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some general remarks on these classification procedures.

.~ ABSTRACT -

For statistical c1assification or.discrimination among two

metric and nonparametric classification procedures and their associated

K

probability of .correct. classification, all procedures being derived from

- a single statistical perspective namely by maximizing rather obvious

o

estimators of probability of correct classification. The study includes
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et

‘ procedures discussed in_the literature?l The problem of Discrimination,
._lof populations : The Classifrcation problem,. n- the‘other hand is
»;fconcerned with classifying a sample of 1ndividuals into groups,_which
:: virtualiy the same in.nature‘, We shall accordingly be using in the

;ment as synonyms in reference to the same classification problem. :?l«-fﬁ"

"‘reflect the. praetical situation aufficiently cloaely.7’The problem was

’lconsidered to’ be of practical importance as early as 1935 "Classifica

'iﬁg'action studieS,; eurobiological signal processing» sonar detecdion etc,;?éﬁwf'

lf.515Clinical data, such as electro—cardiograms and electro-encephalograms ;jfﬁ*

'-_can also be analysed and classified using classification techniques.,‘y

.arises sre..5<'“

o~ "

o o . ) .\‘. ) --P . ] . - N o .
Joven  GHARIER T UL oo e

~.Introduction R

N

R

The object of this study is to look into and present certain

1gspects of the classification problem, including Various classification

Y

or also knownras the Identification problem, concerns itself with B
.\ . .

correctly allocating an individual into one of a specified number ’kf" e

C

-

_:are to be distinct in some se e. These two problems basicaliy are

"}fsequel the terms discrimination [ allocation / iﬁentification / sssign-flnifff

In principley/the classificationfprobiem is one of the- 57

| fsimplest‘én statistics. in practice however, itlhas_a 1arge number,of-L o ‘l{ﬁ

'snags, largely because the assumed theoretical model does not alwaysi

;%tion" has application in medical diagnoais and treatment, in drug'inter- V,Lb :

L

’ '_;Besides medical problems, other familiar inatances where such a probl,g;j;j




,L'j; basis of the fOundations,laid by Neyman and Pe,rson in\

'Vthe possibility of an individuai belonging to an unspec fied population,
’l;'as for example, when a biologist discovers a member of %; n

' this connection, Srivastava [1973] proposed the "step—df,i

N
.o
T

N

" or jawbone, - ,' ) gi‘,” j,ﬁ::!

(ii)k.When a taxonomist is assigned the problem of class‘i‘

8

. ?Iganism into species or SUbSPECies, .:T,_,y

(iii) Authorship of a disputed article, etc... g';vwi o

A

.‘ﬁef' f c,".»Among the Well-known classification procedures devel'ped» are. g;\vb

4 .

the theory of

e

':itesting of hypotheses.. Subsequent authors made many retinements giving
5 : /y iy
. different classification statistics Rao [)969], in hiszpaper, considers

the extended formulation of the_ classification problemlthat reCOsniseg f¢fﬂﬁ5:

. , . ’, l

" .

L

'h'ffor classification into one of two multivariate normal populatiogs.f~

'ofRelatively 6éry 1itt1e has been done in the area of multiple*lroup dis~ub

dncrimination., Only recently, Lachenbruch [1973] mas proposed two methods ,:

”iﬂfﬁtion has been studied in detail by Dunn and Varady [1966], Hills [1966].;”

o LIn this connection, amons others tbe papers bY'G11°k [1972] and Lachen- o

'-'ffor classification into one of several populations and has studied their.jgjn_;é
o relative performance.r The estimation of probabilities of misclaagifica-}lz{Vﬂ‘,

.’erCh and Mickey [1968] should be mentioned ‘iﬂ}fT:vyif




“In Chapter II We give a detailed account of all axailahle .

major parametric classification procedures . Section 2.2 deals mainly
/ ) .
,}/ with rules of classification intq known distributions, including the o

/
i well known Fisher s linear disgriminant function rule and Mahalanobis i L
/ s =

},igeneralized squared distance rule. Sample-based glassification rules are C B

dealt with in Section‘2 3. These arise when the distributions -are.. not e
' 'specified completely and information on them is to be obtained from the = L: é/

;¢;,/~f/ ples | The chapter includes expressions for the Optimal probability ;Td..v L
of correct classification. A review dfﬁfhe literature dealing with theseﬁ

g gclasq&fication rules and the associated probabilities of mfaziassifica-E/‘:

:A‘tion is also given f “,,b_ﬁf_;*r'h T_{.”.Th-Qj:;fg'~“

Chapter III deals with the non—parametric classification
. iiproblem The required estimation of probability density functions in
:_1such problems has been discussed in detail under section 3 2 The ptob- _i}:«?fh»

i'lem of density estimation has received attention only recently in the

' jliterature. Fixedeindow density estimates were suggested by Parzen :i‘“,

(’\

"si[1962]gnd Cacoullos I 56] The section includes Loftsgaarden and

A -
7 S

"fQueséhberry 8. [1965] fixed view density estimation method as well
S fiSegtion 3. 3 different non—parametric classification procedures availa—begq A

o Able in the literature are discussed. These rules include the nearest ‘Jfg”i

"*xneighbor rule suggested by Fix and Hodges [1951], minimum diatance ffflli f:iﬁw’f&

.'.ffclassification rule as suggested by Das Gupta [1964], the best-couht RN

e rule proposed by Glick [1969] and a: few others.-ijﬁf~,]7.f"

Chag{:: IV deals mainly with the mathematical proofs oi vari_jw U



! t ' . ’ ’

non-parametric classifidation proc_'e-duresi, and the associated probability

of corr'éc't classification. .

!

" Finally, in Cha_pf:e-r V, we make some general remarks on Classi~

N

'fiéation" &_heofy which may bg'- of* iniportaix¢e in applications and further

s

I

regearch fwork. ~, - ' o x

o0

(Fof computat_ionéli _exémplés,‘ see Appendix I1.)



< o  CHAPTER II -

Parametric é&assification”f' -
. B : . S o }

™~

In this chapter, we introduce some major parametric rules of

. clas%ification into known distributions and sample—based classification

rules. - ~All these rules assume the existence of underlying densities,
LI .

with parameters known or unknown In the case of - unknown parameters,

- simple estimates of parameters prove helpful for. the construction of

o classificationAproceduﬁes.i We also study in brief the probabilities 3 l o

v

o of c0rrect classification discussed in the literature.A-

§2.1 Main.Formulations‘of the Problem. e ' S

Voo oL ,

(i) Let nl,nz,...,nk be k distinct populations (groups/cate-:

-igories/classes) Given a random sample from an. unknown population 8 f;p':f.'“
but known to be one of ﬂl,nz,...,nk , the problem of classification L
s / :

'»demands a decision, as to which one of the latter -k populations is_ m ,»f;';

2

hat is optimum in some sense.h Since‘a decision rule is a function 3?1*'
l'from the sample/space,t X ’ to the set of decisions;. 1,n2;.v;;nk , 1; i,’
5will be based upon the observation vector x ’ and the available infor--
-mation/abOut the diatributions (i - 1 2,..‘,k) " If the information
"is unspecified or‘inadequate supplementary information csn be obtained ;};f

i 5through random samples from each of the k populations- such sampies ,?fiﬁ'i*
= }being termed "training ‘samples.,;ff:tif;jfﬁs‘flgfli]f,;;' L
FARES e A e oy o

“fff}vh (ii) Suppose there is a pOpulation D > consisting of k mutually ‘

exclusive subpopulations _ﬂl,vz,,..,nk mixed in reapective proportions 'f




: (a priori probabilities) ql,qz,...,qk (qi >0 ,.l <’ii< k 121 q = l) , .
known or'unknown.< An individual selected at random from r may be

‘ reg;rded.as.a.random vector <1, x> t where I denotes the individual s ‘
group, and X isrthe p - dimensionel vector: of measurements. For the

units to be classified, - I is unobservable, but X can. be observed

The problem of classification amounts to making an inference on the value

'of \I from the knowledge of X . The diatribution of I ‘is over the
Y e

{1,2,,..,k}°f’ The problem willfbe termed as the "known mixture or -

-"unknown.mixture"_problem according as,the‘distribution “of I .is-knOWn_

or -unknown.

‘In’ constructing a. classification procedure,_it is desired to .

v;minimize the expected losses or . the probabilitieg.of misclassifying an _l

Y.

individual A procedure which achieves this minimum 1is called the

_"bestv'or optimal" procedure. IR ‘%f

/‘*
Remarkfz l In the preceding formulation, oue may consider, more gener- ~

ally,‘ I as a continuoue or discrete variable with a physical meaning,_
: b - . .
and the population ,

corresponds to I e S where l’ ,f.rgsi ‘,

- 1. £7
’?is a partition of the . I - space.» Marshall and Olkin [1968] include

o

;the decision of observing T along with making k decisione in their :\:75

. formulation. g;iu" f”:‘jj “-i_fi' g '_;ml?w.
el T ERE I SR CE S R
";,l* | ST R 5
S e R SR
) B RN
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Al

‘Jct Rao [19]3] section 7d 3 )

. ment vector X =-x , into the ith population if and only if the

.7;,’,/ »
N oLt
1

§2.2 ‘Classification into Known Distributions.

»

'2.2.1 . Bayes Procedure.

4

-~

‘Consider the formuletion (i1) of section 2.1 with Fqi's
(1<1< ﬁ)- . known. On the basis of. the observed X.= x , a décision,

optimum in the sense described in section 2.1, has to be reached’ about

.sthe membership of the individual in one of Akv‘specified populations,

The probabilistic structure may be speéified'by_

_—

BT

ii k:A, XGX o

1A

Plx<x|I=i] = F (x) , 1

: A nonréndomized decision rule _D consists of ‘the partition -

’of the : sample space X into k mutually exclusive regions

1, 2,...,Dk s with a rule which assigna ‘an individual, with measure—

a .

-8

observed X'€ Di , 1 e l,2}r;;,k; . Let De 'denote‘the‘collection of -
all'clasSificatidnjrules.

Since the number of decisions (classifications) is finite,

J(-.attention may he restricted to nonrandomizéd decision rules \ Ittds well

»

"randomized and nonrand&mized rules are essentially the same. (For the

'f‘definition of the randomized rules and the proof of this aasertion. see

.“. r"

. l QJ . .

.._('

. known that, in a finite decision problem the optimal solutions for the f" '}'



o

’associated with D, is S

a2y o) = Zq

,

t f,f,),...,f denote the probability densities of

Fl,Fz,...,F.k respectively, with respect toa @ - fini:e messute :u ._”

Suppose furthé%, that a loss, j(>0) , 1is inourred in assigning an

Le

individual from.the ith populatipn to the ‘jth population. A loss ! -

- ™ . .
function which assigns 0 loss to correct classification, and’unit loss

\

to any misclassificaé&on, 1s called a simple loss function, i.b., for a
. , ,,\\ :
simple loss function ’ o ‘/' Q /
Y o o o B
. O‘. ifl . vi - Jvf'
™2.1) C,p =8 ¥
' 1 if 13 .

. 4
For a nonrandomized rule, the expected loss in applying a

) -

given»rnle D, when in fact the individuals belong to the ith popula-'.

tion is

N

L = [ | (x) dU(x) y - i:"ltZ’;"’k i-t
1 j&/ D ij 1 E A
’ - j : : . . o B n“;;ﬁ'

'Knowing the prior probabilities q; ,“&>< i < k K the ex ected 1oss of
i P

incorrectly classifying an individual from the mixed population F
t R e -{‘_ j .

.

B

i=1 ..' o ::!.'-‘_"

. ‘ k h g . ‘ o o o d
= {—._J gy6d a}
) .jél i Dj_\'ji‘ L _\

where



(2.2.3)

this Bayes rule D ia exp

" the maximum is attained o

4The'optimal_rule is
T e v

1 k '
g,(x) =~ ) q . E (x)
..j . '1§1 i ij

[}

is the so called jth 'discriminantAscore of an individual, 1 < jlg k

Define by 'y(x)_.the maximnm‘of'the discriminant scores:

(2.2.4) . . . Y(x) = max g (X)
o 1<k J
- . * o B R .
3 { The Bayes Rule D corresponding to"a given a priori‘distribu-
tion {ql’qz""’qk} always exists and consists of assigning“an indivi—

dual to that population for which his discriminant score, defined by

,(2 2. 3) is the highest.l (For a proof, gee Rao [1973] p. 493 result (i),-

'or Anderson [19525 section\ﬁ 6. ) An optimal partition corresponding to

. "*'?“
sible as. D - {Dl /Dy ,...,D } where

(2.2.5). Dy ={xeX :vgj(x);-— Y(x)}. _1 LIk

’
l

Ties ‘may be resolved arbitrarily, e, g., specify a uniqﬁe partition by

_ taking X € Dj ' f and only if j is the smallest integer for which

A A

l As a. partio&}ar case, consider the problem of classifying an

individual into one of two, specified populations°’ i e., k - 2 .,:. '

the preceding arguments, the classification problem amounts to determin— »

v
ing two:regions, 'Dl and D2 v, which minimize the expected loss (2 2 2)



10, -

.
- ‘ f'(x) : :
* P D
Dy ={xek: £,(0) > c} R
' (2.2.6) T 4 _
a f (x) , . T
] D, ={xe¥X: < ¢} o e co
-t w2 ' f (X) > ™ .ﬂ:;"\‘-;‘-‘lv o R
. Sud et e e pd
where C= E——a— deperds on the relative losses of misclassification
1271 3 ' - - ' S ‘

.. and the prior probabilities. The‘case when f (x)3=’c f’(x) can be
resolved in some arbitrary manner, such ss flipping a coin and deciding

thst an individual comes from U1~ or T

T, according as the coin shoqp X:'

a head or tail. *

Remark 2.2,'(1)"Lst "p" = dnf, p(D) :
S - : DeD
Then ‘the. 0ptima1 Bayes Rule " .1s¥the one which mininizes

p(D) ; i e.. the Optimsl Bayes rule D : satisfies C

~ Q(Df) é-pfi"f:.{:e.

- S S s
We call p°  the Bayes risk.. ~ - 'éé; _

o

(ii) in-msny prscticsl‘oroblens,-it is difficult“tofsssesst-"'
L P .

.the losses due to wrong classification._ In such csses, simple 1oss ;Qtf“l*' ‘;1

fstructure is assumed and Li (2 2 2) represents the expected proportion

of wrqng identifications for individuals of the ith population. So
‘fthe cjzierion of minimizing the probabilities of misclsssificstion nay
"'serve the purpose, and gj(x) » the jth discriminant score defined by

Y
'5(2 2 3), reduces to .




-k N
(X) = - Z q, £,(x)
4 j B ("3 | 1 'i
TS
k

N .--121qi i(x)+q;1fj(x) |

miconst + gy £,G) ,

-

'ile,_got this purpose,’ QS(X)‘ﬂmay;simply beideﬁined ss ,qufi(k)'..j"t )

2.2;2. gigimsx Rulé.:;f: “;1 m‘.Ziiiix;.ﬁtj“p;i:.’:Hfiiﬁ}':Jﬂi;ptgrpﬁl.gi..‘fé
In the precedins section, the formulation (ii) vﬁ; SN
considered with the qi 's ’ 1 < i < k X known., It vas seen thst the
optimal Bayes rule D depends upon the prior probabilities Vﬁl.b |
"ql,qz,...,qk In most instances of classification problem, prior '
_-probabilities ql,qz,...,qk are not kﬂbwn to the statistician. vRaéﬁxpi_
._7[1969] has suggested the maximum likelihood method for estimating these ‘
lqi 8., 1 < i < k .‘ Such a problem of unknown prior probabilities srises, '
' ffor example, in the case of differential diagnosis of disesses, where "t7=.
the disesses msy exhibit seasonal variations.‘ It is not possible, in ff“

[N

.'such cases,\to implement an optimal rule that minimizes the expected
:loss -'Instesd, one minimizes the maximum risk This criterion is the
-5so-ca11ed Minimax Criterion.~ The determination of such .a rule, even if
‘iit exists, may be difficult.- But there exist situations where*a deci-‘*:;l"
7?':sion rule may be identified as a minimax tule‘ It hss’been proved that
minimax procedures are Bayes solutions with respect to a least fsVourajxpn;

. «;'.

fble a. priori' distribution, and the minimax risk equals the so called

SRR AN




12.

: / , ’ - . : ‘ ..‘. - | ) ] \ P

. maximum Bayeslrisk More generally, if there exists no. such prior
distributuion but only a sequence for which theafayes risk tends to ‘the .
maximum, then the minimax procedures are limits of the associated ;.h

. sequence of Bayes solutions (see Lehmann [1959] p 17, or Rao [1973] p

.(‘
496) O

Coa T

L .

242}3“Linear Discriminant Function"Rule:“ '
The linear discriminant function rule (LDF rule), for classi-"::
, fying an. individual into one of two multivariate normal Populations with__? o
'_the game covariance matrix, vas first introduced by Sir Ronald Fisher in‘*'-
1936. Fisher 8 idea was the basis for most of the research in multi— ”:l

ok

) Variate statistical classification'theory. The method of finding discri-_:gmff

[

,minant functions in arriving at test criteria for classification pro_'(fbff

'cedures has been found extremely useful in multivariate analysis.,}- if

Suppose the Populations have multivariate normal digtributions ;*"*-
with the same covariance matrix t_, but different ﬂean vectors. Iheft HV* e

. ith denaity (i-l 2) is given by

' _",.]'f‘:’f /e SR EETRE L S e : St
._Vhere7 u(i)' (i-l 2) denotessthe mean vector of the two populations,_”_
5 fThe ratio of the densities is i"h‘,i;d?bllfliefiif;.ffffﬂf.liél i

/ *f’(x>' e (- S ‘1)) t (x u‘1’>3 .

g (x) e {-'—(x~u(2)) t (x (?))}

v‘_r(zlz;?) e ‘b
S et ~w<u“>> z <xu<1>> (x-uw).,



13,

. Invoking the Bayes classification procedure for the caFe k = 2
(see (2 2 6)), the region of classification into "1 ; D1' ,. is the set
'-of X’ for which the right hand side of (2 2. 7) is greater than C . o

The monotonicity of the logarithmic functiOn yielas (by reartangement),“ :

. ,.tu (?;2.8)*' i'f. :Di%f?.{x'e'x- U - x. t.l( (1) (2))
z(u(l) (2)) t 1(11(1) (2)) s 108 C} f(
- The first tetm, X' f(l'f(l)_SKZ))” 19 the we11~known Fisher 8 linear Y

vtdiscriminant function, a function linear in the components of the obser—_ﬁ» ,jff
“ljvation vector X S
In the speciel case in which the twom:opulatione are equelly

",-111ke1y, and the 1osses due to misclassificationlfre equal C - 1 (see

- (2 2. 6))’ and 108 C - 0 . Then the region of classification into ”1 v‘t¥"”:

‘equal This demands the knowledge of the distribution;off U

:ﬁ_7tr1buted according to N(u(l) t) When x 18 disttibutedlaccotdi”

to N(u(Z) t) ,’ U is distributed & N(--'



: “:- unequal covarf!nce matrices.f The likelihood-ratio:method can still be s

The'prbbab;iitiesfof‘m}sciassifice:iondare-(eeeﬂAndersen'[1953])e;:m~;e
EERE = PO ﬂ,éf ' f B R o
(k—a/2)//~ L2,

p(2|1) = j' ,_l_ YA/Z dy- -

e : . . ' L .

epd~ ; : o .'-. _-'-:’i" ':,: , - ﬂ ff'»i:;"kjfll_;_;ee-é”;:f>‘i_ _<\‘Hv:.'.:
ap - j. ] S gy
e (k+a/2)//‘ /“

"Thus;'fef_Fhe miﬁi@ekeeo;ueipn,'we'cﬁqose; k,“aofthat
G e i ,;yzjz“* (k-alz)//" Wy
21 =iy d3"":12 e” (7 ldy .
m/z)/r m e S ‘

;ﬁib A special representa?ion of the probability of correct claesi-‘“fvﬁ“77

fiCation by the optimal LDF rule is given 1n section.z 2 6. Marahall
.

and Olkin [1968} derived Bayes rule for the natmal populations 1n their

special set-up, pointed out earlier., Further, Anderson.and'iahadur [1962]

considered the problem when the two multivariace normal populations have f'{
o

)

: amounts to assigning an 1ndividual to that population_fo which‘hi




W

fderived the minimax rule and characterized the minimal complete class.

_they also established that among all the linear functions, Fisher 8 LDF

"influencing the decision. Consequently, all the decision rules so :4:iﬂfi,f

. _-;;Obtained ate equ:lvalent, - ST

1ﬁffication into one of several multivariate normal Populationsi?is dis-(li‘ |
":\}ifcussed in detail in Anderson [1958] The underlying idea in his approach -M
',fis the same, namely, an ordered partition of the sample space X T

}S“Ch that the expected loss is a minimum. For a detailed discussion ofl G

:-'the topic, one is referred to- Anderson [1958, pp. 147]
o 'i2i.»2f;4 _; iiin’imum n'i's',c'aace R‘ule'.-? r SRR
""~?i fication procedures it was assumed that the individual tof

;ﬁbelongs to one of the several specified populations., This assdmp‘

' realistic ixrmany taxonpmic problems such asﬂsexing of skeletal ‘remains,

_quadratic discndminant score is the highest. Anderson and Bahadur [1962]

showedthat no. 1inear discriminant function can be an optimal rule. They

e\ -
After restricting to the class of , rules based on linear functions of X K ’

A

v

minimizes the probabilities of misclassification._ Not much has been

'.studied on nonlinear discriminants subsequent to their paper.; f'f71~h3';"od

o BéﬂEEE.glé. (i) The chpice of discriminant function in the preceding _h;,
. “rdiscussions is not unique. We can always multiply a discriminaq; func-fj

: tion by a positive constant, or bias it by an additive constant withoutff'b o

3 .

(ii) The extension of the above classification problem to classi- -

'I- s‘

N

E ; -'i": ‘
"‘ . DN o

Consider the formulation (i) So far;;}n all the above clsssi

LN

.,hf



where the possibilities of identification is limited to CWO. However,;

'vwhen the external evidence is slight. the classification is subject not ;‘
onl%%tp error due to misclassifxlation, but also due to the pbssibly

derroneous assumption that it belongs to one of the Specified populations.:f”h
In order to have s better justification of the classification, the best

'i,procedure would be to first test whether or. not it belongs to one of
SRS

the given populations. Unfortunately, no such test criterion is avail— Q;Q e
'_-able. Alternatively, we find which of the k populations is nearest
or ' closest", measured in terms of some distance function, to the indi-f-ilnaﬁl“

| 'viduel to,be{class-ifiedi-'\.,,".1 IR

L

An example in which the ususl elassification approach is not

"f:;pertinent is the followinga‘. -

'f""' Suppose a relatively new langusge is to be compared With two fiﬁhxbiz
‘df,or more older languages._ The purpose is to find which of these languageg f?ﬁ;x

. N

- is most similar to the former. If a measure of dissimilarity in terms ,{“f

b'-,n'of a distance fpnction between two lsnguages is svailable, then the jﬁ;"

'bbirn,be,used.,vFor the ease of nultiVariate normal populations, Mehalsnob

"question of the.nearest to the new one 18 quite appropriate..,; o
e N T Rt 9." RN o R

A

{This leads to the question of what measure of distance shouldﬂe;ﬁi

vffigence between the populations. The divergence is giVen byh
.,‘.\ N PR . h VY . ¥ .

<zz9> i

,ri'

u."f



T gy '
variable, (aij denotes the elementq of the invcrse matrix of the

common or pooled covariance matrix, and p in ‘the subscript denotes the__‘:”

number of‘yariables used,

4 T

Translating (2.2,9)3into.matrir‘notation,‘we haue' o

T A
= Mahalonobis ethod is one of the earliest suggested distance
methods, having numerous applications in anthropometric stﬂﬁies. This i
'r} method has become a powerful tool 1L statistical and biometric research

.v' But, unfortunately, the formula (2 2 9) (or (2 2 10)) is not of muchsgie j‘iu,.f

in practice, since the computation of the inverse matrix an ' uadratic

| form in the differences of themeanvalues becomes extremely laborious’”**

PO . R

when the number of characters exceeds 4 or 5. ‘j*

As the name suggests, the minimum distance rule classifies an 3"hx

' »,'Sobservation into that population which is at a minimnm distance.u-l;'y,:”

| if;case of ties one can make a randomized decision. cOnsequently, the 3° fi;nl':ﬁ

"?called minimum distance rule classifies an observation x

- ];j bfl‘ (rwo multivariate normal populations witn cf?l;”ﬂ' 5

-":matrix lt ) according as'
_ .;g_r,=




:,: b .'.* ‘
. -‘7DJT of all classification rules.; Let ;i' {_ "1f,"4V573

2.2,5 Probability of Cortectfclassificatioh;

In the classification procedures discussed in the preceding
B

. sections, the fundamental criterion for obtaining the optimal rule was o
to minimize xhe expected loss or the probabi ities of misclassification; .
‘Given a rule D, the probability that it will correctly classify an t

-individual choeen randomly from the ith population, is

."Consequently, the probability that a given rule D will correctly
‘ o .
. | ,
: classify an individual selected at random from the mixed population F >

~is. -
(D) = ?robebility3ofAcorreCt=claesificatioﬁ,-1*".'

Z q jf W oae L e
(2.212) - W ] f' 8,0 () - (see Remark 2.2(11)).

The rule D was defined to be optimal if it minimized the
."probability of misclassification. Equivalently, a rule D is optimal

”flif it maximizes ‘the probahility of correct clasaification pver the domain ;hf}fﬁ




. . : ‘
" Then r is called the optimal probability From the above
: ‘ *
_definition, a classification procedure D is thimal if r(D) = r
.-From (2.2.5), the optimal partition D ,fis defined by_ |
. I | . ) | |
D ={x ek g =y(x®} , l<ick . o
Now,
r=r(®)= ] | , gi(x).du(x)‘o.:(see.(2.2;l2))
o ya1 Jp * 73T R X o
o j ' : N - — ' Ce
Lo L fawwe 0
(2 ‘.',?J-‘-y(x") au@x)
. I L
RPN > . / . . D' B : )
'which is an expression for the optimal probability of correct classifi— O

cation : For.. the case of two arbitrary distributions we have ) ::
Y(x) = max {g, (x),8,(x)}

—-,ls'l(x).a’g;,_(x)i]j f%—, "lgsl-o);gzpog)n Ll

N

{qlfl(x)+q2f2(x)} + ]qlfl(x) quz(x)l

.m:n-é

LT f:“llhfffilljtfiflff1%37:f'fi:51:”15f1i’ff7”

g ;ffzf'# I- (qlfl(x)+q2f2(x)) du(x) + jlqlfl(x) (l-ql)f (x)] du(x)
".ﬁi_xA, a5 _ A v LA

d g §+zf lq1f1<>‘1‘*1’fz”'dv<> \ |

NI



- §2.3 ;Saéple4Based-Clasaification Rules.

“and’ the prior probabilities qil

gfquestions arise then._; ntf R e

20,

In the case. of two multivariate normal populations with mean-

( ) (2)

vectors - and u and cammon~covariance matrix"t ,‘the simple_

~

loss'function and equal pficr'probabilities‘imply'that

Ex - <p(-2) ,
. Y

where 'Asl.is the Mahalanobis generalized squared distance and [ ia

‘ffheic.duf;‘of‘sdandard normal variate.lA._ R " N o j'vﬂﬁ :

In section 2 2 thé“classification procedurea all had an under-"-'

-

vlying aasumption, that the densities have a specified para%etric forms,
, with all paramete?s known. In most cases -however,-the population psra-
meters are usually not known, but must be estimated from the samples.\"

g On the basis of information available from the samples, ve wish to

E

: classify an individual into one of a finite number of populations.,.ltdh‘
ﬁwas noted in Section 2. 2 5, that the optimal rule, :D‘ , and r(D) 5 ;_Q‘ R

the. probability of correct classification for an arbitrary rule D e D ?,f'tffl -

could not be determined unless tTe distributiona F (i-l 2,...,k)

“(i-l 2,...,k) » were specified. Two

(i) Not knowing an dptima-“ru1e,*hou'dofuereonstruetiaﬁrule;fromf7:“”'

e

"’E the samrle data' ‘;.'ﬁﬁ'“yzw”"l

Cood) Given ‘a rule D frfm the sample data, when are the actual

"fﬁ;;probabilityggr(D) a d the optimum probability r approxi~*~_

'”'jmately equal
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.- ]
These questions have:hbeen answered in the following sections;

(’ . : : } ’ L A.’ | 7 -
7 o » L - o

’2.3:1 Plug-in Rules.

L

Suppose that the. dominating measure u is specified but

qifi 1= i < k)p‘ are not specified. Suppose further that our infer-.”
_ence 1s based on a well identified random sample of size n /drawn from
the mixed p0pu1ation f , and nl,nz,.}.,ng are the number of sampled

individuals from nl,nz,...,nk respectively‘ Thus, each of the ni_ is

a“

a binomial variable with expectation n qi' (1i=1,2,...,k) . Since the .

o
"densities, < i , ; <i< k B involve unknown parameters, the main prob—

5 -

"lem in obtaining‘"plug-in' rules is to get reasonable ‘estimates of these
'unknown_parameters. Generally,~the/}aximum—likelihoodror;consistent
estimates are used. The‘corresponding estimates are substituted in.

s

place of the unknown parameters to give an estimate of the densities

{ l < { <k . Ghurye and Olkin [1969] give parametric multivariate

bnormal density estimates mhat sre pointwise unbiased.

t.;f

) | If we have estimates ":}i ,.1"< 1 <Ak ,. then evidently an.
fiintuitive choice of rule is that rule D gbtained by substituting
dzii:nfor qifi’ in the expression (2 2 5) for the optimal rule D

- 'Similarly, we can- substitute the estimates into the expressionz(Z 2. 12)
.for- r(D) We call D the "plug-in rule,. In most instances, we

"».-useuthe"estimates

: ﬁﬁ*';jufi

R Y
'.]‘qi 1(X) qi 1
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oy
R

i

>

and fi is some estimate of the density f (1 <1<k) obtained

.;§§ tnrsubstituting the estimates for the unknown parameters.

The estimates qi given by (2 3. 1) are quite well behaved.

" They satisfy A N

~ ass
q iu

."’_ o , . ' o . s ‘, a

>‘qi. as.n»oo.

are known, then one.

q,'s
i .
f’.';‘j

by the strong law of large'numbers._ If these

N
uses q i(x) qi i(x) , 1 <i <k One also obtains immediately the
estimates - | | )
_ ) v
SJ(X) =quj(x) y 1 <} <’k
‘ : : |
s o ~ o - - B
: RO a <x> e T

of gj(x) and" y(x) respectively. '

Cus

Throughout the . classification literature, the plug-in rules'f ‘._\=“ -

seem to be.mhe only rule choices ever considered when specifications are

¥

ciincompletet The general theory has not yet been studied satisfactorilyu f
\;A,f?All one'can do 1s’ to substitute the estimates .‘!;;Enown parameters. Jigtb;tl~b
fcase of plug-in rules, the optimality criterion csn no longer be {usti- -
‘fied except for large samples for which the performance of the pl“&“inh‘;‘

A

. Arule D is, in SOme sense, close E!‘that of the optimal rule D isheo,j; S
. |

‘ fact due to sampling variatipns in the estimation of the parsmeters,.‘ﬁ'f.

'the plug—in rule D is no longer the best. The only justification

SR
o



)

»

Anderson [1958] gives for the use of plug¥in linear discriminant is that,_;

"i; seems intultively reasonable that this rule should give good results

’ The following are some special caseS‘ o -
. ‘ , _ e

- B I » ’ ' v

,(k&‘ Anderson's Rule:

W L% @ @

1 ,.5.,xn1 ;_asq *1 )xzs. ,
ceaX (2) 3 from two mulfivariate'normaIVpopslaqions= T and - né
2 . . . N N .. . 3

Suppose we have samples x

res-
pectively, with all parsmetérsv u(l) ,‘u(z)» and-ﬁhs cqmﬁon'charianCe
"3 matrix, I','hnknown. Ia‘thélcase»of known pétameters,_ihé optimsl-rule

v

* . -
D was_defined_by'

e @ (2’> 3Py e DDy
. o ,; . o _.f .:. > _“
. Dz‘ = XA_,PIJ . . -' | ;‘r?f

7Since, in this case, the parameters are unspecified,gthe usual plug-in :

1inear discriminant is that rule D ,,obtained by substituting the best

(namely unbiased) estimates of these unknawn parameters, Coasequently,

the plug—in rule, . D is given by

. f n - {x € x : x"s (x(l) j(2)) | -
o I S 15)5f
B . ST N ( (1) (2)) S 1( (1) (2)) > 108 C}
~'-D2 = X f'D1“ '
5_ AR

23,

n -

N
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A
- - ¢
v rorm X7 (1) (2)
. The term X S ( ) is the 1inear discriminant based
on two samples and is called Anderson s plug—in linear discriminant The‘_

_ classificatio.n statistic is denoted by V(x)‘-; ‘!g.,. - . v

(2.3.4) d'v(i) - X' Sfl(;(l)&;£2?) . %?(;(1)+;(2));’sflk;(l);;(Z))l»;i\”
' nderson [1958] has - obtained the asymptotic distribution of .iik
"V.._ Its e act distribution 1s not known explicitly He has shown that

its 1imiting distribution approaches the distribution of IJ((2 2 8)) as

the sample sizes increase indefinitely. Hence, for sufficiently large =

samples from »"1 and Lo we can proceed ds if the parameters were ffy
'completely'specified.:_
f(forfan ensnplefofjthisfrnlegoffclsssificstion;:see'Appendinf_f"‘f

(ii) Hahslanobis Studentized'fbbzf:'

The plug—in version of Mshslanobis generslized squ&red
‘b'distance, Edﬁz , 18 his studentized Dp2 . obtained by replscing the e
'_"unknown parsmeters'ffgi? S p(j) , and. t by their correspondins 'best' >F;‘£"
{festinatesp Let there oe two samples of sizes n1 and n2 from “l e

t

' and"‘rr2 respectively. Db?;, is given by _"fifr;flliﬁ.'e'}f‘:

f‘wherex:dil denotes the difference in the meau values for the it

matrix of the estimate of the comon ot pooled ovsr nce ma



2

Putting (2;3.5) in'fhe mntrix.no:atinnttye get
@236 ’np & Ok ”))' L. ‘”) "

S

4 Consequently, mimicking what was done in section 2, 2 4 the"

25,

plug-in minimum distance rule classifies an observation X into- T

R

‘or T

9 aécording ‘as

.

':An:increése'in' béz due to the additional informAtion

- supplied by nmwvariablesis not appreciable.= A higher value of the ratio

mmy »7‘2 | |
(n )(n 2) P+q

1l

'7_.;-_R;.- — / e

2

B :
! 2 B

LY (nlm)m 2) >

__r(_':f R

'-dl‘-would 1ndicate that q new variables supply some infbrmation (aee Rno

‘;(1952] ).

(For an example of this result, aee Appendix I )

2

' Nt 'An ‘ i A T
-Result 2 4‘ -Dp?” the Mahalanobis studentized diatance. is not an sl

‘ _’unbiased estimate of A 2_, the MahaIAnobia genetalized squaredn;

e Sy R T L e
S distance. e U IR NI O S T

4":2;3;2;;LiﬁelihdonRaEin?Critétibn;f:.iff-Tf:i'.'“ S



b'ffjlcomes from Lo J * i -

26.

_Anderson [1951] Let the, cfhss densities be known except for somplpara-
meters. For example the populations may have multivariate normal densi— .
_'ties with common unknown covariance matrix and unknown ‘mean vectors. |

“'Le't n be. the size of ‘tlhe ';ttéining"' sampleand ni bethe :
size of the sample from "i (i = 1 2,...,k) hetblnlfbbe the'siie:of7*h
the sam%le ‘from ﬂ ', which 1 to be classified We shall denote such
a samplejby "CS" Let L(TS) denote the likelihood of the "training :
. sample. and t (CS) denote the likelihood of CS under the hypothesis ',;‘uftl
'_ﬁ;7- ni : i -1, 2,...,k ..‘ S | ' |

 the supremun being taken over the parametric space. . . -

A Likelthsod-ratio rule (LR yule) classiffes C8 fnto m,~ .

Cogfe

ok, Ay - ek (
. ”fit,i,,,l_Jﬁk:
where - k,'s farefnon-negettféycgnoténtE‘ff;vfi

--;fmanﬁer;i*

.‘ Jk

by



' f- Ty s with all parameters unknown. Let xl 1‘l..@,x

X;n comes from ﬂz ) the ML rule classifiea an: observation. °X Ky 1nto

LT Ty ,aecordins w

‘.f(For details see Anderson [1958} pp‘ 141 )

:.fjiestablished that it is an unbiased, admiseible‘mindmax ruler

L df the loss function 2 is continuoue euch that

w As a particular case, consider the claasifitation of an obser—

'Vétion» X, into one of two multivariate normal populations,“ nl..and.f_,'““ R

SO @ ands

A

DB @

fxl,.~432 RETTEN SR t be the sampleevof sizes- n1 and n2 trom nl

-“_'

'and 7r2_ respect'iveiy Considering the maximum likelihood eatimatee of

cthe parameters under the two hypotheaes that X comes from nl ) and

v_\

N

RN <1+n1 ) (' ‘”) E (x x‘”)

";'_f,

el

(l+n 1) _(‘o (2)) s (x x(z))+A

" L
- B

';EIf t is known, then S is replaced by t in the above exPreeeion.mmeaj;d:‘

V

Daa Gupta [1965] considere the above ML rule and hae



e E-.;»individual into one of manv pop\"

.‘jRemntk'Z;Sf";iﬁ_the'éase df'cléssificdtionainfo‘ohé“of;tﬁéfmditivafiate‘j3£7} 
'  'norma1 populations "1‘ and "2 with parameters unspecified, the MD

'rule; the ML rule, and Anderson 8. rule are special cases of the follow— f}QLf{

ing rule.i 

c;as,aify;_an:;obfse.fygttisn“,. :xo. m';a- .'.n‘i | togf _ﬁ;rzi-_,f"a;;_cagqmg as
. (2 3. 10) a(x -xm) s (x (1)) (2))' s (x x(Z)) b
u) - <1+n ) (1+n2 ) and b - (1+n I)Af",’.,'sifrfeéfjteﬁe[?_;mé.f’" AT

‘

k’ :fitii) a s 1 and b - 0 gives the MD‘ rule 1iil:“f#;;ff ;&sffff f3TiT:::jﬁ

3¥'¥3(iii) a= 1 and b - -2 108 C 8ives AndersOn 8 fule. ﬂ74f;7* 

.fiRemark 2 6 We have so far cénsidered procedure for cl

f;with quantitatiye data.f? i'fiu fL
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/. SR

-2.3.3. On'thefﬁstimation of the Probability'of Correct Classification-“»ff"‘

There sre at- least two- reasons'for wanting to knon-the probab;{;_ﬁfaﬁlg
| vility‘of correct classification,.of a classification procedure. wOnefisv:. |

S to see if the classification rule performs well enough to be useful.k:iﬁfj:fs
-Another is to, compare its performance with a competing rule._ In sectionsg jf

: ;}2 2.2 and . 2 2 5 we obtained an expression for the optimal rule, .b#Q;;fl |
dand for r ;, the optimal probability of correqt classification,=resp-"";i’izb.

l'ectively, when the distributions were completely specified In the case ;ff,g.;

:j of unspecified parameters, aection 2 3 l discusses the choice of plug-in R

. where .o

»~;rules, ,#i, obtained by using suitable estimates of the unknown parame— ‘T'F‘b]”
'ters in.the expression fot D Corresponding to this D , r(D) '

Jf.denotes the probability of correct classification. l;gf:*'

The density plus-in estimator, - r»/°f ‘h°°Pti'!""Pf°b°"111‘ aty

U
ro= r(D ) b is defined by
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E Mimicking what-wé'didvtp‘ertive at'(Z,Z;lﬁ)}Qe‘QEt,,ﬂ--

e

= f“-?(x)fdu(x) L
RS SR

't:In (2 3. 12Y if we substifute the estimates of qi fi(x) , we ?f SRR

3 .

o get r ‘as an estimate of r(D) as well Thus, Qf?ﬂr°

o ;fgenerally satiafy

uiw_ithen r

L]
- d > .
ke N A

?hus, the plug-in approach yields the same eatimator,;i;t;.ffé'Tff,‘/'
e . Y A
"_as an estimate of both the optimal probability, 3»1 > and the actual
7A probabi1ity of correct classification for D N r(D) Giick [1972] has fﬁi

“shown that if the eatimates d’i ate pointwise unbiased _or more jﬁt'

Voo . i.".i"‘i" s

E i;.(fa‘i _f,ie(x_;_ )3 q 1 ¢ '1'_(;)13;;*_, B lf_if_k almostall xeX

19 biased as an eetimate of“eithet the opttM” prob

a



-‘ij;obtained in a similar manner..;f‘”

3.

. and - -

TR S 2,3 p{v(x) >0 { Xem, } _;“
“-where V(X) is Anderson 8 statistic given in (2 3. 4) The techniquea
' _fmay be divided into two classea" those using a sample to evaluate P
given discriminant function and those using the properties of normal
- tdistribution. The second approach depends heavily on the normality for

s

their validity.v For the multivariate caae, Lachenbruch and Mickey [1968]

)

comment that their "method D" tends to’ be "badly biased!a‘d'give much

P

ltoo favourable an impresaion of - the probability of error ._ They atudiedﬁigbf.f
f'a comparative evaluation of all their auggested.methods of estimatiOn -
:-Hof P1 and P2 on the baais of a aeriea of Monte Carlo experimenta.hg;i;i;-};,
.-They concluded that no one method is uniformly best for every situation,;!ji;f;f
rudh'alchough D and R methods appear to be relatively poor and the 0 |

'fofmeth°d d°es fair1y WEII (For a diacussion of these methods..see Lach~ ,;j' .

'1';:enbruch and Mickey [1968] or Kshirsasar [1972]').jrf?f” LS

"'iaematkfz 7‘ In caae of a sample-based classification procedure :
'*;-fying an individual into one of two multivariate normal popuIati_fs{

B ' A R
”‘fﬂprobability of correct claasification is not ¢( ) 3 nor can it b“ S

' 234 | S'*t—eb-’-Doi‘m"‘Prvoc”ediinef.'“f"__-_',"_f’_."'.;-'.' S

In most classification procedures,_it would be deairable to
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T Al " .
asymptOtic expression for error is an underestimate of the actual error

(see Srivastava [1973]) Srivastava [l973].nroposes the “step-down"

procedure when the variates can be arranged according to, their importance A

, on-a,priori grounda, a

Let the 'two populations have multivariate normal densities '

- with the same covariance matrix,_,tir The classification is carried out

-on the basis of the marginal univariate diitfibution of the first vari— .
ate, on the conditional univariate distribution of the aecond variate  ,‘
given the first, ‘on the conditional univariate distribution of the' ?

third variable given the first and the second and so on.-’het;;}{iik_
b

iéi*éi}\ [glgxé,.L};gi;Lg; ??a |

we define 'r(;;,z(;),ugig (j 1 2) ‘eimilarlf tor‘the two popolations;:?;:?g}:~v

Let the top left-hand ixi submatrix of t = [(oij)] , be denoted by L

1 1+1

2 1+1 j -

»’?:éi.' |¢1+1|

and oi+1 I 111T'~ 0 l 2,...,p-1 with‘the“convention hat

.:.ng,-oo and 't I - l so that Gl ‘;‘?llil‘ﬁ:;“~.V
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 order etepednwn regression coefficient and ”?+1 , then ith order
step~down'residndl variance. Let |

v : _- : i.; O.!i:zlyo-r’p.-l‘
(9) - (j) (j)' : - oA
”111 | u:L+1 B “(1) By - 4 o
' j=12 .

‘Then under the'éondition that Y' is: fixed, the conditional distribution

1)

- (1) v 2
of Y1+1 is normal with mean ni+l + Y(i) Bi and variance o;+1ﬂ .

_The distributions of i+1 given Z( 1) and xi_‘_.1 given X(i); ane _

Ml A

- similar. o ‘» SR 'f‘; ?-.
: . . \ . \ \ Q :

>

Let"B‘ be the usual (replacing the unknown patameters by

1."best sample estimates) estimator of B 7 Let, for i - 0 1 2,...,p-1
." | ‘.‘. .‘ ‘-';
N 1+1 1,1;r (1) 31

O b

18 ‘.;‘_z.'1+11 = _zi+1
;‘ \ - N } " ‘ : s

Z?Then gi giprdeednre clasaifies an individual with measutementsff';,f 

.n’r'v'a'll 1= 1 2,...,p

Baanis B 'ff-’fi,“’;i"»‘i’ T2 “’;.i’f?i:’-ff’fif ?i’ ER g Xt

en&:tnf- #_for all i - l 2,...,p . Qi < 0 ﬁherwise it is

3fassignedﬁ‘ ‘either "1 nor "2 (For an expression for probability_

'}f];of misclassification for this procedure, see Srivastava [1§73] )'

s Remark 2 8 In the step-down proceduxe, an individual may not b_

.':?eclassified at all to any of the two populations "1 : This is -one:-




34.
\.

of the features of this procedure, for it is better not to assign to any

one of the two in.ﬁhe_absence of‘suffibient evidenéé."ThéAprocedure is"

- .

clearly not'invariant under permutation of the variates, and should be

»

:f" - ° { ° L A e ' o N ' :
“x_. . used only when uﬁe_variates can be arranged on a priori grounds,



CHAPTER III

'Nonparametric Classification

In Chapter Ii ”we discussed some major‘parametric rules of
classificationland the associated probabilities of misclassification.
These techniques assume the existence and knowledge of the underlying
prohability densities. In practice however, the forms of the underlying
distributions are seldom known and 4one is- often confronted with the -f
problem of devising appropriate classification rules, applicable for a
wider class of df?tributions whose structures are not expressible in .

N

'simple parametric forms In such cases, the use: of parametric procedures

1is subject to criticism regarding its appropriateness and val 'ity. Foru }f'

such situations, one- uses the SOdcalled nonparametricﬁuor "‘istribu—_ﬂ

| g*" tion—free" methods which are ‘the subject of this chapter.: 'f- . ST
o831 §tatementfof,the’Problem; L o 4;\\\\\] -;~5;ff»,¢
N . The problem is to classify units into a specified number of i

\
AR
'/'

' pOpulations on the basis of a set of observations on these units With

vall population distributions F 's (i~1 2,...,k)f unspecified.v Some

' assumptions, however, are. needed for constructing discriminant rules, for o

example, the existence of densities, a unique mode etc.. In case of non—”af‘“:

E parametric classification procedures, the main emphasis 13'»f?/,,’”.7?-"

_»(ili to: study the asymptotic behaviour of the rules (e 8-,-Mf%f‘uv.:‘

consistency, efficiency), C .

53\_ l(ii) to obtain suitable bounds for thé ptobability of correct 'vvffh“ff
Y A N " L AR

: k classification., LA

Casie

RS N . PR
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‘ @ _ S .o S :_ .
& Lo . ) » ’ ’
§3.2 Op the Fstimation of the Probability Density Function.

' A basic.and impOrtant problem in'nonparametric classificationi'

[}

g _ techniques is the estimation of the assumed probability density func-»
tion and its mode. Discriminant criteria are then based on the esti-
mates - of these assumed densities. There are ;wo forms of density estima—

v

tion - parametric and nonparametric

3.2.1° Nonpgrametriclbensity EStimation; i :

CIfT the functional form of the density is known but depends

upon a finite number of unknown parameters,vthe usual method of estima-'<7 L

R

.tion would be to obtain suitable estimates_gf these unknown parametets -

' and plug-in these estimates in place of unknown parameters giving an .

' ud density.; This case was discussed in

3 ‘ Chapter II to ob’_in the so-called "plug—in"'rules of classification. j.i.v

Let f f2, ceey ;k be the densities vit Arespect to a o— -?f‘“

. ’ B . ’ .
tnfinite meaSure | Fix and HodgggﬂIIOSl] were the first who considéred

. nonparametric density estimation in 7onnection with nOnparametricwd‘su '

D

?t:*ff crimination ‘ Parzen [1962] and later Cacoullos [1966], who generalized

Parzen s work to the multivariate case, deVeloped a class of nonpara-'fif'”ljw“”

'metric density estimstes having tpe form

3

‘b x-x‘ .
2 ® (~——1)
1 =1

LS
W
Y T
.
N’




o 3rs

1y

where X is the jth-— sample observation from Lij 1f'is_the

1j
: empirieal diStribution £unction of-the ni‘ individuals Samﬁled‘from -

-1 "

‘ﬁit ¢ s,1,2,...,k) y k(x) is a bounded Lebesgue 1ntegrable function

on (-%,©) such that

o - B o  1im‘]x kix)]lé'b o
| SR o R
3.2.2y - - If'.k(k)'dx = l»fi?"'
~and h=h(n), where n = ., , is a non-negative sequence satisfying - * -
 <5,2,3):“j. L ‘,. }.limah(n)'?CO o
RE e et

Functions k(x) of the above type satisfyins (3 2 2) are ;f ,!i7;fff
';7called weighting -or. 'Kernel' functions.- It should be noted that the

'.choice of k(x) is very important, and to a large extent dEterﬁInes

ﬂthe properties of f (x) : One aimple example of a ketnei\function 1s

~

~c | i(x#-h) "~ F (x-h)
£, (x) -

e rmme




1.}‘f1be the plug—in rule.‘ By remark 2. 2(1)

o of the optimal rule D

| 7;lfestimates, Van Ryzin [1966]Jstudied ‘the.

,'shere [h] +0 as n o The estimates suggested by fareen-Cacoullos )

'dare also called "Fixed window estimates.' If in addition to (3 2. 3),-

l,'h = h(n) satisfies » | | |

G2 Mm@ se , o

e AT ‘?#"p:,:}:_.,,_s. L e e e

then Pareen [1962] proved that these densit} estieat%s ere consistedt.st[fﬁ;"'
‘He also proved the asympbotic normality Of the eatimates. (For details"i.

» see Parzen [1962] ) Using Parzen 8 density estimates (3 é 1), and B

E;added conditions Glick [1969 Theorem 6d, pp, 72] proves the ¢0n8i8tency"""

of the Pl“s"*“ estimator # of the ovtimum Pr0bab:llity * o

A k}"._ SUPPOSe D is a BaYes rule with respect to a. prior distribu-'f:f”““ =

'fdtion, assuming the densities in the k populatinns ¥r¢iknown-"

,;nefini:iqnfs;x, -ine;raigj;p;=;asﬁay;g;':‘*

e

'.:'ifif L
-~ P[R(D) = o(D )3 ).
s the mpl siei th ., tfinis sample

thh respect to this no 16

i based clessification rulea._ For related results -



% -
| : N . L S v o

'section 4 2.0f Chapter IV Van Ryzin [1969] giVes conditions for thev_t‘u
3pointwise 'almost sure convergence of the fixed window estimates. EeD

("Potential functions" in the P ttern recognition theory are synonyms

‘2i,for the "Kernel" of the fixed wi dbw density estimation theory )

An alternative nonparametric approaeh for estimating multivar- Lo
.1ate densitiea has been proposed by Loftsgaarden and Quesenherry [1965]

| Letlf "

S (X) - {y € X ily-xll < d} ”t”3ﬂ f,»fﬁsLaf,’i.s?f?}a

'éﬁAQaéﬁqtegthétvoiﬁméfbf}:h;é.hyiggaﬁh;fe;byo_;;*

~

‘”tét~1
, n\

s S "kh T L
v-k >, but 1;-+ 0 as n - w-_j

~

Y to thé‘-k'"—thn;CIosegtiﬁoihtﬂemoﬁwﬁfb
:""dQHSity f (i - l 2,«0.,‘()

”festimate of f (x) is

*

o 2’-'._.s>'s -\ g




.estimator“ T is a consistent estimate of‘the optimnm probability r
;(For proof aee Theorem 4 2 ) e '

: \
L

In fact,‘there are several other papets in theiliterature

?'dealing with various methods for estimating probability density Eunctions 355f~:'

o g2 et
f‘uand their properties. For more detailed references in thia;_:;” :

o

":Eestimate ovet thaticlaas nay

1833 Classiticariog Rules:




R a1
‘is assumed and formulation (ii) of section 2 1 with qi s 5 1 < i < k y

_.Lunknown is considered._,m't

.

In section 2~3 3, we considered density plug-in estimator r

Th:ee prob-{i”

';fof the Optimum probability af correct classification

lems arise in this estimation':'?ffgf7"




Ce (ot @mpiéﬁfi individuala with X ¢ D)) =

5[":“

L J a6, F1<x>> R
i-l B ;

e o f {The co nting function 1'

'v"‘.[mate ‘;-,r f, but: t:h empiric approach differs .in 'an import :nt way-from 'he



The equality sup*r(D) - 1 is attained by the so called nearest neig l“'
: y L DeD - - T ‘
f3-bor rule (NN rule) D s which assigns an unidentified 1ndividual from

" “the’ mixed population F to the category Qf a nearest correctly claasi_l-l;atflll

ff_ied “Sample‘- .O-b_-Servation. o Sl

- s . R

L

Definit:ion 3. 2: : ?é-e~"callf7_»xh'.e;[{gl',-jxé;, x 3 5..?.’,“?',-?éréét"~i-néi,ahb-"iff'ﬁdf;’f" v

1f

S e ] min d(xi’x) = d-(x ’x)




i r(D) - »1".:, Hence, Glick

L and . 'f iff 1'vor T h;l-, i.e. in the two extreme cases

*

A NN 2

*of complete certainity and complete uncertainity, the neareat neighbor

actual probability of correct classification equals the optimum probab-i::i?,-fkh
'"ility._ It ik in these cases, or approximations to it, that the nearest _
neighbot rule is most useful.v Lacer in 1968 Cover [1968] studied the SRR

: i rate of convergence of the Bayes risk of theit nearest neighbor rule.fﬂj

e

”””a;An excellent account of nearest neighbor rules is given in Patrick [1972]{].f3f753

\n'(" T

Finally, we must specify means of resolving the tie, for

.;“Z_example. the rule may be modified to decide the moot popular catesory5757'f””

“_ffone, the rule




‘~)vv

“ ’_3,312‘ Minimuh-Distaﬁcé‘CIassificatioh'Rule;‘\V;

Das Gupta [1964] suggested the so~called minimum distance

sCIBSSification rule for the ahove nonparametric classification problem.‘5}

»ﬂLet X(pxl) be a random Vector from one of the P°P“18tions “1 .:liﬂ};s;g'_g

'j.(i = o 1 2, . ,k) with distribution functions F (1 =0, 1 2,...,3)

':The F, are completely unspecified except that F Fi for exactlyf,fiff\f*'

" i
~ one: value of 1 5 (1 = 1 z,. k) and. B's (1 -1, 2, ..,k) are all

'distinct Let D denote the decision space ‘(dl,.. ,d ) where di

,f denotes the decision Fo - Fi s i = 1 2,...,k Let X be a vector of ;1,, '

.u{>sample observations Then a classification rule ¢ = (¢1’¢2’.."¢k) isw’i SN R

f'a k - dimensionsl vector valued measurable function of x such that 13vfﬁ3,’

1-1

LR -

3 ¢i<x> -1 Sy

| {Definition 3 3. The minimum dist&nce:rule, ¢




¢

Definition 3 4 ‘A distance function 4 betWeen tw0 p - variate distri-"n]fg;~

bution functions is eaid to be consistent if, given any :0‘;~e;.>.0~;.ffﬂaJ;1*

.there exists a number N such that for n > N
3.3:5) . PLAGF LB > elFl <€t

where F is the sample distribution function, based on a random sample f;t;iii:'

°f size n ff°"‘ a P - Vafi&te population with distr:lbution function ‘F N

If (3 3 5) holds uniformly for all F % B 5 a subclass of all f;ﬂg”.*
f-kfp - variate dietribution functions, then D is said to be unifo x

i:l”consistent (B) =;,“1_-;i;;ﬁui fi°;g§}',"73”

"*Definimn 3.5¢ .Ai dtstance function d is called the Kolmogorov-- '

'”jdistance when figfﬂ,'

e

Ceae . gy 40 = e lF(x) = G<x>1
R R '"<x<m e

"?}f-?biléﬁipiltﬁg'ﬁéféeiiibnfgfegfjf;;f'}
@A (d) pw i‘d) (x)
ffféndeieffff'ﬂ;ifflngtif,;fﬁni~f}»

%':classification rule f&‘d)



Y

 loving rulé bas

~ { tion ﬂ { with distribution function F jg

1.of sizes no s n1 { n2 fro' populations. "9

d 1s consistent (uniform) He further extends the reeult to the case //

: when; d 'is_theiv 'q”wﬂfov—distance defined by (3 6) Dasg’ Gupta [196?)

where "d?(Ff
(3.3.10)
'*;offdhaptetlIV}:
| 3.3.3 classifica
| ,t._i'onf’broﬂc‘éd_urfe

“an individual into one of two univariate poPulations.si,.tffg‘jai'"

i.e., r'i(d)'+ 1 as _ni'4.¢ ,-i7=:1 2,...,k if the distance function /

obtained é~lov} 'ﬂthe probability of correct classification for

i”B

‘{ii 4. 1) £ (n2 4,F ) f (n ,B F F R (ifiéé),!ﬁ f _ﬁnfl‘fo

f?ﬁOl.,'hndﬁnhen df-is;théiKolmogordvédietence’>ft=7l

12 d . (For proofs of these assértions, see section 4.3 .

‘Ruies Base&fon‘Rénk§,7i'ilﬂf

fﬁ,'Tne | 'ing the rank-statistics for devising classifica-cff o

by Das Gupta [1964] He proposed the fol-]sx7i'f€?t

on’ the Wilcoxou-Statigtic for the classification of

B As in section 3 3 2 let ,k be a: random vector from a popula~5fi:¥

/

~—



. ;,$¥;[1974]

4.

.‘Define ‘: . o -?.. ‘: C }

X # of pairs (xi’yj) with X, < yj y o :;f .
(i =1, 2,...,n ~,'.j = 1',2',...'7,n1)

v = __E%,x\x ¢ Qf_pairs ,‘(xi‘;zkj with 'x\

i ‘2

" ,;7'
s _(i'-_x 1;2‘,._;'._,';10. k- -1 2,.'._.,n2)
" The proposed classification rule, based on these statisticsr'"qo~[};:'

‘u and v, is defined by Decideﬁ .i
(3.3.11) . F_=F,

(decide F + F, otherwise. (3.3.11) is equivalent to: Decide

LT

DA e <0 L

Das Gupta [1964] proved in his paper, that the above classifi—.f‘ R
;cation procedure based on the Wilcoxon—Ststistichs consistent. Kanazawa i'?ff;5

li[1974] proposes the extension of the rule for the &QItivariate and mul—ivrﬁ?fwf

u’;tisample case, showing its consistency. WheUxthe oﬁservations are cor- o

‘J}hrectly classified he has shown that his class hh;;;ﬁfiréih!hf?;fv't*'

o gasymptotically distributed according to the chi dquare distribution with

Q _-_,\

(number of variates) degrees of freedom.. For details see Kanazswa

!v

B Kindermsn [1972] proposed i mas of rules based on 1insstf ank’

':5istatistics as follows'- Suppose n observations are avsilable;‘r




L6

‘v»effieiency of this rule to the rule obtained by replacing T

o ,corresponding sample mean of the observations from‘ ,

ifit”l19721

. where E is a sequence of scores and.

‘and only if

49,

‘of the three populations " n_,7. ,%, . 'Let N = 3n, ‘Define

-Of 1’72
. ‘ =1 " - o ,.
€. ‘ ‘
Ni

l if the ith ordered ohservation in the

pooled sample is from b

.0 »otherwise;

s

Kinderman's rule classifies the observatiohs'from_fﬁé':iﬁto: ni CAf

Cy . } e T ) . ST . L - i

Y

: g

fpositive shift in translation.ﬁ He computed the relative asymptotic R

J
‘.\ E j .‘%a-

V3

."’his results to "Wilcoxon rank-sum scores and normalmjacotes.; Govind-;:”

/

“arajulu and Gupta [1972] consider similar linear rank statistics for

Y e

AWlaCk °f Space, the details of these paoers are omitted. Interested E ;;AV;’:

LY _

-3He assumed that the distribution in W differs from that in ﬂl “by a

and specialized.fﬂ’-r

,v,;the several population case when the sample sizes maxbbe different._;f_r:.f;e,‘._

as,readers are referred to Kinderman [1972] and Govindarajulq‘and Gupta Qiif?i"g‘ﬁ




3.3.4 Eest—count Rulee:

Ve oiscﬁssed in section'3.3.i, the "nearest neigﬁbor“ rules
which ma#imize T , the'count1§g eStimatotwof_the orobability‘offcorrect
.classi?icatioo,-over tLe domain b*f of.ali disctiminaots;. These are
not the-oniy‘iﬁtefesting Ones‘telated to.the countiné'functioq..; « In
this sectios; we shall discuss gnothetbof_ggch-rcles kno;o.ae "Best-
'count"_ruler— a-rule which ootieizes‘certeio specified cfitefia in a’

X 4 giVeﬂ class. A systematic study of this concept is due to Glick [1969]

[ v

Best-count diacriminants generalize sample—baaed "best" linear or quad-‘-’

ratic Qiscriminants. - - :--;.;'f

.

‘Consider the set-up as in formulation (ii) ;-ection 2.1.

. ’ * co e
‘Let D cD ., the collection-of all discriminants,~b5'ke-itrary but a .

‘ completely specified collection of discriminants D‘p_ Then S 5 - -yf'

(3.3.12) . ’-rD-»s aup  £(D) R

e

<is£ce11ed.the.restficted;optimﬁ?.ptoBabilityuof'cottécﬁ ciéééifigatiﬁﬁ: .

N Definition 3. 6 A clasaification rule D € D is said to be: D -
optimal (or restricted optimal for the collection D) if . ‘?;
e i {

C o @say 0 rmeY

(Iﬁ'gehetel,gghere needtnot'exiet:sucﬂ;h festticted’optimﬁmligif “f
Remark 3. : .(i) rD - sup E(D) < sup r(D) = r* L T T
. . ‘ « P- - :,,: . K DeD BeD* . »_ ‘ : \ :‘ . : . .

'{_T:” IR



By (ii). If, among the'classificetion rules.>which ere"optimelfin the-‘
unrestricted sense, there exists .one which is a member of D .

then

& \ * . K .
o) =’

‘A sample-based rule D €D is called a minimum-miaclassifica-

: tion discriminant or. best-count discriminant if it maximizes r

~ and 5;.15 celledla'bestécountvrule for thetcoliection}.bi;i L

(defined by (3 3 l)), over all De Dk, i.e. a best-count disxriminant

D e D satiafies o

(318 r(D) - sup r(D) - rD. A

L]
AP

Since empirical distributions are: aimple functions,Athere

6

'necessarily existe a aemple-based rule (not usually unique) which maxi- -;zi';*.'fi

mizes the #unction r over all the rules D € D c D ; It can be noted
from the %bove definition that the nearest neighbor rule D discussed |
in section 3. 3. l is a best—count discriminant for the collection D .

of all discriminants. It was seen in eection 3 3 1. that for any discrim—h;7}.. e

inant D ’ r(D) is an unbiased estimate of r(D) . Using~thisv 7’..

'i,unbiasedness for a fixed D Glick [1975] has proved thet E(r ) =

o E(r(D)) > rD > r(D) He has also proved '3_“.w~}ff. .";tnfﬂ.t-fv,?;ggtll;7ijfhf

".(i) counting fuhction T converges to actual probability of

'7 correct classification uniformly ovet D € D s i.e. c,.;"'

. ‘
~5 .

sup ir(D)-r(D)l a.s. 0 '153 nrw, . \ 5 S
DeD . N L T v - ./( . ) :,' ) ’ . . : ﬁ i:, ‘.'; \




" provided - FIYS' eretabsolutely;éontinuone'with‘respect-tontﬁe:il* :
~ Lebesgue measure.

EIRY

(ii) The best-count discriminant (or the eequence of such diecrimi-:fVi

nants ae‘sample,eize n +~¢0 18 Bayea risk strongly consistentrf;fuf k

. , . *,:, ‘
He further extends these results ‘to: prove that r(D) - T the unre-
'lrStricted optimum probability, in case of the claseification into normal
densities with estimated mean . vzctors and common covariance mntrix. (Forf B

»proofs of these neeertiond on ‘b st-count diecriminante see section 4 4

N of Chapter IV)

' ‘vahe considers some variations of NN rulee, and in the multivaxilte ca'

L i;then a univariete method een be appIied- Another nethod augs; ted b

' As.a final remark on theee beet~count discéiminente it ehould 1f¥h7iﬂ‘
Abe mentioned that the conatruction of the Fisher-Anderaon linear diecrim;ﬁ':'f-.?
i” inant. Was explicit in ite definition, whieh ie not the case with the ]ff;lﬂ .
d}beet-count discriminnnte' definition.. For erbitrnry rule collection, 1A iif:;l;i

-even with k = 2 there Beems to be ne generel method for conntructing

vfbest—count rulee (other than by exhauative trial and error) g11¢k [197511;i531"

.i~remark° that "no; general construction of a beot—count linenr discrini-lf;:..;f'&f
nant is yet known when the aample observetions from the two POPulations j?lﬁfof
b'.h-can not be BepﬂratEd by a hyperplane # TR ] S Pt
' -141_/:;‘-M.t;urnm.re-ﬁﬁbjijird.n;tnﬁflhtliniff el

- 3 3 5 Rulee Baeed on Tolerance Regionn.. 7ff;.:;{37 : 3Q¥i?ﬁ}i}ﬁt’iﬁ:fwfﬂ?;frﬁif

';:The idea of uaing tolerance regions for the cleeeifieation |

"‘problem wns first suggested by Andereon [1966] For the univeriet ‘caoe.

~;vector observations may be "ranked" (usins them to define.blockn) nd



~

._, problem with 2 -1 deciaions (instead of k deciaions) by intr°d“¢1ng‘_];i“ i

B referred to theit P‘Pef

e

k'dA“aeféonb[1965] i“b Use the pooled trainins aample to cons%ruct R

‘ "blocks". Ab observation is classified into “i if the b10cks to which ‘

[

X belongs is defined by the majority of observations from "i ﬁ’ Example,fff;;ffr
for the two population caae, construct two sets of blocka separstely .

based on the obaervations from\ ﬁib and ﬂz .;‘Let Bl and Bz be the ;Tﬁ;'
blocks in the two sets vhich contain X ._ Consider the number of obser- f;>>

vations from "2 in Bl and the number of observations from wl ibQ‘?-:lf’if

B, ., and classify X according to the 1arger number.v The notion of

T2
tolerance region is quite important because the expected probability in

' the region is equal to the number oﬁ-aamples (-k) divided by\ k+1 . f.ﬁVﬁ':'”T“
| Different methods have been auggested for the eonstruction of tolerance’lfilr?’”'*

L regions.’ For some details aee Patrick [1972]

K

L 'Q Quesenberry/and Gesaaman [1968] also quggested the uae of

tolerance regions for the k - population nonparametric clasqification

7» the 1dea of reserve judgment. For detaila intereated readera:A:if_ﬁﬁpluzvipjjﬁ'ff

Remark 3 3 When a statement regarding the probability of a certain
statistical deciaion rule. remains valid for?e!ery member in a given f::"

. \ [ i .
family of distributions, it is termed&bs a “Distribution-free" rule ith‘?

However, in contrast to the problema of

respect to that family.

This is because,;_:f;f*

not really distribution—free,




' from the existing prior information.ﬁ Consequently, we could say that

N 1811 techniques are somewhat parametric in nature (Andrews [1972]n Pp’ ,

104).

',154,g'



CHAPTER IV

MatheXAtical Proofs _fifgi.};{“ e

: AR

In Chapters II and III we studied vatious major classifica—' BRSNS

| - tion rules (psrametric and nonparametric), discussed iﬁ the literatute.;;f;

L The study also included the sample-based classification rules, the

thesa rulas.§ij;f;

"estimates of probability oj correct classifications, and mgthemstical

@Jassertions on bias, consis ency snd asymptotic optimality:_

"foIn this chapter, we 3ive mathematical ptoofs of 8°m<-°> thesewasscrtisns.ff“'““
- TR ER ISR R
1“Let us‘recapitulate the different notations that hsve beennused' ifwzng}..

: 1(11ffr(D)r- the actusl probability of cotrect clasaification foif"tﬁ

g9 (111)

i ."(iv)‘l



©Proof: The second inequality follovs sincs by definftfon & .

‘;;'Theorem 4 1 (Bias) If the estimates q:\fi . 1 < 1 < k are pointwiee

\.unbiased, or mote generally if they 3atisfy.

R _j<k

{ir56!'  .

" 54,1 Asyugeoeig;bj;cmmy‘.‘ 6f».,Déﬂégy.i'»li'l_ixgg;nirxg’tiutggs;._i‘%'-f'._1‘ SRS

S
N

';'('.4.-'_1‘.;"1) j" E(q:\fi(x)) > qi f (x) for 1 < 1 < k

A-ff'"ﬁa‘féf §im¢qf ailiux-g%X%,Tgﬁén[;:;f;yi?v"'. -.

SR

e aGénadtae® .




E(;(ﬁ))i-AE(I:i;(X)) : .i(#eéb(é03§1i))‘?t.b1;_;
. ; 'a‘yldf{_a “;w?“ f “;;i:.‘ iﬁiiQ‘if“i
oy T

'W"F(Integration with respect tO u 5 O_* finite measure, is abbreviated here  £  -

f.  c1ea do not satiafy the conditions of Theoremibpl.

2.,‘1 fexample (click [1972]) sacisfying theAconditions*of1rheorem _f7

. 4nd (4.1.1) holds

“and often hereafter ) A o

'rixemark 4 1 The usual parame:ric estimatea of multivufiate norhnl densi-‘ “flii

f'-fThe followinz :la an '

. _‘f':e 4 1'? Consider the counting meaaure u on_a discrete sauple

Lec nik be the number of 1ndividuals fron_"ﬂ a

fllmultinomial)

'V,tion .Y qi fi(x )

_.1 3:1 < i < k " are given by




e
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N

The following theoreﬁ gives e:;e of the valnable features of
the plug-—in estimator, ; ST " . - R
s e e T T
Af}‘j@_?_l:s!;i_% (nniform consistency) If the density estimators : fi
: 51 £ 4 < ke _‘“e themselves Pl’obﬂbil-%ty densities with respect to a o -
. finite measure u 'y which converge pointwise with probability one, 1 e._::‘{

N

iy @B e me [ @ e 81
. then :

©Broofs lLet DieD D amy. claesifichtion procedure, .

- |r<n>-r<n>l-|z[“

" It therefore suffices to show that the infegrals




S os9.

. By (2 3. 2) ai a._;8'> qi , for 1 < i < k and by h}'pOthesis f a.g,) 7 | ,
’ for 1 < £ < k -' These imply the Pointwise convergences : “r S G

a s. L ii«f': (41 §5 tf;3 ,v? :;f;: : 
A T L S T L

e 9—‘s——> £ © (proof trivial)

Lo where f(x) = 2 qi fi(x) 5 estimates the mixed density

f(x) g X qi i(x) Since 0 < 81(x) < Z q1 fi(x) - f(x) and:ffffi7fi PN

’,:f‘ j f(x) du(x) > 1 -fj f(x) du(x) » the desired convergence. e

.‘ Z' RN .‘;'..Z'\

j lgi 81‘ ELE;’ 0 " f°11°"8 ft°m Lebeﬂsue dominated couvergence uheotenfff= i’”‘

;;“~If futﬁhéfQﬂlIJLE(xi'E}i“chénaﬁi?.V;'ﬁi""°”'""' ”
oo T N

.’ - ‘

Examgle 4. 2. The following is an exampf

(4 1 3) is v:ltal to. Theorem 4 2.



Suppose X *~b0 1) and p  is the Lebesgue measure. -Let
y (R . . : s . . . '

o

g =gy

"'F“f(x) o {’e;g. x

v }
Coie

R

Cf() 44 - Af x <0
and Y = 3 §A,~;Then Y(x);rf—jfvxx)e,and, f(g)'jf*ﬂff(x)gatzell xeX .o
Using (2 2 14) and,(Z 3 13), we have r f

l n (-) - 1 o for n of 1 2 3’ "' ?'.:‘

NlH-

Remark 4 2.- Theeremeé 2 states generai‘conditions eeder which r~ 15 a
.> ;.lconsietenF estimator of r*i; Theoteus 4 1 and 4 2 together suggest that
T .i;’mofe-appropriate as an estimate of r*,. than & }aq‘eatimate of
i f:; r(D) Glick [1973] obtaina similar :esulta for sampie-based nultinon- eiifi:5;e

ial classification.;ﬁi E ,“-* }f~'&”.ul-g;'jn

'7Tﬁeeteﬁe4‘3 Let u be Hhe Lebesgue measure and if fqi fi(x) -.7fg'fff}iaveeiﬂ5

e‘;ifif;e;f estimate r satisfiea

[
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oo | |
S-S . C
‘ q'e‘d~. .
g . B

N A
Consequently,/fhe asgsertion of the theorem follows from Theorem 4.2.

o R

-/ '

. The following is a consistency theorem for general parametric
nsidered in section 3 2, .’;T :  . e o L
If each f (x A) is a continuous function of the unknown

l < i < k , and for all x'e X ’ and if
X 22y (true valye of A),Y.then_.

.
4

f (x)

Pioot+: ‘Contimelry of £ (xi\) aﬂ,d G.17) tmples, for 121k,

R T

f (x) - f (x A) 2.8 2 f (x,x )

j f (x) du(x) - f f (x A) du‘- 1 identieally.
¥ ¥ S T e e

- ;fi¥§§fi¢

ke

"A .‘

q e'd'

and Fz arek;eggh{i

¢

I~ Thus, the couclusions follow from Theotem 4 2 aince the

Fl

Lebeague meaaure ia a O - finite measu
Suppose k - 2 » and the distributiona

X'Corollagy 4. 1.
multivariate normal witn common covariance matrix t
are the Appropriate multivariate normal density eatimators, theu T

'”'satisfies (4 1 s)



' Proof The strong consistency of the parameters follows from the strong :
S".
1aw of large numbers, and. tbe conclusions follow from a simple and direct

application of.Theorem 4.4,
- | - g.e.d.

_:Séuz AszmptotiC“OptimaliEY*of SapfleéBései;Cleseificaiion‘Ruieea'
Once.a-scmple—béeedAproceourecis deiibeo, ope'queetion”that"~--“
ariaes is, in what sense is the rule asymptotically optimal.: Several |
-modes of asymptotic optimality for claasification rules have been proposed'lf.‘
iﬂ:in the 1iterature._ The folldwing mathematioal proofs of asymptotic opti— 5?‘
'mality of parametric and nonparametric claasification rules have been | _
.‘adapted from Van Ryzin [1966] We consider the two category claaaifica-.:}r&L:f,f

tion problem. B >

Let q and l-q be the prior probabilities aSSOciated with the 5;;;ﬁ1
..two populations 'nl and 1r2 l‘espectively. Then an Optimal Bayes rule, -‘i St

I*
D with respect to these prior probabilities, is given by (see aection

4‘~(2 2 1)) S e LR T i ) Lo

ﬁ',vlf = {x € x 12 1(x) > (1 q) c21 fz(x)}

. tles to be 1“ some. mam diusai Chapters 11 and III,

If q ‘s . fif and f2 are known, the classification problen 8

‘i:{rsolved by (4 2 1) When f1 and f2 ere unknown, given i

:i7go§_size,.ni from "i" we seek estimatea fi‘ for f;
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,Assume that these samples are independent of the obserVation X “to be e
. ' Q )
classified Let {gk(x,y) s k=1 2,.. } be.a sequence of real-valued

-

measurable functions defined on ‘X x X auch that a.e. M

_ R - o LD . o
(4.2.2) j.gk(x,y) fi(y)“du(y) < o for {=1,2 ; k = 1,2,3,;5}%§¥" e

[N

‘Then form';he'estimates
. 1 (1) PR o o
(4_2.3) f (X) ™ Z (x,xk ) I 1,2 P ) T
| o S e | s
Assuming theseueetinaqes‘afeigodd in.some sepsey a reesonable'procedure"f
~ to use in placelof (4.2.1) is’the.plugqin ;ule,, ﬁi; given by_;

e

4.2.6) - B, =x-1D

14

' Lemma'é 1: The difference in the Bayes risks, R(ﬁ),-sb(nf)w,setiSEiee‘ '

the following inequality
"1(4{2.5)_ff 0< R(D) - p(D ) < cl2 j ]f (x) f (x)] du(x) g
+»021(1 q) [ lf (x) f (x)l du(x)
.ffrbofy The first inequality follows by the optimality of the Bayes

. rule,. .D’_; And the second inequality £ollcws from the expreasions for fﬁ““" o

CoRm and p(D ) siven bY»:1e:j2[-'w?ff177f5l?f§fiff?].ﬁf""‘
P(D ) f i -'(x’).-%rf (1 q) c (x)
.‘ D{ g9 :1[frf“;3D1> o 21 2 )

O o L o ) o




U (4i2.8)

i

N2

R(ﬁ)“;;jA

(X) +J (1-q) C (X) y
3 12 1 3 21 2‘

2 1

where D" (i=1,2) and D (i=1,2) are given by (4.2.1) and (4.2.4).

'
- -

Remark 4.3:

.. (‘]..e.a. .

From Markov 8 inhquality (Loéve [1963] PP. 158), the inequal-

ity (4.2, 5) and Fubini's. theorem we have ",

VConsequently,

tion3. l) of rulesamountsto studying the asymptotic behaviour of

J E lf (x)-~ f
In

“.2.7)

5 -

J(4.2.6)';‘ b[R(Sg-p(D*) > el < é’l{clzxq J Ej]fi(x)-fl(x)lgéu(x).* ,"J

+ (1-q) cél.ij ]Eé(x)%f}(x)l'éu(x)}. .

/-
Y

it follows that examining Bayes risk consiatency (defini—'

(x)’ du (x) as ni'» C IR l 2.
the following theorem, 1gtf .

f (x) a; (x) 'i'-fl.z"-"" -

and for some finite 8 , where wj(x) are u - 1ntegrab1e orthonormal_A-

‘functions in

Under (4 2 7) we - are assuming a parametric form fot f (*) ::' 

(i=1 2) , but

A

,estimatgs f

. 1
o )
’

: 3k

L (u)

} LY

"«

8. is assumed to be ao large that eatimation of aij 8 'f B

&

becomeg 1mpractica1. Aizerman, Braverman and Rozonoer [1964] use the

(x) . given by (4 2 3) where

(xy) = Séx'Y) Z W (x) w (y) ko= 1 2 3...._*f;]_';'fj”'""

IR



.Theae>estimates are unbiased for:
(4-_2'9() ’ji E(fi(x)) = f B(X,yh),fi()")_ dU(Y)_ |

R Z v, (x) f ¢,(§5 £ (n)'du(y)'
‘ T TP R

jgl wj<x> o, fi(x)

(using orthonprmality”o:f _wj"sb and (4.2.7)). o . '.U’
T .

"~ Theoren ‘4, 5 Under (4 2. 7), let D be defined by (4 2 3), (4. 2 4) and

(4.2.8). Then D is BRC‘with p*

Proof: ' Since f lS(st)I £, (Y) du(y) <o, by (4 2 9), the etrong law o

" of 1arge'numbers_and Ll - convergence theorem (Loeve [1963] p- 163). we -
have . | R
L0 e
Further, - -
ol 2 ol s g0
F 3?.-1* '%v<x>" | Mol Il a6 4 5
--and the right hand side quantity is u - integrable _Hen_ee '.by_Lehie:igsuéi.'_ e
‘dominated convergence theorem,A ‘. ' ' o el

[e @0 s nve

- and ﬁhefconeiusibne-foiloy.ffemn(éyh{G)fend:reme§k~4.3;n o

R

S aeed



We shall state the tollowing theorem (withodt.proof) concern-
ing the asymptotic optimality of nonparametris<iasslfication rules, as
proved by Van Ryzin [1965 1966] Let X be the Ehelidean r- space '

r and M be r - dimensional Lebesgue measure. We define fi(x) by N

(4 2. 3) by choosing

To(4.2.10) . 8 (J_(A.Y)_',‘_.—'.-Ak(u) e
. . “k RN hk o o
e coe ' C hk i A :
vhere {hk}i 18 a sequence of - positive ““mbéré"satisfy;ﬁg”f

@211y o m b0 as kbe o
" and k(y) = k(yl,yz,...,y ) is a bounded Borel function on Euclidean

fltrr - Space with 3
B R RS T e

(For a detailed discussiou on this denaity estimation method. -

;’see qection 3 2 1 and Parzen [1962] )
'Theorem.4.6 Let f (x) be continuous a, e. wi;h respect to: Lebeegue

.ﬁeaeure: ﬂ..: Then the rule D defined by (b 2 3), (6 2 4) and (4 2 10)}3dff;§f

4s BRC with oL ;ﬁf'../ R g

IQhPreoftf-See}VahrﬁyiihﬁleSS.;lQéﬁ];; S




‘ Following Van Ryzin 8 notion of Bayes risk consistency
(definition 3 1), Glick [1972] proved the aaymptotic opttmality of the -;x.-
density plug-in rule D . :*'_f j?ﬁtff' ‘ o B :
Theorem 4 7 Subject to the conditions of Theorem 4 2 the density plug-‘473f
in rule D is Bsyes risk consistent (or strongly conaistent), and r(D)

f is a consistent (or strongly consistent) esfimator of the optimum prob-‘“

: § ’.;»~ AT )
| ey B—s't* amd
':(ﬁ?iarb,?:r, ;'g#e.f"

‘(47?';6)[ n 3;.:,'1“,‘g‘pitg;a>\ ?{ s
EfggfiilThe°£e§f442iiﬁﬁédiﬁtélfiimplieea'”iitcif: &

ai«i;(S);¥ t(ﬁ).i.0-:a.f~,

' Moreover, .

e g | ._;()le;”;.:; -
l%‘(ﬁ)_r*l ‘,- ,31\11) r(D) - sup I‘(D)I

< sup* lr(n)-r(n)|
D

’ln_;softheoteofétZ.iﬁpiiesf;f;
‘ﬂtEoftﬂeQ;Z“,t I "
]r(D)‘r l.< !t(n)-r(n)j + 1:tp)ir ,

.'t'ffiiQ- (by first two convergeneeg)']f7




Thus, -
TR
_r(D)‘+ ) S
 Example 4.3: Idf the sp;éyim.isiy‘ considered example 4.1, " .

g L j;l;-ujf;?i';‘ff};_i?

»_ qi i(xk)

‘j‘.'“kby'sfrong 1a§vofllarge'num$e:$);i.Neg;bn__ S T T R
R o [ f(x) du(x) -Zf(xk) R R
‘o . ‘ - Z qi fi(xk)

! ' . SRR S ] , 'S -

Z Z

Z
k
l
n

Hence theorems 4 2 and 4 7 apply. vith convergence almoat surely and in ?T.

- quadratic mean. (Indeed, for k - 2 distributions On a finite aanple

\,ick [1973] haa proved that P[r(D) - r ] + 1 with

el exponential convergence )

©osa3 consieiency‘nf Miﬁinnnfniégéncé“Néﬁp&t&ﬁeﬁfiéadiébéifidhéiéhﬁﬁhi

' In section 3 3 2 we discussed the minimum}distanc “non :t-

| L.....____..m oy by o e o Bt



: "-7f 'd6mb;§ing:1453;2);5(4;3;3);aQAj(g;s,45~wéf§$§;1§fiig?f*‘*

'”wg"kasn

'“.fcdﬁéeqhéﬁtiy;_fgf -

| 5 1(4;3.1)"'tii<§) ;f§d(h1;%;fi5 éa(ﬁ?;g;?é)I£;€h;;%f;;§%:?;é-ii[';_fjlljklié;ii

(4 -1 2) ;ixeré-. i&(F F ) > B .> 0 and. r;u(ci) aﬁ?i | f | ax@ definéd

" by (3. 3. 7) and (3 3. 8) respectively. x Rt b

Bt e o o 651 gt e g 422
| (432) _} d(f-o,i.:l)f_d ( fr ) + d(F - 15 and
’"({i;.S_';Z.i‘)f""_"",.':".:-__;:‘v‘.-’.i~  _Ii’.ﬁ"f.".‘i"};'.."f;' >“d(F1.F2.) - é(r 1) A(rz.rz) |

Y

. f“?’”ldfF i - - ad, ot Pty

SRy

(]

02 01 > d(Fl.F ) d(F 1) d(Fz,Fz) 2d(F ‘iy;

e d(FopFl) <8 4 ; dQFL.F )< % , d(Fz.Fz) <§ sive from _,_(4 3

>0]F

11(4) [ oz 5 d01




_-‘_‘Theorem 4 8 ’I’he Kolmogorov-dis nce s unifo

et see v oo el

- £, <n 4.F ) T <n2 4.F ) fyln .%. '-rl);j;i‘__¢1¢.a

o which p'rci,y'ggﬁ-'(z,;.'gfifl) for 1- 1 . | SR A ,ﬂ/,/ =

 Lemma 4.3: For any/ L »,(il*?l.é}:;:;k)fﬁg:“""

D (4.3.6) 1= iw) - 'A)j [1 - B j(d)]
- : 3#1 'fgf“l; 1'wu‘

where -

Proof; fet Ei \pe the es'r;e‘n.e 4

‘A

j#i '

J-l |

A well—known theorem on Kolmogoro'

""_fstates that' R

class of all univariate distribution func ions




.9: If the distance function q - is consistent (uniform) then L
_ the minimum distance classification rule ¢( ) defined by (3 3 4), is »J;m;wu‘ﬁ
\:Onsistent (uniform), i e. SR E

' ;ﬁu <d,>f.-r' _.1. Y i(i ;_,2 -,..;;.-_-'.-'.‘.k) 88 By Bl

- where 11(a) s defined by (3 3 7)

- _ dPro?#?;kFét_Vd(Eif?J>;:lx'J ij ‘ Then, by-lemma 4 ?
oL Lo -*:.g_~_'f§q a'\”; Hc 'aﬁ:"j:a.?iz-fz'wrg‘z‘.'_j‘__‘ S
R e by G

- ik ij(d) > £ ‘“1- 7 ’Fi) £, (nJ -zﬂaF ) £4(n .—31;r S

. d consistent -> each of f (ni,—zi,F') , f (n ,—%1,Fj) ) f (n ,-%1,F Fi) ;dfﬁ

: }fij,app:oaches 1 o as n .ni.n * w (by definition of B (d))

Consequently, the concluaions follow from lemma 4;3{ fc;ﬁﬁ;}t.t::i.;dib‘

"¥Si$il€£;#?3ﬁﬁeﬁt{lﬁbldsﬂiéi*dnifbgn&¢6h§i§t§n¢ygf‘..;f&f:s];lﬂ?f’

"”‘-Corollary 4 2 Ihe minimum diatance classificatiin rule beaed on Kolmo-

‘}Vfigorov distance (in the univariate caae&'iq'uniformly consistentdn:":"

| jf;,rrdof;~,FAiiowg.1pﬁeaia;e;jff;§@;ﬁhéofam

5flcount discriminanta.;

| Theoren 410 (btan): For any subeoldection

S B A
N



‘ based best-count diacriminant D e D ) r(D) has expected value greater L

,than or equal to the restricted optimum probability, which in turn ie j __‘“

'greater than or. equal to r(D) 3 i e. 7cfr
| ta,%-li‘?f‘*vf’JVI;!f*; 2P aed

Proof:’ Similar to that of theorem 4.1. .

;kTheorem 4 11 (uniform convergence) Ag sample size n+ 9 ; the c0unting

~vf“nCt1°ﬂ r GsOﬁverSes to the actual probability of correct claasificacion

: r(D) . uniforq&g over all discriminants D 1n the subcollection D s 1 e.vfi;f7fﬁ
"<4%442>1551-7v;;4'3fa aup. lr(ﬂ)—r<n>| 2550 e

v»wa:tv:i.--'r

’t;ff-iprovided that Fl 2""’Fk are absolutely continuous with respect to
Il}the Lebesgue measure u R TN e D T R
'73£t99£?9{vsihs?<3:3a11:aaa3(g;zﬁlzygeé;haﬁgéjvbf

.o

A
e

.7?1f H(U)% 18 the Collection of all sets which areiintersections_ot

f; most ‘uo half—spaces then either }””"" 3.




_: f ;Theorem 2. of Suzuki [1966] Since fOr all D . D

wfi;and thus the couvergence in quadratic mean ﬁollows from almoat sure ﬁb*f;'“

' convergence.,

7‘.Bsge£k.ﬁ_ﬁ'. Theorem 4 1°°Bserts that the best-count discriminant _nf 1;

| 7contains any Optimal discriminant)

" I}v- d F —:fii dF (x) suﬁf: ij d B, (x) - f ar ] .

Since this bound does nOt depend on the PartiCUIar discriminant D , 1:

’-also bounds‘ Sup ]r(p)—r(D)] and thus,.i
Dep | | ’

‘_‘,'\, SR ,. k T D R
e F@m] < 1 1 oup ‘If d”x)‘f’diﬂf(x:)l-}
Ded o Am SeH(u) ST s R

<Sin¢e ‘131-q1155:§+>f0*-by (2.3.2)). S0, to_conclude the proof; one
T R S S (SO UL PSP EU SR APAL PRI
‘needs to prove the convergence '

R T E L

| Any aaymptotic result of the above form is called a Glivenko-ivilib*‘;.

,\,

'fncaﬂtelli °°“Ver89nce of sample-measurea and has been established by le,ﬂff}‘-3”7

Lo w L E

e .l'?fb'S'?ikﬁ)-l:.-’s-i:":@’)'* +r(D)£2 A

.vg

Subject t° the co ﬁioﬁ: £ th

G 7¢6foilé£2‘4§3




LY,

" even with simple 1oss structure and equal prior probabilities, the Fisher-fﬁ;:

fAnderson 8 plug-in linear discrininant is not neceasarily a best-count

N ‘E::a&;g"lé.""‘z‘.,,t.: e

" r(D) *sup.T(D) ' with-probability one, and

‘(4,4.3)'1v f (D) + eup‘r(D)_ o withfprobaoility_one.,

,Proof-’ Similar to. the proof of theorem 4. 7 restricting the classifica- o

- tion rules D. to the aubcollection D of D .

v:.: q.e,. d‘. E -

Here is an example (Glick [1975]) to show that in ‘the case of

classification into one of two multivariate normal distributions with

- vacommon known identity covariance matrix and with estimated mean vectors,.';

o rule for the collection of all linear clasaifiers, i e. D # D in genera1_~gf:'f;




Consider a hypotnetical|sample-of" ne=-4 ,conrectly classified
bivariate observations from a mixed population r. Individuals from "l
'are denoted by X and those from "2. are denoted by 0. The solid line ‘

(perpendicular bisector of the linefsegment between sample means) is the .

' 'Fisher—Anderson Classifier, (D) , and this partition misclassifies one

Aof the three observations from each population.: But the diagonal line in
.Figure I partitions the plane into two disjoint half-spaces and corres—
ponds to a best—count linear discriminant (D) , which classifies correct-.3;

ly all of the,sample points.lj



- CHAPTER V . L U

. General Remarks

In the preceding chapters, we discussed various classification
procedures - parametric and nonparametric, and some mathematical results
"on these rules and the associated probabilities of correct classification.

In this chapter, we make .some general remarks on classific&tion theory,

which will be of some use to a statistician.’

It{was noted that the basic idea in arriving at different

classification criteria is. the same, namely the rule minimizes the

k)

* . -

vfexpected loss, or: in particular assuming simple loss structute, the prob—
‘ability of misclassification,‘a natural criterion , After a: discriminant ’
- .or classification procedure has been established it is of considerable

l-l'interest to determine whether the discriminant s really useful The f'd -

o &

method of studying such a question involves the use of confusion matrix,

, .

defined by Massy [1965], which provides a method fot summarizing the E; .p;rbf“

.number of correct and incorrect clas!&fications made by the procedure.¢,f-- Luny

>

- One can also investigate the sensitivity of a procedure to deviations

'from the assumptions under which it was derived._ As ap example, we men—'t;‘

. tion Lachenbruch [1975] s Chapter 3, which is concerned with the robust-;ir' S

'hbli_ness prOperties of linear discriminant functions.g (For details see }ﬂ"'"

:jLachenBruch [1975] )

'v_‘. e

l"?flé?iaf} In Chapters e and III ‘we did not dwe}l much.on classification *,yffff”

to one of several populations. There are two reasons for this. First- iiw;yf 4
ly, the essence of the problem is often contained in the two population

v A e
case, and secondly, the multiple population case may involve more complex S




oo
Sy

*

sampling situations. Lachenbruch [1973] has considered two parametric

Y

methods for solving such classification problems and studied the
relative performance of these two methods using the estimated oroportion . . - o
of correct classification.« Kanazawa [1974] developed a nonparametric

. classification rule basedvon thewﬂilcoxon—Statistic for the.Several

population case, proving its consistency. -

If the number of P~ variates (dimensions) of the problem is

too’ large, the data are subjected to Factor analysis -a technique that- o
o . ‘ .«‘K'a .
attempts to account for the correlation pattern in a set of observable

Lo o,

'random variables in terms of a minimal number of unobservable random

variables called Factors. These fundamental factors%ﬂhd-their-linear e

combinations~are.used"to explain the observed data. Evidently;,this;way‘h-f‘
. ’ by A Y -

some information is lost.» Considering the analogy of discriminant anal—

N ﬁysis with that of regression analysis,Ai ﬁcan be said that unlike regres-7

sion coefficiehts, discriminant coefficients are not unique, only their S

ratios are. o "'»fh I .
;‘ In most-of thevclassificationfmrocedures;“it has‘b’envassUmed“'

:that X, the vector of measurements is readily observable. However, at 5

'lcomponent of X on‘each’-j'fli B

T

. times it may not be possible to observe eV'ﬂ

: *unitlthat,is sampled This gives rise to what is called "incomplete
data. It is wL mentioning that in such cases one may consider a‘ |
fgeneral stoohastic process instead of a finite dimensional vector‘ X ;

h.'i.The Other interesting topics on classification included in the litera-bje;.a't :

' 7fture are the following

Py
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\

'(i)‘ Sequential Discrimination.
1- 2, v beli i.d. random variables.,-observing X's
sequentially and knowing that- their distribution is one HT countably many

!

Let

‘different probabilities within an arbitrary error 1evel, the general

A(\

broblem of sequential discrimination is: how can we decide which one.

Sometimes' when the distance between the formulations is fairly small thei

° 2

discriminatory power . of the observed variables is insufficient for .
_ \ /

: satisfactory assignment to "l' or n2 . Several sequential approechea

have been proposed to avoid this problem.. Suppose that we wish to aVOid., '

' . ; ) o
more than € proportion of errors in “l‘ and € in ‘“2" If it is'v»

possible to obtain independent observatione on the individual to be

classified, then Lachenbruch [1975] suggests the use of sequential prob—

B \

ability rgtio test to aseign_to "l _OF nz_.'
_ ihe,uariablef U(X) of (2;2;8)KisinormallYffiatributed'with"':' ;
W2 2 ,

.'mean éf' in T and e,%?‘_in .ﬁz and variance A o where

;A. ( (1) (2)) I (u(l) (Z)) is the Mahalanobis generalized squared o i g

\

- )’7f distance (see section 2.2. 3) The assignment rule may be ’ scribed as o
N ' follows: A sequential 1ikelihood ratio rtest of the hypot._'esis ,Hol : x‘?‘f.
. "versus 'H i 'X € ”2 is performed 0bserve Xl and calculate |
!, - e ;
A= "'*'2' R B",—J—]; °
| Do f'(U(X‘)éﬁéjj;' -U(X;) :
. . ) /
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Al <B , 'cssign tb3fﬂlA‘ and .

-

e ——

A . G
A, 2 A , cassign to W, .

Otherwiée, take alsecondcobservation and calculate

: \ . ﬁ fz(U(Xi)’A ) |
2y IXy:aYy
' 1=1 ‘f‘l‘(U(X_i)-ﬁA )' .

.and then compare Az to A and B . This process of taking an obser-"VV ,

'vation and calculating A 1s continued until A is less than B or 'Qﬁ:ZA;"

greater, than A .- In,general, we have h o
. N IS L L
-XU(X ) -n U(X) _: o

f'cnd'consequently,_;he‘tcle5ig:'lAésign:tc"wi; if after :6 'obaervationa
@[> -ZaB e

., '7 td .ﬁé'_if" ‘.  | i : ¢ .”.,’i‘{‘it'c\: cti;,i;,f_(gl: cf} { : iclff‘_clﬁié;
"c?fc\,'k':“' a’.},f:1 Cu® < *'%flﬁiﬁi T N AR
| R T SRR T L

It is clear tha& the method described above does not invpkye ;cs) L
LR
O

o prior probabilifies qi'ccndf* é';c This 1s because ve. arccrestricting

'_the individual probability of misclaasification. Kendayl [1966] auggcs—c'”i>~ffi’

-ted a sequential method based]on otder statistics._ The usage of soquen-7.'

\ i L

T"tial discriminants is not widéspread and there.is no systematic work On

jsequential rules. (For mdfe referencea on this topgc see Das Gupta E1973] ) et

P R
E N

/' o
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(41) Log;stic Discrimination. T e

o

For'dis iminating be{Leen two-populationsf when some gr all"

oy

. V,/’_ :

of observations are ' afive . Logistic discrimination was introduced

'by Cox [1966] : This is found mostly in medical diagnosis based on sympt-{
oms and signe and in epidemiology investigating factors related to dis-; Al R

' eases with low incidences. For more details see Cacoullos [1973, pp.

1-14. ]

TN

. (111) DiaCrimination'between StoChastic~Processes;Er’V 'ii;'

The papers dealing with this problem of diacrimination are }
d.concerned mainly with finding conditions under which two or more procesaes:,'l:,h5l
(1. e..the induced measures) are’ equivalent or- non-singﬂbar. For details ﬂ{’;"'“

© see’ Das Gupta [1973]

-

.1(iv)ﬂ‘Cbnstrained Discrinination.,d‘,gf | L
In Chapter 11, we studied:the Optimal Bayes rules which S

.

aminimiZes the expected loss or the probabilities of m13°133$ification,vn'* R

.vH°“ever’vS°m3t1mes the probabilities of misclasaification are so ]arge ~:“7“l"'”

D
} ]

L that the procedure is of little practical uae. One alterhative is to

‘assign costs to the various types of error which is often difficult or
,feimpbssible. A aecond alternative is to decide the probabilitiee of

"’misclassification within each group that can be tolerated and obtain a

A ——

_{ rule that satisfies these constraints. These constitute what is called

iy

T e
e

conetrained diecrimination . ‘j ;'; ‘

e B

-pdAs 1is evident, the classification procedures are all strikinglf::

'*'different from one another.- Compariaons of different rulea in similar

LN
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situations should be interesting In particular best—count rule and

Fisher-Anderson linear discriminant rule might be compared for both

normal @nd non—normal dsta. Counting estimates of classification prob- .

abilities (the R- method of Lachenbruch and. Mickev [1968]) have been'

compared to. density plug-in estimates (their D - method) in the ease of

.estimated Fisher-Anderson rule. Lachenbruch and Mickey [1968] conclude f"'

that both the estimates are similarly biased for multivariate normal o

‘_data. The most appealing technique is Anderson B modification of =.tf_”""

#

'Fisher 8 linear discriminant. namely,vthe plug-in linear discriminant, ﬂ{bfl-

"J,ification matrix.“ It is assumed that a priori probabilities are the same;.73

-tfble to enter or to be deleted is selected on the'basis of one of three

¢
.41

yet he says that it only "aeems intuitivaly reasonable"._/

Many computer programs are available to perform linear discrim~3li}5m

inantvanalyses.v The moat uideiy used package is BMD [Dixon, 1974],vwhich?_‘
~-has three discriminant analyses programs, BMD 04M BMD OSM and BMD

"‘“O7M, BMD 04M computes a distriminant funttion for two groups using

0.

"specified subsets of- variables.. The output includes group means. covar—*’pfu

:'eiance matrix, coefficients of the discriminant function and Mahalanobis ffT-V""U
- 2

(th OSM perfoms a multiple-group discriminant analysis for upto f.“

fiVe groups. Output includes means, covariance matrix, Mahalanobis

’f_Dz', coefficients of discriminant functions for each group and a classi-;};};;}ffﬂ

- .ﬂ

,u'gfor each group, which can be a rather serious limitation.‘ BMD 07&;‘..”

~‘performs a. stepwise discriminant analysis on upto 80 groups.y The varia—ﬁ-,vf%ffgﬂ

U'criteria at user s option. Uutput 1nc1udes tne populafiﬁn’ﬁeaﬁs'iﬁdﬁ

"fliposterior probabilities of coming from each populatioﬁ% among otherso

o

'sj;;pooled covariance matrix, ciassification matrix at specified at'psira”'




'gf 1in scientific inquiry - a tool ov discovary. Biologista*giye it the namaﬁ”le

" This program also has the option'of‘sp'cifying'prioraprohabilitiéﬁiJ

. St " : v R

It is not difficult to exte'l the classification framework of

this atudy to casesvin-which there ar-' k clasqes and a different

g

finite number L of decision Options Other applications of this gen- i_w
i

- eralized framework are suggested by M rshall and Olkin [1968] Finally, _;55'§;
\

(o

it should be pointed out that the cl_ssification problem can be arrived
ndat starting from the framework of C uster Analysis - whose operationaI

:objective is to diacover a category structure which fits the observationa., AT

L In this case little or nothing is k own about the category atructure, and ;:;f’ﬂb
l?iall that is available is a collect on of observ!tions. But, on Zhe otherthJ
- hhand in the caae of clasaificatio_ problem, the operational objective 1372'37?5}

‘fto classify new individuala, i e.lgivquthe category structure. the clas—ifi.ﬂ ?t

;:'lsification problem amounta to rec 3nising the new individuals aa membera ;:15 S

';\of one category or another,. Clu ter Analysis has bean employed as a toolj L

=

o numerical taxOnomy" while the ngineers call 1t "learning without teech-}jf}fi?h[

*erﬁ.i For a detailed discussio, on Cluster Analysia, see Anderberg f1973]"“
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: 1,.;':1‘ d. Per capita 8ross national product is taken ’from the_ International ’

L. _
" APPENDIX I

Q.
A
3

'.. The following data has been taken from the'l975 world popu-:'?
1ation sheet published by the Population Reference Bureau, Inc. e
(Washington) The data is based primarily on unpublished"United T ._..:,_;.

Nations (UN) figures. The data sheet lists all countries with a .

population larger than 200 000 The variables considered are..._ .

. . w!

l Birth rate (- annual number of births per'l 000 population) ,v'"f e

.v'.. : A,'--

. 2 Death rate (- annual number °f deaths Per 1 000 Population).
S .ffPet'..s;a’viﬁa. éfb‘ss.:r,xitzi;btié:li’prc‘;auef-. s$).
‘ The data for variables l 2 and 3 come from UnPUBliahed mater-
1815 °f the POPulation division of the UN. y Birth rates. death rateg '

O

and life expectancy at birth refen t:o the average of the 1970-75 per- :

Coee

Bank for Reconstruction and Development, 1971 or- 1972 data. g R




89.

Raw data for the samplés from the two populations. = ., - .

~ Sample 1 (n)-= 30).

W @ e Wy

- AUSTRALIA. S L2L0. - 83 72,0 2880.0
COAUSTREA . 0 147 12200 7100 201000
'BELGIUM *" - .f,?7-f_imé7ﬁ.fleﬁg.730' 3210.0.
-ngGARrA' L o162 g o 0{} 820 o*}"
CZECHOSLAVAKIA L - 176\ 112 e 69.0 2'12“0'..0'_‘ PR
 FINLAND f;mV’f-f .“L “’fkfj‘5”13;§ o f:9l3iifﬁb176'0 - 2810, 05f.?  .
- FRANCE jff IR ffﬁ-?I °f17§6':,fff{iofégi-'ﬂ975'0 3620 Oi_f;-f*'5s1 ,
o Cemmeer W s 9.4 f7—72"°*: g0, o,j, .
R 5tf HUNGARvafi‘ﬂi. U 1s3 0 i,s o 70i0 1200, 0?3’t} e
el dcRaw o 13 1"_?1‘74‘0' 2800000
o mme o mamaa aes
- GISRAEL Y265 U6 S7L00 261000
ITALY i:;-Lf:ff*-jyf; kff.ff‘16 0g5«7ksﬁi9Q§}{f5 ¥7?:0 1950 Oiﬁ”L5 'f - .-
 JAPAN ;.';u5f’*jf*‘f’ §1f19 2 66 . 73'0 23200 e
LUXEMBOURG "f”quff BB 5:'ff:;lii¥?*5:f;f71 0. 3190 °7§ﬂfif??5:ff,7
NORWAY S ey 1001 -f}7a o 3340 ofﬂ7§f:ﬁﬂ°:“ﬁ
POLAND 7 e
SINGAPORE
SPAIN _;Tjifff”
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UNITED KINGDOM 161 7T 72,0 26000
TTYNITED STATES - ‘16,2 . 9.4 . 7.0 5590.0
USSR a8 79 70.0 14000
YUGOSLAVHA \\% 182 9z 680 810.0 '_\

,Sample‘Z (_n - 40)

16 @ e W

. ALGERIA B 153,00 43000
. aneoLA o wn3 . 2.5 - 38.0 3900
. BARRAIN - - 4o.6 187 47.0 0 8400
BANGLADESH - . 495 4 281 [ 36.0°  70.0 .
BHUTAN . . . 43.6 2005 440 . 80,0
szl w3 88 el 5300 ¢
CCHDLE. .. 219 9.2 63.0% 800.0. - . .
| CHINA L e L2697 10.370 6201300 Co
CTGoNeo Lt v oas1 208 44,00 290000
'CUBA‘AA’Q]-f",{ff;f;ij.':~;5j29 1;;:‘; ;5g,gx;ff}e7o;oavafsid;q,~J}f :f;e;;ﬁﬁ
| _'EGYpT_. i f:-" = - S  ; _ 37 8 .. 14.0 52‘0 L 240.0 SR
. CETHOPTA . ;;‘ﬂgggtg*,,‘;;=gs.83if”:§33;o’»fgfad.b i » L
. FLIT  _»§7}*;;:ﬂ:ff sy 370,00 50000

o mm T ks k:16*55;;}3;5o:ol;ﬁ7;3b?0?‘[%f,f“y£ .”~f

o INDIA.
';f{INDONESIA
g
: ”.f?fJAMAICA
5 _:‘_>Qi(JORDAN
S LEBANON
MALAYSIA




MAURITIUS . - ' 24.4 L ;6.8'... 66.0 - 300.0"
COMEXICO . 42000 8.6 - 63.0 ° T40.0
' MONGOLIA - * o388 9.4 61.0 _380;0;
. mEPAL - 42,9 203 440 - 80.0
CNIGERIA . 49.3 22,7 . 41,0 ¢ 130.0
PAKISTAN © 474 165 50.0  130.0
PERU . S 4410 7 C1L9 56.0  520.0
PHILIPPINES , - . 43.8 . - 10.5  58.0  220.0'".
RHODESIA e wngt, 0 144 52000 3400 . o
SOUTH AFRICA C o 4M9 15870 52,0 0 850.0 o '\gfﬁ
_SRI LANKA: . 28.6. - 6.4 . 68.0 . ~110.0 o
CosmmA T gsa ,'fisn“', © oS40, 31000 .
© . TANZANIA = ., " 5002 . 0 2001 _‘44;0 - -120.0 ‘
; _”.iTHAILAND . e3.4 - 1008 " 580, 220.0
o . TURKEY . .39 125 'f,“57,d;7ﬂj37o.o .
Ll  UGANDA . f{,* . 5ﬂ§5{if 159 50.0 leso 0 Den ]

%

Y

el T :D'ata, ‘buffut;’,he c_ibqntrie:Sgt'::o_', be glh_aé"s'if\;:_lled?" S

2 [?-;Argemna Lo i 8.8 68.0% 129000 T
(.3 Barbados 2Ll 8.9 f‘lﬁ‘gq:o'=¢ 93q§bf;f{
T aeoprus L a2 e 710 1180.0 o"
S5 s mongkong L s "; f§;§.3~‘;j;;jg.dT:f 980,00 ot
b e eate w0 s3] a0 wosmo’
L7l buertoRies ool 226 6.8 '}jjéib“~”2oso 0 1ﬂ5}'f G
-fj~&f3wmmﬂj“~wgggﬂﬁ"'”'%93 5 10:3. . 67.0  740.0
90 Uriguayo o o200 937000 760000
7010 Venezuela ..36,1.,;,.“f*7;1A*" ' 0

’y N ':4




O 0 N U D W N

&

—
o

MAURITIUS 26.4 ' 6.8
MEXICO R 2.0 ' 8.6
MONGOLIA . 38.8 9.4
'NEPAL 42.9 20.3 °
NIGERIA 49.3 22.7
PAKISTAN 474 16.5
" PERU | 41,0 11.9
PHILIPPINES - 453‘«8 10.5
" RHODESIA \ 47.9 14.4
SOUT< AFRICA Y 42,9 15.5
SRL LANKA 28.6 6.4
SYRIA 45.4 15.4
TANZANIA 50.2 20.1
. THATLAND 43.4 10.8
TURKEY 39.4 12.5
UGANDA: 45.2 " 159
\\
Data of the countfies to. be plassified.
() (2)
Albania 33,4 6.5
.Argentina .8 8.8
Barbados §~ .6 8.9
, CypTtus .2V . 6.8
Hong Koﬂ% Ny 5.5
Kuwait’ .47.1 5.3
Puerto Rico 22.6 6.8
Romania - 19.3 10.3
Uruguay | 20.4 9.3
Veneéueia 364l o 7.1

66.0
63.0
61.0
44.0
41.0
50.0
56.0 -
58.0
52.0
52.0
68.0
0
0

| S4.
44,

58:0
270
50.0

300.
740.
380.

80.
130.

1130,
520.
220.

340,

- 850.
110,
310.

. 120,
220,
370.
150.

0

0

0
0

91.
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(N Parametric Classification.

Let the'ﬁopulatLons be normal. The sample means (éee table
. ’ : .
1), inverse of the estimated covariance matrix, discrifminant func-
. Ty 2 i . .
tion ceoefficients-and the Mahalanobis D~ between the two populations

are computed with the help of the computer programﬁB%P 04M (Dixon

- [1974)) . o _ ’ . i

Table 1
Variahle ' Mean 1 Mean 2 Difference Sum
1 S 17.20995 41.2274 -24.0174 58.43735
2 9.44665 14.43494 - -4.98829 - 23.88159
3 71.66666 53.72499 17.94167 . 125.39165

4 2600.33325  333.00000  2267.33325  2933.33325

N )

Inverse Matrix of the Estimated Covariance Matrix:

0.00095 - .  0.00076 ~0.00106 0.0000 -
0.0076 0.00784 0.00527 ©0.0000
0:00106 - 0.00527 ©0.00420 0.0000
0.0000 - . 0.0000 ° o.ooooi _ | o;ooool

JDiscriminant function coefficients: =

\.  -0.00842 0.02610 -~ . 0.01524 0.00003

&

Mahalanobis  D° = 28.06131. o ) ~‘.‘



P

(a) Classification using Anderson's rule

”

‘ ﬁy (2.3.04/;;assify X Jjntoe 'nl or

1) () 1 ;(l)+;(2))y g1

V(X) = X'S " (x )

5

tions. ' i/ )
. . N
3

-

1. ALBANIA: V(X) = -0.0825 < 0 <y

L4

Therefore ALbaniaAis.assigned to’ né .
2. ARGENTINA: V(X) £ 0.0647 > 0 -
‘ .

Hence Argentina belongs to nl-.

1

3. BARBADOS: V(X) = 0.0936 > 0.

Hence Barbados-is classified as developed.
4. CYPRUS: V(X) = 0.0581 > 0
Hence Cyprus is a develbped coﬁntry.

, 5. HONG KONG: V(X)-= 0.9074 > 0 ¢

'Hence Hong,Koﬁg is'éSSignéd ) populatibﬁ. nlﬁ.

1
1

6. KUWAIT: V(X) = ~0.281

Hence Kuwait is underdevelQped.

(3.%.1(1)):
2

-(;

.

: £
&

n,- according as,

W52 >

93.

- (assuming equal prior probabilities-and equal losses for misclassifica-



®
$
7. PUERTO RICO: V(X) = 0.0787 - 0
Hencé, assigned to populatfon ﬂl'.
8. ROMANIA: V(X) = 0.1159
'r
Thus, Romania beiongs to m,
9. URUGUAY: Vv(X) = 0.1411
. : . ,
o ~ “Hence Ufuguay is developed.
" ’ v \ . ~ ' - ’:- ..
0. VENEZUELA: Vv(X) = -0.1779 L
Hence, assigned to population P
’ (b) Claséification'using;Mahélanbbis' -DZ (2.3.1(1i1)):

By (2.3.7) assign to nlA or T, according as,

\v

;

where the l}ﬁé:; denotes the distance of X from the lst sample and

the r.h.s. dehotes;the-distance.of. X from the. 2nd " sample. Let,

these distances be denoted by, D

1 .and D resbectivel&.

27

1. ALBANTA: “Dy.= 0.2657 , D, = 0.0952. - "J

2. ARGENTINA: 1f, = 0.0645 , D, = 0.1692

Thus,. Aibania helongs to =

. Hénce, assigned t

N y
v

9%,



3. BARBADOS: bl = 0.0374 , Dy = 0.2245

Hence, Barbados is developed.

N

4. CYPRUS: D. = 0.0719 , Dj.= 0.1882

°

Hence, belqngs tg Ty -

5. HONG KONG: D, = 0.1868 , D, = 0,2016

Hence,‘Hong Kong is developed.

= 0.7949 , D,

6. KUWAIT: D , = +2327..

1

Thud, Kuwait-is undérdevélopéd."‘w

1

’\ ° g .
“gé. PUERTO RICO: D) = 0.0558 , D, = 0.2132. .-

"Therefore, is a member of . ﬁl';
r

8. ROMANIA: D1'= 0.0414 , D, = 0.2731:.

.t %
Hence Romania i5 classified into"Trl .

9. URUGUAY: D, .= 0.0121 , D, = 0.337

.Hénce, is assighed.to “l .
‘ : o

. 10: VENEZUELA: YD, = 0,3994 , D, = 0,0436
.Henceh.Venezueié is underdeveloped.' ’
: . : : L ' v é

LF
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" (II) Nonparametric Classification by Nearest Neighbor Rule:

A

First the data was subject .to standardization with Tespect
.- o T s
‘ - ~

to the meaﬁ aﬁd'sténdard deviation of each variable (see table 2).

Euclidean diétanée~has been considered, ) L r/ﬁ
o : Ly ‘ .
Table 2 -
Variab;e . . _;Mea? ~ Standard Deviatiqn
o ~30.93 . -13,36
. Pl . . 1 . P
2. - 12.3 : -, '5.03
3 DTS PP B s . 1l.28
4 o, 1304070 . 1374.1
LV : A -
.By définition 3.1, an observation xﬁ' £>{X1,,..,Xn} is
nearést neigHbof to X = x (observation to be ¢lassified) if e -
: , l mid 'd(xi,x) = d(x ',x) .
7. I<i<n ne
: : 1

~ Since the computations are tedious, we give classifications of only.3

or-4 countries. ‘ Other claséifications are similar, \\\' o
. : D B o o e

R <

‘Kl)f’ALBANIA:__It;is'ﬂeafést:heighbor to''Cuba' which beiongs to

: 'ﬁZ '(Disti = .0.335).  Hehce5Albania.iéTélassffied into fﬁz .

(é) fBARBADOSf .Nearést,neighbor'to,ﬁugosla&ié"(nisf. =10;289§-

' eand.:hén"Ce"Bérbad_os'.-i'_s:_)gievélopéd,f o T i j‘L_,f.s

.96,

.
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(8) ROMANIA: Nearest neighbor to Yugoslavia (Dist. = 0.255) and

y . ‘v

hence' belongs’ to ﬁi’“

[3
1

- {10) 'VENEZUELA: Nearest neighbor to Jamalca (Dist. = 0. 584) and

hence 1is underdeveIOped - o0 /’

7

'3 . /

Remark{ With. KUWAIT' we get the ‘same minimum dig&ance from Switzerland

and Iamalca, so we' can arbitrarily a531gn to T (Minlmum distance =

2

2.638). - . o | - 1

N .

- Thus, it is. clear, that alil the three rules considered give

‘the same classification of the countries to be classified

‘0

#

o

.o




