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Abstract

The current Thesis is devoted to comprehensive studies of comparison, or

stochastic domination, theorems. It represents a combination of theoretical

research and practical ideas formulated in several specific examples.

Previously known results and their place it the theory of stochastic pro-

cesses and stochastic differential equations is reviewed. This part of the work

yielded three new theoretical results, formulated as theorems. Two of them

are extensions of commonly used methods to more sophisticated processes

and conditions. The third theorem is proven using previously not exploited

technique. The place of all three results in the global theory is demonstrated

by examining interconnections and possible distinctions between old and new

theorems.

Second and equally important part of the work focuses on more practical

issues. Its main goal is to demonstrate where and how various theoretical

findings can be applied to typical financial problems, such as option pricing,

hedging, risk management and others. The example chapter summarizes the

best of the obtained results in this direction.
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1 Introduction

1.1 Stochastic processes in mathematical finance

The idea of describing various asset prices with the help of the theory of

stochastic processes turned out to be very useful and yielded many quality

applications. It can be argued that one of the main achievements of the modern

financial mathematics are mechanisms for pricing and hedging of options. The

celebrated Black Scholes model [6] provided a relatively simple and intuitive

way of calculating prices of various derivative securities as well as a theoretical

replicating strategy that could be used for risk management purposes.

Many researchers, however, agree that the above mentioned Black Scholes

model is not accurate enough for the modern financial world. A log-normally

distributed process is just too simple to fit into the data and is therefore not re-

liable enough when dealing with applications. Fischer Black in [5] summarized

many undesirable features of the Black Scholes model when used in practical

applications.

Various steps can be undertaken to improve quality of financial market

models. One can consider Brownian motion-driven processes with non-constant

volatility, be that a deterministic function of the stock price or a random pro-

cess, possibly modelled via a stochastic differential equation (SDE). Probably

the best known model of the first type was proposed by Cox and Ross in [9].

Merton in [38] suggested adding Poissonian jumps to the log-normal process,

one of the first attempts to explain observable differences in European op-

tions’ implied volatilities. Hull and White [23] as well as Heston [21] advocate

a stochastic volatility approach - that is modelling stock price volatility with

the help of a separate process with new Brownian motion as its source or

randomness. Hobson and Rogers in [22] use yet another approach, which is

based on path-dependent volatility parameter. Their work is interesting be-

cause, while demonstrating many features of stochastic volatility models, the

proposed market remains complete.

All above mentioned works can be placed in a category of continuous time

financial market models with asset price dynamics described with the help
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of stochastic differential equations. An unfortunate consequence of all those

modifications is that the model will no longer admit explicit solution. Several

problems arise from that fact. First, one has to be sure that the equation

in question has a solution, preferably unique, before accepting the model.

Existence and uniqueness of solution is one of the topics I study for that very

reason.

Absence of explicit solutions results in other complications when dealing

with stochastic processes in practice. Not only does it prevent one from per-

forming exact calculations (which is one the main accomplishments of math-

ematical finance), but also reduces the amount of knowledge one has about

many theoretical properties of the processes in question. While such simple

things as sample path continuity are not difficult to establish other, more com-

plex properties, might be of great interest in theory and practice and are not

as obvious.

Similar questions can be traced back to the theory of (deterministic) differ-

ential equations: even simple-looking equations do not always admit explicit

solutions. Keeping in mind close connections between two areas of mathe-

matics, impossibility of obtaining explicit solutions of stochastic differential

equations comes as no surprise.

However, theory of ordinary and partial differential equations has meth-

ods of establishing certain properties of solutions by examining the coefficients

only. Existence and uniqueness of solution is, of course, one of them. Another

question that can be studied is monotonicity of solution with respect to coeffi-

cients: how does increasing (or decreasing) coefficients of differential equations

affect their solutions? It is possible to compare the values of deterministic pro-

cesses by comparing their derivatives.

More specifically, considering two functions

dx(t) = f1(t, x(t))dt

dy(t) = f2(t, y(t))dt,
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the conditions (provided both equations admit a solution)

f1(t, z) ≤ f2(t, z)

and x(0) ≤ y(0) ensures that x(t) ≤ y(t) for all t. However, extensions of this

and other similar results to stochastic differential equations are not obvious.

Comparison of stochastic processes is a second part of my theoretical work.

The topic represents a theoretical challenge and requires a lot of attention, be-

cause there is more than one dimension to the problem. First, comparison of

random variables can be performed in several ways: it could be value related

inequalities, or comparisons in mean where expected values are studied. Sec-

ond aspect that distinguishes stochastic and ordinary differential equations is

presence of different type of integrals. The simplest SDEs have a Brownian

motion component, not to mention more general martingales with discontinu-

ous parts. There are strong connections between the two areas of my interest,

as both types of theorems use similar conditions and methods. All that acts

as a further motivation to study both areas together.

At the same time the main motivation for studying comparison theorems is

possible usages of these type of results in practical applications, namely math-

ematical finance. Better knowledge of theoretical properties of market models

should be an asset when performing calculations and making other conclu-

sions. Rather surprisingly, this idea does not seem to be used in literature, the

fact that acts as further motivation behind my research.

1.2 Necessary notations

All considerations in this work are performed on a standard probability basis

(Ω,F ,F = (Ft)t≥0,P), as defined, for example, in [26]. Filtration Ft is right-

continuous and completed with all P-null sets. All processes studied take

values in Rd and are assumed to be càdlàg and adapted to the filtration F.

Several specific classes of stochastic processes are defined. Let A+ be the

set of non-decreasing processes with integrable variation, M2 be the set of
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square integrable martingales. The localized classes are denoted by A+
loc and

M2
loc respectively.

Everything in this thesis, be that its theoretical part or ideas for possi-

ble applications, is done for stochastic processes, represented as solutions of

stochastic differential equations. Those equations will be built with the help

of a continuous non-decreasing process a ∈ A+
loc, a continuous local martingale

M ∈ M2
loc and a jump measure µ with a continuous compensator ν. The

measure ν is assumed to be almost surely finite for every t, meaning that

ν(t,Rd\{0d}) <∞ (a.s.)

A standard notation < M,N > will be used for quadratic characteristic.

A typical representation of an SDE to be used in this work is given by

dXt = f(t,Xt−)dat + g(t,Xt−)dMt + I{|u|≤1}h(t,Xt−, u)d(µ− ν)t,u (1)

X0 = x0

where x0 is an F0 measurable random variable with finite expectation and

measurable functions f = f(t, x, ω), g = g(t, x, ω), and h = h(t, x, u, ω) are

continuous in (t, x). A (strong) solution of SDE (1) is an adapted process Xt

such that

Xt = X0 +

∫ t

0

f(s,Xs−)das +

+

∫ t

0

g(s,Xs−)dMs +

∫ t

0

∫
|u|≤1

h(s,Xs−, u)d(µ− ν)s,u.

Since weak solutions are not studied in my work the word strong will be

omitted henceforth.

To make sure the main point is not lost behind many technicalities, several

steps will be undertaken to simplify proceedings. First, the time argument will
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be avoided whenever no confusion is possible and coefficients will be expresses

as f(x) (the same applies to functions g and h). Second step is to avoid writing

double integrals when dealing with the jump component. Strictly speaking,

integrals with respect to the jump measure µ and its compensator ν are two-

dimensional integrals with time t and jump amplitude u as variables. In his

two works Gal’chuk demonstrates how big jumps can be dealt with (lemma

3 of [13] for existence and uniqueness framework and lemma 2 of [14] for

comparison framework). For this very reason equation (1) does not have a

second jump component for magnitudes |u| > 1, and I will use single integral

notations when dealing with random measures µ and ν.

The last adjustment concerns differences between martingales and local

martingales. Strictly speaking, integrals with respect to local martingale M

and compensated jump component µ − ν are local martingales, but not nec-

essarily true martingales. One can, however, cite a standard in the theory

of stochastic processes localization procedure, described in [26] among others.

It allows to assume, without any additional restrictions, that the above men-

tioned integral are indeed martingales. One can then safely take expectations

of those integrals and use their martingale properties. This assumption is very

common in literature and will be made throughout the thesis.

1.3 Contributions of this thesis

The organization of the thesis is as follows. Chapter 2 deals with existence

and uniqueness of solutions. It starts with a review of previously established

results in this area. Chapter 2.2 is devoted to the proof of the existence

and uniqueness theorem for general semimartingale-driven processes. Another

contribution of this theorem is to relax the condition on the drift coefficient f .

It is followed by studies of relationships between this result and other works

in the given framework.

Chapter 3 is devoted to comparison theorems and is organized in similar

manner. It starts with a review of existing results, which is followed by two

new theorems. One, presented in chapter 3.2 is based on a new approach to
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establishing path-wise comparisons of stochastic processes. The new method

not only simplifies the proof, but also produces a more general result, as will

be demonstrated in chapter 3.4. Another result, presented in chapter 3.3 is

for comparisons of multidimensional processes and was published in [30].

The final part of my work is devoted to financial applications of comparison

theorems to mathematical finance. Several numerical and theoretical examples

are developed, some of which were also presented in [30]. They are designed

to demonstrate the full range of usages of comparison theorems, as well as to

try and establish general techniques that could be used in multiple settings.
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2 Existence and uniqueness of solution1

2.1 Results overview

When considering an equation of the type (1), the main question of this chapter

is: under what conditions on functions f , g and h does it have a unique

solution.

One of the first efforts to establish existence and uniqueness of solutions of

stochastic differential equations was performed by Kazamaki [28]. He showed

that equation

dXt = X0 +

∫ t

0

f(Xs−)das +

∫ t

0

g(Xs−)dMs,

where Mt is not necessarily continuous, admits a unique solution if f(x) and

g(x) are differentiable with bounded derivatives.

The differentiability condition, though, can be relaxed. A standard way to

ensure existence and uniqueness of solution is to require that all coefficients are

Lipschitz-continuous. The work [12] is conducted under Lipschitz conditions:

|f(x)− f(y)|+ |g(x)− g(y)| ≤ C|x− y|,

for not necessarily continuous M and a.

The approach is to define an operator

QXt = X0 +

∫ t

0

f(Xs−)das +

∫ t

0

g(Xs−)dMs,

and considering a simple iteration procedure

1A version of this chapter has been submitted for publication in [32]
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X
(n)
t = QX

(n−1)
t

perform several steps to verify that the sequence Xn will converge.

Similar result under the Lipschitz condition for continuous driving local

martingale case is studied by Protter in [42]. He also studies the question

of exploding solutions: an explosion time R is defined as the moment when

the process in question hits infinity. Protter then provides certain conditions

under which R =∞ (a.s.).

Finally, perhaps the most general result for Lipschitz continuous coefficients

is provided by Gal’chuk in [13]. He considers processes with general driving

semimartingale

Xt = X0 +

∫ t

0

f(s,Xs−)das +

∫ t

0

g(s,Xs−)dMs +

+

∫ t

0

∫
|u|≤1

h(s,Xs−, u)d(µ− ν)u,s +

∫ t

0

∫
|u|>1

k(s,Xs−, u)dµu,s (2)

and proves that

||QX|| ≤ α||X|| (3)

for some α < 1 and an appropriately defined norm. Fixed point theorem then

yields the desired result. By isolating all discontinuities with the help of jump

measure µ, the conditions on big jump coefficient k is relaxed, making it only

measurable.

Several authors have attempted to weaken the Lipschitz condition in dif-

ferent ways. One approach was used by Jacod [25] and Gyöngy and Krylov

[17]. The same iteration procedure (3) is used, but its convergence is proven

by studying the squared difference
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|X(n+k)
t −X(n)

t |2

with the help of Ito’s formula. The main condition of those two works can be

expressed (for the one dimensional continuous diffusion case) as

2(x− y)(f(x)− f(y)) + (g(x)− g(y))2 ≤ K(x− y)2,

where K is a non-negative constant, and will be referred to as the monotonity

condition. A growth restriction of the type

2xf(x) + |g(x)|2 ≤ K2(1 + x2)

is also imposed.

As can be seen, the monotonity condition connects all coefficients in one in-

equality limiting growth of a certain expression, rather than dealing with each

coefficient separately, and is another improvement on the standard Lipschitz

setting.

The paper [49] uses the following conditions to prove path-wise uniqueness

of solution in the continuous diffusion setting: let there exist non-negative

increasing functions k(x) and ρ(x) such that k(x) is concave,

∫
0+

k−1(u)du =∞∫
0+

ρ−2(u)du =∞

9



and

|f(x)− f(y)| ≤ k(|x− y|)

|g(x)− g(y)| ≤ ρ(|x− y|).

The difference in conditions follows from changing of the approach. This

time a sequence of approximations is constructed using a Euler scheme. It

starts by considering piece-wise constant (with respect to time) coefficients.

Then letting the partition size go to zero one can obtain a limit which solves the

original SDE. This technique will be used to prove an existence and uniqueness

theorem below.

2.2 Existence and uniqueness theorem

This part of the thesis presents a proof for the existence and uniqueness the-

orem. It studies the case of one-dimensional processes with general driving

semimartingale represented by three components: a continuous non-decreasing

process, a continuous local martingale and a compensated jump component:

dXt = f(t,Xt−)dat + g(t,Xt−)dMt + h(t,Xt−, u)d(µ− ν)t,u (4)

X0 = x0.

The theorem represents an improvement on the previously established re-

sults in several areas, as will be demonstrated in chapter 2.3.

Before stating the main theorem of this part it is necessary to introduce

an auxiliary sequence of functions ϕm(x) approximating |x|. Idea of such a

sequence is used in [14, 50] among others an is fairly standard when dealing

with stochastic differential equations.

Consider a continuous non-decreasing function ρ with ρ(0) = 0 such that

for any ε > 0
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∫ ε

0

ρ−2(s)ds = ∞. (5)

Define {bm} as a decreasing sequence of positive numbers with b0 = 1,∫ bm

bm+1

ρ−2(x)dx = m+ 1,m = 0, 1, 2...

and let ψm(x) be a sequence of non-negative continuous functions such that

ψm(x) = 0 for x /∈ (bm, bm−1) and

ψm(x) ≤ 2

m
ρ−2(x)∫ bm−1

bm

ψm(s)ds = 1.

The function ϕm(x) is then defined as

ϕm(x) =

∫ |x|
0

∫ s

0

ψm(z)dzds.

It is easy to see that |x| − ϕm(x) ≤ bm−1 and ϕm(x) ↑ |x| as m→∞.

One more condition is necessary when dealing with discontinuous processes.

Following [14] assume that there exists a sequence of positive numbers {εm}
such that bm ≤ bm−1− εm, the function ψm attains its maximum at bm−1− εm
and

m−1ρ2(bm−1)ρ−2(bm−1 − εm)→ 0 (6)

as m→∞.

This specific condition will come into play in the form of the following

lemma.

Lemma 1. Let ϕm(x) be defined by (5) and (6) and h(x) be a non-decreasing
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continuous function such that

(h(x)− h(y))2 ≤ ρ2(|x− y|).

Then for any m, 0 ≤ θ ≤ 1 and any x, y

ϕ′′m(θ(h(x)− h(y)) + x− y)(h(x)− h(y))2 ≤ 2

m
ρ−2(bm−1 − εm)ρ2(bm−1).

Proof. By construction ϕm is symmetric, therefore it is sufficient to present

the proof for x ≥ y.

Then two options are possible:

x− y + θ(h(x)− h(y)) > bm−1

or

x− y + θ(h(x)− h(y)) ≤ bm−1.

In the first case

ϕ′′m(θ(h(x)− h(y)) + x− y) = 0

by the definition of ϕm and the proof is complete.

In the second case, note that since h(·) is a non-decreasing function then

h(x)− h(y) ≥ 0, therefore

x− y ≤ bm−1

which in turn means that

12



(h(x)− h(y))2 ≤ ρ2(x− y) ≤ ρ2(bm−1).

At the same time by the definition of ϕm

ϕ′′m(θ(h(x)− h(y)) + x− y) ≤

≤ ϕ′′m(bm−1 − εm) ≤ 2

m
ρ−2(bm−1 − εm) .

Altogether, the combined estimate is

ϕ′′m(x− y + θ(h(x)− h(y)))(h(x)− h(y))2 ≤

≤ 2

m
ρ−2(bm−1 − εm)ρ2(bm−1).

Now it is possible to state the main theorem of this part.

Theorem 1. Suppose there exist non-negative predictable processes C, G such

that for any x ≥ y

f(t, x)− f(t, y) ≤ Ct(x− y) (7)

|g(t, x)− g(t, y)| ≤ Gtρ(x− y) (8)

|h(t, x)− h(t, y)| ≤ Gtρ(x− y) (9)

with h - non-decreasing in x and ρ(x) satisfying (5) and (6) and

E

∫ T

0

Cte
−

∫ t
0 Csdasdat <∞,

E

∫ T

0

G2
td < M >t<∞

as well as
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E

∫ T

0

G2
tdνt <∞.

for any T .

Assume there exist a b ∈ A+
loc and predictable processes β and L such that

dν = ηdb, d < M >= γdb and

γ(g2(x)− βx) + ηh2(x) ≤ L. (10)

Furthermore, define a process Yt = E(−
∫ t

0
2(Cs + 1)das − 1

2

∫ t
0
βsdMs),

where E() denotes stochastic exponential, and assume that

(

∫ t

0

Ys−f
2(s, 0)das +

∫ t

0

Ys−Lsdbs) ∈ A+
loc.

Then equation (4) admits a unique strong solution.

For the sake of simplicity an additional assumption will be made:

E(

∫ ∞
0

Ys−f
2(s, 0)das +

∫ ∞
0

Ys−Lsdbs) <∞. (11)

It allows to conduct the proof on time interval (0,∞), as opposed to con-

sidering finite intervals and extending the constructed solution to any t.

The proof of Theorem 1 will be conducted in several steps represented by

the following lemmas.

Lemma 2. Assume solution of (4) exists. Then it is unique.

Proof. Let Xt and Yt be solutions of (4). Then by Ito’s formula

Eϕm(Xt − Yt)e−
∫ t
0 Czdaz = E(I1 + 1/2I2 + I3),

where

14



I1 =
∫ t

0
e−

∫ s
0 Czdaz(ϕ′m(Xs− − Ys−)(f(Xs−)− f(Ys−))−

−Csϕm(Xs− − Ys−))das

I2 =
∫ t

0
e−

∫ s
0 Czdazϕ′′m(Xs− − Ys−)(g(Xs−)− g(Ys−))2 < M >s

and

I3 =

∫ t

0

e−
∫ s
0 Czdaz(ϕm(Xs− − Ys− + h̄s)−

−ϕm(Xs− − Ys−)− ϕ′m(Xs− − Ys−)h̄s)dνs,

where

h̄s = h(Xs−)− h(Ys−).

Since by (8) and definition of ϕm

ϕ′′m(Xs− − Ys−)(g(Xs−)− g(Ys−))2 ≤ max[ψm(x)ρ2(x)]G2
s ≤

2

m
G2
s

then as m→∞

EI2 ≤
2

m
E

∫ t

0

e−
∫ s
0 CzdazG2

sd < M >s→ 0.

For I3 using Taylor’s decomposition for some 0 ≤ θs ≤ 1

I3 =

∫ t

0

e−
∫ s
0 Czdazϕ′′m(Xs− − Ys− + θsh̄s)h̄

2
sdνs.

To deal with the above it is necessary to estimate the following expression:
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ϕ′′m(x− y + θ(h(x)− h(y)))(h(x)− h(y))2.

Here lemma 1 along with (9) can be used to produce an estimate

ϕ′′m(x− y + θ(h(x)− h(y)))(h(x)− h(y))2 ≤

≤ 2

m
ρ−2(bm−1 − εm)ρ2(bm−1)G2.

Thus, from (6)

EI3 ≤
2

m
ρ−2(bm−1 − εm)ρ2(bm−1)E

∫ t

0

e−
∫ s
0 CzdazG2

sdνs → 0

as m→∞.

The first part of the integrand for I1 can be expressed as

ϕ′m(x− y)(f(x)− f(y)),

which is estimated using the following steps:

if x ≥ y, then 0 ≤ ϕ′m(x− y) ≤ 1 and from (7)

ϕ′m(x− y)(f(x)− f(y)) ≤ Csϕ
′
m(x− y)(x− y) ≤ Cs(x− y).

If x < y then −1 ≤ ϕ′m(x− y) ≤ 0. From (7)

(f(x)− f(y)) ≥ Cs(x− y),

therefore
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ϕ′m(x− y)(f(x)− f(y)) ≤ Csϕ
′
m(x− y)(x− y) ≤

≤ −Cs(x− y) = Cs|x− y|.

Combining both cases one gets:

ϕ′m(x− y)(f(x)− f(y)) ≤ Cs|x− y|.

Altogether:

Eϕm(Xt − Yt)e−
∫ t
0 Czdaz ≤

≤ E(I2 + I3) + E

∫ t

0

e−
∫ s
0 CzdazCs(|Xs− − Ys−| − ϕm(Xs− − Ys−))das ≤

≤ E(I2 + I3) + bm−1E

∫ t

0

e−
∫ s
0 CzdazCsdas.

Letting m go to infinity yields E|Xt − Yt|e−
∫ t
0 Czdaz = 0, therefore Xt = Yt

(a.s.) for any t.

The next step is to build a sequence of approximating solutions and prove

its convergence. Divide the time interval [0, T ] into n equal parts and denote

partition points by ti, i = 0, 1, ..n− 1. Let tn(t) be

tn(t) = ti for ti ≤ t < ti+1. (12)

Then define a process:

Xn
t = X0 + (13)

+

∫ t

0

f(sn, Xn
sn−)das +

∫ t

0

g(sn, Xn
sn−)dMs +

∫ t

0

h(sn, Xn
sn−)d(µ− ν)s

17



where sn = tn(s).

Two following lemmas will be proven under one additional condition.

Assumption 1. For every t on [0, t] the functions f , g and h are uniformly

continuous and bounded in both variables. In this case ||f ||t = sups≤t,x |f(s, x)| <
∞ for every t and the same holds for g and h.

Lemma 3. As n→∞ the following holds:

E

∫ t

0

|f(s,Xn
s−)− f(sn, Xn

sn−)|das → 0

E

∫ t

0

(g(s,Xn
s−)− g(sn, Xn

sn−))2d < M >s → 0

E

∫ t

0

(h(s,Xn
s−)− h(sn, Xn

sn−))2dνs → 0.

Proof. The proof will be presented for the second integral. Every other claim

can be proven in the same manner.

Fix ε > 0 and t > 0. From assumption 1 on the time interval [0, t] there

exists a positive δ, such that

(g(s1, x)− g(s2, y))2 ≤ ε

if |s1 − s2| ≤ δ and |x− y| ≤ δ.

Let n be such that sups |s− sn| ≤ δ. Then

E

∫ t

0

(g(s,Xn
s−)− g(sn, Xn

sn−))2d < M >s=

= E(

∫ t

0

(g(s,Xn
s−)− g(sn, Xn

sn−))2I{|Xn
s−−Xn

sn−|≤δ}d < M >s +

+

∫ t

0

(g(s,Xn
s−)− g(sn, Xn

sn−))2I{|Xn
s−−Xn

sn−|>δ}d < M >s) ≤

≤ (ε+ 4||g||2tP(sup
s≤t
|Xn

s− −Xn
sn−| > δ))E < M >t .

It remains to show that P(sups≤t |Xn
s− − Xn

sn−| > δ) converges to zero as

n→∞ to complete the proof of the lemma.
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To do so note that by construction

sup
s≤t
|Xn

s− −Xn
sn−| =

= sup
s≤t
|f(sn, Xn

sn−)(as − asn) + g(sn, Xn
sn−)(Ms −Msn)+

+h(sn, Xn
sn−)

∫ sn

s

1d(µ− ν)z| ,

therefore

P(sup
s≤t
|Xn

s− −Xn
sn−| > δ) ≤ P(sup

s≤t
|as − asn| >

δ

||f ||t
) +

+P(sup
s≤t
|Ms −Msn| >

δ

||g||t
) + P(sup

s≤t
|
∫ sn

s

1d(µ− ν)z| >
δ

||h||t
).

Focusing on the middle term define a stopping time

τ = inf{s : |Ms −Msn| >
δ

||g||t
}.

Then

P(sup
s≤t
|Ms −Msn| >

δ

||g||t
) ≤ P(|Mτ −Mτn| >

δ

||g||t
) ≤

≤ ||g||
2
t

δ2
E|Mτ −Mτn|2 =

||g||2t
δ2

E(< M >τ − < M >τn).

After similar considerations for the first and third terms, assertion of the

lemma follows from continuity of processes a, < M > and ν.

Lemma 4. Under conditions of theorem 1 and assumption 1 equation (4) ad-

mits a solution.

Proof. Denote Rn
s = Xn+k

s− −Xn
s− and h̄ns = h(sn+k, Xn+k

sn+k−)−h(sn, Xn
sn−) then

by Ito’s formula
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ϕm(Xn+k
t −Xn

t )e−
∫ t
0 Csdas = local martingale + I1 + 1/2I2 + I3, (14)

where

I1 =

∫ t

0

e−
∫ s
0 Czdaz(ϕ

′

m(Rn
s )(f(Xn+k

sn+k−)− f(Xn
sn−))− Csϕm(Rn

s ))das

I2 =

∫ t

0

ϕ
′′

m(Rn
s )e−

∫ s
0 Czdaz(g(Xn+k

sn+k−)− g(Xn
sn−))2 < M >s

I3 =

∫ t

0

e−
∫ s
0 Czdaz(ϕm(Rn

s + h̄ns )− ϕm(Rn
s )− ϕ′m(Rn

s )h̄ns )dνs.

Decompose the integrals in the following manner:

EI1 ≤ E

∫ t

0

e−
∫ s
0 Czdaz(ϕ′m(Rn

s ){(f(Xn+k
sn+k−)− f(Xn+k

s− )) +

+(f(Xn
s−)− f(Xn

sn−)) + (f(Xn+k
s− )− f(Xn

s−)− Csϕm(Rn
s ))})das =

= E(I
(1)
1 + I

(2)
1 + I

(3)
1 ).

Similarly:

EI2 ≤ 3E

∫ t

0

ϕ′′m(Rn
s )e−

∫ s
0 Czdaz{(g(Xn+k

sn+k−)− g(Xn+k
s− ))2 +

+(g(Xn
s−)− g(Xn

sn−))2 + (g(Xn+k
s− )− g(Xn

s−))2}d < M >s=

= 3E(I
(1)
2 + I

(2)
2 + I

(3)
2 )

and for some 0 ≤ θs ≤ 1:

EI3 =

∫ t

0

e−
∫ s
0 Czdazϕ′′m(Rn

s + θsh̄
n
s )(h(Xn+k

sn+k−)− h(Xn
sn−))2dνs ≤

≤ 3E

∫ t

0

e−
∫ s
0 Czdazϕ′′m(Rn

s + θsh̄
n
s ){(h(Xn+k

sn+k−)− h(Xn+k
s− ))2 +

+(h(Xn
s−)− h(Xn

sn−))2 + (h(Xn+k
s− )− h(Xn

s−))2}dνs =

= 3E(I
(1)
3 + I

(2)
3 + I

(3)
3 ).
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Integrals I
(3)
1 , I

(3)
2 and I

(3)
3 are dealt with in the same way as in lemma 2.

Fix ε > 0 and choose m such that bm−1 ≤ ε and

E(I
(3)
2 + I

(3)
3 ) ≤ ε. (15)

.

With m fixed ϕ′′m(R) is bounded and by lemma 3 for large enough n:

E(I
(1)
1 + I

(2)
1 + I

(1)
2 + I

(2)
2 + I

(1)
3 + I

(2)
3 ) ≤ ε. (16)

Taking expectation of (14) and using (15) and (16) results in:

Eϕm(Rn
t )e−

∫ t
0 Csdas ≤ 2ε+ E

∫ t

0

e−
∫ s
0 CzdazCs(|Rn

s | − ϕm(Rn
s ))das ≤

≤ 2ε+ bm−1E

∫ t

0

e−
∫ s
0 CzdazCsdas ≤ Kε.

Thus there exists a constant K ′ such that

E|Rn
t |e−

∫ t
0 Czdaz ≤ E(ϕm(Rn

t ) + bm−1)e−
∫ t
0 Czdaz ≤ K ′ε,

therefore as n→∞

E|Xn+k
t −Xn

t |e−
∫ t
0 Csdas → 0. (17)

Fix T and define a stopping time

τ = inf{t : |Xn+k
t −Xn

t |e−
∫ t
0 Csdas ≥ δ} ∧ T.

Since τ is bounded (17) will hold with t replaced by τ as well. Then
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P (sup
t≤T
|Xn+k

t −Xn
t |e−

∫ t
0 Csdas ≥ δ) ≤

≤ P (|Xn+k
τ −Xn

τ |e−
∫ τ
0 Csdas ≥ δ) ≤ 1

δ
E|Xn+k

τ −Xn
τ |e−

∫ τ
0 Csdas

and P (supt≤T |Xn+k
t − Xn

t |e−
∫ t
0 Csdas ≥ δ) → 0 as n → ∞. Therefore Xn

t

converges in probability and this convergence in uniform in t on every bounded

interval. One can then select a subsequence converging with probability 1 and

denote its limit as Xt. It remains to show that Xt indeed satisfies the desired

equation (1). By continuity of f , g and h and Lebesgue dominated convergence

theorem

∫ t

0

f(sn, Xn
s−)das →

∫ t
0
f(s,Xs−)das∫ t

0

g(sn, Xn
s−)dMs →

∫ t
0
g(s,Xs−)dMs∫ t

0

h(sn, Xn
s−)dνs →

∫ t
0
h(s,Xs−)dνs.

Proof of Theorem 1. Uniqueness was proved in lemma 2, while lemma 4

provides existence in the case of bounded coefficients. In the general case, let

fk(t, x) =


f(t, x), for |x| ≤ k,

f(t, k), for x ≥ k,

f(t,−k), for x ≤ −k,

for any positive integer k.

Define gk and hk in the same way and let Xk
t be a solution of

dXk
t = fk(t,X

k
t−)dat + gk(t,X

k
t−)dMt + hk(t,X

k
t−)d(µ− ν)t

Xk
0 = x0.
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Define stopping times τk = inf{t : |Xk
t | ≥ k}. For k1 < k2 on the time

interval [0, τk1) uniqueness of solution implies Xk1
t = Xk2

t , therefore τk is a

non-decreasing sequence of stopping times. It remains to show that

lim
k→∞

τk =∞ (a.s.).

First, note that from (7) for positive x and y = 0

f(t, x) ≤ f(t, 0) + Ctx.

Letting x = 0 and y < 0:

f(t, y) ≥ f(t, 0) + Cty.

Altogether for any x:

xf(t, x) ≤ f(t, 0)x+ Ctx
2.

Therefore

xf(t, x)− Ctx2 − x2 ≤ f(t, 0)x− x2 ≤ f 2(t, 0)/2,

where a simple inequality ax− x2 ≤ a2/2 was used.

Now let Yt be a solution of

dYt = Yt−(−2(Ct + 1)dat −
βt
2
dMt)

Y0 = 1.
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Then using Ito’s formula, (10) and (11) yields:

E(Xk
τk

)2YτkI{τk<∞} ≤ Ex2
0 +

+E

∫ τk

0

2Ys−(Xk
s−f(Xk

s−)− Cs(Xk
s−)2 − (Xk

s−)2)das +

+E

∫ τk

0

Ys−(g2(Xk
s−)− βsXk

s−)d < M >s +E

∫ τk

0

Ys−h
2(s,Xk

s−)dνs ≤

≤ Ex2
0 + E

∫ τk

0

Ys−f
2(s, 0)das + E

∫ τk

0

Ys−Lsdbs <∞.

But by the definition of the stopping time |Xk
τk
| ≥ k and therefore

k2EYτkI{τk<∞} ≤ E(Xk
τk

)2YτkI{τk<∞} <∞

for all k, which implies that τk →∞ as k →∞.

In theorem 1 the works [49] and [51] have been extended by considering

a more general semimartingale and relaxing Lipschitz condition on the drift

f . In the next part connections between the above result and another type of

existence and uniqueness theorem are examined.

2.3 Relationships between results

The focus of this chapter is the monotonity condition, derived in [25] and later

in [17]. Before comparing it with theorem 1 it is important to note several

differences in the set-ups of the two theorems. First, the reference work [17]

deals with multidimensional processes, while theorem 1 considers the one-

dimensional case. Second distinction is in decomposition of semimartingales.

It was assumed that all discontinuity is absorbed by the jump component

µ and the other two (a and M) are continuous. Gyöngy and Krylov do not

make that assumption. Moreover, in the same paper they show that a separate

jump component is not required at all if M takes values in a Hilbert space.

Nevertheless, they provide the monotonity condition for the separate jump

component as well. The last and probably least important difference is that it

is not necessary to assume absolute continuity of a and < M > with respect
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to each other to prove theorem 1.

Differences between two results are best demonstrated in the simplest pos-

sible scenario. That is considering a continuous one-dimensional case with

Brownian motion as the driving martingale and letting f and g be determin-

istic functions of space variable only.

In this terms the monotonity condition becomes

2(x− y)(f(x)− f(y)) + (g(x)− g(y))2 ≤ C(x− y)2 (18)

for some positive constant C.

Due to symmetry of the above inequality it is sufficient to consider the case

x > y without loss of generality. It follows that

2(x− y)(f(x)− f(y)) ≤ C(x− y)2

and dividing both sides by 2(x− y) results in condition (7).

To derive condition (8) divide (18) by (x− y):

2(f(x)− f(y)) +
(g(x)− g(y))2

x− y
≤ C(x− y)

and letting y → x− yields

lim
y→x−

(g(x)− g(y))2

x− y
= 0.

Notice how in the proof of theorem 1 cut-off functions fk and gk were

used to satisfy uniform continuity assumption. In similar fashion it is possible

to limit considerations to bounded intervals x, y ∈ [−K,K] and assume that

convergence of (g(x)−g(y))2

x−y to zero is actually uniform in (x, y). Thus, for y
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sufficiently close to x

(g(x)− g(y))2 ≤ (x− y).

As can be seen from the previous chapter, it only matters how the function

ρ behaves close to zero. The function ρ2(x) = x clearly satisfies (5), while

condition (6) is not necessary for the continuous case.

In conclusion, result proven in theorem 1 is more general than the mono-

tonity condition for the continuous case.
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3 Comparison of stochastic processes

3.1 Results overview

The name comparison theorems in literature usually refers to results estab-

lishing inequality-like relationships between stochastic processes. A typical

comparison theorem would study stochastic differential equations of the type

dXt = f(t,Xt−)dat + g(t,Xt−)dMt + h(t,Xt−, u)d(µ− ν)t,u (19)

X0 = x0

and place certain conditions on coefficients f , g and h as well as processes a

and M and measures µ and ν to ensure one of the following:

1. path-wise almost surely comparison, i.e.

Xt ≤ Yt (a.s.), (20)

2. mean comparisons, i.e.

Ek(Xt) ≤ Ek(Yt) (21)

for a certain class of functions k. As was the case with existence and uniqueness

of solution results, big jumps need not be considered in the body of main

theorems and can be dealt with separately, as demonstrated in [14].

The first result of the first type belongs to Skorokhod [47], who proved a

comparison theorem for processes with constant diffusion. It was later gener-

alized by Yamada [50] and can be briefly stated as:

considering two diffusion processes

dXt = f(Xt)dt+ g(Xt)dWt

dYt = f̃(Yt)dt+ g(Yt)dWt,
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with continuous functions f , f̃ and g the following conditions

f(x) < f̃(x) for all x (22)

|g(x)− g(y)| ≤ ρ(|x− y|) (23)

ensure that for all t

Xt ≤ Yt (a.s.).

Here the function ρ(x) satisfies to the standard condition (5). The above

mentioned result will from now on be referred to as standard one-dimensional

path-wise comparison theorem.

The idea behind Yamada’s proof is to demonstrate that for all t the fol-

lowing inequality holds true:

E|Yt −Xt| ≤ E(Yt −Xt)

The fact that |x| is not a C2 function (thus Ito’s formula cannot be applied

directly) presents a complication. To resolve it, a series of smooth approxima-

tions for absolute value is constructed (see ϕm used in chapter 2.2).

Similar method was used in [35, 14] to extend the one-dimensional path-

wise comparison theorem to the general semimartingale case. Addition of

jumps (in the form of an integral with respect to a jump measure) required

one extra condition on the function ρ(x), which was demonstrated by (6). The

discontinuous case was also considered before in [2]. Another extension of path-

wise comparison theorem came in the form of multidimensional continuous

diffusion equations, studied in [36]. Many of these results are summarized in

the book [46].

An alternative approach to overcoming the complication presented by non-

smoothness of the absolute value function is presented by Ding and Wu in
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[11]. The paper studies comparison of multidimensional processes represented

as solutions of stochastic differential inequalities. It is based on application

of extended Ito’s formula, which uses the concept of local time to obtain a

stochastic integral representation for |Yt − Xt|. Despite difference in proofs

their conditions, when limited to the one-dimensional case, are very similar to

those of Yamada.

One of the biggest weaknesses of the path-wise theorems is that they only

allow comparison of processes with identical diffusion coefficients. O’Brien

[39] and later Gal’chuk and Davis [15] developed a comparison theorem for

SDE’s with different diffusions, which require more specific conditions on initial

values. The idea of that method is to use transformations: for a processes Xt

satisfying

dXt = f(Xt)dt+ g(Xt)dWt

define G(x) =
∫ x
x0
g−1(u)du. Assuming necessary smoothness, dynamics of

Zt = G(Xt) is then given by

dZt = (f(Xt)/g(Xt)− 0.5g′(Xt))dt+ dWt.

Modified in such way processes can be compared using standard approaches.

As far as applications go the method itself appears to be rather complicated

and not very useful. Nevertheless, similar transformations can become a pow-

erful tool and will be used in a number of examples later.

Finally, Peng and Zhu in [40] proved that if initial conditions are not speci-

fied, then identical diffusion coefficient is a necessity for comparison of solutions

of one-dimensional SDE’s.

The first theorem of the second type was derived by Hajek [18]. Given two

processes
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Xt = x0 +
∫ t

0
σsdWs

Yt = x0 +
∫ t

0
ρ(Ys)dWs

condition |σs| ≤ ρ(xs) implies that Eg(Xt) ≤ Eg(Yt) for any convex function

g. The proof is based on time-change and can be extended to the non-zero

drift case.

A general approach to mean comparisons is demonstrated by Bergenthum

and Ruschendorf in [4]. Let two processes be described by

dXt = f̃(Xt)dt+ g̃(Xt)dWt

dYt = f(Yt)dt+ g(Yt)dWt

X0 = Y0.

It is based on properties of the propagation operator, defined by

H(t, x) = E(h(XT )|Xt = x).

By construction, H(t,Xt) is a martingale, therefore

Ht(t, x) +Hx(t, x)f̃(x) +
1

2
Hxx(t, x)g̃2(x) = 0.

Since by construction

H(0, X0) = Eh(XT )

one can use Ito’s formula to show that
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Eh(YT ) = Eh(XT ) + E

∫ T

0

Hx(f(Yt)− f̃(Yt)) +
1

2
Hxx(g

2(Yt)− g̃2(Yt))dt.

At the same time if h(x) is monotone, convex or both, then H(t, x) will

be same (in space variable). Using this fact allows to find certain conditions

under which H(t, Yt) becomes super(sub)-martingale. The desired comparison

of expectations of the type (21) for monotone and/or convex functions can

therefore be obtained. The method, which can be seen as a union of two types

of comparison theorems, does not improve the previously known conditions.

Nevertheless, its idea is very clear and simple and will be used in one of the

examples below.

The next part presents a proof to the path-wise comparison theorem.

3.2 Path-wise comparison theorem2

As can be seen from the previous part the basic idea behind path-wise com-

parisons is to prove that (under certain conditions)

E(|Rt| −Rt) ≤ 0. (24)

where Rt is the difference of two processes one wishes to compare. The

function |x|−x is non-negative therefore the only way (24) is possible is if the

expectation is actually equal to zero which means that Rt ≥ 0 (a.s.).

The leading idea of this part is to replace |x|−x with a smooth non-negative

function γ(x) which is equal to zero to one side of zero. The simplest example

would be to take γ(x) = x2I{x>0}. Strictly speaking, this function is not in

C2, but if considered as a limit of x2+1/nI{x>0} correctness of Ito’s formula will

follow. In any case, the proposed method reduces the amount of work to be

done and (as will be shown below) provides a somewhat more general result.

To demonstrate the concept, consider the following proposition.

2A version of this chapter has been submitted for publication in [32]
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Proposition 1. Let Xt and Yt be two diffusion processes satisfying

dXt = f(t,Xt)dt+ g(t,Xt)dWt

and

dYt = f̃(t, Yt)dt+ g(t, Yt)dWt

where f , f̃ and g are deterministic functions and Wt is a Brownian motion.

If X0 ≤ Y0 and there exists a constant C such that for any t and x ≥ y

2(x− y)(f(t, x)− f̃(t, y)) + (g(x)− g(y))2 ≤ C(x− y)2 (25)

then for all t

Xt ≤ Yt (a.s.)

Proof. Define Rt = Xt − Yt and γε(t, x) = e−Ctx2+εI{x≥0}. Applying Ito’s

formula to γt,ε(Rt) yields:

γε(t, Rt) = −
∫ t

0

C(Xs − Ys)2+εI{Rs≥0}e
−Csds+

+

∫ t

0

(2 + ε)(Xs − Ys)1+ε(f(s,Xs)− f̃(s, Ys))I{Rs≥0}e
−Csds+

+

∫ t

0

(2 + ε)(Xs − Ys)1+ε(g(s,Xs)− g(s, Ys))I{Rs≥0}e
−CsdWs

+

∫ t

0

(2 + ε)(1 + ε)

2
(Xs − Ys)ε(g(s,Xs)− g(s, Ys))

2I{Rs≥0}e
−Csds.

Note that γε(0, R0) = 0 by assumption.

Taking expectation of the above expression leads to the following:
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Eγε(t, Rt) =

= E[

∫ t

0

{(2 + ε)(Xs − Ys)1+ε(f(s,Xs)− f̃(s, Ys)) +

+
(2 + ε)(1 + ε)

2
(Xs − Ys)ε(g(s,Xs)− g(s, Ys))

2 −

− C(Xs − Ys)2+ε}I{Rs≥0}e
−Csds].

Taking limit as ε→ 0 and using Lebesgue dominated convergence theorem

results in

e−CtER2
t I{Rt≥0} =

= E[

∫ t

0

{2(Xs − Ys)(f(s,Xs)− f̃(s, Ys)) +

+ (g(s,Xs)− g(s, Ys))
2 − C(Xs − Ys)2}I{Rs≥0}e

−Csds].

By assumption, the integrand is non-positive, therefore

e−CtER2
t I{Rt≥0} ≤ 0.

But random variable under the expectation is non-negative, thus

R2
t I{Rt≥0} = 0 (a.s.)

which is equivalent to

Rt ≤ 0 (a.s.).

Remark 1. Condition (25) is very similar to the monotonity condition used in
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[17] and will be studied more precisely below.

One does not’t have to limit considerations to direct comparison of pro-

cesses. In fact, the same method can be used to establish indirect compari-

son: for this consider F 2(x)I{F (x)>0} for x ∈ Rd. A special case d = 2 and

F (x1, x2) = (x1−x2) corresponds to the standard one-dimensional comparison

theorems.

As usual, consider a standard probability basis with a non-decreasing pro-

cess at, a n-dimensional continuous local martingale Mt, a jump measure µ

with a compensator ν. Furthermore, assume that predictable characteristics

< M >t and νt are absolutely continuous with respect to at, namely that there

exist a n× n predictable matrix m and a predictable process η such that

d < M i,M j > = mijda

dν = ηda

respectively.

Consider a d-dimensional process:

dXt = f(Xt−)dat + g(Xt−)dMt + h(u,Xt−)d(µ− ν) (26)

where f(x) = f(x, t, ω) and g(x) = g(x, t, ω) are function from Rd ×R+ × Ω

to Rd and real-valued d× n matrices respectively and h(u, x) = h(u, x, t, ω) is

a function from R\{0}×Rd×R+×Ω to Rd. As before, unnecessary variables

will be omitted whenever possible for short.

Theorem 2. Let F (x) : Rd → R be a C2 function such that F (X0) ≤ 0 with

probability 1. Furthermore, assume that for all x

I{F (x+h(x))>0} = I{F (x)>0}. (27)

Assume that there exists a δ > 0 and a non-negative predictable process C

such that for any x with 0 < F (x) ≤ δ the following inequality holds
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2F (x)(F ′(x), f(x)) + (F ′(x)g(x),msF
′(x)g(x)) +

+F (ms · F ′′(x)g(x), g(x)) +

+

∫
|u|<1

(F (x+ h(x, u))2 − F 2(x)− (F ′(x), h(x, u)))ηs ≤ CsF
2(x), (28)

where F ′(x) and F ′′(x) are vector of first derivatives and matrix of second

derivatives respectively and (a, b) denotes a scalar product.

Then for any t

F (Xt) ≤ 0 (a.s.)

Proof. Define a stopping time

τ = inf{t : F (Xt) > δ}.

Since F (X0) ≤ 0 then τ > 0 (a.s.)

Applying Ito’s formula to F 2(Xt) exp[−
∫ t

0
Csdas]I{F (Xt)>0} results in:

F 2(Xt)e
−

∫ t
0 CsdasI{F (Xt)>0} = local martingale +

+

∫ t

0

I{F>0}e
−

∫ s
0 Cudau(2F (F ′, f)− CsF 2)das +

+

∫ t

0

e−
∫ s
0 CudauI{F>0}

∑
i,j

(FiFj + FFij)gigjd < M i,M j >s +

+

∫ t

0

e−
∫ s
0 Cudau

∫
|u|<1

F (X + h)2I{F (X+h)>0} − (F 2 + (F ′, h))I{F>0}dνs. (29)

Then, using uniform continuity of < M > and ν with respect to as and

taking expectation get:
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Ee−
∫ t
0 CsdasF 2(Xt)I{F (Xt)>0} = E

∫ t

0

e−
∫ s
0 Cudau{2F (F ′, f) +

+(F ′g,msF
′g) + F (ms · F ′′g, g) +

+

∫
|u|<1

(F (X + h)2 − F 2 − (F ′, h))ηs − CsF 2}I{F>0}das. (30)

The integrand in (30) is non-positive on (0, τ) by assumption, therefore

Ee−
∫ t
0 CsdasF 2(Xt)I{F (Xt)>0} ≤ 0. (31)

But expression under the sign of expectation is non-negative, therefore (31)

is possible only if e−
∫ t
0 CsdasF 2(Xt)I{F (Xt)>0} = 0 (a.s.) what in turn means that

F (Xt) ≤ 0 (a.s.) for any t < τ .

For any ω such that τ(ω) < ∞ above considerations yield F (Xτ−) ≤ 0

(a.s.). If there is a jump at time τ , then

F (Xτ ) = F (Xτ−) + h(Xτ−)

which is again less than zero by (27). But by definition of τ and right-continuity

F (Xτ ) ≥ δ. Contradiction implies that τ =∞ (a.s.).

Remark 2. Theorem 2 requires that I{F (x+h(x))>0} = I{F (x)>0} for all x. When

d = 2, h(x1, x2) = (h(x1), h(x2)) and F (x1, x2) = (x1 − x2) it can be achieved

by assuming that x+ h(x) is a non-decreasing function for all x and h(0) = 0

(this assumption is used in [14] as well).

Remark 3. Even if not evident from the proof, two processes can be com-

pared only if they have identical diffusions. Indeed when there are no jumps,

condition (28) can be expressed as:

2F (F ′, f) + (F ′g,mF ′g) + F (m · F ′′g, g) ≤ 0

whenever F < 0.
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Letting F approach zero results in a necessary condition on the quadratic

form:

(F ′g,mF ′g) ≤ 0

whenever F = 0, which for F (x, y) = (x− y) becomes

m(g(x)− g̃(x))2 ≤ 0.

Similar restrictions can be obtained for h when considering discontinuous

process.

Theorem 2 provides a way to establish direct and indirect path-wise com-

parisons of stochastic processes. Replacing the absolute value function in

standard proofs with its smooth alternatives results in two things. First, the

proof is shortened and simplified. Second, the theorem requires a different type

of condition, which in the case of path-wise comparisons of one-dimensional

diffusion processes becomes very similar to the monotonity condition used in

[17, 25] to establish existence and uniqueness of solution. This fact demon-

strates another connection between two areas of my interest. Later in part 3.4

two types of conditions for path-wise comparisons of stochastic processes will

be examined, as was the case with existence and uniqueness theorem.

It should be noted that path-wise comparison of d-dimensional stochastic

processes using the above approach is not possible. One can, of course, consider

a series of functions Fk = xk − yk where index k runs from 1 to d, but this

approach seems rather cumbersome. Instead, one can use a multidimensional

comparison theorem proven in a standard fashion.

Extension of the comparison theorem to multidimensional case demands an

additional condition on the drift coefficient. It was done by Geiß and Manthey

[16]. Considering two systems of diffusion equations

dX i
t = fi(t,Xt)dt+

n∑
k=1

gik(t,Xt)dW
k
t
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and

dY i
t = f̃i(t, Yt)dt+

n∑
k=1

gik(t, Yt)dW
k
t

they use the following condition on the drifts

fi(t, x) < f̃i(t, y)

whenever xi = yi and xk ≤ yk for k 6= i, along with a standard in this case

|gik(x)− gik(y)| ≤ ρ(|x− y|).

Later Ding and Wu [11] proved a multidimensional comparison theorem

for continuous inequalities using local time approach.

None of the two above mentioned works represents the most general case.

The next chapter will present a more general path-wise comparison theorem

for multidimensional stochastic differential equations with respect to semi-

martingales. The extension is to add discontinuity represented by a jump

measure.

3.3 Multidimensional comparison theorem3

This chapter presents the proof of multidimensional path-wise comparison the-

orem for solutions of stochastic differential equations with respect to semi-

martingales with a jump component.

The main semimartingale is multidimensional in this chapter as well. Its

components are a d-dimensional continuous process A = (A1, A2...Ad) with

Ai ∈ Aloc, a d-dimensional continuous local martingale M = (M1,M2...Md)

and a n-dimensional jump measure µ = (µ1, µ2...µn) with continuous compen-

sators (ν1, ν2...νn).

3A version of this chapter has been published in [30]
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The processes to be compared are given as solutions of stochastic differen-

tial equations:

dX i
t =

d∑
j=1

fij(Xt−)dAjt +
d∑
j=1

gij(X
i
t−)dM j

t + hi(u,X
i
t−)d(µit − νit)

dX̃ i
t =

d∑
j=1

f̃ij(X̃t−)dAjt +
d∑
j=1

gij(X̃ i
t−)dM j

t + hi(u, X̃
i
t−)d(µit − νit)

i = 1...n (32)

where fij, gij and hi depend on t and ω and are continuous in (t, x). Existence

of solutions for both equations can be ensured in a standard way and is assumed

here.

Theorem 3. Let functions fij, gij, and hi be such that:

f̃ij(X̃0) > fij(X0) (a.s) (33)

for all i and j

f̃ij(x̃1, ..., x̃i−1, xi, x̃i+1, ..) > fij(x1, ...xi, ..) (34)

whenever x̃k ≥ xk,

hi(y) ≥ hi(x) (35)

for all y ≥ x

and

|gij(s, y)− gij(s, x)| ≤ Gsρ(|y − x|) (36)

|hi(s, x)− hi(s, y)| ≤ Gsρ(|x− y|) (37)

where the function ρ(x) satisfies (5) and (6) and Gs is a non-negative pre-
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dictable process with

E

∫ ∞
0

G2
sd < M j

s ,M
k
s ><∞

and

E

∫ ∞
0

G2
sdν

i
s <∞.

Also assume that the processes∫
|gkl(X)|d < M i,M j >∫

|fkl(X)|dAi∫
|f̃kl(X̃)|dAi

belong to Aloc.
Then for i = 1...n and any t

X̃ i
t ≥ X i

t (a.s.).

Proof. Define stopping times

Ti = inf(t > 0 : fij(Xt) > f̃ij(X̃t) for at least one j).

Denote T = min(Ti) and τ = T ∧ t.
Recall a sequence of twice continuously differentiable functions ϕm(x) that

approximate absolute value of x. It was used in part 2.2 to prove existence

and uniqueness of solution. For now m will be fixed.

Since fij are continuous, Xt and X̃t are right-continuous and
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fij(X0) < f̃ij(X̃0) (a.s.)

by assumption, then Ti > 0 (a.s.) for all i and, therefore τ > 0 (a.s.).

Applying Ito’s formula to ϕn(X̃ i
τ −X i

τ ) gets

ϕm(X̃ i
τ −X i

τ ) = local martingale + I1 + 1/2I2 + I3. (38)

Where

I1 =

∫ τ

0

ϕ
′

m(X̃ i
s− −X i

s−)
d∑
j=1

(f̃ij(X̃s−)− fij(Xs−))dAjs

I2 =

∫ τ

0

ϕ
′′

m(X̃ i
s− −X i

s−)×

×
d∑

j,k=1

(gij(X̃
i
s−)− gij(X i

s−))(gik(X̃
i
s−)− gik(X i

s−))d < M j
s ,M

k
s >

I3 =

∫ τ

0

[ϕm(X̃ i
s− −X i

s− + hi(u, X̃
i
s−)− hi(u,X i

s−))−

−ϕm(X̃ i
s− −X i

s−)− ϕ′m(X̃ i
s− −X i

s−)(hi(u, X̃
i
s−)− hi(u,X i

s−))]dνis.

The exact structure of the local martingale in (38) is irrelevant to the proof

so it is not specified. As before, it is possible to assume that all terms in (38)

admit expectations without loss of generality.

Taking expectations of both sides of (38) yields

Eϕm(X̃ i
τ −X i

τ ) = EI1 + 1/2EI2 + EI3. (39)

Studying every term one by one results in the following conclusions:

since
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f̃ij(X̃s−)− fij(Xs−) ≥ 0

on (0, τ) by construction and

ϕ(·) ≤ 1

the first integral can be estimated as

EI1 ≤ E

∫ τ

0

d∑
j=1

(f̃ij(X̃s−)− fij(Xs−))dAjs = E(X̃ i
τ −X i

τ ).

For the second term recall that the function ψm = ϕ′′m is equal to zero

outside of the interval (bm, bm−1). Condition (36) can be used to arrive at

EI2 ≤ 1/2
d∑

j,k=1

max
bm≤x≤bm−1

[ψm(|x|)ρ2(|x|)]E
∫ τ

0

|G2
s|d < M j

s ,M
k
s >≤

≤ 1/m
d∑

j,k=1

E

∫ ∞
0

|G2
s|d < M j

s ,M
k
s > .

The expectation in the above term is less than∞ by assumption, therefore

EI2 → 0 as m→∞.

When dealing with the third term, denote h(u, X̃ i
s−) − h(u,X i

s−) by ∆hi

for short. This expression will be estimated using condition (37). Taylor’s

approximation formula implies that there exists 0 ≤ α ≤ 1 such that
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EI3 = 1/2E

∫ τ

0

ϕ′′m(X̃ i
s− −X i

s− + α∆hi)(∆hi)
2dνis ≤

≤ 1/2E

∫ τ

0

|Hs(u)|2ρ2(|X̃ i
s− −X i

s−|)ϕ′′m(X̃ i
s− −X i

s− + α∆hi)dν
i
s.

Using lemma 1 results in

ρ2(|X̃ i
s− −X i

s−|)ϕ′′m(X̃ i
s− −X i

s− + α∆hi) ≤

≤ m−1ρ2(bm−1)ρ−2(bm−1 − εm)G2(s),

and condition (6) implies that EI3 converges to 0 as m→∞ as well.

Using the above considerations and taking limits as m→∞ in (39) results

in the following conclusions

E|X̃ i
t −X i

t | ≤ E(X̃ i
t −X i

t),

therefore

X̃ i
t ≥ X i

t (a.s.) (40)

on (0, τ) which completes the first part of the proof.

Now define stopping times θi = inf(r > τ : X̃ i
r < X i

r ) and denote θ =

min(θi).

For those ω when θ(ω) =∞ then the proof is complete. Otherwise

X̃ i
θ− ≥ X i

θ−

for all i by the definition of θ and right-continuity of Xt and X̃t. If there is no

jump at time θ, then

X̃ i
θ− = X̃ i

θ ≥ X i
θ = X i

θ−.
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Otherwise,

X̃ i
θ = X̃ i

θ− + hi(u, X̃)

X i
θ = X i

θ− + hi(u,X),

and it follows from (35) that

X̃ i
θ ≥ X i

θ (a.s.) (41)

for all i = 1, .., n.

Now fix i and limit considerations below to a set

Bi = {ω|θ(ω) = θi(ω) <∞}.

It follows from the definition of θi and right-continuity of X̃t and Xt that

X̃ i
θi
≤ X i

θi

for all ω. Together with (41) it implies that

X̃ i
θi

= X i
θi

(a.s.).

.

For j 6= i it is true that

θj ≥ θ,

therefore, X̃j
θi
≥ Xj

θi
. Condition (34) implies that
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f̃ij(X̃θi) > fij(Xθi) (a.s.)

for all j. Defining a stopping time

ηi = inf(t > θi : f̃ij(X̃t) < fij(Xt) for at least one j)

it follows from above that

ηi > θi (a.s.).

Reproducing the argument used in the first part of this proof for ϕm(X̃ i−
X i) on the time interval [θi, ηi) results in the following conclusion:

there exist a stopping time τi > θi, such that

X̃ i
t ≥ X i

t

on θi < t ≤ τi which contradicts the definition of θi. Therefore, Bi = ∅ (a.s.)

which in turn implies that θ =∞ (a.s.).

The multidimensional path-wise comparison theorem goes hand in hand

with other similar results in this area. It provides a way of handling processes

with complex inter-dependence structures that can potentially arise in various

applications.

As demonstrated by theorems 2 and 3, distinct techniques can be used to

establish path-wise inequality-like relationships between stochastic processes.

These two methods rely on different conditions as well and the question is

which would be more general in what scenario. This question will be answered

in the next part.
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3.4 Relationships between results

Before getting to the topic of this part, it is useful to note that technically the

method proposed in theorem 2 does not require continuity of coefficients f , g

and h. This approach can be used to compare processes with discontinuous

coefficients, but it must be said that existence and uniqueness of solutions

becomes a problem in this case.

The continuous coefficient case still holds some differences between the

monotonity condition and the classical results of [14, 50] and others. For the

purpose of demonstration considerations will be limited to a simple diffusion

case, although similar results can be obtained in a more general setting. To

be more precise, assume that the main semimartingale has no jumps, at = t

and Mt = Wt is a Wiener process. Monotonity condition (25) is then reduced

to:

2(x− y)(f(x)− f̃(y)) + (g(x)− g(y))2 ≤ C(x− y)2

for x > y and some non-negative constant C.

Connection between two types of conditions will be demonstrated in the

form of two lemmas.

Lemma 5. Consider process

dXt = f(Xt)dt+ g(Xt)dWt

dX̃t = f̃(X̃t)dt+ g(X̃t)dWt (42)

where continuous functions f , f̃ and g are such that:

f(x) < f̃(x) (43)

|g(x)− g(y)| ≤ ρ(|x− y|) (44)

with ρ(x) satisfying (5).
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Furthermore, define r(x) = ρ2(x)
x

and assume that

lim
x→0

r(x) = 0. (45)

Then the monotonity condition is satisfied.

Proof. The method used in theorem 1 allows to assume, without loss of gen-

erality, that all coefficients are uniformly continuous.

Fix y and define

ky(x) =
ρ2(x− y)

2(x− y)
.

From conditions (43), (45) and continuity of f and ky(x) it follows that

f̃(y) ≥ f(x) + ky(x) for some δ and 0 < x− y < δ.

Using definition of kx(y) gets

f̃(y) ≥ f(x) +
ρ2(x− y)

2(x− y)

which is equivalent to

(f(x)− f̃(y)) +
ρ2(x− y)

2(x− y)
≤ 0.

Multiplying the above inequality by 2(x − y) its sign will be preserved,

since it is sufficient to consider the case x > y. Therefore

2(x− y)(f(x)− f̃(y)) + ρ2(x− y) ≤ 0

and according to (5)

2(x− y)(f(x)− f̃(y)) + (g(x)− g(y))2 ≤

≤ 2(x− y)(f(x)− f̃(y)) + ρ2(x− y) ≤ 0.
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Lemma 6. Let functions f , f̃ and g satisfy (25). Then for all x

f(x) ≤ f̃(x).

Furthermore, there exists a non-negative increasing function ρ, such that

|g(x)− g(y)| ≤ ρ(|x− y|)∫
0+

ρ−2(x)dx = ∞ (46)

Proof. Dividing both sides of the monotonity condition (with C = 0) by (x−y)

results in:

f(x) +
(g(x)− g(y))2

2(x− y)
≤ f̃(y).

Taking limit as y → x from the left yields:

f(x) + lim
y→x−

(g(x)− g(y))2

2(x− y)
≤ f̃(x).

Two conclusions can be made from the above inequality. First, the second

term on the left is non-negative, therefore

f(x) ≤ f̃(x).

.

Second,

0 ≤ lim
y→x−

(g(x)− g(y))2

2(x− y)
≤ f̃(x)− f(x),

therefore the limit is finite (which is consistent with (46)).

As can be seen from lemma 5 the monotonity condition is more general

whenever
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lim
y→x

(g(x)− g(y))2

x− y
= 0

for all x. The fact can be further demonstrated by a simple example.

Example 1. Let g(x) = c, f(x) = 0 and f̃(x) = xI{x>0}. Here the

standard f̃(x) > f(x) fails, but the monotonity condition

2(x− y)xI{x>0} ≤ 0

is clearly satisfied for x < y.

In conclusion of this chapter, if

lim
y→x+

ρ(x− y)2

2(x− y)
= 0

then the monotonity condition in more general than classical. If the limit is

not equal to zero then the monotonity condition might not be satisfied.
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4 Financial applications of comparison theo-

rems

4.1 Introduction and motivations

This final section of my work is devoted to practical usages of various theoret-

ical results studied before. It is focused on mathematical finance as the main

field, although one can imagine similar techniques being put to use in other

areas of applied mathematics.

The well-known Black-Scholes model assumes, among other things, that

the stock price volatility is constant. Had this been true, the Black-Scholes

implied volatility for options on one stock would have been the same across

different strikes and maturities. This, however, is not the case. Most derivative

markets exhibit persistent patterns of volatilities varying by strike. In some

markets, those patterns form a smile. In others, such as equity index options

markets, it is more of a skewed curve. This has motivated the name volatility

skew. Another dimension to this problem is that of volatilities varying by

expiration. A three-dimensional graph indicating implied volatilities by both

strike and expiration is called volatility surface. Some of these effects were

studied by Rubinshtein in [43, 44].

The above mentioned works can be used as evidence of the fact that models,

more complicated than that of Black and Scholes need to be studied and used

in practice. Multiple steps can be undertaken in this direction, but the first

and, perhaps, the most intuitive one would be to allow volatility to be a

deterministic function of the stock price level and time

dSt = St(µdt+ σ(t, St)dWt),

where µ is a constant and Wt is a Brownian motion.

Before proceeding with studies of various properties of such models one

has to ensure existence of (preferably unique) solution of the above stochastic

differential equation. This can be achieved by the means of the existence and

uniqueness theorem, studied in chapter 2 of my work. It places one condition
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on the diffusion function (see theorem 1) limiting growth of σ(t, x). Apart

from technical conditions there are virtually no restrictions on the form of

dependence of σ on the stock price, so one can specify the model to capture

many desired features.

Note also that one can easily replace the constant drift coefficient with

another deterministic function of time and stock price. This, however, will not

add anything to many financial applications as those are usually studied under

the martingale measure and are, therefore, independent of the particular form

of the real measure drift.

The feature that distinguishes the above mentioned approach from many

others is completeness. The unique martingale measure Q is determined with

the help of Gyrsanov’s theorem: its density is defined as

dQt

dPt

= exp[−
∫ t

0

µ− r
σ(u, Su)

dWu −
∫ t

0

(µ− r)2

2σ2(u, Su)
du]

while the shifted process

dW̄t =
µ− r
σ(t, St)

dt+ dWt

is a Q-Brownian motion. Of course, one has to assume here that σ(t, St) > 0

(a.s.) for all t.

Completeness is an important property of financial models as far as appli-

cations are concerned. It implies that all contingent claims admit a unique

fair price and can be perfectly hedged. In fact, this property will be preserved

in a more complex model with several sources of randomness as demonstrated

by the following proposition.

Proposition 2. Consider a stock price process

dSt = St(µdt+
d∑

k=1

σk(t, St)dW
k
t ),

where W k
t are independent Brownian motions. Assume interest rate r is con-
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stant and denote a set of martingale measures by M.

Then for a measurable function f(x) the following quantity

EQf(St)

is identical for every Q ∈M.

Proof. Let Q be in M. By the definition of a martingale measure and Gyr-

sanov’s theorem the stock price dynamics can be expressed as

dSt = St(rdt+
d∑

k=1

σk(t, St)dW̄
k
t ),

where W̄ k
t are independent Q-Brownian motions. Thus, the Q measure dis-

tribution of St is completely defined by r and functions σk(t, x).

But EQf(St) is completely defined by the Q-distribution of St and is there-

fore dependent only on σk(t, x) and not the particular choice of martingale

measure.

In fact, the same proposition can be used to prove that not only will every

stock option have a unique price, but admit a replicating strategy. Here one

only needs to cite the work [24]. It proves that a contingent claim is attainable

if it has a unique price under any martingale measure.

In general, modelling stock prices via stochastic differential equations with

non-constant diffusion functions allows to extend the scope of available pro-

cesses beyond normally (or log-normally) distributed ones. Various features of

observable quantities can be captured in the model preserving uniqueness of

contingent claim prices and availability of perfect hedges.

Complications of financial market models, however, come at a price of

significant increases in computational difficulties. Vast majority of models

will not admit explicit solutions. This leads to necessity of development of

complex and high precision numerical methods, which of course is aided by

rapid progress in the modern computer and software industries. Some of those
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are studied in [41], Monte Carlo methods and its variations are also reflected

in [8]. Finite difference methods can be applied to solve Black-Scholes type

partial differential equations

∂C

∂t
+

1

2
σ2(t, x)

∂2C

∂x2
+ rx

∂C

∂x
= rC

describing the option price function C(t, x) with appropriate initial and bound-

ary condition. An example of such method is presented in [1].

In some instances, however, numerical methods may still not be fast enough.

Another issue is convergence and stability, not obvious in some cases. Com-

parison of stochastic processes can be viewed as an alternative to numerical

methods for complicated models. The leading idea is to estimate the main

processes with another, for which computations can be performed explicitly

(or at least simplified). In this way, the approach represent a certain trade-

off between time and precision. Unlike numerical methods, the sign of the

error, no matter how large, is known: if the stock price process is estimated

from above then that estimate will produce higher option prices (provided the

options pay-off function is non-decreasing).

Comparison of stochastic processes has been studied in financial theory

framework in [3, 29] among others. Both papers focus mostly on theory, deriv-

ing properties of option prices and not providing means of explicit calculations.

A method of option price estimation, which relies only on some properties of

the stock price is presented in [45]. Another interesting work on related mat-

ter is [34], where stochastic dominance is used to find option price bounds in

discrete markets. My aim in this part of the thesis is to develop practically

useful methods and demonstrates their power on specific numerical examples.

Comparison theorems will play a role of theoretical tool in those methods.

4.2 Overview of examples

This subsection provides an overview of all the examples and can serve as an

easy reference. The example section is divided into three main parts.
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First part includes examples 1 and 2 and is devoted to direct applications

of comparison theorems to option pricing and hedging. It demonstrates how

path-wise and mean comparison theorems can be used to build explicit esti-

mates for European option prices in models where exact calculations are either

tedious or not possible at all. Moreover, the same methodology is applied to

replication of the underlying contingent claim.

The next part presents two methodologies for estimating the stock’s cu-

mulative distribution function. It starts with description of two general ap-

proaches, which are based on similar principals as the comparison theorem.

The methodologies are demonstrated by two specific examples. Relative per-

formance and effectiveness of both approaches is studied.

The last part consists of more theoretical examples. It demonstrates other,

not so obvious usages of comparisons in financial applications.
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4.3 Direct applications of comparison theorems to op-

tion pricing

One of the more important questions in the theory of mathematical finance

is pricing and hedging of options. But even a small step away from geomet-

ric Brownian motion can result in significant complications in the call-price

formula or, more likely, no explicit formulas at all. This statement can be

demonstrated by the constant elasticity of variance model, derived by Cox

and Ross in [9]. The proposed stock price dynamics is described by the fol-

lowing stochastic differential equation

dSt = St(µdt+ σSα−1
t dWt)

S0 = s,

where µ and σ > 0 are constants and α is between 0 and 1.

The conditional density of ST can be (without going into too many details)

expressed as

f(ST , T |St, t) = h(T ) exp[q(T )ST ]Iu(p(T )
√
ST ),

where Iu(x) is a modified Bessel function of the first kind of order u, resulting

in the call option pricing formula

P (S, t) =

= S
∞∑
n=0

an(t)Sn+vG(n+ 2, c(t))−K
∞∑
n=0

bn(t)Sn+1+vG(n+ 1, c(t)),

where G(m,x) is a complementary Gamma(m,1) distribution function.

The first example in this section deals with the above mentioned CEV

model.
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Example 1. Constant elasticity of variance model estimation4.

Let the main process be given by

dSt = St(rdt+ σSα−1
t dWt)

S0 = s

with 1
2
≤ α < 1.

Remark. The original model considers the range of α to be from 0 to 1. How-

ever, to avoid various technical difficulties this example is build for the case

α ≥ 0.5 only. This condition can also be used to ensure existence and unique-

ness of solution.

To construct an upper estimate consider a process

dYt = r[(1− α)Yt +
s1−α

σ
]dt+ dWt

Y0 = 0

This stochastic differential equation describes a normally distributed Ornstein-

Uhlenbeck process with mean

s1−α

σ(1− α)
(er(1−α)t − 1)

and variance

(exp[2r(1− α)t]− 1)

2r(1− α)

and can be solved explicitly. The process of this type was considered in [37]

and is also used in [48] as an interest rate model. Its exact distribution can be

found in [27].

4A version of this example has been submitted for publication in [33]
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Now let G(y) = (σ(1− α)y + s1−α)
1

1−α . Taking derivatives yields:

G′(y) = σGα(y)

G′′(y) = ασ2G2α−1(y).

Note, that α ≥ 0.5 implies 1
1−α ≥ 2, therefore G is a C2 function. Hence,

one can use it in conjunction with Ito’s formula.

Define Zt = G(Yt). With that in mind the SDE for Yt can be expressed as

dYt = (rZ1−α
t /σ)dt+ dWt.

By construction Z0 = s and by Ito’s formula

dZt = (rZt +
ασ2

2
Z2α−1
t )dt+ σZα

t dWt

and (provided Z2α−1
t is non-negative) the one-dimensional path-wise compar-

ison theorem yields:

St ≤ Zt (a.s.), (47)

therefore

e−rTEf(ST ) ≤ e−rTEf(ZT )

for non-decreasing pay-off function f(x).

The process Zt represents a function of normally distributed Yt and allows

for explicit calculations of expectations. Similar estimate can be derived for

another well-known stochastic process, the Cox-Ingersoll-Ross interest rate

model [10].

For the purpose of demonstration, consider a European call option on stock

in the square-root model (α = 0.5). In this case Z2α−1
t = 1 so comparison (47)
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holds. The upper bound for the call price can then be calculated as expectation

e−rTE((σ(aξ + b)/2 +
√
s)2 −K)+,

where a =
√

(erT − 1)/r, b = 2
√
s(erT/2 − 1)/σ and ξ is a standard normal

variable. The expression can be simplified to

C(T, s) = e−rTE((σaξ + erT/2
√
s)2 −K)+. (48)

For numerical demonstration fix parameters r = 0.05 and s = 20. The

results of using explicit pricing formula as in [9] and the proposed estimate

(48) for two different values of σ are presented in tables 1 and 2. The spread

between estimated and exact price, measured as estimate/(true value)-1 is also

presented. As can be seen from the two tables, derived method of estimation

is very accurate.

At the same time precision decreases with increasing σ. This result can be

expected from the form of ασ2/2, which is the difference between equations

describing dynamics of dZt and dSt. Higher values of σ should result in larger

difference between the stock price and its estimate, which can be observed

from the two tables.

Similar estimation procedure can be used to build a hedging strategy. Fix

time u ≤ T . Of course, (47) means that

e−rTE(f(ST )|Fu) ≤ e−rTE(f(ZT )|Fu)

where the right-hand side can be computed explicitly and used as an estimate

for the discounted option price at time u. This, however, is not the best

approach.

First, computed in this way estimate will depend on Yt (or, equivalently,

Wt). Since neither is observable, it can not be used for hedging purposes.

Second reason is that precision can actually be improved.
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Table 1: Call option price estimates and spreads for σ = 0.35 for Example 1

Maturity T = 1
strike K 22 20 15
estimated price 0.275 1.239 5.7614
exact price 0.2667 1.217 5.7316
percentage spread 3.14 1.82 0.52

Maturity T = 1.5
strike K 22 20 15
estimated price 0.5853 1.7088 6.128
exact price 0.5668 1.674 6.0838
percentage spread 3.27 2.08 0.73

Maturity T = 2
strike K 22 20 15
estimated price 1.8867 2.958 6.733
exact price 1.7656 2.8 6.511
percentage spread 6.86 5.7 3.4
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Table 2: Call option price estimates and spreads for σ = 0.7 for Example 1

Maturity T = 1
Strike K 22 20 15
estimated price 0.884 1.84 5.87
exact price 0.8376 1.766 5.755
percentage spread 5.57 4.28 2.03

Maturity T = 1.5
Strike K 22 20 15
estimated price 1.3935 2.42 6.308
exact price 1.311 2.306 6.138
percentage spread 6.29 4.9 2.78

Maturity T = 2
Strike K 22 20 15
estimated price 1.8867 2.958 6.733
exact price 1.7656 2.8 6.511
percentage spread 6.86 5.7 3.4
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On the time interval [u, T ] consider a process

dZ
(u)
t = (rZ

(u)
t +

ασ2

2
(Z

(u)
t )2α−1)dt+ σ(Z

(u)
t )αdWt

Z(u)
u = Su.

By the comparison theorem for any u < t

St ≤ Z
(u)
t (a.s.),

therefore

e−r(T−u)E(f(ST )|Fu) ≤ e−r(T−u)E(f(Z
(u)
T )|Fu)

But, as before Z
(u)
t is equal to (σ(1 − α)Y

(u)
t + S1−α

u )
1

1−α , where Y
(u)
t is a

process satisfying

dY
(u)
t = r[(1− α)Y

(u)
t +

S1−α
u

σ
]dt+ dWt

Y (u)
u = 0

and its distribution (conditional on Su) is normal. Therefore, e−r(T−u)E(f(Z
(u)
T )|Fu)

can be computed explicitly as C(T − u, Su), where C(t, x) is defined in (48).

This function can be used to estimate the option’s price at any moment in

time and to build a hedging strategy.

A few things should be noted at this point. First fact to consider is that

constructed processes Z
(u)
t are decreasing in u. To prove that consider v > u

and time interval [v, T ] where both Z
(u)
t and Z

(v)
t are defined. As proved above,

Z
(u)
v ≥ Sv = Z

(v)
v so at time v the two processes satisfy to the necessary in-

equality. The corresponding SDEs for the two processes on t ≥ v are identical,

therefore it remains to prove that the process Zt is increasing in initial value.

That can be achieved by looking at the definition of Zt as an increasing func-

tion of Yt and Z0, while by comparison theorem Yt itself is increasing in s.

Thus, for any t ≥ v
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Z
(u)
t ≥ Z

(v)
t (a.s.). (49)

This inequality immediately points to the fact that using processes Z
(u)
T at

time u instead of original ZT to estimate the option’s price gives improvement

in precision. This fact is consistent with the numerical example presented in

Tables 1 and 2, which show improved precision for lower maturities.

Second, by construction C(0, x) = (x−K)+, therefore the strategy repre-

sents a perfect hedge. However, since different processes Z
(u)
T are used as up-

per boundaries for ST at different times the discounted option price estimate

e−ruC(T −u, Su) is not a martingale. This means that the strategy is not self-

financing. In fact, inequality (49) can be used to prove that for non-decreasing

pay-offs the proposed hedging strategy is a strategy with consumption.

To do so, denote the discounted strategy value e−rtC(T − t, St) by Lt and

consider two times v > u. By construction

Lu = e−rTE(f(Z
(u)
T )|Fu)

and

Lv = e−rTE(f(Z
(v)
T )|Fv).

Therefore, using inequality (49) and properties of conditional expectations

yields

E(Lv|Fu) = e−rTE(f(Z
(v)
T )|Fu) ≤

≤ e−rTE(f(Z
(u)
T )|Fu) = Lu.

Thus, the process Lt is a supermartingale. It can be represented as a

sum of a martingale (which in turn is a discounted value of some self-financing

strategy) and a decreasing process. This second component can be understood

as a consumption process, which continuously removes excess hedging capital
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Figure 1: Simulated sample CEV process with S0 = 50, α = 0.5, µ = 0.14 and
σ = 0.7 for Example 1

from the strategy until it exactly matches the option’s value at maturity.

Another topic to discuss in this set-up is how do estimation errors compare

to those arising from model misidentification.

Consider the following scenario: an investor observes a CEV-distributed

stock price process and wants to have explicit pricing and hedging formulas.

One way is to use the method presented in this example. An alternative would

be to assume that the observed process is actually log-normally distributed,

which will result in pricing errors but provide means of explicit calculations.

The question is: which method produces better results?

To follow the second proposed path investor will need to estimate the

volatility of the observed stock price process as if it was log-normally dis-

tributed. Since the actual distribution is not log-normal, this estimated volatil-

ity will depend on the sample path. For the purpose of demonstration I used

50 simulations of the stock price path over a period of 2 years, one of which

is presented in Figure 1. A scatter plot of annualized volatilities for all 50

simulations is presented in Figure 2.
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Figure 2: Annualized volatilities of simulated CEV processes for Example 1

As expected, simulation results produce a range of volatility parameters.

Most of them lie in an interval [13%, 17%]. With this range of volatilities call

option prices can be calculated using the Black-Scholes formula.

Looking at a cross section of results presented in Table 3 it can be said that

usage of comparison theorems has a clear advantage over model misidentifica-

tion for pricing in- and at-the money options. Not only in terms of precision,

but also because the sing of error is known in advance. At the same time

deep out-of-the money calls are better priced using model misidentification,

especially since there is very little variability in calculated prices for different

volatility values.

To summarize this example, application of comparison theorems allows to

find an explicit price estimate for any European option in the constant elastic-

ity of variance model, as well as build a perfect hedging (but not self-financing)

strategy. The method presents a viable alternative to usage of numerical meth-

ods and simplified models for the purpose of pricing and hedging options.

End of example.
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Table 3: Estimation errors versus model misidentification for Example 1
Maturity T = 1

Strike K 22 20 15
comparison theorem estimate 0.884 1.84 5.87
range of Black Scholes prices 0.66..0.97 1.57..1.866 5.73..5.756
exact price 0.8376 1.766 5.755

Maturity T = 2
Strike K 22 20 15
comparison theorem estimate 1.8867 2.958 6.733
range of Black Scholes prices 1.5..1.956 2.547..2.929 6.446..6.516
exact price 1.7656 2.8 6.511

Example 1 studies a well known CEV model and develops an explicit esti-

mate for the European call option’s price. Not to focus on one process, further

examples will look at stock price models, not used in literature. Nevertheless,

the models appear to be reasonable and allow to demonstrate the main ideas,

which is the sole purpose of this part of my work.

One of the first comparison theorems is that of Hajek [18]. The result

looks very natural when applied to mathematical finance: option prices for

convex pay-offs (such as call option) are increasing functions of volatility. In

fact, the work [19] provides extension of price monotonicity in volatility to

path-dependent options.

The next example constructs a double sided estimate, derived with the

help of two types of comparison theorems.

Example 2. Two-sided estimate5

Let the main process be described by

dSt = rStdt+ (aSt + b
√
St)dWt

where a, b, and r are non-negative constants.

5A version of this example has been published in [31]
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An upper estimate for St is given by a stochastic differential equation

dZt = (rZt + (r + a2/4)
b

a

√
Zt + b2/4)dt+ (aZt + b

√
Zt)dWt

Z0 = S0.

By the one-dimensional comparison theorem Zt ≥ St (a.s.)

The advantages of this particular estimate are derived from the fact that

Zt can be expressed as Zt = ( b
a
−Xt)

2, where

dXt = (r/2− a2/8)Xtdt+ a/2XtdWt,

which is log-normally distributed.

For the lower estimate use the process

dYt = rYtdt+ aYtdWt

Y0 = S0.

Since ax+ b
√
x ≥ ax for any x, the mean comparison theorem implies that

any convex pay-off option on St is priced above the same option on Yt.

Altogether, if a pay-off function h(x) is non-decreasing and convex then

Eh(Yt) ≤ Eh(St) ≤ Eh(Zt).

For call option price the lower bound is computed using the Black-Scholes

formula, while the upper estimate is

C(T, S0) = e−rTE((
b

a
− (

√
S0 +

b

a
) exp[(

r

2
− a2

4
)T +

a

2

√
Tξ])2 −K)+ (50)

with ξ - a standard normal random variable.

As in the previous example one can look at the structure of both estimates

to determine how precision is related to the parameters of the initial model.

Clearly the quality of both estimates depends on the size of the parameter

b. Smaller values of b result in less significant differences between stochas-
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Figure 3: Percentage spread for call option price estimates as a function of the
parameter b with S0 = 50, K = 55, r = 0.04, T = 1 and a = 0.2 for Example
2

tic differential equations for the two estimates when compared with that of

St. Therefore, one can conclude that relative percentage spread, measured as

2(upper-lower)/(upper+lower), is an increasing function of b and eventually

decreases to 0 when b = 0 (since all three processes become log-normal in that

case). This theoretical observation is supported by figure 3.

At the same time it is not entirely obvious how precision relates to the size

of the parameter a. For the upper estimate Zt the extra term (r+ a2/4) b
a

√
Zt

is not monotone in a. The structure of the lower estimate Yt suggests that

higher values of a will result in better precision, since the foregone term b
√
St

will have relatively smaller impact.

As demonstrated by figure 4 relative percentage spread is a decreasing

function of a. This fact can be attributed to improved precision effect of the

lower estimate being overwhelming.

Finally, from figure 5 precision of estimation increases with K, suggesting

that the method is best used for in the money call options.

As in example 1, the same methodology can be used to build two replicating

strategies. For call option the upper estimate will be C(T − t, St) defined in

(50), while lower estimate is provided by the Black Scholes formula. Both will
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Figure 4: Percentage spread for call option price estimates as a function of the
parameter a with S0 = 50, K = 47, r = 0.04, T = 1 and b = 0.25 for Example
2

Figure 5: Percentage spread for call option price estimates as a function of
the strike price K with S0 = 50, r = 0.04, T = 1, a = 0.2 and b = 0.25 for
Example 2
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represent perfect hedges, but will not be self-financing.

End of example.

Two previous examples demonstrate usefulness of comparison theorems in

option price estimations. The full range of possibilities was examined, showing

advantages of estimates on specific examples. The next chapter will focus on

how to build estimates in more general cases.
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4.4 Estimating cumulative distributions

The previous part, and example 1 in particular, demonstrate that comparison

theorems can be very powerful in practice. One criticism of such approach,

however, is that it is far from uniform. Direct application of path-wise com-

parison theorem requires individualistic analysis of every model: both example

1 and 2 were constructed by finding a suitable process to dominate the stock

price. In some cases this might be difficult.

In most practical applications estimating distribution of the process in

question is sufficient. Mathematically speaking, the quantities of the type

EI{Xt≥z}

can be of great interest. Risk management would be the first and most ob-

vious application. Since risk measures, such as value at risk and conditional

value at risk rely on knowledge of probability distribution, their estimates can

be derived with the help of comparison methods. Option prices can also be

estimated with the help of approximate distribution. Consider a put option

on stock. Its fair price is given by

P = e−rTE(K − ST )+ = e−rT
∫ K

0

(K − x)dP(ST ≤ x).

Integration by parts formula yields

P = −e−rTKP(S1 ≤ 0) + e−rT
∫ K

0

P(S1 ≤ x)dx =

= e−rT
∫ K

0

P(S1 ≤ x)dx. (51)

This part of my thesis present two alternative methods of estimating dis-

tribution, which can be applied to a variety of stochastic processes.
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4.4.1 Method of transformations6

The first approach is based on path-wise comparison theorem. Indeed, since

I{x≥z} is a monotone function, inequality of the type

Xt ≤ Yt (a.s.)

can be used as a sufficient condition to ensure that

EI{Xt≤z} ≥ EI{Yt≤z}.

Unlike example 1 and 2, the method is more general. It will be presented

for a specific process, but identical technique can be used in different settings.

Consider a stock price model

dSt = µStdt+ σSt
a+ St
b+ St

dWt

S0 > 0.

An estimate for St will be constructed as a function F (Xt) of a normally

distributed process

dXt = αdt+ σdWt

X0 = 0

By Ito’s formula

dF (Xt) = (αF ′(Xt) +
1

2
σ2F ′′(Xt))dt+ σF ′(Xt)dWt.

6A version of this chapter has been submitted for publication in [33]
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The path-wise comparison theorem requires that both processes have the

same diffusion coefficient. Therefore, F (x) has to solve the following differen-

tial equation

y′ = y
a+ y

b+ y
(52)

In an implicit form the solution can be found to be

b

a
ln(y) +

a− b
a

ln(y + a)− c = x,

which effectively represents F−1(y) = x. Note that the inverse function is

monotone. The constant c is calculated from initial condition F−1(S0) = 0.

The value of the parameter α is determined from inequality on drifts. For

a lower estimate it is

αy′ +
1

2
σ2y′′ ≤ µy.

Second derivative can be calculated from the explicit expression for y′ and

is equal to

y′′ = y
(y2 + 2by + ab)(a+ y)

(b+ y)3
,

meaning that α has to satisfy

y[α
a+ y

b+ y
+
σ2

2

(y2 + 2by + ab)(a+ y)

(b+ y)3
] ≤ µy. (53)

An upper estimate can be built in the same way with the inequality sign

reversed.
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The estimated distribution function can now be constructed. Since F (Xt) ≤
St, then

P(St ≤ z) ≤ P(F (Xt) ≤ z) = P(Xt ≤ F−1(z)) = Φ(
F−1(z)− αt

σ
√
t

). (54)

Here Φ(x) denotes the standard normal cumulative distribution function.

Notice that without knowing the actual expression for F (x) it is difficult

to find the option price estimate as

Ef(Yt) = Ef(F (Xt)).

However, estimating the stock’s distribution is possible. The put option’s

price can then be approximated from (51) by numerically integrating (54).

Quantities such as VaR can also be estimated using simple numerical proce-

dures.

The method presented above can be applied to many different models, as

long as (52) can be solved, either explicitly or implicitly.

4.4.2 Method of substitution

The second approach requires less restrictive condition and, therefore, is more

general. It follows similar strategy as theorem 2. While not based on any

comparison theorem per se, it is inspired by the work [4], which was briefly

described in part 3.1.

To demonstrate the idea, consider a log-normally distributed process

Xt = X0 exp ((a− b2

2
)t+ bWt)

and define
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v(x, t) = E(I{XT>z}|Xt = x).

The function v can be computed explicitly to be

v(x, t) = Φ(
ln(x/z) + (a− b2/2)τ

b
√
τ

),

where τ = T − t. At the same time, by Ito’s formula v(x, t) satisfies

vt(x, t) + axvx(x, t) +
b2

2
x2vxx(x, t) = 0. (55)

The leading idea in this methodology is to substitute v(ST , T ) instead of

I{ST>z} and estimate

Ev(T, ST ).

Since by construction

v(x, T ) = I{x≥z}

the two quantities have identical expectations. At the same time v(x, t) is twice

continuous differentiable with respect to x and differentiable with respect to

t, which means that Ito’s formula can be applied to v(St, t).

Let St be given by

dSt = f(St)dt+ g(St)dWt

S0 = X0.
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Using the definition of v and Ito’s formula produces

EI{ST > z} = v(X0, 0) +

+E

∫ T

0

(vt(St, t) + f(St)vx(St, t) +
1

2
g(St)

2vxx(St, t))dt

and using (55) allows to get rid of the vt term:

EI{St > z} = EI{ST > z}+

+E

∫ T

0

((f(St)− aSt)vx(St, t) +
1

2
(g(St)

2 − b2S2
t )vxx(St, t))dt. (56)

Calculating exact expressions for vx and vxx yields:

vx =
1

bx
√
τ
ϕ(

ln(x/z) + (a− b2/2)τ

b
√
τ

)

vxx = [− 1

bx2
√
τ
− 1

b3x2τ
√
τ

(ln(x/z) + (a− b2/2)τ)]ϕ(),

where ϕ(x) is a standard normal density.

Altogether, the integrand in (56) can be expressed as

2b2Stτ(f(St)− aSt)− (ln(St
z

) + (a+ b2/2)τ)(g2(St)− b2S2
t )

2b3S2
t τ
√
τ

ϕ().

To establish comparison between P(ST > z) and explicitly calculated

v(X0, 0) it is sufficient to ensure that the integral in (56) is non-negative (or

for a different sided comparison non-positive) regardless of the value of Yt. It

will be so if

2b2xτ(f(x)− ax)− (ln(x/z) + (a+ b2/2)τ)(g2(x)− b2x2)

is constant in sign for all 0 ≤ τ ≤ T and x.
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Further manipulations reduce the above expression to

τ [2b2x(f(x)− ax)− (a+ b2/2)(g2(x)− b2x2)]− ln(
x

z
)(g2(x)− b2x2).

When functions f and g do not depend on t it can be useful to separate

the term with τ . It means that two terms

2b2xf(x)− (a+ b2/2)g2(x) + x2(b4/2− ab2)

− ln(
x

z
)(g2(x)− b2x2)

have to be of the same sign for all x.

First conclusion to be made is that the expression (g2(x) − b2x2) has to

change sign as x goes from < z to > z. Continuity implies that g(z) = bz

which can be used to determine the only applicable value of b = g(z)/z. With

that in mind

ln(
x

z
)x2(g2(x)/x2 − g2(z)z2)

will be constant in sign if g(x)/x is monotone.

The first inequality can then be solved to find the value of the parameter

a. The result can be summarized in the form of the following proposition.

Proposition 3. Let St be a non-negative process such that

dSt = f(St)dt+ g(St)dWt.

If g(x)/x is a non-increasing function and f(x) is such that

a = inf
x≥0

2f(x)xg2(z)− g2(z)(g2(x)z2 − g2(z)x2)/(2z2)

g2(x)z2 + g2(z)x2
> −∞

then
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P(ST > z) ≥ Φ(
ln(S0/z) + (a− 0.5g2(z)/z2)T

g(z)
√
T

z). (57)

Proof. With a as defined and g(x)/x non-increasing inequalities

2b2xf(x)− (a+ b2/2)g2(x) + x2(b4/2− ab2) ≥ 0 (58)

− ln(
x

z
)(g2(x)− b2x2) ≥ 0

will hold for b = g(z)/z, which will produce the desired estimate.

If g(x)/x is increasing, the other sided estimate can be constructed in the

same fashion.

4.4.3 Numerical demonstrations

Now both methods will be demonstrated, and compared, on numerical exam-

ples.

Example 3. Consider a stock price model with risk-neutral dynamics as

dSt = 0.06Stdt+ 0.35St
30 + St
20 + St

dWt

S0 = 37.

The first approach allows to build two estimates. Inequality (53) is satisfied

with

α1 = µ
b

a
− σ2a

2b
= −0.051875

which gives an upper estimate
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P(St ≤ z) ≤ Φ(
2 ln[z

√
z + 30/(37

√
57)]/3 + 0.051875t

0.35
√
t

) = FU(z)

Similarly, other sided estimate can be built. For this inequality (53) has to

be reversed, and will be satisfied with

α2 = µ− σ2

2
= −0.00125.

A lower estimate then is

P(St ≤ z) ≥ Φ(
2 ln[z

√
z + 30/(37

√
57)]/3 + 0.00125t

0.35
√
t

) = FD(z).

The second method can be used to obtain another estimate from above.

Here g(x)/x = σ 30+x
20+x

which is a decreasing function so the first condition of

proposition 3 holds. Denote the ratio 30+x
20+x

by h(x) for short. The second

condition can, after some simplification, be expressed as

a = −σ2h2(z)/2 + inf
x≥0

2µ+ σ2h2(z)

1 + h2(x)/h2(z)
> −∞

which is clearly satisfied. Since h(x) is decreasing, minimum will be attained

at x = 0, thus

a = −0.06125h2(z) +
0.12 + 0.1225h2(z)

1 + 2.25/h2(z)
. (59)

The distribution of St can then be estimated from above by
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Figure 6: Difference between two upper estimates for Example 3

P(ST ≤ z) ≤ 1− Φ(
20 + z

30 + z

ln(S0/z) + (a− 0.06125(30+z
20+z

)2)T

0.35
√
T

) = FA(z). (60)

Figure 6 demonstrates the difference between the two upper estimate, cal-

culated as FA(z)− FU(z). It shows that for most values of z the first method

produces better estimate, although using min{FA(z), FU(z)} is advantageous.

Another graph, figure 7, measures the spread between the upper and the lower

estimates, calculated as 2FU (z)−FD(z)
FU (z)+FD(z)

.

Using the upper and lower estimates for the stock price distribution, put

option prices can be approximated using (51) and numerical integration. Re-

sults for several options are presented in table 4. The exact prices, found as

numerical solutions of Black-Scholes type partial differential equation
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Figure 7: Percentage spread between upper and lower estimates for Example 3
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∂P

∂t
+ 0.06125(x

30 + x

20 + x
)2∂

2P

∂x2
+ 0.06x

∂P

∂x
= rP

P (T, x) = (K − x)+

are also presented. As can be seen from those numbers, the methods produce

reasonably accurate estimates.

At the same time, put option pay-off is concave, meaning that the mean

comparison theorem can be used in this example as well. Since

0.35x ≤ 0.35x
30 + x

20 + x
≤ 0.525x

the theorem yields

PBS(37, 1, 0.35, K) ≤ P ≤ PBS(37, 1, 0.525, K)

where PBS(S0, T, σ,K) is a Black Scholes put option price. Results of such

calculations are also presented in table 4. One can see that in this case the

mean comparison theorem is not accurate enough. Option price estimates

derived using the distribution estimation methodology are more accurate.

In practice one can improve precision by making certain assumptions about

the lowest attainable stock price. For example, assuming that St ≥ 10 for

t ≤ 1, parameters α and a of the upper estimates need to be chosen to satisfy

(53) and (58) on [10,∞). With this range of stock prices the put option price

estimate for maturity 1 and strike 32 will be 2.8775 and overpricing error

is reduced to just 5.4%. While not 100% correct mathematically, this price

estimate (or the way it was obtained to be precise) can make sense in practice.

End of example.

Two methods of estimating cumulative distributions were presented above.
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Table 4: Put option price estimates and spreads for Example 3

Maturity T = 0.5
Strike K 32 37 43
exact price 1.6641 3.6791 7.2503
estimated prices 1.599 3.5708 7.0919

1.9143 4.0642 7.4027
percentage spreads 3.91 2.94 2.18

15.04 10.47 2.10
mean comparison estimates 0.92 2.54 5.79

2.22 4.26 7.6

Maturity T = 1
Strike K 32 37 43
exact price 2.7302 4.8269 8.1472
estimated prices 2.5724 4.6146 7.8671

3.1273 5.4324 8.99
percentage spreads 5.78 4.40 3.44

14.54 12.54 10.34
mean comparison estimates 2.00 3.99 7.31

4.03 6.41 9.89
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Both approximate the stock price process with the help of normally distributed

process. However, the two methods do so in different ways. As a result, they

rely on different conditions, provide different results and, more importantly,

work best in different scenarios.

The next example is designed to demonstrate some of those differences. It

is build for a stock price model that works quite well with one method, but

not very well with the other.

Example 4. Let the stock price process satisfy

dSt = 0.15Stdt+ 0.25St(2− 1.05−St)dWt

S0 = 30.

Estimating this process with the method of transformations, derived in

4.4.1 would be very difficult. It would require solving a differential equation

y′ = 0.25y(2− 1.05−y),

which can only be done numerically. Using this estimate in applications would

in turn mean a sequence of numerical procedures.

At the same time the method of substitution as in 4.4.2 can be used to

build a simple estimate. Using proposition 3, g(x)/x = 0.25(2− 1.05−x) is an

increasing function. Therefore a lower estimate for the distribution of St can

be constructed if the parameter a is chosen as

a = sup
x≥0

2f(x)xg2(z)− g2(z)(g2(x)z2 − g2(z)x2)/(2z2)

g2(x)z2 + g2(z)x2
=

= −0.03125(2− 1.05−z)2 + sup
x≥0

0.5 + 0.0625(2− 1.05−z)2

1 + (2− 1.05−x)2(2− 1.05−z)−2
=

= −0.03125(2− 1.05−z)2 +
0.5 + 0.0625(2− 1.05−z)2

1 + (2− 1.05−z)−2
.

83



The distribution of St can be estimated by

P(ST ≤ z) ≥ 1− Φ(
ln(S0/z) + (a− 0.03125(2− 1.05−z)2)T

0.25(2− 1.05−z)
√
T

) = F (z, T ). (61)

As in example 3, this estimate can be used for approximate pricing of Euro-

pean options. Another application of distribution estimation is risk measures.

One can estimate Value at Risk for St. Indeed, a 5% VaR for S1 is defined

as

{z : P(S1 ≤ z) = 0.05}

hence

{z : P(S1 ≤ z) = 0.05} ≤ {z : F (z, 1) = 0.05}.

The estimate is obtained by solving F (z, 1) = 0.05 numerically to yield

V aR5%(S1) ≤ 18.47.

Another numerical procedure suggests that the exact value of V aR5%(S1)

is 14.8 which demonstrates a decent precision of the obtained estimate.

End of example.
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4.5 Other applications

4.5.1 Multidimensional processes comparison

The purpose of this example is to demonstrate on a particular process the

mechanics of the multidimensional comparison theorem. The multidimensional

case was studied separately and it is therefore important to devote at least one

specific example of its applications.

Consider a 2-dimensional process (Xt, Yt) which satisfies a system of SDEs:

dXt =
Xt(1−Xt)

Yt(Xt + Yt)
dt+ 2XtdWt

dYt = Xtdt+ 2YtdWt

(X0, Y0) = (2, 2).

Assuming both Xt and Yt are non-negative, an upper estimate for this

2-dimensional process will be provided by a pair (At, Bt) defined by

dAt = − A3
t

AtBt +B2
t

dt+ 2AtdWt

dBt =
AtBt

Bt + At
dt+ 2BtdWt

(A0, B0) = (2, 2).

The first claim of this example is that for any t the following holds

Xt ≥ At

Yt ≥ Bt

with probability 1.

According to the multidimensional comparison theorem it is necessary to

show that
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Xt(1−Xt)

Yt(Xt + Yt)
≥ − A3

t

AtBt +B2
t

whenever At = Xt and Yt ≥ Bt, and

Xt ≥
AtBt

Bt + At

whenever At ≤ Xt and Yt = Bt.

First notice that − a3

b(a+b)
is an increasing function with respect to b and

− a3

b(a+ b)
≤ − a3

y(a+ y)
when y ≥ b.

The knowledge of relationship between Bt and Yt is important at this stage,

demonstrating that 2-dimensional processes can be compared using multidi-

mensional theorem only.

The first claim then follows from a simple inequality

−x3 ≤ x(1− x)

for any non-negative x.

Similarly for the second claim start with the fact that ab
b+a

is increasing in

a and

ab

b+ a
≤ xb

b+ x
when x ≥ a.

The second inequality in this chain is

xy

y + x
≤ x

for non-negative x.

The system
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dAt = − A3
t

AtBt +B2
t

dt+ 2AtdWt

dBt =
AtBt

Bt + At
dt+ 2BtdWt

(A0, B0) = (2, 2)

has an advantage over the original one in that it can be solved explicitly to

At =
t+ 2

t+ 1
exp[2Wt − t]

Bt = (t+ 2) exp[2Wt − t].
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4.5.2 Application to theoretical properties studies

Another area where comparison of stochastic processes can be used is mod-

elling. With its help one can design a several asset model with specific rela-

tionships between prices. The simplest example is the required non-negativity

of stock prices. While this particular feature may be easily imposed, it is not

clear how to ensure more complicated conditions are satisfied. The next two

examples are derived to demonstrate the advantages provided by comparison

theorems in this respect.

Example 5. Suppose that a model with two processes Xt and Yt needs to be

derived such that X2
t +Y 2

t ≤ 1 (a.s.) for any time t. Let X and Y be solutions

of

dXt = f1(Xt, Yt)dt+ g1(Xt)dWt

dYt = f2(Xt, Yt)dt+ g2(Yt)dWt.

Applying the comparison theorem with F (x, y) = x2 + y2− 1 results in the

following condition

2(x2 + y2 − 1)(2xf1(x, y) + 2yf2(x, y)) + (2xg1(x) + 2yg2(y))2 +

+2(x2 + y2 − 1)(g2
1(x) + g2

2(y)) ≤ C(x2 + y2 − 1)2,

for constant C whenever 1 ≤ x2 + y2 ≤ 1 + δ for some positive δ.

The first step in finding appropriate f1, f2, g1 and g2 is to look at the

necessary condition for the quadratic form: if x2 + y2 = 1 then the above

inequality becomes

4(xg1(x) + yg2(y))2 ≤ 0,

meaning that xg1(x) + yg2(y) should be equal to 0 whenever x2 + y2 = 1. One

way to achieve that is to make g(x) = x(1− x2) = −g2(x).

With this particular choice of diffusion coefficients the term xg1(x)+yg2(y)

can be simplified to (x2 + y2 − 1)(y2 − x2)
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The main inequality now becomes

2(x2 + y2 − 1)(2xf1(x, y) + 2yf2(x, y) + x2(1− x2)2 + y2(1− y2)2) +

+4(x2 + y2 − 1)2(y2 − x2)2 ≤ C(x2 + y2 − 1)2.

Dividing by (x2 + y2 − 1) and letting x2 + y2 approach 1 yields:

2xf1(x, y) + 2yf2(x, y) + x2y4 + x4y2 ≤ 0

whenever x2 + y2 = 1. This can be simplified further to

2xf1(x, y) + 2yf2(x, y) + x2y2 ≤ 0.

The above inequality holds when f1(x, y) = −xy2/4 and f2(x, y) = −x2y/4.

With this choice of drift coefficients the main inequality is

2(x2 + y2 − 1)(−x2y2 + x2(1− x2)2 + y2(1− y2)2) +

+4(x2 + y2 − 1)2(y2 − x2)2 ≤ C(x2 + y2 − 1)2,

which can be simplified to

2(x2 + y2 − 1)2[3x4 − 5x2y2 − x2 − y2 + 3y4 + 4(y2 − x2)2] ≤ C(x2 + y2 − 1)2.

The expression in the square brackets is clearly bounded if x2 + y2 ≤ 1 + δ,

therefore the comparison theorem holds and X2
t + Y 2

t ≤ 1 (a.s.) when the

initial conditions satisfy the same inequality.

End of example.

The next example deals with a more common problem in finance which

is bid-ask spread modelling. A typical approach in this setting would be to

consider either constant or proportional spread. The proposed model is rather

simple and, at the same time, allows for a stochastic spread.

Example 6. Bid-Ask spread
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Consider a market with transaction costs where bid and ask prices are

described by:

dSat = (aSat + bSbt + α)dt+ σSat dWt

dSbt = (cSat + dSbt + α)dt+ σSbtdWt.

It is quite easy to show that the necessary condition Sat ≥ Sbt will hold if

a + b ≥ c + d. The above inequality will hold if for some constant K and all

x ≥ y

2(x− y)(cx+ dy − ax− by) + σ2(x− y)2 ≤ K(x− y)2.

Let K = c− a. Then for d− b ≤ −K1 and, since x and y are non-negative,

(c− a)x+ (d− b)y ≤ −K1y +K1x = K1(x− y).

Multiplying by 2(x− y) and adding σ2(x− y)2 to both sides one gets:

2(x− y)((c− a)x+ (d− b)y) + σ2(x− y)2 ≤ (2K1 + σ2)(x− y)2

and making K = 2K1 + σ2 the desired inequality is obtained. The same

technique can be used to show that if Sa0 = Sb0 and a+ b = c+ d then for any

t Sat = Sbt (a.s.).

End of example.

When dealing with incomplete markets there exists more than one mar-

tingale measure and (generally) more than one arbitrage-free option price.

Dependence of price on a particular choice of martingale measure is the ques-

tion that can be studied. As a demonstration one can cite the work [19], where

jump-diffusion model is studied along with different martingale measures, such

as minimal entropy measure and others, showing what measures produce the

smallest and the highest option prices. This theoretical result is derived solely

from models properties and does not rely on any computations. The idea of
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using theoretical properties of the model to establish comparisons between op-

tion prices under different measures can also be found in [20] for stochastic

volatility models.

Example 7. Option on a non-traded asset

Consider a market with two assets:

dXt = αtdt+ β(t,Xt)dW
1
t

dSt = St(µdt+ σ1dW
1
t + σ2dW

2
t )

of which only St is traded, and an option f(XT ). Such a market is incomplete,

because there is only one equation identifying two parameters of a martingale

measure (Xt is not traded and so does not have to be a martingale).

One way to look at pricing such an option is to add a second traded asset

to make the market complete. Different assets, however, will yield different

martingale measures and different option prices.

More precisely, consider a market completion:

dS̄t = S̄t(µ̄dt+ σ̄1dW
1
t + σ̄2dW

2
t )

The unique martingale measure P̄ is defined by:

dW̄ 1 = dW 1 + γ1dt

dW̄ 2 = dW 2 + γ2dt

σ1γ1 + σ2γ2 + µ = r

σ̄1γ1 + σ̄2γ2 + µ̄ = r,

from where: γ1 = (r−µ)σ̄2−(r−µ̄)σ2
σ1σ̄2−σ2σ̄1

Under this measure the dynamics of Xt can be expressed as:

dXt = (αt − γ1β(t,Xt))dt+ β(t,Xt)dW̄
1
t .

One can see that changing martingale measures (or additional assets) is

equivalent to changing the drift of the main process Xt. Provided β(t, x) > 0
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one can apply the comparison theorem to processes

dX1
t = (αt − γβ(t,X1

t ))dt+ β(t,X1
t )dW̄ 1

t

and

dX2
t = (αt − γ′β(t,X2

t ))dt+ β(t,X2
t )dW̄ 1

t

and see, that γ < γ′ implies X1
t ≥ X2

t .

But the distribution of Xt coincides with that of X1
t (or X2

t ) if γ1 = γ (or

γ1 = γ′ respectively). Therefore decreasing γ1 is equivalent to increasing the

option’s price (for an increasing pay-off function).

End of example.
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[12] Doléans-Dade C.: On the Existence and Unicity of Solutions of

Stochastic Integral Equations. Zeitschrift für Wahrscheinlichkeitstheorie

und verwandte Gebiete, 36, 93-101 (1976)

[13] Gal’chuk L.: Existence and uniqueness of a solution for stochastic equa-

tions with respect to semimartingales. Theory Probability and Applications,

23(4), 751-763 (1979)

[14] Gal’chuk L.I.: A Comparison Theorem for Stochastic Equations with

Integral with Respect to Martingales and Random Measures. Theory of

Probability and Applications, 27(3), 450-460 (1982)

[15] Gal’chuk, L.I., Davis M.H.A.: A Note on a Comparison Theorem for

Equations with Different Diffusions. Stochastics, 6(2), 147-149, (1982)

[16] Geiß C., Manthey R.: Comparison Theorems for Stochastic Differen-

tial Equations in Finite and Infinite Dimensions. Stochastic Processes and

their Applications, 53, 23-35 (1994)
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