously, it is standard in the literature to assume that non-

strategic agents randomize uniformly over their actions. Recently, Wright and

Leyton-Brown [48] found that using a linear combination of simple decision

rules as a level-0 specification markedly improves the prediction performance

of QCH. In this model, called linear4, each decision rule identifies an action

from Ai that optimizes some simple criterion (e.g., maximizing the sum of all

players’ utilities), and predicts that player i will play that action.1 The pre-

dictions of the simple decision rules are then linearly combined into an overall

prediction, using weights that are free parameters of the model.

We evaluate a level-0 model adapted from linear4 that we refer to as

quantal-linear4. The key di↵erence between the two models is that in quantal-

1In the case of ties, the decision rule predicts a uniform distribution over the criterion-
optimizing actions.
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linear4, each decision rule computes its prediction as a quantal response to the

di↵erent actions’ criterion values. In contrast, in linear4, the predictions are

computed using strict optimization—each decision rule assigns probability 0

to each action that does not optimize its criterion. This extension is motivated

by two considerations. First, behavioral models that assume quantal response

to preferences have tended to predict better than equivalent models based on

strict optimization: QRE predicts better than Nash equilibrium, QCH predicts

better than cognitive hierarchy, and the level-k model using quantal response

predicts better than level-k using best response [47]. It is thus natural to

expect that modeling non-strategic agents as responding quantally will also

improve prediction performance. Second, the likelihood for linear4 is contin-

uous in the weights of the decision rules (i.e., in its behavioral parameters),

but discontinuous in the valuation parameter. This leads to poor optimiza-

tion performance when attempting to learn the agent valuations. In contrast,

the likelihood for quantal-linear4 is continuous and di↵erentiable in both its

behavioral parameters and the valuation.

Definition 3.1.1 (Quantal-linear4). A quantal-linear4 (QL4) strategy for a

player i in a game G with precision �0 > 0 and weights wmax, wmin, we↵, wfair

is a linear sum of the form

fi(G) =
X

d2{max,min,e↵,fair,unif}

wdf
d
i (G),

where the weights are constrained to lie between 0 and 1 and to sum to exactly

1.

Each function f is a soft maximization over a specific feature for each

action. The features are: the maximum utility that i can receive by playing

an action; the minimum utility that i can receive by playing an action; the

smallest unfairness attainable by playing an action (defined as the di↵erence

between the smallest utility and the largest; this is always negative); and the
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largest sum of utilities that is possible by playing a given action.2 Formally,

fmax

i (G)(ai) =
exp[�0 maxa�i2A�i ui(ai, a�i)]P

a0i2Ai
exp[�0 maxa�i2A�i ui(a0i, a�i)]

fmin

i (G)(ai) =
exp[�0 mina�i2A�i ui(ai, a�i)]P

a0i2Ai
exp[�0 mina�i2A�i ui(a0i, a�i)]

f fair

i (G)(ai) =
exp[�0 maxa�i2A�i minj,j02N(uj(ai, a�i)� uj0(ai, a�i))]P

a0i2Ai
exp[�0 maxa�i2A�i minj,j02N(uj(a0i, a�i)� uj0(a0i, a�i))]

f e↵

i (G)(ai) =
exp[�0 maxa�i2A�i

P
j2N uj(ai, a�i)]P

a0i2Ai
exp[�0 maxa�i2A�i

P
j2N uj(a0i, a�i)]

funif

i (G)(ai) =
1

|Ai|
.

3.2 Separating Models into Strategic and Non-
strategic Components and QRE+L0

Recalling that quantal cognitive hierarchy requires a non-strategic model in

its inductive definition of behavior, it is straightforward to combine QCH and

non-strategic models. Expanding upon the concept of heterogeneous reason-

ing types, equilibrium models such as Nash equilibrium and quantal response

equilibrium can also be augmented with non-strategic behavior. To combine

equilibrium strategic models with a non-strategic component, we assume that

some fraction of agents behave non-strategically, and that the strategic agents

respond to this probability of non-strategic behavior as well as the behavior

of the remaining probability of strategic agents.

We separate each of our models into a non-strategic component and a

strategic component that is responding to the non-strategic component, where

each model is denoted by the naming convention ”STRAT-NONSTRAT”. In

this way, conventional models such as PQCH can be rethought of as PQCH-

uniform, and QRE can be rethought of as QRE-none (for the sake of simplicity

and in keeping with convention, we do not list the non-strategic component

in a model if there is none and so QRE-none remains QRE). For equilibrium

2These decision rules are not meant to be necessary and su�cient; rather, these were 4
most predictive features as discovered by Wright and Leyton-Brown. We extend the model
of linear4 and leave the problem of identifying a necessary and su�cient model for future
work.
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models we augment with a non-strategic component, we assign the parameter

� 2 (0, 1), to the probability of agents behaving non-strategically, with the

strategic agents being assigned the remaining probability 1� �.

Definition 3.2.1 (QRE+L0). A QRE+L0 with precision � > 0 and level-0

specification fL0 is a strategy profile s in which each agent plays according to

the level-0 specification with probability �, and with probability 1�� quantally

best responds to the strategies of all other agents. Formally, for every agent i,

si = �fL0
i (G) + (1� �)QBR(s�i;G,�).

Unlike QCH, in which agents have heterogeneous and incorrect beliefs

about the strategies of the other agents, the strategic agents in our equilibrium

models augmented in this way are assumed to have correct beliefs.

3.3 Experimental Setup

The analyst’s objective is to predict how much participants value a unit of

some good, given their behavior in a set of normal form games. Each player

i receives both an allocation of xi units of the good, and a payment pi in

currency. We assume that player i’s utility is linear in both payments and

allocations; i.e., player i’s utility is ui(x, p) = vxi+ pi, where v 2 R is i’s value

(in currency units) for each unit of the good. In this work, we will assume

that the valuation v is common across all players.

It is challenging to translate this setting into an experiment. The main

challenge is that we need to endow our experimental participants with a spe-

cific value for the good, which is common knowledge across all participants.

Presenting participants in the experiment with a valuation is not su�cient:

participants may not believe the valuation presented to them (i.e. they will

believe the purpose of the study is something other than what is presented

to them), or behavioral issues (e.g., arithmetic errors, magnitude e↵ects) may

arise. To address these issues, we translate our setting into an experiment in a

slightly less direct way. Instead of presenting the outcomes of a game as a de-

composition of units of good allocated and units of payment to the participant,
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we instead present the induced utilities. That is, we perform the arithmetic

for the participants of converting from an allocation and a payment to a util-

ity. We then map the behavior observed in these translated games (which we

refer to as payo↵ games) to a utility-equivalent decomposed game (which we

refer to as allocation games), and perform our analysis as if the players had

chosen their actions in the allocation games. Notice that, for any given payo↵

game, any number of utility-equivalent allocation games can be constructed.

As we will see, this allows us to repeat our analysis for di↵erent games and

even di↵erent valuations using the same set of observations. We provide a

more detailed explanation below.

3.3.1 Allocation Games

We first define an allocation game in which each action profile maps to an

allocation profile x 2 Rn and a payment profile p 2 Rn. Player i’s utility is

quasilinear, with ui(x, p) = vxi+ pi, where v 2 R is i’s valuation for the goods

being allocated. The valuation v is a common value and is shared between

agents.

An allocation game has a corresponding payo↵ game, a normal form game

in which action profiles map directly to a scalar utility for each player, rather

than being specified via a decomposition into allocation and payo↵.

3.3.2 Game Construction

In our experiment, n participants play a set of bimatrix payo↵ games G. To

simulate our participants playing a set of allocation games A, we map each

payo↵ game the participant plays to a corresponding allocation game based

on an endowed valuation v⇤ of our choosing.

To transform from the payo↵ games presented to the participants to the

desired allocation games, we construct an allocation game in the following

way:

We first select an endowed value v⇤ that is hidden from the models we

evaluate. Then, for every cell in every payo↵ game G 2 G:
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1. We sample an allocation from a uniform distribution bounded between

0 and max(u(G))/v⇤.

2. We add a payment p 2 R such that the payo↵s for each player and action

match that in the original payo↵ game. Note that in our setup, payments

can be negative.

This setup resolves the aforementioned issues with presenting allocation

games to participants directly. Since only the utilities are presented to partici-

pants, we are able to abstract away from other e↵ects such as arithmetic errors

that might arise from having participants play the actual allocation game. This

setup also allows us to specify an infinite number of games for any known v⇤,

which is useful because it allows us both to reuse the same dataset for multiple

sets of allocation games, and also to specify a ground truth value with which

to evaluate model performance. A more detailed pseudocode explanation can

be found in the appendix in Section A.4.

Figure 3.1: A visualization of our allocation algorithm mapping a payo↵ game
to an allocation game

3.3.3 Experimental Details

We tested our approach on experimental data collected from participants on

Amazon Mechanical Turk. Mechanical Turk allows researchers to present par-

ticipants with human intelligence tasks (HITs) to complete. We presented

participants with a set of 24 3⇥ 3 symmetric normal form games (the payo↵

games) in which each participant played against the actions of the previous

participant. Turkers first had to complete a quiz testing their understanding

of the parameters of a normal form game before being allowed to continue in

the HIT. All participants had at least 95% HIT approval and had completed
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at least 100 HITs. The first 200 datapoints, mainly in the ordered filtered

treatment, consisted of turkers who also had the masters qualification, but

this requirement was removed as it slowed down the rate of data collection.

Previous studies have shown that the quality of work of master workers and

those with a high enough HIT approval rating are comparable [32, 33, 42].

We removed all data from participants who completed the HIT in fewer

than 120 seconds, or 5 seconds per game, as there was a high correlation

between participants who did this and responses at the end of the survey that

were either left empty or spurious.3

The payo↵ games were generated by randomly sampling payo↵s from a

uniform distribution on [0, 100]. The games were played by participants in

a randomized order. We collected additional treatments, analyzed in Sec-

tion A.1.1 of the appendix, in which the order and type of games were varied.

Participants were paid $1.50 for completing the HIT, as well as a perfor-

mance bonus based on their total payo↵s in the games. The performance

bonus was calculated by multiplying the payo↵s achieved by the participant

by $0.02, with the goal being to have all participants achieve an equivalent

wage of at least $10 an hour4 between the bonus and base payment if they had

uniformly randomized and taken the maximum allowed time of 30 minutes.

3.4 Estimation Methods

The strategic model components we consider are: Nash equilibrium, quan-

tal response equilibrium (QRE), quantal cognitive hierarchy (QCH), and no

strategic behavior. Of the strategic models, Nash and QRE are equilibrium

models while QCH is not. The non-strategic models we consider are: uniform

randomization, quantal linear4 (QL4), and no non-strategic behavior. These

non-strategic models satisfy the formal definition of non-strategic behavior

given in Wright and Leyton-Brown [50]. The parameters for each model are

thus ✓ = (✓S, ✓NS), and the parameters for each component included in our

3For example, two participants had the exact same input in the feedback field, seemingly
referring to a task in an entirely di↵erent HIT.

4All dollar amounts listed here are in USD

20



main evaluation are summarized in Table 3.1.

Table 3.1: A summary of the strategic and non-strategic components included
in our evaluation and the parameters ✓ for each component.

Strategic Component ✓̂S Non-strategic Component ✓̂NS

Nash ; none ;
QRE �,� uniform randomization ;
PQCH ⌧,� quantal-linear4 wL0,�0,
None ;

To obtain our parameter estimate ✓̂ of ✓ and v̂ of v, we performed log-

likelihood maximization with respect to v̂ and ✓̂ jointly using L-BFGS-B [6,

51]. The data passed to the analyst are a set of allocation games generated

from A 2 G|v⇤ and the empirically observed behavior of subjects from our

online experiment. To evaluate the performance of our value estimation, we

take the estimated value v̂ at the maximum likelihood estimate of each model

and compare it to the endowed value.

3.4.1 Estimation of Equilibrium Models

To estimate equilibrium models (QRE, QRE+L0, and Nash), we chose the

(v,�, �,�0, wL0) that maximized the likelihood of the empirical behavior of

the participants under the assumption that each strategic agent was quantally

best responding to the empirically observed distribution sg�i defined by

sg�i(a) =

��{j 6= i | g 2 G(j) ^ agj = a}
��

|{j 6= i | g 2 G(j)}| .

For equilibrium models we maximize the following likelihood:

logL(�, v, �,�0, wL0) =
X

i

X

g2G(i)

log
⇥
�fL0(Gg(v);�0, wL0)(a

g
i ) + (1� �)QBRi(s

g
�i | Gg(v),�)(a

g
i )
⇤

(3.1)

where v is the value parameter being estimated; � is the behavioral pre-

cision parameter; � is the proportion of non-strategic agents between 0 and
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1; (�0, wL0) are the behavioral precision and weight parameters for quantal-

linear4, respectively; Gg(v) is the payo↵ game induced from an allocation game

g and valuation v; ŝg�i is the empirical distribution of play in allocation game

g; and agi is the action taken by participant i in game g.56

The econometric approach of computing QRE by assuming all agents are

quantally responding against other agents in the empirically observed distri-

bution of actions is commonly used [e.g. 5, 10, 19, 38]. What is not common

is the simultaneous estimation of both the precision of agents � as well as the

value parameter v. The previously listed works all do a two-step estimation

method of either estimating � | v or vice versa. This is because given an

observed action si(ai) generated from a logit model which takes as an input

observed utility ui of the form ui = �v, there are infinitely many combinations

of � and value that could result in the same observed utility. This motivates

the inclusion of a payment profile p in our allocation games. Including a static

payo↵ p allows us to simultaneously estimate both v and � by anchoring � to

a specific scale; indeed we find that when constraining p = 0, our estimates

are o↵ by up to an order of magnitude (refer to Table A.9 in the appendix).

Nash equilibrium does not have model parameters to estimate. When

estimating values using the Nash equilibrium model, we approximate best

response using quantal best response with a high value of �,7 and select the

value that maximizes (3.1). This approach allows us to select a single value

that is most consistent with best response, rather than a set of values that are

consistent with all agents’ best-responding. More critically, it also ensure that

every possible action has positive probability. When assuming best response

with no error model, a single action by a single agent that is not consistent

with best response can lead to the entire dataset’s having probability 0. Under

our approach, actions inconsistent with best response will instead be assigned

a very low, but positive, probability.

5For models with uniform randomization as the non-strategic component, we do not
estimate (�0, wL0).

6We fix � = 0 when estimating models without a non-strategic component
7We used � = 100 in our experiments, as we found that both the predictive performance

and value estimate converge at precision � � 100; refer to Figure A.9 in the appendix for
details.
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3.4.2 Estimation of Poisson Quantal Cognitive Hierar-
chy

For Poisson quantal cognitive hierarchy, we estimate (v,�, ⌧,�0, wL0) by max-

imizing the following likelihood:

logL(�, v, ⌧,�0, wL0) =

X

i

X

g2G(i)

log

"
L⌧ ;0f

L0(Gg(v);�0, wL0)(a
g
i ) +

3X

`=1

L⌧ ;`QBRi(Gg(v),� | `i|0:`�1)(a
g
i )

#

(3.2)

where ⌧ is a mean parameter on a truncated Poisson distribution where the

max possible level of an agent is 3. In contrast to the equilibrium models, the

likelihood for PQCH does not treat the empirically observed distribution as the

distribution of actions being responded to; we instead find the mean parameter

⌧ that generates a distribution which maximizes the likelihood against the

empirical data. Assuming that strategic QCH agents respond to the empirical

distribution of lower-level agents would require us to estimate the levels (or

posterior level distributions) for each agent, in order to estimate which agents’

empirical behavior is being responded to; e.g., to determine what empirical

distribution is being responded to by level-2 agents, we must first determine

which agents are level-0 and level-1. This is a much more complex estimation

problem, both statistically and computationally. For this reason, we take the

simpler approach of estimating the mean parameter ⌧ instead.8

3.4.3 Utilization of Panel Structure in Estimation of
Values

In our experimental setup, we collected panel data where the individual actions

of each player for each game are recorded, in contrast to other common data

sets in which the actions of all agents are pooled together. This panel structure

allows the estimation of model parameters that are heterogeneous across agents

8We also estimated our equilibrium models by finding the optimal parameter � that
maximizes the likelihood against our data; we did not find a significant di↵erence in the
estimated v, which provides assurances that estimating against the empirical distribution
provides a reasonable approximation while being much simpler to compute. Refer to Table
A.10 in the appendix.
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but stable for a given agent i. The level of an individual agent in QCH-based

models is an example of a parameter that could match this description.9 10 If a

player’s level is the same in every game, then using a likelihood that explicitly

encodes this has the potential to provide more accurate estimates than one

that assumes that each player’s level is re-sampled before every action. (3.3)

gives the likelihood for a model with parameters ✓, a stable level `i for agent

i distributed according to Pr(`i = ` | ✓), in which agent i takes action a in a

game g with probability Pr(agi | `i = `, ✓).

log Pr(D | ✓, v) =
X

i

X

g2G(i)

log

"
X

`

Pr(`i = ` | ✓) Pr
⇣
aGg(v)
i | `i = `, ✓

⌘#

(3.3)

In contrast, the likelihood for an otherwise-identical model in which each

agent’s level can vary between games is given by (3.4).

log Pr(D | ✓, v) =
X

i

log

2

4
X

`

Pr(`i = ` | ✓)
Y

g2G(i)

Pr
⇣
aGg(v)
i

��� `i = `, ✓
⌘
3

5

(3.4)

When running our analysis on synthetic data we find that the likelihood of

(3.4) is more numerically stable than that of (3.3), while returning a similar

value estimate. We therefore report the parameters estimated using (3.4) in

this paper. Our dataset is available for future research questions or models

that require panel data.

9This same discussion applies to QRE+L0, if we treat strategic agents as having a level
`i = 1 and non-strategic agents as having a level `i = 0.

10Our definition implies that every non-strategic agent plays a mixture over a number
of level-0 decision rules. However, one could also imagine a definition in which there is a
population of non-strategic agents, each using a single level-0 rule. Under this assumption,
the assignment of decision rules to agents could also fit this description of a heterogeneous
but stable behavioral parameter.
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Chapter 4

Results

Our evaluation finds that models with a rich non-strategic component perform

better in value estimation from behavior in initial play than those without a

non-strategic component (e.g., Nash, QRE) or those that model non-strategic

agents as uniform randomizers. Additionally, we find that models that include

a strategic component perform better at value estimation than those that

assume that all agents are non-strategic, but the choice of strategic model is

not as important as the rich non-strategic component in a given model.

4.1 Evaluation

Our evaluation considered traditional equilibrium models with no non-strategic

agents (Nash, QRE), and QCH and QRE+L0 where level-0 agents were ei-

ther uniform randomizers or quantal-linear4 agents. We evaluated each model

across multiple scenarios given v⇤ in V = [5, 10, 20, 40, 80]. For each v⇤, we

generated k = 25 scenarios where we mapped our payo↵ games to a set of

allocation games AG given v⇤.

We measured each model’s value estimation for each scenario using relative

error, |v̂�v⇤|
v⇤ . We chose to normalize the error to account for the di↵ering scale

of values in V . The value estimate for each scenario was evaluated using using

the mean value estimate of 10 rounds of 10-fold cross-validation, with the test

set being used to evaluate behavioral prediction The mean value estimate for

each scenario are distributed according to a Student’s t-distribution [e.g. 46].

We say that one model performs better in value estimation than another when
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Figure 4.1: Summary plot showing values of v⇤ vs. the relative error. The
two left-most points for all values of v⇤ are models containing both a strate-
gic component and quantal-linear4 as the non-strategic component; the green
point indicates a model that assumes all agents are non-strategic in a quantal-
linear4 manner with no strategic behavior.

the 95% confidence intervals do not overlap.

Figure 4.1 and Table 4.1 show the performance in value estimation across

models, with Figure 4.1 being a visualization of the data in Table 4.1. Behav-

ioral models with quantal-linear4 as the non-strategic component outperform

classical equilibrium models in terms of value estimation across every endowed

value v⇤ that we evaluated. We find that using quantal-linear4 as the non-

strategic component outperforms corresponding strategic models which use a

uniform non-strategic component, regardless of the choice of strategic model.

This leads us to conclude that modelling non-strategic behavior is more im-

portant than the choice of strategic model. Note, however, that None-QL4

does not perform as well as PQCH-QL4 or QRE-QL4, which suggests that a
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strategic component in the model is still necessary. Another observation is that

models containing QL4 remain stable across values of v⇤; the mean relative

error for QL4 models varies at most by 2%, in contrast to classic equilibrium

models or uniform non-strategic augmented models in which the relative errors

di↵er by an order of magnitude from each other depending on v⇤. This leads

us to conclude that QL4 leads to a more reliable estimate of values.

We further demonstrate the importance of obtaining accurate value esti-

mates in Table 4.2. We first obtain an estimate of ✓ and v on half of the

games in our dataset (m = 12). Using the estimated value v̂ and behavioral

parameters ✓̂, we then predict the average subject welfare on the remaining

half of games that were held out. We then compute the relative error of the

predicted welfare against the empirically observed average welfare of subjects.

This evaluation requires a model to be accurate in both its estimation of be-

havioral parameters as well as that of values; a model with an accurate value

estimate but a poor prediction of behavior would perform poorly, and vice

versa. PQCH-QL4 and QRE-QL4 once again perform the best at this task,

with Nash being noticeably poor at welfare prediction, especially at lower val-

ues of v. This pattern persists across models; welfare estimates are worse for

lower values of v⇤ compared to higher values, albeit at a much larger scale for

Nash and for models with a uniform non-strategic component. The final note

here is that QRE-None outperforms QRE-uniform across the board, which

shows that a level-0 model is not su�cient to improve performance: a rich

level-0 model is necessary.

4.2 Contribution of Strategic vs. Non-strategic
Components of the Model

We attempt to quantify the contribution of quantal-linear4 to the observed im-

provement in value estimation. We compare the cross-product of our strategic

and non-strategic components as discussed in Chapter 3 and find that QL4

outperforms any of the other non-strategic models considered. In addition

to comparing quantal-linear4 and uniformly randomization, in this section we
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Table 4.1: Relative error by v⇤, with confidence interval in parentheses. Bold
cells indicate best performing model for each v⇤. Italicized cells indicate models
which are not significantly di↵erent from the best performing one. QRE-QL4
indicates a model in which a fraction of agents are behaving non-strategically
in a QL4 manner while the remaining agents are in QRE with themselves
and non-strategic agents. None-QL4 indicates a model in which all agents are
behaving non-strategically.

Component v⇤

Strategic Non-strategic 5 10 20 40 80

Nash none 10.41, (8.01, 12.8) 2.88, (2.06, 3.71) 0.64, (0.44, 0.83) 0.29, (0.18, 0.4) 0.2, (0.15, 0.25)

QRE none 0.14, (0.1, 0.18) 0.11, (0.08, 0.14) 0.11, (0.07, 0.14) 0.13, (0.09, 0.17) 0.1, (0.07, 0.12)

QRE uniform 8.27, (5.14, 11.4) 2.04, (1.21, 2.87) 0.37, (0.18, 0.56) 0.13, (0.09, 0.17) 0.1, (0.07, 0.13)

PQCH uniform 1.93, (0.68, 3.19) 0.32, (0.16, 0.48) 0.12, (0.08, 0.16) 0.09, (0.07, 0.12) 0.08, (0.05, 0.11)
PQCH QL4 0.06, (0.05, 0.07) 0.06, (0.04, 0.08) 0.05, (0.03, 0.06) 0.05, (0.03, 0.06) 0.05, (0.04, 0.06)
QRE QL4 0.08, (0.07, 0.09) 0.06, (0.04, 0.08) 0.06, (0.04, 0.07) 0.06, (0.04, 0.08) 0.07, (0.06, 0.08)

none QL4 0.13, (0.09, 0.17) 0.14, (0.1, 0.17) 0.12, (0.09, 0.15) 0.11, (0.08, 0.14) 0.12, (0.09, 0.16)

Table 4.2: Relative error of predicted average per game welfare by v⇤. In each
scenario, the estimated valuation and model parameters ✓ from half the games
are used to predict the average game welfare per subject on the other half
and is compared against the empirically observed average welfare. Bold cells
indicate models with the lowest MSE.

Component v⇤

Strategic Non-strategic 5 10 20 40 80

Nash none 16.81 5.42 1.75 0.41 0.30
QRE none 0.24 0.20 0.20 0.18 0.12
QRE uniform 12.96 4.26 0.55 0.16 0.15

PQCH-uniform uniform 5.86 0.52 0.22 0.13 0.11
PQCH-QL4 QL4 0.12 0.12 0.09 0.09 0.07
QRE-QL4 QL4 0.12 0.11 0.09 0.10 0.08

none QL4 0.56 0.27 0.39 0.18 0.18
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include linear4 from [47] as well as a di↵erentiable version of linear4 we refer

to as di↵erentiable-linear4 (DL4) where �0 = 1, which gives us a di↵erentiable

function with respect to v without adding an additional degree of freedom.

For each model resulting from the the cross-product of strategic and non-

strategic components, we take each of our scenarios for each value v⇤ (n =

125) and report the percentage of the time that the relative error of v̂ falls

below a threshold ↵ (i.e., the error falls within 10% accuracy). We sampled

1000 bootstrapped samples from our empirically observed data D and did this

for each bootstrapped sample, reporting the median percentage each model

falls within our threshold with the lower and upper bounds being the middle

95% of the bootstrapped estimates as outlined in [12]. Doing this allows us

to to see how well a given non-strategic component performs at recovering v⇤,

regardless of the strategic component being used in the model. The results

demonstrate the advantages of quantal-linear4, as it performs strictly better

than uniform and linear4, and outperforms di↵erentiable-linear4, although not

significantly. The results of this test are reported in Table 4.3.

There are two reasons why linear4 performs poorly as a non-strategic

model: the first is that as a non-continuous function of v, it is not di↵er-

entiable with respect to v and so our optimization procedure fails to reliably

find the value that maximizes likelihood; checks on synthetic data show that

the likelihood returned by the estimator is often worse than the likelihood at

the known ground truth value. A second possible reason is due to the lack

of quantal response in non-strategic agents; if we believe that strategic agents

quantally respond to their payo↵s, it stands to reason that non-strategic agents

do so as well. This would also be a possible explanation for why quantal-linear4

outperforms di↵erentiable-linear4.

4.3 Identification of Quantal-linear4

We do not claim that quantal-linear4 is a complete specification of non-strategic

behavior; rather, we claim only that it captures regularities of non-strategic

behavior beyond that of uniform randomization, resulting in an improvement
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Table 4.3: Percentage of the time that relative error is less than 10% across
all values and scenarios in V . Each cell corresponds to a model STRAT-
NONSTRAT with the row indicating the strategic model and column indi-
cating the non-strategic one. QL4 (rightmost column) outperforms all other
non-strategic components regardless of the strategic model. Here, the con-
fidence intervals are derived from a k bootstrapped samples of the observed
data, with k = 1000. Cells marked ”n/a” do not have a conceivable model
that elicits an estimate of values. Cells containing 0 mean that none of the
bootstrapped samples had a value estimate that fell within 10% of v⇤.

Strategic Component Non-strategic Component

None Uniform L4 DL4 QL4

Nash 0.12 (0.06 0.18) 0.10 (0.05 0.15) 0 0.05 (0.02 0.09) 0.69 (0.50 0.84)

QRE 0.50 (0.41 0.57) 0.33 (0.26 0.41) 0 0.71 (0.62 0.82) 0.70 (0.60 0.82)

PQCH n/a 0.52 (0.42 0.64) 0 0.62 (0.50 0.74) 0.84 (0.72 0.94)

None n/a n/a 0 0 0.45 (0.30 0.58)

of behavioral prediction and value estimation. Constructing a level-0 specifi-

cation that fully captures all the vagaries of non-strategic behavior is beyond

the scope of this paper. The inclusion of a richer level-0 model leads to the

concern, however, that the model may no longer be identified; if this is the

case then the estimated ✓̂ may not be unique. We argue that the tradeo↵ in in-

creasing the performance in value estimation is worth the cost of introducing a

possibly inconsistent model. The results in Table 4.2 indicate that when paired

with a quantally responding strategic component, the behavioral estimates in

quantal-linear4 provide a su�ciently close estimate of predicted behavior such

that it outperforms uniform randomization in predicting welfare.

Furthermore, we find that the estimated behavioral parameters (the mean

parameter ⌧ for PQCH and proportion � of non-strategic agents for equilib-

rium models) on the empirical dataset remain stable; see Section A.5.1 in the

appendix. Across most di↵erent values of v⇤, as well as when estimating the

behavioral parameters only, the confidence interval of each behavioral param-

eter overlap (i.e., there does not seem to be a bimodal distribution of the

parameter estimate). We also find that when we estimate only the behavioral

parameters using the payo↵ games directly, our estimates of the behavioral

parameters do not di↵er significantly from when we jointly estimate valuation

and behavioral parameters using the allocation games.
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Figure 4.2: Synthetic data: estimated behavioral parameters vs. preferences v⇤

in PQCH. Asterixes indicate ground truth parameters, with each intersection
representing the parameters of the synthetically generated dataset. We chose
� = 0.05 to approximate the precision in an empirical dataset, with the non-
strategic agents using a maxmax strategy, where non-strategic agents pick the
action that maximizes their best case payo↵. ⌧ indicates the estimated Poisson
mean parameter for the distribution over levels, which seems to be biased
upwards (likely due to it being truncated) but does not a↵ect the estimate for
v.

Finally, we generated synthetic datasets using PQCH-QL4 and find that

when the model is correctly specified, our value estimates are are extremely

close to the endowed value with a high degree of confidence. While the behav-

ioral mean parameter seems to have a slight upward bias, it still falls within

the neighborhood of the ground truth mean parameter. These results are

summarized in Figure 4.2.

4.4 Alternate Treatments

We summarize the results of our experiments on alternate datasets below.
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4.4.1 Evaluation of ALL10 Dataset

Figure 4.3: Summary plot showing values of v⇤ vs. the relative error for the
ALL10 dataset. As the number of samples for ALL10 is significantly smaller,
the confidence intervals are correspondingly wider, especially for models with
UNIFORM as the non-strategic model

We evaluated our experimental setup on the set of 86 3x3 symmetric games

in the ALL10 dataset from [17] and find that the relative error is similiar to

that of the data collected in our experiment1. Notably, the ALL10 dataset

contains many fewer subjects per game (40  n  147) and so the confidence

interval of the value estimate ends up being much wider when there is no rich

non-strategic model2.

1An additional 2 treatments are available in [17], but the games are not symmetric and
information about only the row player actions is included. This means our method of
computing QRE cannot be done on the data and so we did not analyze them.

2The All10 dataset also only contains summary of player actions instead of panel data,
which means that we are only able to take the pooled approach in equation 3.4
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4.4.2 Di↵erences in Alternate Treatments

As mentioned previously, we collected data with additional treatments. While

there are quantitative di↵erences in the treatments, our main finding that

models containing quantal-linear4 outperform their uniform counterparts still

holds. The results for the additional treatments can be found in section A.1.1

of the appendix. The most notable di↵erence comes from the randomized

filtered treatment, in which none of the models are statistically di↵erent from

one another; additionally, the randomized filtered treatment also has the worst

mean relative error in value estimates of all the treatments. There are a few

possible reasons for this. The first is that the filtering of games captured

some regularity that causes some issue in estimating values. The second is

that there was a time di↵erence between the collection of the treatments, with

the collection of the data from the randomized filtered condition occurring

several months later due to logistical reasons. To test this hypothesis, we also

grouped the treatments together by the filtering condition, creating a combined

filtered and combined non-filtered treatment respectively, and find that our key

findings remain consistent across treatments, providing reassurances that our

approach should work across di↵erent types of games. We examine a possible

reason for the di↵erence in relative error estimates in the following chapter.
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Chapter 5

Theoretical Results

In this section, we present a preliminary theoretical analysis on the error in

recovering the value from quantal response behavior. We provide an analysis

on what makes an individual allocation game well or poorly suited for value

estimation. This drives an empirical exploration of our collected data and

provides a possible explanation for the di↵erence in the errors of our value

estimates between the filtered and non-filtered conditions.

5.1 Bounding the Error in our Value Estimate

Given our estimation approach, we want to bound the error we would get for a

given number of samples. We find that having a large di↵erence in allocations

is key to bounding the error in our estimate of the value.

Our analysis is based upon a previous work. We start from the following

lemma taken directly from Haghtalab et al. [21]:

Lemma 1. Let D̂ be the empirically observed distribution of actions based on

m = ⌦( 1

⇢✏2 log(
n
� )) samples, where ⇢ = poly(n), and n is the number of actions

available within a game.

With probability 1� �, for all actions i 2 A, 1

1+✏  D̂i/Di  1 + ✏.

Assuming a quantal response model, we know that each probability is gen-

erated according to:

Di =
exp(ui(v))P
i2A exp(ui(v))

(5.1)
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where ui(v) is the utility of action i given valuation v. The ratio between any

two actions i and j therefore follows the relation:

ui(v) = ln
hDi

Dj

i
+ uj(v) (5.2)

By construction, we know that the utility of an action i takes the form:

ui(v) = �(xi · v + pi) (5.3)

Here, we make a simplifying assumption and only consider the utility of an

agent for a given action, holding the actions of the other agent(s) constant.

That is, ui(v) = f(A(v), s�i), but we suppress s�i by converting f(A(v), s�i)

to xi and pi, converting this to a single agent problem.

Substituting ui(v) and rearranging in terms of v, we obtain:

v =

1

� ln
h
Di
Dj

i
+ (pj � pi)

xi � xj
(5.4)

We note that as the ratio Di
Dj

changes based on the empirically observed

distribution of actions, the estimate of v becomes more inaccurate as D̂i

D̂j
gets

farther from Di
Dj

; that is, inaccuracy in our observation of D leads to error in

the value estimate. The error in our value estimate is then:

|v̂ � v⇤| =
1

� ln
h
D̂i

D̂j

i
+ (pj � pi)

xi � xj
�

1

� ln
h
Di
Dj

i
+ (pj � pi)

xi � xj
(5.5)

= ln

"
DjD̂i

DiD̂j

#
1

�(xi � xj)
(5.6)

= ln

"
DjD̂i

D̂jDi

#
1

�(xi � xj)
(5.7)

from Lemma 1, we know that D̂i
Di

 1 + ✏:

 ln(1 + ✏)2

�(xi � xj)
 2✏

�(xi � xj)
(5.8)

where the last inequality comes from the inequality ln(1 + x)  x for all

x 2 R
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We now have an upper bound on the maximum error of the value estimate

given the analytical estimate; the question is whether this bound is also an

upper bound on the MLE estimate. We conjecture that it must be as the

analytical estimate only takes into consideration two of the observed distribu-

tions while MLE takes into account all of them. Without loss of generality,

let Di > Di+1. We run an empirical check using D̂1 and D̂2 (that is, the 2

most actions with the highest observed probability), and find that the MLE

estimate is within the bound in equation 5.8 a large percentage of the time. A

final note is that as the ratio between D̂ and D is reliant on sample size from

Lemma 1, a given allocation game which does poorly in estimating an agent

value could still produce an error within ✏ with a larger number of samples.

Proposition 2. For a given distribution D̂ with ✏ = argmaxi2A
D̂i
Di
, a mapping

of a payo↵ game G to an allocation game A will have a lower relative error

when xi � xj is larger.

5.2 Empirical Results in Treatments

Table 5.1: Percentage of the time the absolute relative error is lower for the
scenario with the highest minimum allocation di↵erence vs. the lowest mini-
mum allocation di↵erence.

v⇤ Randomized non-filtered Randomized filtered

5 0.83 0.83
10 0.83 0.66
20 0.88 0.75
40 0.75 0.63
80 0.625 0.75

We next attempt to empirically verify Proposition 2 on our collected data.

We find that the minimum apple di↵erence in the payo↵ games (and therefore,

for the corresponding allocation games) a↵ects the error in the value estimate.

Table 5.1 shows that across all k = 25 scenarios, the scenario with highest

minimum allocation di↵erence has a lower error than the scenario with the

lowest minimum allocation di↵erence a large percentage of the time. Here, we
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obtain the utilities for each action by weighting the allocations and payments

of each column action by the empirically observed distribution.

We conclude this analysis with the remark that this only investigates the

relation in error between an observed distribution produced by quantal re-

sponse and the resulting error in a linear utility function. We know the model

must be inconsistent, and do not attempt to analyse the error induced be-

tween the di↵erent models we compare. We also do not attempt to quantify

how jointly estimating a shared v⇤ across multiple games a↵ects the error esti-

mate. The results from Table 5.1 as well as Proposition 2 o↵ers some insights

into the problem. First, for a given observed distribution, it seems that for a

given ✏, increasing the di↵erence in allocations between actions improves the

chance of getting a better value estimate. Second, having a low di↵erence in

actions (or a high ✏) could be overcome by having a su�cient number of sam-

ples. Finally, a decrease in � leads to a corresponding increase in the upper

bound of the error. One thing that remains unclear is the e↵ect that payments

and the endowed value v⇤ have on the error in the value estimate, which is

worth further investigation. In regards to the randomized filtered treatment,

this analysis provides a possible insight. Supposing that the filtered treatment

produced allocation games which had some regularity that required a larger

number of samples, whereas the ordered filtered treatment had a larger num-

ber of samples (n = 303) that could overcome this regularity, the randomized

filtered had a number of samples closer to the other treatments. The fact

that the combined filtered treatment which combined both filtered treatments

o↵ered an estimate closer to that of the ordered filtered one rather than the

randomized filtered one lends further credence to this theory.
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Chapter 6

Conclusion

6.1 Conclusions

This thesis examines the benefit of using behavioral models for value estima-

tion. Behavioral models typically include parameters that must be estimated

from the data. Using a novel experimental design, we demonstrate that esti-

mating these behavioral parameters simultaneously with value parameters is

feasible, and leads to more reliably accurate value estimates from initial play

than models based on the standard strong equilibrium assumption.

We introduce a new specification of level-0 behavior called quantal-linear4,

and a new behavioral model called QRE+L0 that extends quantal response

equilibrium to settings that contain non-strategic agents, who are responsive

to their own preferences but do not reason about other agents. Our results

show that models that include a rich level-0 specification perform better at

estimating values from initial play. These results strongly argue for the im-

portance of explicitly modeling non-strategic behavior rather than treating

it as noise, especially in contexts such as initial play in which equilibrium is

unlikely to have been reached.

6.2 Future Work

There are a number of directions in which the work in this thesis could be

extended. We made a simplifying assumption that all agents shared a homoge-

neous value, but an important future direction would be to estimate individual
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agent values. Further to this direction, we could extend this work to estimat-

ing individual behavioral parameters of agents. This would allow us to better

optimize individual welfare, in addition to modelling di↵erences in behavior

based on hetereogeneous beliefs about the values of others. As previously

discussed in Section 3.4, we could also extend the approach of responding to

empirically observed distributions towards models of iterated reasoning, which

would allow us to move beyond needing to specify a distribution over levels.

Using our framework of separating models into a strategic and non-strategic

component, expressed by QRE+L0, we could examine other models of non-

strategic behavior (for example, the model proposed by Fudenberg and Liang

[17] could be used as a non-strategic model) beyond those discussed in this

paper. This could take the form of extending QL4 to be more predictive, or

evaluating domain-specific models of nonstrategic behavior.

Finally, a surprising result was the di↵erence in value estimates between

treatments. Given these games had distinct higher level strategies, we intu-

itively believed that it would be easier to estimate behavior and, by extension

infer preferences from these games. Further expanding upon the analysis in

Chapter 5, we could investigate how jointly estimating one value across sev-

eral allocation games a↵ects the error, or how di↵erent models of non-strategic

behavior a↵ect the error bound.
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Appendix A

Appendix

A.1 Additional Experimental Details

A.1.1 Results for Di↵erent Treatments

When conducting the data collection process on Mturk, we varied 2 conditions

for a total of 4 treatments.

1. We chose the payo↵ games according to two procedures. In the first

condition, we used randomly-generated payo↵ games with no further

filtering. In the second condition, we only used randomly generated

payo↵ games for which no level-k strategy was similar to the level-(k�1)

strategy, when any of the linear4 decision rules were used as a level-0

strategy.1 We refer to the games from the first condition as the unfiltered

games, and the games from the second condition as the filtered games.

2. In the “ordered” condition, we showed all payo↵ games to the partici-

pants in the same order. In the “randomized” condition, we showed the

payo↵ games to each participant in a randomized order.

The results reported on in the main paper are that of the nonfiltered ran-

domized treatment.
1Our motivation for the filtered procedure was to enable the estimation of the parameters

of the cognitive hierarchy behavioral model for individual participants; however, this proved
to be infeasible under realistically small values of the precision parameter �.
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Figure A.1: Summary plot for randomized filtered treatment

Figure A.2: Summary plot, ordered
filtered treatment

Figure A.3: Summary plot, ordered
nonfiltered treatment

Table A.1: Relative error by v⇤ on randomized filtered treatment

Component v⇤

Strategic Non-strategic 5 10 20 40 80

QRE none 0.30, (0.23, 0.37) 0.24, (0.17, 0.31) 0.19, (0.13, 0.26) 0.24, (0.17, 0.31) 0.18, (0.13, 0.23)

QRE uniform 0.35, (0.24, 0.47) 0.22, (0.15, 0.30) 0.22, (0.12, 0.32) 0.23, (0.15, 0.32) 0.19, (0.11, 0.27)

PQCH uniform 0.16, (0.11, 0.22) 0.13, (0.10, 0.17) 0.15, (0.11, 0.18) 0.19, (0.13, 0.25) 0.10, (0.06, 0.14)

PQCH QL4 0.16, (0.12, 0.20) 0.15, (0.10, 0.20) 0.18, (0.14, 0.23) 0.18, (0.14, 0.21) 0.12, (0.09, 0.15)

QRE QL4 0.17, (0.12, 0.22) 0.17, (0.11, 0.24) 0.21, (0.15, 0.27) 0.16, (0.12, 0.20) 0.13, (0.10, 0.16)

none QL4 0.22, (0.18, 0.26) 0.17, (0.12, 0.22) 0.20, (0.14, 0.25) 0.16, (0.12, 0.19) 0.13, (0.10, 0.16)
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Figure A.4: Summary plot, com-
bined filtered treatment, n = 484

Figure A.5: Summary plot, com-
bined nonfiltered treatment, n =
364

Table A.2

Component v⇤

Strategic Non-strategic 5 10 20 40 80

QRE none 0.22, (0.18, 0.26) 0.14, (0.09, 0.19) 0.15, (0.10, 0.19) 0.14, (0.09, 0.19) 0.13, (0.09, 0.18)

QRE uniform 14.60, (10.10, 19.10) 4.58, (2.91, 6.25) 1.10, (0.65, 1.56) 0.11, (0.08, 0.14) 0.13, (0.09, 0.18)

PQCH uniform 1.62, (0.63, 2.61) 0.38, (0.23, 0.53) 0.14, (0.09, 0.18) 0.15, (0.11, 0.19) 0.11, (0.08, 0.14)

PQCH QL4 0.10, (0.08, 0.13) 0.08, (0.06, 0.10) 0.08, (0.05, 0.10) 0.07, (0.05, 0.09) 0.07, (0.05, 0.09)

QRE QL4 0.10, (0.06, 0.13) 0.06, (0.04, 0.08) 0.06, (0.04, 0.07) 0.04, (0.03, 0.06) 0.06, (0.04, 0.08)

none QL4 0.09, (0.07, 0.12) 0.11, (0.03, 0.20) 0.07, (0.04, 0.09) 0.06, (0.04, 0.08) 0.05, (0.04, 0.07)

Table A.3: Relative error by v⇤ on ordered nonfiltered treatment

Component v⇤

Strategic Non-strategic 5 10 20 40 80

QRE none 0.13, (0.09, 0.17) 0.09, (0.06, 0.12) 0.10, (0.07, 0.14) 0.13, (0.09, 0.16) 0.09, (0.06, 0.12)

QRE uniform 0.13, (0.08, 0.17) 0.09, (0.06, 0.12) 0.10, (0.07, 0.14) 0.13, (0.09, 0.17) 0.09, (0.06, 0.13)

PQCH uniform 0.14, (0.10, 0.17) 0.08, (0.05, 0.10) 0.08, (0.05, 0.10) 0.09, (0.06, 0.12) 0.08, (0.06, 0.10)

PQCH QL4 0.07, (0.06, 0.09) 0.06, (0.04, 0.09) 0.06, (0.04, 0.07) 0.05, (0.04, 0.07) 0.05, (0.03, 0.06)

QRE QL4 0.08, (0.06, 0.10) 0.06, (0.04, 0.08) 0.07, (0.06, 0.09) 0.06, (0.04, 0.08) 0.06, (0.05, 0.08)

none QL4 0.12, (0.08, 0.16) 0.13, (0.09, 0.17) 0.12, (0.08, 0.15) 0.09, (0.06, 0.11) 0.09, (0.06, 0.12)

Table A.4: Relative error by v⇤ on combined filtered treatment

Component v⇤

Strategic Non-strategic 5 10 20 40 80

QRE none 0.20, (0.16, 0.24) 0.14, (0.09, 0.18) 0.12, (0.08, 0.17) 0.13, (0.09, 0.17) 0.12, (0.08, 0.16)

QRE uniform 13.96, (10.22, 17.69) 4.02, (2.51, 5.52) 0.80, (0.41, 1.20) 0.12, (0.09, 0.16) 0.12, (0.08, 0.16)

PQCH uniform 1.56, (0.65, 2.46) 0.44, (0.06, 0.83) 0.15, (0.10, 0.20) 0.16, (0.12, 0.21) 0.11, (0.08, 0.14)

PQCH QL4 0.11, (0.08, 0.14) 0.08, (0.06, 0.10) 0.09, (0.06, 0.12) 0.09, (0.06, 0.11) 0.06, (0.04, 0.08)

QRE QL4 0.12, (0.07, 0.17) 0.08, (0.05, 0.10) 0.07, (0.05, 0.09) 0.06, (0.04, 0.08) 0.07, (0.05, 0.09)

none QL4 0.12, (0.08, 0.17) 0.09, (0.06, 0.11) 0.07, (0.05, 0.09) 0.07, (0.05, 0.09) 0.06, (0.03, 0.08)
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Table A.5: Relative error by v⇤ on combined nonfiltered treatment

Component v⇤

Strategic Non-strategic 5 10 20 40 80

QRE none 0.13, (0.09, 0.17) 0.10, (0.07, 0.13) 0.11, (0.07, 0.14) 0.13, (0.09, 0.16) 0.09, (0.06, 0.12)

QRE uniform 1.44, (0.62, 2.26) 1.81, (0.95, 2.68) 0.31, (0.16, 0.47) 0.13, (0.09, 0.16) 0.09, (0.06, 0.13)

PQCH uniform 0.85, (-0.21, 1.92) 0.41, (0.10, 0.72) 0.10, (0.07, 0.13) 0.09, (0.06, 0.12) 0.08, (0.05, 0.11)

PQCH QL4 0.06, (0.05, 0.08) 0.06, (0.04, 0.07) 0.05, (0.04, 0.06) 0.05, (0.03, 0.06) 0.05, (0.04, 0.06)

QRE QL4 0.07, (0.06, 0.09) 0.05, (0.03, 0.07) 0.06, (0.04, 0.08) 0.06, (0.04, 0.08) 0.07, (0.06, 0.08)

none QL4 0.14, (0.10, 0.19) 0.14, (0.10, 0.18) 0.13, (0.09, 0.16) 0.10, (0.07, 0.13) 0.12, (0.09, 0.16)

Table A.6: Summary Statistics for Experimental Treatments

Treatment # Participants Avg. Bonus Avg. Total Avg. Time (minutes:seconds)

Filtered ordered 303 2.50 4.00 9:30

Nonfiltered ordered 179 2.71 4.21 9:11

Filtered randomized 181 2.38 3.88 9:31

Nonfiltered randomized 185 2.58 4.08 10:18

A.2 Experimental Details

The experimental interface presented to MTurk Workers after acceptance of

our HIT are shown in Figures A.6 to A.8.

A.3 Choosing � for Our Nash Approximation

To select � for our Nash approximation, we compared the value estimates and

likelihoods of behavioral predictions for several values of �. We choose the

lowest value of � at which both the value estimates and the likelihoods no

longer change by increasing � further. Figure A.9 shows this convergence in

both the value estimate and behavioral predictions.
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Figure A.6: The main experiment webpage presented to MTurk Participants.

Figure A.7: The screening quiz presented to MTurk Participants to test their
understanding of the task. Participants were allowed 3 attempts on the quiz
before being rejected for the HIT.

Figure A.8: The exit survey presented to MTurk Participants once they com-
plete their HIT. The second prompt directs participants to fill out the reasoning
behind their decisions.
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Figure A.9: QRE with fixed values of �. As the error stabilizes around � = 100,
we use this as our Nash approximation
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A.4 Allocation Game Mapping Algorithm

To convert our payo↵ games to arbitrary allocation games, we use algorithm

1

Algorithm 1 Random allocation game generation algorithm

Given set of payo↵ games G
Given value v⇤

for g 2 G do
for u(si, s�i) 2 g do

Sample x ⇠ U(0,max(u(G))/v⇤

Compute value p where p = u(si, s�i)� x⇥ v
return (x, p)

end for
end for
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A.5 Additional Figures and Tables

A.5.1 Behavioral Parameter Estimates

This section gives additional information on the estimated behavioral param-

eters. Table A.7 gives the Poisson mean parameter ⌧ we back out for di↵erent

v⇤ across treatments, and A.8 gives the proportion � of non-strategic agents.

Table A.7: Estimated ⌧ when using QCH-QL4, with ⌧ indicating the rate
parameter for a Poisson distribution specifying the proportion of agents of
level k.

v⇤ Combined Filtered Combined Nonfiltered

5 0.32654 (0.22824 0.42485) 0.48453 (0.32990 0.63915)

10 0.40766 (0.27434 0.54098) 0.47658 (0.32487 0.62830)

20 0.35799 (0.27176 0.44421) 0.39598 (0.24480 0.54717)

40 0.41049 (0.35996 0.46102) 0.28461 (0.15282 0.41640)

80 0.35470 (0.17743 0.53198) 0.50106 (0.32416 0.67796)

Behavioral 0.53242 (0.41462 0.65023) 0.28660 (0.27126, 0.30193)

Table A.8: Estimated � when using QRE-QL4, with � indicating the propor-
tion of agents who are non-strategic

v⇤ Combined Filtered Combined Nonfiltered

5 0.70950 (0.65445 0.76456) 0.57524 (0.45547 0.69502)

10 0.67130 (0.59895 0.74366) 0.56662 (0.46635 0.66688)

20 0.68092 (0.63536 0.72647) 0.45589 (0.40195 0.50983)

40 0.78786 (0.70963 0.86610) 0.56688 (0.52949 0.60427)

80 0.73638 (0.65591 0.81685) 0.41873 (0.39231 0.44515)

Behavioral 0.46723 (0.42931 0.50523) 0.52400 (0.49816, 0.54984)

Table A.9 shows the e↵ect of not including payments within the allocation

games. Even when using our best model in PQCH-QL4, the estimated values

are incorrect, failing to scale to the correct value, especially at lower values of

v⇤. This issue does not seem to happen in QRE, but the relative error is worse

than allocation games containing payments.

Table A.9: Raw value estimates when allocation games contain no payments
for PQCH-QL4.

v⇤ 5 10 20 40 80

PQCH-QL4 53.75, (0.63, 106.87) 77.89, (21.59, 134.19) 44.38, (15.13, 73.64) 50.98, (29.21, 72.74) 104.07, (73.05, 135.08)

QRE 6.86, (6.79, 6.93) 11.54, (11.53, 11.55) 2.05, (1.93, 2.17) 33.99, (33.88, 34.1) 89.92, (89.83, 90)
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Table A.10: Comparison of estimated v⇤ and � and � behavioral parameters
when finding the parameter(s) which maximize the likelihood (QRE Likeli-
hood) vs. computing QRE against the empirical distribution (QRE Empiri-
cal). T-distributed confidence interval in brackets

QRE Likelihood QRE Empirical

V ⇤ � � v � � v

5 0.465 (0.127) 0.869 (0.045) 4.857 (0.327) 0.244 (0.209) 0.534 (0.116) 4.922 ( 0.227)

10 0.27 ( 0.102) 0.811 (0.081) 9.801 (0.555) 0.087 (0.103) 0.447 ( 0.089) 10.161 ( 0.474)

20 0.487 ( 0.148) 0.817 (0.079) 19.857 (1.12) 0.106 (0.089) 0.554 ( 0.1) 19.629 (0.735)

40 0.389 (0.147) 0.803 (0.075) 39.17 (1.879) 0.017 (0.006) 0.504 ( 0.085) 39.011 (1.454)

80 0.442 (0.131) 0.878 (0.06) 79.194 (3.053) 0.094 ( 0.161) 0.471 ( 0.078) 78.326 (2.649)
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