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Abstract

In this thesis, we consider scheduling problems in which jobs need to be processed

through a (shared) network of machines according to their given paths. Formally,

we are given a graph G(V,E) where the edges E represent the machines. We are

also given a set of jobs J and a path of edges for each of them showing that the job

needs to be processed on those edges in that order. Each job can be moved to the

next machine only if it has been fully processed by all the previous machines in the

path. Moreover, each job takes 1 unit of time to be processed on each machine and

once a machine starts processing a job, it cannot process any other jobs. Our goal

is to find a schedule with minimum total completion time.

We consider two closely related scheduling problems, Star Scheduling with Unit

Processing time (SSUP) and Generalized Path scheduling with Unit processing time

(GPUP). As it is clear from their terminology, in SSUP the network of machines is

a star and in GPUP it is a path.

The most important contribution of this thesis is a 1.796-approximation for the

SSUP problem, described in Chapter 2. To achieve this we partition jobs into smaller

subsets, in each subset the number of jobs that share a machine is less than a specific

number which is increasing geometrically. We also prove that for the case that jobs

cannot have a delay in the middle of their processing, the problem is APX-hard.

In Chapter 3, we consider GPUP problem and prove that in polynomial time

one can find a schedule which minimizes the total completion time. Our analysis

for the algorithm is new and is much simpler than the previous analysis.
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Chapter 1

Introduction

Scheduling problems are well-studied in computer science, with application in manu-

facturing, resource allocation, service planning, and many other areas. In a schedul-

ing problem, there is a collection J of n jobs and a set M of m machines. There are

many different variants of scheduling problems. Here we consider those ones that

are closely related to the ones considered in this thesis.

In the classical job shop scheduling problem, we are given a sequence of µj

operations O1j , O2j , . . . , Oµjj for each job j ∈ J . Operation Oij takes Pij time units

without interruption on machine mij ∈M . We also assume all jobs are available at

time zero. Let Cj be the completion time of job j in a schedule. The typical objective

functions are minimizing the makespan Cmax = maxj∈J Cj , and minimizing the total

completion times
∑

j∈J Cj . For the case that we are given weights wj ≥ 0 for each

job j ∈ J , our goal is to minimize the total weighted completion time
∑

j∈J wjCj .

A feasible schedule specifies for each job the times that it must be processed on

different machines such that each machine processes at most one job at any time

and each job is processed by at most one machine at any time. The goal is to find

a feasible scheduling of the jobs on the machines to optimize an objective function.

In Section 1.1 we introduce graph theoretical definitions and notations that are

used in this thesis. For undefined definitions and notations, we use [We01] as our

reference. In Section 1.2, we define some scheduling problems that are closely re-

lated to the ones considered in this thesis. Next, in Section 1.3, we give a simple

introduction to approximation algorithms. We will then discuss related work in the

literature in Section 1.4. Finally, in Section 1.5, we will mention the problems that

we considered in this research, and the new results we obtain. Most of the results

of this thesis appeared in [FGK+17].
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1.1 Graph Theoretic Fundamentals

A graph G is a triple consisting of a vertex set V (G), an edge set E(G), and a

relation that associates with each edge two vertices (not necessarily distinct) called

its endpoints. We will denote e by (u, v) if and only if u ∈ V and v ∈ V are two

endpoints of edge e; also, we say vertices u and v are adjacent and e is incident to u

and v. Similarly, we say edges e1 and e2 are adjacent if and only if they are incident

to a common vertex. A loop is an edge whose endpoints are equal. If edges have the

same pair of endpoints, they are called multiple edges. A simple graph is a graph

having no loops or multiple edges. However, in a multigraph we are allowed to have

loops and multiple edges.

For every vertex v ∈ V , let δ(v) be the set of edges incident to vertex v and let

deg(v) be the number of incident edges to v, |δ(v)|. For a graph G, let ∆ and δ be

the maximum and minimum degree of its vertices, respectively. We denote the set

of vertices adjacent to v (neighbours of v) by N(v). A clique in a graph G is a set

of vertices such that every two of them are adjacent. A set of edges of graph G is a

matching if no two edges of the set share an endpoint. A matching of a graph G is

said to be perfect if every vertex of G is an endpoint of some edge in the matching.

A k-regular is a graph whose vertices all have degree k. A path is a simple graph

whose vertices can be ordered so that two vertices are adjacent if and only if they

are consecutive in the list. A cycle is a graph with an equal number of vertices

and edges whose vertices can be placed around a circle so that two vertices are

adjacent if and only if they appear consecutively along the circle. A walk is a list

v0, e1, v1, . . . , ek, vk of vertices and edges such that, for 1 ≤ i ≤ k, the edge ei has

endpoints vi−1 and vi. A u, v-walk has first vertex u and last vertex v; these are its

endpoints. A u, v-path is a path whose vertices of degree one (its endpoints) are u

and v. A graph G is connected if it has a u, v-path whenever u, v ∈ V (G); otherwise,

G is disconnected. A graph with no cycle is acyclic. A tree is a connected acyclic

graph.

A (proper) k-vertex colouring of graph G is a mapping ψ : V → {1, 2, . . . , k}

such that for any two adjacent vertices u and v, ψ(u) 6= ψ(v). Similarly, a (proper)

k-edge colouring of graph G is a mapping ψ : E → {1, 2, . . . , k′} such that for any

two adjacent edges e1 and e2, ψ(e1) 6= ψ(e2). The smallest integer k such that G has

a k-vertex (edge) colouring is called the chromatic number (edge chromatic number)
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of G and is denoted by χ(G) (χ′(G)).

A graph G is bipartite if it has a 2-vertex colouring. A graph G′(V ′, E′) is a

subgraph of G(V,E) if V ′ ⊆ V and E′ ⊆ E. If V ′ = V , graph G′ is a spanning

subgraph of G. Also, a spanning k-regular subgraph is called a k-factor. A graph

G is k-factorable if we can partition the edges into disjoint k-factors. Let T be any

subset of vertices of G; then a subgraph of G is called an induced subgraph by T if it

is obtained by deleting vertices of set V − T and all edges connected to them from

graph G. We define b-matching for a given undirected graph G to be a subgraph

with maximum degree at most b and minimum degree at least 1. For the case that

b = 2, we simply denote it by 2-matching.

A directed graph or digraph G is a triple consisting of a vertex set V (G), an edge

set E(G), and a function assigning each edge an ordered pair of vertices. The first

vertex of the ordered pair is the tail of the edge, and the second is the head; together,

they are the endpoints. We say that an edge is an edge from its tail to its head. If

vertex v is a tail (head) of an edge e, we call edge e an outgoing (incoming) edge of v.

Similarly, let δin(v) (δout(v)) be the set of incoming edges (outgoing edges) of vertex

v. We define in-degree (out-degree) of a vertex v to be the number of incoming edges

(outgoing edges) of vertex v and denote it by degin(v) (degout(v)). In a digraph, a

loop is an edge whose endpoints are equal. multiple edges are edges having the same

ordered pair of endpoints. A digraph G(V,E) is regular directed if and only if for

every v ∈ V, degout(v) = degin(v) = ∆
2 . The underlying graph of a digraph D is the

graph G obtained by treating the edges of D as an unordered pairs; the vertex set

and the edge set remain the same.

Min sum edge colouring is an edge colouring problem with a different objective

function. More formally, in the min sum edge colouring problem of a given graph

G(V,E), we want to find a proper edge colouring ψ : E → {1, . . . , k} minimizing

the function
∑

e∈E ψ(e). We denote this problem by MSE.

1.2 Scheduling Fundamentals

There are many special cases of job shop scheduling problem studied in the literature.

Here we define those ones that are related to our problems. In the acyclic job shop

scheduling problem, each job has at most one operation per machine. In the flow

shop scheduling problem, each job has exactly one operation on each machine and

all the jobs go through machines in the same order. However, in the generalized flow
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shop problem there can be operations with zero processing times.

Another classification of scheduling problems is by the setting of machines. If for

each job j pij ’s are independent of machines, they will be equal to pj and we have

the identical machine setting. If they are dependent to the speed of machines then

pij =
pj
si

where si is the speed of machine i and we have the related machine set-

ting. Otherwise, we have the unrelated machine setting. Moreover, in the identical

machine setting if all pj ’s are equal to 1, we have jobs with unit processing time.

One specialization of the job shop scheduling problem is when there is an under-

lying network of machines. In this setting, we assume we are given a graph G(V,M)

where each edge e ∈ M corresponds to a machine and each job has a specific path

showing that it has to go through the corresponding machines in a specific order. If

the graph G is a simple path P and the path of each job is P itself, then we get the

flow shop problem.

Another variant of scheduling problem is when preemption is allowed (i.e., pre-

emptive scheduling problem). Preemption of a job or operation means that process-

ing of a job can be paused (for several times) and resumed later (even on another

machine).

In the packet routing problem, we are given a set of packets and a network.

Each packet has a specific origin and destination and it takes one unit of time for

each packet to travel an edge. In this problem our goal is to first find a path for

each packet between its origin and destination and then to minimize the makespan.

Clearly for the case that the network is tree, the first part of the objective function

will be redundant.

1.3 Approximation Algorithms

An optimization problem is the problem of finding a feasible solution with optimum

objective among the given set of feasible solutions. In the minimization (maxi-

mization) problem our goal is to minimize (maximize) the objective value. Most

of the scheduling problems are minimization problems. Many optimization prob-

lems are NP-hard and it is not possible to solve them optimally and efficiently

unless P = NP . Instead we try to approximate their optimal solution. An α-

approximation algorithm for a minimization problem is an algorithm which finds a

feasible solution with cost SOL in polynomial time such that SOL ≤ αOPT where

OPT is the optimum value. Similarly, an α-approximation algorithm for a maxi-
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mization problem finds a feasible solution in polynomial time such that SOL ≥ OPT
α .

We call α the approximation ratio or performance ratio.

For the NP-hard optimization problems the best result that we can find is a

(1 + ε)-approximation for an arbitrary constant ε > 0. Formally, we say that a

problem has a Polynomial Time Approximation Scheme (PTAS) if and only if it

has a polynomial time (1 + ε)−approximation algorithm for every constant ε > 0.

We define class APX to be the class of all problems with a constant approximation

algorithm. Similarly, class PTAS is the class of all problems that have PTAS.

Let φ and φ′ be two optimizations problems. We say that there is a PTAS

reduction from problem φ to φ′ if for any instance I of problem φ and any fixed

ε > 0:

1. There exists an algorithm A and function c : R+ → R+ such that A returns

an instance I ′ = A(I, ε) of φ′ in polynomial time and if I is feasible then I ′

will be feasible.

2. A solution of instance I ′ with cost at most (1 + cε).OPTφ′(I
′) corresponds to

a solution of instance I with cost at most (1 + ε).OPTφ(I).

We say that an optimization problem is APX-Hard if there is a PTAS reduction

from every other problem φ′ ∈ APX to φ. In addition, if φ ∈ APX, we say that φ

is APX-complete.

For a better understanding of approximation algorithm we show how to get

a simple 2-approximation algorithm for scheduling problem on identical parallel

machines as an example. In this problem we are given m parallel identical machines

and n jobs such that each job needs a single operation which can be done on any of

machines. Our goal is to minimize the makespan.

For a given schedule let di be the load of machine i which is a total processing

time of jobs running on machine i for every i ∈ {1, . . . ,m}. It is clear that

m∑
i=1

di =

n∑
i=1

pi. (1.1)

In the following simple algorithm we assign each job to the machine that has the

minimum load so far.
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Input : A set of jobs and a set of parallel machines
Output: A scheduling of the jobs

1 Consider an arbitrary ordering for the jobs.
2 Schedule first m jobs on machines in this order.
3 Whenever a machine is freed assign the next job to it.

Algorithm 1: Algorithm for minimizing makespan of scheduling problem on
parallel identical machines.

Theorem 1.1. For the makespan objective function on parallel identical machines

Algorithm 1 achieves an approximation ratio of 2.

Proof. It is clear that the optimum value, denoted by OPT , is at least the average

load of a machine and the largest processing time, i.e.,

OPT ≥ 1

m

m∑
i=1

pi (1.2)

OPT ≥ max
i
pi. (1.3)

Let machine i′ be the machine with maximum load and job j′ be the last job on

machine i′ in the solution of Algorithm 1. Also, let ALG be the cost of Algorithm

1, then clearly ALG = di′ . We denote the start time of job j′ on machine i′ by tj
′

1

meaning that

di′ = tj
′

1 + pj′ . (1.4)

According to Algorithm 1 all machines are busy until tj
′

1 ; otherwise j′ would have

been assigned to another machine at an earlier time; so, for every i ∈ {1, . . . ,m}, tj
′

1 ≤

di. By using (1.1) and (1.2) we get that

tj
′

1 ≤
1

m

m∑
i=1

pi ≤ OPT.

Moreover, by (1.3) and (1.4) the cost of Algorithm 1 will be at most 2OPT

meaning that Algorithm 1 is a 2-approximation as claimed.
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1.4 Related Work

Here we review the previous work on the problems we consider in this thesis. The

trivial lower bound lb that is used in many related works are the congestion and

dilation lower bounds. We define the dilation D to be maxj∈J Dj where Dj is a total

processing time of job j regardless of the presence of other jobs. We also define the

congestion C to be the maximum number of time units requested by all jobs on

each machine. Then clearly lb = max{C,D} is a lower bound on the makespan.

Currently the best approximation algorithm known for the job shop scheduling by

Shmoys et al. [SSW94] has performance ratio O((log lb)2/ log log lb) for minimizing

the makespan. For the case of preemptive job shop problem Bansal et al. [BKS06]

gave an algorithm with (better) performance ratio of O(logm/ log logm) for the

same objective function.

In [LQSY06, QS02] the authors show that any approximation algorithm with

ratio ρ w.r.t. the trivial lower bound lb for makespan, can be used to obtain a 2eρ

approximation for total completion time. Feige and Scheideler [FS02] present an

algorithm with makespan O(lb log lb log log lb) for the acyclic job shop problem. By

giving a family of instances in which the makespan is Ω(lb log lb/ log log lb), they de-

rived that this upper bound is nearly tight. Also, the approximation in [FS02] is still

the best known result for the flow shop scheduling problem for both makespan and

total completion time (according to [LQSY06, QS02]). However, for the generalized

flow shop problem Mastrolili and Svensson [MS11] prove a hardness of approxima-

tion ratio of Ω(log1−ε lb).

For the flow shop problem with identical machines, or the proportionate flow

shop, Shakhlevich et al. [SHP98] present a polynomial time algorithm with running

time O(n2) for the weighted total completion time objective. For the case that

machines have unequal speed (related machines), Hou and Hoogeveen [HH03] have

shown that if there are three machines and the second machine is the slowest, the

problem can be solved optimally in pseudo polynomial time.

In the job shop scheduling if all jobs have unit processing time, the problem

reduces to the packet routing problem. For this, the celebrated result of Leighton

et al. [LMR94] shows that there is a schedule of length O(lb). In [LMR99] they

presented an algorithm that finds a schedule with makespan O(lb) in polynomial

time. Recently, in [HS13] the authors show the existence of a schedule of length
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7.26.(C+D) (non-constructive) and present an algorithm that finds a schedule with

length 8.84.(C +D).

For the case of packet routing on in-trees or out-trees (directed trees in which the

in-degree of each vertex is at most one, or out-degree is at most one, respectively),

Leung et al. in [LTY96] have shown that the schedule in which each machine

processes the job that has the longest distance to go at each time step finds the

optimum solution for makespan. Based on this, in [PSW09] Peis et al. observe that

one can get a 2-approximation for makespan on undirected trees. For this, they

convert a tree into a rooted tree and split the problem into two subproblems, first

one is the packet routing problem on an in-tree and second one is on an out-tree.

For directed trees they get a better result. They show that one can get a schedule

of length C + D − 1 which is the best bound in terms of C and D; they provide a

tight example of routing C packets on a path of length D with vertices v1, . . . , vD

where the origin (destination) of each packet is v1 (vD).

For the special case of packet routing problem on a path when all packets go from

left-to-right the authors in [AB+14, KNSM14] show that the schedule in which each

machine processes the job with shortest distance to go at each time step gives the

optimum solution for total completion time. Moreover, Kowalski et al. in [KNSM14]

show that the furthest-to-go strategy gives the optimum solution for makespan.

Another well studied special case of packet routing problem is when the network

of machines forms a grid graph. In [PSW10] Peis et al. have shown that if the start

and destination of two packets are different one can get a 2-approximation.

Im and Moseley [IM15] consider a new variation of scheduling problems with

rooted tree network. In their model, the root of the tree is a job distribution cen-

ter, the leaves are machines, and the interior nodes are routers which are identical.

Each job needs to be routed from the root to the assigned leaf using router along the

path. Each link (edge) can only move one job at each time. They consider an online

scheduling (in which we do not know the set of jobs and processing times beforehand)

of two cases, when the machines are identical and when they are related. For both

cases, they present constant factor approximations for makespan. Bhattacharya et

al. [BKM14] have looked at coordination mechanism for routing problems on a tree.

Recently, Friggstad et al. in [FGK+17] showed that for the case of stars with identi-

cal machines one can get a 7.279-approximation for minimizing the total completion

time. Moreover, they showed that for both makespan and total completion time,
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there are polynomial time O(min{log n, logm, log pmax})-approximation algorithms

when the network of machines forms a tree.

Interestingly we can view some variants of scheduling problems from colouring

problems point of view. In the biprocessor scheduling problem with minimizing total

completion time objective, we are given a collection of unit processing time jobs such

that each job needs a simultaneous use of two specific machines; moreover, we are

given a multigraph for the network of machines. This problem is equivalent to the

min sum edge colouring problem of the given multigraph. In [HKS11] Halldórsson et

al. present a 1.8298-approximation for the min sum edge colouring problem. Prior

to their work the best known ratio was 2 according to [BBH+98]. In [M09] it has

been shown that the min sum edge colouring problem is APX-hard even for the case

of bipartite graphs.

1.5 New Results

In the following, we define the problems we consider in this thesis.

Star Scheduling with Unit Processing time (SSUP). In this scheduling prob-

lem, we are given a set of jobs J and machines M where |J | = n and |M | = m.

Moreover, a star G(V,M) with center r is given for the network of machines. We

are also given a path Pj = (sj , tj) for every j ∈ J where sj , tj are two edges of G

showing that job j should process distinct edges sj and tj in turn. We can assume

each job j is located at some leaf (incident to sj) and must finish at another leaf

(incident to tj). For an illustration see Figure 1.1. It is clear that SSUP is a special

case of the packet routing problem.

9



m2

m
1

m
3

m4

j3j1 j2

j4

Figure 1.1: An example for star scheduling problem with unit processing time. The
given set of jobs and machines are J = {j1, j2, j3, j4} and M = {m1,m2,m3,m4}.
The given paths are P1 = (m1,m4), P2 = (m1,m3), P3 = (m1,m2), P4 = (m3,m2).

Generalized Path scheduling with Unit Processing time(GPUP). In this

problem, we are given a path P (V,M) for the network of machines where M =

{1, . . . ,m} is the set of machines. We are also given a set of jobs J with cardinality

n where each job j is specified by a subpath Pj where Pj is the sequence of edges

from index sj to tj . Each job j ∈ J must spend one unit of processing time on

each machine in Pj . Moreover, each job will move to the next machine only if it

has been fully processed by all of the previous machines in Pj . Unlike the flow shop

problem, in this problem the starting machine and finishing machine for each job

are not necessarily machines 1 and m. For an illustration see Figure 1.2.

4321

j3

j1
j2

j4

Figure 1.2: An example for generalized path scheduling problem with unit processing
time. The given set of jobs and machines are J = {j1, j2, j3, j4} and M = {1, 2, 3, 4}.
The given paths are P1 = (1, 2, 3), P2 = (1), P3 = (2, 3, 4), P4 = (3, 4).

In Chapter 2, we consider the SSUP problem and some variation of it. In the

beginning of the chapter we present a simple 2-approximation and by providing a

tight example we show that the ratio of this algorithm cannot be improved. Next

we present the following main result:
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Theorem 1.2. For minimizing the total completion time of SSUP problem there is

a 1.796-approximation algorithm.

One variation of SSUP is when the given auxiliary graph is regular directed. For

this case we present a polynomial time algorithm which finds disjoint cycle-covers

in each iteration. Another variation of this problem is when we are not allowed to

have any intermediate delay for jobs in the center. We prove that this variation is

APX-hard. In Chapter 3, we consider the GPUP problem and prove the following

result.

Theorem 1.3. For the GPUP problem, there is a polynomial time algorithm to

compute a schedule with minimum total completion time.

This results has been mentioned in [KNSM14, AB+14], but we used a much

simpler analysis.
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Chapter 2

Star Scheduling with Unit
Processing Time

In this chapter we consider the star scheduling problem with identical machines and

unit processing time jobs and our goal is to minimize the total completion time

of jobs. Recall that in the SSUP problem we are given a set J of n jobs and a

set M of m machines. Also, a star G(V,M) with star r is given for the network

of machines. Let digraph H(V ′, E′) be the auxiliary graph of G(V,M) in which

vertices correspond to machines and edges correspond to jobs in J where each edge

(sj , tj) ∈ EH shows that the given path for job j in graph G is {sj , tj}, Figure 2.1.

In this graph representation, |E′| = |J | = n and |V ′| = |M | = m. Note that in this

problem the auxiliary graph H(V ′, E′) can be a multigraph.

When we schedule a job j that is supposed to run on machines u, v where e =

(u, v) ∈ H with tuple (te1, t
e
2) it means that we start processing job j in graph G at

time te1 on its first machine and at time te2 on its second machine. When it is clear

from context, we drop parameter e from tuple, and simply assign tuple (t1, t2) to

edge e.

Throughout this chapter, we use ALG and OPT to denote the cost of the pro-

posed algorithm in that section and the optimum value of the star scheduling prob-

lem.

12



G

m2

m
1

m
3

m4

j3j1 j2

j4

H

j3j1 j2

j4

Figure 2.1: Two graph representations of star scheduling problem that is shown in
Figure 1.1, an original graph G and an auxilary graph H

2.1 A Simple 2-Approximation

Let us define the following sets for each edge e ∈ E:

Qe = {j|sj = e} Re = {j|tj = e} Le = Qe ∪Re.

Since graphs G and H are related, we get the following equations for every e ∈ E

and the corresponding vertex v ∈ V ′:

degH(v) = degoutH (v) + deginH (v) = |Qe|+ |Re| = |Le|. (2.1)

2.1.1 Algorithm

The algorithm simply tries to send all jobs to the center first and when an edge has

processed all the jobs traveling to the center, it will process the jobs that have this

edge as their second machine. In the following we bring the formal representation

of our algorithm. Assume that each edge e = (u, r) in graph G has two buffers be(u)

and be(r) at its endpoints where be(u) will hold jobs that are starting from u and

want to cross e; similarly, be(r) will hold jobs that arrive at r and want to cross e.

13



Input : The original graph G
Output: A scheduling of the jobs

1 J ′ ← J
2 while J ′ 6= ∅ do
3 foreach edge e = (u, r) in original graph G do
4 if be(u) 6= ∅ then
5 process the first job in be(u) and pass it to its next buffer;
6 end
7 else if be(r) 6= ∅ then
8 process the first job in be(r);
9 end

10 end

11 end

Algorithm 2: Simple approximation algorithm for the star scheduling problem
with min-sum objective and unit processing time jobs.

2.1.2 Analysis

In this section we will prove Theorem 2.1.

Theorem 2.1. Algorithm 2 is a 2-approximation for the star scheduling problem

with unit processing times.

Lemma 2.2. OPT ≥
∑

e∈E
|Le|(|Le|+ 1)

4
+
n

2
=
∑

v∈V ′
deg2

H(v)

4
+ n.

Proof. The total number of jobs that will pass edge e is |Qe|+ |Re|. Each of them

can pass e one at a time. Assume an arbitrary ordering for these jobs. So, the k’th

job will spend k−1 units of time in the queue and 1 unit of time for crossing edge e

where k ∈ {1, . . . , |Qe|+ |Re|}. Let fe(j) be the time that edge e finishes processing

job j in the optimal solution for every e ∈ E, j ∈ J . As a result,

∑
j∈Le

fe(j) ≥ 1 + 2 + . . .+ (|Qe|+ |Re|) =
(|Le|)(|Le|+ 1)

2
.

Let comp(sj) and comp(tj) be the finish time of job j on edges sj and tj in the

optimal solution, respectively. Note that we can rewrite
∑

j∈J(comp(sj)+comp(tj))

as
∑

e∈E
∑

j∈Le
fe(j). Also let COPTj be the completion time of job j in the optimal

solution, then OPT =
∑

j∈J C
OPT
j . So,

∑
j∈J

(comp(sj) + comp(tj)) =
∑
e∈E

∑
j∈Le

fe(j) ≥
∑
e∈E

|Le|(|Le|+ 1)

2
. (2.2)
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It can be seen that for any integer numbers a and b, if a− b ≥ 1, then we have:

a = max(a, b) ≥ a+ b+ 1

2
(2.3)

So, clearly by using Equations (2.2) and 2.3 the following inequalities hold:

COPTj = max{comp(sj), comp(tj)} ≥
comp(sj) + comp(tj) + 1

2

OPT =
∑
j∈J

COPTj ≥ n

2
+

1

2

∑
j∈J

(comp(sj) + comp(tj))

≥
∑
e∈E

|Le|(|Le|+ 1)

4
+
n

2
(2.4)

Substituting Equation (2.1) in Equation (2.4) and simplifying it, we get the

second claimed lower bound for OPT .

Lemma 2.3 shows an upper bound for the cost of Algorithm 2.

Lemma 2.3. ALG ≤
∑

j∈J
|Qsj |

2
+ |Qtj |+

|Rtj |
2

.

Proof. According to the definition of star scheduling problem, job j should first

cross edge sj , and then edge tj . In the first step of Algorithm 2, there is a queue

for jobs in the set Qsj . After that job j will be in the center and cannot start the

queue for passing edge tj until all jobs of the set Qtj pass edge tj . Next there is a

queue for jobs in the set Rtj .

On average, each job of set Qsj should wait for
|Qsj |

2
units of time to cross edge

sj . In order to wait for all jobs of set Qtj , it requires to wait |Qtj | units of time.

Also, on average job j will spend at most
|Rtj |

2
units of time in the queue of edge tj .

So, for all jobs the time required for sending them to their destination is at most:

∑
j∈J

|Qsj |
2

+ |Qtj |+
|Rtj |

2
.

Now we rewrite each term of the obtained upper bound in Lemma 2.3 in the

following forms:
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∑
j∈J
|Qsj | =

∑
e∈E
|Qe|2 (2.5)

∑
j∈J
|Qtj | =

∑
e∈E
|Qe||Re| (2.6)

∑
j∈J
|Rtj | =

∑
e∈E
|Re|2 (2.7)

Consider the left-hand side of Equation (2.5). Intuitively, if for edge e, |Qe| = k

then we consider these k jobs k times. That is why we can write it in the form

of right-hand side. With a similar reason Equation (2.7) is valid. In the left-hand

side of Equation (2.6), for all jobs with tj = e (there are |Re| number of such jobs),

we have considered edge e and each time we add number |Qe| in the summation.

Hence:

ALG ≤
∑
j∈J

|Qsj |
2

+ |Qtj |+
|Rtj |

2
=

1

2

∑
e∈E

(|Qe|+ |Re|)2. (2.8)

So, by using Equation (2.8) and Lemma 2.2, Theorem 2.1 holds.

Observation 1. The following tight example shows that the analysis of Algorithm

2 cannot be improved to get ratio better than 2.

Consider a star S(V,M) is given for the network of machines such that M =

{s1, s2, . . . , sk}∪{t1, t2, . . . , tk}. We are also given a set of jobs J with size qk2 such

that q jobs are using path (si, tj) for every i, j ∈ {1, . . . , k}. One way to schedule

these jobs is to send all jobs with disjoint paths simultaneously. Hence, we partition

jobs into qk sets with equal size J = ∪ki=1 ∪
q
j=1 J

j
i such that jobs of each set have

disjoint paths and |J ji | = k for every i ∈ {1, . . . , k}, j ∈ {1, . . . , q}. So, by scheduling

jobs of each J ji separately we get that,

OPT ≤ k (2 + . . .+ (q + 1) + (q + 2) + . . .+ (2q + 1) + . . .+ ((k − 1)q + 2) + . . .+ (kq + 1))

= k

(
(kq + 1)(kq + 2)

2
− 1

)
=
qk2

2
(kq + 3)

Now consider the case that our algorithm chooses to send all jobs that end at t1

and then all jobs that finish at t2 and so on up to tk. For qk number of jobs that

16



are finishing at ti, we should send each one at a time where i ∈ [1, k]. Note that

when we want to send jobs from si to t2 we cannot send them until we send all q

jobs from si to t1 meaning that the first job in this set will be finished at time q+ 2.

With a similar argument we can write the following for the completion time of the

algorithm.

ALG = 2 + . . .+ (qk + 1) + (q + 2) + . . .+ (q(k + 1) + 1) + . . .+ ((k − 1)q + 2) + . . .

+ ((k − 1)q + 2 + qk − 1) =
k∑
j=1

qk∑
h=1

(j − 1)q + 1 + h =
qk2

2
(2qk − q + 3)

So, for large enough k, the following ratio approaches 2.

ratio ≥ qk2(2qk − q + 3)

qk2(qk + 3)

2.2 An Improved 1.796-Approximation

In this section, we obtain a better algorithm for the same problem. In the proposed

algorithm, our goal is to choose a subset of edges in each iteration and schedule

them such that the makespan of the corresponding jobs is minimized. The idea of

this algorithm is similar to the idea of minimizing latency problem [CGRT03] where

they convert a makespan objective function to min-sum objective function. Recall

that b-matching(b) for graph H is a subgraph of H with maximum degree at most

b.

2.2.1 Algorithm

Informally speaking, we partition the edges of E′ into q blocks denoted by Ei, i ∈

{1, . . . , q} where q is the number of iterations of Algorithm 3. Each block contains a

maximum b-matching(ki) such that ki is an even number and it is increasing geomet-

rically, ki = 2bc
i+α

2
c where α is chosen uniformly at random from the interval [0, 1)

and c is some constant that will be optimized later. So, we further partition each

block Ei into ki
2 number of slots each denoted by Eji , i ∈ {1, . . . , q}, j ∈ {1, . . . ,

ki
2 }.

Following is the formal description of our algorithm. Procedure directed b-

matching(b) in Step 6 of Algorithm 3 finds a subgraph with maximum number of

edges, whose underlying undirected graph is a maximum size b-matching(b). Also,

17



note that there are known algorithms for finding maximum b-matching(b) in poly-

nomial time (see [CCPS98]).

Input : Auxiliary graph H
Output: A scheduling of the edges (jobs)

1 α ∼ U [0, 1]
2 i← 1
3 W ← E′

4 while W 6= 0 do

5 ki ← 2bc
i+α

2
c

6 Ei ← directed b-Matching(ki)

7 Decompose Ei into ki
2 disjoint directed 2-matchings E1

i , E
2
i , . . . , E

ki
2
i (Lemma

2.4).
8 for j = 1 to ki

2 do

9 Y ji ← clockwise edges of Eji
10 Zji ← Eji \ Y

j
i

11 if i = 1 and j = 1 then
12 Schedule edges of Y 1

1 with tuple (1, 2).
13 Schedule edges of Z1

1 with tuple (2, 3).
14 x← 3.

15 end
16 else

17 A← available time step at each vertex of Eji .

18 Schedule edges of Y ji with tuple (A, 1 + x).
19 Schedule edges of Z1

1 with tuple (A, 2 + x).
20 x← x+ 2

21 end

22 end
23 W ←W \ Ei
24 i← i+ 1

25 end

Algorithm 3: Algorithm for minimizing total completion time of unit pro-
cessing time jobs on stars

In step 6 of the algorithm, we find a maximum size subset of edges that can be

scheduled using a bounded number of time steps. In order to schedule these edges,

we divide them into a number of smaller sets (slots) such that each vertex will be an

endpoint of at most 2 edges, as mentioned in Step 7. In Step 9 and 10 of Algorithm

3, we partition edges of each directed 2-matchings Eji into two sets according to

their direction: the set of clockwise edges, denoted by Y j
i and the set of counter

clockwise edges, denoted by Zji where i ∈ {1, . . . , q} and j ∈ {1, . . . , ki2 }. In the rest

of the algorithm we mentioned how to schedule these slots. In Lemma 2.5 we claim

that we can schedule almost all of these slots by using at most 2 new time steps

each.
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2.2.2 Analysis

In the following lemmas we will show an upper bound for the cost of Algorithm 3.

deg(v1) = 1

deg(v2) = 2

deg(v3) = 2

deg(v4) = 3

v1
4 v2

4 v3
4 v4

4

v4
4

v4
3

v4
2

v4
1

Figure 2.2: An example of how to build a regular graph F ′ from graph F (V ′, E ′) as
shown in Figure 1.1 where V ′ = {v1, v2, v3, v4} with degrees deg(v1) = 1, deg(v2) =
2, deg(v3) = 2, deg(v4) = 3.

Lemma 2.4. Each b-matching(ki) can be partitioned into
ki
2

disjoint 2-matchings

in polynomial time.

Proof. For an arbitrary i ∈ {1, . . . , q}, let subgraph Hi(Vi, Ei) denote the maximum

b-matching(ki) in graph H with m′ number of vertices.

In the following, it will be shown that Hi is a subgraph of some 2d-regular graph,

where d = ki
2 . It has been shown that any 2d-regular graph is 2 factorable [Pe1891]

and edges can be partitioned into 2-factors in polynomial time. This means that we

can decompose each subgraph Hi into ki
2 2-matchings.

Consider an ordering v1, v2, . . . , vm′ for vertices of Vi such that deg(v1) ≤ deg(v2) . . . ≤

deg(vm′). Note that according to the definition of b-matching, deg(v1) ≥ 1 and

deg(vm′) ≤ 2d.

We make 2d copies of subgraph Hi, shown by H1
i , . . . ,H

2d
i and we add an edge

between every two copies of vertex vj for every j ∈ {1, . . . ,m′}. We denote this new

graph by F (V ′, E ′). We can see that E ′ can be partitioned into m′ cliques of size 2d

and 2d copies of Ei. We denote these cliques by F1, . . . , Fm′ .

In order to get a 2d-regular graph, we need to remove some edges from graph

F . It is known that every complete graph with an even number of vertices is

1-factorable, i.e., its edges can be partitioned into disjoint perfect matchings in

polynomial time [Ha69]. Hence, we can remove deg(vj) perfect matchings from each

clique Fj of graph F , where j = 1, . . . ,m′. We call this new graph F ′. It can be

19



seen that the degree of each vertex in F ′ is 2d and Hi ⊆ F ′, as desired.

Lemma 2.5. Consider the partitioning of E′ =
⋃q
i=1

⋃ ki
2
j=1E

j
i . One can find a

scheduling in polynomial time in which every slot Eji uses 2 new time steps except

slot E1
1 which uses 3 new time steps.

Proof. Recall that each slot is a directed 2-matching and as we know a 2-matching

is a collection of directed cycles and paths. Let C be a directed component of slot

Eji . Without loss of generality, we assume that underlying undirected graph of C is

a cycle; since for the case that it is a path, we can add a dummy edge.

To simplify analysis we modify cycle C into a new graph, call it C ′. Let maximal

directed subgraph of C be a maximal set of consecutive edges with the same direction

in C. In order to build C ′, we contract all edges of a maximal directed subgraph into

a one new edge. Note that if we schedule an arbitrary edge of C ′ with tuple (t1, t2),

we can schedule all the edges of the corresponding maximal directed subgraph in C

with tuple (t1, t2). According to the definition of maximal directed subpath, we can

see that on each vertex of C distinct time steps will appear; so, this will be a proper

scheduling for C.

Let positive (negative) vertices of C ′ be vertices with in-degree (out-degree) 2.

Clearly, no two negative vertices or no two positive vertices can be adjacent. Hence,

C ′ is a bipartite graph and must be an even cycle. We consider the partitioning of

edges of cycle C ′ into two sets: clockwise edges and counter clockwise edges. Since

C ′ is an even cycle, the number of clockwise edges and counter clockwise edges will

be equal.

If C belongs to slot E1
1 , we will schedule edges of C ′ in the following pattern:

Schedule all clockwise edges with tuple (1, 2) and schedule the rest of edges with

tuple (2, 3). So, slot E1
1 uses at most 3 time steps.
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C
(b)modifiedcycleC afteredgecontrac-
tion

Figure2.3:AnillustrationofhowtoconvertcycleCtocyleC andhowtoschedule
eachofthem.

Now,assumethatCbelongstoanyslototherthanE11.Sincedegreeofeach

vertexinanyslotisatmost2andweused3timestepsforE11and2timesteps

forallsubsequentslots,alwaysonetimestepisavailableforanyvertexinCwhich

meansthatthistimestepcanbefurtherusedforanoutgoingincidentedgeinthe

nextslot(ifitexists).

LetEjibeanarbitraryslototherthanthefirstandconsideralloftheslotsprior

toEji.Clearlythisslotbelongstothei’thblock.So,exceptthej−1slotsbefore

Eji,otherslotsarefromblocksE1,E2,...,Ei−1. Asaresult,thedegreeofeach

nodeinblockEjiisatmost
i−1
=1k+2(j−1).However,thenumberoftimesteps

wehaveassignedsofaris:

3+2
k1
2
−1 +2

k2
2
+...+2

ki−1
2
+2(j−1)=

i−1

=1

k+2(j−1)+1

So,inslotEjiforeachvertexatleastonetimestepfromset{1,2,...,
i−1
=1k+2j−

1}isavailable.LetAbetheavailablecolourateachvertexofslotEjiwhichmay

bedifferentforverticeswithineachslot. Wescheduleallclockwiseedgeswithtuple

(A,1+)andcounterclockwiseedgeswithtuple(1+,2+)where1+= i−1
=1k+2j

and2+= i−1
=1k+2j+1. Hence,inthiscaseslotE

j
iusesatmost2newtime

steps.Also,themakespanofeachjobinslotEjiisatmost

i−1

=1

k+2j+1. (2.9)
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Moreover, similar to the previous case, the given scheduling is proper as each vertex

will receive two different time steps, since the number of clockwise and counter

clockwise edges are equal in the modified cycle.

Lemma 2.6. For the partitioning of E′ such that E′ =
⋃q
i=1Ei, each job in block

Eq has a completion time of at most 1 +
∑q

`=1 k`.

Proof. Using Lemma 2.4 and Algorithm 3, block Eq will be partitioned into slots

E1
q , . . . E

kq
2
q . So, clearly the makespan of each job in block Eq is at most the makespan

of each job in the last slot which is E
kq
2
q . According to Equation (2.9) in the proof of

Lemma 2.5, the makespan of each job in slot Eji is at most
∑i−1

`=1 k`+ 2j+ 1. Hence,

the following will be an upper bound on the makespan of each job in block Eq:

q−1∑
`=1

k` + 2(
kq
2

) + 1 =

q∑
`=1

k` + 1

In order to decrease the cost of the algorithm, between any ordering of edges

in the last block and its reverse we choose the better one. In other words, for

scheduling each slot, we can do the reverse of the mentioned pattern in the proof

of Lemma 2.5 and choose the better one .i.e., assign tuple (A, 2+) to all clockwise

edges and (A, 1+) to all counter clockwise edges; moreover, in each block we can

schedule the slots E1
q , . . . , E

kq
2
q in the reverse order. Hence, by taking the better of

these two reverse orderings (both in the last block and each slot), Observation 2 will

be obvious.

Observation 2. If we consider the reverse ordering of edges in block Eq and run

Algorithm 3 again, then the average completion time of jobs in Eq will be at most

1 +
∑q−1

`=1 k` +
kq + 1

2
.
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j3j1 j2

j4

Figure 2.4: In this example we show how to schedule edges of the shown graph in
Figure 2.1. Green edges of each cycle are the edges of the original graph that should
be scheduled in two different slots.

Now we want to compare the cost of Algorithm 3 against the cost of a solution

with optimum total completion time. Let CALGj and COPTj be the completion time

of j’th job in the schedule given by Algorithm 3 and a schedule with optimum

total completion time, respectively. If job j is scheduled in block q in the solution

given by Algorithm 3 then according to Lemma 2.6 and Observation 2, we get that

CALGj ≤ 1 +
∑q−1

`=1 k` +
kq + 1

2
.

Assume that COPTj = dcq for some d < c and some integer q ≥ 1 and recall that

ki = 2bc
i+α

2
c. Now the following two cases will arise:

Case 1: d < cα. In this case, because COPTj ∈ Z, we get the following:

COPTj = dcq ≤ 2bdc
q

2
c+ 1 ≤ 2bc

q+α

2
c+ 1.

COPTj ≤ 2bc
q+α

2
c = kq.

It means that in a schedule with optimum objective function, the completion

time of j’th job is at most kq. In other words, if we send jobs in our solution in

the order of optimum scheduling, then j’th job (in the optimum schedule) will

be scheduled at latest in iteration q. Since in iteration q of Algorithm 3 we find

a maximum number of edges that can be completed within kq units of time

(maximum b-matching(kq)), the j’th edge in Algorithm 3 must be scheduled

before or in iteration q. As a result,

CALGj ≤ 1 +

q−1∑
i=1

ki +
kq + 1

2
.
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Case 2: d ≥ cα. Since d < c and cα ≥ 1, we get that:

dcq ≤ 2bdc
q

2
c+ 1 < 2bc

q+1

2
c+ 1 ≤ 2bc

q+α+1

2
c+ 1

COPTj ≤ 2bc
q+1+α

2
c = kq+1.

Hence for the same reason as Case 1, CALGj ≤ 1 +
∑q

i=1 ki +
kq+1 + 1

2
.

Next we simplify the upper bounds for each case. For the first case we get that:

CALGj ≤ 1 +

q−1∑
i=1

ki +
kq + 1

2
≤ 1 + 2bc

1+α

2
c+

q−1∑
i=2

ci+α +
cq+α + 1

2

= 1− cα + cα − c1+α + c1+α + 2bc
1+α

2
c+

q−1∑
i=2

ci+α +
cq+α + 1

2

=

q−1∑
i=0

ci+α − cα − c1+α +
cq+α

2
+

3

2
+ 2bc

1+α

2
c

= cα
cq − 1

c− 1
+
cq+α

2
+

3

2
− cα − c1+α + 2bc

1+α

2
c

= cq+α
(

1

c− 1
+

1

2

)
+

3

2
− cα

c− 1
+ βj ,

where βj = 2bc
1+α

2
c− cα− c1+α. For the second case, following similar steps we

get that:

CALGj ≤ cq+1+α

(
1

c− 1
+

1

2

)
+

3

2
− cα

c− 1
+ βj .

Recall that
∫ 1

0 c
αdα = c−1

ln c . So, by taking the expectation of CALGj over α, we

get the following:

E[CALGj ] ≤
∫ 1

logc d

(
cq+α

c+ 1

2(c− 1)
− cα

c− 1
+

3

2
+ βj

)
dα

+

∫ logc d

0

(
cq+1+α c+ 1

2(c− 1)
− cα

c− 1
+

3

2
+ βj

)
dα

=

∫ 1

0

(
3

2
− cα

c− 1
+ βj

)
dα+

c+ 1

2(c− 1)
cq
∫ 1

logc d
cαdα+

c+ 1

2(c− 1)
cq+1

∫ logc d

0
cαdα

=
3

2
− 1

ln c
+

∫ 1

0
βjdα+

c+ 1

2 ln c
dcq. (2.10)
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Next we will find
∫ 1

0 βjdα. Note that in the following lemma the range of q has

been chosen with some foresight.

Lemma 2.7. For 3 ≤ c <
√

14,∫ 1

0
βjdα = −(c+ 1)

c− 1

ln c
+ 22− 2 logc 23040.

Proof. Since c <
√

14, logc 14 − 1 > 1 and we can write the following for values of

bc
1+α

2
c:

bc
1+α

2
c =



1, α ∈ [0, logc 4− 1)

2, α ∈ [logc 4− 1, logc 6− 1)

3, α ∈ [logc 6− 1, logc 8− 1)

4, α ∈ [logc 8− 1, logc 10− 1)

5, α ∈ [logc 10− 1, logc 12− 1)

6, α ∈ [logc 12− 1, 1).

Hence,∫ 1

0
2bc

1+α

2
cdα = 2

(∫ logc 4−1

0
1dα +

∫ logc 6−1

logc 4−1
2dα + . . .+

∫ 1

logc 12−1
6dα

)
= 2 (logc 4− 1 + 2(logc 6− logc 4) + . . .+ 6(1− logc 12 + 1))

= 2(11− logc(32× 6!)) = 22− 2 logc 23040.

Therefore,

∫ 1

0
βjdα =

∫ 1

0

(
2bc

1+α

2
c − cα − c1+α

)
dα

= −(c+ 1)
c− 1

ln c
+ 22− 2 logc 23040.

So by using Lemma 2.7 in Equation (2.10), we get that:

CALGj ≤ c+ 1

2 ln c
COPTj +

47

2
− 2 logc 23040− c2

ln c

≤ c+ 1

2 ln c
· COPTj ;

since
47

2
− 2 logc 23040− c2

ln c
is a negative term for c > 0, we can write the second

inequality. For c = 3.59, we get the approximation ratio of 1.796 as claimed.
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2.3 Special Case: Regular Directed Auxiliary Graph

Recall that we say the given graph H(V ′, E′) is regular directed if and only if

∀v ∈ V ′, degout(v) = degin(v) = ∆
2 . As we know |V ′| = m, |E′| = n. One simple

observation is that 2n = m∆. Recall that cycle-cover of digraph H is a spanning

directed subgraph of H in which every vertex has in-degree and out-degree 1.

Note that the existence of cycle-cover is not always guaranteed in general, but

in Lemma 2.8 we show that in this case we can always find one in polynomial time.

Consider Algorithm 4 for this problem in which we partition a graph into a

collection of paths or cycles and schedule each edge in 2 time steps.

Input : Regular directed auxiliary graph H
Output: A scheduling of the jobs

1 i← 1
2 W ← E′

3 while W 6= 0 do
4 Ci ← cycle-cover
5 Schedule edges of Ci with tuple (2i− 1, 2i)
6 W ←W \ Ci
7 i← i+ 1

8 end

Algorithm 4: Polynomial algorithm for minimizing total flow time of unit
processing time jobs on stars for the special case that auxiliary graph H is a
regular directed graph.

Lemma 2.8. When digraph H(V ′, E′) is a ∆
2 -regular directed graph, we can find ∆

2

edge disjoint cycle-covers in graph H in polynomial time.

Proof. We construct a bipartite graphB(V, E) where V = L′∪R′ and L′ = {x1, . . . , xm},

R′ = {y1, . . . , ym}. Moreover, there exists an undirected edge (xi, yj) in E if and only

if a directed edge (vi, vj) belongs to E′ for every i, j ∈ {1, . . . ,m}, i 6= j. Clearly,

|E′| = |E| = n and B is a ∆
2 -regular graph. Hence, by using Hall’s theorem we can

see that graph B has ∆
2 perfect matchings [Ha35]. The following proposition has

been proved for undirected graphs in [Pe1891], but the proof can be easily extended

to directed graphs.

Proposition 1. Each of ∆
2 perfect matchings in graph B, represent a cycle-cover

in digraph H.

According to Hopcroft-Karp Algorithm [HK71], we can find bipartite matchings

in graph B in O(n
√
m) and convert each of them to a cycle-cover of graph H in

O(m) time.
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Now we can compute the cost of Algorithm 4 as the following:

ALG =

∆
2∑
i=1

2i|Ci| = 2m

∆
2∑
i=1

i

= m.(
∆

2
)(

∆

2
+ 1) =

m∆2

4
+
m∆

2
=
m∆2

4
+ n,

By using Lemma 2.2, the lower bound of optimal solution for this case is:

OPT ≥
∑
v∈V ′

∆(∆ + 1)

4
+
n

2
=
m∆2

4
+ n.

Hence, Algorithm 4 produces the optimal solution.

2.4 Min Sum Edge Colouring versus Star Scheduling

Recall that in the min sum edge colouring problem of a given graph H(V ′, E′), our

goal is to find a proper edge colouring ψ : E′ → {1, . . . , k} minimizing the function∑
e∈E′ ψ(e). As we can see the objective function of this problem is similar to the

star scheduling problem. Consider both of these problems for digraph H(V ′, E′)

(and its underlying undirected graph).

In this section, our goal is to show the relation between optimal solution of min

sum edge colouring and optimal solution of star scheduling problem on the same

instances which will be shown by OPTMSE and OPTSSUP , respectively. In other

words, we will prove Lemma 2.9 and Lemma 2.10.

Lemma 2.9. OPTMSE ≤ 2OPTSSUP .

Proof. To show this, we use the given upper bound for optimal solution of MSE

problem in [BBH+98] and the lower bound of star scheduling problem that we have

proved in Lemma 2.2.

Following is the definition of compact edge colouring according to [BBH+98].

An edge colouring ψ : E′ → {1, . . . , k} is compact if and only if every edge e with

colour ψ(e) = i is adjacent to some edge e′ with ψ(e′) = j for all 1 ≤ j ≤ i (note

that k is not necessarily equal to χ′(H)).

Let comp(H) denote the cost of any compact edge colouring in graph H. It has

been shown in [KKK91] that comp(H) ≤
∑

v∈V ′
(
deg(v)

2

)
+ |E(H)|.
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OPTMSE ≤ comp(H) ≤ 1

2

∑
v∈V ′

deg2(v).

Also, it has been proved in Lemma 2.2 that,

OPTSSUP ≥
1

4

∑
v∈V ′

deg2(v) + n.

So, the Lemma holds.

Lemma 2.10. OPTSSUP ≤ OPTMSE + |E′|.

Proof. In order to prove this lemma, we need to show that there exists a solution

for star scheduling problem with cost at most OPTMSE + |E′|.

Consider an optimal solution of min sum edge colouring problem. By denoting

edges of each colour class i as a matching Mi with M being a maximum colour in

optimal solution, we get a partitioning of
⋃M
i=1Mi on E′. Also, the cost of optimal

solution of MSE problem will be:

OPTMSE =

M∑
i=1

i|Mi|.

Our goal is to show that there exists a schedule in which the completion time of

all edges in Mi is at most i+ 1, for every i ∈ {1, . . . ,M}. To do that, we use strong

induction on i. Let predicate P (n) be the following:

P (n) : There is a schedule such that all edges of M1, . . . ,Mn are finished by time

n+ 1. The base case of n = 1 is true, since we can schedule edges of M1 with tuple

(1, 2). Now suppose that P (1) up through P (k) are all true for some integer k < n.

We need to show that P (k + 1) is true.

Let H ′ be the induced subgraph of graph H by M1, . . . ,Mk. For all edges in

M1, . . . ,Mk the completion time of edges are at most k+ 1. However, the degree of

vertices in graph H ′ is at most k. So, for edges in Mk+1 their start point can use

an unused time from set {1, . . . , k + 1} and their finish time will be k + 2.

2.5 Hardness Result

In this section, we consider a variant of star scheduling problem and we show a

hardness result for this new problem.
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Definition 2.11. Let SSND be the Star Scheduling problem with No intermediate

Delay meaning that once we schedule job j on its first machine, we have to finish it

in the next time step, i.e., tuple (tj1, t
j
2) is assigned for job j if and only if tj2−t

j
1 = 1.

Theorem 2.12. The SSND problem is APX-hard.

Proof. It has been proved in [M09] that min-sum edge colouring problem is APX-

hard even for bipartite graphs with maximum degree 3. We denote MSE problem on

bipartite graphs by MSEB. Also, let us denote the optimal cost of MSEB problem

and SSND problem by OPTM and OPTS , respectively.

In order to prove this theorem, we use L-reduction from MSEB problem to SSND

problem which is defined in the following:

Definition 2.13. For two optimization problems MESB and SSND, there is an L-

reduction with parameters a and b from MSEB problem to SSND problem if for some

a, b > 0

1. for each instance I of MSEB problem, we can compute in polynomial time an

instance I ′ of SSND problem.

2. OPTS(I ′) ≤ aOPTM (I)

3. given a solution of I ′ with cost SOLS, we can compute in polynomial time a

solution of I with cost SOLM such that:

SOLM −OPTM (I) ≤ b
(
SOLS −OPTS(I ′)

)
In the following Lemma we will show that why this reduction is useful in the

proof.

Lemma 2.14. Assume that there is an L-reduction with parameters a and b from

MSEB to SSND. Then if there is no ρ-approximation algorithm for MSEB problem,

SSND cannot be approximated with ratio better than ρ−1
ab + 1, unless P = NP.

Proof. Assume otherwise, there exists a ρ′ approximation algorithm for SSND with

cost SOLS where ρ′ <
ρ− 1

ab
+ 1. Hence,

SOLS < (
ρ− 1

ab
+ 1)OPTS(I ′)

SOLS −OPTS(I ′) < (
ρ− 1

ab
)OPTS(I ′) (2.11)

SOLM −OPTM (I) < (ρ− 1)OPTM (I), (2.12)
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where Equations (2.11) and (2.12) are by using Conditions 2 and 3 of Definition

2.13. According to Equation (2.12), we get that SOLM < ρOPTM (I) which means

that the obtained solution for MSEB is a ρ-approximation, a contradiction.

It can be seen that if ρ > 1 and a, b > 0 then ρ−1
ab + 1 > 1.

Instances of MSEB problem are bipartite graphs G(L ∪ R,E′′). However, in-

stances of SSND problem are a set of jobs and machines such that the network

of machines create a star. In order to convert a given instance I for MSEB to

an instance I ′ for SSND, we convert I to an auxiliary graph H of star scheduling

problem and as we have seen earlier in Section 2.1, a graph H can be converted to

a star in polynomial time.

We do that by directing each edge from set L to R in graph G, meaning that

condition 1 is valid. Clearly, |E′′| = |E′|.

Recall that a solution to MSEB problem for the graph G is a function ψ :

E′′ → {1, 2, . . . , k}. Next we want to show that OPTS(I ′) ≤ OPTM (I) + |E′′|. In

other words, we claim that there exists a solution for SSND problem with value

OPTM (I)+ |E′′|. To get that solution, we assign tuple (i, i+1) to edge e, if ψ(e) = i

in the optimal MSEB solution, for i = 1, . . . , k and for every e ∈ E′′. It can be seen

that this solution is a proper scheduling since edges that share the same endpoint

or start point are assigned with different tuples (as they have different colours in

optimal solution of MSEB problem).

Also, OPTM (I) ≥ |E′′|, since each edge contributes at least one to the edge

colouring summation. Hence, we get the following:

OPTS(I ′) ≤ OPTM (I) + |E′′| ≤ 2OPTM (I), (2.13)

meaning that for parameter a = 2 Condition 2 holds.

The last thing that remains to show is how to compute a solution for MSEB prob-

lem with value SOLM given a solution to SSND with value SOLS and makespan

∆′ such that SOLM = SOLS−|E′′|. Recall that a solution to SSND problem with

the auxiliary graph H is an assignment of tuples (te1, t
e
2) to each edge e ∈ E′ where

|te2− te1| = 1. Hence, we colour each edge e of E′′ with time step te1 if and only if the

corresponding edge in auxiliary graph H has been scheduled with tuple (te1, t
e
2). We

show by contradiction that the obtained solution is a proper edge colouring solution.
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If the obtained solution is not a proper edge colouring, it means that there were

at least two edges with the same start point or end point such that both of them get

colour q, for some q ≤ ∆′ − 1. So, two jobs are scheduled on the same machine at

time k or k+ 1 in the first case or second case, respectively. This is a contradiction

to the fact that our schedule was proper. Hence, we get that the obtained solution

for MSEB is a proper edge colouring such that

SOLS =
∑
e∈E′

te2 =
∑
e∈E′

(te1 + 1) =
∑
e∈E′

te1 + |E′|

=
∑
e∈E′′

te1 + |E′′| = SOLM + |E′′|.

Hence, we have the following:

SOLM −OPTM (I) = SOLS − |E′′| −OPTM (I)

≤ SOLS − |E′′| −
(
OPTS(I ′)− |E′′|

)
, (2.14)

where Equation (2.14) is by rearranging Equation (2.13). As a result, Equation

(2.14) shows that the third condition is valid for parameter b = 1.

As we know there is a constant ρ > 1 such that MSEB problem cannot be

approximated with ratio ρ unless P = NP [M09]. According to Lemma 2.14, we

get that SSND cannot be approximated with ratio ρ+1
2 , unless P = NP.

31



Chapter 3

Generalized Path Scheduling
with Unit Processing Time

3.1 Problem Overview

In this chapter we consider the generalized path scheduling problem with unit pro-

cessing time jobs and our goal is to find a schedule with the minimum total comple-

tion time. Recall that in the GPUP problem, we are given a set J of n jobs and a

set M = {1, . . . ,m} for machines. Moreover, we are given a path P (V,M) for the

network of machines.

Since each job takes one unit of time to be processed on any of the machines on

its path, we can think of a schedule as a synchronized schedule in which at each tick

of the clock each machine processes at most one job (among jobs that were available

to be run on that machine).

Consider an arbitrary machine g ∈ M and job j ∈ J such that g ∈ Pj ; now let

Lgj or remaining length of job j after machine g be the total processing time of job

j on machines g to tj that is Lgj = tj − g + 1. Let Bt
g be the set of jobs that are

ready to be processed on machine g at time t where t ∈ {0, . . . ,m+ n}.

3.1.1 Our Results

For the GPUP problem we show that there exists a polynomial time algorithm for

minimizing total completion time.

Let shortest remaining length algorithm be the algorithm in which each machine

g ∈ M at any time t will process the job with the shortest remaining length from

set Bt
g (ties are broken arbitrary).

In [KNSM14] and [AB+14], it has been shown that the shortest remaining length

32



algorithm produces an optimal solution. In fact, they have considered the on-line

version of this problem. In their analysis, for each machine they compared a job

that will be processed on it based on a valid scheduling and the proposed algorithm;

then they considered two possible scenarios: whether these two jobs will be available

to be processed on the same machine in the future or not. They showed that in both

scenarios one can modify the valid schedule without increasing the total completion

time such that it satisfies the shortest remaining length strategy.

In this section we will prove the same result but with a simpler analysis.

Theorem 3.1. There is an optimal solution for the GPUP problem such that each

machine g ∈ J will first process jobs with the shortest remaining length from set Bt
g

at any t ∈ {0, . . . ,m+ n}.

Proof. Suppose for the sake of contradiction that for all optimal solutions the prop-

erty “processing the job with the shortest remaining length first” has been violated.

For an arbitrary schedule, let conflicting time be the last time that “processing the

job with the shortest remaining length first” has been violated and conflicting ma-

chine be the rightmost (last) machine that violation has been occurred on. Among

all optimal solutions consider those that have the smallest conflicting time, and

among them consider the one with the leftmost conflicting machine. We call this

solution the minimal optimal solution, and denote by sol1.

Our goal is to modify sol1 such that the conflicting time of the new solution is

smaller or the conflicting machine is closer to machine 1 without increasing the total

completion time which is a contradiction.

Without loss of generality let time b1 and machine 1 be the conflicting time

and conflicting machine in sol1; so, at time b1 there were two available jobs i and

j on machine 1 such that L1
i < L1

j , but sol1 sends job j before job i on machine

1. Let ti = k and job i is processed on machines 1, . . . , k at times a1, . . . , ak in

sol1, respectively. Also, assume that for job j, tj ≥ k + 1 and it is processed on

machines 1, . . . , k + 1, . . . , tj at times b1, . . . , bk+1, . . . , btj in sol1, respectively. For

an illustration see Figure 3.1.

According to our assumption b1 < a1. Now if machine k′ ∈ [2, k] is the leftmost

machine in which bk′ > ak′ , we will build sol2 from sol1 by swapping jobs i and j on

machines 1, . . . , k′−1. In other words, job j will be processed on machines 1, . . . , k′−

1, k′ . . . , tj at times a1, . . . ak′−1, bk′ , . . . , btj . This scheduling is valid because ak′−1 <
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1 k k + 1

b1 . . . bk bk+1

a1 . . . ak

. . .j

ijob

machine

Figure 3.1: Scheduling of jobs i, j in sol1. Start time of each job on different machines
is shown in the corresponding box.

ak′ < bk′ . Similarly, job i will be processed on machines 1, . . . , k′ − 1, k′, . . . , k at

times b1, . . . , bk′−1, ak′ , . . . , ak and it is a valid scheduling since bk′−1 < ak′−1 < ak′ .

Clearly, the completion times of jobs i and j will not change.

Now consider the case that on every machine g ∈ {1, . . . , k}, bg < ag. In this case

by swapping jobs i and j on machines 1, . . . , k in sol1, we will build sol2. Moreover,

for 1 ≤ z ≤ tj − k if ak + z − 1 < bk+z job j will be processed on machine k + z

similar to sol1 and if ak + z − 1 ≥ bk+z it will be processed at time ak + z. In this

way, the completion time of job j will not change and the completion time of job i

will decrease. Also, in the worst case the summation of completion times of jobs i

and j will be at most bk + ak + tj − k; since bk + tj − k ≤ btj , the total completion

time of sol2 will not increase.

It is clear that by processing job j in sol2 similar to sol1, there will not be any

conflict on machines 1, . . . , k. However, for the case that machine k+z is processing

job j at time ak + z, there can be some other job that is processed on machine k+ z

at the same time. In Claim 3.2 we will show that such job cannot exist. Hence,

sol2 is a valid solution and the conflicting machine is closer to machine 1 which

contradicts the minimality of sol1.

Claim 3.2. For 1 ≤ z ≤ tj − ti, if ak + z− 1 ≥ bk+z then in sol2 machine k+ z can

process job j at time ak + z.

Proof. We use induction on the index of machines. Let predicate p(z) be the fol-

lowing:

If ak + z− 1 ≥ bk+z then in sol2 machine k+ z can process job j at time ak + z.

We prove p(z) for all 1 ≤ z ≤ tj − ti. The base case is when z = 1. In the
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following we will show the correctness of the base case.

We need to show that in sol2 job j can be processed on machine k + 1 at time

ak + 1. Assume otherwise. If there is any conflict it must be on machine k + 1 in

which some job jk+1 is being processed on machine k + 1 at time ak + 1. Now if

machine k + 1 is the starting machine of job jk+1, then simply it can be processed

on this machine at time bk+1 which is available (in sol1 this machine has been used

by job j at time bk+1). So, we consider the case that the starting machine of job

jk+1 is before machine k + 1 which means that it will be processed on machine k at

some time that is less than or equal to ak − 1 (in sol1 machine k is busy with job i

at time ak).

Let ` be the largest available time in which there is no job on machine k + 1

where ` ∈ [bk+1, ak]. Since ` is the largest available time, there will be ak − ` + 1

number of jobs j`+1, . . . , jk, jk+1 which are processed on machine k + 1 at time steps

`+ 1, . . . , ak, ak + 1, respectively.

Now assume that job j`∗ ∈ {j`+1, . . . , jk, jk+1} is the closest job to jk+1 with the

starting machine k + 1 such that it is processed on machine k + 1 at time `∗; so by

processing job j`∗ at time step bk+1 the largest available time on machine k + 1 will

be `∗ where `∗ > `, contradicting the maximality of `. So, the starting machine of

all jobs {j`+1, . . . , jk+1} are before machine k + 1.

As we mentioned earlier jobs j`+1, . . . , jk−1, jk will be processed on machine k + 1

at times ` + 1, . . . , ak − 1, ak. Moreover, jobs j`+1, . . . , jk−1, jk will be processed

on machine k at some times that are less than or equal to `, . . . , ak − 2, ak − 1,

respectively. For an illustration see Figure 3.2. Now if job j`+1 is being processed

on machine k at some time less than ` then it could have been processed on machine

k + 1 at time ` and the largest available time for machine k + 1 would be ` + 1,

contradicting the maximality of `. So, consider the case that j`+1 is being processed

on machine k at time `.

Similarly, if machine k is processing job j`+2 at some time less than ` then j`+2

could have been processed on machine k + 1 at time ` and the largest available time

for machine k + 1 would be ` + 2, contradicting the maximality of `. Hence, we

consider the case that j`+2 is being processed on machine k at time `+ 1. Note that

job j`+2 cannot be processed on machine k at time ` as it is busy with job j`+1.

Inductively, machine k is processing jobs j`+3, . . . , jk−1, jk at times `+2, . . . , ak−

2, ak − 1. Recall that job jk+1 is being processed on machine k at some time that
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a1 . . . ak ak + 1

b1 . . . bk

ak + 1≤ ak − 1
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j`+1

≤ ak − 1

job
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Figure 3.2: Scheduling of jobs i, j, jk+1, jk, . . . , j`+1 in sol2. Start time of each job
on different machines is shown in the corresponding box.

is less than or equal ak − 1. Now if job jk+1 is being processed on machine k at

some time less than `, then it would have been processed on machine k + 1 at time

` and the largest available time would be ak + 1, contradicting the maximality of `.

Also, it cannot be processed on machine k at times `, . . . , ak − 2, ak − 1 as machine

k is busy with jobs j`+1, . . . , jk−1, jk. This contradiction shows that job jk+1 cannot

exist and there will be no conflict in sol2.

Now suppose that p(q) is true for all q < z, and next we will show that p(z)

is true. In other words, our goal is to show that if ak + z − 1 > bk+z then in sol2

machine k + z can process job j at time ak + z. The following observation can be

verified easily.

Observation 3. If ak + z − 1 > bk+z then ak + z − 2 > bk+z−1.

Hence, if ak + z− 1 > bk+z, by using Observation 3 and the fact that p(z− 1) is

true we get that job j can be processed on machine k + z − 1 at time ak + z − 1.

Now for the sake of contradiction assume that ak+z−1 > bk+z but job j cannot
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be processed on machine k + z at time ak + z meaning that some other job jz has

been processed on it.

The starting machine of job jz must be before machine k+z; otherwise, it could

have been processed on machine k + z at time bk+z and there will be no conflict.

Also, machine k + z − 1 is processing job jz at some time less than or equal to

ak + z − 2 because machine k + z − 1 is busy with job j at time ak + z − 1.

Similar to the base case, we define ` to be the largest available time in which

there is no job on machine k + z where ` ∈ [bk+z, ak + z).

It can be seen that in this case there will be ak + z − 1 − ` number of jobs

j`+1, . . . , jz−2, jz−1 which are being processed on machine k + z at time steps ` +

1, . . . , ak + z − 2, ak + z − 1, respectively. Also, with an argument similar to the

base case, jobs j`+1, . . . , jz−2, jz−1 will be processed on machine k + z − 1 at some

times that are less than or equal to `, . . . , ak + z− 3, ak + z− 2, respectively. For an

illustration see Figure 3.3.

Now if job j`+1 is being processed on machine k + z at some time less than ` then

it could have been processed on machine k + z at time ` and the largest available

time for machine k + z would be `+1 contradicting the maximality of `. So, consider

the case that job j`+1 is being processed on machine k + z − 1 at time `.

Inductively, machine k + z − 1 is processing jobs j`+2, . . . , jz−2, jz−1 at times

`+ 1, . . . , ak + z − 3, ak + z − 2. As we know job jz is being processed on machine

k + z − 1 at some time that is less than or equal to ak + z − 2. Now if job jz

is being processed on machine k + z at some time less than `, then it could have

been processed on machine k + z at time ` in sol2 and the largest available time

would be ak + z which contradicts the maximality of `. Moreover, machine k + z

cannot process job jz at times `, . . . , ak + z − 3, ak + z − 2 as it is busy with jobs

j`+1, . . . , jz−2, jz−1.

This contradiction shows that job jz cannot exist meaning that there will be no

conflict in sol2 as claimed.
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Figure 3.3: Scheduling of jobs i, j, jz, jz−1, . . . , j`+1 in sol2. Start time of each job
on different machines is shown in the corresponding box.
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Chapter 4

Conclusion

4.1 Summary

In this thesis, we gave a 1.796-approximation for the star scheduling problem with

unit processing time jobs when the objective function is minimizing the total com-

pletion time. This algorithm works as the following: in each iteration it finds a

maximum b-matching(b) in the auxiliary graph of the network of machines and

schedules the corresponding jobs such that the makespan will be small. To achieve

this goal, in Lemma 2.4 we proved that each b-matching(b) is a collection of some

2-matchings. Moreover, in Lemma 2.5 we proved that there is a scheduling in which

we can schedule almost all of the corresponding jobs of each 2-matching by using 2

new time steps.

For the case that the auxiliary graph of the network of machines is regular

directed, we showed that there is a polynomial time algorithm with running time

O(nm
√
m). We also defined a new variation of star scheduling problem in which no

jobs can have delay in the center of the star and we showed that this variation is

APX-hard.

In addition, we considered the generalized path scheduling problem with unit

processing time jobs when our goal is to find a schedule with the minimum total

completion time. For this problem, we presented a polynomial time algorithm with

running time O(mn lg n) with a new analysis. In this algorithm, each machine will

first process jobs with the shortest remaining length among the jobs that are ready

to be processed.

Besides the above results, we also gave a simple 2-approximation for the SSUP

problem, for minimizing the total completion time and by providing a tight example

we showed that this algorithm cannot be improved. Another result that we came
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up with during this research was the relation between optimal solution of MSE and

SSUP problem, shown in Lemmas 2.9, 2.10.

4.2 Future Work

We present a 1.796-approximation for the SSUP problem. However, we did not find

any tight example for this algorithm. An obvious question is if there is an approxi-

mation algorithm for the SSUP problem with ratio better than 1.796. Consider the

case that the auxiliary graph of the network of machines has equal in-degree and

out-degree for every vertex. Can we get a better approximation for this case? We

showed that if in-degree and out-degree of all vertices are equal to ∆
2 , there is a

polynomial time algorithm.

In Chapter 2 of this thesis, we considered a variation of the SSUP problem, star

scheduling problem with no intermediate delay (SSND) and proved that it is APX-

hard. Though, we believe that the SSUP problem is also APX-hard, proving this

still needs new ideas and remains an open problem.

In Chapter 3, we considered the generalized path scheduling problem with unit

processing time jobs. An interesting question is whether there is anyO(1)-approximation

algorithm for the case that machines are identical but jobs have different processing

times, for minimum total completion time. Consider the case that the network of

machines form a spider (tree with one vertex of degree at least 3 and other vertices

have degree at most 2). Another interesting question is whether there exists any

O(1)-approximation algorithm when machines are identical.
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