
University of Alberta

G raphene-based N anodevice D esign and M odeling

by

H uaixiu  Zheng 

A  thesis submitted to the Faculty o f Graduate Studies and Research 
in partial fulfillment o f  the requirements for the degree o f

M aster o f  Science

Electrical and Computer Engineering

Edmonton, Alberta 
Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Library and 
Archives Canada

Bibliotheque et 
Archives Canada

Published Heritage 
Branch

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada

Your file Votre reference 
ISBN: 978-0-494-33383-9 
Our file Notre reference 
ISBN: 978-0-494-33383-9

Direction du 
Patrimoine de I'edition

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats.

AVIS:
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats.

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission.

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation.

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis.

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis.

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these.

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Abstract

As semiconducting devices are fast approaching their physical limitations, there are 

urgent needs to search for next generation nanodevices. Among various nanodevices 

including carbon nanotube devices, quantum devices and spintronic devices, graphene- 

based devices are most promising. Graphene is a flat monolayer o f carbon atoms tightly 

packed into a two-dimensional (2D) honeycomb lattice. In this thesis, we present 

graphene-based device designs and modeling. The contributions include (i) Deriving the 

analytical solution o f the wave function and energy dispersion o f armchair graphene 

nanoribbons (GNRs) based on the tight-binding (TB) approximation, (ii) Discussing the 

effects of chemical edge modifications on the structural and electronic properties of 

GNRs with combined first-principles and TB calculations. Theoretical results show that 

addends can change the band structures of armchair GNRs and even result in an 

observable metal-to-insulator transition, (iii) Proposing the designs o f three novel 

nanoelectronic devices using graphene nanoribbons according to the Landauer-Buttiker 

formula and the tight-binding model. By applying a gate voltage in the junction, a switch, 

a Z-shaped transmission gate and a field-effect transistor can be realized, respectively. 

Our device model provides a new platform for designing functional graphene-based 

molecular devices in future.
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Chapter 1

Introduction

Graphene is a flat carbon sheet. Due to its unique quantum effects and electronic 

properties, researchers predict that graphene-based devices can replace silicon 

devices and revolutionize future nanoelectronic devices and circuits. [1 -3]

't~*X 'JT I ~
: NtNNNNt.':
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Fig. 1.1: Various graphitic forms. Graphene is a 2D building material fo r  carbon 

materials. It can be wrapped up into OD buckyballs, or rolled into ID  nanotubes 

or stacked into 3D graphite. Reproduced with permission from  A. K. Geim, and K. 

S. Novoselov, Nature Mater. 6, 183 (2006).
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Carbon exists in various forms, such as ‘buckyballs’, diamonds, nanotubes and 

graphite, to name a few. Graphene is a flat monolayer of carbon atoms tightly 

packed into a two-dimensional (2D) honeycomb lattice, and is the basic building 

block o f graphitic materials. It can be wrapped up into zero-dimensional (OD) 

fullerenes, rolled into one-dimensional (ID ) nanotubes or stacked into three- 

dimensional (3D) graphite as shown in Fig. 1.1. In the past, researchers had 

projected that planar graphene alone could not exist in the free state because it is 

not stable compared to other formations o f curved structures, such as soot, 

fullerenes, and nanotubes [4-5].

Fig. 1.2: Single- and multiple-layer graphene made by G eim ’s group: (A) 

Photograph o f  multilayer graphene flake with thickness ~3nm on top o f  an 

oxidized Si wafer. (B) Atomic force microscope (AFM) image o f  a 2um by 2um 

area o f  above a flake o f  graphene. (C) A F M  image o f  single-layer graphene. (D)

2
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Scanning electron microscope image o f  the experimental devices prepared from  

few-layer graphene. (E) Schematic view o f  the device in (D). Reproduced with 

permission from  K. S. Novoselov et al., Science 306, 666 (2004).

In 2004, Andre Geim at the University o f Manchester, UK and his Russian 

colleagues successfully separated graphene from graphite. The resulting graphene 

is a one atom thick layer o f carbon. [3] The graphene films were prepared by 

mechanical exfoliation (repeated peeling) o f small mesas o f highly oriented 

pyrolytic graphite. This approach is very reliable and allows us to prepare few- 

layer graphite (FLG) films up to lOum in size as shown in the Fig. 1.2. These 

FLG films can even be viewed by the naked eye. Electronic devices have been 

created with the obtained graphene films [3],

3
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Fig. 1.3: SEM  and TEM  images o f  a graphene-based composite [6]. a-d, SEM  

images o f  the microtomed composites o f  the graphene sheets at different 

concentrations (vol. %): a, 0.24; b, 0.96; c, 1.44; d, 2.4. e, f  High-resolution 

phase contrast images and SAED patterns (inset), which show the honeycomb 

patterned lattices.

Later on, Rodney Ruoff and his team at Northwestern University came up with 

a chemical synthesizing method to make large amounts o f graphene embedded in 

a polymer matrix [6] as shown in Fig. 1.3. The researchers started with graphite 

oxide — graphite with oxygen-containing chemical groups attached. After further 

chemical modifications and treatments with ultrasound, the graphite oxide was 

separated into layers, and dispersed through a solvent in which a polymer, such as 

polystyrene, was dissolved. Chemical reduction further removed most o f the 

oxygen groups, and left behind graphene sheets crumpled within a solid polymer 

[6], The resulting material is strong, and electrically and thermally conducting. 

Such properties are similar to those o f carbon nanotube composites, which isn’t 

surprising to us because a sheet o f graphene is basically an unrolled nanotube. 

However, the resulting graphene-based composites produced by chemical method 

are cheaper and more reliable compared to the graphene obtained by mechanical 

method. As a result, this chemical process is perfect for making materials that are 

lightweight, yet strong and conducting, such as aircraft fuselages.

To-date, single- or few- layer graphene can be produced by either the

4
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mechanical exfoliation method [3] or the chemical method [6]. The resulting 

graphene films are stable and have already shown interesting physical properties 

and great potential in various applications.

1.1 Graphene -  An Interesting 

Material

Graphene, a two-dimensional material, shows exceptionally high crystal structure 

and electronic properties. It has already revealed a large amount o f new physics 

and potential in broad applications. As the semiconductor industry is fast 

approaching its limits for further performance improvements based on current 

silicon technologies,(following the so called ‘Moore’s law), there is a constant 

search for new, nontraditional materials. Graphene is quite different from 

conventional semiconductors like silicon. Several novel properties make graphene 

a very promising candidate to replace silicon in emerging nanoscale electronics. 

Research interest in this material has grown exponentially [1-11]. For instance, 

the number o f publications doubled in 2006 (up to a total of 350 papers according 

to the ISI citation index). The American Physical Society March meeting 2007 

includes eight sessions on this topic. Nature Materials along with other Nature 

journals have dedicated a web site focusing on this subject. The aim is to 

highlight recent research achievements in this field [12-14],

5
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1.1.1 Short History

Graphene is a thermodynamically stable material and exists under normal 

condition. More than 70 years ago, Landau and Peierls predicted that strictly 2D 

crystals could not exist due to thermal fluctuations in the low-dimensional crystal 

lattices. These thermal fluctuations would lead to atomic displacements 

comparable to interatomic distances [15]. A set o f experimental observations have 

strongly supported this argument. In fact, the melting temperature o f thin films 

rapidly decreases as thickness decreases and thus the films become unstable 

(segregate into islands or decompose) with a typical thickness o f tens o f atomic 

layers [14, 16-17]. As a result, atomic monolayers have so far been known only as 

an integral part o f large 3D structures and they are usually grown epitaxially on 

top o f monocrystals with matching crystal lattices [17], Without a 3D base, 2D 

crystals were presumed not to exist.

In 2004, scientists successfully separated graphene as a free standing 2D crystal 

[3]. The resulting 2D graphene has been found to be continuous within a very 

large range with high crystal quality [7], Electrons in graphene can travel 

thousands o f nano-meters without any scattering [5].

6
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1.1.2 Unique Properties

Graphene is quite different from conventional semiconductors. Several novel 

properties make graphene a very promising candidate to replace silicon in future 

nanoscale electronics:

(a) Electrons pass through silicon in a series o f collisions and generate heat. 

Collisions limit the speed and size of silicon transistors [1]. However, 

electrons in graphene transport in a ballistic fashion and follows linear I-V 

characteristic as shown in Fig. 1.4 [3], This property allows us to design low- 

power, faster-switching transistors (refer to our later discussion).

1 0 0

-100V

+ 100V

o v

0 20 40 60
F(mV)

Fig. 1.4: I-V  characteristic o f  a graphene device with three different gate voltages. 

Reproduced with permission from  K. S. Novoselov et al., Science 306, 666 

(2004).

7
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(b) Flat graphene wafers are easily etched using conventional lithography 

techniques and they can be cut into continuous graphene nanoribbons to make 

up electronic circuits. This means that metal wires are no longer needed as 

connections, which overcomes the major obstacle in the electrical applications 

o f carbon nanotubes [1] since high electric resistances occur when nanotubes 

are connected with metal wires in an electronic circuit.

(c) Graphene can be tuned to be metallic, semiconducting or even insulating by 

applying an external gate-voltage or by controlling the width [7-9]. This 

allows for great flexibility in tailoring the electronic properties in order to 

build various nanoelectronics devices, e.g., transistors, electric switching and 

so on.

(d) Electrons in graphene behave like relativistic particles with zero rest mass and 

have an effective ‘speed o f light’ c*=106 m s '1 [9] . These two-dimensional 

Dirac fermions in graphene collectively exhibit a variety o f unusual quantum- 

mechanical phenomena previously thought to occur only in dense plasma 

around black holes and neutron stars, or in powerful particle accelerators. One 

typical example is the Klein paradox, in which fast-moving particles pass 

straight through a seemingly impenetrable barrier [10].

8
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1.1.3 New Physical Phenomena

Electrons in graphene are predicted by the theory and observed in experiments to 

behave like massless relativistic Dirac Fermions [2, 5, 9-12], Graphene has also 

provided a platform for studying ‘relativistic’ condensed-matter physics or 

quantum relativistic phenomena, which are unobservable in high-energy physics 

[14]. Graphene exhibits many new physical phenomena listed as follows.

(a) Linear Energy Spectrum

Graphene’s honeycomb lattice is made up o f two equivalent carbon sublattices A 

and B, which leads to the Dirac-like Hamiltonian [5]

H  =  hvF
f  0 kx -  iky A 

y kx + ik y 0
= h v Fa » k

r

where k is the quasi-particle momentum, <r is the 2D Pauli matrix, and vf is the 

k-independent Fermi velocity. This Hamiltonian generates a linear energy 

spectrum E  = hvFk  within the low energy range near the edges o f Brillouin zone 

( \ E \ < \ e V  ). This observation is totally different from the parabolic energy

h 2k 2
spectrum E  = ------  in typical semiconductors. In addition, from the linear

2m

relation as shown in Fig. 1.5, we also observe that the valence and conduction 

bands are symmetrical and touch at the Fermi level E=0, which is called the 

“Dirac point” . This Dirac point leads to the zero energy gap o f graphene. 

However, the density o f states is zero at the Dirac point so scientists usually call 

graphene a zero-gap semi-metal. Therefore, graphene can have partial

9
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characteristics o f both metals and semiconductors.

Fig. 1.5: Band structure o f  2D graphene. Its valence and conduction bands touch 

at the discrete points in the Brillouin zone, and show a semimetal characteristic. 

The energy momentum dispersion relation becomes linear in the vicinity o f  those 

points. Consequently, the electron has zero effective mass.

(b) Chiral Quantum Hall Effects

In the early stages o f graphene research, the main research has been focused on 

the electronic properties of graphene, researchers attempted to understand 

graphene’s Dirac-like spectrum. Among spectacular phenomena observed in 

graphene so far, there are two new ‘chiral’ quantum Hall effects (QHEs): (i) 

minimum quantum conductivity in the limit of a zero concentration o f charge 

carriers and (ii) the strong suppression o f quantum interference effects [14]. These 

two phenomena have never been reported in condensed matter materials. Fig. 1.6

10
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shows the QHE behavior in graphene, which is a relativistic analogue o f the 

conventional integer QHE. From this figure, we can observe that a continuous 

ladder o f equidistant steps in the Hall conductivity passes through the Dirac point, 

where charge carriers change from electrons to holes. However, if we look closely 

we can find that the sequence o f Hall conductivity in graphene is shifted by lA 

with respect to the standard QHE sequence. Therefore, this QHE has been named 

as ‘half-integer’ QHE to reflect both the shift and the fact that it is still a kind of 

QHE. This anomalous phenomenon is now well understood and it is attributed to 

the QED-like quantization o f graphene’s electronic spectrum in magnetic field B. 

The existence o f a quantized energy level at zero E, as shown in the right 

subfigure in Fig. 1.6, leads to the lA  (non-zero) plateau at E=0.

Fig. 1.6: Chiral quantum Hall effects. Left subfigure, the hallmark o f  massless 

Dirac ferm ions is QHE plateaux in <rxy at ha lf integers o f  4e2 / h. Right subfigure, 

Landau quantization in graphene, the sequence o f  Landau levels in the density o f

f i E  IB
2 0 2 4

n ( 1 0 1sc m ^ )  iifliii« M i a « iia M iyW..............ilm j....

tfl

f

states D  is described by EN x f N  fo r  massless Dirac ferm ions in graphene.

11
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Reproduced with permission from  A. K. Geim, and K. S. Novoselov, Nature 

Mater. 6, 183 (2006).

(c) Klein Paradox

Klein Paradox [10, 18-19] was firstly proposed by the Swedish physicist, Oskar 

Klein, in 1929. He predicted that a relativistic particle can completely pass 

through a potential barrier without any reflection, even when the height of the 

barrier exceeds twice o f the particle’s rest energy. This paradox contradicts our 

intuition and cannot be explained based on the quantum mechanics either. 

According to the quantum tunneling theory, electrons in conventional 

semiconducting materials should bounce back when it hits the barrier, or at least 

tunnel through the barrier with transmission coefficient exponential decay with 

the increasing height or the width o f the barrier. However, recently, graphene has 

been predicted to be an effective medium where relativistic quantum tunneling 

described by the Klein paradox can be tested experimentally [10]. As shown in 

Fig. 1.7, conduction electrons with energy E can tunnel through a barrier Vo when 

valence band shifts upwards. Theoretical results show that under resonance 

conditions,

qxD = 7 iN,N = 0,±1, ....

the barrier becomes transparent (T=l) even when barriers | V0 1» E  as shown in 

Fig. 1.8.

12
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E  • 0
* *■ - - • /  :i:; ; . ;;r:' .. - t --------------------------------------► 1

Fig. 1.7: Tunneling process through a potential barrier in graphene. Reproduced 

with permission from  M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nature 

Physics 2, 620 (2006).

30'=

0.2

0.2

- 30 '

- 60 '

6 0 '

0.8

0.6

0.4

0.2

0.2

0.4

0.6

0.8

—90 '

Fig. 1.8: Klein-like quantum tunneling in graphene systems. a,b, Transmission 

probability T  through a 100-nm-wide barrier as a function o f  the incident angle
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fo r  single- (a) and bi-layer (b) graphene. The barrier heights VO are (a) 200 meV  

and (b) 50 m eV  (red curves) and (a) 285 and (b) lOOmeV (blue curves). 

Reproduced with permission from  K. S. Novoselov et al., Science 306, 666 (2006).

1.1.4 Electronic Devices

Creating novel graphene-based electronic devices is attracting lots o f research 

interest. Companies, such as Intel and IBM, fund research in this area. These 

companies are actively looking for new nanomaterials to replace silicon-based 

technology because they foresee that semiconducting material is fast approaching 

its fundamental limits. Graphene has great potential for future nanoelectronics due 

to its high carrier mobility. The mobility can be even higher with increased 

electric-field-induced concentrations, but chemical doping has little or no effect 

on the mobility [10, 20]. This phenomenon is equivalent to ballistic transport on a 

submicrometre scale at 300 K. A ballistic transistor at the room temperature has 

long been a tantalizing, but elusive goal o f electronic engineers. Graphene seems 

to be a promising material to make the elusion come true.

Graphene-based electronic devices can be constructed by tailoring the conductive 

graphene sheet, in which various nanoscale structures can be curved to make a 

pure graphene-based circuitry. The advantage o f using a pure graphene-based 

design is that every electronic components including, transistors and interconnects 

can be made out o f graphene. Next, we will show several typical graphene device 

designs such as graphene transistors, quantum dot devices and veselago lens.

14
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(a) Graphene Transistors

m .

I H  I I IVY  1 t  1 SCI O.SkV X10.000 1#/m W D 9.2m m

Fig. 1.9: Scanning electron microscope image o f  a graphene transistor [21],

(MV/cm)
-3 .33

i  1.8

top-gate electric field Etg (MV/cm)

Fig. 1.10: Top-gate transfer characteristics o f  the graphene-transistor with 

different backgroundfields, Ebg [21].

15
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The top-gate transfer characteristics o f a graphene transistor are shown in Fig.

1.10 and the drain current Id is clearly modulated by the top-gate field, Ebg. When 

the negative top-gate fields are increased, a constant increase o f hole currents is 

observed. For positive top-gate fields, there is a distinct plateau between ~0.1 and 

-0 .4  MV/cm, presumably due to oxide defects.

(b) Graphene Quantum Dot Devices

Fig. 1.11 shows a graphene quantum dot device made entirely o f graphene by 

electron-beam lithography and dry etching. The resulting graphene quantum dot 

device exhibits very fine characteristics o f standard quantum dots including 

coulomb blockade and single-electron tunneling as shown in the right subfigure of 

Fig. 1.11. This device, however, can only work at low temperature. Researchers 

are working hard to extend its operation to the room temperature, which will be 

practical for real applications.

3

2
m  
-31to

1

0 
<

Fig. 1.11: Coulomb blockade in graphene-quantum dots at low temperature [14]. 

Left subfigure: Conductance o f  such devices can be controlled by the back gate. 

Here, a side electrode is also made out o f  graphene. Right subfigure: the

16
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scanning electron micrograph o f  two graphene interconnections where quantum 

dots can be trapped. Reproduced with permission from  A. K. Geim, and K. S. 

Novoselov, Nature Mater. 6, 183 (2006).

(c) Veselago Lens

Transparent interfaces between materials are used in optical applications to focus 

light and thus to manipulate light beams in lenses and prisms. Interfaces like p-n 

junction (PNJ) in conventional semiconductor devices, however, work differently. 

For example, a depletion region near the contact between p-type and n-type 

junctions contains different charge carriers, electrons and holes. Conventional 

PNJs are, therefore, not suitable to precisely manipulate electron beams. If 

graphene devices could manipulate light, it would lead to a very interesting 

discovery [14].

In graphene, researchers have demonstrated that carrier density can be controlled 

by adjusting the gate voltage [2, 9] or by chemical doping [7], p-type and n-type 

graphene strips can therefore be created by applying negative and positive 

voltages [22] as shown in Fig. 1.12. If  we connect the p- and n- strips together, we 

can create a p-n junction (PNJ). The resulting p-n junction has been demonstrated 

to be able to focus electric current resembling optical refraction at the surface of 

metamaterials with negative refractive index [23]. As shown in Fig. 1.13, 

electrons emitted from a source in a n-type graphene strip transmit through the p- 

n junction and focus on another point in the p-type graphene strip. When the p- 

type and n-type strips are symmetric, the distances from the source to the junction 

and from the drain to the junction are the same. Consequently, the refractive index
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is equal to -1. This kind o f electron beam focusing resembles the refraction of 

light in left-handed metamaterials, which also exhibits a -1 refractive index [22- 

23]. As said by V. V. Cheianov et al. in Ref. [22], this finding may be useful for 

engineers to make electronic lenses and focused beam splitters using the gate- 

controlled p-n junctions o f graphene-based transistors.

Fig. 1.12: Graphene p-n  junction (PNJ) [22], Single-layer graphene is placed  

over a split gate, which is used to create n- (left) andp-doped (right) regions. The 

energy diagram shows the position o f  the Fermi level with respect to the touching 

point o f  the valence and the conduction bands.

source probe

".-isr 'fr'-'svgal® W:. t, * - f  saataMt-. .-ate w®ale & .<!
+  U -U
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Fig. 1.13: Focusing o f  electrons by symmetric PNJ [22], (A) Charge transmission 

through a symmetric PNJ. (B) Interference-induced pattern in the charge current 

near the foca l image o f  the source-contact.

1.2 Thesis Outline

Although graphene was first reported only three years ago in 2004, remarkably 

progresses have been made. Only a very tip o f an iceberg has been uncovered so 

far [14]. Large amount o f research work are needed in this area to explore more 

exciting physical and wide-range electrical applications. This thesis focuses on 

the investigation o f fundamental electronic structures and potential applications of 

graphene nanoelectronics. My contributions described in this thesis consist of 

three parts: (1) the electronic structures o f graphene nanoribbons (Chapters 2), (2) 

the effect o f chemical modifications along carbon bonds at the edge o f graphene 

nanoribbons (Chapter 3), (3) the graphene-based nanodevice (switch, transistor, 

rectifier) design (Chapter 4-5).
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(1) Electronic structure o f graphene nanoribbons. In Chapter 2, the analytical 

solution o f the wave function and energy dispersion o f armchair graphene 

nanoribbons (GNRs) will be presented using the tight-binding approximation. The 

analytical solutions o f wave function and associated energy dispersion can be 

reproduced based on the results o f numerical tight-binding method and the the k p  

approximation. In addition, we also find that all armchair GNRs with edge 

deformation have energy gaps, which agrees with the recently reported first- 

principles calculations.

(2) Chemical modification effect. In Chapter 3, the effects o f chemical edge 

modifications on the structural and electronic properties o f GNRs will be 

discussed. Combination o f the first-principle and tight-binding (TB) calculations 

will be addressed as well. The carbon-carbon (C-C) bond lengths and bond angles 

near GNR edge considerably change when edge carbon atoms are bounded to 

different atoms. By introducing a phenomenological hopping parameter t l  for 

nearest-neighbor hopping to represent various chemical edge modifications, we 

investigated the electronic structural changes o f nanoribbons with different widths 

based on the tight-binding scheme. Theoretical results show that addends 

(absorption o f atoms to carbon atoms on the edge) can alter the band structures of 

armchair GNRs and even result in observable metal-to-insulator transition.

(3) Graphene-based nanodevices. In Chapter 4, an armchair graphene
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nanoribbon switch, which can manifest the Klein paradox, will be discussed. The 

resulting switch displays an excellent on-off ratio performance. An anomalous 

tunneling phenomenon, in which electrons do not pass through the graphene 

nanoribbon junction even when the conventional resonance condition is satisfied, 

is observed. We proposed a selective tunneling rule to explain this interesting 

transport behavior. Base on this selective rule, our switch design can also achieve 

the confinement o f electron to form quantum qbit, which is needed to build 

quantum-dot device.

In Chapter 5, we propose a design of a transmission gate and a field-effect 

transistor, which are realized by controlling the applied gate voltages in the 

junction region o f GNRs. For the proposed Z-shaped transmission device, 

electrons across the junction can be rectified according to the external gate bias. 

The device current-voltage (I-V) characteristics clearly show the amplification 

effects. The I-V curve is also asymmetric with respect to the bias polarity, which 

indicates that this device can work as either an n-type or a p-type transistor by 

changing the polarity o f gate bias without doping.
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Chapter 2

Electronic Structures of Graphene 

Nanoribbons

In this chapter, we will discuss the electronic structures o f GNRs in detail. The 

research was jointly performed by Zhengfei Wang and me supervised by Dr. Jie 

Chen and Dr. Qinwei Shi at University o f Alberta in Dec. 2006, The results have 

been published in Phys. Rev. B 75, 165414 (2007). These structures are simple 

variations o f two-dimensional graphene. In Section 2.1, we will provide a 

classification method of GNRs according to their geometric structure at the edges 

of ribbons. We will then address the analytical results o f wavefunction and energy 

spectrum o f GNRs in Section 2.2.

2.1 Geometric Structure of GNRs
There are two typical edge shapes for GNRs, namely armchair or zigzag as shown 

in Fig. 2.1. The real edge structure, however, is irregular and complicated [24], 

For simplicity, the general edges o f GNRs can be described as the mixtures of 

both armchair and zigzag edges. A two-dimensional infinite graphene sheet can
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be cut along the armchair edge (red arrow in x axis) and the zigzag edge (blue 

arrow in y axis) to obtain two typical kinds o f graphene nanoribbons: armchair 

and zigzag GNRs, respectively. The ribbon width n denotes the number o f dimer 

lines for an armchair GNR or the number o f zigzag lines for a zigzag GNR as 

shown in Fig. 2.1. The unit cell o f armchair and zigzag GNRs are shown in the 

rectangular boxes.

Armchair Edge

— ---------------------------     “►X

Fig. 2.1: Geometric structure o f  GNRs with armchair and zigzag edges.

2.2 Analytical Wave Function and 

Energy Spectrum of Armchair GNRs
The analytical wave function and energy dispersion o f zigzag nanoribbons were
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derived by several research groups [25-26], For armchair GNRs, the analytical 

forms o f wave functions within the low-energy range have been derived based on 

the effective-mass approximation [27], It is predicted that all zigzag GNRs are 

metallic with localized states on the edges [24-26, 28], while armchair GNRs are 

either metallic or insulating, depending on their widths [24, 28], To date, there is 

no general expression o f the wave function in armchair GNRs. In this section, we 

derive a general analytical expression o f wave function and eigenenergy in 

armchair GNRs applicable to various energy ranges. In Section 2.2.1, we focus on 

perfect armchair GNRs without any edge deformation and derive the energy 

dispersion by imposing the hard-wall boundary condition. Due to the quantum 

confinement, the spectrum breaks into a set o f subbands and the wave vector 

along the confined direction becomes discretized, which is similar to the case of 

carbon nanotubes [29]. We observe that the electronic structure o f perfect 

armchair GNRs strongly depends on the width o f the ribbon. The system, for 

instance, is metallic when n=3m+2 and is insulating otherwise, where m is an 

integer. Furthermore, we study the low-energy electronic structure. The linear 

dispersion relation is observed in armchair GNRs. In Section 2.2.2, we evaluate 

the effect o f deformations on the edges on the electronic structure o f armchair 

GNRs. Calculation results based on the derived analytical wave function show 

that all armchair GNRs have nonzero energy gaps due to the variation o f hopping 

integral near the edges. This observation is in line with the recently reported first- 

principles calculations [30],
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Fig. 2.2: Structure o f  an armchair graphene nanoribbon, consisting o f  sublattices

A and B. The width o f  the armchair GNR is n. Every unit cell contains n numbers

o f  A and B sublattices. Two additional hard walls (j=0, n+1) are imposed on both

edges.

2.2.1 Perfect Armchair GNRs

The structure o f armchair GNRs consists o f two types o f sublattices A  and B  as 

illustrated in Fig. 2.2. The unit cell contains n A-type atoms and n B-type atoms. 

Based on the translational invariance, we choose the plane-wave basis along the x 

direction. Within the tight-binding model, the wave functions o f A  and B
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sublattices can be written as

(2 .1)

where <f>A(i) and $B(i) are the components for A and B  sublattices in the y  

direction, which is perpendicular to the edge. |4 )  and | i ( )  are the wave 

functions o f the p z  orbit o f a carbon atom located at A and B  sublattices, 

respectively. To solve <j>A(i) and 0B(i) , we employ the hard-wall boundary 

condition

qy is the discretized wave vector in the y  direction and a=1.42 A is the bond

length between carbon atoms. To obtain the normalized coefficients, Na and Nb, 

we introduce the normalization condition

unit cells along the x direction. The total wave function o f the system can be

& ( 0) = & (0) = 0, 

jA(n + l) = jB(n +1) = °-
(2 .2)

Choosing (j)A (i) = (f)B (i) = sin(-
V3qya 

2
0  and substituting them into Eq. (2.2), we get

(2.3)

(2.4)

It is straightforward to obtain N A = N l where N r is the number of
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constructed by the linear combination o f | if/) A and | if/)

k ) = c . \Nx(n + l)tT 2
+ CB

2 ;t,
: Z Z eN x{n + \) ,=1 %

x V3a a .
:* sin(— ^-/)|

Under the tight-binding approximation, the Hamiltonian o f the system is

u

(2.5)

(2 .6)

where V J /  denotes the nearest neighbors.

In perfect armchair GNRs, we set ti } =t  and s i = s  for simplicity. By

Substituting Eqs. (2.5) and (2.6) into the Schrodinger equation, we can easily 

obtain the following matrix expression:

(c \
(2.7)

( e  j u) ( c  \^ A = E
( C  \

y rV ^ b J cV ^ b J

r\ ik a 12 ~ — \  - i k xa2 e  x c o s ( -------- g „ )  +  e
2 y

(2 .8)

Solving Eq. (2.7), we get the energy dispersion and wave function as 

E  = £ ± \ ju\,

7t 3k Cl 71
Here, + denotes the conduction and valance bands, respectively. ^ “

is required within the first Brillouin zone (BZ). These results are valid for various
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energy ranges.

kx/3a

Fig. 2.3: Electronic structures o f  perfect armchair GNRs with various widths,
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n=6, (b) n=7, and (c) n=8, respectively. The wave vector is normalized based on 

the primitive translation vector o f  individual GNRs. The value o f  p  fo r  each 

subband is labeled in the figure.

Fig. 2.3 shows the energy dispersion for perfect armchair GNRs with width 

n=6, 7 and 8. Here, we set e=0. The results are the same as those obtained by 

using the numerical tight-binding method. The electronic structures o f armchair 

GNRs depend strongly on their widths. When n= 8, the lowest conduction band 

and the upmost valence band touch at the Dirac point, which leads to the metallic 

behavior o f n=8 armchair GNRs. Armchair GNRs, however, are insulating when 

n=6 and n=7. Armchair GNRs with the width o f n =3m+2 (m is an integer) are 

generally metallic and otherwise are insulating [24, 27].

In addition, we observe several interesting features in the band structures of 

armchair GNRs.

(i) A flat conduction or valence band (p=4) exists, if  n=7 as shown in Fig. 2.3

(b). Such a flat band generally corresponds to ——  = — or
n + 1 2

V7T
equivalently cos ——  = 0. The energy dispersion becomes independent o f k  and

n + 1

the eigenenergy always equals ± t . A  flat band, in general, exists only when n is 

odd.
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(ii) The subbands can be labeled by the quantum number p. Together with the 

wave n u m b er^ , the quantum number p  can be used to define the chirality of

the electrons in quasi-one-dimensional (ID ) graphene ribbons similar to that in 

2D graphene. To identify different subbands, we need the quantum number pi of 

the ith conduction or valence band. Here, the definition o f the sequence of 

subbands is referred to as the value o f eigenenergy Ec in the center o f first 

Brillouin zone ( kx = 0),

Ec =±t 2 c o s - ^ -  + l 
n +1

(2.9)

D7T 2 7t
For the metallic armchair GNRs with width n=3m+2, when ——  = —  or

n + 1 3

equivalently p=2m+2, the energy gap between conduction and valence bands is 

zero. Therefore, p l =2m + 2 corresponds to the first conduction or valence band

in n=3m+2 GNRs. For the second conduction or valence bands, Ec should have 

the minimal nonzero value compared to the third or even higher band. After 

analyzing the value o f Ec , we find that p 2 = 2 m + 3 , p 3 = 2m  +1 for metallic 

armchair GNRs {n=3m+2). By similar analysis, for n > 10 , we can obtain 

p x = 2m + 1, p 2 = 2m , p 3 =2m + 2 for n=3m armchair GNRs and p x = 2m + 1 , 

p 2 =2m + 2 , p 3 =2m  for n=3m+l armchair GNRs, respectively. For all 

subbands, there is no general rule of the subband index p.

(iii) Lots o f research interest has been focusing on the energy dispersion and
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wave function o f 2D graphene and ID GNRs within the low-energy range [9, 27, 

30], Low-energy electrons behave as massless relativistic particles in a 2D infinite 

graphene system [2-3, 9-10, 27]. Whether electrons keep their relativistic property 

when they are confined in quasi-ID graphene nanoribbons is an interesting issue. 

In what follows, we will focus on the expansion o f our analytical expressions to

the low-energy limit. When J¥L- _ » — n  and ----- - » 0  , we rewrite the
n + 1 3 2

eigenenergy in Eq. (2.8) as

low-energy expansion generates the E x k  linear dispersion, with Fermi velocity 

3 at
vF = —  ~ \()b(ms~' ) . This expression reproduces the result o f k p  approximation 

2 h

[27], Note that the wave vector in the confined direction ( q  ) is discretized,

corresponding to different subbands. What is worthy o f mentioning is that this 

energy dispersion works well only at the low-energy limit. By substituting the 

value o f p y into Eq. (2.10), we get the low-energy expansion o f the first 

conduction or valence band for armchair GNRs as

(2 .10)

n  , k 2 =kx2 + q 2, p  is the subband index. Thiswhere qy{p)
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^ _>0 3 
Ei (3m) « ± — at.

2  ]j
k 2 +

2n

3-j3(3m + \ )a

kx —>0 O
E,(3m + 1) ® ± —at. k 2 +

1 2  ]j

kx^> 0 0
JE'1(3m + 2) « ± — atkx,

2*

2 n x

3\f3(3m + 2)a

(2 .11)

Fig. 2.4 shows the quality o f low-energy approximation. For large width armchair 

GNRs, low-energy approximation seems to work well except at the edge o f first 

Brillouin zone. As the width gets larger, the quantum confinement due to the edge 

becomes less important and the ID nanoribbon tends to behave like 2D graphene. 

For large n, as expected, the band structure generates the linear dispersion 

relationship, E  oc k , in the low-energy limit.
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(b )  n = 2 2

Fig. 2.4: The fir s t conductance and valence bands within the firs t Brillouin zone: 

exact solutions from  Eq. (2.8) (red solid line) and low-energy approximation from  

Eq. (2.11) (blue dash line) fo r  armchair GNRs with various widths, (a) n=21, (b) 

n=22, (c) n=23, respectively. The wave vector is normalized based on the 

primitive translation vector o f  individual GNRs.

In addition, from the expression o f the wave function, we also obtain the local 

density o f electronic states in perfect armchair GNRs,

= PB(/) °c sin2 \ - ^ —i . Fig. 2.5 shows the squared wave functions o f the
U  + l 2

lowest conduction band at the center o f first Brillouin zone. Note that Figs. 2.5 (a) 

and 2.5 (c) reproduce the results of the k p  approximation [27], The state density
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oscillates as a function o f the lattice position. The oscillation period is related to 

n  +1
 . For n=3m+2 armchair GNRs, the oscillation period is just 3, which is

P

shown clearly in Fig. 2.5 (a). For n=3m, 3m+l armchair GNRs, we should write 

ft +1 cc
  into irreducible form — . The oscillation period is then a , which is the

P P

ft +  1
numerator o f the irreducible form o f   . To match the results presented in Ref.

P

[27], we choose n=51 and n=52 as an example. We get a  = 51 and a  = 52 , 

respectively. As shown in Figs. 2.5 (b) and 2.5 (c), the oscillation period o f state 

density for n=51 and n=52 armchair GNRs equals their width.

( a )  n = S O

“7 T7 *7 ft t? t; t* r? *7 *7 t- rr r; rr *• r? t** i *  . 1 . * • *  i '  I ' i ' i *  «* »* » '  . 1 i 1 t * •
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Fig. 2.5: Local density o f  the states in the first conduction or valence band at
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kx -  0 fo r  armchair GNRs with various widths, (a) n=50, (b) n=51, and (c) n=52, 

respectively (n is so chosen to match the results in Ref. [27]).

2.2.2 Energy Gap and Wave Function for 
Edge-deformed GNRs

Because every atom on the edge has one dangling bond unsaturated, the 

characteristics o f the C-C  bonds at the edges can change GNRs’ electronic 

structure dramatically [31-32], To determine the bandgaps o f GNRs on the scale 

of nanometer, edge effects should be considered. The change o f edge bond length 

and angle can lead to considerable variations o f electronic structure, especially 

within the low-energy range [30, 33], In previously reported work, the edge 

carbon atoms of GNRs are all passivated by hydrogen atoms or other kinds of 

atoms or molecules [27, 30-33], The bonds between hydrogen and carbon are 

different from those C-C  bonds. Accordingly, the transfer integral o f the C-H  

bonds and onsite energy o f carbon atoms at the edges are expected to differ from 

those in the middle o f GNRs. The bond lengths between carbon atoms at the 

edges are predicted to vary about 3-4%  when hydrogenated [30]. 

Correspondingly, the hopping integral increases about 12% extracted from the 

analytical tight-binding expression [30, 34], To evaluate the effect o f various 

kinds o f edge deformation, we carried out general theoretical calculation and 

analysis with our analytical solution of armchair GNRs. In general, we can set the 

variation of the transfer integral and on-site energy as Sj ; , s j for the ith ^4-type or
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5-type carbon atom. The Hamiltonian o f the GNRs with deformation on the edge 

can be rewritten as

=  + (2 .12)
'  ( u )

The energy dispersion and wave function are readily obtained by solving the 

Schrodinger equation with the perturbation approach

E  = / ± \ v + S { i \ ,

(2.13)

where y  =  V f f  sin2n+ i t r
p n

Kn + 1 j
is the energy shift originating from the variation

of on-site energy, while the shift from the hopping integral variation is

SjU =
n +

S t sin p n  
n + 1

. -  i k r a

+S,  sin
V

P71 .
 1
n +1

sin p * ( i - 1)n +1
ikra/2

+s. sin
p n  

n + 1
sin

p n  

n + 1
(/ + !) i kra l l

(2.14)

Such a general expression could include various kinds o f small edge 

deformations, ranging from the quantum confinement effect due to the finite 

width, to the effect o f saturated atoms or molecules attached to edge carbon atoms. 

This result shows that the deformation leads to a considerable deviation of the 

energy dispersion relation and wave function o f the deformed system from those
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in perfect armchair GNRs. The local density o f states on both kinds o f sublattices, 

however, remains the same as that in perfect armchair GNRs. The reason is that 

the wave functions o f sublattices A  and B  change their relative phases, but keep 

the magnitudes unchanged. The variations from both the on-site energy and 

hopping integral contribute to the energy shift, while the change o f on-site energy 

has no contribution to the wave function as shown in Eq. (2.13).

To show the impact caused by structural deformation, we model the 

deformation by using an exponential distribution function as an example. The 

hopping variations between ith A  and z'th B  atoms are

S t = St .  — 8  t ne

£ = S  = 0  (215)
( i ( A ) i - l ( B )  f / ( A ) i + l ( B )  ’

V3where y(i) = — a (2 j - n - l )  is the coordinate o f the z'th atom in t h e y  direction,

>/3L = — a ( n - 1) is the width o f the GNRs. The deformation characteristic length

P L is used to indicate the extent o f the deformation from the edge to the middle 

of the GNRs. For example, when p L - » co, Sti = St0 for any z, the deformation is 

uniform from the edge to the middle; when p L -»  0, Stt = Stn = St0, Stj = 0 for

z ^  1 or n, the deformation is only localized on the edge bonds [27]. Typically, we 

set the hopping integral variation St0=\2% t and the hopping integral o f perfect 

GNRs t=2.7 eV [27]. Our perturbation results are valid only when the 

deformation is small. For example, we have compared the analytical perturbation
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results with those obtained through numerical diagonalization and found the 

difference becomes quite large when<5t0 >15%  (the energy gaps obtained from 

both methods differ by more than 10% when St0 > 15%). For larger deformation, 

we should employ the numerical diagonalization method or the density functional 

theory (DFT) to explore the electronic structure of GNRs.

By introducing the deformation, we observe considerable changes o f energy 

gaps compared to those o f perfect armchair GNRs as shown in Fig. 2.6. For 

example, for n=6, 7, 8, the energy gaps are 1.11, 1.54, and 0.22 eV, respectively, 

when p L =0.01 L . They are much larger than those o f perfect armchair GNRs

(0.49, 0.47, and 0 eV, respectively). All armchair GNRs become semiconducting. 

The energy gaps between the lowest conduction band and the highest valence 

band become the function o f ribbon width as indicated by three separate curves in 

Fig. 2.6. When p h = L ,  the energy gaps fluctuate for large n and three curves

cross over. When p L = 0.1/,, the deformation is localized near the GNR edges 

and the energy gap for n=3m+l GNR is always larger than those o f n=3m and 

n=3m+2 GNRs. When p , =0.01 L ,  the characteristic length is so small that the 

deformation is localized along two edges, which has been discussed in Ref. [27].
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Fig. 2.6: The energy gaps between the lowest conduction band and the highest 

valence band as a function o f  width n with the characteristic length (a) p h - L , 

p L = 0.1Z, and (c) p L =0.01Z.
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The corresponding energy gaps for different width ribbons are as follows:

8 St •sin m7r

3m +1 3m + 1
. o 8 S t  . 2 ( m  +  l)7r

A3w+1 = A?w+1+  sin

A = A3m+2 3m+2

3 m + 2 
2 St 

m  + 1

3m + 2 (2.16)

where A°m , A°3m+[, and A°m+2 are the energy gaps o f perfect armchair GNRs.

Their values can be extracted from Eq. (2.9): 21
.  (2m +1 )n  ,
2cos-^-------- — + 1

3m+ 1

21
(2m + X)n ,

2 cos--------- —  + 1
3m + 2

, and 0. This result suggests that all armchair graphene

ribbons with edge deformation have nonzero energy gaps and are insulators and

A lm + 1 >  A 3 m  >  A 3m+2 f o r  a n Y  m -

2. 4 Discussion

In this Chapter, we study the electronic states o f armchair GNRs analytically. By 

imposing the hard-wall boundary condition, we find the analytical solution of 

wave function and energy dispersion in armchair GNRs based on the tight binding 

approximation. Our results reproduce the numerical tight-binding calculation 

results and the solutions using the effective-mass approximation. We also derive 

the low-energy approximation o f the energy dispersion, which matches the exact 

solution except for the edge o f first Brillouin zone. The linear energy dispersion is
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observed in armchair GNRs in the low-energy limit. In addition, we also evaluate 

the impact o f the edge deformation on GNRs and derive a general expression of 

wave function and energy dispersion. We can reproduce the energy gap for 

hydrogenated armchair GNRs presented in Ref. [27]. When we consider the edge 

deformation, all armchair GNRs have nonzero energy gaps and thus are insulting. 

Overall, the derived analytical form o f the wave function can be used to 

quantitatively investigate and predict various properties in armchair graphene 

ribbons.
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Chapter 3 

Chemical Modification Effects on 

GNR’s Electronic Structures

Zigzag GNRs, which correspond to unwrapped armchair CNTs with zigzag edges, 

are predicted to be metallic (if the spin degree o f freedom is not considered). 

However, the electronic structure o f armchair GNRs depends strongly on the 

width o f GNRs. Among armchair GNRs, only one third o f them are metallic. That 

is to say, GNRs can be made either as metallic or as semiconducting materials by 

controlling their width or chirality. As each edge carbon atom o f GNRs is 

bounded only to two neighboring carbon atoms, a dangling carbon bond can 

determine the electronic properties o f GNRs.

This part of research has been done by Zhengfei Wang and me under the 

supervision of Dr. Jie Chen and Dr. Qinwei Shi at University o f Alberta in Nov. 

2006. We have reported our findings as a journal paper in March 2007 [Phys. 

Rev. B 75,113406 (2007)]. In this Chapter, we will discuss chemical modification 

effects on Graphene’s electronic structures. The chapter is divided into two 

sections. First, the theoretical background for the electronic structures o f armchair
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and zigzag GNRs will be addressed. Second, the combined first-principles and 

tight-binding theoretical investigations of chemical modification effects will be 

described.

In this section, we review the electronic structure o f graphene nanoribbons GNRs 

with armchair and zigzag edges. The definition o f armchair and zigzag GNRs has 

been illustrated in Chapter 2. Fig. 3.1 shows the two basic GNRs that are defined 

as one-dimensional graphene sheets confined by a pair o f parallel armchair 

(zigzag) edges on both sides. In previously reported studies [24, 27-29], the 

dangling bonds o f GNRs on the two edges are all assumed to be terminated by 

hydrogen atoms, and the dangling bonds have no contribution to the electronic 

states near the Fermi level. Employing a tight-binding calculation within the 

Huckel approximation, the electronic states for GNRs were calculated. In addition, 

the analytical solutions o f electronic states o f perfect armchair and zigzag GNRs 

have also been worked out [14, 27-28, 31-32, 35]. However, a general method to 

calculate the electronic structures o f GNRs with defects and deformation or so- 

called “exact diagonalization method” is not available. As shown in Fig. 3.1, there 

are totally 2n carbon atoms in a unit cell of GNRs with width n. We start from the 

Hamiltonian o f the system

3.1 Band Structure of Armchair and

GNRs
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where (>j) denotes the nearest neighbors, s j is the on-site energy o f the zth atom, 

and t, j  is the hopping integral between the /th a n d /h atoms.

mto

Fig. 3.1: Atomic structure o f  armchair and zigzag GNRs. The number o f  all the 

atoms in three adjacent unit cells has been labeledfor GNRs as width n.

The wave function o f the whole system can be constructed based on the linear 

combination o f atomic orbit (LCAO) method.
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^ - 7 w W " c M )
(3.2)

Here, the sum of i is over all the n atoms in a unit cell; the sum of j  is over all the 

unit cells in one-dimensional infinite system. | /') is the atomic orbit o f  ith atom in 

the unit cell and C, is the expansion coefficients. The corresponding Schrodinger

equation looks like

h \w ) = e \w ) . (3.3)

By multiplying (l | , (2 |,  ( 3 |, ........ , (« + l | ,  (n + l \ ,  (w + 3 | , .........,(2 « | to the left

sides o f Eq. (3.3) and applying the normalization and orthogonal conditions

('U)
I i = j  
0 i * j

m j ) =

i =  j

k r  f a )
0, otherwise

(3.4)

we can get 2n coefficient equations for armchair GNRs

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



r C  +p*'(?2~r']t C  r  -  F.C
1 1  ' ^  1,2 2 T  e  ‘ L t t f l S i + l  —  ’

M h-h)t  r  + f C  + (Ji '{̂ )t r  jr J^'^2-r2)t r '  =  p n
e  ‘2, H T C r 2 T C  2,3 3 2, n+2 «+2 -t j '^2’

J< r2-r3)f  r  4- C  = F C
e  3,2 2 3 3 e  *3,4^4 l 3,n+3^n+3 -‘-* -3 9

^ - r n) c  c  + e ^(r2n-r„)t  Q  = E C  ,
n,n-\ n-l n n n,2n 2n n ’

Jk'(i\-r„+l)f  (~< , ^  i^ * (^ + 2 -^ + iV  — T?C
e  f«+l,lM  "r c «+ lS j+ l T e  n+l,«+2 w+2 'L/S ? + l’

Jk '(rz-r„+2)t  ,J k '( r „ +i-r„+2)f  p  4 - c  C 4.  Jk'(r„+i-r„+2) . p  _  n o
e  n+2,2 2 t «+2,n+l'^m-l T C « + 2 ^ « + 2 W . h + s S z + S  ^ ^ + 2 ’

•

Jk'(r„-r2„)t  f  + p  f '  , J k ^ r 2n_l-r2„)f  ^  -  T?C
e  l 2n ,n^n  ~  c‘2 ti^2n  T t ;  t 2w,2n-l'^2n-l — -LA^2n’

(3.5)

and zigzag GNRs
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s £ \+

e~ik'(r3-i|) g*-(fm2 ~*l) + Jk'(rm2-?2)
h,nVl^nVl ^ - 2 ’

s C  +n n
+ ^ < * 1  n-Tn)

tn2n~ln ~ E C n

£ C +

g ik ^ - r ^ 2) + /  •0Hh2)
C+-Z2Q  + ^m-20+-2 + t C -E CLrH\,nVr-'rHA 1J '̂rH-2’

(3.6)

We rewrite Eq. (3.5) and Eq. (3.6) using the matrix form for armchair and zigzag 

GNRs

' O ( C  > '-a
H = E (3.7)

rK^2nJ

We can easily obtain the eigen-energy spectrum o f armchair and zigzag GNRs 

numerically. Fig. 3.2 shows the results o f both armchair and zigzag GNRs with 

width n=6, 7, 8 to illustrate the energy dispersions. The calculated band 

structures o f armchair ribbons are shown in Fig. 3.2 (a)-(c) for three different 

ribbon widths. The wave number k  is normalized by the primitive translation
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vector o f  each GNR, and the energy E  is scaled by the hopping integral t, which 

is set to 3.0eV. The Fermi level is set to E=0. The top o f the valence band and 

the bottom o f the conduction band are located at k=0. It is noticeable that the 

ribbon width determines whether a GNR is metallic or insulating. As shown in 

Fig. 3.2 (c), the GNR is metallic when n=3m+2, where m is an integer. For the 

insulating GNRs, which are direct-gap semiconductors, the energy gaps between 

valence bands and conduction bands decrease with increasing GNR width and 

they approach to zero as the ribbon width n becomes infinitely large [24].

Mrmchalr C«J)«=5Egzag

(t>) w=7 ^  
armehgj

(0 zigzag■mmhalr

Fig. 3.2: Band structure o f  the armchair and zigzag GNRs.
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For zigzag GNRs, a remarkable feature arises in the band structure as shown in 

Fig. 3.2 (d)-(f). The highest valence band and the lowest conduction band for the 

zigzag GNRs are always degenerated at k  = n . In addition, a pair o f flat bands 

appears within the range o f 2zr/3 < |£| < n , where the bands are located closely

near the Fermi level. With a detailed examination o f charge density distribution, 

we know that the electronic states in the flat bands correspond to a localized 

state on the zigzag edges [24]. This kind o f localized state originates from the 

gauge field produced by the lattice deformation [36],

3.2 Chemical Modification Effects

Because each edge carbon atom o f GNRs is only bounded to two neighboring 

carbon atoms, a dangling carbon bond offers a remarkable opportunity to alter the 

electronic properties o f  GNRs. This can be done by attaching different atoms or 

functional molecular groups to the dangling carbon atom. Similar to the 

functionalization o f  CNT devices along edge dangling bonds [37-39], the 

electronic properties o f GNRs can also be alternated by chemical edge 

modifications. In this section, we examine the geometric deformation o f finite- 

width armchair GNRs caused by different edge addends. Our first-principle 

calculations show that the C-C bond length and bond angle near the edge 

undergoes observable changes. To include the effect o f the deformation on the 

graphene ribbon edge, we introduce a phenomenological hopping parameter t\ in
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our tight-binding exact diagonalization calculations. Our simulations show that 

the energy gap depends on ribbon width and hopping parameter t\. A nonzero 

energy gap exists for armchair GNRs, which means that the metal-to-insulator 

transition can be achieved by edge modifications. The increments o f C-C bonds 

and bonding angles at the nanoribbon edge have been reported based on the tight- 

binding (TB) approximation calculations [40].

We first estimate nanoribbon geometric deformation caused by various chemical 

addends. For a simple case (each armchair GNR edge carbon atom is saturated by 

one hydrogen atom), we evaluate geometric and electronic structure changes 

using the first-principles method. Our optimizations employ the Vienna ab initio 

simulation package [41-42], which is implemented based on the local density 

approximation [43] o f  the density functional theory (DFT) [44]. The electron-ion 

interaction is described by the ultrasoft pseudopotentials [45] and the energy 

cutoff is set to be 286.6 eV. The atoms’ positions are optimized in order to reach 

the minimum energy with the Hellmann-Feynman forces less than 0.02 eV/A. The 

results show that the geometric relaxation localizes near the edge. Only the bond 

lengths and angles o f  edge carbon atoms in armchair GNRs have considerable 

changes compared with those o f ideal graphene ribbons. For example, 

ZB A F  = 121.6° and ZBC D  = 118.3°. The inter-atomic distance between A and B 

sites ( dAB) o f  (9, 0) GNR is reduced from 1.42 A to 1.36 A, and drjC=\.40 A 

J CZ)=1.40 A and dm  =1.42 A, respectively, as shown in Fig. 3.3.
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1 2 3 .8 9

Fig. 3.3: Optimized structure o f  a (9, 0) armchair GNR (all edge bonds are bound 

by hydrogen atoms). Here, the bond length is in A. Note that a zigzag (n, 0) GNR 

can be rolled to form  an armchair (n, 0) CNT, and an armchair (n, n) GNR can be 

rolled into a zigzag (n, n) CNT

The geometric deformation o f armchair GNRs, however, depends on various 

kinds o f chemical addends. For example, if  the edge carbon atoms are connected 

to F atoms, the edge C-C bond lengths are shortened to 1.35 A (a decrease o f 

about 5%). In general, this kind o f geometric deformation results in the changes 

o f hopping parameter between two neighboring carbon atoms on the GNR edge. 

The parameter change is defined as

A t =
2 p \  H x 12 p z) -  ( 2 p z | H 0 12 p z

(3.8)
( 2 p z \ H 0 \ 2 p z )

Here, Hi  and H0 are the Hamiltonians o f the system with and without chemical 

edge modifications, respectively. 2p z and 2p z are the atomic orbits o f the 

coupled neighboring carbon atoms at the edge with the optimized bond length and

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



with the bond length o f 1.42 A, respectively. Our calculations are conducted by 

using the SIESTA code in real space and single-zeta (SZ) basis [46]. One can 

expect that the edge hopping parameter can increase (or decrease) as edge C-C 

distance is shortened (or lengthened). The edge hopping parameter change for the 

hydrogen-saturated case is predicted to be 10.1% based on the density-functional 

theory (DFT) method, which is consistent with the numerical result based on the 

TB approximation [47].

In previous TB approximation calculations [24, 26], the dangling bonds are 

assumed to be saturated by hydrogen atoms and thus all transfer integrals between 

the nearest-neighbor sites are set to have the same values. This simple choice o f 

hopping parameter, however, does not consider geometric distortions at the 

nanoribbon edge. It is important to extend this existing scheme in order to 

understand the impacts o f chemical edge modification on electronic properties o f 

armchair GNRs. For simplicity, we adopt the TB approach to study these impacts. 

We choose the value o f  t\ to be either smaller or larger than the hopping 

parameter t=2.66 eV o f inner C-C bonds to simulate different chemical addends. 

Our theoretical results show that parameter t\ itself is sufficient to describe the 

electronic structure changes o f armchair GNRs.
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(a) n=8

11=1.21

(b) n=9

t1=1.2t

(c)n = 1 0

t1=1.2t

Fig. 3.4: Top two valence bands and bottom two conduction bands o f  zigzag 

GNRs in tj=t and tj=1.2t cases.

Next, we calculate the band structures o f armchair GNRs when edge GNR 

dangling bonds are bounded by atoms or molecular groups. We select ideal 

armchair GNRs with indices («, 0) and calculate the band structures o f three 

different ribbon widths (n=8, 9, and 10) by setting t\=t. The results are shown in 

Figs. 3.4 (a)-(c) for n=8, 9, and 10 with red solid lines, respectively. For clarity,
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we set the Fermi level to zero (Ef= 0) and the wave number is normalized by the 

primitive translation vector for each GNR. In this study, we choose (8, 0), (9, 0), 

and (10, 0) GNRs (their widths are around 2 nm) as examples to represent (3/5+2, 

0), (3/7, 0), and (3/7 +1, 0) GNRs (where p  is an integer; and they correspond to 

three different width armchair GNRs labeled with (3/7 +1, 0), (3/7, 0), and (3/7+2, 

0). It is clear that the band structure o f an armchair GNR depends on its width, 

and the energy gap is 0.58, 0.50, and 0.0 eV for (8, 0), (9, 0), and (10, 0) armchair 

GNRs, respectively. Armchair GNRs (n , 0) are metallic when 77=3/7+1 as shown 

in Fig. 3.4 (c). The energy gaps are nonzero for 77=3/7 and 77=3/7+2 GNR, in which 

GNRs become insulating. This result matches the previous reported results [27]. 

To simulate chemical edge modification effects, t\ is set to be 1.21. The n  and n  

conduction bands are no longer degenerate at k=0 for a (10, 0) GNR and energy 

gap becomes 0.14 eV, which leads to metal-to-insulator transition. The DFT 

results suggest that both quantum confinement and edge effect cause the opening 

of energy gap [30]. Although (8, 0) and (9, 0) GNRs remain insulating when 

t\=\.2t, the energy gap is changed to 0.76 eV (increased) and 0.36 eV (decreased) 

by changing o f the edge hopping parameter. Obviously, these theoretical results 

show that the electronic property o f armchair GNRs is tunable via chemical edge 

modification.

The band structure o f  zigzag (n, n) GNRs are similar to those o f  CNTs except 

for the existence o f edge states that are caused by the gauge field at GNR edges. 

Due to the localized states at the edges, the uppermost valence band and the 

lowest conduction band are always degenerated at the Fermi level when
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k0 <k<7r  . kQ is slightly less than 2 ^ / 3  for finite-width zigzag GNRs. If

considering the spin degree o f freedom in the DFT calculations, a hydrogen- 

saturated zigzag GNR is predicted to have a magnetic insulating ground state [30]. 

By selecting different t\, we observe that the electronic structure near the Fermi 

level changes slightly, which indicates that the electronic properties or carrier 

transport properties o f zigzag GNRs are stable and insensitive to the edge 

modifications.

Z p o o a
* * »

★  tk  #  w  ★  ilr &  Hr T0r ★

5 10 IS 2 0  20 30  36 4 0 5 10 16 20 25 30 35 40

Fig. 3.5: The energy gap o f  armchair GNRs depends on their widths: (a) when 

tj=t and (b) when tj=1.2t.

Fig. 3.5 shows the relationship between armchair GNR widths (n) and their 

energy gaps when choosing t\=t and t\=\.2t. For n=3p, the energy gap o f t\= l.2t is 

smaller than that o f  t\=t. This value decreases when the width increases. For 

n=3p+\, the energy gap o f t\=t is zero and becomes independent o f  ribbon width n. 

For fi=1.2/, C-C bonds on the edge are shortened and the energy gap opens in

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(3/7+1, 0) armchair GNRs. For n=3p+2, the energy gaps o f t\=t are nearly the 

same as that o f t\= \2 t. By comparing the electronic structure o f t\=t with that of 

t\=\.2t, we observe that the change o f the edge hopping parameter (resulting from 

the added chemical groups) can significantly affect the electronic properties of 

armchair GNRs. Our calculations reproduce the results based on the local density 

approximation o f the DFT [30]. It is worth mentioning that the energy gaps o f 

both t\=t and t\= \.2t approach zero, or the effect resulting from the addends 

becomes insignificant when n is very large. This observation suggests that tuning 

band structure through edge modifications is effective only for finite-width GNR.

Next, we focus on evaluating the energy gap as a function o f  hopping 

parameter t\ for three kinds o f armchair GNRs [(8, 0), (9, 0), and (10, 0)]. Results 

are plotted in Fig. 3.6. It is interesting to note that around t\=t (representing the 

slight deformation case), the energy gaps o f (8, 0), (9, 0), and (10, 0) armchair 

GNRs show different trends. In contrast to a (9, 0) GNR, the energy gap o f a (8, 0) 

GNR increases as t\ increases to around t\=t. This trend is also observable in Fig. 

3.4. A (10, 0) GNR has a zero energy gap at t\=t. Once we applied chemical edge 

modifications ( tx ^  t ), there is an opened energy gap that always increases no

matter whether t \  decreases ( (  < t ) or increases (/, >t) .  This result shows that a

transition between metallic and insulating GNRs is achievable. Moreover, the 

energy gap can be controlled by selecting proper addends bounded to the edge 

carbon atoms o f  armchair GNRs.
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Fig. 3.6: The effect o f  hopping parameter tj on energy gaps o f  armchair GNRs 
with different widths (n=8, 9, and 10).

In Fig. 3.6, one t\ value exists that corresponds to the zero energy gap for both 

(8, 0) and (9, 0) armchair GNRs. This phenomenon shows that, in principle, 

insulating armchair GNRs can be modified to become metallic GNRs. However, 

this kind o f  modification is difficult to implement since the hopping parameter t\ 

would have to be reduced or enlarged by 100%.

3. 3 Discussion

In this chapter, the first-principles calculations show that the chemical 

modification o f armchair GNRs results in a considerable deformation o f the bond 

lengths and bond angles near the edge. The introduction o f hopping parameter, t\, 

using the TB scheme accurately captures the effects caused by chemical edge 

modifications. Our theoretical results show that addends can change armchair
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GNRs’ band structures and even lead to observable metal-to-insulator transitions. 

It should be pointed out that the chemical edge modification is effective only for 

fmite-width GNRs. The study can assist researchers to make graphene-based 

sensors for detecting various types o f molecules attached to GNR’s edges.
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Chapter 4 

Graphene Switch Design -  

Illustration of the Klein Paradox

We have designed an armchair GNR switch, which can be used to illustrate the 

Klein paradox phenomenon. Klein paradox is named after the Swedish physicist 

Oskar Klein, who proposed this paradox in 1929 to describe the scattering of 

particles passing through a repulsive potential barrier without decay. This paradox 

cannot be explained by classical physics. Conventional particles should be 

reflected completed when the barrier height is larger than particles’ incoming 

energy. Only Dirac particles can penetrate this barrier without any decay even the 

barrier is very high. In this chapter, our simulation results showed that the Klein 

paradox exists in graphene nanoribbons. Furthermore, we can use the selective 

tunneling phenomenon in the Klein paradox to design a novel graphene-based 

switch. Our resulting switch displays an excellent on-off ratio performance. An 

anomalous tunneling phenomenon, in which electrons do not pass through the 

GNR junction even when conventional resonance condition is satisfied, is 

observed in our numerical simulations. We propose a selective tunneling rule to 

explain this interesting transport behavior based on our analytical results. Our 

switch design can also achieve the confinement o f electrons and thus serve as the
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qubit for quantum computation.

This work was done by Zhengfei Wang and me supervised by Dr. Jie Chen and 

Dr. Qinwei Shi at University o f Alberta in February 2007. This chapter is divided 

into two sections. Section 4.1 introduces the model and the computation 

methodology to calculate the conductance in GNRs. Section 4.2 discusses the 

resulting graphene switch and novel electronic properties.

4.1 Model and Computation Method

In what follows, we consider a semiconducting armchair GNR connected to a 

left and a right metallic armchair graphene leads. Due to the band gap in our 

junction, the electron within the energy gap is prohibited to transmit through the 

junction without applied gate voltage, and the graphene switch stays in the ‘o ff  

state. The junction can be turned ‘on’ when an external gate voltage exceeds a 

threshold voltage. The applied gate voltage shifts the valence subbands o f the 

graphene nanoribbon upwards to serve as conducting channels. This observation 

realizes the main feature described by Klein paradox, that is “the electron can pass 

through a high potential barrier” . Here, electrons’ incident energy is only 0.05 eV, 

much lower than the barrier height. The electrons, however, can even pass 

through the barrier without any decay or the transmission coefficient T=1.
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Fig. 4.1: Schematic diagrams o f  the energy band dispersions and the proposed  

graphene switch.

Our setup is shown in Fig. 4.1. The bottom subgraph o f  Fig. 4.1 shows the atomic 

structure o f  the graphene junction including three regions: left lead, middle 

graphene region, and right lead. Both leads have the same width with W= 3 m -  1 

to ensure that they are metallic. The width o f  the middle region is chosen to be W  

+ 4 so that it is semiconducting [24]. The top subgraph in Fig. 4.1 shows the 

dispersion relation o f the left, middle and the right region o f the switch, 

respectively. The dashed line denotes the energy E  o f  incident electrons. U  is the 

external potential applied to the middle graphene region. Unlike conventional
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parabolic semiconductor energy band diagram (E  x  k 2), the energy o f the lowest 

conduction subband in the lead is linearly proportional to the vector k  [2]. This 

dispersion relation indicates that carriers in this channel are massless.

To compute the transport properties o f the graphene switch, we use the 

Landauer-Buttiker formula [48] to calculate the conductance the switch circuit.

The retarded self-energy and ’̂ r for left and right leads can be obtained

Here the Hamiltonians H LC and H RC represent the coupling between the junction 

and the leads. They are nonzero only for adjacent points on the interface based on 

the tight-binding approximation. G[ and G'R are the retarded surface Green’s 

functions o f  the left and right semi-infinite leads, which can be calculated using 

the transfer matrix method [49]. The on-site energy is set to e2 =0eV  and the

hopping parameter is set to V = - 3 .O eV. The retarded Green’s functions o f the 

central junction is

Once we obtain the self-energy term ^ LR , we can easily calculate the T; R that 

describes the coupling between the junction and the leads.

as follows

(4.1)

(4.2)
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The advanced self-energy term in Eq. (4.3) is the Hermitian conjugate of 

^  . The transmission function o f the graphene switch can be expressed as

The conductance is proportional to the probability o f  electron transmission

2e2
through the junction region, G - — T . In order to ensure the incident electron

h

energy lies within the single-mode region o f the leads and also in the gap o f the

the band gap between the lowest conduction subband and the upmost valence 

subband o f  the junction, Az is the energy spacing between the bottom of 

conduction subbands and the next subband within the lead. In the following 

simulations, we set W= 23 and thus obtain the corresponding Az = 0.65eV  , 

A ^ O J S e V  and A2 = 0.79cV  by the nearest neighbor tight-binding band 

structure calculation [50].

The calculated conductance is shown in Fig. 4.2. By applying an external gate

(4.4)

middle graphene region, we chose E  < min — , Az .A s  shown in Fig. 4.1, A, is
2 /

4.2 Numerical Results
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voltage at the middle graphene region, a potential barrier U appears. In general, if  

the chosen voltage potential makes the energy o f incident electron touch the top 

o f the first valence subband o f the junction, the incident electron can easily pass 

through the junction as expected and the switch should be turned ‘on’. However, 

our simulation results show that the incident electrons are almost completely 

reflected and the conductance remains almost zero. This phenomenon implies that 

the carrier has to satisfy an additional condition to pass through the potential 

barrier.

When the potential barrier U  increases further, the switch turns ‘on’ and the 

first resonant transmission peak appears around £7=0.51 eV for L=20. This 

behavior can be easily understood by the Klein paradox. That is, with the 

availability o f  channels used to transport holes, electrons can transfer through the 

large potential barrier via these channels without exponential decay. The electron- 

hole symmetry ensures the successful penetrating o f  electrons through the high- 

height barrier. The conductance oscillates above the envelope line and it increases 

as U  increases due to the resonance and anti-resonance transports as shown in Fig. 

4.2. Although more channels can allow electrons to pass through and more 

resonance matching conditions (refer to our later discussion) can be satisfied as U 

increases, T  never exceeds 1. The reason is that the energy o f the incident electron 

is limited within the single-mode region in our calculations. As the length o f the 

junction increases, the first resonant peak becomes sharper and shifts towards left 

slightly and more resonant peaks appear. These observations can be easily 

understood by the conventional resonance condition. However, to produce the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



first conductance peak, the condition U > A212 + E = 0.44eV is still required. 

This result strongly suggests that this peak results from the second valence 

subband.

N0)CM
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u
CM
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0.8

0.6

0.4
0.2

0.0
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1=30

0.6

0.4
0.2

0.0
1.0
0.8
0.8

0,4
0.2

0.0 0.2 0.4
U (eV)

0.6 0,8

Fig. 4.2: Conductance vs. the potential height in the single-mode region with 

different length o f  the junction. Here W = 23 and E  = 0.05eV. The conductance 

oscillates above the envelope line plotted with dash dot line.
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To verify the above conjecture, Fig. 4.3 shows the conductance as a function o f 

the junction length L  calculated by fixing £=0.05 eV and £/=0.5 eV. Such a 

choice provides two conducting channels in the middle region for electrons 

passing through the junction. In general, the conductance curve should be 

complicated with some glitches due to the quantum interference between two 

channels [51]. Surprisingly, our numerical result exhibits a regular periodicity as a 

function o f £  in Fig. 4.3. Based on the detailed analysis o f this conductance period 

with the conventional resonance condition, we find that only the second valence 

subband provides a channel to allow incident electrons to pass, and the first 

valence subband does not contribute. We also performed similar simulations with 

different widths (W=-17 and 20) and the same phenomenon was observed. This 

switch behavior actually does not depend on the junction width.
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Fig. 4.3: Conductance versus the length o f  the junction with W  = 23, E  = 0.05e V 

and U = 0.5 e V .

Generally speaking, to pass through the middle region, electrons have to satisfy 

conventional resonance condition which usually describes the transfer o f an 

electron through a junction via resonant tunneling (T=l) due to the phase 

accumulation. It works well in conventional semiconductors when the 

Schrodinger equation is used. In our switch model, the valence subbands in the 

middle region can be shifted upwards with the applied external gate voltage to 

provide conducting channels. When electrons satisfy the conventional resonance 

condition, qxL = N n  with N  = 0 ,+ l,+ 2 ,--  , where qx denotes the x-direction 

(along the propagation direction) component o f wave-vector inside the middle 

region, they can pass through the junction resonantly. However, our simulation 

results show that the electron is still prohibited to pass trough the middle region 

when the conventional resonance condition is satisfied. To understand this 

anomalous transport behavior more clearly, we derive an analytical expression o f 

the eigenfunction and eigenvalue o f the perfect armchair graphene nanoribbon 

with a finite width (W) as
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’ <!>) =  ■ \tL
M

with n  -  2 e ' 2 c o s <ln
V3"

■a + e iqxo

(4.5)

<ln =
nn

s a(W  + 1)

respectively. Here, a  is the C-C bond length (1.42 A ),  F  is the nearest hopping 

parameter (-3.0 eV), n denotes different subband with 1, ■ ■ ■, W. j  labels the 

atomic position in the y-direction with 1,- • -,W. j= + l (-1) describes the 

conduction (valence) subbands, respectively. The chirality o f the electron in the 

conduction subband or hole in the valence subband can be determined by the 

good quantum number qx and qn . To determine the lowest conduction subband 

or the upmost valence subband, the integer number n needs to satisfy the 

'2
condition, n -  N  int -{W + 1) Here the function o f Nint rounds o ff the variable

to an integer. To verify that electrons in the lowest conduction subband cannot 

pass through the switch via the upmost valence subband o f  the middle region, we 

calculate the corresponding transfer matrix element P\\, and we obtain

Pn =-\(s,n,qx \v \ s  ,r i,q } i  ~  4.5xlO“14e F 2 with W=23, j= + l, n= 16, s '= - l , and 

n =19. Here, V = + 2| with j= 2, 4, 6, • • •, W -l is the scattering operator
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corning from the sharp interface between the lead and the middle region. In the 

elastic scattering process in our system, the equation s„l (qx) = (qx) + U  has to 

be satisfied. Meanwhile, the applied voltage U  is large enough to ensure the 

equation has a real numerical solution ( q x ). The transfer matrix element P n

between the lowest conduction subband to the second upmost valence subband is 

calculated to be around 0.27 eV2. In our switch design, the values in these transfer 

matrix elements are almost independent o f the width o f graphene nanoribbon 

based on our numerical simulations.

The sharp interface in our design plays an important role, which was not 

observed in its 2-D counterpart [10]. From our numerical results, it is clear that 

the selective tunneling corresponding to two transfer matrix elements (Pn  and Pn)  

can illustrate the interesting transport process. When U>0.24 eV, the first valence 

subband o f the middle region is moved high enough to provide a conducting 

channel, but P n  almost equals to zero. That is to say, no matter whether the 

chirality o f electrons are conserved or not, the sharp interface in this symmetrical 

connection prevents the tunneling process. Electrons, therefore, are bounced back 

and the conductance remains almost zero, as shown in Fig. 4.2. Increasing the 

length o f the junction only changes the conventional resonance condition, but the 

conductance still remains zero. When we further increase the voltage potential to 

I/>0.44 eV, the second valence subband o f the middle region moves upwards. 

The energy o f incident electrons touches this channel and the electrons can then
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tunnel through the potential barrier without exponential decay.

1.0

0.4

0 2

U<*V)

Fig. 4.4: Top subgraph: conductance vs. the potential height in the single-mode 

region. Bottom subgraph: atomic structure o f  the T-shapedjunction. Here W  = 23, 

L = 20 a n d E  = 0.05eV.

Note that whether the first valence subband contributes to the conductance or 

not depends strongly on the geometric structure o f the graphene nanoribbon 

junction. As an example, a T-shaped junction with the same width o f  the previous 

symmetry structure is shown in Fig. 4.4. By choosing the same parameters 

(.EM).05 eV, W=23 and Z=20) as in the case o f  Fig. 4.3, numerical results in Fig. 

4.4 show clearly that the first conductance peak appears in the region where the 

incident energy touches the first valence subband (0.24eV<f7<0.44 eV). The 

reason is that the transfer matrix element (PI 1) has a finite value (about 0.24 eV2)
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in the T-shaped junction. Our results suggest that the switch conducting behavior 

can be manipulated by tailoring the graphene nanoribbon. In the range o f

0.44eV<t/<0.7eV, another interesting observation is that two obvious 

conductance dips appear in the conductance curve. This phenomenon can be 

attributed to the destructive interference effect between two conducting channels

[52].

m 0.10

met

■■■

C.Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

U (a¥)

Fig. 4.5: Three-dimensional p lo t o f  conductance as the function o f  energy and  

potential height fo r  the configuration shown in Fig. 4.1. Here W=23 and L=20.

To illustrate the switch effect more clearly in the single-mode region, Fig. 4.5 

presents a three-dimensional color picture to display the conductance as a
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function o f  incident electron energy (E) and the potential barrier height (U) for the 

configuration shown in Fig. 4.1. The color is scaled with the corresponding 

conductance, white and blue colors correspond to T= 1 (’on’) and T= 0 (’o ff) , 

respectively. It is clear that the figure can be roughly divided into two regions 

bounded by the first peak (the most left white line). At the left o f  the first peak 

(the first white line), the switch stays off or all incident electrons are bounced 

back. The junction begins to be turned ’on’ starting from the right o f  the first peak 

by applying a certain threshold bias U  and its conductance oscillates with 

increasing U  as shown in Fig. 4.2. Although more channels can allow electrons 

pass through or more resonance matching conditions can be satisfied as U  

increases, T  never exceeds 1. The reason is that the energy o f incident electrons is 

limited within the single-mode region in our calculations. Several additional 

interesting features can be observed in Fig. 4.5: (i) The peaks or the white lines 

are parallel to each other and shift toward the right as the incident energy 

increases, (ii) All peaks are straight lines indicating the required voltage to open 

the switch increases linearly as incident electron energy increases, (iii) The white 

lines become wider and blue lines become narrower as U  increases. The 

confinement o f  electrons is a basic requirement to realize a qubit in a solid device. 

In addition to the switch design, the selective tunneling rule observed in the 

symmetrical nanoribbon suggests that we can achieve the confinement o f an 

electron in the middle region even though the region connects to two metallic 

leads. The condition for such a confinement is Az > | + t / | . The external bias
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voltage U  can be adjusted to control whether the trapped electrons to pass through 

the middle region or not. Our design is easier to implement than that in Ref. [52]. 

Compared to that in a GaAs quantum dot, our qubit design in graphene 

nanoribbon is very promising because the spin-orbit interaction and hyperfine 

interaction in graphene are considerably weak [53]. The time o f spin decoherence 

is longer and one can exploit the electron-spin freedom to design quantum qubit. 

As a result, the qubit in the graphene nanoribbon can possibly operate at room 

temperature.

4.3 Discussion

In this chapter, the transport properties o f a semiconducting graphene 

nanoribbon sandwiched between two metallic graphene nanoribbon leads are 

investigated. Switching behavior is observed according to our numerical results. 

The junction has a good “on-off’ ratio performance, which is almost completely 

pinched-off without external gate voltage and can be turned ‘on’ by applying a 

threshold bias voltage. We find that our numerical results are related closely to the 

Klein phenomenon. Electrons can pass through the junction when these Dirac 

Fermions satisfy both the conventional resonance condition and the selective 

tunneling rule. These findings are helpful for us to construct and design graphene 

nanoelectronic devices in the near future. For instance, the proposed graphene 

switch can be used to achieve qubit design in quantum computers.
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Chapter 5 

Graphene Rectifiers and 

Transistors

In this chapter, we present our model for graphene rectifier and transistor design. 

Zhengfei Wang and I did this research at University o f Alberta in March 2007 

under th supervision o f Dr. Jie Chen and Dr. Qinwei Shi and the paper is under 

review (after 2nd-round modification). In Section 5.1, the quantum conductivity o f 

a Z-shaped GNR is calculated based on the Landauer-Buttiker formula and the TB 

model. We find that an external gate voltage applied in the junction region is 

sufficient to rectify electrons across the junction. Rectification is also found 

independent o f  the width and length o f the junction, which is the intrinsic property 

o f Z-junction. In Section 5.2, we demonstrate that the Z-shaped GNR can be 

further extended to design a field-effect transistor (FET). By applying a local gate 

bias in the center o f  the armchair ribbon, the device current-voltage (I-V) 

characteristics clearly show asymmetric with respect to the bias polarity and 

exhibit that it can work as an n-type or p-type transistors by changing the polarity 

o f gate bias without doping.
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5.1 Z-junction Graphene Rectifier

To study the transport proprieties o f the Z-junction GNR, we separate the device 

as shown in Fig. 5.1 into three regions: the left lead, the middle junction, and the 

right lead. In this study, we assume that the junction width is W-1 while both the 

left and right leads have equal width IF (IF is an integer number). The length of 

the junction is L where L is an integer number. In our design, the leads are semi- 

infinite armchair GNR, but the junction is zigzag GNR.

V

left lead junction right lead

Fig. 5.1: Schematic graph o f  a rectification circuit made o f  Z-junction GNR. The 

width o f  the left/right lead and the junction are integer W and W -1, respectively. 

The length o f  the junction is integer L. VL/R is applied voltage on left/right lead.

Current is positive i f  electrons flow  towards the junction and otherwise negative. 

We use the Landauer-Buttiker formula to solve the transmission coefficients o f
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this device. The scheme was introduced in Chapter 4. By using the Landauer- 

Buttiker formalua, current /  passing through the junction as the function o f 

applied voltages VL/R can be expressed as

7  =  f  £ > [ / ( / ' J - / K ) ] 7’ ( £ ) ,  (5.1)

where /  is the Fermi function. It is expressed in terms o f temperature T  and 

Boltzmann's constant kb , which is f ( j u UR) = l / [ l  + e x p (E - ju UR) / k bT] . 

M l / r  -  Ef  ~eVL/R and Ef  is the Fermi energy. In the following calculation, we 

set Ef  = 0.
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Fig. 5.2: The calculated I-V  curves fo r  the Z-junction GNR with different gate
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voltage from  (a)-(f). In our simulations, we choose W = 5, L = 6, VR = OV, E f =  

OeV and T  = 300K.

The numerical results o f I-V curves are shown in Fig.5.2 (a)-(f). There are two 

distinct characters that we can see from these figures, (i) Without the gate voltage 

(U  = OV), the I-V curve is symmetry with respect to the positive and negative bias 

voltage (Vi), shown in Fig. 5.2(a). (ii) By applying a gate voltage in the central 

junction region, the curves become more asymmetry, as shown from Fig. 5.2 (b) 

to (f). In Fig. 5.2 (f), the current is almost quenched to zero between 

-1 .0V  ~  0.4V . The current begins to increase only when the positive bias voltage 

larger than a thresh-old value ( — 0.4V  ). This behavior shows the typical 

rectification proprieties. Therefore, when the applied gate voltage large to -5 V, in 

this Z shaped junction structure can achieve a perfect rectified function in the bias 

voltage range between - I V  ~  IV . Similar behaviors can also be observed with a 

positive gate voltage. For U = 5 V, the current is quenched in the range between 

-0 .4V  ~  IV  , and it begins to increase towards the opposite direction when the 

negative bias voltage large than -0 .4 V .

In order to explain the phenomenon that why the Z-shaped junction with an 

external gate voltage can realize rectified effect, we further calculate the 

eigenstates o f this open system. Its Hamilton can be expressed as

(5.2)
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Here, the contribution o f the left and right leads is included in the self-energy 

term. The corresponding density o f states (DOS) o f this open system [50] is

DOS(E) = X 1 r«
2 x ( E - e a f + ( r a f -  <5'3)

The summation is done over all eigenvalues. s a is the real part o f eigenvalue and 

represents the position o f the resonance state. ya is the image part o f the 

eigenvalue and represents the broad o f the resonance state.
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Fig. 5.3: The calculated DOS fo r  the junction part o f  the device with different 

external gate voltage (we can compare them with Fig. 5.2(a)-(f)). Here, W  = 5, L

= 6.
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Fig. 5.3 shows the DOS o f the system by using the same parameters as those in 

Fig. 5.2. For U = OV, the DOS is symmetry with respect to the positive and 

negative energy. In contrast, by increasing the external gate voltage from U = -1V 

t o -5 V,  the DOS gradually localizes in the negative energy region as shown in Fig. 

5.3(b)-(f). Noticing the fact that the main contribution to the current in the integral 

expression o f Eq. (5.1) is between the energy range o f the chemical potential of 

left lead ( /uL = - e  VL) and right lead (juR = 0). That is to say, for the positive bias 

voltage, tunneling channels in negative energy region contribute to the current. 

While for the negative bias voltage, tunneling channels in positive energy region 

contribute to the current. The localization o f DOS in the negative energy range, 

therefore, provides more tunneling channels in negative energy than in positive 

energy range, which directly results in the asymmetry o f  the I-V curve in Fig. 5.2. 

This conclusion is consistent with the previous studies for the nanotube Y 

junction rectified circuit [54, 55].

From our previous discussion, we propose a simple model to show the rectified 

effect for a Z-shaped junction, and we also explain the causes o f  this phenomenon. 

However, there is still one question that we have not answered yet: “whether this 

rectified effect universally exists in our model?”, or “is it just a special case for a 

particular structure?” . In order to answer this question, we further calculate the I- 

V curve o f the rectifier using different junction width and length in the following 

section. The corresponding results are shown in Fig. 5.4. Firstly, for a junction
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with the length o f L = 20, we change its width with W  = 23, 29, 35 as shown in 

Fig. 5. 4 (a), (b) and (c). The common characters o f the I-V curves are that there 

always exists a certain range where the current is quenched to zero. When the 

positive bias voltage gets large than a threshold value, the current starts to 

increase. For W =  23 and 35, the quenched region is wider than that for W = 29. 

Secondly, we fix the width (W =  17) o f the junction, and change the length o f the 

junction with L  = 20, 40, and 60 as shown in Fig. 5.4(d), (e) and (f). Similar 

rectified behaviors can be observed. In addition, the quenched region almost does 

not change with the increasing length o f the junction, which behaves different 

from that o f  changing the width o f the junction. From our numerical results, we 

can conclude that our rectified circuit model is general and does not depend on the 

detailed structure o f  the junction. This finding can significantly reduce 

experimental difficulties and provides more convenience to validate our model in 

real experiment.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Lss20 W=17
(a) W-23

-1.0 -0.5 0.0 0.5
VL (volt)

((f) l>20

-1.0 -0.S 0.0 OS 1.0
VL (volt)

(b) W»29 (e) u*4u

-1.0 4 .5  0.0 OS 1.0
Vi (volt)

1.0 -0.5 0.0 0.5 1.0
Vl (volt)

0.5 
0.4 
0.3 

_  0.2
1 «0.0

45.1
<0.2

■(c) W-35 / (f) L=60 ,

: J

I(
m

A
)

L*. 
b 

-* J -

1.0
VL (volt) VL (volt)

Fig. 5.4: The calculated I-V  curves fo r  the Z-junction GNR as shown in Fig. 5.1 

with different lengths and widths. Here, we choose Vr = 0 V , E f=  OeVand U  = - 

5V.

5 . 2  Graphene Transistor

In this section, we propose a p-type or n-type GNR transistor by applying a 

negative or positive gate voltage in the center conductance region o f  GNR. The 

schematic graph is shown in Fig. 5.5.
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1 2 - . . L L--------
left lead  junction  righ t lead

Fig. 5.5: Schematic graph o f  armchair graphene ribbon transistor. The width o f  

the left/right lead and the junction are integer W. The length o f  the junction is 

integer L. VL=R is applied voltage on left/right lead. Current is positive i f  

electrons flow  towards the junction and otherwise it is negative.

The typical I-V curves o f  the transistor are shown in Fig.5.6. There are two 

distinct characteristics that we can see from Fig. 5.6 (a), (i) Similar to the Z- 

shaped junction rectified device, without the gate voltage (Vg = 0V), the I-V curve 

is symmetry with respect to the bias voltage ( V l ) .  The curves, however, become 

more asymmetric when the gate voltage increases in the central junction region. 

When the gate voltage increases to 6V, the current is quenched to zero in the 

positive bias voltage region, which shows a typical rectification effect, (ii) In the 

positive bias voltage region, the current drops with increasing gate voltage. This I- 

V behaves the same as an n-type doped transistor. In Fig.5.6 (b), the curve is the 

mirror image o f Fig. 5.6 (a) but rotates by 180° around the origin o f the coordinate.
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In this case, a p-type transistor can be achieved when the applied gate voltage 

becomes negative.

2.0 2.0
l
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Fig. 5.6: The calculated I-V  curves fo r  the armchair GNR with different gate 

voltage Vg. (a) positive gate voltage, (b) negative gate voltage. In our calculation, 

we choose W =  11, L = 4, Vs = OV, Ef = OeVand T  = 300K.

The above results show that we can simply realize the n-type or the p-type 

transistor by changing the applied gate voltage on the armchair graphene ribbon, 

which is much simplier than that using doping.
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Fig. 5.7: The calculated conductance fo r  armchair graphene nanoribbon with 

different gate voltage Vg. Here, W = 11 and L = 4.

A commonly asked question is: “Why the applied gate voltage can turn the 

electron in armchair graphene nanoribbon to realize this transistor effect?” To 

explain this phenomenon clearly, we also plot the conductance o f the ribbon as 

shown in Fig. 5.7 (a) and 5.7 (b). In Fig.5.7 (a), without the gate voltage, the 

conductance shows the typical step curve (here we choose the width o f the ribbon 

W=  11 so that it is metallic). When we increase the gate voltage, the conductance 

is suppressed down and no clear step can be observed anymore. In addition, these 

curves become more asymmetric with respect to the bias voltage. When the gate 

voltage gets larger than 6 V, the conductance is almost localized in the positive 

energy section. Similar to our previous discussion o f  the density o f state (DOS) in 

the rectified device, tunneling channels in negative energy region contribute to
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current when a positive bias voltage is applied. Likewise, tunneling channels in 

positive energy region contribute to the current when a negative bias voltage is 

applied. This behavior can explain the asymmetry o f the I-V curves. The drop o f 

the current curve can cause the decreasing o f the intensity o f  the conductance 

curves in Fig. 5.6 (b) and 5.7 (b), which can be explained in the similar way.

5.3 Discussion

By using graphene nanoribbons, we have designed two nanoscale devices. The 

external gate voltage applied in the junction region can control the device 

behavior and achieve the design o f a GNR switch, a GNR rectifier and even a 

GNR transistor. Overall, our model provides a new insight to design functional 

nanoscale electronic device based on GNRs.
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Chapter 6

Conclusion

We investigate the fundamental physical and electrical properties o f graphene 

ribbons (GNRs). We also explore GNRs to make nanoelectronic devices. 

Specifically, we use both the analytical tight-binding method and the numerical 

first-principles calculations to study the electronic structures o f GNRs. We 

discovered that perfect armchair GNRs are metallic (zero energy gap) materials 

when the width n=3p+2, where p is an integer; otherwise, insulating (non-zero 

energy gap). However, the existence o f dangling bonds at the edges o f GNRs 

provides a great opportunity to tune their properties by attaching different kinds of 

chemical molecules to the edges. With both analytical and numerical methods, we 

demonstrated that the chemical modifications can affect the geometric and 

electronic structures dramatically and even lead to metal-to-insulator transition. 

For instance, we found that armchair GNRs with dangling bonds saturated by 

hydrogen atoms are all insulators with non-zero energy gaps. These findings can 

help us gain insights about electronic transport in GNRs. Furthermore, based on 

the understanding o f electronic properties o f GNRs, we propose some designs o f 

GNR-based devices. The proposed nanodevice designs not only well illustrate the 

physics behind these phenomena, but also provide a guideline towards the 

experimental realizations o f such novel devices and their integrated nanocircuits.
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