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Abstract. To date, research on web-service discovery has followed the
traditional component-discovery methodology and has examined signature
matching, specification matching and information retrieval approaches, based
on the interface description and documentation captured in WSDL. WSDL
specifications, however, can be information poor, with standard data types,
unintuitive identifiers for data, messages and operations and little natural-
language documentation. The nature of the usage of the WSDL elements in the
context of a BPEL composition can be an extremely useful source of
information in the context of service discovery. In this paper, we discuss our
method for service discovery based on interface and usage matching, exploiting
the information captured in the WSDL and BPEL specifications. Our approach
views both WSDL and BPEL as hierarchical structures and uses tree alignment
to compare them in order to assess their similarity and to recognize the
correspondences between their elements. We illustrate our method with two
example scenarios.
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1 Motivation and Background

Service discovery is an important task essential in developing service-oriented
applications. In a typical service-discovery scenario, the service requester is looking
for a service to complete a composite application and has specific expectations about
the candidate service. In general, there are three types of desiderata for a service: it
should (a) perform a certain task, i.e., maintain a shopping cart, (b) expose a particular
interface, i.e., view, add-product and remove-product, and (c) behave in a certain
manner, i.e., ignore any request for product removals if no product additions have
been performed yet. Such expectations motivate and guide the developers’ searches
through web-services repositories, as they try to discover and select the service that
best matches their needs.

To date, web-service discovery approaches have followed the “traditional” research
methods of component discovery through either signature or specification matching.
Signature matching assesses the similarity of the requested and provided interface, in
terms of data types, messages and operations. Specification matching focuses more on
the nature of the task delivered by the candidate service and its logical relation to the
task required. Information-retrieval methods query the repository for services whose



identifiers and documentation are similar to the natural-language description of the
developers’ request.

This research views web services as traditional components, consisting of an
accessible specification and a hidden implementation. As a result, the precision of the
discovery process tends to be limited in that (a) often irrelevant services appear as
plausible candidates and (b) even when relevant services are selected, it is not clear
how exactly their data and operations match the requestor’s specification. However,
this stance is unnecessarily limiting: a WSDL specification of a complex web service
may be associated with a BPEL specification declaratively describing the process by
which the public WSDL operations are used. This specification provides two
important types of information, particularly relevant to the task of service discovery:
(a) the usage protocol of the provided operations and the (b) overall usage patterns of
the data types. Essentially, this information enables us to consider the third type of the
requester’s expectations described above in the content of service discovery by
assessing the similarity of two examined services based on how well the usage
protocol of the candidate service operations aligns with the expected behavior of
desired service in the context of its composition with other services in the service-
oriented application.

In this paper, we discuss our method for service discovery using both WSDL and
BPEL. Our method involves the following steps: (a) the relevant information from the
WSDL specification of the services and the BPEL specification of its example usage
is parsed and represented in a special-purpose tree representation; and (b) the tree
representing the specifications of the desired service is compared against the tree
specifications of the candidate services to select the most similar one and to precisely
identify how the data and operations offered by the candidate map to the requestor’s
needs.

The rest of this paper is organized as follows. Section 2 reviews related research on
service discovery. Section 3 discusses two case studies illustrating the insufficiency of
WSDL for effective service discovery and the relevance of BPEL and usage-protocol
information to the task. Section 4 presents our service-matching method based on tree
alignment. Section 5 shows how the presented method resolves the issues raised in
Section 3. Finally, Section 6 concludes with the essential ideas of our work.

2 Related Research

Interface matching examines the inter-operability between a published service and a
requested one. This type of approaches are concerned with mapping the elements of a
candidate published interface to the elements of the requested one. Usually, such a
mapping is based on signature matching between the published operations and the
requested ones. For example, Wang and Stroulia [11] proposed a family of WSDL
matching methods that consider both the identifier and structural similarity of data
types and methods. Payne et al [9] developed a DAML-S matching method, assuming
a common ontology between the publisher and the requester, based on parameter
matching using type subsumption and inheritance relationships. Syeda-Mahmood et al
[10] proposed an interface matching approach that is based on name similarity.



However, these approaches suffer from two drawbacks: first, interface matching does
not guarantee a successful interaction because such an interface usually does not
specify the usage conditions of the operations involved. Hence, an improper usage of
the published operations would lead to an interaction failure. Second, interface
matching may easily get confused when services are not distinctive; because it relies
on documentation and on parameter lists, when the data types are simple and there is
not much documentation there is not enough information on the basis of which to
assess (dis)similarity.

Specification-matching approaches are based on matching the operation description
of both the published service and the requested one. However, these approaches have
a common drawback that they match one aspect of a process description: either
control structure (like Petri nets [4], and π-calculus[7]), or message flow (like WSDL
[2][3], and BPEL finite state machines [12]).

3 The Service-Discovery Problem in two Examples

In general, when looking for a service, a developer has in mind both the signatures of
the operations desired and some behavioral scenarios, in which the candidate service
is expected to participate. Discovery based on WSDL matching only is concerned
only with the matching of the operations desired and provided. However, given a
candidate service, there usually exist multiple likely mappings between the desired
operations and the ones provided by the candidate service. Selecting one of these
mappings is often impossible when neither the syntactic types nor the identifiers and
documentation are distinctive. In this section, we discuss two such cases.

3.1 Simple data types

(a) A published WSDL description (b) A requested WSDL description

Fig. 1. A visual representation of two WSDL descriptions. Operations are shown on the left-
hand side and messages are shown on the right-hand side. Each operation is connected to its
associated input and output messages. Each message description includes its associated
parameter name and type.

Consider, for example, the case when the provided service performs an asynchronous
task: the consumer is expected to first submit the task and obtain a receipt and then
return for the results associated to that receipt; if, at that time, the task is completed
the results are returned to the consumer otherwise an exception is returned. Fig. 1



illustrates the WSDL specifications of a provided and requested service, both
essentially involving such a task-submission service.

Assuming only the information shown in Fig. 1, there are two possible and equally
likely mappings between the operations requested and provided. The published
operation GetResult could be equally likely mapped to the requested PlaceJob or
RetrieveOutput (with corresponding mappings for SubmitTask), since all the
involved message parameters are strings with not particularly distinct names and there
is no real reason to prefer mapping the job to the task-desc instead of the task-
no,  which would actually lead to the correct mapping of GetResult to
RetrieveOutput.

3.2 Divergent Application Domains

Consider now the case of a product catalog service, originally designed in the music
domain (shown in Fig. 2), when a consumer is interested in a book catalog (shown in
Fig. 3). Fig. 2(a) shows that the published service deals with an album-details
ontology; while Fig. 3(a) shows that the consumer is interested in book ontology.
Additionally, both Fig. 2(b) and Fig. 3(b) show the published and expected
operations, respectively.

(a) The published album ontology (b) The published WSDL description

Fig. 2. A visual representation of the published WSDL description; to the left, is a visual
representation of the XML schema definition; to the right, the operations and message
descriptions are shown.

Given our current experience and understanding of on-line product catalogs, it is
unlikely that a catalog service would be developed to include such domain-specific
details. However, in general, domain-specific assumptions about the application
ontology may “seep through” the service design. In such cases, although the published
service deals with a different ontology than that of the service consumer, the
consumer could still effectively use the service, if only the correct mapping between
the divergent ontology elements were found. For example, in this scenario, both
services register items, search the catalog, get item details, and find other items from
the same producer/publisher. It would therefore be desirable to “discover” the
published service in response to such a request.



The challenge then becomes to establish the proper mapping between the two
divergent ontology elements and service operations. Mapping the album-details
ontology of Fig. 2(a) against the book ontology of Fig. 3(a) would result in mapping
the Price elements to each other (they have the same name and data type) and the
song-list to the chapter-list (they are both sequences). However, there
are no distinguishing features to guide the mapping between the remaining elements
(all of them have the same data types and their names are inspired from different
domain ontologies and are dissimilar) and hence there are six possible combinations.

(a) The requested book ontology (b) The requested WSDL description

Fig. 3. A visual representation of the consumer’s expected WSDL description.

4 The Method

WSDL descriptions, including their associated XML Schemas underlying the service
data types, do not contain sufficient information to resolve the ambiguity in mapping
the requested and provided operations, messages, and data types. To inject more
information in the service-discovery process, one might assume richer
representations, such as those advocated by the semantic-web effort. Until the
adoption of such representations becomes more prevalent, however, we can exploit
the information on the operational semantics of the WSDL implied by its internal
behavior represented in is associated BPEL.

In the web-services stack of standards, three aspects of a service are declaratively
described in XML syntax: its data types (WSDL types and XML Schema), its
functionalities (WSDL operations and messages) manipulating and transforming these
data types, and, if it is part of more complex composite service, its behavior (BPEL
flows) while delivering its functionalities.

The basic intuition underlying the method presented in this paper is that all these
three aspects of a service description provide information that can be useful when
considering a candidate service as a potential match for a requested one. More
specifically, ambiguities in data mapping can be resolved by considering the roles of
the data types in the operations provided by the service. Furthermore, ambiguities in
operations’ mapping can be resolved by examining the underlying behaviors
accomplishing these operations.



Thus, our method is based on a three-level comparison of the corresponding
service aspects, where a specialized tree-alignment approach adopted for each level.
First, the BPEL behavioral specification of the provided service is compared against
the behaviors expected of the requested service. Next, the operations of the desired
and the candidate services are compared, using a cost function that is based on the
results of BPEL matching of the first step. Finally, the data types of the two services
are matched using another cost function that is based on operation matching of the
second step.

4.1 Web-service Specifications as Trees

For each of the three steps in the service aspects’ comparison, we adopted the SPRC
[7] tree-alignment algorithm, developed in the context of our work in RNA structure
alignment. SPRC takes as input two labeled ordered trees and produces as output the
minimum edit sequence that can transform one into the other. A labeled tree is a tree
where each node has a label that if changed would result a different tree. Additionally,
in ordered trees the relative order of sibling nodes and the parent-child relationships
between nodes are significant, i.e. changes to the ancestor-descendant and sibling-
order relationships results in a different tree.

Both BPEL and WSDL descriptions are expressed in terms of XML documents
that can be represented as trees, where each XML element is represented by a tree
node and an element’s contained elements and attributes are represented as children
nodes of that element’s node.

4.2 Service Discovery as Tree-Edit Distance Minimization

Representing the BPEL and WSDL descriptions as ordered labeled trees, the problem
of service discovery becomes to “align” the requested service with the candidates in
order to select this candidate that has the minimum-cost edit sequence with the
requested one, to which the SPRC algorithm can be applied.

The SPRC tree-alignment algorithm is based on the Zhang-Shasha tree-edit
distance [13] algorithm, which calculates the minimum edit distance between two
trees given a cost function for different edit operations like node change, deletion, and
insertion. In SPRC, the Zhang-Shasha algorithm has been modified to use an affine
–cost (i.e., context sensitive) policy and to report all the alignment solutions that are
associated with the calculated tree edit distance.

As a post-processing step, SPRC applies a set of simplicity heuristics to reduce the
cardinality of the set of reported edit sequences. The objective of SPRC’s simplicity-
based filtering is to discard the more unlikely solutions from the solution set produced
by the SPRC tree-alignment phase. There are three simplicity heuristics.
(1) Solution Minimality: The first simplicity heuristic advises the algorithm to

“prefer minimal edit sequences”: when there is more than one different sequence
with the same minimum cost, the one with the least number of deletion and/or
insertion operations is preferable.



(2) Vertical Simplicity: The second simplicity heuristic advises the algorithm to
“prefer contiguous similar edit operations”. Intuitively, this rule says that the
contiguous same edit operations could be considered as one single operation that
involves long segments of XML nodes. When there are multiple different paths
with the same minimum cost and the same number of editing operations, the one
with the least number of changes of operation types along a tree branch is
preferable.

(3) Horizontal Simplicity: In addition to maximizing the number of nodes along a
tree branch to which the same edit operation is applied, SPRC also proposes that,
to the extent possible, sibling nodes should also suffer the same edit operations.

4.3 A Usage-Aware Cost Function

As we have discussed earlier, the specific service-discovery issue we address in this
work is to resolve the ambiguities –with respect to data and operations mappings– that
frequently occur when a candidate service has been selected in response to a
requestor’s query using WSDL matching only. In many cases, because the data types
are simple and the identifiers are not distinctive, there are multiple equally likely
mappings between the requested service operations and the ones provided by the
candidate. In such cases, we propose that the BPEL specifications of the usage
protocols of the provided service operations and the behaviors expected of the
requested service can be examined to guide the process towards a less ambiguous
mapping.   

In our three-level tree-alignment method, the similarity of the elements usage
guides their mapping. More specifically, the correspondences identified between
operations after aligning the BPEL specifications (i.e., the usage of the operations in
the process flow) inform the WSDL alignment and, similarly, the correspondences
identified between data during WSDL-message-operations alignment (i.e., the usage
of data in the service functionalities) inform the WSDL-data-type alignment.

This is accomplished through the design of an appropriate cost function for each
tree-alignment step. A cost function is used to evaluate the cost of various tree editing
operations, e.g. change, delete, and insert. In our method, the results of a higher-level
alignment step affect the cost function of the next level step. In other words, if the
references of two elements are mapped to each other in the former step, then the cost
of mapping the two elements in the later step is reduced, proportionally to the degree
of mapping (DOM). The degree of mapping is defined as twice the number of mapped
references of two elements divided by the total number of references of both
elements.

For example, the WSDL operation matching step’s cost function is defined as
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where ),( yxDomBPEL  is the degree of mapping ratio that is calculated as twice the
number of references where element (operation or message) x in BPEL1 is mapped to
references of element (operation or message) y in BPEL2 divided by the total number



of references of both elements. Similarly, the data-type matching step’s cost function
is defined as:
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Incorporating the DOM ratio of a successive matching step into the current
matching step would incorporate the usage similarity of references (of the successive
step) with the matching the real components of the current step.

5 The Examples Revisited

In this section, we revisit the two examples in Section 3. Fig. 4 shows the BPEL
descriptions of the candidate published service and the requested service from the
example discussed in Section 3.1. Fig. 4(a) illustrates the workflow of a published
service. In this figure, the service provider implicitly describes how that service is
supposed to be used. Fig. 4(c) shows the expected scenario from the consumer point
of view. The diagrams (a) and (c) provide a visual representation of the BPEL
specification while the diagrams (b) and (d) represent the two specifications as trees.
In the diagrams (a) and (c), each action is annotated with its name and, between
parentheses, the name of the operation to which it belongs. There are two types of
message actions: (1) a receive action annotated with a pink left arrow, and (2) a reply
action annotated with a green right arrow. In the diagrams (b) and (d), deleted nodes
are highlighted with a red background, while changed (or replaced) nodes are
highlighted with a blue background.

The result of aligning the BPEL descriptions of Fig. 4(a) and Fig. 4(c) is shown in
Fig. 4(b) and Fig. 4(d): the receive action named “receive task” associated with the
operation named SubmitTask is mapped to the receive action named “place a job”
associated with the operation named PlaceJob. Similarly, all references to the
operation SubmitTask are mapped to references to the operation PlaceJob, and
vice versa. Fig. 4(b) and Fig. 4(d) show that all references to the operation
GetResult are mapped to references to the operation RetrieveOutput and vice
versa. Hence, we can conclude the following ),( yxDomBPEL

 function:

X\y PlaceJob RetrieveOutput
GetResult 0% 100%
SubmitTask 100% 0%

Therefore, the cost function for the subsequent alignment step is advised to reduce
the mapping cost for both (SubmitTask, PlaceJob) and (GetResult,
RetrieveOutput) to zero. Thus, there is no longer any ambiguity for the
operations and message matching process.



(a) Visual
representation

(b) Tree
representation

(c) Visual
representation

(d) Tree
representation

Provider’s published BPEL Consumer’s expected BPEL

Fig. 4. Visual and tree representations of the BPEL specifications of the two services in the
simple-data-types example.

Applying the tree-alignment algorithm for the BPEL trees in Fig. 4(a) and Fig. 4(c)
results in ten possible edit sequences. For example, in Fig. 4(a), there are two switch
actions: an outer one named “valid task no?”, and an inner one named “Task is
done?”; while in Fig. 4(c), there is only one switch action named “Is job finished”.
Hence, intuitively, there should be at least two possible alignments: (1) to map the
outer switch in BPEL1 to the switch in BPEL2 while deleting the inner one, and (2) to
map the inner switch in BPEL1 to the switch in BPEL2 while deleting the outer one.
Fig. 5 shows a subset of the produced solutions of the tree-alignment algorithm. Due
to space limitations, only the tree representing BPEL1 is shown. This figure illustrates
that there are different combinations of mapping the elements between the two given
trees.

It is interesting to note that applying the simplicity heuristics vertically and then
horizontally reduced the size of the solution set from 10 to 3 and then 2 solutions. For
example, counting the vertical refraction points for the four different solutions in Fig.
5(a), (b), (c), and (d) would result in 2, 2, 5, and 6 points, respectively. Hence,
solution in Fig. 5 (c), and (d) are discarded because they don’t have the least number
of refraction points. The remaining solutions are the best in that they map complete
branches across the two trees. Furthermore, the number of horizontal refraction points
for the maintained solutions (namely, in Fig. 5(a) and (b)) are 2 and 4 points,
respectively. Hence, solution Fig. 5(b) is discarded as not having the least number of
horizontal refraction point, which is also justified as it tries to map dispersed siblings



to adjacent ones. Hence, solution in Fig. 5(a) is relatively the best in mapping whole
sub-trees to whole sub-trees.

(a) (b)

(c) (d)

Fig. 5. A subset of the solution set of example 1. Each of these figures shows a visual
representation of the changes to BPEL1 implied by the alignment process. In each of these
figures, a red cross means a deletion, a blue highlight means a change. Additionally, a yellow
star refers to a vertical refraction point, while a dotted arrow with a yellow star in the middle
refers to a horizontal refraction point.

The ambiguity issues in the example of Section 3.2 are also resolved through
matching the usage of both the operations and the data types. For example, matching
the BPEL description in Fig. 6(a) against the one in Fig. 6(b) reports that references to
operations PublishAlbum, Search, GetDetails, and GetRelatedAlbums
match the references to operations AddBook, SearchLibrary, GetBookInfo,
and FindAuthorBooks, correspondingly. Using the resulting degree of mapping
(DOM), these operations are mapped to each other, and, as a result, their signatures
including data-type references are also mapped. Thereby, the earlier ambiguity in the
mapping of the data-type elements is also resolved. For example, the published
album-name, artist-name, and album-id match the requested book-name,
author-name, and matches ISBN, respectively.



(a) Visual
representation

(b) Tree
representation

(c) Visual
representation

(d) Tree
representation

Provider’s published BPEL Consumer’s expected BPEL

Fig. 6. Visual and tree representations of the BPEL specifications of the two services in the
divergent-application-domains example.

6 Conclusions

In this paper, we discussed our approach to resolving ambiguities in the mapping of
discovered service elements to those of the service requested by the consumer, by
examining the usage of these elements in the context of BPEL-specified behavioral
specifications of the service in action. The basic intuition underlying our work is that
there are three types of information (in the web-services stack of specification



standards) relevant to deciding whether or not a particular discovered service should
be adopted in the context of a new service-oriented application under composition: (a)
its data types and their identifiers (indicating the application-domain ontology), (b)
the syntactic structure of its interface (indicating the number and type of
functionalities provided by the service), and (c) the behavioral usage protocol of the
service functionalities (indicating the role that these functionalities can play in the
context of an overall application). Our service discovery method is based on tree-
alignment of the three corresponding specifications, with results from each step
feeding into the alignment of the next step below. In this paper, we have illustrated
our method with two illustrative examples; a more extensive and systematic
experiment against a full-fledged service repository is under way.
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