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Abstract

Mantle reflectivity structure provides critical information on the temperature and

composition of the mantle. So far, these structures are obtained by independent

analyses of amplitudes and timing information of reflected and converted seismic

phases at mantle discontinuities. These approaches are limited due to their inherent

trade-off between velocity and gradient zone depth. This thesis aims to provide high

resolution, novel imaging methods based on a nonlinear inversion method and wave

spectral characteristics. Substantially improved data constrains, combined with

increased imaging resolution and accuracy from this thesis, offer new insights into the

process and effects of subduction (both present and past) on mantle stratification,

fluid content and magmatism along the major convergent margins.

We explore the regional variations of the 410 km and 660 km discontinuities

by careful analyses of the underside reflected S -wave energy (SS precursors) from

mantle interfaces using nonlinear, simultaneous inversions of shear velocity and dis-

continuity topography. We find that the 410 km and 660 km discontinuity depths

are strongly anti-correlated if the dipping angles of the non-vertical structures were

taken into account. Beneath the volcanic centers in Northeast China, our simulta-

neous solutions provide compelling evidence for the source of deep-rooted mantle

melting in association with the dehydration process of the stagnant Pacific slab.

An independent study using Singular Spectrum Analysis (SSA) for random noise

removal and reconstruction of missing traces shows a significant enhancement of sig-
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nals associated with mantle conversions beneath southwestern Canada. In addition

to strong conversions from the transition zone phase boundaries, strong signals from

the mid-transition zone reflectors can also be identified.

Finally, our results from pre-stack depth migration of precursory arrivals reveal

small-sale variations (<500 km) on the discontinuity topography, due to the focus-

ing of the diffracted energy to its true position. In Southeast Asia, the discontinuity

depth measurements indicate maximum undulations of ± 40 km on both transition

zone discontinuities along the Sunda and Banda arcs. The correlation between the

discontinuity depths and previously reported seismic velocities suggests that the up-

per mantle phase boundaries are thermally, rather than compositionally, controlled.
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Chapter 1

Introduction

The upper mantle transition zone (MTZ) plays an important role in the style of

mantle circulation and mineralogy (Ringwood 1975, Anderson 1989, Bina & Helffrich

1994). The MTZ is bounded by major seismic discontinuities near 410 km and

660 km depths (for short, the 410 and 660, respectively), which are characterized

by sharp changes in elastic parameters in global reference models (e.g., PREM by

Dziewonski & Anderson (1981) and IASP91 by Kennett & Engdahl (1991)). The

impedance (i.e., the product of seismic velocity and density) contrasts across these

seismic discontinuities are interpreted to result from mineralogical phase changes

or variation in chemical composition in the upper mantle (Ringwood 1975, Ito &

Takahashi 1989).

High-pressure anvil experiments suggest that the MTZ discontinuities are as-

sociated with solid-state phase transformations of olivine to its higher pressure

polymorphs (Akaogi et al. 1989, Ita & Stixrude 1992). For an olivine-rich upper

mantle (where olivine comprises greater that 40% of the volume fraction, Figure

1.1a), exothermic phase transition from olivine to wadsleyite and endothermic dis-

sociation of ringwoodite to perovskite and magnesiowustite are generally attributed

to the 410 and 660, respectively (Duffy & Anderson 1989, Katsura & Ito 1989).

Pioneering studies of mineral physics estimate an average pressure/temperature of
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13 GPa/1400 K and 24 GPa/1900 K for the olivine phase changes at the 410 (the

former) and 660 (the latter) (Katsura & Ito 1989, Akaogi et al. 2007). These two

mineralogical phase boundaries exhibit opposite Clapeyron slopes (Akaogi et al.

1989, Weidner & Wang 1998), which would result in a narrow MTZ in hot (i.e.,

mantle upwelling) and a thicker MTZ in cold (i.e., subduction zone) regions (Figure

1.1b). There are other controversial mantle discontinuities, one of which resides from

500 km to 560 km depths. The presence of this interface was supported by long-

period data (Shearer 1990, 1991, Revenaugh & Jordan 1991, Flanagan & Shearer

1998, Gu et al. 2003, Deuss 2009), which have been less convincing. In mineral

physics, a weak reflector could be caused by phase transformation from wadsleyite

to ringwoodite (Bina 2003) under the pressure-temperature condition at nearly 520

km depth (also known as the 520 km discontinuity, called the 520, hereafter). The

global existence of the 520 is highly variable and its observations are mostly limited

to oceanic regions (Gu et al. 1998, Deuss & Woodhouse 2001). The characteristics of

these boundaries, such as their topographies or changes in elastic parameters across

them, are effective barometers of local temperature and/or chemical composition.

The connection between mantle temperature, mineralogy and seismic observa-

tions are far from simple, however. Although the upper mantle discontinuities are

attributed to the olivine phase transitions, the structure within the MTZ can be

affected by several other factors such as water and Fe contents and contribution

from the pyroxene components of the upper mantle (Ita & Stixrude 1992, Agee

1998, Weidner & Wang 2000). For instance, increasing Fe content would reduce the

sharpness of the MTZ phase boundaries, thus resulting in weak impedance contrasts

across both the 410 and 660 (Akaogi et al. 2007, Deon et al. 2011, Gu et al. 2012).

In comparison with the upper mantle, the MTZ minerals have higher water sol-

ubility and are capable of storing up to 3 wt% water (Inoue et al. 1995, Ohtani
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et al. 2004, Bolfan-Casanova 2005). The presence of water in the MTZ, potentially

carried by the subducting oceanic lithosphere (Bercovici & Karato 2003), can in-

crease the MTZ thickness and significantly reduce the reflection amplitudes from

the seismic discontinuities (Ohtani et al. 2004, Fukao et al. 2009). The origin of the

intraplate magmatism has also been linked to the deep dehydration of hydrous min-

erals in subducting slabs (Zhao & Tian 2013), as water can induce partial melting

and possibly form a thin layer of low velocity zone (melt) atop the 410 (Bercovici &

Karato 2003, Karato et al. 2006). This has been clearly identified near the subduc-

tion zones, though its presence has been suggested around the globe (Revenaugh &

Sipkin 1994a, Vinnik & Farra 2002, Bercovici & Karato 2003, Fee & Dueker 2004,

Courtier & Revenaugh 2006, Schmerr & Garnero 2007).

The contribution from the pyroxene components of the upper mantle is another

major complication in the interpretation of the topography of the MTZ disconti-

nuities. At higher temperatures, the phase transition from the majorite garnet to

perovskite becomes dominant at the base of the MTZ (Ita & Stixrude 1992, Weid-

ner & Wang 2000), which can depress the 660 (Deuss 2007, Cao et al. 2011). This

observation contradicts the expected effect of temperature, tending to elevate the

660, and may contribute to the reported decorrelation (Flanagan & Shearer 1998,

Gu et al. 1998), rather than anti-correlation (Revenaugh & Jordan 1991, Gossler

& Kind 1996, Gu et al. 2003, Li & Yuan 2003), between the 410 and 660 depths.

The post-garnet phase transitions could also contribute to the complexity of seismic

observations beneath the subduction zones (Deuss & Woodhouse 2002, Ai & Zheng

2003, Tibi et al. 2007, Gu et al. 2012), where a deeper reflector (>700 km) has

been reported in association with the phase transition from ilmenite to perovskite

(Vacher et al. 1998, Akaogi et al. 2002).

In the past three decades, a wide range of seismological observations has been
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utilized to investigate the existence and properties of the 410 and 660 km discontinu-

ities (Revenaugh & Jordan 1991, Shearer & Masters 1992, Shearer 1993, Revenaugh

& Sipkin 1994b, Flanagan & Shearer 1998, Gu et al. 1998, 2003, Lebedev et al. 2003,

Chambers et al. 2005, Lawrence & Shearer 2006a, 2008, Tauzin et al. 2008, Deuss

2009). These seismic arrivals can be categorized into regional and global phases.

The regional phases, such as triplications (Helmberger & Wiggins 1971, Wang et al.

2008) and mantle conversions (Rondenay 2009, Liu et al. 2015, Gu et al. 2015),

are usually studied at shorter periods (<15 s), which provide higher lateral resolu-

tion and reveal the finer-scale thermal/chemical heterogeneities on the order of few

hundred kilometers. The converted phases (also known as receiver functions) have

been widely used to investigate the mantle stratification beneath the continents (Li

et al. 1998, Farra & Vinnik 2000, Li et al. 2002, Schaeffer & Bostock 2010) and sub-

duction zones (Li et al. 2000, Kind et al. 2002, Ai & Zheng 2003). However, these

observations are limited to certain regions dependent on the distributions of sources

and receivers. On the other hand, global phases (such as SS precursors and ScS

reverberations) are less restrictive (path-dependent) and, thus, more suitable for

investigations away from the subduction zones (Revenaugh & Jordan 1991, Shearer

& Masters 1992, Deuss 2009). Two prominent examples of these phases are the SS

and PP precursors, secondary specular reflections off the mantle interfaces, which

are sensitive to the mantle structure half-way between the sources and receivers.

However, due to the longer-period nature (>25 s) of the precursors, their measure-

ments have a lateral resolution of that of their effective Fresnel zone (i.e., on the

scale of few thousand kilometers) (Shearer 1993, Rost & Thomas 2009).

A robust imaging technique must produce an accurate model of the reflectiv-

ity structure. Unfortunately, studies of the MTZ discontinuities mostly rely on the

travel times of the secondary arrivals, and therefore, much of the information em-
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bedded in the waveform is conventionally discarded. The improvement in imaging

method is crucial for the understanding of weak reflections/conversions in associa-

tion with the mid-transition zone reflectors, particularly when data coverage is less

than ideal.

1.1 Thesis Outline

In this thesis, we employ different methods to analyze the waveforms of SS precur-

sors and P -to-S converted waves and examine the characteristics of MTZ disconti-

nuities in 1) northwestern Pacific subduction zones, 2) southwestern Canada, and

3) Southeast Asia.

In Chapter 2, we quantitatively investigate the timing and amplitude informa-

tion of a global data-set of SS precursors adequately sampling the northwestern

Pacific region. We model the full waveform of SS precursors using the Genetic Al-

gorithm (GA) (Stoffa & Sen 1991), and properly take the compromise between the

shear wave velocity variations and discontinuity depths into our consideration. By

using GA we can produce a suit of all possible solutions that are consistent with our

observations from precursory waveforms. The purpose of this study is to explore

the fate of the subducted Pacific slab and investigate the possible link between the

intraplate volcanism in Northeast China and subduction processes. Our results pro-

vide compelling evidence for the source of deep-rooted mantle melting in association

with the horizontally deflected, stagnant, Pacific slab. This work has been published

in Gondwana Research, vol. 40, p. 77-90 under Dokht, Gu and Sacchi (2016).

In Chapter 3, we explore another new novel imaging method that bridges the gap

between the exploration and global seismology. Furthermore, accurate assessment

of mantle reflectivity structure requires a combination of imaging techniques across
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scale. This is particularly true in the case of incomplete date coverage, high noise

levels and interfering seismic phases, especially in tectonically complex regions such

as subduction zones and margins.

To overcome these challenges, we apply Singular Spectrum Analysis (SSA) to

reduce random noise, reconstruct missing data and enhance the robustness of P -to-S

conversions and SS precursors from the MTZ discontinuities. This method performs

a rank reduction using singular value decomposition (SVD) by taking advantage of

the predictability of time series in the frequency-space domain. We apply SSA to

seismological observations of the mantle interfaces from the northwestern Pacific

subduction zones and Western Canada Sedimentary Basin. The SSA enhanced re-

flectivity maps show a greater resolution, which is attributed to the suppression

of incoherent noise through rank reduction and the emphasis of principle singular

values. The improvements relative to conventional approaches (e.g., normal averag-

ing procedure) are most significant in under-sampled regions. This work has been

published in Geophysical Journal International, ggw473. doi: 10.1093/gji/ggw473

under Dokht, Gu and Sacchi (2016).

The waveforms of SS precursors are usually sorted into the common midpoint

(CMP) areas and stacked, which assumes there is no variation in the discontinuity

depth over the averaging area, thereby resulting in over-smoothing for large stacking

bins. The resolution of mantle imaging can be further improved by considering scat-

tering and diffraction from the finer-scale depth anomalies. In Chapter 4 we expand

our SS precursor coverage to Southeast (SE) Asia to sample the MTZ beneath the

Sunda arc, a tectonically complex region where the unimpeded, near vertical pene-

tration of the Indo-Australian slab into the lower mantle has been reported (Fukao &

Obayashi 2013, Hall & Spakman 2015). To explore the morphology of the subduct-

ing slab and its effect on the topography of the discontinuities, we adopt a pre-stack
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depth migration of SS precursors which can effectively relocate the diffractions from

point-scatterers to their true location and improve the resolution of SS precursors

to approximately 500 km laterally. This chapter will be submitted to the Journal

of Geophysical Research prior to, or soon after, the thesis defense.

In Chapter 5, we will summarize the key results obtained in this thesis and dis-

cuss the potential future works.
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Chapter 2

Waveform inversion of SS
precursors: An investigation of
the northwestern Pacific
subduction zones and intraplate
volcanoes in China
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2.1 Introduction

Intraplate volcanic activities have been well documented in both continental and

oceanic regions at distances of hundreds to thousands of kilometers away from plate

boundary zones. The origin and mechanism of intraplate volcanism vary broadly

(Niu 2005, Zhao 2007, Tang et al. 2014) and often require the presence of deep man-

tle plumes (Campbell 2007, Chen & Tseng 2007, Zhao 2007). An ideal laboratory

for the study of intraplate volcanism is northeastern (NE) Asia, where Cenozoic

magmatic centers are densely distributed along the north-south oriented Changbai

Mountain range and Wudalianchi volcanic field. The former is a stratovolcano lo-

cated approximately 1200 km west of the Japan trench, while the latter consists

of cinder volcanoes covering an area of 500 km2 toward the north. The origin of

these volcanic fields has been linked to mantle plumes as well as subduction-related

back-arc spreading and thinning of the lithosphere (Basu et al. 1991, Niu 2005),

though compatible helium isotopic compositions between the Cenozoic basalts from

the same region and mid-ocean ridge basalt favor an upper mantle origin (Chen &

Tseng 2007). Further insights were provided by seismic tomography where a hori-

zontally deflected and stagnant Pacific plate at the base of the upper mantle could

play a key role in melt generation (Gorbatov & Kennett 2003, Zhao et al. 2004,

Obayashi et al. 2006, Lebedev & van der Hilst 2008, Li & van der Hilst 2010).

Models of seismic velocities are complemented by observations of mantle transi-

tion zone (MTZ) discontinuities. For the upper mantle assemblage of olivine compo-

sition, phase transitions from olivine to wadsleyite and ringwoodite dissociation are

widely accepted origins of the 410 km discontinuity (from here on, 410) and 660 km

discontinuity (from here on, 660), respectively, at the top and bottom of the MTZ

(Anderson 1967, Ito & Takahashi 1989). These two mineralogical phase boundaries

exhibit opposite Clapeyron slopes (Navrotsky 1980, Ito & Takahashi 1989, Katsura
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& Ito 1989, Weidner & Wang 1998), and their sensitivities to temperature and com-

position have been frequently explored in mantle seismic imaging (Shearer 1993,

Gu et al. 1998, Gu & Dziewonski 2002, Lawrence & Shearer 2006b, Deuss 2009).

Based on mantle reflections (Heit et al. 2010, Gu et al. 2012) and conversions (Li

& Yuan 2003, Liu et al. 2015), a depression in excess of 30 km has been observed

at the base of the MTZ beneath the intraplate volcanic fields in NE China. This

topographic anomaly coincides with a distinctive low velocity asthenosphere, which

has been interpreted as the potential source of melting beneath the volcanic centers

(Zhao et al. 2004, Lei & Zhao 2005, Niu 2005, Li & van der Hilst 2010, Tang et al.

2014).

A known source of error in the independent analyses of seismic velocity and

discontinuity topography is the trade-off between them (Flanagan & Shearer 1998,

Gu & Dziewonski 2002, Zhao et al. 2004, Obayashi et al. 2006, Li et al. 2008, Li &

van der Hilst 2010). Time corrections are typically adopted to minimize the excess

topography caused by heterogeneous mantle structures, whereas models of seismic

velocities are mostly derived under the assumption of unperturbed mantle interfa-

cial depths. This trade-off was reduced by Gu et al. (2003) and Lawrence & Shearer

(2006b) through joint inversions of seismic velocity and discontinuity topography,

though much of the information embedded in the waveforms of the secondary reflec-

tions remained underutilized. In this study we characterize the upper mantle and

MTZ beneath the northwestern Pacific region(Figure 2.1) using waveform inversions

of stacked SS precursors (Figure 2.1d). Our full waveform nonlinear inversion ap-

proach recovers a simultaneous solution for the travel times of SS precursors, which

are sensitive to mantle temperatures surrounding olivine phase boundaries (Ohtani

et al. 2004, Deuss 2009, Lessing et al. 2014), and the impedance contrasts imprinted

onto the SS precursor amplitudes (Shearer 1991, Chambers et al. 2005, Gu & Sacchi
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2009, Lessing et al. 2015). We will demonstrate that the resulting dense precursor

data-set alone is sufficient to resolve major upper mantle seismic anomalies in the

northwestern Pacific subduction system.

2.2 Data and Method

We utilize a global data-set of broadband and long-period seismograms, recorded

between 2006 and 2014, from the Incorporated Research Institutions for Seismology

(IRIS). The midpoints of the source-receiver pairs densely sample the structure

beneath NE China and the northwestern Pacific subduction zones. We restricted

the maximum depth of earthquakes to 75 km to mitigate the interference of depth

phases (Schmerr & Garnero 2006, An et al. 2007) and adopt a minimum magnitude

(Mw) cutoff of 5.5 to ensure sufficient reflection amplitudes. We further constrain the

distance from 100° to 160° to minimize the interferences from ScSScS (Shearer 1993,

Schmerr & Garnero 2006) and topside reflections from upper mantle discontinuities.

After deconvolving the instrument responses, we apply a Butterworth bandpass filter

with corner periods at 15 s and 75 s to the transverse component seismograms. We

eliminate all traces with signal-to-noise ratios (SNR) less than 4.0 according to the

definition of Gu et al. (2012), which is more restrictive than the majority of earlier

studies due to a substantially larger data volume. The filtered seismograms are then

inspected visually to eliminate duplicate records or overlapping events (Schmerr &

Garnero 2006), and a polarity reversal is performed if necessary. This refined data-

set contains 7868 waveforms from 1301 events. The densities of earthquakes and

stations are particularly high in the southern and northern hemispheres, respectively

(see Figure 2.1a).

The amplitudes of SS precursors, which are comparable to those of noise, are
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greatly enhanced through stacking after aligning the waveforms on the first major

swing of SS and normalizing each seismogram with respect to the peak amplitude

of SS. We then deconvolved SS from the transverse component seismograms to min-

imize the source effects. To correct for the move-out we apply a constant time shift

to each waveform based on the differential time between the predicted SS -S410S

(Dziewonski & Anderson 1981) and the reference time for a source-receiver distance

of 130° (Gu & Sacchi 2009). The move-out corrected seismograms are then time

shifted to account for variations in crustal thickness and surface topography using

CRUST1.0 (Laske et al. 2013) and ETOPO1 (Amante & Eakins 2009), respectively.

Finally, the time-shifted seismograms are sorted into common midpoint (CMP) gath-

ers (Shearer 1991, Gu et al. 2012) along three parallel great-circle transects (profiles

A to C) with 3° inline spacing (see Figure 2.1b). Circular gathers with a radius of

2° (approximately 15% overlap between two adjacent averaging areas in the inline

direction) are adopted to prevent over-smoothing while ensuring a sufficient number

of traces in each gather for noise suppression. We refer to these circular data gathers

either as “caps” or “bins” for the remainder of this thesis. The stacked seismogram

in each cap is calculated as the weighted sum of the time-corrected seismograms

(Gu & Sacchi 2009). It is worth noting that the majority of the source and receiver

locations do not overlap with those of the topographic anomalies, e.g. the Rocky

Mountains, Alps and Apennines, that may cause confounding observations within

the MTZ (Figure 2.1c). Moreover, while the azimuthal distribution is dominated

by two perpendicular orientations (NE, NW), the crossing ray segments effectively

average out the path heterogeneity and enable a reasonable recovery of the velocity

and discontinuity depth in most bins (Zheng & Romanowicz 2012).
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2.2.1 Nonlinear Waveform Inversion

A potential pitfall during an SS precursor analysis is the velocity- discontinuity

depth trade-off, as the timing of the secondary reflections is corrected based on rel-

atively smooth shear velocity models obtained from earlier studies of body and/or

surface waves. An improvement was proposed by jointly inverting for velocity and

discontinuity depth using travel times (Gu et al. 2003) and multiple waveforms

(Lawrence & Shearer 2006b). In this study we quantitatively investigate the wave-

form information of an SS precursor data-set sampling the northwestern Pacific

region. We model the full waveforms of SS precursors using the Genetic Algorithm

(GA), an effective nonlinear inversion technique (Stoffa & Sen 1991, Haupt & Haupt

2004). A similar waveform inversion approach was recently utilized to analyze P -

to-S converted phases (Chen & Sacchi 2015) for imaging the continental crust.

As a proof of concept we first apply nonlinear inversions to a synthetic seis-

mogram computed using GEMINI 2.2 (Friederich & Dalkolmo 1995). The Green's

function calculation assumes a spherically symmetric Earth model and uses a fre-

quency domain method to numerically solve a system of ordinary first-order dif-

ferential equations (Friederich & Dalkolmo 1995, Friederich 1999, Fichtner & Igel

2008). We then utilize GA, a global optimization approach simulating the process

of natural evolution (Haupt & Haupt 2004), to explore solutions of mantle velocity

and discontinuity depths that match the simulated waveform with 10% Gaussian

noise. This binary-coded algorithm defines variables as indices to a regular discrete

search space. Each model parameter (discontinuity depth and velocity perturba-

tions) is represented by a binary string, while the inversion attempts to minimize

the following cost function by adjusting the model parameters:

J = ||W(dobs − d(Im̂))||22 + µ||DIm̂||22. (2.1)
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The symbol I is the interpolation operator sampling the model m̂, consisting of shear

wave velocities at discontinuities, at a constant depth interval and D is a discrete

approximation to the first-order derivative. The symbols dobs and d(Im̂) represent

the observed and synthetic seismograms, respectively, and W is the weighting ma-

trix. Finally, µ is a regularization parameter that controls the trade-off between the

first and second terms (i.e., misfit and model norm, respectively); it is determined

through trial and error. Due to the interference of crustal phases and the side-lobes

of the main SS arrival, we mainly target the waveforms corresponding to the struc-

ture below 200 km. Our model solution consists of 6 layers, ranging from 220 km to

720 km along the depth axis, and the average spacing is 83.3 km. The S velocity is

allowed to vary by ±4% from PREM, which is larger than the frequently reported

range below the lithosphere − the primary target of this study (Grand et al. 1997,

Mégnin & Romanowicz 2000, Fukao et al. 2001, Gu & Dziewonski 2002, Gu et al.

2003, Zhao et al. 2004, Obayashi et al. 2006, Li & van der Hilst 2010, Ritsema et al.

2011). Our experiments suggest that an average of 1.5% shear velocity perturbation

in the shallow mantle (above 220 km), which is comparable to the reported value

beneath NE China (see Simmons et al. (2010) and Tang et al. (2014)), can cause a

2 km movement on the MTZ discontinuity depths and a perturbation of 0.01 km/s

(or less) on the MTZ velocity. Neither artifact is significant enough to alter the

main observations of this study.

We fix the ratio between density and shear velocity based on PREM, and the

perturbations in density are continuously updated as shear velocities vary during

the inversions; this is a subjective choice that scales between velocity and density

and is adopted to reduce the computational cost (Marone et al. 2007, Yuan &

Romanowicz 2010, Liu & Gu 2012). In general, the arrival times are highly sensitive

to velocity and discontinuity depth, whereas the amplitude information embedded
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in the waveforms constrains both velocity and density. While density plays a minor

role due to the strong dependence of the objective function on the phase/timing

information, a reasonable input density model (PREM in this study) helps stabilize

the solutions, especially the shear velocities.

Figure 2.2 shows the results of the nonlinear inversion based on the synthetic

data with 10% Gaussian noise. Our input model is modified from PREM, which

consists of a low velocity layer atop the 410 and a high velocity layer at the base of

the MTZ. We allow 120 solutions in each generation to ensure diversity at a man-

ageable computation cost and steer clear of local extrema. The input and recovered

models (see Figure 2.2b) exhibit only minimal deviations, which are mainly asso-

ciated with the discretized, relatively coarse, model space. The evolution history

suggests almost immediate convergence to the final model from an initial suite of

random models (Figure 2.2d).

2.3 Results

2.3.1 SS Precursor Amplitude

Stacks of SS precursor waveforms show robust reflections off the 410 and 660 (S410S

and S660S, respectively) within a laterally varying upper mantle beneath the north-

western Pacific region (Figure 2.3). To evaluate the standard errors and robustness

of the SS precursors, we adopt a bootstrap resampling algorithm (Efron & Tib-

shirani 1991, Shearer 1993, Sacchi 1998, Deuss 2009) that makes automatic mea-

surements from 200 randomly selected subsets of the data. During each trial, the

amplitudes of S410S and S660S are directly determined from the positive peaks

associated with the precursors. The amplitude uncertainties of the secondary ar-

rivals are subsequently estimated from the standard deviation of the bootstrapped
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measurements (Deuss 2009). Overall, the maximum standard error in amplitude is

0.2% based on bootstrap resampling.

We construct interpolated reflectivity maps from the S410S and S660S ampli-

tudes (Figures 2.3a and 2.3b), which are defined as the maximum amplitudes within

a 30 s time windows centered on the PREM predicted arrival times of these phases.

Large-scale low and high reflectivity zones are detected at the top of the MTZ (see

Figure 2.3a). A SW-NE trending high reflectivity zone is present landward from the

Wadati-Benioff zone, extending from the North China Craton to the Wudalianchi

volcanic center and reaching the maximum value of ∼7% (amplitudes are normal-

ized with respect to the SS phase amplitudes) beneath the Changbai hotspot (see

Figure 2.3a). A second reflectivity zone is observed to the ocean-ward side of the

subducting Pacific plate, approximately 500 km away from the Japan trench. The

centers of these two anomalies are approximately 1500 km apart.

Strong S660S reflections are also observed in the vicinity of the Wadati-Benioff

zone (see Figure 2.3b). The largest S660S, which attains ∼8% of the SS amplitude,

is identified within the reported slab contours (Hayes et al. 2012). While some of

the amplitude variations may be affected by the data uncertainties (Figure 2.3c and

2.3d), especially in the southern part of the study region due to low data density,

the largest amplitudes of S410S and S660S are resolved to 95% confidence levels.

In comparison with PREM, which suggests respective reflection amplitudes of

3.9% and 6.1% relative to SS at a source-receiver distance of 130° for S400S and

S670S, the observed values are 1.6-2.3 times higher beneath China (the former)

and the Japan Basin (the latter). Part of the amplitude may be affected by the

differential attenuation (Q factor) between SS and its precursors. However, our ex-

periment, which is based on conservative choices of Q values, suggests a contribution

no greater than 0.15%, well within the measurement uncertainties (see Appendix A).
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2.3.2 Shear Velocity Variation

We perform nonlinear waveform inversions to simultaneously recover the shear wave

velocities and depths of the upper mantle discontinuities. Following the steps of the

iterative forward modeling procedure described in Section 2.2.1, the SS precursor

waveforms are inverted based on 15 generations, each of which contains 120 sim-

ulated waveforms computed based on parallel programming. For consistency, the

synthetic waveforms are filtered between the same corner periods as the observed

data and the source mechanism is removed by isolating and deconvolving SS (Figure

2.4). In general, the waveforms of S410S and S660S are accurately modeled by the

synthetic seismograms, especially in view that 1) PREM contains no velocity and

density jumps at mid MTZ depths (Dziewonski & Anderson 1981), causing slight

mismatches of the waveforms between S410S and S660S, and 2) the expected misfit

between the data and synthetics is nonzero due to the uncertainties (e.g., random

noise and imperfect structural corrections) in precursor amplitude and arrival time.

The 520 km discontinuity (for short, the 520) is locally enhanced within the Wadati-

Benioff zone (Gu et al. 2012), though its lateral variations are complex in all three

cross-sections (see Figure 2.4).

We determine a local 1D velocity model for each cap based on the stacked SS

precursor waveform. A 3D model of the study region is then constructed from

the resultant 1D models using a linear interpolation algorithm. The inverted shear

velocities under NE China and the northwestern Pacific subduction regions (Figure

2.5) highlight the morphology of the Japan-Kuril trench, showing an average velocity

anomaly in excess of 1.5% relative to PREM. This high velocity structure intersects

the base of the upper mantle near the Sea of Japan and extends westward toward

Central Asia. Its presence and the contrasting discontinuity topography of the 410
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(elevated by 10-25 km) and 660 (depressed by 10-27 km) are required to match

the low amplitude precursory arrivals (see Figures 2.3 and 2.4). The presence of a

high velocity anomaly (interpreted to be the cold subducting oceanic lithosphere)

within the MTZ can reduce the impedance contrast across the 660 and produce low

S660S amplitudes (see Figures 2.4 and 2.5). The eastern side of this dipping high

velocity structure shows a distinct low velocity zone, reaching its minimum value

(approximately 1.5% slower than that of PREM) within the MTZ beneath the NE

Honshu arc. The presence of this anomaly is required by a high amplitude, early-

arriving S410S oceanward of the subducting Pacific plate (see Figures 2.3 and 2.4),

which is partially accommodated by a relative depression (∼15 km) of the 410. This

low velocity structure appears to continue to the base of the MTZ under the Japan

and Ryukyu trenches.

The most intriguing low velocity zone is observed in the upper mantle beneath

NE China, potentially extending 1000 km further inland from the eastern end of

the Wudalianchi volcanic belt to the northwestern facade of the Greater Hinggan

Mountains (see Figures 2.5a and 2.5b). The center, and deepest part, of this broad

anomaly resides beneath the Changbai Mountain Range, initiating at shallow depths

and persisting down to a depth of ∼500 km (see Figures 2.5a-c). This low velocity

structure is accompanied by a 5-10 km depression of the 410, which reflects an

increased SS -S410S differential time in this region (see Figure 2.4). The observed

low velocity structure under the Wudalianchi volcanic field is limited to depths

above 350 km, which is significantly shallower in comparison with that beneath the

Changbai hotspot.

Changes in MTZ thickness across the study region, which are calculated from

the inverted discontinuity depths (Figure 2.6a), are consistent with those of Gu

& Dziewonski (2002) using a correlation based method (Figure 2.6b). Both studies
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show increased MTZ thickness north of the Ryukyu trench and beneath the Songliao

Basin, especially in the present study where values exceed the global average of 242

km (Gu et al. 1998, Gu & Dziewonski 2002, Lawrence & Shearer 2006a). The largest

difference, which reflects improvements in methodology and spatial resolution, is

an anomalously thick MTZ in this study beneath NE China due to a 25-30 km

depression of the 660 (see Z1 in Figure 2.6a). This anomaly is consistent with the

recent findings of Liu et al. (2015) based on migrated receiver functions (see the

dashed-line box, Figure 2.6a). To a lesser extent, the MTZ beneath the Ryukyu

trench is approximately 15 km thicker in this study than Gu & Dziewonski (2002),

despite similar shapes and signs (see Z2 in Figure 2.6a).

As will be discussed in Section 2.4, the combination of a depressed and am-

plified 410, a severely deformed 660 and a low velocity asthenosphere beneath the

Changbai-Wudalianchi hotspot has major implications for the intraplate volcanism

in NE China.

2.4 Discussion

2.4.1 General Assessment

This study presents a nonlinear optimization method that accurately determines the

large-scale mantle shear velocity and discontinuity topography based on SS wave-

form information alone. In comparison with a recent study of SS precursors for

the same region by Gu et al. (2012), the current study benefits from denser data

coverage, especially in the northern flank of the study region where data density

increased by ∼50% due to four extra years of recordings. The resolution improved

further from the SS precursor amplitude information, which is essential in resolving

the impedance contrast at major seismic discontinuities, as well as from the reduced
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trade-off between velocity and discontinuity depth. While the scale of the reported

features (>300 km) may be smaller than the nominal resolution (>1200 km), the

use of multiple stations (Rost & Thomas 2009, Schmerr & Thomas 2011) and dense

sampling (Cao et al. 2011, Gu et al. 2012, Zheng & Romanowicz 2012) can signif-

icantly reduce the effective Fresnel zone and smearing along an isochron (Rost &

Thomas 2009, Cao et al. 2010).

The westward dipping high velocity structure beneath the back-arc region (Fig-

ures 2.7a-c), which is consistent with earlier findings from P and S -wave travel time

(van der Hilst et al. 1991, Fukao et al. 1992, Gorbatov & Kennett 2003, Huang &

Zhao 2006, Obayashi et al. 2006, Li & van der Hilst 2010, Zhao et al. 2012) and

waveform (Mégnin & Romanowicz 2000, Friederich 2003) inversions, has been widely

associated with the subducted Pacific lithosphere beneath the Japan and Kuril is-

lands. The general morphologies of the high velocity structures are concordant with

those of Obayashi et al. (2006) (see Figures 2.7d-f), both of which are well supported

by the locations of deep focus earthquakes in the study region.

The fate of the subducted Pacific plate has been a source of considerable debate

(van der Hilst et al. 1993, Grand 2002, Huang & Zhao 2006, Schmerr & Thomas

2011). While relatively unimpeded penetration into the lower mantle has been doc-

umented along the Mariana (Creager & Jordan 1986, Bijwaard et al. 1998, Zhao

et al. 2004, Huang & Zhao 2006, Li et al. 2008) and Kuril (Jordan 1977, Li et al.

2008, Schmerr & Thomas 2011, Gu et al. 2012) islands, substantial deformation and

changes in slab dip have been frequently suggested at the base of the upper mantle

as evidence of slab deflection or bending (Zhao et al. 2004, Fukao et al. 2001, Huang

& Zhao 2006, Gu et al. 2012). Beneath the Sea of Japan, the seismic structure

in the MTZ is dominated by a 1.5-2.0% increase in P velocity (Fukao et al. 1992,

Huang & Zhao 2006, Obayashi et al. 2006), but the deflected slab segment is less
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well imaged by shear velocities across the study region (Gorbatov & Kennett 2003,

Fukao et al. 2009). The result of our waveform inversion of SS precursors provides

further evidence for the slab deflection below the Sea of Japan and stagnation be-

neath eastern China (see Figures 2.7a-c).

2.4.2 MTZ Structure and Dynamics

The simultaneous solutions of velocity and discontinuity depth enable a detailed ex-

amination of the effective mantle temperatures within the MTZ (Schmerr & Garnero

2006). On the global scale, the depths of the 410 and 660 are either uncorrelated

(Flanagan & Shearer 1998, Gu et al. 1998) or slightly anticorrelated (Revenaugh

& Jordan 1991, Gossler & Kind 1996, Gu et al. 2003, Li & Yuan 2003). The lack

of correlation is largely attributable to smaller-scale heterogeneities (Schmandt &

Humphreys 2010), compositional variations (Weidner & Wang 1998, Schmerr & Gar-

nero 2007), or non-vertical structural geometry (Gu et al. 2012). Considerations for

localized dipping thermal-chemical structures are crucial in these correlation anal-

yses, especially in the vicinity of major subduction zones. To properly account for

slab dip, we compute the correlation coefficients between MTZ thickness and the av-

erage MTZ shear velocity for slab dip angles ranging from 15 to 90°. The maximum

correlation coefficient (0.72) from all three profiles is attained at 30°, which is 22%

higher than the uncorrected (90° dip) value (Figure 2.8). This effective slab dip is

in agreement with previously reported values (van der Hilst et al. 1993, Gudmunds-

son & Sambridge 1998, Huang & Zhao 2006, Hayes et al. 2012), which highlights

1) the need to properly consider the inclined slab morphology, and 2) the domi-

nance of thermal, rather than compositional, variations within the MTZ. However,

due to the relative complex morphology, the apparent dip of the slab in Figure 2.8

may not precisely match that of the Wadati-Benioff zone; therefore, it can result in
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marginal uncertainties in our correlation-based dip estimates. A closer examination

of the correlation coefficient at the optimal slab dip (see Figures 2.8c and 2.8d) sug-

gests substantial improvements over the conventional vertical structure assumption

in global analyses (Flanagan & Shearer 1998, Gu et al. 1998, Tauzin et al. 2008,

Houser & Williams 2010). The strength of the correlation (0.72) largely reflects

the severity of thermal perturbations, relative to the ambient mantle, within the

subducting oceanic lithosphere. It is enhanced further by a dipping low velocity

structure east of the Wadati-Benioff zone (see A5 in Figures 2.7a and 2.7b), which

has been previously reported by Obayashi et al. (2006) and Gu et al. (2012) in pos-

sible connection with 1) convective return flow in connection with slab dynamics

(Bercovici & Karato 2003, Ohtani et al. 2004), and 2) partial subduction of a resid-

ual Mesozoic hot thermal plume (Larson 1991, Tatsumi et al. 1998, Honda et al.

2007).

2.4.3 Mantle Beneath the Changbai-Wudalianchi Hotspot

A notable seismic anomaly that reduces the anticorrelation between the depths of

410 and 660 is the low velocity zone beneath the Changbai-Wudalianchi hotspot.

The geometry of this low velocity structure (see A3 and A4 in Figures 2.7b and 2.7c)

is in excellent agreement with those from earlier studies of this proposed back-arc

region (Tatsumi et al. 1990, Lei & Zhao 2005, Huang & Zhao 2006, Li & van der

Hilst 2010, Tang et al. 2014). This anomaly has been linked to the horizontally

deflected Pacific slab and the subsequent upwelling of hot asthenospheric material

(Tatsumi et al. 1990, Li & van der Hilst 2010, Zhao & Liu 2010), though more

recent studies (Tang et al. 2014, Liu et al. 2015) have suggested a slab gap west of

the stagnant slab.

In this study, the depressed 410 and 660 beneath the Changbai and Wudalianchi
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volcanic fields imply discontinuous seismic velocities within the MTZ (see A2 in

Figures 2.7b and 2.7c), above which a low velocity structure (see A3 and A4 in

Figures 2.7b and 2.7c) continues to the shallow mantle. Anomaly A3 appears to

terminate at mid-MTZ depths (∼500 km), which is moderately deeper than the

earlier estimates (Zhao & Ohtani 2009, Li & van der Hilst 2010). Judging from the

MTZ velocity characteristics, the transition from low to high velocity appears to

be gradational rather than abrupt. The presence of the low velocity zone does not

significantly impact the amplitude of the 520, which is diffuse above the stagnant

part of the Pacific slab (see Figures 2.4b and 2.7b).

To examine the robustness and resolution of mantle velocities and discontinuity

depths, we conduct a hypothesis test, a frequently adopted technique for linearized

inversions. In this test we introduce a low velocity structure resembling that beneath

the Changbai hotspot (Figure 2.9). This hypothetical anomaly terminates near 410

km, overlying a high velocity structure similar to the stagnant oceanic lithosphere.

The input depths of the 410 and 660 are both depressed by more than 10 km near the

largest shear velocity perturbations. After the synthetic seismograms are computed

for each cap location based on these input parameters, we add up to 0.2% Gaussian

noise depending on the observed standard errors from bootstrap resampling (Section

2.3.1). The recovered models through the same inversion procedure show two well-

defined seismic velocity anomalies with the same signs and shapes as the inputs (see

Figure 2.9). The maximum amplitudes of the recovered anomalies are about 80%

and 95% of the assumed values of the respective low and high velocities; the recovery

of the latter anomaly is superior due to a larger, more laterally coherent input

structure. The amplitudes near the edges of the major anomalies are preferentially

reduced due to the lateral averaging with a substantially weaker structure to the

west. The depressions of the phase boundaries near the center of the profile are
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recovered to 90-95% relative to the input values. The performance of the inversion

is equally effective in resolving a relatively shallow low velocity zone beneath the

Wudalianchi hotspot. In this case, the inversion recovers over 75% of the maximum

input velocity and discontinuity topography, as well as a minor lateral gradient east

of the volcanic center (see Figure 2.9). Our hypothesis test demonstrates that 1)

a restoring resolution analysis is equally effective in nonlinear inversions as their

linear counterpart, and 2) the morphologies of the low velocity zones beneath the

volcanic centers and the underlying stagnant slab can be sufficiently resolved in our

study region.

To further validate the recovered images from the 1D waveform inversions of SS

precursors (see Figure 2.7), we implement 2D waveform tomography using the same

nonlinear inversion technique (Figure 2.10). The mantle is discretized into cells of

3° (in the horizontal direction) by 50 km (in the vertical direction). To simplify this

problem, we assume known discontinuity depths from the 1D inversions (see Figure

2.7) and only solve for perturbations of shear velocities within each cell; it is worth

noting that we define a finer vertical cell size of 10 km around the discontinuity

depths of 220, 300, 400, 520 and 670 km. In this approach, the travel times of the

precursors and their corresponding reflection coefficients are calculated using the

2D ray tracing method (Lebedev et al. 2003, Zhao et al. 2004, Priestley et al. 2006,

Lawrence & Shearer 2006b). Then, the reflectivity profiles are convolved with the

source time functions extracted from the stacked waveforms (Shearer et al. 1999).

We generate over 2000 solutions at each generation, while 5% of the initial random

solutions are replaced by the shear velocities from GyPSuM (Simmons et al. 2010).

The optimized synthetic waveforms from 2D nonlinear inversions closely match the

observations along profile B (see Figure 2.10b). The velocity model shows a westward

dipping structure similar to that recovered by the 1D waveform inversions, which
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appears to flatten toward NE China. The maximum velocity anomaly of the slab

(1.5%) is comparable to that of the 1D inversion, whereas the low velocity zone above

the 410 (-1.1%) is slightly weaker than the 1D counterpart. Part of the amplitude

difference between the 1D and 2D inversion outcomes could be explained by the

inclusion of a more realistic, low velocity lithosphere in the latter experiment.

Our models consistently suggest a relatively warm mantle in the vicinity of the

410. The observed 5-10 km depression of the 410 beneath the intraplate volcanic

fields in mainland China can be attributed to the response of the olivine to wadsleyite

phase transition, an exothermic reaction with a positive Clapeyron slope of 1.5-4.0

MPaK−1 (Akaogi et al. 1989, Houser & Williams 2010, Lessing et al. 2014), to the

presence of a high temperature anomaly above or across this boundary. By assuming

the temperature dependence of the shear wave velocity (∂lnVs∂T = −7×10−5/K) for a

dry upper mantle (Houser & Williams 2010), an S wave velocity reduction of 1.5%

results in an approximate temperature increase of 215 K relative to the average

value of 1694 K for the olivine phase change (Houser & Williams 2010). The phase

boundary moves toward the higher pressures (by 320-860 MPa) and greater depths,

which are consistent with recent reports of 20-30 km of depression in the same region

(Li et al. 2000, Li & Yuan 2003, Liu et al. 2015). Different mechanisms have been

proposed to explain the origin of a widely distributed low velocity regime in the

upper mantle beneath NE China, most of which are associated with the subducting

Pacific plate. An incomplete list of these mechanisms include 1) partial melting

induced by the deep dehydration of the slab (Zhao & Ohtani 2009), 2) passive

upwelling of asthenospheric material in response to slab accumulation within the

MTZ (Bercovici & Karato 2003, Kuritani et al. 2009, Faccenna et al. 2010), and 3)

mantle upwelling from a slab gap (Tang et al. 2014, Liu et al. 2015), whose lateral

dimension (∼ 200 km) remains beyond the resolution of SS precursors from this
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study.

The first mechanism infers significant amount of water near the 410, while up to

3 wt% water could be present in the MTZ (Bercovici & Karato 2003). A relatively

wet mantle around the 410 would elevate the olivine to wadsleyite phase boundary.

While the extent of the elevation in the presence of water remains questionable (Frost

& Doleǰs 2007, Schmerr & Garnero 2007), an elevated 410 is simply inconsistent

with either the observed depression from this (see Figure 2.7) and earlier studies

(Li & Yuan 2003, Liu et al. 2015), or the reported water content in this region

(Ichiki et al. 2006, Chen & Tseng 2007, Fukao et al. 2009, Ye et al. 2011). In the

case of water saturated mantle, a hydrous melt lens may form atop the 410 and

produce multiple phase transitions. This was reported in South America where a

relatively deep, modest wet to dry wadsleyite reflection was detected at 415 km

(Schmerr & Garnero 2007). Based on numerical experiments from the same study,

the expected amplitude (which increases with water content) is significantly lower

than the predicted value from PREM and far below those of our observations under

the Changbai hotspot.

A favorable solution for the observed 410 amplitude and depth requires a signifi-

cantly increased impedance contrast across a depressed 410, which could be satisfied

by the presence of a melt layer in a relatively dry, warm mantle. Increasing the Mg

content by up to 4% within the melt layer can effectively depress the 410 by approx-

imately 10 km (Fei & Bertka 1999, Schmerr & Garnero 2007), which corroborates

our observations in NE China. Both decompression melting associated with passive

upwelling (Bercovici & Karato 2003, Faccenna et al. 2010) and a significant sub-

slab component from the slab window (Tang et al. 2014) can induce partial melting

atop the 410. This melt layer would depress the 410 phase boundary, enhance

the impedance contrast and substantially increase the S wave reflection amplitude,
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which are all supported by our observations beneath the Changbai hotspot. In-

sufficient resolution around the suggested slab window (see Figures 2.7 and 2.11)

makes it difficult to clearly differentiate between these two candidate mechanisms,

however.

Further inferences could be made regarding the mantle beneath the two volcanic

centers examined in this study. Despite the considerable depth difference between

the Changbai (about 500 km) and Wudalianchi (about 350 km) hotspots, trace

element analyses (Basu et al. 1991, Kuritani et al. 2009) suggest a comagmatic upper

mantle origin with EM1 (Enriched Mantle 1) composition (Jackson & Dasgupta

2008). Hence, it is conceivable that the mantle upwelling beneath the Changbai

hotspot is responsible for the source of partial melt for both volcanic centers in view

of its greater vertical extent and strength (see Figures 2.5a and 2.11). Further work

will be needed to quantify the accuracies of the aforementioned mechanisms and

interpretations.

Finally, increased seismic velocities at the base of the MTZ under NE China

and a deep 660 (>680 km) relative to the regional average of 655-665 km (Shearer

1993, Gu et al. 2003, Houser & Williams 2010) are consistent with the respective

measurements based on analyses of receiver functions (Li et al. 2000, Li & Yuan

2003, Liu et al. 2015) and migration of long period SS precursors (Gu et al. 2012).

A maximum depression of 20-30 km is reported on the 660, possibly in association

with a decrease of 300-400 K in MTZ temperature (Li & Yuan 2003, Ye et al. 2011).

A negative temperature anomaly of ∼300 K and a greater depth of the 660 jointly

suggest increased S wave velocities of ∼2% in the presence of a negative Clapeyron

slope from the post-spinel phase transition (Houser & Williams 2010, Lessing et al.

2014). The low temperature anomaly and locally depressed 660 could be explained

by the existence of water within the MTZ, the amount of which depends on the
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volume entrained within the slab as well as the residence time of the slab (Fukao

et al. 2009). Recent S waveform modeling from NE China detects a 130 km thick

high velocity zone at the base of the MTZ, which may contain up to 0.3 wt% water

based on the estimates from Ye et al. (2011).

2.5 Conclusion

Our study demonstrates that the shear wave velocity and the topography of MTZ

discontinuities beneath NE China and the northwestern Pacific region can be si-

multaneously recovered using the waveforms of SS precursors alone. A statistically

significant positive correlation is observed between MTZ thickness and the average

MTZ velocity along an effective slab dip of ∼30°, which reflects the dominant effect

of thermal heterogeneity in the upper mantle and MTZ. A strong low velocity zone

is found beneath the active volcanoes in NE China, persisting to a depth of ∼500

km, which implies that the Changbai and Wudalianchi hotspots may be fueled by

a hot thermal anomaly from MTZ depths.

Passive upwelling and/or a slab window could be responsible for a relatively

water-poor melt layer atop the 410, which causes 5-10 km depression and substan-

tially enhances the reflection amplitude on the olivine to wadsleyite transition. A

distinctive low velocity structure is also observed east of the Wadati-Benioff zone,

which narrows the MTZ by 30 km relative to its regional average. This low velocity

zone is possibly associated with (i) a fossil superplume (∼140 Ma) or (ii) upwelling

hot mantle material in response to slab-lower mantle interaction. Overall, our find-

ings from nonlinear SS precursor waveform inversions provide a new window into the

effects and fate of the subducting oceanic plate in the northwestern Pacific region.

From a technical stand point, the nonlinear joint inversion technique introduced
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in this study represents a new phase in the retrieval of seismic properties pertaining

to large scale thermal/chemical structures in the mantle. This is not aimed to be

a replacement of the existing travel time and waveform tomographic approaches,

especially in view of the relatively coarse spatial resolution of the SS precursor

data-set, but an improvement that effectively incorporates the amplitudes of the

secondary reflections or conversions from mantle interfaces.

The research described in this Chapter has been published in: Dokht, R. M., Gu,

Y. J., & Sacchi, M. D. (2016), Waveform inversion of SS precursors: An investigation

of the northwestern Pacific subduction zones and intraplate volcanoes in China,

Gondwana Research, 40, 77−90.
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Figure 2.1: (a) Global distribution of the earthquake (red stars) and station (blue
triangles) locations used in this study. (b) Distribution of the SS bouncepoints from
the earthquake-station pairs. The convergent plate boundaries and slab contours
are indicated by the red and blue lines, respectively. The contour lines are taken at
a constant interval of 50 km starting at 100 km depth (Hayes et al. 2012). The SS
precursor waveforms are stacked into 30 bins along three parallel profiles A, B and
C. (c) Path coverage of the SS precursors that are used in the stacking and inversion
procedures. (d) A graphical representation of theoretical ray paths of SS and its
precursors for a source-receiver distance of 130.7 degrees. The left panel shows an
observed seismogram aligned on the maximum amplitude of the SS phase. S410S
and S660 are marked based on the predicted arrival times of PREM (Dziewonski &
Anderson 1981).
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Figure 2.2: (a) An input transverse component seismogram with 10% noise (gray)
and the inverted trace after 15 generations (black). The precursors are magnified
by a factor of 3 and the difference (data-synthetic) seismogram has been offset by
-0.08 for clarity. (b) The input (gray) and the recovered (black) model velocities.
The red lines indicate the lower and upper boundaries of the model space. (c) The
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velocity output from nonlinear inversion of the noise-added synthetic seismogram.
Random input velocity structures are assumed at the first generation.
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Figure 2.3: The interpolated reflectivity maps of S410S (a) and S660S (b) amplitude
variations. (c) and (d) show the standard errors of the reflection amplitudes based
on a bootstrapping analysis. The solid circles denote the centers of the averaging
bins and the magenta lines show the slab contours (Hayes et al. 2012). The numbers
at the center locations of the averaging bins in panel (d) show the total number of
waveforms in each cap used in stacking.
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Figure 2.7: (a)-(c) West-east vertical cross-sections of the inverted shear wave veloc-
ity anomalies along profiles A to C from 200 to 720 km depth beneath the northwest-
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Figure 2.10: 2D waveform tomography results using the stacked waveforms observed
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Chapter 3

Singular Spectrum Analysis and
its applications in mapping
mantle seismic structure
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3.1 Introduction

Enhancement of the signal of interest and suppression of random noise are crucial

for achieving superior image quality and signal coherency (Cadzow 1988, Sacchi

2009, Oropeza & Sacchi 2011, Naghizadeh 2012). Over the past decades, differ-

ent methods have been proposed for data interpolation and noise attenuation by

exploring the predictability of seismic signals. These methods may be performed

in the time-space (t-x ) domain (Abma & Claerbout 1995) or by transforming the

data to other domains such as frequency-space (Canales 1984, Gulunay et al. 1986,

Spitz 1991), slant-stack (also known as Radon domain; Sacchi & Ulrych (1995),

Trad et al. (2002)), and frequency-wavenumber (Naghizadeh 2012). A method

that has received significant recent attention is singular spectrum analysis (SSA), a

rank reduction-based technique (also known as Cadzow filtering) for the simultane-

ous random noise removal and data reconstruction in the case of missing samples

(Broomhead & King 1986, Cadzow 1988, Sacchi 2009, Oropeza & Sacchi 2011).

This technique was first introduced in time domain in the analyses of experimen-

tal dynamical systems (Broomhead & King 1986, Fraedrich 1986) in the 1980s. It

was later adapted to the frequency-space (f -x ) domain and relied on the separation

between coherent, linear signals and incoherent noise (Cadzow 1988, Trickett 2003,

Yuan & Wang 2011, Oropeza & Sacchi 2011). This algorithm is predicated on the

analysis of eigen/singular values but incorporates additional phase or spatial infor-

mation (Golub & Van Loan 1996, Trickett et al. 2008, Sacchi 2009). To date, SSA

has found successful applications in climatology/meteorology (Vautard & Ghil 1989,

Ghil et al. 2002), astronomy (Auvergne 1988, Varadi et al. 1999), and economic data

series analysis (Hassani & Thomakos 2010, Kumar & Jain 2010).

Despite well-documented successes in seismic data processing (e.g., Trickett &

Burroughs 2009, Oropeza & Sacchi 2011, Chen & Sacchi 2015), applications of SSA
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are rare in the analysis of earthquake records (Gu et al. 2015) and its potentials have

not been fully recognized. In this study, we present the basic theory behind SSA and

apply the SSA interpolation (an open source Julia-based package) to mantle seis-

mic imaging. The merits of this method are demonstrated through high-frequency

P -to-S conversions (Vinnik 1977, Dueker & Sheehan 1997, Rondenay 2009) and

long-period shear wave reflections (Shearer 1993, Gu et al. 1998, Deuss 2009) from

mantle discontinuities, both of which are known to suffer from low signal-to-noise

ratios (SNR) and gaps in data coverage.

3.2 Theory

We apply singular spectrum analysis (SSA), a frequency domain noise attenuation

technique, to increase the coherency of conversions or reflections from upper mantle

seismic discontinuities. SSA is a model-free method that uses singular value decom-

position (SVD) to reduce the rank of the Hankel matrix (Golyandina et al. (2001),

Sacchi (2009)). To do so, we first represent seismic events (d(t, x)) in a time-space

(t-x ) matrix

d =


d1,1 d1,2 · · · d1,n

d2,1 d2,2 · · · d2,n
...

...
. . .

...
dm,1 dm,2 · · · dm,n

 (3.1)

where dj,i corresponds to the jth sample of the ith trace of the data matrix composed

of m samples in each seismogram for n total traces. The data in the t − x domain

are then transformed to the frequency-space (f − x) domain by taking the Fourier

transform of each seismogram with respect to time. The f − x transformed data

matrix is now
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D =


D1,1 D1,2 · · · D1,n

D2,1 D2,2 · · · D2,n
...

...
. . .

...
DM,1 DM,2 · · · DM,n

 , (3.2)

where Dj,i corresponds to the jth frequency sample of the ith trace. A related

trajectory matrix, i.e., the Hankel matrix where each skew-diagonal is constant, can

be constructed at a fixed frequency fj as (Sacchi 2009):

M(fj) =


Dj,1 Dj,2 · · · Dj,K

Dj,2 Dj,3 · · · Dj,K+1
...

...
. . .

...
Dj,L Dj,L+1 · · · Dj,n

 . (3.3)

In this expression L and K are chosen to be bn/2c+1 and n-L+1, respectively, to

approximate the Hankel matrix as a square matrix (Trickett & Burroughs 2009,

Oropeza & Sacchi 2011). In the presence of a linear event, it can be shown that:

Dj,n = (e−i2πfjp∆x)Dj,n−1, (3.4)

where p is the ray parameter and ∆x is the distance between two adjacent traces.

In other words, for equally spaced traces, the event becomes linearly predictable in

the spatial direction (Sacchi 2009) and the rank of the Hankel matrix equals to 1.

Equation (3.3) can be written in a reduced-rank form as (Sacchi 2009):

M(fj) =


Dj,1 WDj,1 · · · WK−1Dj,1

Dj,2 WDj,2 · · · WK−1Dj,2
...

...
. . .

...
Dj,L WDj,L · · · WK−1Dj,L

 , (3.5)

where W = e−i2πfp∆x. For the input data, d(t, x ) consists of k linear events and the

transformed data D(f, x ) contain k complex sinusoids. Consequently, the rank of

the Hankel matrix constructed from the transformed data at each frequency is equal
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to k (Yang & Hua 1996, Oropeza & Sacchi 2011). The rank of the trajectory matrix

increases with noise and the number of missing traces (Sacchi 2009, Chen & Sacchi

2015). Furthermore, the SSA filter relies on the approximation of the Hankel matrix

by another matrix of a lower rank (Golyandina et al. 2001). Assuming that the signal

is linearly predictable in space (Oropeza & Sacchi 2011, Yuan & Wang 2011), rank

reduction techniques can be applied to the Hankel matrix, M, to 1) separate the

random noise from coherent events and 2) reconstruct the missing observations by

reducing the rank of the Hankel matrix. Subsequently, the low rank approximation

of the Hankel matrix can be estimated using SVD (Freire & Ulrych 1988):

M̂(fj) = UkSkV
H
k , (3.6)

where Sk represents a diagonal matrix containing the first k largest singular values of

the Hankel matrix M sorted in descending order, and Uk and Vk are the associated

eigenvectors of M(fj) (Trickett 2003). While the low-rank matrix M̂(fj) is not a

Hankel matrix and the structure of the original trajectory matrix is generally not

preserved (Chen & Ma 2014), one can obtain the closest approximation to the Hankel

matrix by averaging the anti-diagonal elements of each low rank trajectory matrix,

M̂(fj), and reconstruct the ith row of the transformed data in the f-x domain. The

aforementioned process is carried out for all frequencies fj in the band of the seismic

signal. Finally, an enhanced seismic image is obtained by transforming data back

to the t-x domain. An iterative algorithm similar to the one suggested by Oropeza

& Sacchi (2011) is used to recover the true amplitudes of the missing traces:

Di = αDobs + (1− αT)FSSA[Di−1], i = 1, 2, 3, ..., itrmax. (3.7)

In this equation, Di and Di−1 are the interpolated data in the current and pre-

vious iterations, respectively, and Dobs denotes the input data matrix with missing
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observations. The operator T is a sampling matrix (with the size of the original

data), within which the elements equal to 1.0 (where data exist) or 0.0 (other-

wise). The operator FSSA represents the SSA filter and the denoising parameter

α is a scalar (between 0 and 1) associated with the noise level. FSSA is formed

by concatenating the following operators: data Hankelization, rank-reduction and

anti-diagonal averaging. Finally, because a true amplitude recovery is usually not

achievable after a single iteration, we employ an iterative algorithm that terminates

when the maximum number of iterations itrmax is reached or when the normalized

error function ‖Di − Di−1‖2/‖Di−1‖2 < ε with ε = 10−6. Examples of SSA in

mantle interface analysis will be provided in Section 3.3.

3.3 Application

A wide range of secondary seismic arrivals has been utilized to determine the struc-

ture surrounding mantle seismic discontinuities. Two prominent examples are P -to-

S converted waves, often calculated from “receiver functions” (Ammon et al. 1990,

Kind et al. 1996, Ligorria & Ammon 1999, Lawrence & Shearer 2006a, Rondenay

2009, Chen et al. 2015), and long-period SS precursors (Shearer & Masters 1992,

Flanagan & Shearer 1998, Gu et al. 1998, Deuss & Woodhouse 2002, Houser et al.

2008) (Figure 3.1). The former phase group is usually examined at high frequen-

cies, targeting the seismic structures beneath the receiver (Cassidy 1995, Song et al.

2004, Schaeffer & Bostock 2010, Gu et al. 2015) or source (Wicks & Richards 1993,

Castle & Creager 2000) location. In comparison, SS precursors are “global phases”

less dependent on path geometries (Shearer & Masters 1992, Gu et al. 1998, Zheng

et al. 2015). Results from these two approaches are generally complementary, espe-

cially in major subduction zones (Li et al. 2000, Gu & Dziewonski 2002, Lawrence
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& Shearer 2006a). The section below investigates the effectiveness of SSA in the

waveform analyses of receiver functions (RF) and SS precursors for the imaging of

mantle transition zone (MTZ) discontinuities (Ringwood 1975, Dziewonski & An-

derson 1981).

3.3.1 P-to-S Receiver Function

Receiver function analyses have been widely used to constrain the properties of

upper mantle interfaces (Langston 1979, Vinnik 1977, Lawrence & Shearer 2006a,

Tauzin et al. 2008, Schaeffer & Bostock 2010, Gu et al. 2015). The primary con-

versions from mantle discontinuities are often difficult to identify due to low SNR

and potential effects of multiple reverberations or interfering phases (Schaeffer &

Bostock 2010). Hence, stacking is generally performed to enhance the SNR and

reduce the random noise, but its effectiveness can be compromised under severe

noise levels and/or a non-Gaussian noise distributions. Figure 3.2a shows a record

section of synthetic RFs containing P -to-S converted phases from mantle interfaces,

calculated using a propagator matrix approach (Kennett 1983, Shearer 2009) based

on PREM (Dziewonski & Anderson 1981) for source-receiver distances ranging from

45 to 95 degrees. After normalizing and aligning of each seismogram by its peak am-

plitude, the move-out of the converted phases becomes approximately linear across

the record section. We then decimate the data by randomly removing 34% of the

traces and contaminate the selected records by 10% Gaussian noise (Figure 3.2b).

A comparison between the reconstructed data (Figures 3.2c-3.2h) suggests that the

best performance of the SSA interpolation is achieved using the 3 largest singular

values; in other words, the optimal desired rank of the Hankel matrix is k = 3.

On the other hand, the presence of random noise increases the non-zero singular

values of the trajectory matrix (Figures 3.3a and 3.3b). To assess the quality of the
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reconstructions for different ranks, we define

Q = 10log
‖d0‖2

‖d0 − d̂‖2
(3.8)

where d0 and d̂ denote the noise-free and reconstructed data in the t − x domain,

respectively. By this definition, Q approaches infinity in the case of perfect data

reconstruction. In this experiment, the calculated Q values for the interpolated data

using rank k = 1, 2 and 3 are 2.3, 3.6 and 4.6 dB, respectively, suggesting that the

highest quality of reconstruction is achieved when k = 3. Further increases of rank

k lead to systematic decreases in Q due to the elevated levels of recovered noise in

the data (Figure 3.3c).

In a second experiment, we utilize a data-set of 1563 high-quality RFs, collected

from 6 broadband, three-component seismic stations from the Canadian Rockies

and Alberta Network (CRANE; Gu et al. (2011)) and Canadian National Seismo-

graph Network (CNSN). This data-set has been previously examined by Gu et al.

(2015) to map the mantle stratigraphy beneath the Western Canada Sedimentary

Basin (WCSB). The availability of the published results enables us to quantita-

tively assess the performance of SSA in noise reduction and reflectivity imaging. We

group the RFs into the common receiver gathers and sort them by source-receiver

distances. The resulting source-receiver distances are not regularly spaced, which

does not satisfy the spatial sampling requirement of SSA (Oropeza & Sacchi 2011).

Hence, prior to SSA, we partially stack the traces using a 1-degree running average

window. Figures 3.4 and 3.5 show the comparison between the raw RFs and the

reconstructed data using SSA interpolation. The rank of the trajectory matrix, k, is

determined based on the synthetic experiments and the number of expected linear

arrivals in the data section. The input partial stacks (especially those observed at

the stations CZA, NOR, PER and SLEB) show no discernible mantle conversions
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Table 3.1: Polynomial Coefficients of linear and parabolic fits calculated for SdS
travel times and path functions using PREM (Dziewonski & Anderson 1981) and
IASP91 (Kennett & Engdahl 1991). The coefficients p0, p1 and p2 are sorted in an
ascending order, i.e., SdS differential times are calculated as p0+p1x+p2x

2 (where x
represents the source-receiver distance in degrees). The coefficient of determination,
R2, indicates the goodness of fit of each trajectory. R2 reflects the performance of
the regression curve in predicting variations in the original data and it is defined as
the normalized variance reduction (Gu & Shen 2015).

PREM IASP91
p0 p1 p2 R2 p0 p1 p2 R2

S410S
linear -120.8 -0.2523 0.0 0.9988 -123.5 -0.2588 0.0 0.999
Parabolic -111.6 -0.3956 0.00055 1.0 -114.9 -0.3947 0.000523 1.0

S660S
Linear -169.7 -0.4887 0.0 0.9985 -167.9 -0.479 0.0 0.9987
Parabolic -149.6 -0.8035 0.00121 1.0 -150.0 -0.7606 0.00108 1.0

due to low SNRs and gaps in the sections of partially stacked RFs. Aside from

the successful removal of data gaps, the SSA reconstruction generally enhances the

signals associated with mantle conversions (i.e., P410s, P660s and converted phases

from mid-MTZ depths) while effectively reducing the random noise.

3.3.2 SS Precursor

Similar to converted phases, the SSA algorithm can also be directly applied to the

waveforms of long-period reflections from mantle interfaces. To illustrate this, we

calculate a record section of 60 transverse-component seismograms from 100 to 160

degrees of source-receiver distances using PREM (Dziewonski & Anderson 1981)

(Figure 3.6a). After the precursor (SdS ) waveforms are aligned on the peak ampli-

tudes of SS, the relative travel times of SS precursors can be accurately represented

using parabolic functions of epicentral distance (Gu & Sacchi 2009). Based on sta-

tistical measures of the goodness of fit (which is defined as R2 in Table 3.1), however,

the differential travel times of SdS -SS can be further approximated using linear path

functions (where the quadratic term is essentially zero).
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In the first experiment, we randomly remove 30% of traces and add 10% Gaussian

noise to the input section (Figure 3.6b). After the SSA interpolation, the main

linear arrivals (e.g., S410S and S660S ) and nearly 93% of their input amplitudes

are properly recovered using k = 1 at well sampled distances (Figures 3.6c and 3.6d).

The topside reflections from the mantle discontinuities (S410sSdiff/SdiffS410s and

S660sSdiff/SdiffS660s, also known as Sdiff postcursors (Zheng et al. 2015)) that

interfere with SdS at distances <130 degrees, are clearly associated with the second

largest singular values of the trajectory matrix (Figures 3.6e and 3.6f). Unlike

converted waves, only two singular values are needed to recover the key arrivals

within the precursor time window.

Figure 3.7 shows the SSA reconstruction of SS precursor waveforms from north-

eastern China. This data-set was recently analyzed by Dokht et al. (2016) in imaging

the upper mantle beneath the Changbai/Wudalianchi hotspots. The input record

sections (Figures 3.7a and 3.7b), which are obtained from partial stacking, show a

series of secondary reflections (i.e., SS precursors) prior to the surface reflections.

The reconstructed waveforms adequately recover the missing traces in the data gap

between the 140 and 145 degrees (Figures 3.7c and 3.7d). Strong signals are also

observed between S410S and S660S, in potential association with a mid-MTZ re-

flector near 520 km depth (see Figure 3.7c, Gu et al. (2012)). The depths of the

discontinuities from the stacks of depth-converted SS precursors, calculated using

the waveform data presented in Figure 3.7, agree to 99% before (Figures 3.8a and

3.8b) and after (Figures 3.8c and 3.8d) SSA. In comparison with stacks from the

original data, SSA enhances the amplitudes of the mantle reflections by an average

of 33% and significantly improves their accuracy (see Figure 3.8). The reconstructed

data properly recover the major depth anomalies on the discontinuities, i.e., depres-

sions of the MTZ boundaries under the Wudalianchi hotspot, that can be directly
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linked to the dynamic processes in association with plate convergence.

3.3.3 Limitation and Complication

Like most noise reduction/data reconstruction methods, the effectiveness of SSA is

strongly dependent on the data condition (e.g., receiver density/spacing and noise

characteristics). To examine the performance of SSA in recovering missing traces,

we generate a synthetic seismic section with a single linear event (Figure 3.9a) and

reduce the data density to 50% by 1) removing every other trace (Figure 3.9b)

and 2) random decimation (Figure 3.9c). The resulting Hankel matrix from the

regularly decimated data at a constant frequency of 0.04 Hz (i.e., case 1, Figure

3.9e) is of rank 2. Only the first two singular values of the Hankel matrix are

non-zero, although the amplitude of largest singular value is approximately half of

the original one (see Figures 3.9g and 3.9h). The second largest singular value at

each frequency is associated with zero skew-diagonal elements of the Hankel matrix

due to the alternate removal of the input traces (see Figures 3.9e and 3.9h). In

comparison, the Hankel matrix constructed from the randomly sampled data shows

a higher rank than both the original and uniformly decimated data (see Figures

3.9g-3.9i). However, the Hankel matrix is less structured than that with regular

data gaps, and is therefore able to preserve the desired signal. The inability of

SSA in recovering the regular data gaps is further illustrated by the results of data

reconstruction (Figure 3.10a). The amplitudes of the interpolated missing traces

are approximately zero for all distances. In comparison, the reconstruction in the

case of irregular data gaps is more accurate (Figure 3.10b). A proper application

of SSA on regularly decimated data will require more advanced techniques such as

anti-aliasing Cadzow reconstruction (Naghizadeh & Sacchi 2013). For most solid

Earth applications, the SSA algorithm examined in this study is sufficient since the
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distributions of earthquakes and seismic stations are rarely uniform.

It is worth noting that the accuracy of data reconstruction is strongly dependent

on the percentage of missing traces (i.e., non-regular data gaps). For a seismic

section consisting of two linear arrivals (Figure 3.11a), the quality of the results

decreases linearly from ∼6.5 dB at 10% data gaps to ∼5.3 dB at 50% (Figure 3.11b),

below which the quality of the reconstruction drops off more rapidly (see Figures

3.11b and 3.11h). For instance, when 70% of data are missing, SSA is only able

to properly recover the timing of the seismic arrivals while the amplitudes of the

interpolated traces within data gaps are considerably underestimated (see Figures

3.11g and 3.11h).

To further quantify the performance of SSA in the presence of noise, we con-

taminate the synthetic section containing a single linear event (Figure 3.12a) with

random noise at SNR values of 1 to 6. In all cases, the qualities of the filtered

sections are improved through the application of SSA (Figures 3.12b-3.12f). The

improvement in the image quality is especially significant at SNR = 1 (see Figure

3.12f) where SNR after filtering is improved by nearly 3 fold. Just as importantly,

no coherent arrivals are observed on the residual section (Figures 3.12g and 3.12h),

which suggest minimal systematic biases during the reconstruction. Further exam-

inations of the α parameter and spurious outliers are provided in Appendix B (see

also Figures B.1-B.3).

3.4 Conclusion

In this study, the upper mantle discontinuities are imaged using SSA, a rank re-

duction approach that simultaneously removes random noise and reconstructs miss-

ing data traces. This method relies on the predictability of mantle conversions
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and reflections, and it is implemented in the frequency-space domain. The recon-

structed seismic images of the upper mantle show more laterally coherent obser-

vations of MTZ discontinuities on both the waveforms of SS precursors and re-

ceiver functions. In addition to consistent MTZ phase boundaries, strong signals

near the 520 km discontinuity are successfully identified beneath western Canada

and NE China. When utilized properly, this method could be a powerful tool

for future analyses of any weak seismic phase from the Earth’s interior. Scripts

to perform SSA in the frequency-space domain are presented in Julia, which pro-

vides free access to open source libraries and portability between different platforms

(https://sites.ualberta.ca/∼ygu/projects/ssa/).

The research detailed in this Chapter has been previously published in: Dokht,

R. M., Gu, Y. J., & Sacchi, M. D. (2016), Singular Spectrum Analysis and its ap-

plications in mapping mantle seismic structure, Geophysical Journal International,

ggw473, doi: 10.1093/gji/ggw473.
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Figure 3.1: (a) Theoretical ray paths of P and P -to-S conversions at a 60-degree
epicentral distance. (b) Ray paths of SS and its precursors at a 130-degree distance.
These ray paths are computed using PREM (Dziewonski & Anderson 1981). The
stars and triangles denote the earthquake and seismic station locations, respectively.
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Figure 3.2: Application of SSA on a decimated record section of synthetic receiver
functions contaminated with random noise. (a) Original data. (b) Noise-added data
decimated to ∼70% of the original number of traces. (c), (e) and (g) Results of SSA
filtering at k values of 1, 2 and 3, respectively. (d), (f) and (h) The corresponding
differences between the reconstructed (c, e and g) and original (a) data.
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between the filtered and noise-free data.
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Chapter 4

Migration imaging of the Java
subduction zones
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4.1 Introduction

The Sunda trench, located in Southeastern (SE) Asia, is an active convergent plate

margin marked by the subduction of the Indo-Australian oceanic lithosphere (slab)

beneath the Eurasian plate (Curray et al. 1979, Bird 2003, Simons et al. 2007). The

trench extends along-strike for over 5000 km from the Andaman islands to the west

of the active Banda arc (Widiyantoro et al. 2011b), which is identifiable by its 180◦

curvature resulting from the collision between the northward migrating Australian

continental plate and the arc in the Early Pliocene (Katili 1975, Spakman & Hall

2010). The estimated age of the subducting oceanic lithosphere varies along the

trench and decreases from the Late Jurassic (134-154 Ma) in southern Sumatra to

the Late Cretaceous (78-100 Ma) in Bali (Widiyantoro & van der Hilst 1996, Hall

& Spakman 2015). Plate motion models constructed from seafloor spreading rates,

transform fault azimuths, and global positioning system measurements indicate a

relatively high convergence rate between the Indo-Australian and Eurasian plates

that increases from 5.5 cm/year in Sumatra to 7.3 cm/year near Timor (Minster &

Jordan 1978, Bock et al. 2003, DeMets et al. 2010) (Figure 4.1). The morphology

and penetration depth of subducted lithosphere are well defined by the earthquake

hypocenters that vary substantially along the strike of the plate boundaries. East

of Java, the subducted oceanic lithosphere can be traced down to the base of the

mantle transition zone, whereas the seismicity is predominantly confined to the top

300 km beneath central and western Sumatra (Hamilton 1974, Cardwell & Isacks

1978). The subducting oceanic lithosphere is further evidenced by the presence

of a high velocity zone (Puspito et al. 1993, Widiyantoro & van der Hilst 1996,

Amaru 2007, Fichtner et al. 2010, Lekić & Romanowicz 2011, Fukao & Obayashi

2013), which appears to penetrate into the lower mantle at a near-vertical angle

beneath Java and Bali and potentially flattens at an approximate depth of 1500
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km (Puspito & Shimazaki 1995, Widiyantoro & van der Hilst 1997, Replumaz et al.

2004). In contrast, the slab beneath the Banda trench exhibits a shallower angle

and its seismic signature can mainly be detected within and above, but not below,

the MTZ (Spakman & Hall 2010).

Characteristics of the MTZ seismic discontinuities offer additional constraints

on the morphology and thermochemical effects of the Sunda slab. In an olivine-

dominated upper mantle, the solid-solid phase transitions from olivine to β-spinel

and γ-spinel to perovskite+magnesiowustite mark the upper and lower boundaries

of the MTZ at the nominal depths of 410 and 660 km, respectively (Anderson

1967, Jeanloz & Thompson 1983, Ito & Takahashi 1989). Due to their opposite

Clapeyron slopes, the thickness of MTZ is expected to increase in cold areas (e.g.,

subducting slabs) and decrease in warm regions (e.g., upwelling plumes) (Ito &

Takahashi 1989, Katsura & Ito 1989). For this reason, the topography of the 410

km and 660 km seismic discontinuities (for short, the 410 and the 660) have been

widely investigated through converted (Saita et al. 2002, Lawrence & Shearer 2006a)

and reflected (Flanagan & Shearer 1998, Gu et al. 2003, Houser et al. 2008) waves.

Both types of observations indicate a local thickening of the MTZ along Java and

southeastern Sumatra, ranging from 20-55 km and coinciding with the presence of

a high velocity anomaly within the MTZ (Widiyantoro & van der Hilst 1996, Fukao

& Obayashi 2013). Based on P -to-S converted waves (Saita et al. 2002), a narrow

MTZ is found beneath northern Borneo and western Sulawesi, while the earlier

observations from mantle reflections suggested that the thickness of the MTZ could

increase by up to 20 km in the same region (Gu et al. 2003, Houser et al. 2008,

Lawrence & Shearer 2008).

Limited station distribution, lateral smoothing and low data density remain ma-

jor hurdles in the interrogation of the MTZ structure and dynamics in the Sunda arc
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subduction system. In this study we investigate the topography of the 410 and 660

beneath SE Asia from the prestack depth migration of SS precursor waveforms. We

demonstrate that the migration process using an array of precursors can effectively

reduce the size of the Fresnel zone and enhance the resolution, which provides a

critical window into the complex geometry and mantle temperature associated with

the Sunda arc subduction.

4.2 Data and Method

4.2.1 Data Selection

Our main observational constraint is SS precursors, which are shear wave underside

reflections off the upper mantle interfaces near the midpoint between the earthquake

and receiver (Shearer 1993, Flanagan & Shearer 1998, Gu et al. 1998) (Figure 4.2a).

The precursors arrive before the main SS phase (i.e., surface reflection) due to their

shorter propagation paths. We include broadband, long-period SH-polarized seismo-

grams from Mw >5.5 earthquakes recorded between 1990 and 2015, with epicentral

distances ranging from 80° to 160°. We restrict the reported earthquake depths to 75

km or less to avoid the potential interference from depths phases (e.g., sSS ), while

the selected distance range minimizes the interference from top-side reflections (i.e.,

Sdiff postcursors) and ScSScS precursors (Schmerr & Garnero 2006, Deuss 2009,

Zheng et al. 2015). After removing the instrument responses, all transverse com-

ponent seismograms are filtered between corner periods at 5 s and 50 s using a

Butterworth bandpass filter. The waveforms of SS precursors are typically filtered

at longer periods (e.g., above 15 s period), but shorter period filters can be effective

at reducing the Fresnel zone size and increasing the resolution of mantle reflectivity

when dense data coverage is available (Schmerr & Garnero 2006). The filtered seis-
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mograms are subjected to a signal-to-noise ratio (SNR, defined as the ratio between

the maximum amplitude of SS and that of noise in a precursory window; Gu et al.

(2012)) criterion and only the traces with SNR greater than 3.0 are retained for the

subsequent analysis. The final data-set consists of 1007 high quality, transverse-

component waveforms from 322 events (Figure 4.2b).

4.2.2 Time-domain Stacking Method

Due to the path similarity between the SS and its precursors (Schultz & Gu 2013),

the depths of reflectors can be effectively estimated from the differential times be-

tween the surface and mantle reflections. We deconvolve the SS waveforms, which

share similar source effects with precursors, from the transverse-component seismo-

grams to equalize the source (Shearer et al. 1999, Schultz & Gu 2013). The resulting

waveforms are then time shifted to account for variations in crustal thickness, sur-

face topography (CRUST2.0; Bassin (2000)) and mantle heterogeneity (S20RTS;

Ritsema et al. (1999)) along the ray paths. To correct for move out, we employ

the Local Stretch Zeroing (LSZ) method introduced by Kazemi & Siahkoohi (2012).

This method eliminates stretching by dividing data into few time gates confined to

the theoretical curves attributed to the reflection events (i.e., the mantle discontinu-

ities). The effectiveness of the LSZ approach in move-out correction of SS precursors

is investigated for synthetic waveforms calculated using PREM (Dziewonski & An-

derson 1981). Figure 4.3 shows the results of the LSZ method where the theoretical

curves are calculated using the PREM-predicted arrival times of SdS (where d rep-

resents a discontinuity depth) and a reference source-receiver distance of 130°. This

approach considers the differential move-outs among the precursory arrivals while

avoiding distortions of pulse shapes (see Figures 4.3c and 4.3d).
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4.2.3 Depth Migration

Migration is a key step in seismic data imaging, which spatially relocates the

recorded signals to their true positions to improve the image quality and accuracy

(Gazdag & Sguazzero 1984, Sheriff & Geldart 1995, Gray et al. 2001). The migra-

tion process is particularly effective in studies of tectonically complex regions (e.g.,

subduction zones and hotspots), where diffraction and scattering caused by small-

scale variations in discontinuity depth can adversely affect the imaging resolution

(Neele et al. 1997, Braña & Helffrich 2004, Frederiksen & Revenaugh 2004, Thomas

et al. 2004, Rost & Thomas 2009, Schultz & Gu 2013, Lessing et al. 2015). Several

depth migration algorithms have been utilized in exploration or global seismic ap-

plications, which include Kirchhoff (Schneider 1978, Etgen et al. 2009), reverse time

(Baysal et al. 1983, Chang & McMechan 1994, Biondi et al. 2002), and wave-equation

(Gazdag 1978, Claerbout & Doherty 1972, Kühl & Sacchi 2003) migrations. In this

study we adopt the Kirchhoff method for its simplicity and low computational cost.

Pre-stack (rather than post-stack) is utilized to preserve the finer details contained

in the SS precursor waveforms. Our algorithm searches for the energy arriving be-

fore SS, which is inundated by non-specular reflections and point-scatterers, and

trace rays through 3D models of the crust and mantle shear velocities.

To evaluate the effectiveness and accuracy of Kirchhoff depth migration, we

introduce an array of sources and receivers sampling the area indicated in Figure

4.4a. Synthetic seismograms are then calculated based on the global shear velocity

model S20RTS (Ritsema et al. 1999), assuming the theoretical reflections occur

at 220, 400 and 670 km depths below the center of the targeting area. We then

adopt a grid of 32° by 32° with 2° lateral spacing (centered on 0° latitude and 115°

longitude) and the depths range from 0 to 800 km at a constant increment of 2

km (see Figures 4.4a and 4.4b). Travel times of mantle reflections are subsequently
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calculated from each grid point (considered as a point-scatterer) to each source as

well as to each seismic station by tracing rays three-dimensionally through the same

velocity model. Finally, the interpolated amplitude on each seismogram is assigned

to the corresponding gridpoint and stacked (Rost & Thomas 2009, Thomas & Billen

2009). In theory, the diffracted energy should stack constructively at the location

of the true reflection point.

The migration results for a single source and receiver pair at 400 and 670 km

depths (Figures 4.4c and 4.4d) suggest that the maximum stacked amplitude is dis-

tributed along a minimax-shaped isochron (Shearer 1993, Gu & Dziewonski 2002,

Rost & Thomas 2009, Schmerr & Thomas 2011). In comparison with a single sce-

nario, the Fresnel zone becomes more regular using an array of precursor waveforms

since contributions from multiple raypaths collapse the stacked energy to the true

reflection point (Figures 4.4e and 4.4f). Based on the data density, this array mi-

gration process can reduce the effective Fresnel zone size to 500-700 km laterally.

Figure 4.5 shows two vertical cross-sections through the center of the three-

dimensional volume of migrated SS precursors. The minimax shape of the Fresnel

zone is responsible for the concave up (see Figures 4.5a and 4.5c) and concave down

(see Figures 4.5b and 4.5d) natures of the isochrons along and perpendicular to the

great circle path, respectively (Shearer 1993, Neele et al. 1997, Gu et al. 1998). This

result implies that the along- (off-) axis scattering would map a hypothetical reflec-

tor to a shallower (deeper) depth with the same arrival time (Shearer et al. 1999).

By accounting for the contributions from the entire seismic array, the migration

process reduces both the effective size of the Fresnel zone and the spreading of the

migrated energy along the isochrons (Rost & Thomas 2009) (see Figures 4.5c and

4.5d).
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4.3 Results

Based on our resolution test using an array migration process, the data are grouped

into equal-sized spherical caps of 5◦ radius, according to the theoretical reflection

points of SS, to ensure sufficient resolution and sampling density (Figure 4.6). Cir-

cular caps are sorted along 14 parallel profiles (with 2◦ cross-line spacing) approxi-

mately perpendicular to the Java trench (see Figure 4.6). The grid, which consists

of 490 imaging points, provides an average nominal lateral resolution of 500 km

in the study region. The data coverage is particularly dense in the northwestern

and southwestern ends of the study region, where a significant number of caps con-

tain more than 100 reflections. We examine the precursor waveforms in both time

and depth domains to provide a cross-check on the accuracy of the recovered depth

anomalies.

4.3.1 SS precursor Amplitude

Unlike conventional Kirchhoff migration approaches (Hanitzsch 1997), our algorithm

weights each seismogram equally to avoid complexity. Hence, the amplitude in-

formation is extracted from the time-corrected waveforms. After applying crustal

and mantle heterogeneity corrections, we stack the waveforms using the LSZ move-

out technique based on the differential times between the SS, S220S, S410S and

S660S phases (PREM; Dziewonski & Anderson (1981)) relative to a reference source-

receiver distance of 130◦. The amplitudes of S410S and S660S, extracted from the

maxima within a 30 s window centered on the predicted times (PREM; Dziewonski

& Anderson (1981)), reveal large-scale reflectivity structures at the MTZ disconti-

nuities beneath SE Asia (Figure 4.7a and 4.7b). A NW-SE trending low-amplitude

zone is observed near the 410 (see Figure 4.7a) along the Java trench, roughly
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parallel to the strike of the northward dipping Wadati-Benioff zone of deep-focus

earthquakes (see Figure 4.6); the minimum amplitude of S410S reaches ∼0.02% of

that of SS beneath Western Java and the Timor trough. The measured reflectivity

at the top of the MTZ does not vary significantly beneath Borneo and northern

Sundaland, showing similar values to the regional average of 0.053%. On the other

hand, a strong S410S is observed east of the Philippine trench, below which the

maximum amplitude is nearly twice the regional average.

The reflection amplitude of S660S shows markedly increased amplitudes along

the Java trench relative to its regional average of 0.048% (see Figure 4.7b). East

of Sumbawa, enhanced reflections continue northward and reach their maximum at

approximately 0.1% beneath the Banda Sea. Similar to S410S, S660S exhibits low

to moderate reflection amplitudes beneath the Borneo and Sunda plates (see Figure

4.7b).

Inherent noise and limited data coverage could cause significant uncertainties in

the amplitude measurements. To assess the amplitude robustness and reliability, we

introduce a bootstrap resampling procedure (Efron & Tibshirani 1991, Deuss 2009,

Dokht et al. 2016) to estimate the standard errors by repeating the measurements

using 200 randomly selected subsets of the data traces (Figures 4.7c and 4.7d).

Based on the distribution of bootstrap measurements, we conclude that the major

amplitude anomalies lie within the 95% confidence level and the estimated errors

do not exceed 0.021% and 0.025% for S410S and S660S, respectively.

4.3.2 SS precursor Travel Time

Using the same stacked seismograms, we are able to determine the arrival times of

SS precursors accurately (Figure 4.8). The S410S times (see Figure 4.8a) indicate

early arrivals with respect to SS in the vicinity of the Wadati-Benioff zone beneath
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western Java and the entire Banda Sea, ∼8-10 s earlier than the regional average

of -156.4 s. Most notably, the S660S times in the eastern part of the study area

are 8-15 s shorter than the regional average of -229.25 s, extending from the Indian

ocean side of the Flores island northward toward the Molucca Sea. Both S410S and

S660S are, however, delayed beneath Borneo and the western Sulawesi regions (see

Figures 4.8a and 4.8b).

To assess the effect of time corrections, which can introduce unwanted variations

in both the amplitude and timing of the secondary reflections, we repeated the time-

domain stacking procedure using a different shear velocity model (TX2007, Simmons

et al. (2007)) and found no apparent changes in reflectivity. In other words, a rea-

sonably accurate model of the mantle structure should produce reliable reflections

from the major discontinuities.

4.3.3 MTZ Discontinuity Depth

The topography of MTZ discontinuities can be constructed from the depth-migrated

volume of the SS precursor data-set (Figure 4.9). For reliable results we indepen-

dently migrate the precursor waveforms using S -wave models of TX2007 (Simmons

et al. (2007), Figures 4.9a and 4.9b) and S20RTS (Ritsema et al. (1999), Figures

4.9c and 4.9d). The results based on these two different velocity models are gener-

ally consistent, despite slightly deeper (1.2-3 km) discontinuity depths form TX2007

(see Figure 4.9). The calculated regional averages for the 410 and 660 are 403 km

and 662 km, respectively, comparable to their respective global averages of 410-420

km and 650-660 km (Flanagan & Shearer 1998, Gu et al. 2003). The 410 is ele-

vated beneath Eastern Sumatra-Western Java, the Flores and Banda Seas by up

to 29, 35 and 37 km (see Figures 4.9a and 4.9c), respectively. In Eastern Sumatra

and Western Java, the topography of the 410 is strongly anti-correlated with that
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of the 660, which is depressed by 20-40 km with respect to its regional mean (see

Figures 4.9b and 4.9d). On the other hand, the depth of the 410 beneath the Banda

Sea and Flores island positively correlates with that of the 660, showing 40-45 km

elevation in this area. Both discontinuities are depressed beneath Borneo, western

Sulawesi and the Celebes Sea, although the undulations on the 410 (+5 to +10 km)

are significantly less than those on the 660 (+10 to +35 km).

Our measured MTZ discontinuity depths are generally consistent with those of

Saita et al. (2002) from receiver function migration and Gu et al. (2003) based

on joint inversion of the MTZ velocity and discontinuity topography (Figure 4.10).

Despite differences in absolute depths, all three studies clearly identify elevated 410

and 660 beneath the eastern part of the study area. The lone exceptions are Sumatra

and Java, where the underlying 410 is elevated by up to 50 km in the two regional

studies, but appears to be average in the former global analysis (Gu et al. 2003) (see

Figures 4.9 and 4.10). We attribute this discrepancy to the different data densities

and lateral resolutions.

The transition zone thickness beneath eastern Sumatra and western Java ex-

ceeds the global average of 241-242 km (Flanagan & Shearer 1998, Gu et al. 1998,

Lawrence & Shearer 2006a) by as much as 60 km (Figures 4.11a and 4.11b). These

observations are comparable to the earlier reported values by Saita et al. (2002)

and Gu et al. (2003), although the increase in MTZ thickness is less significant

in the later study (approximately 15 km thicker than the global average, Figure

4.11c). The MTZ beneath the Banda Sea shows only minor thickness variations,

but becomes 20-30 km narrower toward the north (the Molucca Sea) and south (the

Australian side of the Timor trough) due to substantial elevations of the 660 (see

Figures and 4.9 and 4.11). The most noteworthy difference among these studies is

the MTZ beneath northern Borneo and western Sulawesi, where the present study
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shows a thick MTZ (270-275 km), while it was found to be narrower (approximately

200 km) in the earlier study by Saita et al. (2002) (see Figure 4.11).

4.4 Discussion

The mantle structure beneath SE Asia has been previously investigated using body

wave travel time (Fukao et al. 1992, Widiyantoro & van der Hilst 1997, Gorbatov &

Kennett 2003, Fukao & Obayashi 2013) and waveform (Fichtner et al. 2010, Lekić &

Romanowicz 2011) tomography. The most prominent feature in the upper mantle

in this region is a narrow, northward dipping high velocity structure, which extends

from the Sunda arc (in the west) to the Banda arc (in the east) (Figures 4.12a and

4.12b) and has been commonly attributed to the subducted Indo-Australian oceanic

lithosphere underneath the Eurasian plate. Both P and S -wave data generally

suggest a 1-2% increase in the seismic velocities within the MTZ beneath Sumatra,

Java, the Flores and Banda Seas (Widiyantoro & van der Hilst 1996, Replumaz et al.

2004, Amaru 2007) along the Wadati-Benioff zone of the descending slab (Hamilton

1974, Cardwell & Isacks 1978, Hayes et al. 2012). The detailed morphology of

subducting slab exhibits major lateral variations and different penetration depths

along its strike (Hall & Spakman 2015), which can locally affect the topographies

of MTZ discontinuities.

Despite extensive global studies of P and S -waves (Flanagan & Shearer 1998,

Gu et al. 2003, Lawrence & Shearer 2006a, Andrews & Deuss 2008, Deuss 2009),

variations in MTZ discontinuity depths beneath the SE Asia subduction zones have

been thinly explored on the regional scale (Saita et al. 2002). In comparison with

earlier analyses based on SS precursors (Gu et al. 2003, Houser et al. 2008, Lawrence

& Shearer 2008, Deuss 2009), the current study takes advantage of vastly improved
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data coverage (due to a longer period of recordings) and enhanced resolution by

considering scattering from the finer-scale depth perturbations of the discontinuities

(Rost & Thomas 2009). The resulting migrated SS precursor waveforms provide

new constraints on the MTZ structure and the dynamical process therein that are

associated with the subducting lithospheric plates beneath SE Asia.

4.4.1 Java Subduction and Slab Gap

Our study reveals significant lateral variations in MTZ discontinuity depth and

thickness along the Sunda arc (see Figures 4.9 and 4.11). The thickest part of the

MTZ is observed under southwestern Sumatra and eastern Java (approximately 300

km on average), magnified by the contrasting topography of the 410 and 660 in

response to the temperature effect of a sinking slab within the MTZ. According to

a recent analysis by Fukao & Obayashi (2013), the P -wave velocities increase by

1.5% under the southeastern part of the Sunda arc (Figures 4.13a and 4.13b). This

anomaly appears to extend into the MTZ at a steep angle, eventually terminating

at approximately 1500 km depth in the shallow lower mantle (Puspito & Shimazaki

1995, Widiyantoro & van der Hilst 1997). Assuming an isochemical model, a 20

km topographic variation on the 410 or 660 would require a temperature reduction

of ∼250 K within the slab (Akaogi et al. 1989, Weidner & Wang 1998, Saita et al.

2002). Our measurements in western Java are consistent with these earlier find-

ings. However, the depth of the 410 km discontinuity gradually increases toward

the east and becomes nearly flat (with less than 5 km elevation compared to its

regional average) beneath eastern Java (see Figures 4.13c and 4.13d), where aver-

age to weakly positive velocities have been previously documented at 300-500 km

depths (Widiyantoro & van der Hilst 1996, 1997, Amaru 2007, Fukao & Obayashi

2013, Huang et al. 2015) (see Figure 4.13b). The apparent absence of the subducting
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slab in the vicinity of the 410 beneath Eastern Java coincides with a pronounced

seismically quiescent zone along the trench at comparable depths (Puspito & Shi-

mazaki 1995, Widiyantoro & van der Hilst 1996). This observation has led to the

hypothesis of a “gap” or “tear” at the top of the mantle MTZ (Hall & Spakman

2015).

Different processes have been proposed as possible mechanisms for developing

a tear in the slab, which potentially involve 1) local heterogeneity within the sub-

ducting lithospheric plate (Hall & Spakman 2015) and 2) necking and thining of

the slab in the upper mantle (Widiyantoro & van der Hilst 1996). Hall & Spak-

man (2015) suggest that a hole has been formed in the sinking slab after a buoyant

oceanic plateau reached the Java trench at approximately 8 Ma, which was unable to

subduct due to a lower density than the ambient lithosphere (Niu 2014). In this sce-

nario, the oceanic plateau collision blocks subduction and causes the trench to step

backward relative to the incoming plate. Over time, the subduction of the oceanic

lithosphere will resume behind the plateau and generate a vertical tear (hole) in

the downgoing slab (Hall et al. 2009, Widiyantoro et al. 2011b). This hypothesis is

supported by the discovery of potassium-rich magmatism, which has been linked to

reduced fluid flux from the slab into the mantle wedge after the slab window passed

beneath the arc in Eastern Java (Edwards et al. 1994, Hall & Spakman 2015). It is

worth noting that smaller-sized gaps and tears have also been reported further east

in the subducting slab beneath the Timor and Flores islands (Widiyantoro et al.

2011b, Hall & Spakman 2015); these features remain below the detection threshold

of SS precursors from this study.
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4.4.2 MTZ Beneath the Banda Trench

The most notable depth anomalies are observed beneath the Banda Sea and its

surrounding areas, where a narrow MTZ is detected (see Figure 4.11) due to a

substantially elevated 660 (by nearly 40 km; Figure 4.9). An uplifted 410 likely

results from the Miocene subduction of the Jurassic oceanic lithosphere at the Banda

trench (Spakman & Hall 2010, Fichtner et al. 2010), which deflects and becomes

stagnant atop the MTZ (Widiyantoro et al. 2011a). The complex geometry of

the slab is supported by a spoon-shaped high velocity zone in the asthenosphere

beneath the Banda Sea and western Sulawesi (Amaru 2007, Lekić & Romanowicz

2011, Widiyantoro et al. 2011b, Fukao & Obayashi 2013) (see Figure 4.12). While

the MTZ phase boundaries (i.e., the 410 and 660) are expected to be anti-correlated,

especially in the vicinity of the subduction zones (Gossler & Kind 1996, Gu et al.

2003, Li & Yuan 2003), the excess elevation of the 660 in this region requires the

consideration of non-vertical dip of the subducting slab (Gu et al. 2012, Dokht et al.

2016). A vertical section of the migrated reflectivity along the west-east direction

shows the negative correlation between the 410 and 660 depths along the Wadati-

Benioff zone (Figure 4.14a), where the 660 reaches the maximum depth of 682 km

directly beneath Southeast Sulawesi (Figure 4.14b). The observed 20 km depression

of the 660 is consistent with the response of the post-spinel phase transition from

ringwoodite to perovskite and magnesiowustite with a negative Clapeyron slope of

approximately -2.8 to -3.0 MPa/K (Ito & Takahashi 1989, Weidner & Wang 1998)

to a temperature decrease of 150-200 K in the bottoming part of the slab (see Figure

4.14b).

Beneath the Banda Sea in eastern Indonesia, an elevated 660 is accompanied

by the high amplitude S660S arrivals in the time domain stacks of precursor wave-

forms (see Figure 4.7b). These observations consistently suggest an increase in
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impedance contrast across a relatively shallow 660 due to the presence of a high

temperature anomaly at the base of MTZ. A 40 km elevation of the 660 requires

a temperature increase of 250-300 K (Ito & Takahashi 1989), assuming that the

compositional effects can be neglected compared to thermal effects in the upper

mantle (Piazzoni et al. 2007). This will result in a shear wave velocity reduction of

approximately 2% (Stixrude & Lithgow-Bertelloni 2005, Houser & Williams 2010),

which has been rarely documented by seismic tomography at depths greater than

600 km (Amaru 2007, Fukao & Obayashi 2013) (see Figure 4.12), partly due to

limited vertical resolutions and different dependencies of P and S -wave velocities

on temperature. The presence of this thermal anomaly may be associated with sub-

slab mantle flow (Di Leo et al. 2012, Lynner & Long 2014) parallel to the trench

at transition zone depths, which may have been induced by trench migration and

exhibits a higher temperature than the ambient mantle (Long & Silver 2008) (Fig-

ure 4.15). Plate tectonic reconstruction of SE Asia provides further supports for

the rapid eastward trench rollback of the Jurassic slab into the oceanic embayment

within the Australian plate (Spakman & Hall 2010). Alternately, the presence of a

sub-slab low velocity anomaly above the 660 due to the deep dehydration process of

the old oceanic slab (similar to that of suggested by Zhao & Ohtani (2009) beneath

the Pacific slab), together with a temperature increase of >200 K, can explain the

enhanced S660S amplitudes at a depth close to 620 km (see Figure 4.15).

4.5 Conclusions

This study examines the depth and amplitude of the MTZ seismic discontinuities

near the Sunda-Banda arc using SS precursors. Through migration imaging, we ob-

serve small-scale depth variations on the 410 and 660 across the SE Asia subduction
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zones. Beneath eastern Sumatra and western Java, a strong negative correlation be-

tween the 410 (elevated) and 660 (depressed) depths suggests significantly reduced

temperature within the steeply dipping Indo-Australian slab. A flat 410 beneath

eastern Java coincides with the absence of deep-focus earthquakes over the depth

interval from 300 km to 500 km. These observations may be associated with the

arrival of a buoyant plateau in the trench in the Late Miocene, which formed a

vertical tear in the subducting slab.

Beneath the Banda Sea, the enhanced amplitude of the 660 and a 40 km elevation

are evidence of low seismic velocities within the MTZ due to an increase in its

temperature. The low velocity anomaly above the 660 can be associated with 1)

trench-parallel mantle flow beneath the slab driven by the trench migration and 2)

deep dehydration of the oceanic lithosphere. The results presented in this study

provide a more detailed image of the mantle reflectivity structure beneath SE Asia,

which cab be strongly affected by the dynamics of the subducting slab.

In short, improving the resolution of mantle imaging can provide critical insights

into the complex morphology, temperature and dynamic process beneath the Java-

Banda Sea region.

The research presented in this Chapter is original to this thesis and will be

published at a later date.
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Figure 4.1: A topographic map of the study area. The thick black lines indicate
the major plate boundaries after Bird (2003). The black arrows shows the direction
of plate motion with respective to the Sunda block and their relative convergence
rates are measured in cm/year. The red lines denote the slab contours taken at a
constant interval of 100 km (Hayes et al. 2012). Abbreviations: MS, Molucca Sea;
BH, Birds Head.
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Figure 4.4: An array migration example showing the reflections at 400 and 670 km
depths. (a) Distributions of the 56 source-receiver pairs that sample the area out-
lined by the black box. The stars and triangles represent the locations of the sources
and receivers, respectively. (b) A schematic drawing of SS precursors reflected off
the scattering points (open circles). The gray circles represent the reflection points
half-way between the source and receiver. (c) and (d) Fresnel zones of SS reflections
at the respective depths of 400 and 670 km for a given source-receiver pair (indicated
by the red star and blue triangle in panel (a)). (e) and (f) Same as (c) and (d) but
consider the contributions from all source-receiver pairs. The color bars indicate the
stacked amplitude of the migrated energy.
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2011) and (b) TX2011 (Grand 2002) at 400 km, 500 km, 600 km, and 700 km depths
(IRIS, DMC 2013). The open circles and crosses indicate the major depth anomalies
of the 410 and 660 from this study. The blue and red colors denote fast and slow
seismic anomalies, respectively.

95



o o o 

 

 

 
200

410

660

800

D
ep

th
 (k

m
)

0o 6oE 12oE 18oE 24oE 30oE

Distance along profile (deg)

(c)
SW NE

Western Java
200

410

660

800

D
ep

th
 (k

m
)

0o 6oE 12oE 18oE 24oE 30oE

Distance along profile (deg)

(d)
SW NE

Eastern Java

0.04

0.02

0

-0.02

-0.04

0.04

0.02

0

-0.02

-0.04

TX2007 TX2007

GAP-P4

-1.5 1.50
δVP(%)

0

410
660

0

410
660

D
ep

th
 (k

m
)

D
ep

th
 (k

m
)

0 32
Distance (deg)

0 32
Distance (deg)

(a) (b)
SW NE

Western Java
SW NE

Eastern Java

Gap

Elevated

Gap

Depressed

Figure 4.13: Vertical cross-sections of variations in P -wave velocities beneath (a)
western (along profile D of Figure 4.6) and (b) eastern (along profile H of Figure
4.6) Java from Fukao & Obayashi (2013). (c) Reflectivity cross-sections of the
migrated SS precursors beneath western Java using TX2007 (Simmons et al. 2007).
(d) Similar to (c) but beneath eastern Java. The white (top panels) and magenta
(bottom panels) circles indicate the locations of deep earthquakes.

96



 

 

Distance along profile (deg)
G

A
P-

P4

-1.5

1.5

0

δV
P(%

)

Distance (deg)

104oE 112oE 120oE 128oE 136oE

3oN

3oS

9oS

(a)

(b)

0o 33oE

410
660

D
ep

th
 (k

m
)

0

 

 

  

200

410

660

800

D
ep

th
 (k

m
)

0o 6oE 12oE 18oE 24oE 30oE

West East

0.04

0.02

0

-0.02

-0.04

Elevated

Elevated

Depressed

Figure 4.14: (a) A reflectivity cross-section of the migrated SS precursors along W-
E direction using TX2007 (Simmons et al. 2007). The red and blue colors represent
high and low reflection amplitudes, respectively. (b) A vertical cross-section P -wave
velocity perturbations along the profile indicated in panel (a). The magenta (in panel
a) and white (in panel b) circles indicate the locations of deep-focus earthquakes.

97



 

 

0

100

200

300

400

500

600

700

800

D
ep

th
 (k

m
)

-5
-10

-15
110 115 120 125 130

Latitude (deg)
Longitude (deg)

Banda arc

StagnantSlab

Subducting Plate

Slab 

dehydration

Mantle Flow

615

697

656

367

430

398

[km]

[km]

Figure 4.15: A schematic drawing of the subduction along the Banda arc. The
presence of a low velocity zone within the MTZ beneath the slab can be explained
by the 1) sub-slab mantle flow induced by trench migration, and 2) deep dehydration
of the oceanic slab. The topography of the 410 and 660 beneath the Banda trench
are color-coded and plotted at the respective depths. The white circles indicate the
locations of deep-focus earthquakes.

98



Chapter 5

Summary, conclusion and future
work
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5.1 Summary

In this thesis we studied the characteristics of the MTZ discontinuities using the

shear-wave underside reflections and P -to-S converted waves. In each chapter we

utilized a different imaging technique to improve the resolution of the upper mantle

reflectivity structure.

Careful analyses of both the arrival times and amplitudes of SS precursors from

the seismic discontinuities are crucial for improving our understanding of mantle

dynamics and composition. In Chapter 2, we introduced a nonlinear waveform

inversions technique to simultaneously constrain shear velocities and discontinuity

depths beneath the northwestern Pacific subduction system. Based exclusively on

a large SS precursor waveform data-set, we are able to clearly delineate the mor-

phology of the descending Pacific plate, which flattens at the base of the upper

mantle and extends westward by at least 1500 km toward northeastern China. Our

grid search over a range of angles indicates a maximum correlation between shear

velocity and transition zone thickness at ∼30 degrees, consistent with the reported

average slab dip beneath the study region. The strongly positive correlation suggests

predominantly thermal, rather than compositional, variations along the descending

Pacific plate. Our joint depth-velocity solutions also suggest a 5-10 km depres-

sion of the 410 km discontinuity and an average decrease of 1.2% in upper mantle

shear velocity beneath the intraplate volcanic fields in northeastern China. This

anomaly, which reaches the middle of the upper mantle transition zone beneath the

Changbai hotspot, initiate at a significantly shallower (∼320 km) depth beneath

the Wudalianchi region. The high amplitude reflection at depths greater than 410

km suggests a water-poor melt layer in possible association with 1) decomposition

melting from passive upwelling and/or 2) active upwelling through a slab window.

Key challenges in the analysis and interpretation using secondary seismic phases
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are incomplete data coverage, high noise levels and interfering seismic arrivals, espe-

cially near tectonically complex regions. In Chapter 3 we applied Singular Spectrum

Analysis (SSA) to remove random noise, reconstruct missing data traces, and en-

hance the robustness of SS precursors and P -to-S converted waves (also knows as

the receiver function) from mantle discontinuities. Our method takes advantage of

the predictability of time series in the frequency-space domain and performs rank

reduction using the singular value decomposition of the trajectory matrix. We ap-

plied SSA to synthetic record sections as well as observations of 1) SS precursors

from NE China, and 2) receiver functions from southwestern Canada. In compar-

ison with raw data, the SSA enhanced results show greater resolution attributable

to the suppression of incoherent noise, which tends to reduce the signal amplitude

during standard averaging procedure, through rank reduction. In the case of un-

derside reflections, SSA enables an effective separation of the SS precursors and

the postcursors S -wave core diffractions. This method will greatly benefit future

analyses of weak crustal and mantle seismic phases, especially when data coverage

is less than ideal.

A key motivation of this thesis research is to improve the image resolution, which

can only be achieved through the combination of dense network data and effective

resolution enhancement technique. Conventional array methods in the analysis of SS

precursors stack the waveforms to obtain the average discontinuity depth through-

out the staking area. Smearing due to large Fresnel zones (>1000 km) can degrade

the fine-scale topography of the discontinuity. To provide a partial solution, we in-

troduce a depth migration algorithm in Chapter 4 based on the common scattering

point method while considering non-specular diffractions from the MTZ discontinu-

ities. Beneath the Sunda arc, the depths of the 410 (elevated by nearly 30 km) and

660 (depressed by 20-40 km) are correlated with the morphology of the subducting
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Indo-Asutralian slab. In western Java, a “flat” 410 coincides with a documented

slab gap, showing length scales of >400 km laterally and >200 km vertically. This

can be explained by the arrival of a buoyant oceanic plateau at the Java trench at

approximately 8 Ma ago, which may have caused a temporary cessation of subduc-

tion and formed a tear in the subducting slab. Our results highlight the contrasting

depths of the 410 and 660 along the shallow-dipping slab at the Banda trench. The

660, however, becomes significantly uplifted toward the east beneath the Banda Sea,

which accompanied by significantly enhanced reflection amplitudes. These observa-

tions consistently suggest the existence of a sub-slab low velocity (high temperature)

zone, possibly related to the deposition of old oceanic lithospheres.

5.2 Future work

We studied the detailed structure of the upper mantle discontinuities beneath the

NW Pacific subduction zones (Chapter 2) and SE Asia (Chapter 4) using dense

regional data-sets of SS precursors. Due to the rapidly growing number of seismic

stations, the methods introduced in thisNo prob thesis can be successfully applied

to other regions around the globe. Additionally, these imaging techniques could

potentially be applied to other seismological observations, such as triplicated body

waves (e.g., Song et al. 2004, Wang et al. 2006, Chen & Tseng 2007) and ScS

reverberations (e.g., Revenaugh & Jordan 1991, Gaherty et al. 1996), which are

sensitive to the velocity structure near the discontinuities and their depths.

We portrayed the application of the SSA filtering of 2-D time series to enhance

the robustness of seismic arrivals from mantle discontinuities (see Chapter 3). To

overcome the limitations of the SSA interpolation (especially in removing the regular

gaps in the data), other data reconstruction techniques, such as anti-alias Cadzow

102



filtering (Naghizadeh & Sacchi 2013), can be employed. A multichannel SSA ap-

proach can also be utilized for further improvement of the spatial and temporal

resolution of mantle imaging (see Oropeza & Sacchi 2011).
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Figure A.1: Synthetic SS precursor waveforms calculated using different attenua-
tion models. The input attenuation structure is taken from PREM (Dziewonski &
Anderson 1981), which is then replaced by the average of model QRLW8 for the
NW Pacific subduction zones (Gung & Romanowicz 2004) at depths from 80 to 670
km. In the depth range from 0 to 80 km, constant Q values starting from 150 (corre-
sponding to the slow mantle wedge) up to 650 (corresponding to the fast subducting
slab) at increments of 100 are employed (panels a to f). The synthetic SS precursor
waveforms in panels (g) to (l) are calculated using the corresponding attenuation
models in panels (a) to (f), respectively, and PREM density and shear wave velocity
models. The reflection amplitudes of the S410S and S660S phases, normalized to
that of SS, are also indicated for each synthetic waveform.
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Figure A.2: Reflection amplitudes of (a) S410S and (b) S660S calculated for varying
values of Q at shallower depths. The reflection amplitudes are normalized to those of
calculated form PREM to examine the effect of deviation from PREM on the reflec-
tion amplitudes and consequently on the inverted shear velocities. The amplitudes
of precursors decrease with increasing Q values. The results show absolute increases
of up to 4% and 2% for the amplitudes of S410S and S660S, respectively. Based on
the theoretical calculations, these translate into the velocity perturbation of 0.13%
(or less). In other words, the velocity at the discontinuity depth has to decrease by
0.13% (or less) to account for the effect of high attenuating mantle wedge.
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Appendix B
Challenges in the Application of
SSA

135



To explore the robustness of SSA reconstruction under different conditions, we

conduct three additional synthetic experiments. In the first experiment, we apply a 5

s time shift to a few selected traces (the dashed box in Figure B.1 indicates the time-

shifted input traces) and reconstruct the entire data-set using scaling parameter (α)

ranging from 0.2 to 0.6 (see Figures B.1b-B.1g). As expected from the Equation 7, a

reduction in α lowers the dependency of the reconstructed data on the input data and

the linearity of the move-out curve increases as α decreases (see Figure B.1). In other

words, a subjective choice of parameter α can have noticeable effects on the quality

of the reconstruction. Due to the uncertainties associated with the arrival times

of long-period waves and their timing corrections (e.g., for surface topography),

fkdhn lga α value of 0.4 (adopted from the reconstructions of P -to-S conversions

and SS precursors, see Figures 3.2 and 3.6) offers a reasonable compromise between

reconstruction fidelity and simplicity.

To examine the effects of large amplitude arrivals in the vicinity of the data gap

(Figure B.2), we perform SSA on a decimated seismic section using different values

of α. The average recovered amplitudes of the missing traces (see Figures B.2c and

B.2e) are up to 70% of the original amplitudes. To further gauge the effect of noise

levels on SSA reconstruction, we construct a synthetic record section containing

two linear events (with different velocities) that are contaminated by a spurious

outlier (Figure B.3a). Then the input data are reconstructed using the first two

largest singular values (k = 2) and α = 0.2, 0.4, and 0.6 (see Figures B.3b-B.3d).

The recovered amplitude of the outlier increases with α, reaching nearly 50% of the

input at α = 0.6. However, the effects of the outlier are local (i.e., minimal at other

distances) in all cases, which suggest that localized, high-amplitude noise is unlikely

to alter the main observations and interpretations.
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Figure B.1: Application of SSA when arrivals are locally delayed by 5 s. (a) Input
data. (b), (d) and (f) Reconstructed data using k = 1 and α = 0.2, 0.4, and 0.6, re-
spectively. (c), (e) and (g) The corresponding differences between the reconstructed
and input data. The dashed box outlines the time-shifted signals.
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Figure B.2: Effect of large amplitude arrivals on the SSA interpolated data. (a)
Original data consisting of two linear events. The steeper event shows higher am-
plitude signals in the middle of section. (b) Decimated input data. (c) and (e)
Reconstructed images using α = 0.4 and 0.8, respectively. Only the first two sin-
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between the SSA interpolated and original data.
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Figure B.3: Effect of a high amplitude outlier on the SSA reconstructed results.
(a) Input section containing two linear events with a large amplitude outlier in
between. (b), (c) and (d) The SSA interpolated sections using k = 2 and α = 0.2,
0.4 and 0.6, respectively. The amplitude recovery of the input outlier is shown on
the reconstructed sections. (e), (f) and (g) The corresponding differences between
the interpolated and input data.

139


