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Abstract
The relationship between ecological integrity (EI) and human health was approached, for
the first time, in this aggregate data, cross-sectional design. Selected surrogate measures
of EI (e.g., land disturbance) and socio-economic confounders were modeled in three
linear main effects regression models with life expectancy, infant mortality, and percent
low birth weight as dependent health outcomes respectively. The results are presented
using added-variable plots. GDP per capita, a socio-economic rather than an EI variable,
was the single strongest determinant, positively influencing health, and required special
handling. Conversion of natural areas to human use was associated with improving
health, deforestation was associated with worsening health, and percent species
threatened and land protection had no relationship. High GDP countries may be
experiencing some negative impacts. Being exploratory, however, the models developed
require cautious interpretation and further examination, especially in relation to outlier

countries that influence trends. Longer-term data would enhance future modeling.
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Chapter 1 - Ecological Integrity: Overview of the Literature

1.1 Introduction

Concemn over the health effects of diminishing ecological integrity (EI), defined explicitly
in section 1.2, has arisen alongside the realization that humans are reshaping all regions
of the globe, and that this change has unknown consequences. Of growing concern is that
this change is occurring not on the natural scales of geologic time, but on a greatly

compressed time scale of human generations (Robinson 1994).

Many scientists and non-scientists have provided evidence supporting the premise that EI
is rapidly decreasing on this planet. McMichael’s (McMichael 1993) overview is perhaps
the most useful for the epidemiologist given its health-based approach. He discusses the
perils of population increases, climate change, stratospheric ozone depletion and UV
radiation, intensive agricultural and aquacultural impacts, loss of biodiversity and forests,

and other environmentally-mediated hazards to human health.

Modeling the complexity of nature is, at best, difficult; modeling it accurately requires
pushing the bounds of possibility with current technology. The workings of the
ecosphere are poorly understood, mainly owing to the vast complexity of these systems.
Technology has allowed us to monitor tidal flows, seismic events, atmospheric
conditions, biodiversity, and other events. However, while we have become more adept
at gathering data, we have not made the same advancements in theoretical understanding

— in assessing cause and effect, especially for large, complex systems. The more we learn



about Earth’s life support systems, the more we realize how little is actually known.
Notwithstanding this uncertainty, the importance of this subject for the future of life on
Earth cannot be overstated. Some authors (Smith 1994) (Mason 1992) have suggested
that humanity has as little as two to three generations before EI has diminished to the
point where adaptive strategies will not be optional, but will, in fact, be necessary for
survival. The uncertainty inherent in such predictions and in science in general, needs to
be recognized as a limitation to society’s expectations of science as providing the basis
for policy. Despite this uncertainty, scientific data are being assembled through the

SSHRC grant #806-96-0004 that is lending concern to these issues.

Work done by Rees (Rees 1996a) suggests convincingly that we are consuming far more
than the Earth can sustain. In fact, his calculations show that we would in fact need three
Earths to support our current level of consumption (Wackernagel and Rees 1996). This
message is an alarming one since, of course, we have only one Earth. Rees’s work is
based on two fundamental ideas: ecological capital and ecological footprints (Rees
1996b; Wackernagel and Rees 1996). Earth has been accumulating biomass for about 3.5
billion years. In that time, vast deposits of fossil fuels, forests, abundant oceans, fertile
soils, and other resources have accumulated. These accumulated resources are what Rees
(Rees 1996b) calls ecological capital, and it is only relatively recently that humans have
begun to exploit and deplete the Earth’s ecological capital. The amount of land required
to support a given population’s level of consumption is termed its ecological footprint. It
has been shown that any concentrated population centre requires far more land to support

its inhabitants than the actual land that the population occupies. In other words, the



ecological footprint of a city extends far into the surrounding countryside that supports
the activities of the city. In fact, with the global economy, the footprint may extend well
beyond the boundaries of the country through the purchase of resources from distant

producers.

The exploitation of ecological capital has allowed human society to maintain levels of
annual consumption far greater than what the global ecosystem can sustainably produce.
With the current emphasis on global trading relationships, it becomes readily apparent
why a country such as Japan, which has only a small fraction of the land it would require
to support its population, can remain so healthy. Japan, like other islands of high
population concentration, imports resources, thereby contributing to a global loss of
sustainability but avoiding the local ecological effects of this loss. Japan is by no means
the only country whose ecological footprint far exceeds its local capacity. A recent chart
depicting the respective ecological footprints of 50 countries accounting for some 80% of

the world’s population is shown in Appendix 1 (courtesy Rees 1998).

Some researchers (in particular, those associated with the Global Integrity Project) have
responded to the current ecological crisis with the concept of EI. In this paradigm (i.e.,
“living in integrity™), human societies would make every effort to minimize their impact
on global life support systems. In so doing, societies will maximize EI and presumably
forestall, or at least delay, any projected collapse of the biosphere. A major focus of the
ecological literature is concerned with EI, or a subtle variant of it. EI also may be

referred to as conservation; ecosystem, ecological, or environmental health;
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environmental integrity; regional integrity; and a host of other names. The language of
the EI phenomenon is not standardized, although some attempts are being made by the

Global Ecological Integrity Project (see below).

One of science’s emerging realizations is that the properties of a large system cannot be
entirely explained by summing the properties of its subsystems (Kay 1991). In line with
this realization, Shy (Shy 1997) and others have called for some epidemiologists to
broaden rather than to narrow the focus of their studies. He is calling for more research
into measuring the effects of larger, system-level characteristics or “exposures” on entire

populations.

For instance, how does diminishing biodiversity (a component of EI) affect human
health? It is not a simple matter of the direct effect of an exposure on a specific disease
outcome. Rather, there may be many causal steps mediating between the loss of
biodiversity and human health; for example, the loss of biological compounds useful for
treating disease, or the loss of key species that could lower the productivity of entire

ecosystems.

The study design employed here is too weak to assess causation largely because of the
absence of one of the major positive criteria for causality, namely biological plausibility.
This is usually assessed through laboratory investigations. In complex, under-studied
fields such as EI, assessing biological plausibility may be difficult. It requires a

knowledge of population dynamics and the interplay of populations and their



environments that is not nearly as well developed as our medical knowledge of the human
body. Correlational studies, however, such as the one undertaken here, are able to
provide empirical evidence of which aspects of EI could be targeted for more intensified

biological research.

The intent of this study is to contribute to the science dealing with measuring the
association between diminishing EI and human health. We have indicated that this is to
be a correlational study, but in addition, it should be noted that the correlations are sought
at the group level, not at the individual level. The use of group data is reminiscent of the
traditionally termed “ecological” study design. In this context, “ecological” has nothing
to do with “ecology”, but rather refers to the unit of study, which are not individuals, but
aggregations of individuals. Commonly, the intent of these ecological studies is to make
assertions about individuals based on group data. Unfortunately, this practice of
generalizing from groups of people to individuals suffers from the well-known
“ecological fallacy” (Robinson 1950). In this study, the units of study are nations not
individuals, therefore generalizing our findings to individuals is not a consideration. We
have conducted a correlational study using aggregate data, where the aggregations are
nations. We, therefore, call our study design an aggregated data study design. There are
at least two reasons for doing so. First, the term avoids confusion between the traditional
ecological study design, where the underlying intent is to discover something about

individuals. Second, the term avoids confusion with the discipline of ecology.



In addition, because we know little about the underlying biological mechanisms that
might mediate between EI and the health of populations, no attempt is made to model the
actual complex interplay of causal factors with outcomes. Rather, correlations are sought
between various intuitively and/or logically predictive factors at the population level and
several health-related outcome variables. Key to understanding these studies is that they,
in themselves, cannot allow us to draw conclusions regarding cause and effect at either
the population level or at the level of the individual person. However, they can lead us in

the direction of further research to establish causality.

The latest edition of the biennial World Resources Institute report, World Resources
1998-99 (World Resources Institute et al 1998), focuses on environmental change and
human health. Like the present study, it is concerned with the linking of global change
and human health data. Unlike our study, however, it does not focus on the idea of EI as
articulated by the Global Ecological Integrity Project. Rather than provide measures of
broader landscape characteristics, as EI does, WRI has provided new indicators that
attempt to summarize some of the specific characteristics of the environment (such as air
quality and access to clean water). The WR report (1998-1999) addresses specific
environmental threats and discusses their potential threats to human health.
Paradoxically, however, with all of the supposed harm to human health of these threats,
indicators of human health have been showing improvements for several decades. In the
present study, the use of the EI concept as an environmental health indicator has allowed
us to transcend the piecemeal approach to environmental threats and to focus on broader

landscape issues.



1.2 Definitions of EI and Health

1.2.1 Definitions of EI

One of the specific tasks of the Global Ecological Integrity Project (SSHRC grant #806-
96-0004), and the entire subject of this thesis, is to determine what relationship, if any,
exists between EI and human health. It should be noted that while EI relates specifically
to the positive ramifications of EI, this study’s main thrust is to determine whether
declining EI, referred to in this study as ecological disintegrity, has a negative impact on

human health.

The definition of EI has been somewhat problematic within the project, owing to the
complex nature of the phenomenon. This section will overview some of the extant
definitions of EI in the literature, as well as provide an operational definition for the
purposes of this thesis. It should be noted that while these definitions are useful and
necessary, they represent ideals. We have been constrained in our actual application of
these definitions by available data that measure EI, confounders, and health outcomes at

the population level.

El is a term that “designates the property of coherent wholeness, health, and internal well-
being that characterizes intact, adaptive, self-regulating, and self-repairing systems”
(Robinson 1994) (p. 217). A more specific definition of EI is provided by Loucks: “An
ecological system has integrity when it supports and maintains a balanced, integrated,

adaptive biological system having the full range of living elements (genes, species, and



assemblages), and processes (mutation, demography, biotic interactions, nutrient and
energy dynamics, and metapopulation processes) expected in the natural habitat of a
region” (Loucks 1998). The definition and measurement of EI is an on-going area of
research that has not converged on any widely accepted methods. Despite this lack of
consensus, members of the Global Ecological Integrity Project have, according to Miller
(Miller 1998), clustered around three main perspectives. Each of these perspectives is

important and they are not mutually exclusive.

One of the perspectives has been called Original Integrity (Miller 1998); here EI is
defined as that state of nature unmolested by human interference. In agreement with this,
Westra (Westra 1994) has suggested that we can define EI as a state of “wildness”; that
is, areas have more EI if they are relatively undisturbed by human influence. Karr [e.g.,
(Karr and Chu 1997)] has defined an Index of Biotic Integrity (IBI) for streams that
stresses biodiversity and community structure. It measures deviations in biodiversity and
the composition and characteristics of biological communities from the so-called
“natural” state before the impact of human activity. A key feature of Karr’s IBI is that it
stresses biological integrity. This is important for the development of indicators of EI
because it means that measurements of physical characteristics (such as toxic chemical
loads or water clarity) are not necessary. By definition, all biologically important
physical characteristics of the environment will be captured by measuring the local biota.
In accordance with this perspective, the choices of some of the indicators of EI for this

thesis focus on factors likely to reflect the biological condition of the ecosystem.



The second perspective is referred to by Miller (Miller 1998) as Systemic Integrity,
whose adherents emphasize that EI should be defined functionally regardless of wildness
or similarity to natural state. This perspective focuses on the capacities of ecosystems.
From this perspective, a system has EI if it can perform necessary functions, withstand
stress, and have the capacity for on-going evolutionary development through the
maintenance of a sufficiently diverse gene pool and through minimizing human
interference. It does not matter if the system looks nothing like its pre-human state. As
yet, measurements of ecosystem function are not widely available, so this part of the
definition cannot be adequately implemented. Also, measures of an ecosystem’s capacity

to withstand stress have not been developed and as such cannot be part of this study.

The third perspective has been termed Socially Defined Integrity (Miller 1998); here EI is
defined in terms of the ability for ecological systems to sustain and enhance human
values and endeavors. This perspective will not be used in the operational definition of

EI in this study for reasons indicated below.

The first two perspectives are essentially biological in nature, and serve well as objective
exposure criteria for quantitative epidemiologic research because, unlike the third
perspective, they do not necessitate consideration of cultural differences in the valuation
of nature. As the name implies, Socially Defined Integrity varies from society to society.
In doing a global study, the definition of Socially Defined Integrity would vary for each
datum, and hence would not be quantitatively comparable across countries. Thus, the

third perspective is sociological in nature and will not be considered here. Accordingly,



this thesis adopts as its operational definition of EI the ideas (to the extent possible) of the
first two perspectives, Original Integrity and Systemic Integrity, in its selection of

indicators of EI.

Original Integrity implies a somewhat arbitrary, pre-human or at least pre-agricultural,
starting point. It is arbitrary in the sense that ecological systems are dynamic, and so
there was never a so-called “Garden of Eden” that existed and represents the “ideal” state
of affairs. Nevertheless, choosing a pre-agricultural starting point is useful, because we
know that this environment was both suitable for diverse life forms (including human
life) and, owing to the absence of industrial-scale human intervention, it changed over a
geological time frame. This relatively slow change allowed ecological systems the
evolutionary time to adapt to changing conditions. So, Original Integrity is useful in that
it provides us with a starting point. However, there remains the argument, presented by
Systemic Integrity, that because systems are dynamic, it does not matter much what
existed before, so long as what we have now works. How do we know that an ecological
system works when we lack both the knowledge of what constitutes an entire ecosystem
and the ability to measure all of its aspects? Combining the two perspectives, we can

construct a reasonable operational definition.

We can begin with Robinson’s definition (Robinson 1994) (which is similar to the
Systemic Integrity perspective) wherein EI “designates the property of coherent
wholeness, health, and internal well-being that characterizes intact, adaptive, self-

regulating, and self-repairing systems.” However, owing to our inability to completely
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define and measure such a system, we turn to Original Integrity as the baseline against
which to measure our current state of EI. Therefore, we define EI operationally in terms
of deviations from Original Integrity. Using this definition, we have chosen the
following six variables (discussed in more detail in the Materials and Methods section) as
indicators of EI: percentage of land highly disturbed by human endeavours, percentage of
species threatened, percentage of land protected under [IUCN categories I ~III and [V-V,

forest habitat lost since pre-agricultural times, and annual change in forest cover.

1.2.2 Definition of Health

Human health has been defined by the World Health Organization (WHO) as “a state of
complete physical, mental, and social well-being, and not merely the absence of disease
or injury” (Evans and Stoddart 1994) (p.28). This definition is far too broad for our

purposes here. Nevertheless, we would like to remain true to the idea of general health.

One well-accepted indicator of the general health status of a population is its life
expectancy. It has at least two major advantages for this study (Wolfson 1994): 1) life
expectancies implicitly account for changes in the age structure and therefore do not
require age standardization (this is especially useful when dealing with developing
country data where age strata may not be reliably defined); and 2) life expectancies are
longitudinal in nature. That is, on average, they reflect all of the known and unknown
factors that have influenced a person’s longevity over the entire course of their life. Of

course, some people can be very sick and still live a long time, and some people can be
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very healthy and still die young but, on average, sick people do not live as long as healthy

people.

A better measure of health would be disability-adjusted life years (DALYSs), which more
explicitly and accurately than life expectancy, takes into account the poorer quality of life
associated with living with morbid conditions or disabilities (Murray and Lopez 1997,
Murray and Lopez 1996). Unfortunately, DALYSs have only recently been defined and

country-level data are not yet available.

In addition to life expectancy, we have chosen two other indicators of general health.
Infant mortality and incidence of low birth weight in live newborns were chosen because
they are standard measures of health, especially in developing countries, and may provide
some contrast with life expectancy. Also, they are particularly sensitive to children’s
health and mother’s health in a way that life expectancy is not. This is perhaps a
desirable property because vulnerable populations (i.e., infants) may be more sensitive to

ecological disintegrity than adults.



Chapter 2 - Rationale and Study Objectives

To date, the most widespread tool for measuring EI across regions is Karr’s Index of
Biotic Integrity (IBI) (Karr and Chu 1997; Karr et al 1986). Unfortunately, EI, as gauged
by the IBI, has been measured directly only for a small, unrepresentative (for this study)
number of sites or geographic regions. In addition, to date, it is only an aquatic index,
although Karr suggests that river/stream IBI values can serve as sentinels for terrestrial
communities (Karr 1998). Karr is currently working on a terrestrial version of the IBI.
Because of its relatively recent introduction and lack of broad coverage, the IBI is not
useful for this study, nor is there another useful direct measure of EI. Instead, we must
rely on indicators of EI, of which there is no standard set. One of the aims of this study,
then, is to choose a number of indicators of EI and determine which of those indicators of
EI (described in the Materials and Methods section) are best correlated with human health

outcomes.

A second shortcoming in this field of research is the lack of knowledge of exactly what
aspects of human health, if any, are affected by diminishing EI. It is not a straightforward
problem of determining the effect of a pollutant on the function of a specific organ.
Instead, it depends for its solution not on models developed based on individual health
outcomes, but rather models based on population health outcomes. In this case, we want
to determine the association between wholistic measures of the state of the environment,
namely EI, and aggregate health outcomes of entire populations. Because of the lack of

knowledge as to what specific outcomes are either most appropriate or important, we will



analyze only those population health outcomes (described in the Materials and Methods

section) that are well-established indicators of population health.

Confounding is a concern in this study and is especially difficult to control given the lack
of a detailed theoretical model. We do know, however, that some socio-economic factors
are strongly related to both EI and human health. In particular, it is well-known that, in
general, increasing wealth is associated with increasing health (Wilkinson 1992)
(Wilkins, Adams, and Brancker 1989; World Resources Institute et al 1998). Wealth also
may be associated with decreases in EI. Actually, it is likely that a complex relationship
exists between EI and wealth. On the one hand, increasing industrialization and the
consequent material wealth that is associated with it is likely to create an industrial
infrastructure capable of consuming vast amounts of natural resources as a component of
ecological capital. Presumably, this large-scale consumption of natural resources would
impact negatively on EI. On the other hand, as countries become quite developed they
may begin to insist on new environmental standards the intent of which would be to
reinstate and maintain EI. One insight that we may gain from this study is what aspects
of wealth are related to both EI and health. Because of this, we will consider measures of
wealth (described in the Materials and Methods section) as potential confounders and use
various measures of socio-economic well-being (described in the Materials and Methods

section) to control for it in our analysis.
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Chapter 3 - Materials and Methods

3.1 Study Design

A correlational, aggregate data, study design was employed to determine, on several
levels of aggregation as the data permit, if human health can be linked to the large-scale
deterioration of EI. In addition to indicators of EI, we also considered the associations
among other potentially important covariates, which are not indicators of EI per se, but

which may be confounded with EI.

Measures of EI served as “exposure” variables in the epidemiological sense. Because the
exposures to be measured are complex and not well-understood, several indicators of EI
were used as proximate measures of El in all countries for which such measures were
available. There is no standard set of proxies for EI. Therefore, in accordance with the
operational definition of EI given above, exposures were chosen according to their
plausibility as measures of “intactness” or “wildness” of ecosystems. Because of the use
of face validity as a method for selecting covariates, a limitation of this study is the lack

of objective criteria for data validity.

3.2 Data Sources

All data, except the Gini Index (discussed in section 3.7), were abstracted from World
Resources 1994-95 (World Resources Institute, United Nations Environment Programme,
and United Nations Development Programme 1994), World Resources 1996-97 (World

Resources Institute et al 1998) and the associated Database Diskettes (list of all available
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variables in Appendix 2). Gini Index data were obtained from the World Bank Internet
site (Deininger and Squire 1997). In total, there are 203 countries in the merged data set;

however, there are many missing data points for some of the variables.

3.3 Choice of Indicators and Data Quality
Our basic model began in skeleton form as depicted in Figure 3.3.1. That is, we chose a
set of El variables and examined them as predictors of a set of health outcomes. We also

chose a set of socio-economic variables that had the potential to confound the El-health

relationship.
GDP and other socio-
economic variables
Ecological Health
Integrity > | Outcomes

Figure 3.3.1 The simple skeleton model for this study.

As mentioned earlier, there is no standard, agreed-upon set of variables that describe EI.
Instead, we took some of the important aspects of the definition of EI and tried to find
variables that could be logically connected to parts of the definition of EI. The complete
list of EI variables selected from among those listed in Appendix 2 is given in section 3.5

and a more in-depth explanation of each EI variable is given in section 3.6. One of the
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prominent features of the definition of EI is the emphasis on “wildness”. To include this
idea in our analysis, we included the percent of land highly disturbed by human activity
as one of our EI variables. Another part of the definition of EI is the maintenance of
biodiversity, so we chose the percentage of threatened species standardized to a 10,000
square kilometers species-area curve as one variable. Of course, this variable is an
admittedly crude way to measure biodiversity. However, it was the best variable that we
could find that had global coverage. Sometimes it is recommended that biodiversity
could be better preserved by the protection of landscapes rather than individual species.
Therefore, we also have included in our analysis the percent of a country’s land mass that
is totally or partially protected (IUCN categories [-III and IV-V, respectively). In
addition, because forests are important ecosystems, and because much data are available
on forests, we included two related forest variables: the percent of forest remaining since

pre-agricultural times and the average annual change in forest cover.

In choosing potential confounders, we considered that “development” would be a
significant confounder. The rationale for this is that richer countries are healthier than
poorer countries; we would want to isolate the positive influence of development on
health from the negative influences of concurrent environmental degradation. To do this,
we examined many indicators of development and included for consideration in our study
those that seemed most relevant as indicators of wealth and development. The complete
list of potential confounding variables, selected from among those listed in Appendix 2, is
given in section 3.5 and a more in-depth explanation of each potential confounding

variable is given in section 3.7. In our study, the most obvious example of a variable
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representing wealth is gross domestic product (GDP) per capita. Related to this, but more
related to the industry aspect of development, is industrialization. This is represented in
our study by two variables: carbon dioxide (CO,) emissions per capita and CO, per 1,000
hectares. Population is an important issue today. We considered that urbanization and
population density may be importantly related to both EI (in that high concentrations of
people place large demands on available resources) and to health (especially in poorer
countries, population density and poor urban sanitation may increase the transmission of
some diseases). Sometimes it is suggested that it is not absolute wealth that is an
important predictor of health (as well as being related to EI through resource extraction),
but rather income distribution. One measure of income disparity included in this study is
the Gini index. Finally, we considered that literacy and education might be important.
Education provides information that allows people to make more informed choices
regarding both their health and their environment. I[deally, we would want data on both
male and female literacy. Unfortunately, some countries do not collect data on that
subject. Therefore, we used adult male literacy as an indicator of education at the

national level.

To choose health outcomes, we had to come to grips with the lack of a biological model
that could adequately predict specific health outcomes. Owing to this gap in knowledge,
we opted for some traditional measures of general population health, such as life
expectancy, infant mortality, and percentage of low birth weight babies. The complete
list of health outcome variables used in this study is given in section 3.5 and a more in-

depth explanation of each health outcome variable is given in section 3.8.
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Other considerations, besides face validity, in choosing variables included having broad

global coverage and a relatively recent collection date (1990-1996).

The data from World Resources was compiled from other sources, mainly United Nations
organizations. Owing to the variability in data quality, no blanket statement can be made
about the reliability of the variables that we have chosen. However, some notes are
provided for individual variables. This will be taken into consideration in the analysis,

particularly in the analysis of influential points (i.e., the influence of outliers).

Gini Index data from the Deininger and Squire data set were compiled from multiple .
sources and the quality is variable. The data for each country have been evaluated by the
authors, and only those data rated as “acceptable”, and included in the World Bank’s

“high-quality” data set, were included in our analysis (Deininger and Squire 1997).

It also should be noted that not all data are collected in the same year. This is

unfortunate, but unavoidable. Dates of coverage for each variable are noted below.

3.4 List of Study Variables
The following is a list of the variables that were examined in this study. The complete
description of each variable is given in the following sections grouped into indicators of

EI, potential confounders, and indicators of health.
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Indicators of EI (Predictors)

Percent of land highly disturbed by human activity

Threatened species (%) (total for mammals, birds, higher plants, reptiles, and
amphibians)

Partially protected areas (International Union for the Conservation of Nature
(IUCN) categories IV - V) as a percentage of total area

Totally protected areas (IUCN categories I - III) as a percentage of total area
Forest remaining since pre-agricultural times (%)

Average annual change in forest cover (%) (1981-90)

Potential Confounders (Predictors)

Carbon dioxide emissions per capita

Carbon dioxide emissions per 1,000 hectares
Percentage of population living in urban areas
Human population per square kilometer

Gross National Product (GNP) per capita ($US)

Gross Domestic Product (GDP) per capita (Purchasing Power Parity (PPP)) ($Int)

Gini Index

Adult male literacy (%)



Indicators of Health (Outcomes)

e Life expectancy at birth (5-year average)
e Infant mortality rate (5-year average) per 1,000 live births

¢ Incidence of low birth weight babies (%)

3.5 Indicators of EI

The choice of indicators that best describe EI is influenced mainly by each indicator’s
potential to reflect our operational definition of EI as described above. That is, each
indicator of EI reflects some aspect of human interference with the environment.
Reductions in EI are measured as deviations from Original Integrity caused by human
activity. Therefore, each indirect measure, or indicator, of EI listed below has been
chosen because, at some level, is believed to capture the influence of human activity on

ecosystems.

Indicator: Percent of land highly disturbed by human activity

Rationale: Direct measure of habitat disturbance

Year: 1993

Data Source: Conservation International

Data Quality: Measured by satellite map units of a minimum size of 40,000 hectares.
This may mean that very small countries (such as small islands) may be

poorly classified. Also, WRI states that the underlying data are of variable
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Other Notes:

quality and that areas of low disturbance are likely to be overestimated
owing to outdated information.

Definition of low, medium, and high disturbance (quoted from p. 328 of
(World Resources Institute, United Nations Environment Programme, and
United Nations Development Programme 1994))

Low human disturbance: covered by natural vegetation and/or have a

population density of under 10 people per sq. km or under 1 person per sq.
km in arid, semiarid, and tundra regions.

Medium human disturbance: under shifting or extensive agriculture, and/or

contain secondary, naturally regenerating vegetation; have a livestock
density exceeding their carrying capacity; exhibit other evidence of human
disturbance (e.g., contain a logging concession); or otherwise do not fit into
the other two disturbance categories.

High human disturbance: under permanent agricultural cultivation or urban
settlement, and/or contain primary vegetation removed without evidence of
re-growth; contain current vegetation differing from potential vegetation;

have a record of desertification or other permanent degradation.

Indicator: Threatened species (%) (total for mammals, birds, higher plants, reptiles,

amphibians)

Rationale: Measures threats to biodiversity

Year: 1993

Data Source:

World Conservation Monitoring Centre (WCMC)



Data Quality: Data for islands and tropical areas are probably under-estimated;
taxonomy and extent of knowledge may vary across countries.
Other Notes: Data are adjusted using a species-area curve intended to facilitate
comparison across countries (World Resources Institute et al 1998) (page
271); threatened species include those classified as endangered, vulnerable,
rare and indeterminate, but not introduced or extinct species (World

Resources Institute et al 1998) (p. 270).

Indicator: Partially protected areas (International Union for the Conservation of Nature
(IUCN) categories IV - V) as a percentage of total area

Rationale: Measures amount of partially protected land

Year: 1994

Data Source: WCMC

Data Quality: National protection only, does not include provincial or local protection

Other Notes: Areas of at least 1,000 hectares each; limited extractive use permitted

Indicator: Totally protected areas (IUCN categories I - III) as a percentage of total area
Rationale: Measures amount of totally protected land

Year: 1994

Data Source: WCMC

Data Quality: National protection only, does not include provincial or local protection

Other Notes: Areas of at least 1,000 hectares each; limited extractive use permitted




Indicator: Forest remaining since pre-agricultural times (%)

Rationale: Measures amount of forest habitat remaining since pre-agricultural times

Year: 1980s

Data Source: WCMC and over 100 smaller studies

Data Quality: These data were abstracted by WRI from over 100 different sources, most
of which used satellite imagery to assess vegetation cover. Because of the
large number of sources, scales of measurement and definitions of
“natural” habitat differ across studies. The pre-agricultural extents of
habitats are estimated from potential vegetation maps. These maps are
based on predictions made from current physical characteristics and may
be error-prone.

Other Notes: None

Indicator: Average Annual Change in Forest Cover (%) (1981-90)

Rationale: Measures current rate of forest destruction (increase in forest is positive;

decrease in forest is negative)

Year: 1990

Data Source: Food and Agriculture Organization of the United Nations (FAO)

Data Quality: Some definitional issues mean that developing and developed countries
are not strictly comparable. However, the differences are considered by
WRI to be “slight” (World Resources Institute et al 1998) (p. 222). In
particular, in developed countries, plantations are included in the forested

area, whereas in developing countries, plantations are considered
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separately. Since this analysis uses “all forest” data (summing natural
forest and plantations), these definitional differences are minimized.
Developed country data are considered high quality. For developing
countries, Asia is considered the best quality, then Latin America, and
lastly Africa.
Other Notes: FAO used a model to adjust the baseline forest inventory to a common
year. However, the adjustment procedure for some types of forest (e.g., dry

forest) are of unknown reliability.

3.6 Potential Confounders

The following indicators may modify or confound the EI - human health relationship.

Indicator: Carbon dioxide emissions per capita and carbon dioxide emissions per 1,000
hectares

Rationale: Surrogate for air quality and for industrialization

Year: 1992

Data Source: Carbon Dioxide Information Analysis Center (Oak Ridge National

Laboratory, USA)

Data Quality: Uniform source; estimated to be within 10% of actual emissions;
calculated from United Nations Statistical Division statistics, not from
individual country governments (World Resources Institute et al 1998) (p.
332)

Other Notes: None
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Indicator: Percentage of population living in urban areas

Rationale: Measures the percentage of the population living in highly disturbed areas

Year: 1995

Data Source: United Nations Population Division (UNPD)

Data Quality: Based on the midyear population of areas defined as urban by each
country. The definition of urban may vary slightly from country to
country. Numbers are based on population census. Accuracy varies, but
the UN Population Division evaluates census and survey data and adjusts
for over- or under-enumeration, as well as changes in definitions when
necessary.

Other Notes: None

Indicator: Human population per square kilometer
Rationale: Measures crowding and density (assumption: that higher human density has a
greater impact on land)

Year: 1995

Data Source: UNPD

Data Quality: Based on midyear populations obtained from census and surveys.
Accuracy varies, but the UN Population Division evaluates census and
survey data and adjusts for over- or under-enumeration, as well as changes
in definitions when necessary.

Other Notes: None
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Indicator: GDP per capita (Purchasing Power Parity (PPP)) ($Int)
Rationale: Measure of wealth that takes into account cost of living
Year: 1993
Data Source: World Bank
Data Quality: Data have been standardized to the United Nations System of National
Accounts. However, there are some technical problems that are not easily
resolved. WRI suggests that the data characterize major economic
differences and not precise measurements.
Other Notes: Standardized by PPP to International dollars of purchasing power, not to
exchange rates. The PPP is defined as “the number of units of a country’s
currency required to buy the same amount as $1 would buy in the

“average” country” (World Resources Institute et al 1998) (p. 171).

Indicator: Gini Index

Rationale: Measure of income disparity

Year: Various

Data Source: Deininger and Squire (1997)

Data Quality: Deininger and Squire selected countries for a “high-quality” data set if
they met the following inclusion criteria: national coverage, clear
reference to the primary source, based on the entire population (i.e., not on
the income earning population only or derived from non-representative tax

records).



Other Notes: The Gini Index measures distribution of income on a scale of 1 to 100. A
score of 100 indicates that all of the income is earned by a single individual

and a score of 1 indicates that income is perfectly evenly distributed.

Indicator: Adult male literacy (%)

Rationale: Surrogate for educational level

Year: 1994

Data Source: United Nations Educational Scientific and Cultural Organization

(UNESCO)

Data Quality: Although UNESCO has a recommended definition of literacy (see below),
actual interpretation and application of the definition still varies from
country to country. Also, most data were extrapolated from 1990 literacy
data to 1994 population data; thus, changes in the proportion of the
population that is literate after 1990 are not reflected.

Other Notes: The recommended definition for literacy is “a person who cannot with

understanding both read and write a short, simple statement about his or her

everyday life.”




3.7 Indicators of Health
Because there is no certainty as to specific disease outcomes that might be important for
diminishing EI, each of our indicators of health is an attempt to capture the general health

of the population.

Indicator: Life expectancy at birth (5-year average)

Rationale: Measure of general health

Year: 1990-1995

Data Source: United Nations Population Division (UNPD)

Data Quality: Unknown, probably similar to other statistics obtained from UNPD
Other Notes: Average number of years that a newborn is expected to live if current age-

specific mortality rates apply throughout the child’s lifetime

Indicator: Infant Mortality Rate (5-year average) per 1,000 live births

Rationale: Measure of general health

Year: 1990-1995

Data Source: UNPD

Data Quality: Unknown, probably similar to other statistics obtained from UNPD
Other Notes: Infant mortality per 1,000 live births is the probability of dying by exactly

age 1 multiplied by 1,000




Indicator: Percent of low birth weight babies

Rationale: Measure of general health

Year: 1990

Data Source: United Nations Children’s Fund (UNICEF) and the World Health
Organization (WHO)

Data Quality: Unknown

Other Notes: Refers to the percentage of babies who weigh less than 2,500 grams at
birth. The 2,500 gram weight has been adopted as a standard international

minimum by WHO.

In addition to the above variables, we also attempted to obtain disability-adjusted life
year (DALY data for our study, but were unsuccessful. The most complete source of
DALY data provides DALY attributable to specific illnesses aggregated across the eight
WHO regions (Murray and Lopez 1996). At this time, however, country-level studies are
in progress and may be expected in the next 5-10 years (personal communication between

C. L. Soskolne and A. D. Lopez).

3.8 Country Inclusion and Exclusion Criteria

All countries for which data were available were considered for inclusion. This data set
has already been screened by the source agencies; hence, some data points have already
been excluded for various reasons. Sometimes, a data point may be indicated by the
original source as unreliable. Those observations were excluded. A further exclusion

criterion would be multiple entries per country. This occurs when countries have



undergone name changes, or have split into smaller units. We endeavoured to include
only the most modern country-name variants. However, some exceptions may occur if
the data on the newest variant are sparse. One reason for the selection of several
indicators of both EI and health is that if data were not available for a particular indicator,
we were sometimes able to use another available measure in place of the missing
indicator to boost sample size. Examples of countries excluded because of split data
owing to name and territory changes include the former Yugoslavia and the former Soviet

Union.

3.9 Analytical Method

Univariate analysis of all variables was conducted and appropriate data transformations
applied. Transformations were necessary if the data were very skewed. An example of
such a transformation is presented in Figure 3.9.1. When transformation was required,
log to the base 10 was used. A further approach to transforming the data was to divide
each of the variables by the potential confounder GDP per capita. This was unsuccessful,

so, as mentioned, the log transformation was applied where deemed necessary.



Before log transformation After log transformation
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Figure 3.9.1 Example of Log Transformation of a Skewed Variable.

Bivariate scatterplots, categorical analysis, and correlation matrices were used to
determine the relationships between pairs of variables, and to identify the most likely

candidates for multiple regression.

Multivariate analysis was conducted by multiple linear regression (Briggs, Corvalan, and
Nurminen 1996; Corvalan, Nurminen, and Pastides 1996). Several types of multiple
regression were carried out as needed, including linear, robust, and non-linear models in
an attempt to find the best fit for the data. Significance testing was generally avoided
owing to the uncertain nature of “statistical significance” in a study in which the data are
based on populations and not on samples. The underlying assumptions of each model
were examined using appropriate diagnostic methods, which are described more fully in
the context of the results in section 4.9. Also in Chapter 4, we provide added-variable
plots (Mosteller and Tukey 1977) for each of our three outcomes. These provide not only

a graphical representation of the relationship between a predictor and an outcome

(3]
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adjusted for the other variables in the model, but also allow us to detect outliers which

may have undue influence on our regression slope coefficients.

The statistical methods outlined above are in line with suggested methods for aggregate
data analysis described mainly by Morgenstern (Morgenstern 1982) (Greenland and
Morgenstern 1989) and accepted by the World Health Organization (WHO) (Briggs,

Corvalan, and Nurminen 1996; Corvalan, Nurminen, and Pastides 1996).

3.10 Statistical Formulae and Implementation

3.10.1 Pearson product-moment pair-wise correlation coefficient

A correlation matrix of all of the variables in the study is presented in Results section
4.7.1. Correlation matrices were used to determine the relationships between pairs of
variables, and to identify the most likely candidates for multiple regression. The pair-

wise correlations were calculated using the formula by Galton (Galton 1888):

. 3 (= F) (- 7)
V=53 (-

3.10.2 Cuzick test for trend

The Cuzick test was used as a contrast with the pair-wise correlations to see if the
continuous relationships provided by the correlation matrix were consistent with “cruder”
categorical comparisons. This test is a Wilcoxon-type test for trend modified with a

correction for ties (Cuzick 1985). A mathematical explanation of the test is given by

(93]
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Altman (Altman 1991). It is implemented in Stata 5.0 (StataCorp 1997) as -nptrend-

(Stepniewska and Altman 1992).

In essence, this is a z-test given by:

_T-ET)
= se(T)

The test is illustrated by a simple example. Consider three groups: short, medium, and
tall. Each of these groups is given a constant, c;, which reflects its order. For example,
c(short) = 1, c(medium) = 2, and c(tall) = 3. Assume that each group has 3 individuals
giving a total sample size, N, of 9. We rank each of the 9 individuals from lowest to
highest according to something else that we are interested in measuring, say weight. The
sum of the ranks in each group is R. The formula for T above is:

T= ZCiRi

where ¢; is the group ordering constant (1, 2, or 3 in this example) and R; is the sum of the
ranks in the ith group. Thus, the largest value of T is obtained when the lowest ranks are
multiplied by the lowest ordering constant and the highest ranks are multiplied by the
highest ordering constant. This can only occur in this example when the lighest people
are also the shortest and the heaviest people are the tallest. A large T is then reflected as
a low p-value indicating that, for this example, there is a trend from lighter to heavier

with increasing height.



3.10.3 Multiple linear regression

Multiple linear regression was carried out using ordinary least squares according to the
usual model:

Yy=Bo+Bix +Byx, +--+Bx; +€

where the x; are variables, B, are parameters, and € is the error term.

It is implemented in Stata 5.0 using the -fit- command, which allows the calculation of

subsequent diagnostics (StataCorp 1997).

3.10.4 Variance inflation factors

After the estimation of a multiple linear regression model using Stata’s -fit- command,
variance inflation factors (VIFs) (Chatterjee and Price 1991) can help to determine the

degree of collinearity among the predictors.

VIF(x,) = #
where R? is the coefficient of determination from the regression of X; on all other
explanatory variables. Thus, a low VIF results from a low R%. A low R? is obtained
when the other predictors are not highly correlated with x;. In other words, the VIF is low

when x; is not collinear with the other predictors in the model. It is implemented after

Stata’s -fit- command as -vif-.

3.10.5 Cook-Weisberg test for heteroscedasticity

Once a multiple linear regression model was estimated, we tested for heteroscedasticity

using the Cook-Weisberg test (Cook and Weisberg 1983).

w
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Var(e;) = *exp(z;t)

where ¢; is the ith residual, z = (z,,2,,..., Z) is the vector of fitted values, and ris a
constant. The test is for whether ¢ = 0. If t =0, then exp(zt) = 1. This would mean that
the variance of the residuals is equal to the overall variance and heteroscedasticity is not

present. Itis implemented after Stata’s -fit- command as -hettest-.

3.10.6 Robust multiple linear regression

Ordinary least squares regression can yield unsatisfactory results when influential outliers
are present. Robust regression performs better under these conditions. The form of
robust regression implemented in Stata’s -rreg- command is explained here (Hamilton

1992).

In robust regression, outliers are assigned lower weights, thus lessening their influence on
the final coefficients. The outliers are weighted gradually so that the further out the case
lies, the lower its weight will be. Because of the use of weights, this method is a form of
weighted least squares regression. The weights derive from complicated weight functions
which are beyond the scope of this thesis to explain. To ensure that weights are
appropriately calculated for all outliers, Stata implements two weight functions: first

Huber weights (Huber 1964) and then biweights (Beaton and Tukey 1974).



Chapter 4 - Results

4.1 Univariate Analysis — Indicators of EI

The un-transformed univariate distributions of our indicators of EI are shown in Figures

4.1.1 through 4.1.6.
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Figure 4.1.1 Univariate distribution (histogram)
of percent of land highly disturbed

by human activity.
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oy a 10
(= [=4
(=3 o
3 3
o o
o o
& 0 & 0]
00 100 200 300 40.0 500 60.0 70.0 800 900 500 300 -1.00 1.00 3.00 5.00 7.00
50 150 250 350 450 550 650 750 850 950 <400 -200 Q.00 200 4.00 6.00 8.00
% Forest Loss since Pre-Agriculture Average Annual Deforestation
Figure 4.1.5 Univariate distribution of percent Figure 4.1.6 Univariate distribution of average
forest remaining since pre- percent annual change in forest
agricultural times. cover.

4.2 Univariate Analysis — Log Ti ransformqtions of Indicators of EI

As can be seen in Figures 4.1.2, 4.1.3, and 4.1 .4, the distributions of some of the EI
variables are highly skewed. The Pearson product-moment correlations to be calculated
in the bivariate analysis require all variables to be approximately normally distributed. It
should be noted that subsequent linear regression modeling does not require that the
independent variables need be normal, but it is desirable for them to have a reasonable
spread. For both of these reasons, log (base 10) transformations were taken of the
extremely skewed variables to render them suitable for linear modeling. In general, we
wanted to work with variables that were in their natural units and therefore only the most
skewed of the variables were transformed. The distributions after log transformation are
shown in Figures 4.2.1 through 4.2.3 for those variables for which log transformation was

deemed necessary. One can see from Figures 4.2.1 through 4.2.3 that these variables now

have reasonable spread.
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4.3 Univariate Analysis — Potential Confounders

The un-transformed univariate distributions of our potential confounders are shown in

Figures 4.3.1 through 4.3.7.
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4.4 Univariate Analysis — Log Transformations of Potential Confounders
Figures 4.3.1,4.3.2, 4.3.4, and 4.3.5 are quite skewed and so the respective variables
were transformed using log base 10 for the same reasons given in section 4.2. The

transformed variables are shown in Figures 4.4.1 through 4.4.4 and are now quite well

spread.
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4.5 Univariate Analysis — Indicators of Health

The un-transformed univariate distributions of our indicators of health are shown in

Figures 4.5.1 through 4.5.3.
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4.6 Univariate Analysis — Log Transformation of Indicators of Health

Extreme skewness in the outcome variables violates the assumption of normality of the
dependent variable in linear regression. It can be seen from Figures 4.5.2 and 4.5.3 that
the distribution of infant mortality and low birth weight are not normal. They have been
transformed to their base 10 logs and the new distributions are shown in Figures 4.6.1 and

4.6.2. They are now much more approximately normal than before the transformations.
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4.7 Selection of Covariates for Multiple Regression

We used all of the above indicators of EI and potential confounders in our multiple
regression modeling. However, the order in which variables are entered into the model
can make a difference in the final model selected. Therefore, we wanted to identify the
most important variables so that we could enter them first. We used several procedures to
help determine which variables were best related to our outcomes, and thus which should

first be entered into the multiple regression models.
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4.7.1 Correlation matrix

The first tool we used was a correlation matrix (Pearson product-moment correlations
described in Materials and Methods section 3.10.1) to determine the relative magnitude of
the associations between not only our predictors and our outcomes, but also to assess the
associations (collinearity) between our predictors. The entire correlation matrix was
rather large, and so it was broken into smaller parts for readability. The parts of the

matrix are provided in Tables 4.7.1 through 4.7.3.

Table 4.7.1 Pearson correlations among indicators of EI and all other variables (* means p<0.1).

high species |UCN V-V IUCN Il forest annual change
disturbance threatened protected protected remaining in forest
(log) (log) (log)
high disturbance 1.000
species threatened (log) -0.126 1.000
IUCN IV-V protected (log) 0224 * -0.042 1.000
IUCN -1l protected (log) -0.043 0.079 0.116 1.000
forest remaining -0.186 * 0.139 0.084 0.280 * 1.000
annual change in forest 0.015 0.084 0.040 -0.296 * -0.119 1.000
CO, emissions per cap. (log) 0.764 * 0.076 0214 " 0158 % 0.144 ° 0215+
CO, emissions per hec (log) 0.533 * 0.004 0.263 * -0.154 * -0.061 0.151 *
urbanization 0.112 0.003 0.160 * -0.091 0.094 0.159 *
population density (log) 0.709 * -0.090 0.160 * -0.074 -0.334 * -0.014
GDP (PPP) (log) 0.210 * 0.017 0.384 * -0.029 0.323 * 0.154
Gini index -0.326 * 0.194 -0.204 * 0.343* 0.121 -0.374 *
adult male literacy 0.192* 0215* 0075 -0.004 0.284 * 0.040
life expectancy 0311~ 0.120 0252 -0.028 G174 * 0.088
infant mortality (log) -0.374 * -0.027 -0.356 * -0.004 -0.146 * -0.150 *
low birth weight (log) -0.187 * 0.028 -0.246 * 0.072 -0.173 ~ -0.286 *

Table 4.7.1 gives the Pearson correlations among the indicators of EI and the three
categories of study variables; indicators of EI, potential confounders, and health

outcomes, which are separated by dotted lines. The EI variables are largely uncorrelated.
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Similarly, the potential confounders are mostly uncorrelated with the EI variables with
the exception of log CO, emissions per hectare and log population density, which are
correlated with high disturbance (r = 0.533 and 0.709, respectively). While the entire
table is of interest, the main function of this table is to help us choose predictors of our
health outcomes. Thus, the most important part of the table is the bottom three rows
which provide the correlations among the EI variables and the health outcomes. None of
the correlations in this section are large (maximum = -0.374), indicating that the EI
variables are not good predictors of health outcomes. It indicates that high disturbance
and log IUCN IV-V protected areas are the two strongest predictors, in terms of
magnitude, of both life expectancy and log infant mortality. For log low birth weight, log
IUCN IV-V protected areas and percent change in forests seem to be the strongest
predictors. We consider a correlation coefficient of 0.7 or higher to represent significant
inter-correlation. If two predictors are more than approximately 70% correlated, then we

prefer not to include both in the regression model owing to the potential for collinearity.

Table 4.7.2 provides the Pearson correlations among the potential confounders and
between the potential confounders and the health outcomes. It is useful because it
indicates which of our potential covariates are most highly inter-correlated as well as
those that might be important predictors of the health outcomes. We note that log carbon
dioxide emissions per capita and log carbon dioxide emissions per hectare are highly
correlated (r = 0.820). This is not very surprising, but it does indicate that it would be

prudent to include only one or the other in our final model.
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In addition, it {s striking that log GDP per capita is very highly correlated with everything
except the Gini Index (with which it retains a quite strong correlation of -0.423) and log
population density. This, perhaps, is not surprising since many of these potential
confounders are related to the general idea of socio-economic “development”. It makes
intuitive sense that socio-economic development and wealth would be strongly related. It
will be shown below that because GDP per capita is such an important and overwhelming

variable, we decided to treat it differently than all of the other variables.

However, not only is GDP per capita strongly inter-related with most of the other
variables, correlation coefficients are high to very high among most of the other
confounders. This indicates that the inclusion of these potential confounders in the final

regression models must be undertaken judiciously to avoid problems with collinearity.
We can also see that all of these potential confounders are significantly predictive of our

outcomes: life expectancy, infant mortality, and low birth weight. The one exception is

that population density does not appear to be strongly related to low birth weight.
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Table 4.7.2 Pearson correlations among potential confounders and indicators of health (* means

p<0.1).
CO, %2 urban- population GDP Gini  adult male
per capita per hectare ization density (PPP) index literacy
(log) (log) (log) {log)
CO2 emissions per cap. (log) 1.000
CO2 emissions per hec (log) 0.820 * 1.000
urbanization 0.784 * 0.643 * 1.000
population density (log) 0.063 0620~ 0.128* 1.000
GDP (PPP) (log) 0.927 * 0.761* 0815* 0.121 1.000
Gini index -0.379 * -0.471 *~ -0201 * -0.242 * -0423 * 1.000
adult male literacy 0.702 * 0616 * 0539 * 0.134 0.696 * -0.085 1.000
life expectancy 0.824 ~ 0.765* 0699 * 0262 * 0900* -0320* 0.780 "
infant mortality (log) -0.792 ~ -0.766 * -0.711 * -0.304 * -0.934* 0419 * -0.741 *
low birth weight (log) -0.742 * -0.553* -0677* -0.016 -0.790* 0.266 * -0.572 *

Table 4.7.3 Pearson correlations among indicators of health (* means p<0.1).

life infant low birth
expectancy mortality weight
(log) (log)
life expectancy 1.000
infant mortality (log) -0.905 * 1.000
low birth weight (log) -0.775 * 0.821 * 1.000

Table 4.7.3 gives the Pearson correlations among our three health outcomes. It indicates
that our outcomes are highly correlated with one another. Of course, separate regression
models will be fit for each of the outcomes; hence, collinearity is not of concern when

modeling these variables.

Much could be conjectured from these correlation matrices. However, it is important to
remember that they represent only bivariate relationships. The large correlation
coefficients between many of the predictors is indicative that confounding could be
important, and therefore, not too much weight should be placed on these bivariate results.

Multiple regression is required to sort out the true relationships among these variables.
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4.7.2 Categorical comparisons

Linear regression and correlation make use of continuous data to generate slope
coefficients. In the case of unweighted regression and correlation, the assumption is
made that each data point can be treated equally with regard to data quality. Our data,
however, are derived from multiple sources and they attempt to cover vast areas of the
globe with unknown precision. Thus, we undertook a seemingly more “crude” analysis
in which we divided each outcome into quintiles from lowest to highest. Then we called
the lowest fifth the “low” category and the highest fifth the “high” category. The intent
was to isolate the extremes. We combined the middle three fifths and called it the
“medium” category. Then, we compared the mean values of each predictor across these
broad categories of the outcomes. These gross differences may be more easily defensible

in light of the unknown accuracy and precision of our data.

Differences between the ordered groups were tested using a modified non-parametric
Wilcoxon test for trend (Cuzick 1985). An explanation for this test is provided in

Materials and Methods section 3.10.2.

Tables 4.7.4 through 4.7.6 provide the mean, number of observations, and p-values of the

Cuzick test for each predictor and each outcome.

The results of these categorical analyses are not very different from those of the

correlation matrices in terms of p-values. Of course, p-values are not the best way to
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compare results because they confound sample size and magnitude of association.
Further, the Cuzick test is a test for trend, so its p-value could be low simply because of a
large difference between any two of the categories, and not necessarily because of a
generally strong relationship between the predictor and outcome. However, this does
provide a non-parametric counterpart to the correlation coefficients provided earlier. It
has the advantage of relying on fewer distributional assumptions. In general, then, it can
be said that when the correlation coefficient has a low p-value, the Cuzick test also
returned a low p-value. In the prediction of life expectancy (Table 4.7.4) and infant
mortality (Table 4.7.5), all variables are significant except log species threatened and
IUCN I-III protected areas, with forest remaining being marginally so. In the prediction
of low birth weight, fewer of the variables are significant with log species threatened,
IUCN I-III protected areas, and log population density being the least so. Also, variables
that appeared to be of some importance in the prediction of life expectancy and infant
mortality, high disturbance and forest remaining, are marginally associated with low birth

weight.
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Table 4.7.4 Categorical analysis: means and p-values of all predictors across categories of life

expectancy.
Lite Expectancy at Birth

Low Medium High P-value

Mean n Mean n Mean n Cuzick
high disturbance 26.12 35 39.97 71 60.25 25 0.00
species threatened (log) -1.47 8 -1.25 53 -1.21 23 0.45
IUCN V-V protected (log) 0.20 26 0.07 76 0.73 29 0.00
IUCN il protected (log) 0.26 28 0.11 86 0.17 26 0.45
forest remaining 22.01 35 31.32 86 32.11 27 0.12
annual change in forest -0.47 36 -0.50 75 0.11 22 0.00
CO, emissicns per cap. (log) -0.88 35 0.29 92 0.90 27 0.00
CO, emissions per hec (log) -1.46 35 -0.04 91 0.75 27 0.00
urbanization 2943 37 53.12 103 76.08 35 0.00
population density (log) 1.43 37 1.71 103 2.01 35 0.00
GDP (PPP) (log) 2.90 16 3.36 46 4.10 26 0.00
Gini index 43.27 19 40.86 61 34.72 27 0.00
adult male literacy 53.67 36 84.43 87 93.27 1 0.00

Table 4.7.5 Categorical analysis: means and p-values of all predictors across categories of infant

mortality.
Tnfant Mortality (per 1,000 live births)
Low Medium High P-value
Mean n Mean n Mean n  Cuzick
high disturbance 02.11 25 3712 Y 30.68 32 0.00
species threatened (log) -1.21 21 -1.23 54 -1.51 9 0.35
IUCN V-V protected (log) 0.75 30 0.08 78 0.13 23 0.00
IUCN I-Ill protected (log) 0.16 27 0.14 89 0.20 24 0.63
forest remaining 32.80 25 30.71 91 22.39 32 0.13
annual change in forest 0.23 22 -0.53 78 -0.47 33 0.00
CO, emissions per cap. (log) 0.52 28 0.26 894 -0.96 32 0.00
CO, emissions per hec (log) 0.81 28 -0.10 93 -1.50 32 0.00
urbanization 75.20 37 52.71 104 28.58 35 0.00
population density (log) 204 37 1.67 104 1.47 34 0.00
GDP (PPP) (log) 4.12 25 3.37 47 2.87 16 0.00
Gini index 33.78 29 41.80 60 41.83 19 0.00

aduilt male literacy 95.70 10 83.27 91 53.58 33 0.00




Table 4.7.6 Categorical analysis: means and p-values of all predictors across categories of low birth

weight.
Percent of Babies with Low Birth Weight
Low Medium High P-value
Mean n NMean n Mean n  Cuzick
high disturbance 24.10 28 33.82 53 39.80 20 0.13
species threatened (log) -1.18 23 -1.16 37 -1.16 7 0.86
IUCN V-V protected (log) 0.57 28 0.05 53 -0.02 15 0.01
IUCN -1l protected (log) 0.03 25 0.22 55 0.05 14 0.63
forest remaining 30.83 29 30.32 59 15.02 20 0.12
annual change in forest 0.01 22 -0.76 58 -0.69 20 0.00
CO, emissions per cap. (log) 0.80 29 -0.05 58 -0.77 20 0.00
CO, emissions per hec (log) 0.70 29 -0.46 58 -1.01 20 0.00
urbanization 73.05 29 50.56 61 2548 20 0.00
population density (log) 1.84 239 1.62 61 1.76 20 0.43
GDP (PPP) (log) 4.05 21 3.37 38 2.96 14 0.00
Gini index 34.12 24 45.59 44 39.42 12 0.01
adult male literacy 90.46 13 76.28 58 58.05 20 0.00

There are additional analyses that could be done at this bivariate stage, including the
graphing of the bivariate distributions of all of the variables. This might allow us to
determine the strength and the functional form of the relationships between predictors and
outcomes, but these relationships would likely change once they were considered in the
light of multiple regression with its ability to mutually adjust all covariates for one
another. Thus, additional bivariate steps would add little additional knowledge to what
we have learned from correlation matrices and categorical comparisons. Therefore, we
used these bivariate techniques only in helping to obtain an initial picture of which
variables are likely to be important in multiple regression modeling. More sophisticated

analyses were postponed until the multivariate stage.



4.8 Multivariate Analysis — Model Building Strategy

All models were built manually in stages; no automated stepwise procedure was used.
The first stage involved finding the best combination of indicators of EI, including in this
first stage those indicators of EI that were statistically significant and/or added
significantly to the R? value and/or significantly influenced the coefficients in the model
by its inclusion. The second stage was to add the other potential confounders into the
model using the same criteria as the first stage. The final stage was to eliminate those
covariates whose presence did not significantly affect the R? value or the other
coefficients in the model. Only main effects were considered. The result of this

modeling style is a parsimonious model containing only the important covariates.

Early in the model building process, we realized that the addition of GDP per capita into
the multivariate model caused all other covariates to lose significance. Its presence
overwhelmed the contributions of all of the other covariates. We concluded that GDP
was in some way a surrogate for all of the other predictors in the model. Essentially, we
had a model in which all of our covariates were either correlated with GDP per capita, or
in the causal pathway. Our data, being cross-sectional population-based averages, can not
distinguish between correlation and causation. We had to treat GDP per capita in a
special way; instead of including it in the multivariate model, we stratified our final

model by categories of GDP per capita.
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All model building was carried out using Stata 5.0s -fit- command (StataCorp 1997),
which performs multiple linear regression and stores important parts of the hat matrix in

macros to allow for subsequent diagnostic analysis.

4.9 Multivariate Analysis — Life Expectancy as Outcome

This section describes an analysis with life expectancy as outcome. A main effects model
was reached containing two indicators of integrity, high disturbance and original forest
remaining, and two other covariates, log CO, emissions per capita and urbanization.

Table 4.9.1 provides the coefficients and characteristics for this model.

Table 4.9.1 Main effects model with life expectancy as outcome.

No. of obs = 127 R?= 0.7595

Coel. Std. Err. p-value  95% Contf. Interv. R
forest remaining 0.038 0.018 0.036 0.002 0.073 0.098
high disturbance 0.067 0.016 0.000 0.035 0.089 0.191
CO, emissions per cap. (log)  8.233 0.992 0.000 6.268 10.197  0.621
urbanization 0.097 0.033 0.004 0.031 0.163 0.215
constant 54.489 1.980 0.000 50.570 58.408

The model has a high R? value of 0.7595, indicating that the predictors in the model
explain about 76% of the variance in life expectancy. The two non-EI covariates, log
CO, emissions per capita (R = 0.621) and urbanization (R = 0.215), are stronger

predictors than the indicators of EI.

We have indicated before that the reason for accounting for GDP per capita by

stratification, rather than by including it as a predictor in our regression models, is that it
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was so overwhelming. For illustrative purposes, we provide in Table 4.9.2 the main

effects model in Table 4.9.1 with the addition of log GDP per capita. In Table 4.9.3, we

provide the model with log GDP per capita as the sole predictor of life expectancy.

Notice that the R? value is very high in the GDP per capita-only model and that it is not

very different from the R? value for the model with the other predictors. Not having a

useful R? value that can differentiate between models would have made modeling with

GDP per capita very difficult and uncertain.

Table 4.9.2 Main effects model with life expectancy as outcome and log GDP per capita added for

illustrative purposes.

No. of obs = 108 ~ R°= 0.8188
Coef. Std. Err.  p-value 95% Cont. Interv. R

forest remaining -0.005 0.023 0.838 -0.050 0.041 -0.012
high disturbance 0.006 0.022 0.800 -0.039 0.050 0.016
CO, emissions per cap. (log) 0.88€ 2.050 0.667 -3.200 4.972 0.061
urbanization 0.017 0.045 0.705 -0.072 0.106 0.036
GDP per capita (log) 18.490 3.493 0.000 11.529 25.451 0.819
constant -0.315 10.754 0.977 -21.746 21.117

Table 4.9.3 Model with life expectancy as outcome and log GDP per capita as the sole predictor (for

illustrative purposes).

No. of obs = 108 "R?= 0.8098

Coef. Std. Err. p-value  95% Conf. Interv. R
GDP. per capita (log) 19.501 1.024 0.000 17565 21637 0.900
constant -2.958 3.614 0.415 -10.142 4.226

One of our concemns in this model is the presence of collinearity between log CO,

emissions per capita and urbanization. The correlation between percent urbanization and

log CO, emissions per capita is 0.7840, which is quite highly correlated. However,

55



Chatterjee and Price (Chatterjee and Price 1991) suggest calculating variance inflation
factors (VIF) (formula and explanation in Materials and Methods section 3.10.4) and
assessing collinearity using two rules of thumb. First, if the largest VIF is greater than
10, and second, if the mean of all VIFs is much larger than 1, then there is a strong
probability of collinearity in the model and the variable with the largest VIF should be
removed. Table 4.9.4 indicates that it is safe to keep both log CO, emissions per capita

and urbanization in the model.

Table 4.9.4 Variance inflation factors of model covariates (life expectancy as outcome).

Variable VIF
CO, emissions per cap. (log) 2.85
urbanization 2.74
forest remaining 1.1
high disturbance 1.08
Mean VIF 1.84

In order to check for the presence of omitted variables in the model, we constructed a
residual-versus-fitted plot. The residual-versus-fitted plot (see Figure 4.9.1) is used to
search for a pattern in the residuals that might be indicative of an omitted variable. Aside
from a couple of outliers, the residual-versus-fitted plot for this model appears quite

random, suggesting little, if any, pattern in the residuals.
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Figure 4.9.1 Residual-versus-fitted plot for main effects model predicting life expectancy.

A second concern is to determine if, in fact, the simple linear term in the model
appropriately reflects the correct functional form of the variable in the model. One way
to determine the correct functional form for each predictor in a multivariate model is to
graph a component-plus-residual plot, also called a partial residual plot (Larsen and
McCleary 1972). The component-plus-residual plot graphs the covariate residuals, duly
adjusted for all of the other variables in the model, against the values of the covariate
(ak.a., the “component”). These plots should show that the data points conform to a
generally linear arrangement about the regression line. Figures 4.9.2 through 4.9.5 are
the component-plus-residual plots for this model. They indicate that the addition of non-
linear terms would make very little difference to the final model. In each case, the

functional form of covariate is easily defensible as being approximately linear, with
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several outliers. We will return to the issue of outliers below. Thus, the final model is

unchanged and remains as shown in Table 4.9.1.
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Figure 4.9.2 Component-plus-residual plot of high disturbance in life expectancy model.
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Figure 4.9.3 Component-plus-residual plot of forest remaining in life expectancy model.
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Figure 4.9.4 Component-plus-residual plot of log CO, emissions per capita in life expectancy model.
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Figure 4.9.5 Component-plus-residual plot of urban in life expectancy model.

A further assumption of linear regression that we wish to test is that of constant variance.
The values of the Cook-Weisberg test for heteroscedasticity are shown in Table 4.9.3.

We reject the null hypothesis of constant variance if the p-value of the test is less than



0.05. The Cook-Weisberg test indicates that there is significant heteroscedasticity in both

log CO, emissions per capita and urbanization, but not in the indicators of EI.

Table 4.9.5 P-values of the Cook-Weisberg test for heteroscedasticity — life expectancy outcome
(Ho: constant variance).

Variable p-value
CO, emissions per cap. (log) 0.034
urbanization 0.013
forest remaining 0.690
high disturbance 0.104

Based on the values of the Cook-Weisberg tests in Table 4.9.5, we want to visualize the
heteroscedasticity of our variables. At the same time, we would like a general plot which
would allow us to see the association between each predictor and the outcome, adjusting
for the mutual covariance between the variable in question and all of the other variables
in the model. A perfect plot of this is impossible since it would require a graph with n+1
dimensions (where n is the number of covariates). However, Mosteller and Tukey
(Mosteller and Tukey 1977) suggest that most of this information can be compressed into
a two-dimensional graph of adjusted residuals called an added-variable plot. Figure 4.9.6

displays all four added-variable plots for this model, one for each covariate in the model.
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Figure 4.9.6 Added-variable plots of each variable in the life expectancy model.

These plots indicate that the heteroscedasticity alluded to by the Cook-Weisberg tests
appears to be caused mainly by a few outliers, and appears relatively minor. Since this
problem of outliers has occurred twice now, we conducted robust linear regression. In
this procedure, each data point is weighted according to how far it falls from the
regression line. Table 4.9.6 contains these estimates and reveals that some differences in
the coefficients occur with robust regression (robust regression explained in Materials
and Methods section 3.10.6) compared to ordinary least squares (OLS) linear regression,

but nothing very important.
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Table 4.9.6 Robust regression estimates for life expectancy model.

Robust Regression OLCS

Coef. Std.Err. p-value 95% Conf. Interv. Coet.

forest remaining 0.052 0.016 0.002 0.020 0.084 0.038
high disturbance 0.068 0.015 0.000 0.038 0.097 0.067
CO2 emissions per cap. (log) 9.034 0.901 0.000 7.250 10.819 8.233
urbanization 0.071 0.030 0.020 0.012 0.131 0.097
constant 55.737 1.798 0.000 52.177 59.296 54.489

Earlier in this chapter, we alluded to the special manner in which we wish to treat GDP
per capita as a variable. In particular, it will be recalled that the addition of GDP per
capita into the multiple regression model causes the model to be entirely reduced to that
single covariate. Nevertheless, owing to the importance of this variable, we found it
necessary to deal with its association with life expectancy in some way. Therefore, we
divided GDP per capita into low, medium, and high categories and then ran the main
effects model within each of the GDP categories. That is, we built a single model for
each outcome and then split the data across categories of GDP per capita. Ideally, we
would have built separate models for each level of GDP. However, doing this would
have meant building models having up to thirteen predictors and only about 30-40 data
points. Building models on so few data points just did not seem appropriate. The cut-off
points for the low, medium, and high categories were set according to those used in the
World Bank Development report (World Bank. 1993). In this way, we should be able to
see, indirectly, the associations between GDP per capita and the other covariates in

predicting life expectancy.



To visualize this relationship, we fit our main effects model within each category of GDP
per capita. We have found it more informative to show the stratified relationships using
added-variable plots rather than in tabular format. Figures 4.9.7 through 4.9.10 show
added-variable plots for each model covariate stratified across categories of GDP per
capita. Each figure shows the relationship between a single covariate from the main

effects model and life expectancy.

Figure 4.9.7 depicts three added-variable plots (one for each category of GDP per capita)
of the association between high disturbance and life expectancy adjusted for the other
independent variables in the model. It shows that the association is relatively weak
(owing to the shallow slope of the regression line), and consistently positive (owing to the
increasing slope), for all levels of GDP per capita. It also shows that the regression
slopes decrease by an order of magnitude from the low GDP per capita category to the
high GDP per capita category. There are some outliers, but none appear to be particularly

influential on the slope of the regression line.

Figure 4.9.8 depicts three added-variable plots (one for each category of GDP per capita)
of the association between percent original forest and life expectancy adjusted for the
other independent variables in the model. It shows that the association is relatively weak
among low-income countries, basically non-existent for middle-income countries, and
quite strong among high-income countries. The most interesting outliers are in the low

GDP per capita category with Mauritania, Guyana, and Zambia appearing to have



significant influence on the slope of the regression line (the slope coefficient without

these three countries is 0.023 compared to 0.050 with them included).

Figure 4.9.9 depicts three added-variable plots (one for each category of GDP per capita)
of the association between log CO, emissions per capita and life expectancy adjusted for
the other independent variables in the model. It shows that the association is strongly
positive among low- and medium-income countries, and strongly negative among high-
income countries. There are no unduly influential outliers among the low-income
countries. Among the middle-income countries, Oman, Cameroon, and Senegal are
influential outliers (the slope coefficient without these three countries is 2.105 compared
to 5.938 with them included). Among the high-income countries, Iceland, the United
States of America (USA) and the United Arab Emirates (UAE) appear to be influential
outliers, but their removal does not change the slope coefficient substantially (the slope

coefficient without these three countries is —3.75 compared to —3.44 with them included).

Figure 4.9.10 depicts three added-variable plots (one for each category of GDP per
capita) of the association between urbanization and life expectancy adjusted for the other
independent variables in the model. It shows that the association is weakly negative
among low-income countries, weakly positive among medium-income countries, and
strongly positive among high-income countries. Among the low-income countries,
Nicaragua and Sierra Leone appear somewhat influential, however their removal does not
substantially change the slope coefficient (-0.074 with Nicaragua and Sierra Leone

included, -0.090 with them removed). Among the middle- and high-income countries,
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there are quite a number of outliers; however, they seem to approximately balance one

another out.
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Figure 4.9.7 The association between high disturbance and life expectancy adjusted for model

covariates and stratified by GDP per capita category.
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Figure 4.9.8 The association between % of original forest on life expectancy adjusted for model
covariates and stratified by GDP per capita category.
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Figure 4.9.9 The association between log CO, emissions per capita and life expectancy adjusted for

model covariates and stratified by GDP per capita category.
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Figure 4.9.10 The association between urbanization and life expectancy adjusted for model
covariates and stratified by GDP per capita category.



4.10 Multivariate Analysis — Infant Mortality as Outcome

The commentary that accompanied the results of the multivariate model with life
expectancy was quite detailed and the reasoning behind each step was explained. In this
section (4.10) and the next section (4.11), we present the results for the multivariate
models with infant mortality and low birth weight as the respective outcomes. The
results are presented in abbreviated form because the model building and testing

processes already have been provided.

First, recall that we did not use infant mortality per se as the outcome, but rather the log,,
of infant mortality. This was done only because the univariate distribution of infant

mortality was strongly skewed to the right.

For the multivariate model with infant mortality as the outcome, we arrived at the same
four covariates as for the life expectancy model, with one additional variable: the Gini
Index. The similarity between this model and that with life expectancy as the outcome is
perhaps not surprising given that the Pearson correlation between life expectancy and log

infant mortality is 0.905.

Table 4.10.1 provides the coefficients and characteristics of the initial multivariate main

effects model predicting infant mortality.
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Table 4.10.1 Main effects model with log infant mortality as outcome.

No. of obs = 85 RZ= 0.8025
Coef. Std. Err. p-value 395% Conf. Interv. R

Righ disturbance -0.003 0.001 0.001 -0.005 -0.001 -0.195
forest remaining -0.002 0.001 0.041 -0.004 0.000 -0.120
CO2 emissions per cap. (log) -0.341 0.057 0.000 -0.456 -0.227 -0.547
urbanization -0.004 0.002 0.026 -0.007 0.000 -0.195
Gini index 0.009 0.003 0.001 0.004 0.014 0.194
constant 1.562 0.142 0.000 1.279 1.845

The model has a high R* value of 0.8025, indicating that the predictors in the model
explain about 80% of the variance in log infant mortality. As with the life expectancy
model, log CO, emissions per capita (R = -0.547) and is the strongest predictor. The Gini

Index and urbanization contribute approximately as much as the two indicators of EI.

As with the analysis using life expectancy as the outcome, the correlation matrix (see
Figure 4.7.2) suggests a potential collinearity problem between log CO, emissions per
capita and urbanization. We calculated the variance inflation factors (VIF) and present
them in Table 4.10.2. The VIFs for this model indicate that collinearity is not likely to be

influential in our results.

Table 4.10.2 Variance inflation factors of model covariates (log infant mortality as outcome).

Variable VIF
CO2 emissions per cap. (log) 3.40
urbanization 2.92
high disturbance 1.34
forest remaining 1.33
Gini index 1.22
‘Mean ViF - 2.04
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The residual-versus-fitted plot in Figure 4.10.1 does not indicate a random distribution,
indicating that we have a misspecified model. As will be seen presently, the addition of a

quadratic term to the model results in a residual-versus-fitted plot with a more random

distribution.
1 ! ! I {
.5 1 r
- *
..
- - . T .
. .
- » *
L. .
.’ * - . - -
» _* * -
% > - ‘ - - - .
3 0 - - M -
k=] o . -
b= L . . .
. A . .
hd - - >
S - . -
. . .
. . . .
.v
.
.
-5 - L
T T T 1 L
5 1 15 2 25
Fitted values

Figure 4.10.1 Residual-versus-fitted plot for main effects model predicting log infant mortality.
To check for the correct functional form of each of our covariates, Figures 4.10.2 through

4.10.6 dispiay the component-plus-residual plot for each model covariate. In these plots,

we are checking to see that each plot suggests an approximately linear fit.
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Figure 4.10.2 Component-plus-residual plot of high disturbance in log infant mortality model.
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Figure 4.10.3 Component-plus-residual plot of forest remaining in log infant mortality model.
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Figure 4.10.6 Component-plus-residual plot of Gini Index in log infant mortality model.

Here, our component-plus-residual plots indicate that perhaps log CO, emissions per
capita could benefit from the addition of a quadratic term. In fact, when each is added to
our main effects model (from Table 4.10.1), we find that the quadratic term for log CO,
emissions per capita is significant and useful in the model. We also find that urbanization
becomes non-significant in the model (p = 0.060), though not extremely so. In the end,
we decided to keep urbanization in the model because it had the effect of changing the
coefficient of log CO, emissions per capita by 18% when it was removed from the model.
With the addition of a quadratic term (c2) for log CO, emissions per capita, the new

model is summarized in Table 4.10.4.



Table 4.10.3 Revised main effects model with log infant mortality as outcome.

No. of obs = 85 R”= 0.8401
Coef. Std. Err. p-value  395% Conf. Interv. R

high disturbance -0.003 0.001 0.001 -0.004  -0.00T  -0.185
forest remaining -0.002 0.001 0.021 -0.004 0.000 -0.123
CO2 emissions per cap. (log) -0.396 0.054 0.000 -0.503 -0.289 -0.636
urbanization -0.003 0.002 0.061 -0.006 0.000 -0.148
Gini index 0.006 0.002 0.014 0.001 0.011 0.131
c2 -0.183 0.043 0.000 -0.267 -0.098 -0.207
constant 1.739 0.135 0.000 1.470 2.008

Figure 4.10.7 provides the residual-versus-fitted plot for this revised model and shows no

evidence of model misspecification.
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Figure 4.10.7 Residual-versus-fitted plot for revised main effects model predicting log infant

mortality.

A further assumption of linear regression that we wish to test is that of constant variance.

The values of the Cook-Weisberg test for heteroscedasticity are shown in Table 4.10.4.
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We reject the null hypothesis of constant variance if the p-value of the test is less than

0.05. This table indicates that there are no significant problems with heteroscedasticity.

Table 4.10.4 P-values of the Cook-Weisberg test for heteroscedasticity — log infant mortality as
outcome (Ho: constant variance)

Vanable p-value
‘high disturbance 0.7a4
forest remaining 0.500
CO2 emissions per cap. (log) 0.597
urbanization 0.635
Gini index 0.937

As in the previous analysis with life expectancy as the outcome, we used the above
covariates to fit a model for each category of GDP per capita. As before, the medium
chosen to visualize the model is a series of added-variable plots. Unlike the model for
life expectancy, however, we have a quadratic term in the infant mortality model that is
not easily displayed. Currently, there is no way of incorporating a quadratic term into an
added-variable plot, nor is there a convenient tabular method to summarize a quadratic
variable as a single term. To compensate, we have created added-variable plots for all
variables except log CO, emissions per capita using the revised model with the quadratic
term. This ensures that each of these variables is adequately adjusted for the quadratic
nature of log CO, emissions per capita. However, for log CO, emissions per capita, we
have estimated the model and created an added-variable plot without the quadratic term.
We are confident that this will not unduly misrepresent our findings because an
examination of the component-plus-residual plot for log CO, emissions per capita (Figure

4.10.4) indicates that, while the functional form is quadratic, it is not radically so.
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Figures 4.10.8 through 4.10.12 show added-variable plots for each model covariate

stratified across categories of GDP per capita.

Figure 4.10.8 depicts three added-variable plots (one for each category of GDP per
capita) of the association between high disturbance and log infant mortality adjusted for
the other independent variables in the model. It shows that the association is relatively
weak, and consistently negative, for all levels of GDP per capita. This is consistent with
the life expectancy model. There are some outliers in the low- and middle-income
countries, but none appear tc be particularly influential on the slope of the regression line.
Among the high-income countries, Israel appears quite influential and Japan does not,
despite that it is an outlier. However, removing only Israel makes Japan quite influential.
Removing both only changes the slope coefficient from —0.002 to —0.001, which shows
that Israel and Japan approximately balance one another and the original slope coefficient

is not unduly influenced by outliers.

Figure 4.10.9 depicts three added-variable plots (one for each category of GDP per
capita) of the association between percent original forest and log infant mortality adjusted
for the other independent variables in the model. It shows that the association is
relatively weakly negative among low- and medium-income countries, and quite
significant among high-income countries. The most interesting outliers are in the high
GDP per capita category with Israel, Sweden, and Japan appearing to have significant
influence on the slope of the regression line. The removal of these countries actually

results in the association changing from negative to weakly positive. The bulk of the data
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for high-income countries actually show very little association between original forest

and log infant mortality.

Figure 4.10.10 depicts three added-variable plots (one for each category of GDP per
capita) of the association between log CO, emissions per capita and log infant mortality
adjusted for the other independent variables in the model. It shows that the association is
relatively weakly negative among low-income countries, strongly negative among
medium-income countries, and relatively weakly positive among high-income countries.
There are no unduly influential outliers among the low- and middle-income countries.
Among the high-income countries, the removal of the United States and Sweden reduces
the slope coefficient further from 0.203 to 0.077, indicating that these two countries are

quite influential on the original slope coefficient.

Figure 4.10.11 depicts three added-variable plots (one for each category of GDP per
capita) of the association between urbanization and log infant mortality adjusted for the
other independent variables in the model. It shows that the association is essentially non-
existent among low-income countries, relatively weakly negative among medium-income
countries, and weakly negative among high-income countries. Among the low-income
countries, Nicaragua is an outlier, but it is in line with the bulk of the data. Among the
middle- and high-income countries, there are quite a number of outliers; however, they

seem to approximately balance one another out.
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Figure 4.10.12 depicts three added-variable plots (one for each category of GDP per
capita) of the association between the Gini index and log infant mortality adjusted for the
other independent variables in the model. It shows that, despite the fact that it was
significant in the overall model, the association is essentially non-existent when the
results are stratified by GDP per capita. The outliers either are in line with the bulk of

the data or approximately balance one another.
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Figure 4.10.8 The association between high disturbance and log infant mortality adjusted for model
covariates and stratified by GDP per capita category.
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Figure 4.10.9 The association between % of original forest and log infant mortality adjusted for
model covariates and stratified by GDP per capita category.
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adjusted for model covariates and stratified by GDP per capita category.
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Figure 4.10.11 The association between urbanization and log infant mortality adjusted for model
covariates and stratified by GDP per capita category.
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Figure 4.10.12 The association between the Gini index and log infant mortality adjusted for model
covariates and stratified by GDP per capita category.



4.11 Multivariate Analysis — Low Birth Weight as Outcome
As with infant mortality, the univariate distribution of low birth weight was strongly
skewed to the right. Therefore, we elected to use the log,, of low birth weight as our

transformed outcome variable.

For the multivariate model with low birth weight as the outcome, we chose a model
somewhat like those developed for the other two outcomes. In this model, we chose the
four variables common to the other two models (high disturbance, original forest
remaining, log CO, emissions per capita, and urbanization), as well as log population

density and adult male literacy.

Table 4.11.1 provides the coefficients and characteristics of the initial multivariate main

effects model predicting low birth weight.

Table 4.11.1 Main effects model with log low birth weight as outcome.

No. of obs = 94 R”= 0.6563
Coef. Std. Err. p-value” 95% Conf. Interv. R

high disturbance -0.002 0.001 0.004 -0.003 -0.00T -0.285
deforestation -0.029 0.012 0.017 -0.053 -0.005 -0.156
CO2 emissions per cap. (log) -0.086 0.030 0.006 -0.146  -0.026 -0.321
urbanization -0.002 0.001 0.013 -0.004 0.000 -0.258
population density (log) 0.128 0.035 0.000 0.058 0.197 0.343
adult male literacy -0.002 0.001 0.012 -0.004 -0.001 -0.230
constant 1.192 0.091 0.000 1.011 1.373

The model has a reasonable R? value of 0.6563, indicating that the predictors in the model

explain about 66% of the variance in log low birth weight. Unlike the life expectancy
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and log infant mortality models, there was no one variable that was especially strong.
The strongest predictors were log population density (R = 0.343) and log CO, emissions
per capita (R = -0.321); the non-EI covariates generally were stronger than the indicators

of EL.

We checked for the presence of collinearity by calculating variance inflation factors

(VIFs). They are presented in Table 4.11.2 and indicate no serious collinearity.

Table 4.11.2 Variance inflation factors of model covariates (log low birth weight as outcome).

Variable VIF
‘CO2 emissions per cap. (log) 3.71
urbanization 2.95
high disturbance 2.44
population density (log) 2.35
adult male literacy 2.19
deforestation 1.04
‘Mean VIF 2.45

Figure 4.11.1 is the residual-versus-fitted plot for this model. It shows an approximately
random scattering of points indicating that we probably have not omitted any important

variables.
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Residuals

Figure 4.11.1 Residual-versus-fitted plot for main effects model predicting log low birth weight.
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In order to check for the correct functional form of each of our covariates, Figures 4.11.2

through 4.11.7 display the component-plus-residual plot for each model covariate. In

these plots, we are checking to see that each plot suggests an approximately linear fit.
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Figure 4.11.2 Component-plus-residual plot of high disturbance in log low birth weight model.
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Figure 4.11.3 Component-plus-residual plot of annual forest change in log low birth weight model.
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Figure 4.11.4 Component-plus-residual plot of log CO, emissions per capita in log low birth weight

model.
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Figure 4.11.5 Component-plus-residual plot of urbanization in log low birth weight model.
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Figure 4.11.6 Component-plus-residual plot of log population density in log low birth weight model.
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Figure 4.11.7 Component-plus-residual plot of adult male literacy in log low birth weight model.

Figure 4.11.6 and 4.11.7 indicate that the addition of quadratic terms for log population

density and adult male literacy might improve the fit of the model. The quadratic term
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for log population density had some effect on the other coefficients when added to the
model. However, when the two upper outliers in Figure 4.11.6 are removed, the
quadratic term for log population density became much weaker. This instability led us to
leave the quadratic term for log population density out of the model. The quadratic term
for adult male literacy (/2), however, had an effect on the other model coefficients and
added about 3% explained variance to the model; so, it was included in the model. Its
association with log low birth weight did not appear to be especially influenced by
outliers (Figure 4.11.7). Table 4.11.3 provides the revised model coefficients and

characteristics.

Table 4.11.3 Revised main effects model with log low birth weight as outcome.

No. of obs = 94 R”= 0.6809

Coet. Std. Err.  p-value 35% Cont. Interv. ]
nigh disturbance -0.002 0.001 0.008 -0.003 0.000 -0.253
deforestation -0.025 0.012 0.035 -0.048 -0.002 -0.134
CO2 emissions per cap. (log) -0.087 0.029 0.004 -0.146 -0.029 -0.327
urbanization -0.002 0.001 0.038 -0.004 0.000 -0.212
population density (log) 0.125 0.034 0.000 0.057 0.192 0.335
adult male literacy 0.008 0.004 0.051 0.000 0.017 0.841
12 0.000 0.000 0.012 0.000 0.000 -1.116
constant 0.858 0.157 0.000 0.546 1.170

The values of the Cook-Weisberg test for heteroscedasticity are shown in Table 4.11.4.
We reject the null hypothesis of constant variance if the p-value of the test is less than

0.05. This table indicates that we have no significant problems with heteroscedasticity.



Table 4.11.4 P-values of the Cook-Weisberg test for heteroscedasticity — log low birth weight
outcome (Ho: constant variance)

Variable p-value

‘high disturbance 0.383
deforestation 0.836
CO2 emissions per cap. (log) 0.937
urbanization 0.117
population density (log) 0.091

adult male literacy 0.8395

2 0.7713

Like the model we developed for log infant mortality as the outcome, the model we
currently are estimating has a quadratic term. Hence, we have again provided added-
variable plots duly adjusted for the quadratic term for all variables except that of adult
male literacy. The added-variable plots for adult male literacy are constructed from the

model estimated without the quadratic term.

In the two previous models (namely, life expectancy and log infant mortality as
outcomes), we stratified our added-variable plots across low, medium, and high
categories of GDP per capita. We found that when we stratified this model by three
categories of GDP per capita, we had so few countries in the highest category that we
could not estimate a model. Therefore, for this model we have stratified across two levels
of GDP per capita, the separation point being the median. Therefore, Figures 4.11.8
through 4.11.13 show the added-variable plots for each model covariate stratified across

two categories of GDP per capita.



Figure 4.11.8 depicts two added-variable plots (one for each category of GDP per capita)
of the association between high disturbance and log low birth weight adjusted for the
other independent variables in the model. It shows that the association is consistently
negative across both levels of GDP per capita. There are several outliers, but no

particularly influential points.

Figure 4.11.9 depicts two added-variable plots (one for each category of GDP per capita)
of the association between percent original forest and log low birth weight adjusted for
the other independent variables in the model. It shows that the association is relatively
strong and negative for both low- and high-income countries. The most interesting
outliers in the low GDP per capita category are Pakistan, Paraguay, India, Jordan,
Rwanda, and Egypt. The removal of these countries increases the slope coefficient from
—0.044 t0 —0.091. In the high GDP per capita category, a similar phenomenon occurs
after the removal of Jamaica, Thailand, Costa Rica, Portugal, and Tunisia. The slope

coefficient changes from —0.049 to —0.092.

Figure 4.11.10 depicts two added-variable plots (one for each category of GDP per
capita) of the association between log CO, emissions per capita and log low birth weight
adjusted for the other independent variables in the model. It shows that the association is
very weakly negative among low-income countries, and moderately negative among

high-income countries. There are no unduly influential outliers.
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Figure 4.11.11 depicts two added-variable plots (one for each category of GDP per
capita) of the association between urbanization and log low birth weight adjusted for the
other independent variables in the model. It shows a moderate negative association
among the low-income countries and a moderate positive association among the high-
income countries. There are no especially influential outliers among either the low- or

the high-income countries.

Figure 4.11.12 depicts two added-variable plots (one for each category of GDP per
capita) of the association between log population density and log low birth weight
adjusted for the other independent variables in the model. It shows a moderate positive
association between log population density and log low birth weight across both
categories of GDP per capita. No outliers appear to be unduly influential on the

regression slope.

Figure 4.11.13 depicts two added-variable plots (one for each category of GDP per
capita) of the association between log population density and adult male literacy adjusted
for the other independent variables in the model. It shows a moderate negative
association between adult male literacy and log low birth weight across both categories of
GDP per capita. Among the low-income countries, no outliers appear to be unduly
influential on the regression slope. However, among the high-income countries, the
removal of Algeria, Tunisia, Jamaica, and Thailand changes the slope coefficient from —

0.003 to —0.014, making the relationship strongly negative.
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Figure 4.11.8 The association between high disturbance and log low birth weight adjusted for model

covariates and stratified by GDP per capita category.

96



Low GDP per capita

coef = -0.044, se = 0.018
p= 0.019, n = 51

= Congo -
2 - o % India

. Paraguay
i &

residual from lowbirlg
given other predictors

: &

| Honduras :

| A Egypt :
-2 - El Salvador - China & .

0 2
residual from deforest given other predictors

High GDP per capita

coef = -0.049, se = 0.018
p=0.012,n=32

Thai!and

& a :
: Costa Rica !
i Spain » & L ol
-2 - Finland & Portugal 7 _

2

residual from lowbirlg
given other predictors
o
e L b
g
3
L2
8
[‘.
e
- k“
Tt
L‘-C
x
-

- 0
residual from deforest given other predictors

Figure 4.11.9 The association between average annual forest change and log low birth weight
adjusted for model covariates and stratified by GDP per capita category.
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Figure 4.11.10 The association between log CO, emissions per capita and log low birth weight
adjusted for model covariates and stratified by GDP per capita category.
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Figure 4.11.11 The association between urbanization and log low birth weight adjusted for model

covariates and stratified by GDP per capita category.
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Figure 4.11.12 The association between log population density and log low low birth weight for
model covariates and stratified by GDP per capita category.
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model covariates and stratified by GDP per capita category.
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Chapter S - Discussion

5.1 EI Variables

Despite the shortcomings of having to use population-based averages, the availability of
only a single cross-sectional set of data, variable data quality, uncertain causal
mechanisms, and the necessity of using surrogates of EI instead of direct measurements, a
few associations between some of our EI variables and the three human health outcomes
we considered were found. Most of these associations were in the expected direction
from a development point of view, but perhaps in the opposite direction from an
environmental perspective. That is, increasing development was associated with
increasing health. The decrease in global EI associated with burgeoning development for

the most part did not mitigate this association in this data set.

It is noteworthy that, regardless of which of our three outcomes were considered, it is
always the same two EI variables that are important in the regression model. One of
those variables, and in fact our most plausible measure of EI (or, rather, the lack of EI), is
the percentage of land that is “highly disturbed” by human occupation. This high
disturbance variable is most plausible because it represents the percentage of land that is
entirely the opposite of the “wildness” criterion for EI. Our results suggest that the
conversion of land to permanent human use has a small association with improving
human health. This association was consistent for all three outcomes as well as across
levels of GDP per capita. Nor does the association appear to be appreciably influenced

by outliers. This should not be entirely surprising to people who live in well-built houses
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with central heating, built-in water and sewage lines, and electricity. Nor should it be
surprising to those in developed countries who regularly go to supermarkets over-flowing
with food grown on large, high-intensity farms all over the globe. Clearly, humans are
not physically equipped to live in the “natural” world, nor does the natural world provide
an optimal environment for human ends (such as growing large amounts of food).
Instead, we build houses in cold places and, lacking a natural layer of fur or blubber, we
must heat them with wood or fossil fuels. To feed our burgeoning numbers we turn vast
areas of natural grassland into high-output farms. In short, we benefit immensely from,
in fact our population is built on, the conversion of wilderness to super-efficient,
controlled, human-centred environments. The question facing us is that of how far this
trend of converting natural areas to human use can persist before these positive effects on

human health become deleterious.

In addition, we must not forget that the relationship between high disturbance and human
health — as measured in this study — has been adjusted for industrialization and
urbanization. It also has been stratified across levels of GDP per capita, which, in turn,
was adjusted for cost of living, and the relationship remained remarkably consistent. This
suggests that the relationship between increasing high disturbance and improving
indicators of population health is not entirely explainable by wealth, industrialization, or
urbanization. Nor is it explainable by the other covariates that were examined, but found
unimportant in the final model; namely, population density and educational level. Thus,
the relationship between high disturbance and health likely represents something very

subtle and, as yet, unexplained.



The second EI variable that was consistently important is the percent of original forest
remaining or its close relative, average annual change in forest cover. Increasing values
of original forest cover remaining and average annual change in forest cover appear to be
generally associated with improving health status (Figures 4.9.8, 4.10.9, and 4.11.9).
Unlike the relationship between the high disturbance and health, which is consistent with
a pro-development perspective, this association between leaving forests intact and
improving human health favours the EI hypothesis. This remained true even after
adjusting for the positive association between increasing socio-economic development
and improving health. Unlike the association between high disturbance and human health
across levels of GDP per capita, sometimes the association between annual change in
forest cover and human health was heavily influenced by outliers. In particular, Figure
4.10.8 shows that the relationship between percent original forest and log infant mortality
for high GDP per capita countries would be reversed if the three outliers were deleted.
The outlier in the extreme upper left corner (Israel) particularly influences the line to have
a negative slope. In a forthcoming section, we discuss the utility of outliers and indicate
that a detailed analysis of outliers is beyond the scope of this thesis. In point of fact, this
particular outlier a reminder that an adequate analysis of the outliers necessitates a great
deal of expertise in geography and politics. It is tempting to discount this outlier on the
assumption that Israel is a largely desert country with almost no forest cover in the first

place. A visitor to Israel informed us that this is a common, but quite untrue, assumption.
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As interesting as those EI variables that were included in the model, are those that had no
effect on the model. In this study, the conservation of biodiversity as measured by the
percentage of species threatened, and land protection, as measured by the percentage of
land recognized by the IUCN as fully or partially protected, appears to have no
relationship to any of the three human health outcomes. This is noteworthy because
biodiversity and land protection are cornerstones of the environmental movement.
However, there has yet to be a convincing causal mechanism quantitatively demonstrated

regarding either biodiversity or land protection and human health.

The usual claim for the protection of biodiversity involves the potential loss of as yet
undiscovered therapeutic drugs in the tropical rain forest. The land protection argument
has somewhat more credence in that it seems reasonable to protect sites with key benefits
for humanity, such as watersheds and fish spawning grounds. However, it may be that it
is not the key sites that are being protected. For instance, some have criticized Canada
for protecting much rock and ice in the mountain parks, but very little else. In the case of
the Grand Banks off the coast of Newfoundland, for instance, the very spawning grounds
that should have been protected were the richest sources of commercial fish.
Unfortunately, they were not protected. Perhaps, if the most important areas had been

protected we might see a positive relationship between human health and land protection.

5.2 Confounders
There are two confounders that appear consistently in the models predicting all three of

the health outcomes examined in this study. They are log CO, emissions per capita and
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urbanization. Log CQ, emissions per capita is the strongest variable, other than GDP per
capita, for predicting all of the human health outcomes examined in this study. In
addition, it shows a fairly consistent relationship across the three different outcomes.

For both life expectancy and log infant mortality, the relationship between these and log
CO, emissions per capita is strongly positive among low and medium income countries
(for life expectancy as outcome: R = 0.667 and R = 0.392 respectively; for log infant
mortality as outcome: R = -0.393 and R = -0.495 respectively) and strongly negative for
high income countries (for life expectancy as outcome: R = -0.504; for log infant
mortality as outcome: R = 0.319). Thus, industrialization appears to be both a boon and a
burden. In low and middle income countries, industrialization is necessary to improve
our health measures. In high income countries, now that we have reaped the health
benefits of economic growth and stability, the negative health consequences have become

manifest (e.g., over-éonsurnption and possibly pollution).

The second confounder that appears consistently in all of the models is urbanization. In
the life expectancy and log infant mortality models, the association between these two
health measures and urbanization seems to become stronger with increasing income. In
low income countries, the association is negative, but quite weak (for life expectancy as
outcome: R = -0.114; for infant mortality as outcome: R = 0.024). In middle and high
income countries, however, the association is positive and considerably more pronounced
(for life expectancy as outcome: R = 0.257 and R = 0.447 respectively; for infant
mortality as outcome: R = -0.188 and R = -0.456 respectively). This suggests that in poor

countries, the benefits of urbanization are overshadowed by negative effects, perhaps
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because sanitation measures in large cities in developing countries generally are poor and
that crowding results in increased disease transmission. In middle and high income
countries, where public health measures such as sanitation are generally strong,

urbanization is associated with improvements in these two health outcomes.

For log low birth weight as the health outcome, where the results were stratified into only
low and high income (owing to a dearth of data points), we see the opposite trend. In low
income countries, the percentage of low birth weight babies decreases with increasing
urbanization (R = -0.450). In contrast, in high income countries, the percentage of low

birth weight babies increases with increasing urbanization (R = 0.203).

Why infant mortality and low birth weight, which are related variables (R = 0.821),
should display opposite trends with regard to urbanization is perplexing. One reason may
be that the models took into consideration different covariates. For instance, while log
population density was not found to be important in the model for infant mortality, it was
found to be important in the low birth weight model. However, that does not necessarily
mean that within certain strata of GDP, log population density is not important. In this
study, we modeled each outcome and then stratified the model by levels of GDP per
capita. Perhaps an appropriate avenue for future research would be to model each GDP
stratum of each outcome separately. This has the disadvantage that the modeler has fewer
data points in each stratum on which to base a reliable model. However, as additional
data are collected, perhaps some of the gaps in the current data set will be filled, making

this approach more feasible.
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In addition to log CO, emissions per capita and urbanization, which were important in all
three models, the models using log infant mortality and log low birth weight included
additional covariates. The presence or absence of the Gini Index was found to effect the
other covariates in the log infant mortality model. Therefore, it was considered prudent
to include it in the main effects model to account for its confounding effect on the other
covariates. After stratification by GDP per capita, however, its association with the
outcome was found to be important only among low income countries (R = 0.220; see

Figure 4.10.12).

The model with log low birth weight as the outcome had the largest number of covariates.
It included high disturbance, log CO, emissions per capita, and urbanization; and, instead
of original forest remaining, we used the alternative forestry variable, namely, annual
change in forest cover. In fact, we tried the model with both original forest remaining
and with annual change in forest cover. We found that either original forest remaining or
annual change in forest cover could be included, but that annual change in forest cover
had a marginally greater association with the other covariates in the model. Once one of
the covariates had been added, however, the addition of the other did not have much

effect on the model.

In addition, the log low birth weight model included log population density and aduit
male literacy. The correlation between log population density and log low birth weight

was positive for both high and low income populations. Thus, increasing population
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density is associated with an increasing percentage of low birth weight babies, regardless

of income level.

The correlation between adult male literacy, a surrogate for education, and log low birth
weight was negative for both high and low income countries (R =-0.240 and R = -0.287
respectively). This indicates that increasing literacy was associated with a decrease in the
percentage of low birth weight babies, perhaps because better-informed parents make

better maternal health decisions.

5.3 The Role of GDP per Capita

Early in the modeling, we discovered that GDP per capita would play an important role in
this study. Every attempt at modeling that included GDP per capita, quickly eliminated
all other covariates in the model. For example, consider Table 5.3.1 in which a
comparison of correlation coefficients before and after the addition of GDP per capita is
presented. We can see that all of the covariates in the model become quite insignificant

in the presence of the overwhelming effect of GDP per capita. This indicates the

presence of strong confounding.

Table 5.3.1 Comparison of life expectancy model with and without GDP per capita in the model.

‘Mulfiple R
without GDP~ with GDP
Forest Remaining 0.098 -0.012
High Disturbance 0.191 0.016
CO, emissions per capita 0.621 0.061
Urbanization 0.215 0.036
GDP per capita 0.819
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This same effect was seen regardless of the outcomes and covariates that we chose.
Always, GDP per capita would overwhelm the other variables in the model. Thus, we
knew that GDP per capita was important, but we could not add it to the model. There are

two issues, one practical and one theoretical.

First, as a matter of practicality, one way to control for a variable is to make categories
and then stratify in the analysis by these categories. As mentioned earlier, we divided
GDP per capita into three categories based on the World Bank categories of low,
medium, and high income. Then, we applied our models within each of the three
categories. This method of controlling for the confounding effect of GDP per capita is
less effective than adding it to our regression model as a continuous covariate. The
reason is that there is still a lot of variability within the categories of GDP. Ideally, one
would have a situation similar to Figure 5.3.1, in which the within category slope would
be zero (no relationship). Then, this method of controlling for confounding would work
perfectly. On the other hand, from a descriptive point of view, it is useful to be able to
discern those factors that vary in their associations across low, medium, and high income

countries.
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Figure 5.3.1 Hypothetical graph showing data that would be ideally suited to controlling by
stratification.

Of course, our data were not this ideal, and stratification thus was not an entirely
successful technique for controlling confounding. For instance, consider the relationship
between log GDP per capita and life expectancy. In Figure 5.3.2, actual data from this
study are used to show how stratifying by levels of GDP per capita may not entirely
control for GDP per capita as a continuous variable. The steepest slope running the entire
length of the graph is the slope ignoring stratification. The three shallower slopes are the
slopes for each stratum of income category. Note that the stratum-specific slopes are not
zero, so perfect control of confounding is not present, but they are closer to zero than the
crude slope. Thus, when we include urbanization in our model and then stratify by
income category, we have imperfect controlling of confounding by GDP per capita.

Regardless, despite the limitations of stratification in this study as an analytic technique,
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the usefulness of stratification by low, medium, and high income remains a useful

descriptive technique.
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Figure 5.3.2 Relationship between % urbanization and log GDP per capita illustrating that
stratification does not completely control for confounding.

From a theoretical point of view, it may be asked whether we should attempt to control
for confounding by GDP per capita at all. Under the usual definition of confounding, if
we are to consider GDP per capita to be a confounder, it has to be causally related to the
outcome in question and be non-causally associated with the other covariates in the
model. However, there is an alternative scenario. If the other covariates in the model are
causally related to GDP per capita, then it may be inappropriate to control for GDP per
capita. This is because, by definition, if GDP per capita is in the causal pathway, it

cannot be a confounder. It is most likely, however, that both are true. Most likely, there
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are multiple causal pathways from our covariates to our outcomes. Some of these
pathways would go through GDP per capita and others would not. In this situation,
controlling for GDP per capita would reveal the relationship directly from the covariates
to the outcome. Leaving GDP per capita completely out of the model would render a
slope representing a mix of associations, some of which mediate through GDP per capita
and some of which do not. An additional complication is that we do not know if GDP per
capita should be in the causal pathway between the other covariates and the outcome, or
if the other covariates should be between GDP per capita and the outcome. In fact, there
may be complex feedback loops among all of the variables, further complicating the
situation. Figure 5.3.3 is a hypothetical, though not unlikely, situation showing complex

relationships among GDP per capita, the other covariates, and health outcomes.

GDP per capita

T

Health Outcomes

Other Covariates

(which may in tum
have complex inter-
relations)

Figure 5.3.3 Hypothetical complex inter-relations among predictors.

Unfortunately, little is known about the precise inter-relationships among environment,
economics, and human health. Our approach has resulted in a compromise, wherein we
have partially controlled for GDP per capita. For the time being, this is the best

compromise that we could make.



3.4 The Meaning of Small Associations

The preceding discussion begs the question of whether the smaller associations that we
have noted in the EI variables are “real”. That is, if we have not adequately controlled for
confounding by GDP per capita, can we be certain that the association between, say, high
disturbance and life expectancy, would not disappear? Further, if it did disappear, is this
because GDP per capita was in the causal pathway? We believe that the smaller
associations detected by this study should be interpreted with care. Although the amount
of explained variance in each model is reasonably high, the associations between the EI
variables and the selected health outcomes are consistently quite small. Had we more
adequately controlled for confounding by GDP per capita, those smaller associations
might disappear. On the other hand, they might also become larger or remain the same.
Despite the uncertainty regarding what would happen if we added additional variables or
were better able to control for the associations already in the models, it seems prudent to

regard small associations with some suspicion.

Could we not use p-values to decide whether the associations seen are “real”? The
meaning of statistical significance in this study is questionable. We have tried to avoid
the use of p-values or any of the trappings of statistical significance in our model building
because doing so would require that we postulate a “super-population” of all “possible”
countries. Statistical significance refers to the probability that the parameters of a
randomly chosen sample taken from a population represent the true parameters of that

population. In this study, we have used all of the countries of the world as our starting
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point; that is, we have used the entire world population, not a random sample. It is true
that there are missing values in our data set. Thus, strictly speaking, we are not using the
entire world population. However, neither have we randomly chosen a sample from the
world population. Instead, the “sample” that we have used is based on whether we had
appropriate data available. This is not random, but rather is likely to reflect certain
conditions, such as not having adequate infrastructure to collect data, being in an area too
war-ravaged to collect data, or, paradoxically, not being rich enough to collect one’s own
data, but not being quite poor enough to warrant special attention by United Nations
agencies. All of these possibilities are, in turn, potentially in the causal pathways to

health.

Because of the undesirability of postulating some super-population of possible countries,
we feel that it is best to consider our results not as statistics per se, but rather as
population parameters. Of course, doing so limits the scope of our data to the countries

in the models, such that we cannot generalize to the countries for which data are missing.

In summary, tests of statistical significance are of limited use and cannot be used to give
us confidence in our model. Instead, we consider effect size an important indicator of
confidence in our results, because associations of larger magnitude are less likely to be

eliminated by the inclusion of additional covariates in the regression models.
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5.5 Outliers

Sometimes the association between two variables may be large and therefore, at first
glance, important. For instance, consider the relationship between high disturbance and
log infant mortality among high income countries. The standardized regression
coefficient is -0.835 suggesting a very strong relationship. However, Figure 5.5.1 shows

us that the strength of that relationship is largely determined by a single outlier: Israel.

coef = -0.002, se = 0.001
p=0.085,n=20
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Figure 5.5.1 The relationship between high disturbance and log infant mortality among high income
countries (adjusted for other model covariates).

Although a thorough study of outliers is beyond the scope of this thesis, such an analysis,
particularly by individuals with expertise in world geography and politics would be
useful. For instance, in the above example, why is Japan’s infant mortality rate so low
and why is New Zealand’s so high? Clearly, a variable could be found and added to the

model that would explain that considerable difference.
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It is interesting to note that there is a tendency for the same outliers to show up repeatedly
in each analysis. In the model developed with life expectancy as the outcome (Figures
4.9.7 t0 4.9.10), Sri Lanka, Sierra Leone, and Guinea-Bissau consistently appeared as
outliers among the low-income countries. Senegal, Congo, South Africa, Gabon, and
Costa Rica were consistently found as outliers among the medium-income countries.
Iceland, Kuwait, Japan, and New Zealand often were found as outliers in the high-income
category. We interpret this to mean that there is something about these countries that is
different from the others in their respective income categories. This information could be

used to find additional covariates to add to our model.

5.6 Exploratory Analysis - Summary

It should be noted that the intent of this study is exploratory in nature. We have found
some small associations between increasingly highly disturbed land areas and each of our
three human health outcomes. We have found similar associations with annual change in
forest cover rates or amount of forest remaining and all of our human health outcomes.
The associations between the EI variables and the health outcomes have been adjusted for
the effect of several, quite powerful, confounders. We also have found that some high
profile environmental indicators, namely percent of species threatened and land
protection, have no association with health outcomes. In addition, we have noted that we
have some reservations about the adequacy of the models that we have developed. It is
likely that more sophisticated modeling techniques, such as linear structural equation

modeling, would further clarify the complex relationships among our variables.
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5.7 Limitations of Using Aggregate Data

The unit of analysis in this study is not the individual, but rather aggregations of
individuals at the country level. One of the limitations of such a study is that, although
we believe that some of the associations found among our variables at the population
level are ultimately mediated at the individual level, we cannot extrapolate our results to
individuals. After all, life expectancy is a population characteristic, but it is still mediated
by the death of individuals. At the same time, it would be quite difficult to ascertain
cause and effect relationships between ecological variables, such as percent of species
threatened or land disturbance, and life expectancy. For variables such as these, it is
more appropriate to consider the relationships at the aggregate level since these variables

may have little or no meaning at the individual level.

There are good reasons for why we cannot extrapolate our aggregate data results to
individuals, even if we did have an adequate causal hypothesis at the individual level.
The aggregate study design sits low on the hierarchy of epidemiologic study designs in
terms of its ability to contribute to causal inference. One of the main limitations of
aggregate data studies is that we cannot be sure that the individuals who are exposed are
the same ones who contract the disease. The aggregate data reflect only the average level
of exposure and disease for the group, whereas a very different relationship may exist
between individual exposure and disease. Sometimes, the association seen at the
aggregate level is, in fact, the reverse of that seen when further individual-level studies

are conducted. Essentially, the aggregate-level variable is measuring a different
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underlying construct than the corresponding individual-level variable. For this reason,
we cannot extrapolate results from aggregate data studies directly to individual risks.
This is not especially problematic in this study, since the ultimate aim is not to

extrapolate to individuals, but rather to learn about characteristics unique to populations.

The most important limitation of this study is that our models are almost surely
misspecified. We do not know enough about these population-level interactions to have
much certainty about the completeness of our models. Since aggregate data studies often
are conducted when little is known of the exact exposure-disease relationship, model

misspecification probably is quite common.

Another problem with aggregate data studies is that the investigator generally, of
necessity, obtains his or her data from several different sources. Obtaining data from
multiple sources can result in an unknown error owing to the incomparability of
covariates from different data sources. In some cases, the data obtained from developing
countries, or from countries with political motivations for falsifying their data, may be so
poor that United Nations organizations may fail to acknowledge them as “official” data.

In this study, poor data were excluded from all analyses.
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Chapter 6 - Interpretation

This study, like most in epidemiology, is based on past experience. Under the best of
conditions, the prediction of events based on models is fraught with peril, generally
because future patterns of outcome assume continuing exposures similar to those that
gave rise to the models in the first place. An example of this is the prediction of new HIV
infections in Africa by the World Bank (World Bank. 1993). The World Bank envisions
optimistic and worst case scenarios based on different sets of assumptions. The
optimistic scenario is that the incidence rate will decrease by a small percentage by the
year 2000, whereas the worst case scenario predicts a doubling of the incidence rate. This
example illustrates that extrapolations of even very well-studied phenomena suffer from
strong reliance on a priori assumptions that can result in widely differing predictions.
Regardless of the accuracy of the model, extrapolation involves assumptions that, by

definition, cannot be known with much certainty.

The prediction of completely new events is still less certain. For instance, no matter how
good a mathematical model of infectious disease dynamics we might have had in the
1970s, no one could have predicted the emergence of AIDS in the 1980s. One could
perhaps have predicted that the conditions were right for the emergence of a pathogen
(Morse 1993), but one could not have known either the actual identity or the timing of the

emergence.



In the case of environmental degradation and, possibly, environmental collapse, it seems
inevitable that the current trends in measures of El are leading us in a dangerous
direction. There is overwhelming evidence of diminishing biodiversity (Karr and Chu
1997; World Resources Institute et al 1998), profound soil degradation (Kendall and
Pimentel 1994; Pimentel and Hawthorn 1981) and acidification (Kane 1996; World
Resources Institute et al 1998), global warming (Kaufmann and Stearn 1997; Tunali
1996), and ozone depletion (World Resources Institute et al 1996; World Resources
Institute et al 1998), among other problems. In addition, perhaps the most powerful
evidence for a future ecological collapse is from an energy and materials throughput
analysis. Ecological footprint analysis has revealed that, given current technology, we
cannot sustain our current levels of consumption (Rees 1996b; Wackernagel and Rees
1996). To make matters worse, all indicators suggest that with increasing global
population and the economic and technological advancement of the developing world,
global consumption is going to increase. In addition, the global economy enables rich
and powerful countries to extract resources from anywhere in the world to sustain their
consumption habits, meaning that an ecological collapse will not simply be an isolated,
local event, as it might have been in the past, but rather a global one (Rees 1996b;

Wackernagel and Rees 1996).

The question might be asked, then: why do we continue perpetuating these dangerous
trends? This study may provide a partial answer to that question. Our results show that
there is a separation of consumption from consequence. According to this study,

generally speaking, industrialization, urbanization, conversion of land to human use, and
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destruction of other species are either good for, or unrelated to, human health. At least in
the short term, countries are rewarded for environmental destruction with ever-improving
human health. If, however, the environment were no longer able to sustain an intense
level of human activity, because of an environmental collapse, human health would

surely decline rapidly.

6.1 Catastrophic versus Gradual Effects
To interpret this study, it is important to distinguish between two quite distinct
phenomena: a catastrophic, high-inertia environmental collapse versus a gradual decline

in EI resulting in more subtle health effects.

The health impact of a catastrophic environmental collapse would be enormous,

inherently unstable, and impossible to model because there is no prior experience upon
which to base such models. Indeed, epidemiologic models are not needed to show that
the loss of nature’s life support services, and the consequent period of chaos, would be

devastating to human life.

On the other hand, if the decline of the ecosphere can be assumed to be a gradual
extension of current trends without any sudden collapse, then epidemiology is well-
equipped to discern which environmental factors currently are most closely associated
with human health. The definition of health, in this case, could be as broad or as narrow
as the investigator wishes. It could include the physical, emotional, and/or social

dimensions of health. The question of how to measure the relationship between EI and
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human health thus can be answered only if it is taken as given that the consequences of a

decline in EI would occur on a predictable trajectory.

6.2 Lack of an Integrated Ecological Model

We have chosen measures of EI, where data are available, based on the definitions
articulated by the Global Ecological Integrity Project (see section 1.2) and related them to
three general health outcomes. However, a fundamental link in the chain of evidence is
missing. A detailed model that integrates humans into earth’s ecological systems is
needed which can link elements of EI to human health. With such an integrated model,
researchers would have the equivalent of a biological basis that could be used to link
specific measures of EI with specific disease outcomes. Fortunately, the Agroecosystem
Health Project has attempted to define, describe, and evaluate the health of
agroecosystems, including these systems’ human components (Smit et al 1998). This has
provided a road map that ecologists, coupled with sociologists and epidemiologists, could

use to create an integrated model for much larger natural ecosystems.

Although research that transcends disciplinary boundaries is rare (Norgaard 1992), it is
necessary if an integrated model is to be developed. This must go beyond having the
disciplines simply sit next to one another; instead they must generate novel concepts by
synthesizing the various disciplinary knowledge bases. More and more in epidemiology,
for example, links are made with the social sciences to facilitate research into the social
determinants of health (Rosenfield 1992). The synthesis of sociology and epidemiology

and the success of this research has greatly advanced the social determinants of health



agenda. The Agroecosystem Health Project has synthesized much of the literature on
interdisciplinary research and offers a useful framework for advancing that agenda (Smit

et al 1998).

6.3 How Much Integrity?

The results of this study may provide some answers as to why the environment is often a
secondary consideration for policy-makers. This study shows that ecological disintegrity
is “disconnected” from human health. There is a trade-off between improving conditions
for human life and depleting/destroying the environment. So far, that trade-off has

favoured continued development at the expense of the environment.

How much integrity is necessary for human health? The ultimate answer must come
from ecology because it is the same as whatever amount will forestall the collapse of the
biosphere. The models developed for this study are based on past events and are
inadequate for predicting catastrophic events. In terms of the less apocalyptic effects on
human health, it seems that the current articulation of EI has little relation to human
health. With the help of an integrated ecological model, however, our model could be
refined with additional variables, and with data gathered over as many years and/or
decades as possible into the future. It should be recognized that in the absence of a

guiding ecological model, our exploratory model is almost certainly misspecified.



6.4 Some Ethical Issues

Issues of justice may arise from the tentative findings of this study. The world population
is increasing and with it the demand for resources. The largest increases in population
and in resource consumption will be in the developing world. Should developed
countries be telling developing countries to rein in their population and their economic
development to prevent ecological collapse? Should the rich countries of the world rein
in their consumption? The developed world has long enjoyed the benefits of economic
and social development. Not least among those benefits is an increasing life span. Some
might argue that such benefits have been had at the expense of environmental degradation
in regions of the world well beyond the borders of the beneficiaries (i.e., via large and
globally distributed ecological footprints). Can the rich countries of the world deny these

benefits to the developing countries of the world?

This study cannot answer these questions but, if the principle of social justice is
important, then it would seem that the developed nations of the world need to help their
under-developed cousins. Specifically, developed nations need to provide benefits to the
developing world, perhaps in the form of technology transfers, assisting them to improve
their standard of living without undue damage to the environment. For example, if the
developed world would like equatorial countries to preserve their rain forests for the good
of the planet, then richer countries should provide food and other benefits so that forested
land does not have to be cleared for agriculture. In this way, everyone would be sharing

in the responsibility to maintain and even to restore the planet’s essential services.
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Chapter 7 - Conclusions and Recommendations

Aggregate data studies provide the most feasible approach for studying human health
effects associated with diminishing EI at this time. Indeed, most studies of phenomena
related to ecological disintegrity have been aggregate data studies. Thus, most human
health studies relating to ecological disintegrity have been hypothesis-generating studies
and should be recognized as such. Proper understanding of the hierarchical nature of
epidemiologic inference as well as the limitations of aggregate data analysis will improve

the conclusions derived from these studies.

Solid epidemiologic science is a prerequisite to gaining the public trust and, if convincing
relationships between human health and ecological disintegrity are found, we believe that
its potential to impact public policy would be great. Most notably, a great leap forward in
epidemiologic studies related to EI would require an ecological model integrating natural

and human systems. Until then, only weak models will be derivable in the absence of a

dramatic shift in any of the relevant health outcomes.

There are two quite separate issues regarding EI and human health, catastrophic collapse
and a gradual decline in EI potentially resulting in less dramatic health effects. The latter
issue is that which is addressed by this study. That is, does EI as articulated by the
Global Ecological Integrity Project have any association with human health outcomes?
The simple answer is that we cannot yet be sure. Ours is but a single study, and the first

to address EI in relation to human health. More detailed modeling needs to be
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considered, and so do alternative study designs. It is likely that more sophisticated
modeling techniques, such as linear structural equation modeling, would further clarify
the complex relationships among our variables. Our model could be refined with
additional variables, and as more data on EI become available, studies could be
undertaken at a lower level of analysis, perhaps at the county level instead of at the
country level. This would enable the investigator to have much more control over data

quality, and could perhaps even lead to a better understanding of the exposures involved.

Figure 7.1 uses the lessons learned in this study to depict the problem areas that could be

addressed with additional studies and different types of data.

@ .. small

v

Health Outcomes

Figure 7.1 Areas for future research.

The question marks indicate where additional research should be aimed. GDP was a

problem in this study because it was so overwhelming that we could not be certain how to
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model it. The overlapping circles represent strong collinearity between GDP and EI and
GDP and other socio-economic variables. Certainly, GDP is a common tool to measure
wealth, but it may be too all-encompassing to be used in detailed modeling. The
contribution of this study is that we have shown that, at least for cross-sectional data from
the recent past, the relationship between EI and human health has been small or non-
existent. An improvement to this study would be the refinement of the models with
additional predictors, which may be teased from a closer examination of the outlier

countries.

For this study, without a clear causal mechanism, and using only cross-sectional data, the
literal interpretation of coefficients (e.g., X lives lost per acre of wild land domesticated)
would be wrong and, simply put, absurd. However, we can see clearly that at this time
socio-economic considerations far outweigh issues of environmental degradation in the
public mind, especially in developing countries, and also seem to dominate decision-
making. In developed countries, we can see the beginnings of negative health
consequences associated with environmental degradation. In developing countries,
however, poverty is such an important determinant of health that the subtle associations
between diminishing EI and human health are not noticeable as yet, if they ever will
become noticeable. Longitudinal data studies may be able to discern more subtle trends

and/or cyclical patterns.
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Appendix 1: Ecological footprint ranking of 52 nations
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Appendix 2: List of all available variables on World Resources Institute database

diskettes (1996-97)

Variables in the WRI database are classified according the various subheadings. They are

listed here alphabetically by subheading.

Atmosphere and Climate

Carbon Dioxide Emissions from Solid Fuels

Carbon Dioxide Emissions from Liquid Fuels

Carbon Dioxide Emissions from Gas

Carbon Dioxide Emissions from Gas Flaring

Carbon Dioxide Emissions from Cement
Manufacture

Total Carbon Dioxide Emisstons from Industry

Carbon Dioxide Emissions from Industry per
capita

Carbon Dioxide Emissions from Bunker Fuels

Carbon Dioxide Emissions from Land Use
Changes

Methane Emissions from Solid Waste

Methane Emissions from Coal Mining

Methane Emissions from Oil and Gas Production

Methane Emissions from Wet Rice Agriculture

Methane Emissions from Livestock

Total Methane Emissions from Anthropogenic
Sources

Atmospheric Concentrations of Carbon Dioxide

Ammos. Concentrations of Carbon Tetrachloride
(CCl4)

Atmos. Concentrations of Methy! Chloroform
(CH3CCI3)

Atmos. Concentrations of CFC-11(CCI3F)

Atmos. Concentrations of CFC-12 (CCI2F2)

Atmos. Concentrations of CFC-113 (C2CL3F3)

Atmos. Concentrations of Total Gaseous
Chlorine

Biodiversity and Protected Areas

Protected Areas by [IUCN Categories

Large Protected Areas (IUCN I-V) By Size

Resource & Anthropological Reserves (VI-VIII)
- Number

Resource & Anthropological Reserves (VI-VIII)
- Area

Heritage Sites (Natural and Mixed) - Number

Atmos. Concentrations of Nitrous Oxide

Atmos. Concentrations of Carbon Dioxide

Total Global Carbon Dioxide Emissions

Global Carbon Dioxide Emissions from Solid
Fuels

Global Carbon Dioxide Emissions from Liquid
Fuels

Global Carbon Dioxide Emissions from Gas
Fuels

Global Carbon Dioxide Emissions from Gas
Flaring

Global Carbon Dioxide Emissions from Cement
Mfg

Global Carbon Dioxide Emissions Per Capita

Global Carbon Dioxide Emissions from Bunker
Fuels

Sulfur Dioxide (SO2) Emissions

Nitrogen Oxide (NO2) Emissions

Common Anthropogenic Pollutants - Carbon

Monoxide

Common Anthropogenic Pollutants - Particulate
Matter

Common Anthrop. Pollutants - Volatile Org.
Compounds

Carbon Dioxide Emissions (Selected Countries)
Methane Emissions (Selected Countries)
Nitrous Oxide Emissions (Selected Countries)

Heritage Sites - Area

Percent of National Land Area Protected
Protected Marine & Coastal Areas - Number
Protected Marine & Coastal Areas - Area
Biosphere Reserves - Number

Biosphere Reserves - Area

Wetlands of International Importance - Number
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Wetlands of International Importance - Area

Map Units of Low Human Disturbance - Percent

Map Units of Medium Human Disturbance -
Percent

Map Units of High Human Disturbance - Percent

CITES Reporting Requirement Met

Live Primates - Net Imports

Live Primates - Net Exports

Cat Skins - Net Imports

Cat Skins - Net Exports

Live Birds - Net Imperts

Live Birds - Net Exports

Reptile Skins - Net Imports

Reptile Skins - Net Exports

Live Cacti - Net Imports

Live Cacti - Net Exports

Live Orchids - Net Imports

Live Orchids - Net Exports

Length of Coastline

Maritime Area - Shelf to 200m Depth

Maritime Area - Exclusive Economic Zone

Coastal Marine Species Info

Economic Indicators

Gross National Product (Current USS)
Gross National Product Per Capita (Current
USs)

Distribution of Gross Domestic Product-
Agriculture

Distribution of Gross Domestic Product -
Industry

Distribution of Gross Domestic Product -
Services

Official Development Assistance

Gross National Product (Constant USS)
Gross Domestic Product (Current LC)
Gross Domestic Product (Current PPP)
Gross Domestic Product (Current USS)
Gross Domestic Product Per Capita (Current
USS$)

Energy and Materials

Total Commercial Fuel Production
Commercial Energy Production—-Solid Fuel
Commercial Energy Production--Liquid Fuel
Commercial Energy Production—Gaseous Fuel

Marine Habitats

Mammal Species Info

Bird Species Info

Reptiles Species Info

Amphibian Species Info
Freshwater Fish Species Info

Plant Species Info

Botanical Gardens and BGCI Members
Habitat - extent of all forest
Habitat - all forest (loss)

Habitat - extent of dry forest
Habitat - dry forest (loss)

Habitat - extent of moist forest
Habitat - moist forest (loss)
Habitat - extent of savannah/grassland
Habitat - savannah/grassland (loss)
Habitat - extent of desert/scrub
Habitat - desert/scrub (loss)
Habitat - extent of wetland/marsh
Habitat - wetland/marsh (loss)
Habitat - extent of mangroves
Habitat - mangroves (loss)

Gross Domestic Product Average Annual
Growth Rate

Gross Domestic Product (Constant PPP)

Gross Domestic Product per Capita (Constant
PPP)

Total External Debt (stocks)

Disbursed Public and Publicly Guaranteed Debt
Total Debt Service Paid

Long-term Debt Disbursements (Current
Borrowing)

Exports of Goods & Non-Factor Services
Imports of Goods and Non-Factor Services
Current Govt Expenditure

Currency Conversion Factors (Exchange Rate)
Commodity Price Indexes

Commodity Prices

Commercial Energy Production--Geothermal
Commercial Energy Production--Hydroelectric
Commercial Energy Production--Nuclear
Total Electrical Production



Commercial Energy Consumption--Total

Commercial Energy Consumption--Per Capita

Energy Exports

Energy Imports

Commercial Energy Consumption—Gas

Commercial Energy Consumption--Electricity

Commercial Energy Consumption--Solid Fuel

Commercial Energy Consumption-—-Liquids

Traditional Fuel Consumption

Crude Oil Reserves (proved recoverable)

Natural Gas Reserves

Hard Coal Reserves

Soft Coal Reserves

Uranium Reserves

Hydroelectric Resources

Industrial Waste in Selected Countries

Annual Municipal Waste Generation - Total

Annual Municipal Waste Generation - Per Capita

Municipal Waste - Organic as Percent of
Inorganic

Municipal Waste - Paper & Cardboard - % of
Total Weight

Municipal Waste - Plastic - % of Total Weight

Municipal Waste - Glass - % of Total Weight

Municipal Waste - Metals - % of Total Weight

Municipal Waste - Other - % of Total Weight

Municipal Waste Disposal - Landfill

Municipal Waste Disposal - Incineration

Municipal Waste Disposal - Other

Production - Bauxite

Consumption - Aluminum

Production - Cadmium

Consumption - Cadmium

Production - Copper

Consumption - Copper

Production - Lead

Consumption - Lead

Production - Mercury

Consumption - Mercury

Production - Nickel

Consumption - Nickel

Food and Agriculture

Agriculture: Production Index Per Capita
Agriculture: Production Index

Food Prod Index

Food: Per Capita Production Index
Cereals, Total Area Harvested

Roots and Tubers, Production

Cereals, Total Production

Production - Tin
Consumption - Tin
Production - Zinc
Consumption - Zinc
Production - Iron Ore
Consumption - Iron Ore
Production - Steel Crude
Consumption - Steel Crude
Reserves - Copper

Reserves - Lead

Reserves - Tin

Reserves - Zinc

Reserves - Iron Ore
Reserves - Manganese
Reserves - Nickel

Reserves - Chromium
Reserves - Cobalt

Reserves - Molybdenum
Reserves - Tungsten
Reserves - Vanadium
Reserves - Bauxite
Reserves - Titanium
Reserves - Lithium

Metal Reserves Index
Value of Copper Reserves
Value of Lead Reserves
Value of Tin Reserves
Value of Zinc Reserves
Value of Iron Ore Reserves
Value of Manganese Reserves
Value of Nickel Reserves
Value of Chromium Reserves
Value of Cobalt Reserves
Value of Molybdenum Reserves
Value of Tungsten Reserves
Value of Vanadium Reserves
Value of Bauxite Reserves
Value of Rutile Reserves
Value of IImenite Reserves
Total Value of Reserves
Value of Reserves Index

Roots and Tubers, Area Harvested
Arable & Permanent Cropland
Irrigated Land

Total Fertilizer consumption

Total Agricultural Tractors in use
Agricultural Harvesters in use
Arable Land



Permanent cropland

Fertilizer - Production

Fertilizer- Imports

Fertilizer- Exports

Cattle Stocks

Sheep Stocks

Goat stocks

Pig Stocks

Equines (Horses, mules, asses)

Buffalo Stocks

Camel Stocks

Poultry (Chickens, Ducks, and Turkeys)

Grain Fed to Livestock as % of Total Grain
Consumption

Cereals - Imports

Human Development

Total Population

Female Population

Male Population

Population Density

Mean Rate of Population Growth

Annual Growth Rate of Labor Force

Total Economically Active Population, 1950-
2025

Females as Percentage of Total Labor Force

Labor Force - Percent in Agriculture

Labor Force - Percent in Industry

Labor Force - Percent in Services

Percent Unemployment - Male

Percent Unemployment - Female

Crude Birth Rate

Life Expectancy at Birth (both sexes)

Total Fertility Rate

Population Below Age 15

Population aged 15-64

Population Aged 65 and over

Life Expectancy at Birth (Females)

Life Expectancy at Birth (Males)

Female Population

Female Population Aged 15-49

Births Per Age Group

Life Expectancy - Females as Percentage of
Males

Crude Death Rate

Infant Mortality Rate

Under-5 Mortality Rate

Maternal Mortality

Children Suffering from Wasting and Stunting
1980-93

Cereals- Exports

Total Trade in Oils

Pulses- Exports

Pulses - Imports

Cereals - Receipts

Cereal Donations by Donors
Butter-oil Receipts & Donations
Vegetable Oil Receipts & Donations
Vegetable Oil Donations

Skimmed Milk Receipts & Donations
Other Dairy Products by Donors
Other Dairy Products by Recipients & Donors
Total Labor Force

Agricultural Labor Force

Daily per Capita Calorie Supply

Access to Safe Water Urban and Rural

Urban Connections to Safe Water Source

Access to Sanitation: Urban and Rural

Urban Household Connections to Sanitation
Service

Total Urban Population

Urban Population Percent

Urban Growth Rates

Rural Growth Rates

Total Rural Population

Total People in Absolute Poverty

Rural People in Absolute Poverty

Urban People in Absolute Poverty

Urban Dependency Ratio

Rural Dependency Ratio

Number of Cities Greater than 750,000

Percent population living in cities of at least
750,000

People in Cities of at least 750,000

Automobile Registrations

Urban Population in Coastal Cities

Air Pollution in Selected Cities, 1989-94

India: City Indicators, 1993

Literacy-Adult Female

Literacy-Adult Male

Total Primary School Enrollment

Gross Primary School Enroliment

Literacy - Females as Percent of Males

Mean Years of School for Females Age 25 and
Above

Mean Years of School for Males Age 25 and
Above
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Oral Rehydration Therapy Use

Infants with Low Birth Weight

1-Yr-Olds Fully Immunized Against TB, DPT,
Polio, Measles

Total Expenditure on Health

Births Attended by Trained Health Personnel

Contraceptive Prevalence (Method)

Land Cover and Forests

Land Area

Arable & Permanent Cropland

Population Density

Permanent Pasture

Forest and Woodland

Other Land

Total Area

Domesticated Land as % of Land Area

Natural Forest Extent 1990 and Annual Change
1980-90

Extent of Plantations 1990 and Annual Change
1980-90

Extent of Total Forest

Total Forest - Deforestation, 1981-90

Forest & Other Wooded Land '90 & Ann. Chg
1980-90

Extent Annual Logging Closed Broadleaf Forest,
1981-90

Annual Logging of Closed Broadleaf Forest %,
1981-90

Ann Logging Closed Brdlf For: % Primary
Forest, 1981-90

Roundwood Production

Water and Oceans

Annual Internal Renewable Water Resources

Water Resources per capita

Annual River Flows To and From Other
Countries

Annual Water Withdrawals - Amount

Annual Water Withdrawals - Percentage

Annual Water Withdrawals per Capita

Annual Water Withdrawals - by Sector

Primary Wastewater Treatment

Secondary Wastewater Treatment

Tertiary Wastewater Treatment

All Wastewater Treatments

Average Age of First Marriage-Female
Average Age of First Marriage - Male
Year Women Received Vote

Number of Urban Females per 100 Males
Number of Rural Females per 100 Males
Households Headed by Women

Fuelwood Production

Industrial Roundwood Production

Sawnwood and Sleepers Production

Wood-based panel production

Paper and paperboard production

Roundwood trade

Roundwood Exports

Roundwood Imports

Rain Forest Extent

Moist Deciduous Forest Extent

Hill and Montane Extent

Dry Deciduous Forest Extent

Very Dry Forest Extent

Desert Forest Extent

Rain Forest - % annual change 1981-90

Moist Deciduous Forest - % annual change
1981-90

Hill and Montane Forests - % annual change
1981-90

Dry Deciduous Forest - % annual change 1981-
90

Very Dry Forest - % annual change 1981-90

Desert Forest - % annual change 1981-90

Goods Loaded - Crude Petroleum
Goods Unloaded - Crude Petroleum
Goods Loaded - Petroleum Products
Goods Unloaded - Petroleum Products
Goods Loaded - Dry Cargo

Goods Unloaded - Dry Cargo
Offshore Annual Production - Oil
Offshore Annual Production - Gas
Offshore Proven Reserves - Oil
Offshore Proven Reserves - Gas
Marine Fishery Production by Region
Marine Fish Catch by Region
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Cephalopods Catch by Region

Crustaceans Catch by Region

Freshwater Catch by country

Marine Catch by Country

Aquaculture Production - Freshwater Fish
Agquaculture Production - Diadromous Fish

Aquaculture Production - Marine Fish
Aquaculture Production - Crustaceans
Adquaculture Production - Molluscs
Aquaculture Production - Other

Fish Consumption per Capita

Fish Supply
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Appendix 3: Countries included in stratified analyses — Life expectancy as outcone

Low GDP per capita (n=39)

Albania
Bangladesh
Benin
Burkina Faso
Burundi
Central African
Republic
Chad
China
Cote d'Ivoire
Equatorial
Guinea
Ethiopia
Ghana

Medium GDP per capita (n=45)

Algeria
Argentina
Belize
Bolivia
Botswana
Brazil
Bulgaria
Cameroon
Chile
Colombia
Congo
Costa Rica
Dominican Rep
Ecuador

Egypt

Guinea
Guinea-Bissau
Guyana
Honduras
India
Kenya
Lao People's
Dem Rep
Madagascar
Malawi
Mali
Mauritania
Mongolia
Mozambique

El Salvador
Gabon
Greece
Guatemala
Hungary
Indonesia
Jamaica
Jordan
Korea, Rep
Malaysia
Mexico
Morocco
Oman
Panama
Papua New Guinea

Nepal
Nicaragua
Niger
Nigeria
Pakistan
Rwanda
Sierra Leone
Sri Lanka
Tanzania
Togo
Uganda
Viet Nam
Zambia
Zimbabwe

Paraguay
Peru
Philippines
Poland, Rep
Romania
Senegal
South Africa
Suriname
Swaziland
Thailand
Trinidad and Tobago
Tunisia
Turkey
Uruguay
Venezuela



High GDP per capita (n=24)

Australia
Austria
Belgium
Canada
Denmark
Finland
France
Germany
[celand

Ireland

Israel

Italy

Japan
Kuwait
Netherlands
New Zealand
Norway
Portugal

Spain

Sweden

Switzerland

United Arab
Emirates

United Kingdom

United States
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Low GDP per capita (n=29)

Bangladesh
Burkina Faso

Central African

Rep
China
Cote d'Ivoire
Ethiopia
Ghana
Guinea
Guinea-Bissau
Guyana

Medium GDP per capita (n=35)

Algeria
Argentina
Bolivia
Botswana
Brazil
Bulgaria
Cameroon
Chile
Colombia
Costa Rica

Dominican Rep

Ecuador

High GDP per capita (n=20)

Australia
Austria
Belgium
Canada
Denmark
Finland
France

Honduras
India
Kenya
Lao People's
Dem Rep
Madagascar
Malawi
Mali
Mauritania
Nepal
Nicaragua

Egypt
Greece
Guatemala
Hungary
Indonesia
Jamaica
Jordan
Korea, Rep
Malaysia
Mexico
Morocco
Panama

Germany
Ireland

Israel

[taly

Japan
Netherlands
New Zealand

Appendix 4: Countries included in stratified analyses — Infarnt mortality as outcome

Niger
Nigeria
Pakistan
Sri Lanka
Tanzania
Uganda
Viet Nam
Zambia
Zimbabwe

Peru
Philippines
Poland, Rep
Romania
Senegal
South Africa
Thailand
Tunisia
Turkey
Uruguay
Venezuela

Norway
Portugal
Spain

Sweden

United Kingdom

United States



Low GDP per capita (n=51)

Bangladesh
Bolivia
Bulgaria
Burkina Faso
Cameroon
Central African
Rep
China
Colombia
Congo
Cote d'Ivoire
Dominican Rep
Ecuador
Egypt
El Salvador
Ghana
Guatemala
Guinea

High GDP per capita (n=32)

Algeria
Argentina
Austria
Belgium
Botswana
Brazil
Canada
Chile
Costa Rica
Denmark
Finland

Guinea-Bissau
Haiti
Honduras
India
Indonesia
Jordan
Kenya
Lao People's
Dem Rep
Madagascar
Malawi
Mali
Mauritania
Mongolia
Morocco
Mozambique
Myanmar
Nicaragua

France
Greece
Jamaica
Japan
Korea, Rep
Lebanon
Malaysia
Mexico
Panama
Peru
Portugal

Appendix 5: Countries included in stratified analyses — Low birth weight as outcome

Niger
Nigeria
Pakistan
Papua New
Guinea
Paraguay
Philippines
Romania
Rwanda
Senegal
Sierra Leone
Sri Lanka
Tanzania
Togo
Viet Nam
Yemen
Zambia
Zimbabwe

Spain
Switzerland
Thailand
Trinidad and
Tobago
Tunisia
Turkey
United Kingdom
United States

Uruguay
Venezuela
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