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ABSTRACT

Two analyses are presented to study the effects of
restrained shrinkage on reinforced concrete members. The
first is a uniaxial shrinkage analysis of a symmetrically
reinforced, completely restrained slab element. A procedure
for calculating induced tensile stresses and spacing of
cracks due to restraint of shrinkage is presented. The
reduction of axial stiffness due to cracking is based on an
assumption of linear steel stress distribution within the
zone of influence of cracking. A parameter stﬁdf was
conducted to investigate various factors affecting the
member's behaviour.

The second analysis involved the application of the
finite element method in analyzing two-way continuous slab
systems. Shrinkage cracks are assumed to exist in the slab
prior to analyzing the slab for transverse loads. Methods
for evaluating the reduced flexural stiffness due to
shrinkage cracking and cracking due to transverse load are
given. A brief investigation was performed to study the
effects of number of shrinkage cracks and variation in
effective tensile strength on slab deflections., It is
proposed that shrinkage restraint be incorporated in a plate

bending analysis by using a reduced effective modulus of

- rupture.
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1. INTRODUCTION

1.1 Introductory Remarks and Literature Review

The current practice of ultimate strength design of
reinforced concrete structures has resulted in more flexible
and slender structures than in the past. The assessment of
the performance of the structure at the working load levels
thus becomes an extremely important consideration. Although
strength requirements may be satisfied, cracking and
deflections at the working loads may be excessive. Cracking
may be excessive if the steel stresses are high or if the
reinforcing bars are not properly distributed. Deflections
may be critical when shallow sections, which are the case in
ultimate strength design, are used and high stresses are
present.

The concern for serviceability requirements is
reflected in the current ACI Building Code, where methods
are suggested to compute both short-term and long-term
deflections. The Code however does not explicitly consider
cracking of structures that often occurs at an early age of
construction either due to construction loading or due to
restraint of shrinkage. Failure to recognize these effects
may lead to unconservative predictions of two-way slab

deflections as revealed by some investigations (Heiman, 1974



and Rangan, 1976).

Observed cracking usually occurs for the following main
reasons (Scanlon and Murray, 1982 and RILEM Committee 42-
"CEA, 1981): |
1. Settlement of the newly placed concrete.

2. Early shrinkage and thermal variations.

3. Higher than design moments that occur adjacent to
columns.

4. Excessive construction loading due to shoring procedure
that results in overstressing of the slab before the

concrete can reach its design strength.

A survey carried out by Mayer and Rusch (1967) has
indicated that excessive slab deflection was the most common
cause of damage to reinforced concrete structure.
Insufficient consideration of creep and shrinkage on slab
deflections was one of the causes cited for damage.

The ACI Building Code recognizes shrinkage effects on
deflections in terms of shrinkage curvature due to warping
that arises from nonuniform shrinkage. However, in

continuous reinforced slab systems, tensile stresses are
induced by shrinkage of the concrete when shrinkage strains
are restrained. Stiff support elements provide the

restraint and significant stresses can be developed. The



value of the induced tensile stresses may well exceed the
tensile strength of the concrete, particularly at the early
stages of hardening, resulting in additional cracking of the
reinforced slab system. The overall stiffness of.the slab
system is thus reduced, causing an additional slab
deflection. The current ACI Building Code calculation
procedures may, therefore, underestimate slab deflections if
the effects discussed above are not properly considered.

Cracking in certain regions reduces the slab stiffness
and complicates the analysis of reinforced concrete slab
systems., Classical plate-bending solutions cannot readily
deal with slabs with varying stiffness. The introduction of
the finite element method solves this problem by dividing
the slab into finite regions allowing the stiffness to be
varied from one element to another.

Successful modélling of cracking behaviour in slab
systems has been made by Jofriet and McNeice (1971). A
bilinear moment-curvature relationship formed the basis of
the model of a cracked region. Cracks were assumed to
initiate at a direction perpendicular to the major principal
moment and unalter dufing any increase of load. Procedures
were developed to give equivalent steel areas normal to the
cracks for direct substitution in the calculation of the

effective moment of inertia of a cracked region.



A much simplified method was developed by Scanlon and
Murray (1982), who included the effects of cracking by
reducing the values of the elastic constants. Moments in
the x and y directions were checked. 1If the cracking moment
in either direction was exceeded, reduction in stiffness was
made using the ACI Building Code equation for effective
moment of inertia. The procedure thus assumed that cracks
were oriented parallel to and perpendicular to the direction
of the reinforcement. The reinforcement was placed in the x
and y directions of the global co-ordinate system so that
transformation of steel areas was not necessary.

The additional shrinkage cracks that may occur in slab
systems were not modelled in the two forementioned
procedures. A finite element model that includes both
cracking due to transverse loadings and due to shrinkage

restraint is, therefore, required.

1.2 Objectives
\
The objectives of this investigation are:
1. To investigate the effects of shrinkage cracks on
flexural stiffness of slabs,
2. to analyze reinforced concrete slabs that are subjected
to shrinkage cracking using the finite element method,

and



3. to assess a simplified procedure for calculating
deflections which includes the effects of restraint

stresses due to shrinkage of concrete.

1.3 Outline of Content

In Chapter 2, the analysis procedure of a member
subjected to uniaxial shrinkage strain is described. The
length and uniaxial stiffness of a cracked region is
modelled. The induced tensile stresses in the concrete due
to restraint of shrinkage are evaluated. Checking the value
of the induced tensile stresses against the tensile strength
of concrete, the number of cracks developed and the
shrinkage strains at which cracks formed are also
determined. A parameter study is then carried out to
investigate the different effects of variations in several
parameters,

The finite element procedure of the analysis of a slab
system subjected to bending is described in Chapter 3.
Cracking due to transverse loading and due to restraint of
shrinkage is modelled. To complete the analysis, additional
deflections due to shrinkage curvature and creep are
approximated. The results of the analyses of three
reinforced concrete slabs are used to assess a simplified

method for evaluating slab deflections subjected to the



effects of early shrinkage cracking.
A brief summary and recommendations for further

research are included in Chapter 4.




2. UNIAXIAL SHRINKAGE ANALYSIS

2.1 Introduction

Stresses are induced in concrete when volume change due
to shrinkage is restrained. Restraint may be provided by
support conditions and/or by reinforcing bars. Tensile
stresses developed may exceed the tensile strength of the
concrete, particularly at the early stages of hardening.
When the tensile strength is exceeded, cracking occurs.

In this chapter a symmetrically reinforced slab element
fixed at both ends and subjected to uniform, uniaxial
shrinkage is analyzed. For a given shrinkage strain versus
time history, the effect of progressive reduction in element
stiffness as cracks form is taken into account in
determining the spacing of cracks in the slab element due to’
restraint of shrinkage. Results obtained are used as a
basis for specifying the extent of cracking resulting from
restrained shrinkage in a slab prior to analyzing the slab

for transverse loads.

2.2 Assumptions and Limitations of Analysis

The analysis has the following assumptions and
limitations:

1. All concrete properties except shrinkage strain are



assumed to be constant with time. An example of a
shrinkage strain versus time curve is shown in
Figure 2.1,

2. A crack forms when the tensile stress in concrete
exceeds the specified tensile strength.

3. Creep effects are not included explicitly in the
analysis.,

4, No yielding occurs in reinforcing bars.

2.3 Shrinkage Analysis

2.3.1 Outline of Analysis

In the following sections, the shrinkage analysis
procedure of a symmetrically reinforced slab element with
full fixity at ends will be presented. The slab element is
first considered both at the uncracked state and at the
first and second cracking states, then the analysis is
generalized to consider the formation of any number of

cracks.
2.3.1.1 Uncracked state

Consider the member in Figure 2.2a. Release one
support and allow the concrete to shrink freely by an amount

A = €ShL



where egp is the shrinkage strain that occurs in concrete.
In order to force the steel bar to shorten by the same

amount, a compressive force
Po = -AgEgesh

must be applied to the bar as shown in Figure 2.2b. The
concrete is now unstressed and the bar is under compression
when one support is released.

For compatibility, a force P must be applied to bring
the member back to its original length ( Figure 2.2c ). The
applied load P is carried partly by the concrete (Pc) and

partly by the steel bar (Ps) at any cross section.

Hence, P Pe + Pg

AcEcec + AgEgeg

Before cracking occurs, there is no slipping between

concrete and steel.
Hence, esh = GC = ES

Therefore, P = ACECeSh + ASESESh
= AcEcesh *+ (pAc)(nEc)egy

= (1+np)AcEcegh

= AgEcegh
where Ao = (1+np)Ac
n = Eg/E¢

and p = Ag/Ac
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A_. is the equivalent transformed area of the member if

e
the steel area Ag is replaced by an equivalent amount of
concrete area npA..

The net force in the member is

Pnet = P + Py
= (AcEcegp + AgEgegp) + (-AgEgegp)

=PC

Concrete stress in the member is

Before cracking the net stress in the steel is zero.
It may be noted that the same result is obtained if the bond
between steel and concrete is released as well as the
restraint at one of the fixed énds. In this case P, = 0 and
the net concrete and steel stresses are as indicated above

when compatibility of deformations is applied.

2.3.1.2 Formation of the first crack

The concrete stress continues to increase as shrinkage
continues until the concrete tensile strength f; is reached,
causing formation of the first crack. The shrinkage strain
at which the first crack forms ( i.e. when f. = f;, from

Assumption 2 ) is
eshi = £t/Bc (2.2)

If esht > espy, then the first crack will not form.
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Cracking causes a reduction in member stiffness with a
resulting decrease in stress in the member. Figure 2.3
shows the variation in concrete tensile stress with
increasing shrinkage strain. 1Initially, in the uncracked
state, the tensile stress increases linearly with.shrinkage
strain along line OA. At point A the tensile strength is
reached and the first crack forms. The reduction in
stiffness causes a decrease in stress to fcy ( point B ).
As shrinkage continues to take place, the concrete stress
increases again along line BC up to point C where the
tensile strength is again reached and a second crack is
formed. This sequence continues until the shrinkage strain
reaches its ultimate value.

The residual concrete stress f¢, can be obtained using
‘the following procedure.

Step 1. " Figure 2.4a shows the member with one crack
formed. As a result of the crack, the axial
stiffness is reduced over a length L¢r. Within
this length, the stiffness varies from the
stiffness provided by steel alone at the crack,
to the full stiffness of the steel-concrete
composite member at a distance L¢r/2 from the
crack. |

If slipping between concrete and steel
occurs within some distance Lg1jp due to bond
failure around the first crack, then shrinkage

within this slipping region will not induce



Step 2.

significant stresses.

12

Hence, only shrinkage in

the non-slip region (L-Lslip) is considered.

Consider again the released support member

with one crack formed as shown in Figure 2.4Db

and allow the concrete to shorten freely by the

amount

A1=

€sh1(L-Ls1ip)

Define the average member strain to be

€1

Therefore A, =

Then the compressive

esht(L-Ls1ip)/L (2.3)

€1L

force P, reguired to

shorten the reinforcing bar by the same amount

is

Po

A force P is applied

back to L.

- AsEsA1/L

- A5Es€1

to bring the member length

Because of the reduction in

stiffness over L., the displacement A, is

considered in two parts.

The cracked region

elongates by an amount

Acyp =

PLcr/Ker
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where K¢p is the reduced stiffness over the

length L¢p.
The gross section also elongates over a

length of ( L - L¢r ) by an amount

Aq P(L-Lcr)/Kg
where Kg = AeEc.

From compatibility,

A, Acr + Ag

PLcr/Kcr + P(L'Lcr)/Kg

Therefore, PL/K,
in which K, is the overall member stiffness with
one crack.

Rearranging the above expression,

K1 =

L
(L-Lcr)/Kg + Lcr/Kcr

Similarly, for a member with m cracks,

Kp = L (2.4)
where m = number of cracks in member

n

-
-

N
-

w

]

.

.
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Step 3. From Step 1, since A, = €,L,
P = K1A1/L
= K1€1
Step 4. From Equation 2.1, concrete stress in gross
section is
fc1 = P/Ae
= K1€1/Ae
= Kjyeshs(L-Lglip) (2.5)
AgL
Step 5. The net force in the member is
Ppet = P + Py
= K1€| - AsEsf1
= (K1 - AsEs)€1 (2.6)
Step 6. After the first crack forms, the tensile stress

in steel is no longer zero. At the crack the
force Ppet is carried entirely by the steel,

producing a net tensile stress of

0s,cr = Pnet /As (2.7)

Outside the cracked zone L., the stress in the

steel is compressive and is given by
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95,9 = (Ppet = Pc)/As

in which £, = f¢, in this case.

The variation of steel and concrete stresses along the
length of the member after the first crack forms is shown in

Figure 2.4c.

2.3.1.3 Formation of the second crack

Assume shrinkage continues to take place after the
first crack forms. From Figure 2.3, when the shrinkage
strain increases from egps to egp, the concrete stress
increases along line BC Qhere the member has a stiffness of
Ky. At point C, where egp = €shz, the concrete tensile

strength is reached, i.e.

From Equation 2.5, substituting egp: by egpz.

ft+ = Kiesh2(L-Lslip)
AL

Rearranging, the shrinkage strain at which the second crack

forms is

esh: = Ae ftL (2.9)
Ki(L-Lgy4p)
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After the second crack is formed, the member has a
stiffness of K, and a slipping length of 2Lg7jp. Again

release one support to allow the member to shrink by the

amount

Az = €2L

where €2 eshz(L-2Lg14ip)/L (2.10)

The force P applied to maintain compatibility is given

by

o
|

= KzAz/L
KzEz (2.11)

where K, can be obtained from Equation 2.3 by letting m = 2.

The residual concrete stress at the uncracked section

is

P/Aq
Kze2/Ap (2.12)

h
O
~
[}

The net force in the member is
Pnet = P + Py

where P, is the compressive force required to shorten the
reinforcing by the amount A, when the restraint is released

at one of the fixed ends and is given by



17

PO = = ASESAZ/L
= - ASESGZ
Therefore Phet = Kzez - AgEge;
= (K; - AgEgle, (2.13)

The steel stresses at the crack and at the gross section can

be determined from Equations 2.7 and 2.8.
2.3.1.4 Formation of any number of crack
In general, the shrinkage strain egp, at which the mth

crack forms is given by the generalized form of

Equations 2.2 and 2.9,

eshm = _Reft L (2.14)
m- 1 [ L - (m-1)LsTip ]

where Ky.4, is obtained from Equation 2.4 by substituting m

by (m-1).

Formation of the mtM crack is confirmed by checking
that eéhm < €shy-

The residual tensile concrete stress is given by the

generalized form of Equations 2.5 and 2.12,

h
|

em = Kpem/Ag (2.15)

where €m eShm(L—mLs]ip)/L (2.16)
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The net force in the member when the crack forms is

derived from Eguations 2.6 and 2.13,

Pnet = (Km = AsEs)Gm (2.17)

The steel stresses can be determined by substituting
the appropriate values of concrete stress and P,.4 into

Equatiohs 2.7 and 2.8.
2.3.2 Shrinkage Crack Model
2.3.2.1 Reduced Stiffness of Cracked Region

In the above analysis procedure, the development of
progressive cracking as shrinkage takes place deﬁends on the
effective stiffness K., over the region L. If a force P
is applied to the cracked member as indicated in Figufe 2.5,

the steel strain at the crack is given by

o
L}

P/(ASES)

P
(pA.) (nE.)

p
[ o A (nE.)
R

P{1+np)
npAeEC

At a distance Lcr/z from the crack, perfect bond is assumed
between steel and concrete. The steel and concrete strains

are therefore equal and given by
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ec = P
AeEc

Assuming a linear variation in steel strain within the

cracked length L., the average steel strain is given by

eaye = (ec + €5)/2

1 _P 1 + (1+np)
2 AgE. npg
2+ _1_
npg
P
K 2np

"
|-
?:'U

Therefore Ker = P/eave
S N
= Kg 1 + 1
2np
where a = Stiffness reduction coefficient
= 1 (2.19)
1 + 1
2np

Figure 2.6 from the CEB State-of-the-Art report (1982)
shows the distribution of steel stress for a ribbed bar
embedded in a concrete block for the working load and
ultimate load levels. At the working load level, the stress
distribution is close to linear and tends to become more
linear at higher loads. The assumption of a linear steel
strain distribution (or equivalently, steel stress

distribution) is thus justified.
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2.3.2.2 The Length of Cracked Region

The reduced stiffness of the member is affected by the

length of the cracked region L¢y over which the steel stress

is assumed to vary linearly as described above. Several

approaches are considered for determination of the cracked

length Lep. It should be noted that all theories presented

here deal with the cracking of hardened concrete and assume

that the steel remains elastic after cracking has taken

place (Beeby, 1979).

1'

'No-slip' Approach

The stress distribution in concrete within the
cracked length can be approximated using the idea of
stress diffusion. It is assumed that plane sections do
not remain plane and that bond failure doe$s not occur at
the time the cracks developed (Beeby, 1979). Hence,
there is no slip in the vicinity of the cracks, i.e.
Ls1ip = 0.

The tensile force in the steel bar at the cracked
section is spread into the concrete by locad. One may
assume that the transfer force spreads into concrete
roughly along a cohe of slope 1/k, as shown in
Figure 2.7. The stress outside the cone is considered

zero. From Figure 2.7, the cracked length is
Lepr = 2k4c (2.20)

where ¢ is the maximum concrete cover measured from the
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face of the bar to the concrete surface. The slope of
the diffusion cone varies within a certain range and it
can be calibrated according to test data. The diffusion
concept was adopted by Bazant and Oh (1983), who took
ky = 1.4, and Clark and Spiers(1978), who took ky = 1.
'Slip' Approach

To illustrate the concept, consider a segment of a
cracked member subjected to pure tension as shown in
Figure 2.8a. For simplicity, assume that the tension
reinforcement consists of a single bar of diameter ¢.
When the bar segment AB is cénsidered_as a free body in
Figure 2.8b, the tensile force T carried by the steel
alone at B must be transferred to the concrete by bond
stress 7 over the development length Ly. The maximum

force that can be transferred to the concrete is
T = Acft
If 7y is the average bond stress, then

T

rbw¢Ld = Acft

Multiply the above expression by ¢/4,

Tb(W¢z/4)Ld = Acft¢/4

or ThALy = Acft¢/4
or Ly =19 f (2.21)

T

area of the steel bar
mo2/4

Ag/A..

where Ag

and p
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If the ultimate bond strength Tu1t is reached at the
maximum load, then the bond stress T, Mmay be substituted
by Tult " And because Talt 1S proportional to ft for a
given bar type (Beeby, 1979 and Leonhardt, 1977), the

above expression can be rewritten as:
Lq = k29/p (2.22)

The above approach had been considered by Saliger
(1936). It was assumed that plane sections remain plane
within the concrete and that there will be slipping
between the steel and the concrete. Bond failure is
thus assumed to occur at each crack (Beeby, 1979).

Since the crack affects the stresses only within a

distance *Ly from the crack, the cracked length is

L

2Ly
2kz9/p (2.23)

cr

and because slipping occurs over the same distance,

Lsh.p 2kz0/p (2.24)

The coefficient k, can be derived from the ultimate bond
strength suggested in the 1963 ACI Code for the

development length. The derivation is shown in

Appendix A.
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General approach

Beeby (1979) explained that the two forementioned
approaches should be considered together to describe the
actual cracking behaviour of axially reinforced tension
members. A general formula for crack spacing is given

by (Beeby, 1979; Ferry-Borges, 1966):
S = k1C + k2¢/P
The cracked length can then be expressed as:

2S

Ler

2(kyc + kz0/p) (2.25)
and the slipping length is
Lg1ip = 2k28/p . (2.26)

Note that Equations 2.20 and 2.23 are only special cases
of Equation 2.25. Table 2.1 summarizes the different
values of k, and k, used by others (Bazant and Oh, 1983;
Clark and Spiers, 1978; Beeby, 1979 and Leonhardt,

1977).

2.4 Solution Algorithm

Step 1. Refering to Figure 2.2a, calculate the following

constants for the member.

n
o ot
o

Total gross area, Ag

Net concrete area, A, = Ag = Ag



Step 2.

Step 3.

Step 4.

24

Steel ratio, P Ag/A.

Eg/E¢

Modular ratio, n
Equivalent transformed concrete area,
Ao = (1 + npla,
Stiffness at uncracked section,
Kg = AgE¢

Stiffness reduction coefficient,

Stiffness at cracked section,

K = ak

cr g

Calculate the shrinkage strain at which first
crack forms (m = 1) from Equation 2,14,
Check if the shrinkage strain e.p, is greater
than the ultimate shrinkage strain egy,.

If egpm 2 €shyr the crack does not develop.
The analysis is completed.

If € < €ghyr the member cracks and

shm
member stiffness is reduced.
Check if total cracked length is greater than
the span length of the member.

If mL.,. > L, then no further cracks can
form since the transfer length available will be
insufficient to develop the concrete stress up

to the concrete tensile strength and therefore

no new cracks will form.
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concrete stress in uncracked section after
formation of crack.

Step 6. For the formation of subsequent shrinkage
cracks, set m = 2, 3, ... and repeat steps (2)

to (5).

A computer program as listed in Appendix B was written
to perform the above analysis for given Ag, Ag, ¢, L, £y,
E., Eg, k1, kz, ¢ and eghy.

In the following section results are presented of a
parametric study done to evaluate the effects of significant

parameters on shrinkage crack spacing.

2.5 Parameter Study

The number of shrinkage cracks that would occurs in a
member depends primarily on the ultimate shrinkage strain,
span length, reinforcement ratio, reinforcing bar size and
the tensile strength of concrete. ACI Committee 209 has
recommended an average ultimate shrinkage strain value of
800 millionths for concrete with 100 mm or less slump,
and minimum thickness of members 150 mm or less, and 40%
or less ambient relative humidity. Since the basic analysis
procedure assumes full fixity at ends and ignores creep
effects, an ultimate shrinkage strain of 400 millionths in
addition to the recommended value of 800 millionths was

considered as an approximate allowance for partial fixity
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considered as an approximate allowance for partial fixity
and creep. Partial fixity results from both the effects of
flexible supports and the fact that slab systems are
normally cast in parts (Martin, 1971). Creep reduces
stresses induced in concrete by restraint of shrinkage.
Thirteen members with the following basic properties

were analysed.

Ag = 190mm?2 /mm
¢ = 154mm

E;. = 25900MPa
Eg = 200000MPa

The following parameters were varied:
(a) Member span length, L
(b) Steel area, Ay (mm?/mm)
(¢) Reinforcing bar size, ¢

(d) Tensile strength of concrete, £,

To compare the results of using different approaches
for estimating the cracked length, three analyses were

carried out on each member with the following variations:

(b) LCY' = 2.k1c, k1 = 1.4
(c) L., = 2k.¢/p, k; derived from the development

length in Appendix A.

Figure 2.9 shows a comparison of the cracked length

estimated by different methods. Beeby's expression,
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Leonhardt's expression and the development length give
similar cracked length and should yield similar analytical
results; therefore Beeby's expression and Leonhardt's
expression are not considered in the present study.

Each of the parameters listed above will be considered
in turn. A summary of members analyzed is given in
Table 2.2. Details of parameters investigated are given in

Table 2.3.
2.5.1 Span Length

Four members M1, M2, M3 and M4 of span lengths 2000mm,
4000mm, 6000mm and 8000mm respectively were considered in
this study. For each span length, tensile stress induced in
the slab member as a result of restraint of shrinkage is
plotted in Figure 2.10 as a function of shrinkage strain.
For this series, L., was taken as 2k;c, with k; = 1.4. As
discussed previously in Section 2.3.1, a sudden drop in the
induced force occurs at formation of a crack. The analysis
was continued to an ultimate strain of 800 millionths.
However it can be seen that the number of cracks formed for
any value of ultimate shrinkage strain less than
800 mi}lionths can also be determined from the plot. For
example in the case of a span length of 4000mm and ultimate
shrinkage strain of 800 millionths results in four cracks
forming, whereas at 400 millionths ultimate shrinkage

strain, only two cracks form.
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The results show that the longer the length of the
member, the greater the number of cracks. 1In effect the
crack spacing becomes essentially the same for each span
length as the ultimate shrinkage strain increases. This
aspect of behaviour can be attributed to the fact that
formation of a crack in a long member causes less reduction
in stiffness than in a short member and consequently a
higher residual stress in the uncracked region as can be

seen from the plot.

2.5.2 Steel Area

Members M5, M3, M6 and M7 have steel areas 0.4mm2?/mm,
0.6mm?/mm, 0.8mm?/mm and 1.0mm?/mm respectively. These
steel areas correspond to the usual range of steel
percentages used in concrete slab systems. Figure 2.11
shows the results of the analyses of these four members
indicating that the number of cracks increases with area of
reinforcement. Again, the number of cracks formed is
related to the effective stiffness of the member after

initial cracking takes place.
2.5.3 Reinforcing Bar Size
The effects of bar size on the number of cracks can

only be revealed by using the 'slip' approach in estimating

cracked length (length of reduced section stiffness). The
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formula for the basic development length of tension

reinforcement as stated in ACI Building Code is

Lq = O.O19Abfy/Vf'c
or 0.058¢fy

or 300mm,

whichever is greater, for 35M or smaller bars. The
expression shows that the development length increases with
increased bar diameter.

As cracks form, the member with larger bars will have
more reduction in stiffness because of longer cracked
length, and thus the restraint stresses are lowered. Fewver
cracks will therefore form in the member. This is shown in
Figure 2.12 for members M7, M8, MS and M10, each with the
same steel area but with bar sizes 10M, 15M, 20M and 25M
respectively. The use of a larger bar with longer
develdpment length has the effect of lowering the induced
concrete tensile stress and reducing the number of cracks.
However, a longer development length implies an increase in
slip at the loaded end of the bar (i.e. at the face of a
crack). Too high a slip may produce excessive crack width
and thus fail to satisfy serviceability reqguirements for
cracking.

The results show that for an ultimate shrinkage strain
of 400 millionths, the use of smaller bars does not
significantly increase the number of cracks but it has the

advantage of limiting the crack width. 1In slab design,
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using small bars such as 10M and/or 15M for reinforcement is
good practice as far as controlling crack width is

concerned.
2.5.4 Tensile Strength

To study the effects of variations in tensile strength,
four members M3, M11, M12 and M13 were analyzed. Member M3
has the value of tensile strength based on the ACI

expression for modulus of rupture,
fr. = 0.6Vfé MPa

Members M11, M12 and M13 have reduced tensile strength
values of 0.50, 0.33 and 0.17/?: respectively. The results
of the analyses are presented in Figure 2.13. As expected,
the number of cracks increases with decrease in tensile

strength.
2.5.5 Length of Reduced Member Stiffness

The general approach and the 'slip' approach to
estimate the cracked length L.., which require knowledge of
the reinforcement ratio and the bar size, is more difficult
to use in analysis. 1In contrast, the 'no-slip' approach is
very simple. An effort is therefore made to obtain a k;
value in the expression L., = 2k;c, such that the results

will be in good agreement with those obtained from the
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'slip' approach.

Table 2.4 is a summary of the total number of cracks
formed in each member. Each member was analysed by the
three different procedures for estimating L., mentioned
earlier. From the table, it is found that results for 2k,c,
ky = 1.4, and 2(L4) agree well. A value of k; = 1.4 is
therefore suggested for use in the analysis procedure. 1In
most concrete slab systems, where span lengths range from
4000mm to B8000mm, reinforcing bar sizes 10M and 15M with
tensile strength values 0.6/f{ , the total number of
shrinkage cracks formed is only one or two, as can be seen
from the results for members M2 to M8 based on ultimate
shrinkage strain of 400 millionths. using the 'slip'
approach. For a continuous slab system supported on
columns, a single shrinkage crack would cofrespond to a
crack along each column line while two cracks per span would
correspond to cracks along the column lines and the mid-span

lines.

2.6 Summary

A mathematical model to analyze the uniaxial shrinkage
behaviour of a completely restrained reinforced concrete
member has been developed. 1In the'analysis, elastic
characteristics are assumed in both concrete and steel and
effects of creep are not explicitly included. The

analytical procedure involves allowing shrinkage to occur
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freely in the concrete, then applying the necessary forces
required to maintain compatibility of deformations. These
forces produce cracking as shrinkage strains increase. The
member stiffness is reduced when cracks form, such that the
internal force decreases by some extent and increases again
as shrinkage continues. The reduction in stiffness is
assumed over a cracked length within the vicinity of
influence of a crack. The reduced stiffness in the cracked
region is developed by assuming a linear steel strain
distribution over the length concerned. Three approaches,
'no-slip' approach, 'slip' approach and a general approach,
for estimating the cracked length are described.

A parametric study was performed to investigate the
effects of several parameters on the total number of cracks
forming in members subjected only to uniaxial shrinkage.

The study illustrated the effects of variations in span
length, reinforcing area, reinforcing bar size and tensile
strength. The results show that the number of cracks formed
is sensitive to the variations in concrete tensile strength
but relatively insensitive to variations in other
parameters. The results also indicate that for span lengths
of 4000mm to 8000mm, one or two cracks per span length can
be expected under normal circumstances. A value of k; = 1.4
used in the 'no-slip' approach was found to give results

similar to the 'slip' or general approaches.
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Method kl k2

Bazant and Oh 1.4 -

Clark and Spiers 1.0 -

Beeby 1.33 0.08

Leonhardt 1.2 0.1

Development Length - 0.16 for fy = 0.62/f(*
0.12 0 50/f&
0.082 0 33/fé
0.041 0.17/?2

* fL = 30MPa

Table 2.1 Summary of values of kq and kjp



Member Span Steel area Bar size f,
(mm) (mm? /mm) (MPa)
Ml 2000 0.6 10M 3.415
M2 4000 0.6 10M 3.415
M3 6000 0.6 10M 3.415
M4 8000 0.6 10M 3.415
M5 6000 0.4 10M 3.415
M6 6000 0.8 10M 3.415
M7 6000 1.0 10M 3.415
M8 6000 1.0 15M 3.415
M9 6000 1.0 20M 3.415
M10 6000 1.0 25M 3.415
M11 6000 0.6 10M 2.732
M12 6000 0.6 10M 1.821
M13 6000 0.6 10M 0.911

All members

Table 2.2

A_ = 190mm?/mm

g
E. = 25900MPa
¢ = 154mm
n = 7.72

Summary of members analyzed

34
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Parameter Study Member Variables Constants

Span length M1 L = 2000 mm Ag = 0.6 mm?/mm
M2 4000 10M Bar size
M3 6000 fr = 3.415 MPa
M4 8000

Steel area M5 Ag = 0.4 mm?/mm | L = 6000 mm
M3 0.6 10M Bar size
M6 0.8 fr = 3.415 MPa
M7 1.0

Bar size M7 Size 10M L = 6000 mm
M8 15M Ag = 1.0 mm?/mm
M9 20M fr = 3.415 MPa
M10 25M

Tensile strength M3 fr = 3.415 MPa L = 6000 mm
M11 2,732 10M Bar size
M12 1.821 Ag = 0.6 mm?/mm
M13 0.911

Table 2.3

Summary of member properties in each parameter study
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Shrinkage strain

Figure 2.1

Time, t

Shrinkage strain versus time curve
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(a) Fixed support member
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Figure 2.2 Symmetrically reinforced slab element



Cc
Hh
rt

Hh
0
N

rh

Concrete stress, f
(2]
—

o

0 i 1

€hl €sh2 Shrinkage strain, €

0A Uncracked member response

BC Member response after first crack forms

Figure 2.3 Member responsé curve

-

sh

39



40

Reduced axial stiffness
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Figure 2.4 Cracked slab element
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Figure 2.5 Strain distribution in a cracked member
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Slab element subjected to pure tension
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Figure 2.8 'Slip' Approach
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Figure 2.10 Effects of variations in
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3. ANALYSIS OF SLAB SYSTEMS INCLUDING EFFECTS OF CRACKING

3.1 Introduction

In the analysis of reinforced concrete slabs, effects
of cracking due to both shrinkage restraint and transverse
loads should be considered. Cracking reduces the overall
flexural stiffness of slabs, resulting in increase in
deflection and redistribution of moments. Serviceability
may be adversely affected by excessive deflections and
extensive cracking.

The finite element method provides a means to take
account of different properties in each region of the slab,
in particular, the reduced flexural stiffness due to
cracking. 1In the finite element model described
subsequently, cracking due to transverse loads and due to
restraint of shrinkage is modelled. Long-term deflections
due to shrinkage curvature and creep are also included in
the model.

Analyses are carried out on three reinforced concrete
slabs to study the effects of number of shrinkage cracks and
variatiop in modulus of rupture. Results of the study are
used to develop a simplified method to calculate slab

deflections including shrinkage effects.
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3.2 Finite Element Model

3.2.1 Assumptions and Limitations .

The finite element computer program SAPIV (Bathe,

Wilson and Peterson, 1974) was modified to account for

reduced stiffness due to cracking, using a procedure

proposed by Scanlon and Murray (1982). This procedure

contains the following assumptions and limitations:

1.

Linear elastic response is assumed for reinforcement and
for concrete in compression. The analysis is therefore
not valid for the post-yield range of behaviour.

Effects of cracking are included using the effective
moment of inertia procedure proposed by Branson (1963).
This procedure provides for a transition in flexural
stiffness between the uncracked and fully cracked
limits. Originally proposed for beam analysis, the
procedure is generalizedAin this investigation to
consider two-way (plate) action.

The tensile strength of concrete under biaxial stress is
assumed to be equal to the uniaxial value of modulus of
rupture. Figure 3.1 shows the biaxial failure envelope
of concrete in terms of principal stresses. Combined
tension and compression loadings reduce the tensile
strength; however, in the service load range, the
reduction is not significant and therefore the use of

uniaxial value is reasonable in two-way slabs (Scanlon



52

and Murray, 1982).

4, It is assumed that cracking is initiated when M, or M,
exceeds the cracking moments Mcr. My and My are defined
for the local coordinates of the plate bending elements
as shown in Figure 3.2. 1In general, for the finite
element mesh layouts used in this study, the 1local
coordinétes coincide with the slab global coordinates
defined by orthogonal reinforcement directions.

5. The shear modulus, G, for concrete, required for
determination of the plate torsional rigidity is assumed
to be unaffected by cracking. In another study (Hand,
Pecknold and Schnobrich, 1973) it has been shown that
plate bendiné analysis is not significantly affected by

variations in the assumed value of G.
3.2.2 Flexural . Stiffness of Cracked Region
The analysis of a reinforced concrete slab is treated

as a problem of orthotropic plate bending. The plane stress

constitutive relations for orthotropic material are given

by:
4 h - - 4 N
0x E v, E ° € x
1=vyevy Z1-v,vy5
40y, = v, E E . 4 €y ¢
(T-v,.v,) (T=v,vy)
Txy [ ) ® ny 'ny
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The moments are related to the curvatures by

r 3 - 1 3
M, E,h? v,E,h°? . ¢ x
12(T-v,vy,) 1201-v,v,)
y My = vaxh: Evh3 L y .¢Y b
( T2(1-vxpy) 12{1-Vyvy)
Mxy L [ ] zeha ¢#xy
12
S - 4 X J (3.2)

My and My can be obtained for each element from an
analysis of the uncracked slab and then checked against M.,
for cracking. 1If cracking is detected, reduction in
flexural'stiffness in each direction can be accounted for

using the Branson's expression (1963):

Tex = Mop/M)3Ig + [ 1 = (Mon/M) ] Ty (3.3)
Iey = (Mop/My)°Ig + [ 1 = (Mop/My)?® T Icpy (3.4)
where My, = f£,Ig/y¢ (3.5)

The reduction in flexural stiffness due to cracking is
implemented by modifying the plane stress constitutive

properties as follows:

e
x
1

= “xEc Vy = ayp

Ey = ayEc Vy = ayV (3.6)

where, ay = Iex/Ig and @y, = Iey/Ig (3.7)



the results converge.
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The analysis is repeated using the reduced values until

Three iterations appear to be

adequate for the slab systems considered in this study.

3.2.3 Finite Element Model of Shrinkage Cracks

To study the influence on load-deflection response of

cracking due to shrinkage restraint, concrete slabs were

assumed to be precracked as a result of shrinkage restraint,

prior to applying transverse loads.

was used:

1'

The following procedure

Reduced flexural stiffness of precracked region

In the analysis of the symmetrically reinforced

member subjected to shrinkage, described in Chapter 2, a

linear variation of steel strain within the cracked

region L., was assumed. For analysis of slabs in

bending, a linear variation of curvature within the

precracked region was assumed in deriving the reduced

flexural stiffness.

At the gross section

and at the cracked section

bep = M
Ecler

where Iep is the moment of inertia of

cracked



transformed section.

55

It is implicitly assumed that the

crack width is initially zero for precracked region so

that an application of bending moment compressive

stresses can immediately be transferred across the

crack.
The average

is

( ¢g + ¢cr)/2
] [ M + M ]
2 Eclg Eclery

If Ipx is the reduced moment of inertia of

bave

precracked region in x-direction, then

oy = M = _l_[ My +
153%;‘ 2 | Eclg
or I = 2
PX I —
Ig Terx
= opxlg
where apx = 2

1 + Ig/ICY.x
Similarly in the y-direction

Iny

@pylg

= 2
1 + Ig/Icry

where apy

curvature within the precracked region

the

My ]
Eclcrx

(3.8)

(3.9)

(3.10)
(3.11)
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As for the cracking model, material properties in
the constitutive relation are modified for precracked

elements as follows:

Ex “prc vy ava

Ey = apyEc vy = apyv (3.12)

The analysis then proceeds as for an uncracked
slab.
Location and width of precracked region

It is observed that elastic flexural tensile
stresses due to transverse loading are highest along the
interior column line and then along the mid-panel as
indicated in Figure 3.3. When tensilelstresses due to
shrinkage restraint are superimposed with flexural
tensilg stresses, cracks are expected to form first
along the interior column line when the resultant
stresses exceed the tensile strength of concrete. When
combined tensile stresses are high enough, cracks will
form next along the mid-panel.

In the parametric study of the uniaxial member,
the width of a cracked region of reduced stiffness was

determined to be approximately

Lep = 2(1.4)c (3.13)

This relationship was used to specify the width of

zones of reduced stiffness due to pre-cracking and
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formed the basis for specifying the width of precracked

elements.

3.2.4 Long-term Effects due to Shrinkage Curvature and Creep

Deflections of reinforced concrete slabs increase with
time. The additional deflections are caused by creep and
shrinkage curvature. This additional inelastic deflection
increases at a decreasing rate during the time loading.
Procedures recommended by ACI Committee 209 (1971) and
435 (1966) were used to calculate long-term deflections in
addition to immediate deflections.

1. Shrinkage curvature

Concrete shrinkage in unsymmetrically reinforced
members, as in the case of slabs, causes a nonuniform
strain distribution and results in curvature of the
member. In flexural members, shrinkage is more
restrained at the tension face where heavier
reinforcement is placed. Therefore, shrinkage
curvatures will have the same sign as the curvatures due
to transverse loads and consequently increase the
deflections.

Expressions for shrinkage curvature are provided by

Branson (Branson, 1963; ACI Committee 435, 1966):

¢Sh = 0.7 eSh(p_pv)1/3 p_pv 172
h p
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for (p-p') < 3%, which is generally the case for
reinforced concrete slab systems. Note that p and p'
are in percent.

In the modified SAPIV program, shrinkage curvatures
were treated as equivalent temperature curvatures for
each plate element. Deflections were then computed
based on the equivalent temperature curvature.

Creep

ACI Committee 435 (1966) recommended a procedure

for computing the deflection due to creep based on the

work of Branson as given by

Bcp = kpCy(A4)p
where k., = compression steel factor
= 0.85
1+50p’
Cy = creep coefficient
and (Ai)p = instantaneuous deflection due to all

sustained load

This is equivalent to using a modified modulus of

elasticity in the computation of elastic deflection,
Ect = E
(T+kpCt)

In the finite element analysis, the values of k, in
x and y directions are obtained to compute the modified

modulus of elasticity in the corresponding direction.
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The reduced values are used in the constitutive
relations to calculate deflections. 1In this study,
kyp = 0.85 was used, since only small amounts of

reinforcement are provided in compressed concrete zones.

3.3 Finite Element Analysis and Parameter Study
3.3.1 Slab descriptions

To study the effects of precracking due to shrinkage
restraint analyses were carried out for no precracking,
precracking along column lines only, and for precracking
along both column lines and mid-panel lines. The slab for
which no precracking was assumed, was analyzed for a range
of modulus of rupture values. Details of the slabs analyzed
are as follows:

1. A square two-way slab S1, designed by the direct design
method, was used to study the effects of variations in
modulus of rupture on the deflection of a slab with no

" pre-cracking. The slab has three 6m span in each
direction, a thickness of 190mm and 550Xx550mm square
columns. The slab is a flat plate with no edge beams or
drop panels. The thickness selected satisfies minimum
thickness requirements of the ACI Code. Column size and
reinforcement were selected on the basis of strength
requirements. The structure layout is shown in

Figure 3.4 and a finite element mesh layout is .shown in
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Figure 3.5. Because of symmetry, only é qguarter of the
slab need be considered in the finite element analysis.
Results of the analysis are presented in Figure 3.6 in
the form of load-deflection curves for the center of the
exterior panel. The deflection at this location was
observed to be the maximum for all values of modulus of
rupture. Figure 3.7 shows the additional deflections
due to creep and shrinkage curvature. \

The same slab system appears in Figure 3.8 as slab S2,
except that the slab is precracked along the interior
column line. The distance from extreme compression
fiber to the face of tension reinforcement ¢ is assumed
to be 154mm for all sizes of reinforcing bars in both

directions. The resulting width of precracked region is

L

cr = 2(1.4)154

= 440mm

Figure 3.9 shows load-deflection curves for the
center of the exterior panel.
Slab S3 is the éame slab.system but precracked both
along the interior column lines and mid-panel, as shown
in Figure 3.10. This slab represents the more severe
case where tensile stresses induced by restraint to
shrinkage are high enough to produce cracks at both
locations, Figure 3.11 shows the load deflection curves

for center of exterior panel.
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3.3.2 Parameter Study

1.

Effects of precracking

Moments along the interior column strip of
precracked slabs S2 and S3 are compared to that of
uncracked slab S1 in Figure 3.12, Slab S2 has the
highest moment at the mid-span, which is a result of
redistribution of moments when a shrinkage crack is
formed along the column lines. The cracks at mid-panel
of slab S3 reduce some mid-span moments and redistribute
the moments to the columns. The significant effect of
precracking on the redistribution of moments is
illustrated here.

The effect of various degrees of precracking on

~deflections is shown in Figure 3.13. The excessive slab

deflections of slab S3 would probably occur under
extreme adverse condition and therefore represents a
conservative deflection calculation. Slab S2 represents
an average condition where the deflections do not
deviate greatly from the uncracked slab St.
Effects of variation in modulus of rupture

For slab S1, deflections were computed based on the
effective moment of inertia using different values of
modulus of rupture in Equation 3.5. The modulus of
rupture f,. in Equation 3.5 may be replaced by the

effective modulus of rupture fo:

MCY' = feIg/yt (3.14)
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The effective moment of inertia I.ff is then
calculated using the reduced value of M., and subseguent
deflection calculations are carried out in this
simplified method to take account of restraint stresses
(Scanlon and Murray, 1982).

Variation of deflection with effective modulus of
rupture at different load levels is shown in
Figure 3.14., It is observed that at lower load level,
variations of modulus of rupture has little effect on
slab deflections. Indicated in the plot is also the
deflections of the two precracked slabs. The results
show that effective modulus of rupture values of 0.3 to
0.4/ MPa at service load level corresponds
approximately to the case of precracking along column
lines only. Effective modulus of rupture of 0.2 to
0.3Vl applied to an uncracked slab corresponds to the
case of a slab precracked along both column and

mid-panel lines.

3.4 Summary

This chapter describes a finite element analysis of
slab systems that may be precracked in prescribed locations
as a result of restraint of shrinkage. The analysis was

applied to a slab system under no precracking, precracking
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along column lines only and precracking along both column
and mid-panel lines. These cases represent the range of
conditions likely to occur under normal conditions. By
means of a brief parameter study it was shown that the
effects of precracking due to shrinkage restraint could be
accounted for by applying a reduced effective modulus of

rupture in the analysis of an initially uncracked slab.
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Figure 3.8 Mesh layout for Slab S2
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Figure 3.10 Mesh layout for Slab S3
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4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

4.1 Summary

In continuous reinforced concrete slab systems, the
effects of shrinkage on slab deflections are often
underestimated. The current ACI Building Code considers the
additional deflections due to shrinkage as a result of
shrinkage warping which arises from nonuniform shrinkage
through the section. Reinforcement of different amounts in
the two faces of a member, which is usually the case for
reinforced concrete slabs, is the main cause of nonuniform
shrinkage. The Code however does not explicitely recognize
the induced tensile stresses in concrete due to restraint of
shrinkage in continuous slab systems. These induced tensile
stresses may contribute to cracking of concrete resulting in
an increase in deflections. This study presents a procedure
using the finite element method to estimate the effects of
restrained shrinkage on two-way slab systems.

A new mathematical model is developed in Chapter 2 to
analyze the uniaxial shrinkage behaviour of a completely
restrained reinforced concrete member. Cracking occurs when
the induced tensile stresses in concrete exceed the concrete
tensile strength. Reduction in member axial stiffness is
made by assuming a linear steel stress distribution within
the zone of influence of cracking, or cracked region. The

length of the cracked region is based on a crack spacihg
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formula. The analysis determines the number of cracks for a
given length of member and the shrinkage strain at which
each crack forms. A parameter study was carried out to
study the effects of variations in span length, steel aresa,
reinforcing bar size and tensile strength on the total
number of shrinkage cracks forming. Results obtained are
used to. select the locations of precracked regions in the
analysis of a slab system subjected to restrained shrinkage
and transverse loads.

Chapter 3 describes the finite element analysis of a
two-way reinforced concrete slab system subjected to
restrained shrinkage and transverse loads. The effects of
restrained shrinkage are modelled by forming shrinkage
cracks prior to analyzing the slab for applied loading.
Precracking is accomplished by reducing the flexural
stiffness of elements at the locations of shrinkage cracks
based on a linear curvature variation across the width of
the precracked elements. The effects of the number of
shrinkage cracks and variations in the modulus of rupture
are studied. Results of the study are used to assess a
simplified deflection calculation procedure proposed by
Scanlon and Murray (1982) for slabs with restrained:
shrinkage. Scanlon and Murray proposed values for reduced
effective modulus of rupture based largely on intuitive
grounds. The present study has provided a basis for
specifying values for effective modulus of rupture based on

numerical studies including explicit consideration of the
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presence of shrinkage restraint cracks.

4.2 Conclusions

The following conclusions are drawn from this
investigation:
1. Uniaxial shrinkage analysis
a. Reduced axial stiffness in cracked region is

expressed as

=
o
=
[
R
>
®
1
o

where a = 1

b. The 'no-slip' approach can be used to approximate

the length of the cracked region:

Using a value of ky = 1.4 in the above expression
yields similar results as those using the more
complicated 'slip' or general approaches. Having
the advantage of simplicity, the stress diffusion
expression with value of ky = 1.4 was also used in
the two-way slab analysis.

2. Reinforced concrete two-way slab system

a. Shrinkage cracks are modelled by precracking
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elements at the locations of the cracks. The width

of the precracked elements is

Lep = 2(1.4)c

and the reduced flexural stiffness is

(EI) .y = apEclg

2
T+ 1g/Tcy

where ap

b. Based on results of a brief parameter study, a
reduced effective modulus of rupture in the range of
0.2 to 0.4Vfé can be used to account for effects of

restraint stresses on slab deflections.

4.3 Recommendations for Further Research

The uniaxial shrinkage analysis can be extended to
include the following features:
1. effects of creep (see Appendix D),
2. uﬁsymmetrical reinforcement placement,
3. varying amounts of steel area along the span,
4, presence of flexural stresses, and
5. supports with partial fixity (see Appendix C).
A complete parameter study for the extended analysis

can then be carried out.
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The finite element analysis of two-way slab systems may
be extended to include the following capabilities:

1. Consideration of post-yield behaviour;

2. Modification of the cracking criterion to consider
principal moments that may be at a different orientation
than the element coordinate system.

Further research may be directed to a detailed
parametef study of factors such as the effects of drop

panels, edge beams and depth to span ratio.
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Coefficient k, for Development Length
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From Equations 2.21 and 2.22, the coefficient k, for

the development length L4 is given by:

fr
Tult

kz =_1_
4

for pure tension.
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The average ultimate unit bond stress capacity ryjt is

given in the 1963 ACI Code as:

Tylt = 9.5g‘§j < 800 psi

or 20/fTF < 5.53 MPa
$

for #11 and smaller bars, which are usually used in concrete

slab design. Using this value of 7,1¢, k. can be computed

for different values of modulus of rupture f. as summarized

in Table A.1.



Bar size f. (MPa)
3,415 2.732 1.821 0.911
10M 0.16 0.12 0.082 0.041
15M 0.16 0.12 0.082 0.041
20M 0.16 0.12 0.082 0.041
25M 0.16 0.12 0.082 0.041
f'. = 30MPa
Table A.1 Summary of values of kj for development length

38
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Computer Program for Uniaxial Shrinkage Analysis

89



90

*

Uibua| paxoedd [eI0} BY} XP8YD - t dILS =
*

L EEEE LR S ]

666 0109 (NHSI 19 HS3I)JI

* ¥ ok A koK Ak

*

uiteays abexulJdys ayy %o8Yl - € dILS  «
*

LEEE L EEE 3

(OILvd + QI0AM) /dd»3V = HS3 (0]
O = Q704
0"} = 0Ilvd
b= W

* kK kK kKK

*

uteays abexuldys 8yl 8ieInaiel - ¢ 4315 =
*

% 3 ok ok K Kk kK

(100T 9)3LTUM
AHSI X IX'VIN'SI ' OHY SV ¥4 03 0V 1°D OV I1LIL(000T 9)ILIAM

dI1ST + 03°Cx O+iA = -kl

03°C+ OHJ/VIG+TH = dITST

9% x ((OHI«N+T)/030° 1+030°4+)/030° 4 = b )|
033V = oA

OV« (OHY¥xN + 030°}) = v

03/83 = N

oV/SV = OHY

SV-9Y = ov

LEEEE S R R ]

*

sJdequaw 8yl J0j SIUEBISUOD By} Ble|ndted - t d31S =
*

ok Rk

R sisAeuy K ¥ K
NHS3I‘VIA‘eX ' I%*1'0 *
‘¥44°S3°'03°'SVY OV *

‘37111(L66=0N3°000} ‘S)Aav3IY S

ejeq 3Indug

4411S VNY3LX3

4N 9% U0 T /dOdd/NOWWOD

(0Z)3111I1 P+dIDILINI

Q710X MINA HOM DN N JIIST 40T ex 1M1 Iv3d

tJdaquaw pasuojulad
Apeo)dlswwAs e jo asuodsad abexujays syly sazAieue wedaboud Siyy

OO0V

COOOLOLOO

3

COOOLOOO

(&

* kK

COLOLOLOLOLOOO

*%x %D

VOOOO

TONMTHNO~NON



91

‘L Ayi013se| 3

/:43S 8llsuai

/ 4ibua ueds

EEEEE SRR S T ]

oK KK KRk K K

///v Sid'p SIOT P SId",

/. J@yauwelg
ojied |9331§ eauy (991§

’
.
.

/+1IVL3A LN3IWIDJOINIIY, *,
///v S8BT v SI4°,

A3iot3sel3 eaJy 831842U0)

.
o

/.11v13a 313¥0N0D, *,

J8A0) xew eaJy SSO0JH
/.3Ivi3Q S, . ¥3I8N3IN L ///pvoT ",

\\\v.m—umn\

.

’

LR R N B B R 2R AR

+/ 4, )LVNE04 000C
(0°01 49/0° 04 45/¥V0OT ) LYWIO4 000}

o]
N2018 1viWyd0o4 EET TS T T3]
o)
d0iS L66
S 0109
(O10E*9)ILTIUM
(0TOE'9)3ILIYUM S66
S 0109
(010E‘9)IALIHM
(000€'9)3LI¥M 666
o]
NOILVYNIWdIL T3 TITTITT )
o]
Ol 0109
MINA a10%
I +W=RW
o]
Ak K Kok kR o]
* o}
S3orUD judnbasqgns. 403 aunpadtodd 8y} jeadsy - 9 d3LS = o)
* o]
A K Ok J
o]
AL YIS 'DS4 04 ' HSI ' W(OZ0Z‘9)ILIUM
o]
andang o]
o]
OHY/2d4 - ¥0Sd = 9S4
Sv/13Nd = ¥d0S4
0ILVd+xHSI«SI«SVY d = L13INd
J
S9SS89J}S {993}S 38y} 8l NO|ed o}
o]
v/d = o4
011V » HS3 x M3INA = d
A/ (dI1S+W-1) = 0ILivd
(W)4411S =  MINA
3
oK K K o]
* o)
S9sSs8J4l}s ayy 8jeInaied - § dilsS =« o)
* o)
T I3 J
o]
S66 0109 (1 19°d011) 41
O 1«W = ¥O1L
J
EEXEEKKK o)




92

aN3
NanL3d
(AON/UD TN + OA/(ADN+W-1)) /1 = 4411S
o]
AR ON YO T /dOUd/NOWWOD
HOM DM U211 vad
o]
LR EEEESEREE L E S 2 o
* o]
TSYORJD YW Y}iM SSBUIILIS * 0
abedase s, Jaquaw 24} SI3}EN|BAD UOIIDUNS S|yl * o)
* o}
ook K R Ao ok K ]
o]
(W)4411S NOILONNA V3Y
o]
********i*l************i********i******************&}**{{**********U
anN3
2

(++x YIBUB| uBaquow Spaaoxa yIBua| paxdedd |e30L xxs ,/)LVWHO4 OZOE
(+4s WAOY L[| IM SHOBID JBYIJING ON ex« ,/)LVWHOI OLOE

(/%% BNIBA 31BWIIIN SP32DX3 URJIIS BBENULUYS «xx ./)LYWIO04 OOOE
(Z°SH4'P GIDEXS P GHI'LI)IVWIOS 0ZOZT

(/.9yabua "ud ' *
*, (Moedd) @03 (ssouJyb)|ea1s SSaJ1S§ 2SuUo) , *
., sbexuy Jys yeud ,*, , *

//:S TS AITVNY FIOVANTUHS TIVYIXVYINDNS', ,»
)ivwyod 100z

(///p°S43°, = ujeans ebexu)uys ejyewidin, ., . *
\\\v.wuas = A ~,m~..0,..._.\ e PR ¥
/. 4300 HLONIT QINDVYHI,*, *

altid

40 puj
[3:13
[0}+1
6vi
8vi
Lyt
14
*143
|44
EVI
(44
(34
ovi
6€}
8EI
LE}
9€E|}
SEl
vel
EE}
cEl
e}
o€t
6cCt
8cH
LT}
14
143
veh
(441
24}
31



APPENDIX C

Partial Fixity
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S4

A simple case of partial fixity may be included in the
uniaxial shrinkage analysis as follows.

Consider the simplified slab system with partial fixity
in Figure C.la. The slab is fully fixed at one end and
attached to a column at the other end. The slab and the
column have stiffnesses K, and K. respectively.

I1f the restraint at B is released as shown in

Figure C.1b, then the slab shrinks freely by an amount

A = eyl (c.1)
where e, is given by Equation 2.16.
When the restraint is reapplied, a tensile force P is

induced in the slab and the slab elongates by an amount
Ag1ab = PL/Kp (C.2)

as shown in Figure C.1lc.
The slab thus actually shortens by (A - Ag15p). The
column also deflects by the same amount as shown in
Figure C.2.

Therefore,

o)
[}

KC(A - As]ab )/LC (c.3)

Substitute Equations C.1 and C.2 into C.3,

0
1

Rearranging,

P = L €n
LC/KC + L/Km
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P = Kgysep

where RKsys Stiffness of the system

= L (C.4)
L./Ke *+ L/Ky

Ky is given by Equation 2.4 and K. is given in
Figure C.3 for several cases of support conditions.

Substituting K for all occurrences of K, in the previous

sys
equations in Chapter 2 will include the effects ofvpartial

fixity in the uniaxial shrinkage analysis.
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Slab stiffness = Km
4
5 Column stiffness = KC
14 B
VRN EEs
L
(a) Slab system
A
Ta B
A
L
(b) Restraint at B released
""I < Aslab
A
7
; ]— =
A4 A B
] A _Aslab
L

(c) Restraint reapplied

Figure C.1 Slab system with partial fixity
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(a) Slab system
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(b) Slab (¢) Column

Figﬁre C.2 Free body diagram of the slab and the column
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Figure C.3 Column stiffness
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A time-incremental analytical procedure may be used to
approximate the effects of creep in the uniaxial shrinkage
analysis as follows.

The qguantities which must be known for the analysis
include: Ag, Ag, ¢, L, fr, Eg, ky, kz and ¢. It is assumed
that
1. shrinkage and creep start at time t=0,

2. the concrete has attained its design strength before
creeping occurs,
3. the slab element is initially uncracked, i.e. m=0, and

4. the concrete is unstressed before shrinkage begins.

The following constants for the member shown in

Figure 2.2a are evaluated initially:

Net concrete area, A. = Ag ~ Ag

Steel ratio, Il = Ag/Ac

Cracked length, Lep = 2(k.c + ka,¢/p)
Slipping length, Lgtip = 2k.0/p

During any time step t, the following procedure is

used:

Step 1. Compute the modified modulus of elasticity due
to creep, E.t, and the unrestrained shrinkage
strain, ey, at time t using the formulae
suggested by ACI Committee 209.

Step 2. Compute the following time-dependent Quantities:

Modular ratio, n = Eg/Ect
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Equivalent transformed area,
A = (1+np)a.

Stiffness at uncracked section,

Stiffness reduction coefficient,

a = 1

1+ 1
2np

Stiffness at cracked section,

Kcr = aKg
Member's average stiffness,

Kp = L

| (L—mLcr)/Kg + mL. /K¢y
Member's average shrinkage strain,

em = esh(L—mLsHp)/L
Step 3. - Compute the concrete stress,

fem = Ky en/Ag

Step 4. (a) 1£ £ < § the member does not form a new

rl
crack. Repeat Steps 1 to 3 using the same m
value but a new time-step, t+At.

(b) 1f £ 2 f then the member cracks. The

cm r'
time at which the member cracks may be
obtained by using the bisection method.

The required initial bracket is

[t'o, t"o] where t', is the previous

time-step and t", is the current time-step



Step 5.
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as shown in Figure D.1. An iteration of the
bisection method consists of three steps:
1) compute the mid-point

tk = t'k + t"k
2

2) evaluate the concrete stress f.(t,) at
time t, by repeating Steps 1 to 3.

3) determine a new interval [t 'wer, t"wer]
according to the rule

[t'e, ti] if £c(t )>E,
[t'kwlr t"k+1] =

[te, t"«] otherwise

The iteration continues until one of
the stopping criteria is satisfied:
1) ] t" - t'« | £ TTOL
2) | £, - £.(t) | < FTOL
where TTOL = The acceptable tolerance in
time,
FTOL = The acceptable tolerance in

concrete stress.

After the time at cracking t.,. is determined in
Step 4(b), increment the number of cracks, m,
and repeat Steps 1 to 4 at time t.,. for the

residual concrete stress after cracking (point B
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in Figure D.1) and at subsequent time-steps.
Step 6. The analysis should be continued until the

ultimate specified time limit is reached.

A computer program which includes the effects of creep
and partial fixity is written in Appendix E.

The thirteen members in the parameter study is
reanalyzed to examine the effects of creep. The modified
modulus of elasticity and the unrestrained shrinkage strain

in the study are determined as follows:

E

Ect c
(1 + 0.8C¢t)
where Ct = 2.35 -8
10 + ¢°-°
€sh =

t 740x10°°8
35 + t

Ec.t and egh are plotted in Figures D.2 and D.3 as a function
of time. Results are presented in Figures D.4 to D.7 for f.
versus log t, also in Figures D.8 to D.11 for f. versus egy.
Table D.1 summarizes the total number of cracks formed in
each member. The results show that shrinkage cracking
occurs at an early age and the total number of cracks formed
is close to that obtained from the previous analysis using

an ultimate shrinkage strain of 400 millionths.
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Figure D.1 Concrete stress versus time curve
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Figure D.2 Modulus of Elasticity versus log time curve
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Conc Stress, MPa
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Figure D.4 Concrete stress versus log time curve for

effects of variations in span length
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Figure D.5 Concrete stress versus log time curve for

effects of variations in steel area
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Figure D.6 Concrete stress versus log time curve for

effects of variations in bar size
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Principal Moment Analysis
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In the finite element analysis in Chapter 3, cracking
was assumed to occur when My or My exceeds the cracking
moment M.,.. However, experiments have indicated that cracks
are initiated normal to the major principal moments
(Lenschow and Sozen, 1966). There may be elementé where the
major principal moment exceeds Mc, but not My or My. In
such cases, cracking in the element is undetected and may
result in an underestimation of deflection.

The slab system in Chapter 3 is therefore reanalyzed to
check for the principal moment in each elements. The
principal moment is computed using the Mohr's circle as
shown in Figure F.1. Figure F.2 shows the major principal
moments in Slab S1 after three iterations of modified SAPIV
analysis. Because of symmetry, the principal moments are
shown for only half of the elements.

The results indicate that only four of the elements has
undetected cracking; also, all the cracked elements have My
or My close to the major principal moment, presumably
because of relatively low twisting moments Myy along the
column lines. The deflection is therefore not significantly
affected by the assumption of checking M, and My for

cracking in the slab system analyzed.



Twisting
Moment
M2 (Mx;My) M1 Moment
2
(My ’ Myx)

Diameter, d =

Figure F.1

(M, L, ) o
VI

(Mx+My)
2

(M, L)
2

Determination of principal moment

using Mohr's circle
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Figure F.2 Major principal moments in Slab Sl
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Imperial - SI

1 in = 25.4 mm

1 in? = 645.16 mm?

1 lb(mass) = 0.45359237 kg
1 lb(force) = 4.448222 N

1 kip = 4.448222 kN

1 psi = 6.894757 kPa

1 ksi = 6.8%4757 MPa

1 in-kip = 0.1129848 N.m

1 ft-kip = 1.355818 N.m

126

SI — Imperial

1

1

kN = 0.225 kip

mm = 0.0394 in

mm2 = 1,55x10° 2% in?
kg = 2.20 lb(mass)
N = 0.225 1lb(force)

kPa = 0.145 psi
MPa = 0.145 ksi
N.m = 8.85 in-kip

kN.m = 0,738 ft-kip
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