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ABSTRACT

The flow velocity required to remove an air bubble attached to both surfaces of a slit
microchannel was studied. The intent was to quantify the critical flow velocity in terms of
bubble contact diameter, D., and channel of height, h. First, the critical velocity was
determined experimentally. Microchannels ranging from 34-164 microns were constructed
for this purpose. Bubbles of various diameters were generated within these channels and a
base engine oil was used as the shearing fluid. The critical velocity was found to decrease
linearly with both increasing D. and decreasing h. Second, a model to predict the critical
velocity was developed. By equating formulations for the drag force on a bubble to an
approximation for the adhesion force, the critical velocity can be calculated. Comparison of
model predictions to experimental results show that the model performs well for ratios of D/h

greater than five.
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The behavior of three phase systems is important in numerous applications. Some
industrial applications are enhanced oil recovery, filtration processes, mixing operations,
adhesive design, or any process which involves two phase flow considerations. Three phase
systems are prevalent in spraying and coating operations in which the movement of the three
phase interface governs the systems performance. Understanding how interfacial physics
affect these applications is thus a very important endeavor. One application in particular is
the focus of this research. The problem originates from experiments conducted by Imperial
Oil Limited.

Lubrication is heavily reliant upon the lubricating medium being able to completely
wet the surfaces of interest. Imperfect lubrication will result in expedited mechanical wear
and, in severe cases, the failure of a machine part. It has been observed, when the clearances
between two surfaces to be lubricated decrease to the scale of micrometers, that difficulty
arises in completely wetting the entirety of the surfaces. One possible explanation of this poor
surface wetting is that a minute pocket of air becomes trapped between the surfaces.
Generally, the non-wetting spots on a metal surface are hydrophobic patches formed in two
ways: chemical modification via interactions with the impurities or polymer additives in the

oil, or the adsorption of polymer impurities/additives in the oil forming a hydrophobic coating.



It is desirable to be able to remove such pockets of air by forcing the lubricating fluid through

the clearances with sufficient velocity and pressure.

1.2 PROBLEM DESCRIPTION

As this problem arises from within a lubrication context, the clearances to be studied
will be quite small(34 pm — 164 um). The air bubbles in this work were large enough to span
the entire clearance. The fluid was forced to flow around the bubble. A sketch of the
problem is shown in Figure 1.1. The air bubble is trapped between the upper and lower
surfaces of a channel. The channel height, h, is on the order of micrometers to be consistent
with typical lubrication clearances. Figure 1.2 gives a top view of the problem. As can be
seen, the liquid must flow around the stationary bubble. The flow around the bubble will
cause a drag force on the bubble. This drag force is the means by which the bubble must be
removed.

In Figure 1.1, it can be seen that the liquid-air interface forms an angle with the solid
surface. This angle is known as a contact angle. Contact angles and other interfacial
phenomenon will be discussed comprehensively in Section 1.4. When the bubble is subjected
to an external force, the contact angles will deform. The deformation of the contact angles
is known as contact angle hysteresis. The contact angle hysteresis along with the liquid-air
surface tension is the source of the adhesion force which resists the drag force. The bubble
will be detached once the drag force caused by the liquid flow can overcome the retaining

adhesion force.



1.3 LITERATURE REVIEW

There are several publications that deal with removing adhered liquid drops from solid
surfaces with a shearing flow. Experiments to determine the required shear rate to remove
an alkane droplet adhered to a smooth glass slide were performed Mahe et al. (1988). In this
experiment the alkane drops were removed with water as the shearing fluid. The drops in this
experiment were attached to one surface only and were very small in comparison with the
channel dimensions. Mahe et al.(1988) found that larger flow shear rates were required to
remove droplets of small diameter. Basu et al. (1997) attempted to describe the results of
Mahe et al. by equating approximations for the drag force and the adhesion force. This model
performed with moderate success with a tendency to over predict the required flow shear
rate. The difference between these studies and the present investigation is that the current
work deals with bubbles that span the entire channel height. This provides an additional
surface for the bubble to adhere to and produces a substantially different flow field about the
bubble. For instance, the shearing fluid in the work of Mahe et al.(1988), could flow around
or above the droplet, while in this study, the shearing fluid is forced to flow around the
bubble. The effect of changing the channel height will also be investigated in the current
work. The research in literature gives no conmsideration to the effect of the channel
dimensions in which the droplet is adhered.

There has been much work done in removing solid particles from channels(Jen et al.,
1996, Kuo et al., 1997, Xia et al,, 1994). This situation is fundamentally different from

removing a liquid drop or air bubble. A drop or bubble will deform to change its contact



angles when subjected to an external force. This has the effect of strengthening the adhesive

bond to the surface. A solid particle has no such mechanism for adjusting its adhesive force.

1.4 BACKGROUND THEORY

In the following sections, several key interfacial and fluid dynamics concepts will be
presented. First, the basics of interfacial physics will be given as they are very important to
the understanding of the problem. Derivations for the Laplace Equation of Capillarity and
Young’s Equation will be presented along with definitions for equilibrium and dynamic
contact angles, surface tension, and adhesive force. The parameters that affect the behavior
of the dynamic contact angles will be explained. Secondly, an introduction to the assumptions
behind and behavior of Poiseuille flow will be given. Poiseuille flow describes how pressure
driven flow will behave in very narrow channels. Assuming that Poiseuille flow exists is

important to the models derived in Chapter 5.

1.4.1 Interfacial Phenomenon

1.4.1.1 Surfaces and Interfaces

A surface/interface is the boundary between two heterogeneous bulk phases. A bulk
phase may be either a solid, a liquid, or a vapor. Itis important not to regard an interface as
a simple boundary however. The interface will have a characteristic thickness with different

properties from either of the bulk phases that surround it. The interface thickness is typically

4



on the order of several molecular diameters or several nanometers. An interface will always
take the shape of a three-dimensional surface.
Similarly, a three phase interface is the boundary between three heterogeneous bulk

phases. It physically takes the shape of a three-dimensional line.

1.4.1.2 Surface Tension
It is well known that droplets and bubbles have a tendency to form spherical shapes
if not influenced by external factors. The reason for such behavior is that the interface is
under a state of tensile stress. This surface tension is dependent upon the material composing
the surrounding bulk phases and has units of force per length. An expression for the surface
tension can be found starting with the fundamental equation for a simple bulk phase [Callen,
1985]:
U=U(SV,N:,N2,--.N) (1.1)
where U, S, V, and N;, represent the internal energy, entropy, volume, and mole numbers of

the bulk phase respectively. The fundamental equation for a surface phase is quite similar:
US=US(S::A’IVI:Istl"'rNrI) (1’2)
where U®, S°, A, N represent the internal energy, entropy, area, and mole numbers for the

surface. Rewriting Equation 1.2 in differential form gives:
dU* =T dS*+ydAd+Z u,dN: (1.3)
where T, v, and p; represent the intensive properties of temperature, surface tension, and

chemical potential. Keeping the surface entropy and surface mole numbers constant, the



surface tension is:

_ou’
oA

Y= I+ T (1.4)
Thus, surface tension is described mathematically as the internal energy per surface

area of an interface. The surface tension always behaves in a manner that will minimize the

surface area.

1.4.1.3 Interface Shape and the Laplace Equation of Capillarity
The shape that an interface takes is governed by the Laplace Equation of Capillarity.
The Laplace Equation of Capillarity can be derived by considering a bubble inside a bulk
liquid phase. The total entropy for such a system is:

S =ScttSr+Scv (1.5)
where the subscripts L, V, LV, indicate the bulk liquid phase, bulk vapor phase, and liquid-
vapor surface phase. The differential form of Equation 1.5 is:

dSwaw =dSLt T dSv+dSwy (1.6)
Each term in Equation 1.6 can be substituted for with the appropriate expression from the
differential form of the fundamental equation. In particular, for the bulk liquid phase

differential entropy:

=dUL+££dVL'ZE£dNiL (1.7)

dsS:
TL Tt T:

and the expressions for the bulk vapor and interface phases are similar. Performing these

substitutions and rearranging results in:



dSu =YL+ PL s B2 iy

Tt T: Tt
G By 3B Ny (1.8)
Ty Tv Tv

+ 84U +Z‘LLdALV ) a2 dNuwv
Tw T Trv

The system is constrained by the following relations: the sum of the internal energies
of the phases must be a constant:
dUL+dUr+dUr =0 (1.9)
the sum of the mole numbers must remain a constant:
dNye+dNw +dNavr =0 (1.10)
and the total volume of the bulk liquid and vapor phases must be a constant:
dv.+dvy=0 (1.11)
Incorporation of Equation 1.9, Equation 1.10, and Equation 1.11 into Equation 1.8 results

in:

I 1 1 1
dSmmIz('_' )dUL+(_"_':)dUV

t Trr vy T

: dA
v BL By ¥ Oy, (1.12)
T: Tr TwdV:
v Bav) g, oy EE BL) gy

Tr Trv Tv T

At equilibrium, the temperature and chemical potentials in all phases will be the same.

Considering this and setting dSioal to zero allows Equation 1. 12 to simplify to:

(1.13)

Pr-Pr=Y

L

which is the well known Laplace Equation of Capillarity. The rate of change of surface area

7



with the bulk liquid phase volume can be interpreted as the mean curvature of the surface

phase. In a more recognizable form, Equation 1.13 is:

1 1
P:-P=y(—+—) (1.14)
R: R

where Pa, Pi, Ry, R,, and y are the pressure on the concave side of the interface(i.e., the
pressure inside the droplet), pressure on the convex side of the interface, the principle radii
of curvature of the interface and the surface tension respectively. If the interface is assumed
to be spherical then both radii of curvature will be the same and Equation 1.14 simplifies again
to:

2y
AP=— 1.15
R ( )

where R is the radius of the spherical bubble.
To use Equation 1.14 to compute the interface shape for an arbitrary situation is a
complex process. Later, in Chapter 4, the interface shape will be computed for the situation

modeled in this study.

1.4.1.4 Equilibrium Contact Angle and Young’s Equation

As mentioned briefly above, it is possible for an interface to form a contact angle with
a solid phase. Consider a fluid-gas interface intersecting with a solid phase as shown in Figure
1.3. This geometry is known as a sessile drop. The angle of intersection between the liquid-
solid interface and the liquid-vapor interface is known as the contact angle, 8. The three

phase interface line is known as the contact perimeter. Depending upon the properties of the



bulk phases present, the value of 6 can range from 0 to 180 degrees. Typically, sessile drops
are formed with a liquid drop in air on a solid surface. In Figure 1.3, yiv, Yrs. and yvs,
represent the interfacial tensions present in the liquid-vapor, liquid-solid, and vapor-solid
phases respectively. A simple horizontal force balance on the right side of the droplet results
in:

Yis+¥ oy €050 =¥ s (1.16)

and rearranging gives the classical Young’s Equation:

cosf =1 Yis (1.17)
Y

A more rigorous derivation of the general Young’s Equation would include the effects of the
three phase interface line tension. Equation 1.17 neglects this contribution. In most cases,
the line tension is very small in comparison to the surface tensions and can be neglected
without significant error.

It should be noted that although a sessile drop was used to depict the preceding force
balance, the choice was arbitrary. The equilibrium contact angle is not dependent upon the
interface shape. It depends only upon the surface tensions of the interfaces from which it is
formed. For example, using a similar force balance, one can find the contact angle that a
meniscus forms in a capillary tube. The equilibrium contact angle is thus a localized

phenomenon.

1.4.1.5 Dynamic Contact Angles

In the previous section, the equilibrium contact angle was described. The dynamic



contact angle is a different phenomenon. The equilibrium contact angle, as its name mmplies,
is the contact angle formed when the interfaces are not in motion and the entire system is at
steady state. The dynamic contact angle is measured in the same way but when the interfaces
are moving relative to one another. This is most commonly encountered with a liquid-gas or
liquid-liquid interface moving over a stationary surface. A diagram of a sessile drop moving
along a solid surface is given in Figure 1.4. The contact angles at the advancing edge and the
retreating edge do not have the same value. The advancing edge contact angle is called the
dynamic advancing contact angle, 0,. and similarly the retreating edge contact angle is called
the dynamic receding contact angle, 0,. The difference between the dynamic contact angles
is called the contact angle hysteresis.

The dynamic contact angles, like the equilibrium contact angle, have a dependence
upon surface tensions. However, this is not the only governing factor. It is well known that
the dynamic advancing and receding angles have a strong dependence upon the speed at
which the interface moves over the solid interface(Hoffiman, 1975, Ngan and Dussan, 1982).

At zero velocity, the dynamic contact angles both must be equal to the equilibrium contact
angle. As the velocity of the interface increases, the difference between the dynamic contact
angles and the equilibrium contact angle increases. The dynamic advancing contact angle will
always become larger (as measured from the liquid side as shown in Figure 1.4) than the
equilibrium contact angle and the dynamic receding contact angle will always become smaller.

Thus, the contact angle hysteresis is a function of interface velocity as well.

The work of Cox (Cox, 1986) dealing with liquid spreading showed that the dynamic

contact angles are also dependent upon the ratio of a characteristic macroscopic length to a

10



microscopic slip length. According to Cox, in the immediate region of the three phase line,
there exists a slip length of length, s. This means that instead of having zero velocity at the
solid surface as per the norm in fluid mechanics analysis, there is a small region with a non
zero fluid velocity at the surface. Cox uses this assumption to solve the two phase Stokes
flow field about an advancing interface. A relationship between the slip length, s, and a
problem specific macroscopic length scale and the dynamic contact angles was determined.
This relation was shown to explain the data of Hoffman (Hoffman, 1975) very well. In
subsequent work, (Gu and Li, 1998, Basu et al., 1996), the value of the slip length has been
repeatedly found to range from 1-5 um. What this means is that by varying the macroscopic
length scale, the dynamic contact angles will be changed. A more rigorous explanation of

Cox’s method will be given in Chapter 5.

1.4.1.6 Adhesion Forces

The source of the adhesion force is the contact angle hysteresis. The force of
adhesion is simply the integral of all the surface tensions about the entire three phase line in
the horizontal direction. Considering again the sessile drop in Figure 1.4, the integral of y1.s
and yvs about the entire contact perimeter can be seen to be zero. The reason for this is that
these surface tensions do not change in magnitude and they cancel out as they are summed
about the contact perimeter. The contribution from yrv will not cancel out because the
contact angle varies about the contact perimeter. The net force from the liquid-vapor surface
tension acts in the direction opposite to the external force. The dynamic contact angle must

vary from the dynamic advancing contact angle value to the dynamic receding contact angle

11



value along the perimeter in some manner. Mathematically, this relation for the adhesion
force can be written as:

F.=lcos0 cosn Rdn (1.18)
where 1 is the angle coordinate as shown in Figure 1.5. The dynamic contact angle about the
perimeter is some function of n. There are several valid assumptions about the variation of
the dynamic contact angle about the contact perimeter in the literature. These assumptions
will be compared with observations about the experiment in Chapter 5 to select the most

appropriate method.

1.4.1.7 Capillary Numbers

The Capillary number is a non-dimensional quantity comparing viscous forces to
interfacial forces. This number will be used as the primary method of expressing the
experimental data. The Capillary number is:

Ca=HYn (1.19)

Y
where y, v, and Uy, are the viscosity, surface tension of the fluid-vapor interface, and mean
velocity of the shearing fluid respectively. The Capillary number is then a non-dimensional
velocity. The Capillary number can also be used as a measure of interface rigidity. For a
small value of Ca, the interfacial forces will be dominant and the interface will not deflect
much when subjected to viscous forces. It will be shown that the Capillary numbers in this

study are sufficiently small to allow the assumption of a rigid interface to be made.
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1.4.2 Fluid Dynamics
In this study, the shearing fluid will be pumped through very narrow channels. The
assumption that Poiseuille flow exists will be made in many instances. The following section
will describe what Poiseuille flow is, when it can be assumed, and its characteristics.
Consider steady state, fully developed flow through an infinitely wide channel of
height h. Assuming there is only velocity in the x-direction, the momentum equation in the

x-direction simplifies to [Shames, 1992]:

gu dP
ou_dP 1.20
.l'lﬂum' a 1 ! ( )

-

It is well known that the pressure gradient in this situation is a constant value
[Shames, 1992]. Using this information to integrate Equation 1.20 for the velocity profile
results in:

! dP
v(y-h 1.21
7 ot (1.21)

uly) =

Sluid
So clearly the velocity profile is parabolic. Integrating the velocity profile over the channel
height results in a flow rate per unit width of:

’ - h3 dP

= “ (1.22)
12 gy dx
and rearranging leads to a more familiar formulation:
-12 i
_dﬁ__- Q#ﬂuu{ (1.23)

dx n
The pressure gradient is inversely proportional to h®. Thus, large pressure gradients can be

expected in channels of small height. This information will be used to explain much of the
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experimental data in Section 2.4.

Of course, infinitely wide channels cannot be created. It is important to know just
how wide a channel must be in order to apply the Poiseuille flow approximation with success.
In many sources(Shames, 1992, Incropera and Dewitt, 1993), it is reported that if the aspect
ratio (width/height) of a channel is larger than 30 then Poiseuille flow is an excellent
approximation. Care will be taken to check the value of the aspect ratio of the channels used

in these experiments.

1.5 RESEARCH OBJECTIVES

There are two primary objectives in this thesis. The first is to experimentally
determine the necessary flow conditions to detach an adhered air bubble from a slit
microchannel. The second is to find a theoretical model that satisfactorily predicts the
necessary flow conditions.

1) The first goal of this thesis to accurately quantify the flow requirements to remove
an attached bubble of air inside extremely small channels. The flow requirements will be
found in terms of critical flow velocity, channel height, h, and bubble contact diameter, D..

The critical flow velocity will be found by creating different combinations of D and h and
experimentally determining the required flow velocity to detach the bubbles from the surface.
Each experiment will begin by creating a combination of D, and h and then proceeding to
increase the flow rate until the bubble is dislodged from its initial position. This will be

repeated for a wide range of D, and h. The results will be presented in terms of the Capillary
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number corresponding to the critical flow velocity and the ratio Ds/h. The experument
procedure is documented in full in Chapter 2.

2) The second goal of this thesis is to develop a model that can predict the data found
in the experimental stage. A model will be derived by formulating approximations for both
the drag force acting on the bubble to dislodge it and the surface adhesion forces acting to
counter this motion. Equating the two forces will mean the drag and adhesive forces are
balanced and the bubble is on the verge of motion. The model predictions will be compared

to the experimental results to verify the model’s accuracy.
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CHAPTER 2

CRITICAL STATE DETERMINATION EXPERIMENTS

2.1 APPARATUS

2.1.1 Experimental Overview

To investigate the flow requirements to remove an adhered bubble inside a slit
microchannel, several channels were constructed from glass slides and thin strips of plastic
shim. The channels ranged in height from 34 pmto 213 pm. Bubbles were created inside the
microchannels by injecting air bubbles upstream and manipulating them with buoyancy forces
into the center of the microchannel. After bubble adhesion was confirmed the bubbles were
removed by gradually incrementing the flow rate and allowing the system to reach steady
state. The steady state at which the bubble begins to slide was deemed the critical state and
the mass flow rate and pressure drop were recorded. The following sections will describe the
apparatus and technique necessary to conduct this experimentation.

The apparatus was comprised of a single stroke precision pump manufactured by
Ruska, a plexiglass test cell, a Validyne digital pressure transducer and display, a CCD digital
camera and Leica microscope connected with a SUN computer imaging system, and assorted
globe valves and tubing. The apparatus was arranged as shown in the block diagram in Figure

2.1. The apparatus will be described in more detail in the following sections.
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2.1.2 Computer Imaging System

The computer imaging system is simply depicted as part of Figure 2.1. A Cohu 4910
CCD monochrome camera is mounted upon a Leica Wild M3B microscope. The video signal
generated is transmitted first to a Sanyo black and white video monitor and then to a
VideoPix digital video processor. The video processor was used to record the signal and
digitize the image to a resolution of 640 x 480 pixels with 256 gray levels where 0 represents
white and 255 represents black. A Sun Sparc 10 Unix computer was used to operate the
digital video processor and to analyze the data. The software package which includes the
axisymmetric drop shape analysis-profile technique (ADSA-P) (Cheng et al., 1990), was
utilized to digitize the images recorded and to select points of interest. The ADSA-P
algorithms will not be used in this portion of the experiment but will be used in later sections
dealing with contact angle measurement.

Before the experiments could begin, the magnification of the microscope had to be
determined. A grid containing calibrated squares of length 250 pm was imaged and digitized
for each microscope magnification setting. By comparing the physical dimensions of the
square to the dimensions of the squares in pixels it is straightforward to find the calibration
factor. Three different magnification factors were used in this study. The calibration factors
determined for each magnification are given in Table 2.1. The 25X and 40X settings were
the most frequently used settings. The 16X setting was used only once and 6.4X was used
primarily to align the bubble in the microscope’s field of vision before zooming in and
focusing.

During the experiments the camera was always oriented as to be looking straight
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down at the bubble inside the microchannel. It is important that the camera be perfectly
vertical as to image the contact diameter correctly. Viewing the bubble contact diameter at
even a small angle from vertical would distort the image and ultimately give erroneous values
for the bubble contact diameter.

In this experiment it was necessary only to select points along the perimeter of the
bubble contact zone using the digitized images. The x-y coordinates in pixels were written to
an output file. This series of digitized points about the bubble contact perimeter could then
be analyzed to determine the bubble contact diameter.

The coordinates were used to perform a sum of squares minimization curve fitting
algorithm to the selected points. The perimeter of the bubble was fit with a circular profile.

The algorithm's output was the center of the circle and the bubble contact diameter in pixels.
A custom Fortran code was developed to accomplish this task and is available as Code 2.1
in Appendix A. The diameter could be converted from pixels to micrometers using the
calibration scale of the microscope at the proper magnification.

The imaging system was also used to determine the channel height prior to insertion
into the test cell. By digitizing the images of the cross-section of the channel, points of
interest are selected from which the channel height can be found. However, the insertion of
the channels into the test cell caused these values to change and thus cannot be trusted. This

will be discussed further in the next section.

2.1.3 Microchannels

A typical microchannel assembly drawing is shown in Figure 2.2. The slit
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microcharmels are constructed with 2 glass slides (15 mm x 30 mm x 1 mm) separated by 2
strips of plastic shim (15 mm x 2 mm) of various thickness acting as spacers. The two plastic
shim strips are placed lengthwise along the periphery of the glass slides and then glued into
place using Devcon 5 minute epoxy. Before construction, the glass slides were prepared with
3M FC-725 fluorocarbon coating to ensure that surfaces would be very smooth and
hydrophobic. The coating procedure is documented in Section 2.2.1. The hydrophobic
characteristic was desired to expedite bubble adhesion and to increase the bubble's equilibrium
contact angle. This will provide a stronger resistance to detachment and thus allow a large
range of flow rates to be tested before the bubbles are removed. Preliminary testing showed
that the bubbles were detached with extremely small flow rates and this was the motivation
behind coating the surfaces. The completed slit microchannel was then glued into the slots
inside the plexiglass test cell with Devcon 5 minute epoxy and allowed to set. Completed
channels ranged in height from 34 - 213 pm with a width of 11 mm.

For each chennel constructed, it was necessary to determine the channel height. The
channel heights were measured prior to insertion into the test cell via the computer imaging
system, but these measurements were deemed inaccurate because of possible channel
expansion or contraction during construction. The height could change due to unaccounted
amounts of epoxy infiltrating the cracks between the channel surfaces and the plastic shim.

That the two glass plates were kept perfectly parallel after insertion into the test cell could
not be verified. It was decided that a set of experiments for each channel would be conducted
to determine the correct channel height. For Poiseuille flow through a slit channel, the flow

rate is related to the pressure drop and channel dimensions by:



dpP _ 12Q0u

T @1

Hence, to determine the accurate channel height, one could measure the flow rate,
pressure drop, and since the fluid properties are known, the height of the channel can be
calculated by using Equation 2.1.

In this study, for each channel, the pump speed and bypass valves were adjusted to
produce a wide range of flow rates. The pressure drop and mass flow rate were measured at
each flow rate setting and used to calculate the channel height. The final result was the
average channel height computed for all flow rates. The results in Table 2.2 show a small

standard deviation.

2.1.4 Test Cell

A three piece plexiglass test cell was constructed to hold glass slit microchannels of
varying height. A diagram of a test cell without a microchannel inserted is given as Figure
2.3. Two narrow slots facing each other in the center of the cell hold the glass slit
microchannels in place. The microchannels were orientated with one channel surface glued
to the upper surface of the slot. The microchannels used were of various heights, so the
unfilled portion of the test cell slot was filled with Devcon 5 minute epoxy to prevent leaking.
There are two openings on the upper surfaces of the test cell just upstream and downstream
of the microchannel section which were used to connect the pressure transducer taps. There
are two additional openings that are used to the connect the cell to the rest of the piping

system. The long narrow plexiglass piece is screwed to the other two as shown. This piece
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forced all the channels to be of the same length and took much of the loading caused by

maneuvering the test cell during the experiments.

2.1.5 Precision Pump

The pump used throughout the study was a Ruska 2248 WII proportioning model
which operates by advancing a piston forward or backwards through a filled piston chamber
at a user specified rate. The speed at which the piston advances is controlled via a gearbox
which has 28 different speed settings. However, in this experiment, the primary method of
controlling the flow rate was via Valves 1 and 2 (Figure 2.1). By adjusting the degree of
openness of these two valves the flow rate could be diverted from the main line to the bypass
line, thus altering the flow through the microchannel. The pump's capacity, minimum flow
rate, and maximum flow rate are 500 e, 2.5 cm’/hr, and 560 e /hr respectively. The
gearbox could be disengaged and the pump could be operated manually. The piston could
then be advanced or retracted by turning a wheel mounted directly to the piston screw. The
pump was operated in manual mode for the bubble positioning process and operated with the

gearbox for the experiments.

2.1.6 Pressure Transducer

The pressure drop across the slit microchannel was determined using a Validyne
Model CD15 pressure transducer. This transducer operated on a diaphragm deflection
principle. The degree of deflection of the diaphragm is converted into a voltage which is

displayed. The accuracy of the transducer is 0.5% of the full scale reading. The diaphragm,
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and hence the full scale reading, was different for each microchannel used and varied from 1-

20 psi.

2.1.7 Liquid and Air Properties

The testing fluid was a base engine oil (MCT-30 - Imperial Oil) for all 5
microchannels tested. For one microchannel height three different variations of this oil was
tested (0%, 1%, and 5% ECA5205 by mass; ECA5205 is a typical polymer additive used in
engine oils) to investigate the effects of adding a surfactant. The air bubbles were always
formed from atmospheric air at room temperature. The average room temperature was
roughly 22°C and did not vary more than 2°C throughout the experiments. Relevant fluid
and interface properties at this temperature are given in Table 2.3.

The dynamic and equilibrium contact angles are not listed here as they are the subject

of experiments described in Chapter 3.

2.1.8 Miscellaneous Equipment

The bubbles were introduced via a 30 um syringe fitted into the soft flexible tubing
immediately upstream of the test cell. This is depicted in Figure 2.1 as well. Once the air
pocket was well inside the system the syringe was removed and replaced with a sewing
needle. This was done quickly to ensure there would be no additional bubbles leaking from
the syringe tip as the experiment progressed.

The remainder of the piping system consisted of Swaglok aluminum pipe and Swaglok

compression copper fittings. All valves in the experiment were Swaglok gate valves. The
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valves functioned by turning a knob which blocked the flow in proportion to the amount the
knob was turned.

The mass flow rates were found using a Mettler BB240 microelectronic balance and
a hand held stopwatch. The balance had a resolution of + 0.0005 g and the stopwatch had

a resolution of 1/100 of a second.

2.2 EXPERIMENTAL PROCEDURE

The following sections describe precisely the experimental technique followed to
conduct the experiments. The first section however, describes how the glass slides were

prepared prior to the microchannels being constructed.

2.2.1 Coating Apparatus and Procedure

The objective of this procedure was to ensure that a smooth and even coating of FC-
725 was applied to one side of a 15 mm x 30 mm glass slide. Prior to the coating procedure,
the glass slide should be bathed in acetone and dried several times to ensure a contaminant
free pre-coating surface. The glass slide is then taped with a 30 cm long strip of Scotch tape
to a stationary stand. Of course, the side of the slide attached to the tape will not be coated
well and should be the exterior side of the eventual microchannel. The coating was performed
with the apparatus shown in Figure 2.4. Figure 2.4 shows a buoyant platform upon which a
beaker of FC-725 coating rests. The platform is floating upon the water’s surface. By

draining the water away, the platform can be lowered in a very smooth manner. The slide is
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then submerged into the coating and the water draining process begins. The draining should
be such that the water level will fall at a rate between 0.33 cm/min and 0.5 co/min. These
rates correspond to the coating process taking between 6 and 9 minutes. These values were
empiricaily determined to produce adequately coated slides. The fall of the water level
depends upon the water’s surface area, draining tube diameter, and the elevation difference
between the water’s free surface and draining tube outlet, so some practice was required to
achieve the desired water level velocity. The resulting coating should appear to be perfectly
uniform in thickness and homogenous. The coating will typically take 1-2 hours to become

dry enough to handle without danger of marring the surface.

2.2.2 Bubble Positioning and Adhesion

The bubbles were deposited into the flexible tubing upstream of the slit microchannel
via a 30 pm syringe. Controlling the flow with the manual piston advance and with the
assistance of buoyancy forces, the bubble was positioned near the center of the microchannel.
This is a difficult and delicate process that requires some practice. First, by simply tilting the
test cell, the bubble will rise to the entrance of the microchannel. At this point, buoyancy
forces are no longer sufficient to force the bubble inside the channel. The bubbles formed at
the syringe tip were always much larger than the height of the channel and would not simply
flow inside the channel. Using the manual piston advance it was possible to generate large
enough pressures to force the bubble to deform such that it would enter the channel. Asa
consequence of these large pressures, the flow rate, and thus the speed of the bubble, entering

the channel was quite large. When the bubble initially enters the channel it will be carried
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along with the flow(i.e., the bubble does not immediately attach to the channel surfaces) quite
quickly towards the outlet. The piston must then be immediately retracted to create a
negative pressure and halt the bubble before it exits the channel. This requires much practice
as retracting the piston too quickly will cause the bubble to speed back towards the inlet.

When done properly, the bubble can be stopped approximately in the center of the
microchannel. All valves were then fully closed so that the bubble would be undisturbed by
flow and adhesion to the upper and lower surfaces of the microchannel could take place. The
oil film separating the air bubble from the solid surface slowly thinned, taking on average 30
minutes to reach a stable state. The bubble adhesion process is documented pictorially in
Figure 2.5. The images show the process of a typical bubble adhesion process. Figure 2.5a
shows a bubble that has just been positioned in the microchannel. The circular line is the oil-
air interface. The thickness of the perimeter line is a measure of how much curvature is
present in the curvature. This perimeter thickness allows indirect observations of the contact
angles to made. This will be discussed in detail in Section 2.3.3.1. Inbside the circle is the
bulk air phase and outside is the bulk oil phase. At this point, the oil film separating the
bubble from the solid surface is completely intact. As time passes, the oil film will thin and
drain away. Figure 2.5b is the same bubble 5 minutes later. Visible now are small
accumulations of oil inside the bubble. This means that the oil film is both draining away frpm
the bubble to the bulk phase and forming small droplets inside the bubble perimeter. After
25 minutes the same bubble is shown in Figure 2.5¢c. Now the oil film has reached a steady
state. Several oil droplets have formed inside the bubble after having been left behind in the

film thinning process. Most bubbles in the experiments took similar lengths of time before
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reaching a steady state. It should be noted that although the oil film seems to be completely
dissipated from most of the contact surface, this is not the case. A thin film of oil is always
present meaning that the surface is always prewetted with oil. This is an important distinction
to make when determining the correct contact angles to use. This will be discussed n

Chapter 3 as well.

2.2.3 Flow Increment Procedure
The experimental procedure used to increase the flow rate incrementally until the
bubble detaches is described below. In the experiment, the system is filled with MCT-30 oil.
A bubble of air is introduced in the tubing upstream of the channel using the micro-syringe
and is transferred to the center of the channel using buoyancy forces (i.e., tilting the test cell)
and by pumping the fluid manually. Thirty minutes was allowed fqr the bubble to adhere to
the surface as described in the previous section. The computer imaging system was used to
determine the initial contact diameter of the bubble. The system consisting of the pump and
valves was then set to run with a very small flow rate. This initial small flow rate is equal to
the flow rate increment which varied from channel to channel. For each channel, it was
attempted to keep the flow rate increment as consistent as possible. The primary method of
controlling the flow rate increment was by observation of the pressure transducer display. A
small but convenient value of a pressure drop increment was chosen. Typically the pressure
increment was 0.01 psi for the 213, 164, 122 pum channels and 0.1 psi for the 60 and 34 pm
channels. Using Equation 2.1, the approximate corresponding flow rate increments can be

solved for. The flow rate increment via Equation 2.1 are approximate rather than exact
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because the insertion of an obstructing bubble is sure to alter the pressure drop to some
extent. The approximate flow rate increments for each channel are summarized in Table 2.4.
The flow increment was difficult to repeat with consistency. The amount of flow that was
diverted to the bypass line was extremely sensitive to any change in the gate valve’s position.
Using extreme caution to rotate the knobs of the valves as small amount as possible was
sufficient in most cases to cause the flow to increase by approximately the desired amount.
This difficulty in generating small increments will later be shown to be the largest error in the
experiment. When the pressure drop reading reached a constant value after approximately
10 minutes, the system had reached a steady state. The system was kept at steady state for
30 minutes while the oil flowed into a beaker at the outlet of the tubing system. The weight
of the oil collected was measured using a Mettler BB240 electronic micro-balance. In this
manner, the mass flow rate of the oil flow was accurately determined. The steady state
pressure drop was also recorded. Using the pressure transducer reading as a guide, the flow
rate was increased according to Table 2.4. At the new steady state the flow rate and pressure
drop measurements were repeated. This procedure was repeated until the bubble was
observed moving with the flow. During the experiment, the bubble's position and contact
diameter were observed and recorded by the computer imaging system and the bubble motion
can thus be detected. The flow rate and pressure drop at the steady state in which the first
bubble motion is detected are considered the critical flow rate and the critical pressure drop.

As mentioned in the above procedure, a period of ten minutes was required for the system
to reach a steady state. After this period had elapsed, the position of a line tangent to the

upstream side of the bubble was recorded. A period of 2 minutes was allowed to elapse, upon
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which the position of the same line was again recorded. If the position of the line had
changed appreciably, then motion was deemed to have occurred. To ensure this, the process
was repeated for another 2 minute interval. If bubble motion had again been detected, then
the flow rate and pressure drop across the channel were recorded as the critical values.
Technically, bubble motion does not constitute bubble detachment as the still attached pocket
of air is simply sliding along the surface. However, the terms bubble motion and bubble

detachment will be synonymous throughout this work.

2.3 RESULTS AND DISCUSSION

2.3.1 Summary of the Experiments Conducted

The independent variables in this study were the channel height, h, and the bubble
contact diameter, D.. The channel width, W, channel length, L, were kept constant at values
of 11 mm and 30 mm respectively throughout the experiments. The surface coating
(FC-725), fluid density and viscosity were kept constant throughout the majority of the
experiments. The fluid density and viscosity were changed slightly by adding a polymer
additive to observe any possible effects in the later stages of the experiment. Those results will
be discussed separately.

For each channel height used, eight bubbles of different contact diameters were tested.
Typically, the bubbles generated fell in the range 2 < D./h < 18 for each channel. Generating
large bubbles in small channels proved very difficult as large bubbles were found to have a

tendency to shear apart in the positioning process. Thus, the range of ratio D.h was kept as
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a constant though the range of the contact diameters tested for each channel height was quite
different. Following the procedure outlined above, the critical flow parameters causing
bubble detachment were determined and recorded. It was found most convenient to represent

the critical flow parameters in terms of the critical capillary number:

Cac,=‘—‘yi"i 2.2)

Normalizing the bubble contact diameter with respect to the channel height results in the
dimensionless contact diameter, Do/h. The critical Capillary number and the ratio D/h will

be the primary means of presenting and discussing the experimental results.

2.3.2 Two Phase flow Considerations and Bubble Shrinkage

During the course of the experiments, it was noticed that the air bubble’s contact
diameter would decrease as the experiment progressed. The most likely explanation is that
the air molecules would diffuse through the interface into the oil bulk phase. This observation
shows that the experiment is actually a two phase flow with the oil phase capable of
dissolving the air phase. This phenomenon brought about the need to record the bubble’s
contact diameter at every flow increment along with the flow rate and pressure. In this
section, the molecular diffusion effect will be quantified and its effect on the experiment
results examined.

The contact diameter was tracked for all bubbles used in the experiment with the
exception of the data at h =213 um. Of course, this means that the measured values for this

channel are inaccurate. This data will not be used for analysis but will be retained for
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qualitative comparisons.

Figure 2.6 is plot of the behavior of the bubble contact diameter during the
experiments with h=164 um. Each curve represents the data for one bubble test. In each
case, the contact diameter decreases monotonically as the pressure drop across the channel
increases. There seems to be no identifiable pattern as to how the contact diameter decreases.

There also seems to be no rule as to how much the contact diameter will decrease by.
Several bubbles shrank extensively while the contact diameter decrease was small for others.
Clearly, this is a complex phenomenon which is difficult to explain.

The molecular diffusion did not only occur when there was a flow present. Two
bubbles were placed inside the h=164 pm channel and left there for a period of nearly three
days. Images of the bubbles were taken at regular intervals and the contact diameter
computed. Figure 2.7 is a plot of the results obtained. Both bubbles became smaller as time
passed. The smaller bubble completely dissipated at roughly t=1.5 days. The larger bubble
eventually reached a steady value. Possibly, the oil had reached its air saturation limit at this
point. Comparing Figure 2.6 and Figure 2.7 shows the rate of bubble shrinkage is much faster
when a shearing flow is present.

The decreasing of the contact diameter is clearly not a minor effect and how this may
effect the data must be analyzed. The shrinking did not affect the measurement of the critical
state. The rate at which the bubble’s contact diameter decreased was not large enough for
it to be mistaken for motion. When the bubbles began to slide, the velocity was large enough
to be seen clearly. The shrinking of the bubble was a gradual process which was not

detectable by simply observing the bubble. By recording the bubble contact diameter during
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the course of the experiments, the accuracy of the data was not comprised by the gradual

shrinking of the bubble.

2.3.3 Critical State Results
2.3.3.1 Contact Angle Hysteresis

As discussed in Chapter 1, with an attached bubble subjected to some external force,
the contact angles will change to resist motion. In this experiment, the bubbles are subjected
to drag forces and a change in the contact angles was expected. From the vantage point of
looking straight down at the bubble, the curvature of the interface should be seen to change
with a change in the contact angles. Figure 2.8 demonstrates this more clearly. The angle,
@, is the contact angle. It is customary to measure the contact angle on the liquid side.
However, it was more convenient in this study to measure the contact angle from the air side
and this was done in the remainder of this work. The oil-air interface casts a shadow which
is visible as a dark line about the bubble perimeter. The thickness of the interface shadow is
indicative of the value of the contact angle. If, in Figure 2.8, 6 = 90°, then the interface
shadow would be very narrow. If6 was closer to 180°, then the interface shadow would be
much thicker. The changing of the contact angles were observed during the experiment by
examining the camera images. A sequence of images taken during the course of one
experiment are presented as Figure 2.9. It is expected that the contact angles on the
downstream side should be larger than 6., and the contact angles on the upstream side should
be smaller than 6.. Thus, the increased contact angle on the downstream side should cause

the oil-air mterface to deflect a greater distance outwards away from the bubble center. This
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will cause a thick interface shadow. The upstream interface should behave in the opposite
manner and shift towards the bubble center. This will cause a thin interface shadow. Both
phenomenon can be seen in Figure 2.9. Taking note of the direction of the flow (the arrow
points in the proper direction), one can observe that the darkened line which represents the
oil-air interface shadow becomes thicker on the downstream side and thinner on the upstream

side.

2.3.3.2 Critical States

The experimental results for all tested channel heights are shown in Figure 2.10. The
presents the data in terms of Cacr multiplied by 1000 versus D./h. The best fit line to this data
is 1000Ca.= -0.0036(D./h) + 0.426 which is a linear relationship. The data for h=34 pm
shows that Ca. has little dependence upon D/h as the slope of the curve(-0.0036) is very near
zero.

The experimental results for the channel height of 60 um are also shown in Figure
2.10. Again it is seen that Ca,, has little dependence upon Do/h. The equation for the best fit
line is 1000Ca. = -0.0024(Dy/h) +1.00. In comparison to the data for h=34 um, the critical
Capillary numbers for h=60 pm are greater than those found for the smaller channel. The
relationship again seems to be linear as the best fit line agrees well with the data.

The data from the experiments with h=122 pm are given in Figure 2. 10 as well. At
this channel height, the critical Capillary can be seen to be a function of D/h. The critical
Capillary number is seen to decrease as the bubble contact diameter increases. In general,

Ca., at this value of b, is larger than the values found for the smaller channels. Once again the
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relationship seems linear as indicated by the agreement of the linear regression line. The
equation of the best fit line is 1000Cac = -0.1081(D./h) + 2.895.

The critical values obtained for the experiments with h=164 um are given in Figure
2.10. The dependence of Ca. upon D./h is apparently linear as shown by the linear regression
curve. The critical Capillary number decreases as the contact diameter increases. The
equation of the best fit line is 1000Cac = -0.1576(D./h) + 4.128. Comparing the data with
the data from the other channel heights shows that in general, Ca,, is larger for this channel
height.

The relationship seems to be linear for each set of data. For each value of h, Ca
decreases as DJ/h increases. In simpler terms, the smaller bubbles require a stronger shear
flow than the larger bubbles to be removed. Intuitively this trend makes sense, as one would
expect that the drag force on a tiny bubble should be much smaller than on a large bubble.
Another trend visible from Figure 2.10 is that the largest Ca. were found for the largest
channel sizes. This means that for similar geometrical situations, the bubble existing in the
larger channel would be more difficult to remove. Another interesting trend is the decreasing
dependence of Ca.. upon Dc/h as the channel height decreases. As h decreases from 164 um

to 34 um the slope of the curves decreases from —0.1576 to essentially zero.

2.3.3.3 Other Fluids and Repeatability
To investigate whether the same trends would be observed with a oil of slightly
different composition two different oils were created by adding 1% and 5% by mass quantities

of the surfactant ECA5205 (Imperial Oil) to the base oil MCT-30 (Imperial Oil). The effect
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of the surfactant was to slightly alter the oil viscosity and density(<1 %) and to change the
surface tension a small amount as well. ECAS5205 is a popular additive in the oil industry so
it is desirable to observe any changes in the experimental results from its use. The entire
piping system was flushed repeatedly with the altered oil to ensure that the composition of
the oil would not be in doubt before proceeding. The experimental data did not show any
appreciable change from the unaltered oil tests. This combined with the very small changes
in the oil’s viscosity and density made these experiments a repeatability test. The new fluids
were tested at only one channel height (122 pm). Figure 2.11 shows the results in
comparison to the data recorded with the unaltered base oil. The data points all gather about
the original data without significant deviation, which confirms the repeatability of the

measurement process.

2.3.3.4 Explanation for Experimental Scatter

Some of the deviation of the data points from the best fit curves can be explained by
examining the shapes of the bubbles. Most of the bubbles were close to circular as was
expected, but there were exceptions. Some of the bubbles did deform during the experiments
as they lost volume. The reason could be uneven molecular diffusion through different
sections of the interface or an imperfect coating causing the bubble to prefer certain parts of
the surface over others. Of course, having a bubble of non-circular perimeter will
dramatically change the value of the drag force and hence where the critical state occurs.
Figures 2.12-2.15 catalog the contact perimeters of the bubbles formed during the

experiment. The original images were discarded but the x-y coordinates of the selected
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perimeter points were saved. The figures were generated by mapping the perimeter points
according to the proper microscope scale. The direction of the flow is approximately from
the lower left to the upper right in each case as per the arrow in Figure 2.9. The vast majority
of the bubbles generated remained near circular at the critical state but there were some
notable exceptions. Some bubbles (Figure 2.14d, Figure 2.15g) deformed to an ellipse like
shape with the major axis parallel to the direction of the flow. Other bubbles (Figure 2.12f,
Figure 2.13f) deformed to shapes that were circular but with odd curvatures spoiling the
circular perimeter. That the bubbles were not all perfectly circular at the critical state explains

some of the scatter present in the data.

2.4 PHYSICAL EXPLANATION OF OBSERVED TRENDS

First, that Poiseuille flow exists within the microchannels should be verified as many
of the following arguments assume this. In Chapter 1, it was shown that if the aspect ratio
of the channel is larger than 30, then Poiseuille flow is an excellent approximation. The
channels tested in these experiments ranged in height from 34 pm to 164 um with a constant
channel width of 11 mm(11000 um). The aspect ratios can readily be shown to range from
67 to 324. The conclusion is that assuming Poiseuille flow is valid for all the channels tested.

To explain the trends observed in the data, the behavior of the drag force as the
bubble contact diameter and channel height change can be examined. It is reasonable that a
bubble with a larger diameter should experience a larger drag force than that experienced by

a smaller bubble. The large bubble will simply block more of the channel and will have a
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larger surface area upon which pressure and viscous drag forces can act. If the discussion is
limited to a specific channel height, this explains why the smaller bubbles require a larger
shearing fluid velocity for detachment. Examining the Poiseuille equation, Equation 2.1,
reveals that the pressure gradient in the channel is inversely proportional to n’. Itis logical
to assume that the pressure drag force then will get large very quickly as the channel height
decreases considering the same bubble contact diameter and flow velocity. However, the
critical flow velocities were found to be smaller in the smaller channels. This will cause a
decrease in the drag force. Equation 2.1 shows that the pressure gradient is proportional to
U and so the drag force will correspondingly decrease in the same way. Another factor is that
for similar bubble contact diameters, the surface area on which the drag forces can act gets
smaller with h. In summary, there are three factors to consider when decreasing the channel
height: the critical flow velocity decreases and will lessen the drag force, the surface area
decreases linearly with h and should lessen the drag force, and the pressure gradient increases
in a cubic manner with decreasing h and this will increase the drag force. From the data, it
is obvious that the increase in the pressure gradient dominates the effects of the lower
velocities and decreased surface area.

The data shows that for similar bubble contact diameters the larger drag was present
on the bubble in the smaller channel. To demonstrate that this indeed is the case, the
experimental data is redrawn as Uy versus D. in Figure 2.16. It is clear from this plot that in
a range of similar contact diameters, the bubbles in the smaller channels were easier to
remove, i.e., the critical velocity was smaller for smaller channels. The final observable trend

is the seemingly lack of dependence of Ca. upon Dc/h at smaller channel heights. This can
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be explained by examining the range of contact diameters tested for h=60 and h=34 pm. The
difficulties in generating bubbles with large contact diameters caused the range of D. for the
smaller channel heights to be limited. A dependence upon D. was not established as the range
of D. was too small. It seems reasonable to think that if larger bubbles were possible in the
smallest channels, then the required shearing velocity should be quite small and a variation of
Ca.. would be observed. For that reason, the data when presented in terms of D¢/h is
somewhat misleading in terms of the trends that can be identified. Plotting in terms of D/h
exaggerates the range of bubble contact diameters that were actually tested. Physically, it
should be impossible for the critical capillary number to have no dependence upon the contact
diameter. For example, as D, approaches the channel width, W, any flow rate greater than
zero will cause the bubble to move as the bubble would be completely blocking the span of
the channel. Ifthe channel becomes blocked off then the pressure force on the bubble would
quickly increase and easily overcome the adhesive force. This would result in Ca. ~ 0.

Therefore, all the curves present in Figure 2.10 must cross the Dc/h axis at some point
corresponding to D.=W. This point on the axis will be different for each channel height. For
h=164 pum the point should be D/h=67. The data for h=122, 60, and 34 pm should
eventually cross the D/h axis at Do/h=90, 183, and 324 respectively. Trying to extrapolate
the experimental data to confirm this is difficult as the nature of curves is not guaranteed to
be linear and the scatter in the data adds uncertainty to any extrapolation performed.

However, recognizing that the data must behave in a manner to Cross the D./h axis at the
points outlined above does explain why the curves have different slopes for different values

ofh. The curve for =164 um must decrease faster that its counterparts at smaller channel
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heights as it must cross the axis at a smaller value of Dco/h. The curves for h=60 pum and h=34
pm show very small slopes in part because of the narrow range of D. tested and in part

because theoretically they cross the Dc/h axis at very large values of Dc/h.

2.5 UNCERTAINTY ANALYSIS

The accuracy of the experimental data will be discussed in this section. All measured
quantities taken will be considered and conclusions regarding the accuracy critical state

parameters will be made.

2.5.1 Pressure Measurements

The pressure transducer had an accuracy of 0.5% of the full scale reading. To
accommodate the large range of pressure drops the full scale reading had to be adjusted for
each channel height. The channels with h=213 pm and h=164 pm required a full scale reading
of 1 psi. For h=122 pm, the full scale reading was 2 psi and for both the h=60 pum and h=34
pm the full scale reading was 20 psi. The accuracy for the pressure reading is then + 0.005
psi for the 213 and 164 um channels, + 0.01 psi for the 122 pym channel, and £ 0.1 psi for the
60 pum and 34 pum channels. Examining the experimental pressure drops, it seems that the full
scale reading is needlessly large. However, the expected pressure drops anticipated during
the experiments were not the deciding factor in choosing a full scale reading. The bubbles
could be maneuvered with buoyancy forces only to the entrance of the microchannel. From
here only a combination of buoyancy forces and pressure resulting from manually advancing
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the piston could coax the bubble inside the channel as described in Section 2.2. The required
pressures to force the bubble inside the channel were found to be much larger than those
encountered in the experiment. Changing the transducer diaphragm after the bubble was
inside the channel would not have been feasible as the reinstallation of the transducer into the
piping would introduce unwanted air bubbles into the test cell. All the pressures were
calibrated to display a maximum of 10 volts despite the thickness of the transducer
diaphragm. The transducer calibration demonstrated linear behavior while both increasing
and decreasing the pressure as shown in Figure 2.17. The calibration for all diaphragms was

performed using an Omega PCL-601 digital pressure indicator.

2.5.2 Mass Flow Rate Measurements

The mass flow rate of the oil was measured by accumulating a mass of oil into a
container over a measured period of time. The mass of the oil accumulated was measured
using the electronic balance which has a resolution of * 0.0005 g. The elapsed time was
measured with a stopwatch. The mass flow rates throughout all of the experiments was
extremely small. The oil would flow through the test cell and after sufficient fluid had
accurnulated a drop would fall into the waiting container. The container was moved into
position after a drop had fallen. The time was started immediately after the initial drop had
fallen. The time was ended as the final drop fell and the container was immediately removed.
The total elapsed time depended upon how often the drops fell and ranged from roughly 30
minutes for the larger channels to roughly 90 minutes for the smaller channels. An estimate

of the accuracy of the time measured taking human error and reaction time into account
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would be %1 second. Typically, the mass of oil collected was less than 1 gram. For each
critical state the mass flow was measured three times and an average taken. The equation for
the mass flow rate is:

m= (mz;ml) (2.3)

where m; and m, are the initial and final masses of the container, and t is the elapsed time.
Following the method outlined by Beckwith et al(1993) to determine the error propagation,
it follows that the uncertainty in the mass flow rate measurements is:
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where u; are the uncertainties in the respective measurements. Taking the appropriate

derivatives and substituting results in:
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Evaluating Equation 2.5 for typical data points for each of the channel heights results
in very small mass flow rate uncertainties. For example, the uncertainty in the flow rate
measurement for a critical state with h=60 pm was + 7.16x10™ g/hr(on average £1.5%). This

accuracy is possible because of the lengthy periods in which the fluid was accumulated.

2.5.3 Mass Flow Rate Increment
Though the individual measurement of the mass flow rates can be considered very
accurate it is not representative of the error in the mass flow rate at the critical state. The

experiment proceeded by increasing the flow rate in small steps. The limiting factor in
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adjusting the flow rates was the sensitivity of the flow rate to small changes in the valve knob
position. The flow rate could only be changed with consistency by turning the valve’s knob
a very small distance and waiting for the system to reach a steady state. As mentioned in
Section 2.2.3, the pressure transducer reading was the guide to changing the flow rate a
consistent amount with each increment. The pressure transducer resolution and the sensitivity
to the gate valve adjustment were the limiting factor in how small a flow increment could be
consistently reproduced.

The critical state was defined as the first steady state that produced bubble motion.
However, the actual critical state could exist anywhere between the previous steady state and
the critical state. Thus, the limiting factor in deciding the accuracy of the critical flow rates
is the flow rate increment. The flow rate increments given in Table 2.4, show that the
resolution of the critical flow rates (i.e., the flow increment) becomes finer and finer as the
channel heights decrease. However, the relative accuracy worsens as the channel heights
decrease because the magnitude of the flow rates gets smaller. A typical percentage error
(error/reading) for the largest channel height of 164 pm is +4.1%, while for the smallest
channel height of 34 pm the percentage error is typically +17%. The large errors at the
smaller channel heights are clearly undesirable but unavoidable. The apparatus had limited
flow rate control and the experiment required the measurement of extremely small flow rates.

The critical flow rates for the smallest channel were measured at values around 0.05 g/hr.



2.5.4 Bubble Contact Diameter Measurement
The contact diameter of the bubbles was determined by the computer imaging system
and a circular curve fitting algorithm. The perimeter points were manually selected at about
70-80 points about the contact line. It can be assumed that regardless of the camera
magnification the selection of the perimeter points could be done with the same degree of
accuracy. The points were chosen with great care and only where the contact line was sharp.
A reasonable estimate of the precision in the selection is + 1 pixels in both directions. It is
not clear how the uncertainty in the position of so many perimeter points will propagate
through the sum of squares minimization algorithm. Assuming that instead of using this
algorithm, two perimeter points that would constitute the correct bubble contact diameter are
chosen, then the uncertainty in the measurement of the contact diameter can be found in an

RMS manner as follows:

1
up,=( uf., + ui_, + uf:-, +uiz )2 (2.6)

where x1, X2, V1, v» are representing typical pixel coordinates. This equation evaluates to an
uncertainty in the bubble contact diameter of £ 2 pixels. For the most frequently used
microscope magnification factor (x25) this corresponds to an uncertainty of *13 pum.

However, there are other forms of error possible in this measurement. The bubbles are not
all perfectly circular as the curve fitting algorithm assumes. The effect of this ‘shape error’

is difficult to quantify other than to explain the scatter in the data as done in Section 2.3.
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2.5.5 Channel Height Measurement

The height of the channels was determined by pumping oil through the channels at
different flow rates without any bubbles present. The pressure drop across the channel and
the mass flow rate were determined and by using Equation 2.1, the channel height could be
determined. The calculated channel heights showed a small standard deviation with a

maximum value of 2 um for the largest tested channel.

2.5.6 Error Propagation - Critical Capillary Number

The capillary number is a nondimensional quantity as shown in Equation 2.2. It is
dependent upon the oil viscosity and oil/air surface tension. These quantities will be assumed
to be exact for this discussion. The average flow velocity is a derived quantity which is

computed from the measurements of the volumetric flow rate and the channel height as

follows:
0]
= = 2_7
U ; (2.7)
and the uncertainty in the average velocity is found by:
1 2 -0 > 4
= ((——=ug ) +(—= ")z 2.8
uy,, ((thg) (h:Wuh) ) (2.8)

The uncertainty in Q is the uncertainty in the mass flow rate measurement but
corrected for the difference in units. To relate the uncertainty in the mean critical velocity to
the uncertainty in the critical capillary number, simply multiply by p/y(the fluid characteristics

are considered to be known exactly). Evaluating Equation 2.8 for a typical data point at
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h=164 um results in an uncertamty in Ca.. of + 9.67x10”. The same calculation for a h=34
um data point results in an uncertainty in Ca., of 7.24x10”°. These absolute uncertainties
correspond to relative uncertainties of + 4.9% and + 18.0% for the 164 pum and 34 pm
channels respectively. This leads to the conclusion that the measured data is more reliable

with the larger channels than with the smaller channels.

2.5.7 Error Propagation - D/h

In the previous sections it was found that the uncertainty in the bubble contact
diameter could be estimated as being + 13 um for most measurements and that the largest
uncertainty in the channel height was + 2 um. Following the same procedure as in the

previous section the uncertainty in the ratio D/h can be shown as:

1 5> - > L
ube = ((Zuo‘ )+ }?c un) )2 (2.9)

Evaluation of Equation 2.9 for both h=164 pum and h=34 pm and D//h=10 (i.c., using
a fictitious measured diameter to create the ratio 10), uncertainties in the ratio D/h of +
0.14(+1.4%) and + 0.69(+6.9%) are found respectively. Once again, the largest uncertamties
are found with the smallest channel height. Equation 2.9 shows that larger bubble contact

diameters will result in larger uncertainties in D./h.

2.5.8 Conclusions regarding Experimental Data
The method of presenting the data has been to plot the critical capillary number versus

the ratio of Dy/h. It is clear that the data has errors in both these quantities. The data has the
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largest relative uncertainties for the smallest channel height of 34 um. The reason for larger
uncertainties for the small channels is that the bubble detaches with an extremely small flow
rate. It was difficult to decrease the flow increment sufficiently for this channel to reduce the
relative uncertainty due to the limitations of the apparatus.

Overall, and especially for the larger channels, the experimental data has been shown
to have small uncertainty in comparison to the quantities being measured. In particular, the
results at h=164 and h=122 pum showed a relative uncertainty in the critical capillary number
measurements of less than £12% for most trials. The relative uncertamties became worse as
smaller channels were tested due to problems with being unable to generate extremely smali
flow increments. For all the channels, the measured ratio, D./h, had absolute uncertainties
of less than 0.7 which is a relative uncertainty of + 3.5% in comparison to the largest value

of D/h tested.
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Table 2.1 — Microscope Conversion Factors

' Microscope Setting " Conversion factor
6.4X 0.03092 pixels/um
16X 0.0955 pixels/um
25X 0.1546 pixels/um
40X 0.2492 pixels/pm

Table 2.2 — Channel Height Measurements
- .- Average Channel Height (1im) Standard Deviation (um)
213.4 1.90
163.8 1.03
121.6 0.46
59.8 0.69
33.7 0.33
Table 2.3 — Fluid Properties
L e MCT-30 at T=22°C _
Density (kg/m’) 879.2
Viscosity (kg/m/s) 0.286
, _ Atmospheric Air at T=22°C
Density (kg/m’) 1.25
Viscosity (kg/m/s) 1.7x10°
n MCT-30/Air Interface v
Surface Tension (N/m) | 0.030

Table 2.4 — Approximate Flow Increments

Channel Height (pm) Approximate Flow Rate Increment (m’/s).
213 6.57x10™"!
164 3.09x10™""
122 3.92x10™""
60 1.54x10™"
34 0.53x10™"!
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Figure 2.5a — Bubble adhesion at t=30 seconds
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Figure 2.5b — Bubble adhesion at t=5 minutes
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Figure 2.5¢c — Bubble adhesion at t=25 minutes
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Figure 2.7 — Undisturbed bubble shrinkage (h=164 pm) with time
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Figure 2.12 — Bubble shapes at critical state for the h=34 um experiments
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CHAPTER 3

CONTACT ANGLE MEASUREMENTS

3.1 MOTIVATION

As discussed in Chapter 1, the retaining force of the bubble will be dependent on the
value of the advancing and receding dynamic contact angles. In order to evaluate the
adhesion force correctly it is necessary to determine the surface tension of the MCT-30 in air
along with the advancing and retreating dynamic contact angles. The dynamic contact angles
that were present in the experiments of Chapter 2 could not be directly measured as there was
no way of viewing the bubbles contact region with sufficient resolution. As discussed briefly
in Chapter 1, the dynamic contact angles will depend upon the height of the channel as well
as the Capillary number. In this experiment, the maximum static advancing and receding
contact angles will be measured. These values will represent the extreme values of the
dynamic contact angles. In effect, the range of the possible dynamic contact angles will be
determined. The surface tension has been measured to be a value of 0.030 N/m [Gu and Li,
1996] using the ADSA-P software package [Cheng et al, 1990]. It is the goal of this
experiment to determine the extreme values of the advancing and receding dynamic, and
equilibrium contact angles for an air bubble in MCT-30 attached to a prewetted FC-725
surface. The equilibrium contact angle of a MCT-30 sessile drop on a dry FC-725 surface
has been measured [Gu and Li, 1996] as 78.6°. This angle cannot be used however as the

surfaces in the experiments of Chapter 2 were prewetted with oil before the air bubbles were
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introduced. This difference is important as a thin oil film will always be present between an
adhered bubble and the surface for a prewetted surface. The same cannot be said for a dry
surface. The presence of an oil film will cause the oil to easily wet the surface and thus

change the physics of the situation.

3.2 PROCEDURE AND EQUIPMENT

An experiment similar to the one conducted by Macdougall and Ockrent(1942) was
modified to fit the needs of this study. In Macdougall and Ockrent’s work, a droplet is
deposited onto an inclined surface and allowed to reach an equilibrium position. Gravity
produced an external force on the drop and the contact angles deformed to hold the drop in
place. In the present work, an investigation similar in nature to this will be performed. Air
bubbles will be generated on the underside of a coated plate. The plate will then be inclined
and the effect on the contact angle hysteresis will be observed. The angle of inclination will
increase until the air bubble is dislodged.

The apparatus for this test in shown in Figure 3.1. A 15 mm x 30 mm x 5 mm
aluminum plate(polished with 0.05 pm grit) coated with FC-725 was supported by two plastic
supports. The plate and supports are inside a plexiglass container which is filled with MCT-
30 engine oil. An aluminum plate was used to facilitate construction. That a metal plate is
used rather than a glass slide(as per the construction of the microchannels) is inconsequential
as it is the coating that the bubble will be adhered to. The surface chemistry will be identical

regardless of the material the plate is made with. A hole of diameter 250 um is drilled in the
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center of the metal and a capillary tube wwith an outside diameter of 200 um is inserted and
glued into place using Devcon 5 minute espoxy. The inside diameter of the tube was 30 um.
A flexible nylon tubing with an inside ediameter of roughly 250 um was fitted over the
capillary and the other end of the tubing wwas used to connect to a syringe pump again using
Devcon 5 minute epoxy to maintain the czonnection. The syringe pump was controlled with
an Anahiem Automation (Model # DPF72:) Controller which directed the rotational speed and
rotational direction of an Anahiem A.utomation Miniangle stepper motor (Model #
23PM-C402). The stepper motor had a =esolution of 1.8 degrees/step. The motor rotated
a screw which in turn advanced the syringe plunger. The screw had 21 threads per inch which
translates into a forward displacement of the syringe plunger of 2.38x10™ inches per motor
step. The syringe cavity was filled with aair. The coated plate was positioned such that the
hole would be approximately in the micidle of the two plastic supports. The plexiglass
container has a glass window on the side crientated towards the digital camera setup to allow
for an unobstructed view of the bubbles. Initially the plexiglass container is resting on a flat,
horizontal cast iron lever. The material ozf which the lever is constructed is not important so
long as the lever will remain sufficiently riggid under small loads. Immediately below the lever
there waits a Cenco lab jack which be thes source of the inclination. By raising the jack, the
lever will cause the plexiglass container, pllastic supports, and coated plate to incline as shown
in Figure 3.1. The same camera system a:s described in Chapter 2 is used in this experiment
as well. The camera should be orientate=d as to be looking slightly upwards at where the
bubbles will form. The camera should be focused with adequate resolution on the circular

opening on the underside of the coated rplate. The camera looks slightly upwards at the
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opening as the true contact angles of the bubble can be observed without possible distortion
from the edges of the plate. Again, the camera was connected to the Sun computer imaging
system as described in Chapter 2. To provide a clear white background for the camera, a
bright light source (Jena Instruments Model # 300246) was directed through a sheet of
semi-transparent white plastic. This allowed a sharp bubble profile to be captured by the
camera.

Bubbles were generated by directing the syringe plunger to advance at a slow rate
until a bubble became visible on the underside of the plate. Once a bubble was observed the
syringe plunger was halted and the bubble was allowed to reach an equilibrium position. The
lever and thus the coated plate were in a horizontal configuration at this time. To be
consistent with the microchannel experiments, the oil film was allowed to reach a steady state
before applying an external force to the bubble. A waiting period of approximately 30
minutes was allowed before each trial. Bubbles generated typically had a contact diameter
of about 2 mm and the procedure became fairly repeatable with regards to producing a similar
sized bubble for each trial. Upon the ending of the 30 minute period, an image was taken of
the bubble at equilibrium to evaluate the equilibrium contact angle. The process of inclining
the plate then began. The Cenco jack was raised slowly until it made contact with the
protruding end of the lever. By further raising the jack, the lever would cause the entire
system to be inclined. This inclination will cause a small fraction of the buoyancy force to act
on the bubble in the direction of the raised axis of the plate. This external force will be met
by the contact angle hysteresis and the changed contact angles will be recorded digitally by

the camera and computer imaging system. The jack was raised slowly until a small change
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in the bubble's position could be observed on the video monitor display. A period of 2
minutes was allowed for the bubble to reach a new equilibrium after which an image of the
bubble was taken. The degree of inclination would then be increased and the process
repeated until the bubble detaches and begins to slide along the surface. A bubble on the
verge of detaching is given in Figure 3.2. The dark, roughly circular shape is the bubble while
the surrounding oil shows up as the white background. This figure gives an exceilent view
of both the advancing and receding contact angles. The slope of the solid surface
demonstrates the direction of the buoyancy force. It can be seen that the advancing contact
angle is quite large as was expected from inspection of the images from the microchannel
experiments. The images from the microchannel experiments also suggested that the receding

contact angle should be near 90° and this is also confirmed qualitatively in Figure 3.2.

3.3 DATA ANALYSIS

The ADSA-P software was utilized to analyze the bubble profile at the angle of
inclination just prior to detaching to determine the maximum contact angles. Unfortunately,
the software has two failings when it came to this particular application. First, it assumes that
the contact angles on both edges will be similar and thus it outputs an average contact angle,
which was not the goal of these tests. Secondly, difficulties were encountered while trying
to analyze the images due to having contact angles which were near 180 degrees. There is
a software option which allows for the bubble profile to be outputted in terms of x-y pixels

coordinates. A short FORTRAN code was written (Code 3.1, Appendix A) to fit a 2nd order
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polynomial to the bubble profile near the contact zone. The code uses simple trigonometry
and calculus to compute the two different contact angles taking account of the inclination
angle. The algorithm uses the 20 nearest x-y pixel coordinates in the curve fitting procedure.
Figure 3.3 is presented to facilitate the understanding of the computation done here. Itisa
typical sketch of the near surface profile points used and the curve fitted to this points. The

angles 0, and 6, are the advancing and receding contact angles respectively.

3.4 RESULTS AND DISCUSSION

3.4.1 Advancing and Receding Contact Angles

In total, eight different bubbles were tested. Each bubble was of a similar size and
was generated in the method outlined above. The impending motion contact angles were
evaluated using the ADSA-P software along with Code 3.1 in Appendix A. The average
advancing contact angle was 163.6° and the average receding contact angle was 112.6°. The
experiment showed a reasonable degree of repeatability as the standard deviation for the

advancing and receding contact angles were 3.76° and 3.33° respectively.

3.4.2 Equilibrium Contact Angle
The values for the equilibrium contact angles were measured from the generated air
bubbles before inclining the plate. The ADSA-P software was used to measure these contact

angles. The software uses the digitized images of the bubble to fit a cubic spline to the bubble
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profile. The interpolated bubble profile is then analyzed by solving the Laplace Equation of
Capillarity. The output of interest from this analysis was the contact angle. An image of one
of bubbles tested is shown in Figure 3.4. The average equilibrium contact angle was found
to be 140.4° with a standard deviation of 1.1°.

This value for the equilibrium contact can be confirmed by an indirect measurement.
Recall the image given as Figure 2.5c. The normal procedure in Chapter 2 is to select
perimeter points about the contact perimeter and compute a contact diameter from these
points. A different, larger, diameter will be computed if points about the outside of the
perimeter line(i.e., the side of the interface shadow farthest away from the center of the
circle). Before the bubbles were subjected to any shearing flow, points about both sides of
the interface shadow were selected. Thus, the contact diameter and a larger diameter could

be found. The difference in these diameters can be used to define a distance, 3, as follows:
1
5 = 'Z-(Dlarge - Dc) (3' 1)

If a circular interface profile is assumed, & can be related to the equilibrium contact angle as

shown by the geometry in Figure 3.5. The approximate expression is:

T o
,=—+2tan” (— 3.2
6 5 +2tan (h/2) (3.2)

Evaluating Equation 3.2 for the data obtained for each bubble of Chapter 2 prior to testing
results in an average equilibrium contact angle of 144.4°. This value is quite close to the
value found here of 140.4°. Using this method is far from accurate however. First, the

assumption that the interface profile is circular is not verified, and second, the computed value
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of 0. had a large standard deviation of 11.7°. This indirect measurement is still useful in that

in provides a qualitative verification of the measured O..

3.4.3 Comparison to Detachment Experiment Observations

This method was ideally suited to measure the maximum static contact angles that
could be present in the microchannel experiments. In the microchannel experiments, the
FC-725 surface was always prewetted with MCT-30 before the air bubbles were introduced.
The coated plate was submersed in MCT-30 before the air bubble was generated in the
contact angle experiment so that this condition was met. The bubbles formed inside the slit
microchannels were allowed time enough to for the MCT-30 film between the bubble and the
FC-725 surface to stabilize and a similar procedure was followed in this experiment as well.

The angles found in this experiment do agree with the observations made in Section
2.3.3.1. The thickness of the oil-air interface shadow was discussed in terms of the contact
angles that exist on upstream and downstream sides of the bubble. It was demonstrated that
because of the wide interface thickness on the downstream side, an advancing air contact
angle close to 180° could be expected. A similar argument showed that the receding contact
angle should be much closer to 90° than the advancing contact angle. The measured
maximum advancing and receding contact angles support this observation. The maximum
advancing contact angle of 163.6° is certainly close to 180° as suspected. The minimum
receding contact angle of 112.6° is not far from 90° as the experimental observation had
suggested. A similar statement can be made by reexamining Figure 2.5c, which is an image

of an adhered bubble at equilibrium. The interface thickness can be seen to be uniform about

72



the entire perimeter showing no contact angle hysteresis. The interface shadow is quite thick
suggesting substantial curvature and thus large contact angles. This is supported by this

experiment in which the equilibrium contact angle was found to be 140.4°.
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Raising jack causes
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Figure 3.1 — Contact angle measurement apparatus

Figure 3.2 — Air bubble just prior to detachment
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Figure 3.3 — Diagram of technique used to analyze digitized bubble images

Figure 3.4 — Air bubble at equilibrium
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Figure 3.5 — Oil-air interface geometry assuming a circular interface profile
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CHAPTER 4

LAPLACE EQUATION OF CAPILLARITY

4.1 MOTIVATION

A key approximation with regards to the modeling to follow in Chapter 5 is that the
bubble’s shape within the channel will be a cylinder. Inspection of the interface shadow
present in the experiments indicates that the oil-air interface does have some curvature. For
the bubble to approximated as a cylinder, this curvature must be small in comparison to the
other bubble dimensions. The maximum advancing and receding static contact angle for a
bubble of air submerged in MCT-30 on a FC-725 coated surface are 163.6° and 112.6°
respectively as discussed in Chapter 3. The maximum receding contact angle is not far from
90° so it seems that approximating the oil-air interface from upper surface to lower surface
as a vertical line should be a decent approximation on the upstream side of the bubble. The
reasoning behind this statement was discussed in Section 2.3.3.1. The advancing contact
angle is much closer to 180° however and it is not clear as to whether the downstream
interface can be modeled as a straight line. The equilibrium contact angle was also found to
be close to 180°. The quality of the straight interface approximation can be quantified by
solving the Laplace equation of Capillarity for the interfaces to determine the deviation from
the linear assumption. A small deviation with respect to the other bubble dimensions would
allow the bubble to be modeled as a cylinder with small error with regards to shape. In this

chapter, the methodology to solve the Laplace equation of Capillarity for the bubble interfaces
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present in this work will be given. Solutions will be obtained for the interface profile using
the extreme static contact angles and results interpreted in terms of the cylindrical bubble
shape assumption.

The situation to be modeled is shown in Figure 4.1. This depicts the MCT-30/air
interface inside a channel of height, h. The view is rotated 90° clockwise so that gravity is
acting from right to left. At the solid surface the shape of the interface can be seen to make
an angle 0’ with the solid. In this case, 6° is the contact angle minus 90°. The left solid
surface is labeled as x=0 and where the oil/air interface makes contact there is defined as y
= R.. Each of the maximum advancing and receding contact angles will be investigated
separately. The reason for this is that the bubbles must be considered to be axisymmetric to
apply the Laplace equation of Capillarity to the situation in an efficient manner. Thus the
contact angles must be considered on an individual basis. The parameters varied in this

numerical study were the channel height and the bubble contact radius.

4.2 LAPLACE EQUATION OF CAPILLARITY

The well known Laplace equation of Capillarity for this particular situation is

1 1
AP=p-P,=y(—+—) 4.1
R: R:

where P, is the pressure on the air side, Py is the pressure on the oil side, y is the oil-air
interfacial tension and R, and R, represent the principle radii of curvature of the interface.

For any point on the oil-air interface, the static pressures are:
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Pa= Pao-P,8% 4.2)
P:=Puo-p, 8% (4.3)
where p, is the air density, p; is the oil density, g is the acceleration of gravity and P.. and Py
are the reference pressures for the air and oil respectively at the lower surface(x=0). The
reference pressures can be formulated by applying the Laplace equation of Capillarity to the

interface at the lower surface. It can be shown that:

) (4.4)

1 1
APy=Pp-Pa=v(—*
R Rz

where all terms are evaluated at the lower surface.

Substituting Equations 4.2-4.4, into Equation 4.1 and simplifying results in:

J’(—+—) 7(——+—) Ap, (4.5)
R: R: Rio Rz &*

Introducing the expressions used by Gu and Li(1997) for the radii of curvature for an

axisymmetric shape.

d’y
Lz_____cbc‘ ; (4.6)
Ri: 3
[1+( )]
@
Lo dr (4.7)
R: 3
J’[1+( )]

Where y is the radial distance from the axis of the bubble. Substituting Equation 4.6 and
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Equation 4.7 into Equation 4.5 and doing substantial manipulation results in:

d’y & & s
LYo s ] oo + ) 14 (S )
(1+(Z ))' y(1+ (2 ))' ya+(2) )

4.8)
At x = 0, the measured contact angles and geometry show that the slope of the

interface curve will be tan 0°, and the value of y will be the bubble contact radmus, Re.

Simplification yields:
d’ yl . dy 5
= tan6’ A prm 23
sz;—([ d T, 0, AP dr o ae2)) @49)
(I+tan’6')? R.(I+tan’0')? Y 3 dx

V(1+( ))

In summary, y=R. at x=0 and x=h and the problem is well defined, non-linear, boundary value

problem. This equation will be solved in an iterative manner.

4.3 SOLUTION TECHNIQUE

The domain 0 < x < h was divided into 501 equal divisions. This resulted in a one
dimensional computational grid with 499 unknowns (the two boundary nodes are given as y
=R.). Anindex ‘i’ will number the unknowns from 0 at x=0 to 501 at x=h. Both the first and

second derivatives were discretized with second order center differences, i.e,

dy y+! V; -1
=28 e+ O(A 4.10
dx 2Ax ( x') ( )
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i 4.11)

2yt y. ,
d ,1"=y1+1 2y1’ y1-1+0(Ax_)
dx” Ax

Replacing the corresponding derivatives in Equation 4.9 with the approximations in

Equations 4.10-4.11 resuits in the following finite difference equation:

d’y
—5 |0
1= 2Vt Ve 2 tan Ap gx,
yIAy-,yI:([ dx —+ _1.]+ gx
x (1+@n’6)7 R(+@n’0)? 7
Yirer~ Vi K] (4.12)
ZAx y»+1-y,»_1 ? 2
] L
)-(I+( Ae ) )

ra] ~

yi+1-yi-1 ’
yi l+ e S A A

To simplify the appearance of Equation 4.12, ‘A’ is defined to be equal to the right

hand side of Equation 4.12. Substituting ‘A’ into Equation 4.12 and rearranging in such a

manner that an iterative solution technique may be employed gives:
(4.13)

v, = yl.+,+y‘._2,-AAx"

In order to correctly formulate ‘A’ the second derivative evaluated at the x = 0

boundary must be dealt with. A second order forward difference approximation is:

-3 + -
=2y0 ')yl ’4.v2 y3+O(Ax2) (4.14)

Ax”

and this allows the second derivative at the lower surface to be evaluated to the same order

as the remainder of the solution. This term must be calculated at the beginning of each

iteration cycle as the solution will change with each iteration.
For each trial, the initial guess was a circular arc interface profile. This initial guess
was found by analytically determining the circular arc that intersects the channel surfaces at
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the contact angle to be investigated. Using the coordinate system of Figure 4.1, the equation
of this arc can be shown to be:

h

4.15
2tan8’ ( )

1

I h o, L
+])—-(x-—) ]2-
. 9,)4 @2)]

Y=R[(

which is valid for 0 <x<h.

It was decided to solve the equations by using the Gauss-Seidel iteration technique
with a successive over-relaxation scheme. The optimal relaxation factor was determined
empirically to be approximately 1.5. The convergence criterion was chosen as a relative
change in the solution norm of less than 1x10°. A FORTRAN code was written to solve for
the interface profile in the manner outlined in the preceding paragraphs. The code is available
as Code 4.1 in Appendix A. The simulations were run on Pentium 200 PC with 16 MB of

RAM without technical difficulty.
4.4 RESULTS

The model was solved with all possible combinations of h = 34, 60, 122, and 164 um,
R. = 100, 200, 400, 800, and 1600 pm and with both advancing (6 = 163.6°) and receding
(6 = 112.6°) contact angles for a total of 40 trials. The primary target of this investigation
was the deviation from the desired linear assumption in terms of channel height and bubble
radius.

Figure 4.2 is a plot of the interface profiles calculated for the channel height of h =

122 um. The curves seem to be parabolic in nature but no attempt was made to prove this
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with a curve fitting analysis. The maximum point on each curve represents the maximum
deviation from the linear assumption that is desired. Clearly, the curve for the advancing
contact angle deviates further than that for the receding contact angle. This was expected as
the advancing contact angle is much larger than the receding contact angle (163.6° versus
112.6°). The data from the trials with the other channel heights showed similar results. In
general the largest deviations were calculated at the larger channels and this will be quantified
in the following section.

Figure 4.3 is a plot of maximum deviation versus channel height for various bubble
contact radii. The relation between deviation and h (for a set R) is clearly a linear one. This
makes sense intuitively as one would expect that the more space a bubble has to bulge
outwards, the farther it will bulge outwards. The figure also demonstrates that the deviations
dependence on the bubble contact radius, R., is very small. For h =122 pum and 6 = 163.6°,
the deviation changed from 29.5 pum for R = 100 pum to 34.9 um for R. = 1600 um. The
curvature of the bubble interface due to the bubble contact radius is not an important factor.

The deviation from a linear assumption has to be compared to the other bubble
dimensions to provide an insight to how effective the assumption of a linear interface profile
will be. A sensible way to do this is to divide the maximum deviation calculated by the
channel height. Ifa small deviation occurs over a large channel height then it would certainly
justify the linear assumption. The results from this calculation were averaged for all R, used
(as R had no effect upon h and very little upon the magnitude of the deviation for each h) and
multiplied by 100 to give a percentage deviation. The percentage deviation for all h and

different contact angles are in Table 4.1.
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With a maximum percentage deviation of 8.3% occurring at h = 34 pm, it is apparent
that a vertical interface assumption is appropriate for the upstream side (receding contact
angle side). However with a maximum percentage deviation of 28.3% for h = 34 um with
the advancing contact angle, it is unclear whether the same can be said regarding the
downstream side of the bubble. A deviation of nearly one third the channel height is certaily
significant when seen in this context. To determine the significance of the curvature of the
interface with regards to computing a drag force the situation can be viewed from a different
perspective. The other significant dimension in this problem is the diameter of the bubble.

If the percentage deviation is recalculated considering the bubble contact diameter rather than
the channel height, a different conclusion will be found. Table 4.2 lists the results of this
computation for the advancing contact angle only. A small percentage deviation calculated
in this manner will indicate that the interface deflection in comparison with size of the bubble
will be negligible. From this data, the validity of the vertical interface assumption for the
downstream side of the bubble can be checked. First, it seems that the assumption will be
excellent for large bubbles as every percentage deviation computed for R->400 um was less
than 7%. Second, the larger values of h had consistently higher percentage deviations than
the smaller channels. For instance, the percentage deviation for h = 164 pm with R.=100 pm
was 23.1% while the smallest channel, h = 34 um, had a percentage deviation of4.6% with
this bubble radius. In general, the assumption of a vertical interface on the advancing contact
angle side of the bubble cannot be entirely trusted for bubbles with R.<400 pum in channels
of h>=122 um. It is a good assumption for the receding side of the bubble and is valid to
some extent on the advancing side of the bubble. The limitations of the assumption for the
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situation of smaller bubbles in the larger channels should be realized.

In Chapter 3, the results found here will be used to approximate the bubble cross-
sectional shape as a cylinder. The approximation should be excellent on the upstream side
for all bubbles. Limitations were found for combinations of small bubbles in larger channel
heights for the downstream interface however.

The solution technique described here will be used in the following Chapter. The goal
there, is to find the maximum deviation from a straight, vertical, interface as it was here. This
deviation will be used to increase the contact diameter in order to comply with a model to be
introduced later. The key modification to incorporate is that the contact angles used will vary
with the Capillary number and channel height. This is easily incorporated in the solution as
only 8’ in Equation 4.12 needs to be changed. Equation 4.12 can accept any value for the
contact angle and the interface profile can be obtained in exactly the same manner outlined

in this Chapter.
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Table 4.1a — Percentage Deviation in terms of channel height for 6,

7 ~100pm | 200pm | 400pum | 800um | 1600 pm

- h=34pm | 71.9% 8.2% 8.2% 8.2% 8.5%
60 um. 7.8% 8.2% 8.3% 8.3% 83%

o 122pm 7.2% 7.8% 8.1% 8.3% 8.4%
164 pm 6.9% 7.6% 8.0% 8.2% 8.4%

Table 4.1b — Percentage Deviation in terms of channel height for 6,

_ f 100pm | 200pm 400pm | 800pm | 1600 um

© h=34 pm 27.4% 28.2% 28.5% 28.8% 28.8%
60 pm 26.3% 27.5% 28.2% 28.7% 28.8%
122 pm 24.2% 26.2% 27.5% 28.1% 28.6%
164 pm 23.1% 25.6% 27.1% 28.0% 28.5%

R=100pm | 200pm | 400 pum 800 um | 1600 pm
EE SR Y7 2.4% 3% 0.6%
15.8% 33% 42% 2.2% 1.1%
29.5% 16.0% 8.4% 43% 2.2%
37.9% 21% 11.1% 5.8% 2.9%
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CHAPTERS

MODELING OF THE CRITICAL STATE

5.1 FLUID SHEARING FORCE

A model to predict the required Capillary number to detach the bubbles will involve
two parts. Expressions for the drag force and the adhesion force must be derived. Setting
the drag force to be equal to the adhesion force will allow the critical detaching flow
characteristics to be calculated. In the following sections two different methods for
estimating the shearing force on a bubble adhering to both surfaces of a slit microchannel will
be obtained and discussed.

The deformation of the bubble during the experiment should be quantified before
proceeding. A measure of the rigidity of the bubble’s surface, while being sheared, is the
Capillary number. Capillary numbers much less than unity mean that the surface tension in
the oil-air interface will be dominant in comparison to the viscous forces present. The oil-air
interface under this condition will tend to retain its shape while being subjected to the viscous
shear force. This allows the bubble to be modeled as a solid particle(with regards to shape)
and simplifies the situation. The Capillary numbers at the critical states in the experiment
were all much less than unity. The maximum value encountered in the experimentation was

approximately Cac = 0.006.
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5.1.1 Drag Force 1 - Underestimate
To begin, an expression that should give an underestimation of the drag force will be
developed. A characteristic of flow through slit microchannels is that very large pressure
gradients exist with relatively small flow rates. This can be seen by examining the Poiseuille
flow equation as given in Equation 2.1. The pressure gradient inside a slit microchannel is
proportional to 1/h’. This means that when the channel height is decreased to the order of
several hundred micrometers as in this study, the pressure gradient will increase dramatically.
This leads to the assumption that any viscous drag on the bubble will be negligible in
comparison to the pressure drag on the bubble. An approximation of pressure drag on the
bubble is to multiply the pressure drop across the bubble with the bubble frontal area.
Faay=(A Poussie )( Ar) (5.1
In Chapter 4, the Laplace Equation of Capillarity was solved to determine if the oil-air
interface could be approximated as being vertical. For the extreme value of the receding air
contact angle, thie deviation of the interface from a vertical line was shown to be small for all
values of h and D.. The extreme advancing air contact angle solutions showed the vertical
line assumption to be valid for small values of h and larger values of D.. In any event, the
small deviations will not significantly alter the bubble’s frontal area. Proceeding with the
vertical interface assumption and thus approximating the bubble as a rigid cylinder gives the
frontal area as:

which can be substituted into Equation 5.1. The pressure drop across the bubble will be a
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difficult term to evaluate. For the majority of the experimental points the bubble diameter was
small in comparison with the channel width. It is reasonable to believe then, that the pressure
gradient across the bubble should be close to the theoretical Poiseuille pressure gradient from

Equation 2.1. Accordingly, the pressure drop across the bubble can be written as:

120u D.
_ (5.3)
wh’

A Prusste =

However, using this pressure drop will give a value that is too small. The insertion

of a rigid cylinder will significantly alter the flow field and the pressure gradient. The
presence of an obstructing cylinder forces the flow around the cylinder. This increases the
resistance to flow and in general it causes larger pressures than could be expected in an
unobstructed channel. Intuitively, it is possible to state that the pressure gradient in the
vicinity of the bubble will be larger than that predicted by a fully developed Poiseuille flow,
but this is difficult to quantify further. In lieu of a complete three dimensional numerical
simulation, this approximation will be made with the realization that the drag force expression

will be an underestimate. Substituting Equation 5.2 and Equation 5.3 into Equation 5.1

results in:

1291D. (5.4)

Fay =
@ Wh

Replacing the flow rate, Q, with UyhW gives:

12Unp D
Fa'(l)z““"(J_h‘i (5.5)

where U, is the average fluid velocity. Equation 5.5 shows that the larger the bubble contact

diameter the larger the drag force, which makes sense physically. A larger bubble has more
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surface area on which drag forces can act and should experience a greater drag force. It is
interesting to note that the drag force is inversely proportional to h. It may seem that this is
in error, as a cylinder in a small channel will have a smaller surface area on which drag forces
can be imparted. This is reconciled by noting that the magnitude of the pressure gradient in
the channel is inversely proportional to h’. Therefore, the pressure drop across the bubble
increases faster than the surface area on which it acts can decrease as h decreases. The net
effect is larger drag forces on bubbles in small channels.

There are many reasons that Drag Force 1 will not produce an accurate value. As
discussed above, Equation 5.5 is an estimation of the drag force on a bubble inside a channel
but is derived with the pressure gradient expected in channel flow without any obstructions.

This is clearly incorrect and will give too small a value for the pressure gradient in the
bubble’s vicinity. The omission of an analysis for a viscous drag force will also make this
approximation err on the small side. However, this omission should cause a small error only
due to the extremely small velocities to be considered. The viscous drag is proportional to
the velocity of the flow and in this study the flow velocity was extremely small as shown by
the extremely small values for the experiment Ca.,. In any case, Drag Force 1 can be useful

if it is realized that it is an underestimating formulation.

5.1.2 Drag Force 2 - Overestimate
To improve the formulation for the drag force, the work of Goldman(1967) can be
used. In this work, the drag force on a translating sphere in simple shear flow near a

horizontal surface is found by numerically solving the Stokes equations. A schematic of the
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situation modeled is in Figure 5.1. The assumptions inherent in this solution are that the
Reynold’s number is small and that the flow field is unchanging in the direction perpendicular
to the flow direction. The experimental Reynolds number in Chapter 2 were much smaller
than unity with the largest value being approximately 0.01, thus meeting that requirement.
The large aspect ratios (W/h) of the slit microchannels in the experiment makes the
assumption of Poiseuille flow an excellent approximation as well. This was discussed in
Section 2.4. Goldman(1967) found that the solution for the limiting case of the sphere
tangent to the horizontal surface is:

Fa=17mu 8D’ (5.6)
where S is the shearing rate of the fluid. This result has been used in the work of Mahe et
al.(1988) and Basu et al.(1997) to estimate the drag force on droplets with large contact
angles with success. The shape of the experimental bubbles in this study were not spherical
as required by Equation 5.6. In general, the shape of the bubbles closely resembled narrow
cylinders rather than spheres. The difference in geometry is depicted in Figure 5.2. The effect
of this difference in shape will be to predict too large a drag force. The diameter of the
cylinder, D,, will be inputted into Equation 5.6, which accurately gives a drag force for a
sphere of diameter D. Clearly, the surface area of the cylinder(tDc*h) will be smaller than
the corresponding sphere(rD.?), thus the result for the drag force will be an overestimate(the
ratio of sphere surface area to cylinder surface area can be shown to be Dc/h which was
always large in the experiments). Another physical difference is that the experimental bubbles
were subjected to a parabolic velocity profile in comparison to the linear velocity profile

studied by Goldman. Mahe et al.(1988) and Basu et al.(1997) also encountered this difficulty,
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but were able to work around it because the droplets in their studies were small in comparison
to the channel height. Mahe and Basu could simply consider the shear rate at the channel wall
as the shear rate acting on the droplet. In essence, the droplets in those studies were
subjected to a linear shear flow because the droplets were not large enough to ‘see’ the
parabolic nature of the velocity profile. In the present work, the air bubbles are large enough
to span the entire height of the channel and thus will encounter the parabolic velocity. It is
necessary then, to find an equivalent shear rate for a parabolic velocity profile and quantify
what effects this deviation will have on the model. Consider a parabolic velocity profile in a

channel of height, h, with a maximum velocity of Upax at z =1/2:
4 U max
UE) = —Z_,—z(h -2 (5.7)

Equation 5.7 can readily be seen to satisfy the boundary conditions ofu=0atz=0andz=
h. The shear rate is then the first derivative of the velocity profile with respect to z.

Sz) = 4‘2 = - 2z) (5.8)

Equation 5.8 shows that the shear rate varies from a positive value at z=0 to an
equivalent magnitude negative value at z =h. This implies an average shear rate of zero,
which is clearly not a useful result. It is more sensible to find the average absolute value of
the shear rate. Taking advantage of the symmetry in the shear rate profile, the average shear

rate can be found by integrating the shear rate over half the channel height, i.e.,
2.k
Spe = ZL’J S(z)d=z (5.9)
It can be shown that the average absolute value of the shear rate will be:
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s =2Unmx (5.10)

ave lz
The value of Umx is not a convenient quantity so it will be converted to the average

velocity by integrating the velocity profile and dividing by h:

1
Un =,—ZI0"U(z)dz (5.11)
which results in:
2
Un= ;Um (5.12)

Substitution of Equation 5.12 into Equation 5.10 results in the following expression

for the average shear rate:

Seve =%Um (5.13)

It is necessary to know how the average shear rate for a parabolic velocity profile
compares to the shear rate for a simple linear profile. Both profiles (with identical volumetric
flow rates) will be compared in terms of the average shear rates. This computation will allow
the validity of this approach to be quantified. Consider first a linear profile with a volumetric
flow per unit width of Q and a constant shear rate S, and therefore a velocity relation u(z) =

Sz. The velocity at a distance z =h is u = Sh. The flow rate can easily be shown to be:
1 .
O shear =35m / (5.14)

and rearranging gives:
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— ZQ:hear (5.15)

shear — 5
h -

For a parabolic profile with an average velocity of Un it 1s straightforward to show

that:

Qpambolic =Unm h (5 . 16)
incorporation of Equation 5.16 into Equation 5.11 and manipulating gives:

_ 3 Qparabolic

S parabolic — 5
i

(5.17)

Now for the same flow rate, the shear rate for a parabolic profile will be 1.5 times
larger than that for a linear shear flow. By using the average shear for a parabolic profile
instead of the expected linear shear rate, the outputted drag force will increase by 50% for
the same value of Q. Therefore, having Poiseuille flow rather than shear flow will increase
the drag on the bubble and make the removal of the attached bubbles easier.

Now that the average shear rate has been computed and its effect quantified, it can

be substituted (Equation 5.11) into Equation 5.6 which results in:

7.65TU D Unm
Faay = ‘;ID v (5.18)

It is noteworthy that both Drag Force 1 (Equation 5.5) and Drag Force 2 (Equation
5.18) are of the same form. They are both proportional to the product of uUxD:* and
inversely proportional to h. The multiplying constant does change however. For the
underestimating Equation 5.5, the constant has a value of 12. The constant for the
overestimating Equation 5.18 has a value of 7.65x. It is interesting to realize that the division
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of Equation 5.18 by Equation 5.5 results in a quotient of 2.00. Whether this is coincidental
or is physically meaningful is not known.

At this point adjustment to Drag Force 2 is necessary. The diameter of the bubble is
not the same as the bubble’s contact diameter that was recorded during the experimental
stage. In order to correct this small error the Laplace Equation of Capillarity can be solved
as it was in Chapter 4. The methodology for solving this equation is exactly the same as
described in Chapter 4, but the contact angles will have an extra degree of freedom. As will
be discussed in the next section, the dynamic contact angles will be a finction of the capillary
number and channel height. These angles will change over the course of the experiment and
must be accounted for. As explained in Chapter 4, the value of 3 is the output from the
solution of the Laplace Equation of Capillarity. To relate the bubble contact diameter to the
actual bubble diameter, simply add the two values of delta to the contact diameter:

D=p.+6.%6, (5.19)
Where &, and 5. are the maximum deviations from vertical for an axisymmetric interface in
a channel of height h, contact diameter D., and dynamic contact angles of 0, and O,

respectively. The shearing force becomes:

T.65nU(D.+5.+65,)
Fay= ,U(Dh 8a*5:) (5.20)

Drag Force 1 (Equation 5.5) and Drag Force 2 (Equation 5.20) represent the lower
and upper limits of what the drag force on the bubble should be. It is not obvious which
expression is more accurate. It makes sense to retain both formulations and combine them

with a weighted average. The relative weights given to each limit will be kept and used as
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a tuning factor to adjust the model when comparing to the experimental data. Defining
relative weights of W, and W, to the underestimating and overestimating formulations
respectively:

2up’ 7.65TU( D+ 8.+65,)
W, (5.21)
MW +W,) AW +W,)

Fa=W;

5.2 ADHESION FORCE

The source of the adhesion force is the surface tension of the oil-air interface and the
contact angle hysteresis as discussed in Chapter 1. It was shown there that the interfacial
force for a sessile drop is the surface tension integrated about the contact perimeter. This
force will act in a direction that is specified by the contact angles formed with the surface.

A typical equilibrium sessile drop forms a contact angle, 6, with the surface which does not
change along the drop contact perimeter. A calculation of the net horizontal force on this
drop would be zero as the contact angle is the same everywhere.

When an external horizontal force is applied to the drop it will deform locally in the
region of the contact perimeter. The contact angles will shift to become different values along
the contact perimeter. The difference in contact angles is known as contact angle hysteresis.
Now a computation of the net horizontal interfacial force will be non-zero. The adhesion
force from the contact angle hysteresis will act to counter the external force and resist motion.

How the contact angles change along the contact perimeter is a complex subject and

98



is not well resolved. There are several common assumptions made in literature. A general
expression for the adhesion force is the integral of the component of surface tension that is
parallel to the external force. Rewriting Equation 1.18 here:

F.=[ycosB cosn Rdn (5.22)
where 8 may be dependent upon m. It is common practice to assume that the contact angles
on both the downstream and upstream side of the bubble have distinct, constant values. This
results in Equation 5.22 evaluated to:

F.=2R.y(cosp,-cosh,) (5.23)

This is the formulation used by Mahe et al.(1988). In the study by Basu et al.(1997)
a different assumption about the contact angle variation was assumed and the following

adhesion force was found:
4
F.=—R.y(cos@,-cosf,) (5.24)
T

Another possible assumption to make is that the upstream contact angle varies linearly
with n and the downstream contact angle remains at a constant value. The results of the

integration for this situation is:

2 .
—(0.-6,)sin@,-cos6,
F.=2R.y(cosg,-E ) (5.25)

7 ,
—5(93-9')--1
b4

A decision must be made regarding which assumption is the most applicable to the
bubbles in this experiment. Examining the images presented in Chapter 2, (Figure 2.9a and

Figure 2.9b), an educated guess as to how the contact angles are behaving along the contact

99



perimeter can be made. In both Figure 2.9a and Figure 2.9b, the curvature of the oil-air
interface is visible as the thickness of the shadow about the perimeter. A wide line shows that
the interface is bowing outwards more, while a thin line shows that the interface is nearly
vertical. As explained in Section 2.3, and from the results from solving the Laplace Equation
of Capillarity in Chapter 4, a large amount of curvature in the oil-air interface is representative
of a large contact angle. From these images it is evident that the downstream contact angles
are significantly larger than the upstream contact angles. Examining the variation of the
thickness of the interface shadow along the bubble contact perimeter will allow the
relationship between the contact angles and position on the contact perimeter to established.
The interface thickness does seem to remain constant for the entirety of the upstream side.
When the point on the perimeter is reached when the perimeter is parallel to the flow
direction a sudden jump is seen in the interface thickness. After this sudden change the
thickness remains constant about the majority of the downstream side. If there is any
variation along the upstream perimeter it seems to be small and would be difficult to quantify
from these observations alone. The observations put forth here justify assuming the contact
angles are constant on the upstream and downstream sides and thus Equation 5.23 would be
the formulation to use. A small modification is necessary to account for the additional surface
of contact in this case. Equation 5.23 governs a bubble attached to a single surface but in this
study the bubble is attached to two(upper and lower channel surfaces). Multiplying by a
factor of two results in:

Fa=2D.y(cosf,-cosh.) (5.26)

That the dynamic contact angles are dependent upon the Capillary number,
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equilibrium contact angles, and microscopic and macroscopic length scales must be
considered. As described in Chapter 1, the contact angles for a moving interface are called
dynamic contact angles. To predict the onset of motion the dynamic contact angles must be
estimated and used in Equation 5.26.

Cox(1986) studied the motion of a three phase line n flow where the Reynold’s and
Capillary numbers are much smaller than unity. The situation is depicted in Figure 5.3. The
solution involves specifying a slip length, s, near the dynamic contact line to solve the Stokes
equation with matched asymptotic expansions. The results from Cox’s analysis are

summarized by Basu et al.(1997) in the following set of equations:

2(0.,2)=g(6.,A)+Caln(g, 1)+0O(Ca)

ap
f(B.2)

2(8:.4)= J‘o&

ZSmﬁ[Az(ﬁ"-sin"ﬂ)+2/1(ﬁ(7r-ﬁ)+sin2,3)+((ﬂ_ﬁ)-’_Sinzﬂ)]

fBA)= R n R -
AP -sin’B)[(n-B)+sinBcosB]+[(m-P ) -sin” B](B-sinBcosp)
Ca:."loiIU"‘

Y

2 = Har

:Lloil

=5

e, L,

(5.27)

where A is the ratio of the viscosities of the displaced fluid and displaced fluid, Ca is the
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capillary number based on average shearing velocity and the viscosity of the displacing fluid,
s is a microscopic length scale, Ln is a macroscopic length scale, and 0. is the contact angle
measured from the displacing fluid side as shown in Figure 5.3. The formulae in Equation
5.27 govern the moving interface as the oil phase displaces the air phase, i.e., the bubble’s
receding contact angle. To model the air phase displacing the oil phase (the air advancing
contact angle), simply use A" in place of A in the formula for f{6;), ACa in place of Ca, and
-6 in place of B.. The obvious choice for the macroscopic length scale is the channel height,
h. The microscopic slip length is harder to quantify. Other research into drop spreading (Gu
and Li, 1998, Basu et al., 1996) has found ‘s’ to range from 1-5 pm. It is not well understood
why the slip length should fall in this range for most experimental data.

The study of Cox into the motion of the three phase contact line reveals that the
dynamic contact angles are dependent upon the capillary number and the channel height. The
function g(8) can be found numerically for any value of A. In this study the values of the
viscosity ratio are A = 5.95x10”° and A"'=16800. The function g(6) was computed for these
values of A and the result is given as Figure 5.4. The curves are consistent with the results
presented by Cox.. The integration was performed using Simpson’s Rule with 1000 function
evaluations. The Fortran code used is available as Code 5.1 in Appendix A. With these
curves, one can find g(0) for any value of 6, and 6 from a value of g(6). The procedure then
to determine the air receding contact angle is to determine g(6.), shift along the abscissa of
Figure 5.4 a distance of Ca*In(h/s) to the right and read 6, from the ordinate. The procedure

is the same for the advancing air contact angle, but the proper quantities must be substituted
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as outlined earlier.

The validity of this approach is questionable for combations of large values of 8. (or
7-0.) and large values of A (or A™). This is discussed by Cox(1986) and can be seen by
examining Figure 5.4. For the advancing contact angle, the curve for A=16800 must be used.
For the equilibrium contact angle of 140.4°, g(6,) =2.7437x10™, and g(180°) =2.76604x10™.
To obtain the advancing dynamic contact angle, move along the abscissa to the right a
distance of Ca*In(l/s) from g(6.) and find g(8,) from the ordinate. Since physically, the
advancing contact angle cannot exceed 180°, the value of g(180°) cannot be exceeded either.
This gives very little room along the abscissa to move and puts a limit on how large a
capillary number can exist before invalidating Cox’s method. The maximum value of Ca can
be solved for as follows:

Caln(h/s)< g(0.)— g(180°) (5.28)

Using a value for the microscopic slip of 1 um and solving for the maximum valid Capillary
number reveals that the experimental Capillary numbers are well outside the valid range. The
largest valid Capillary numbers are 0.0105, 0.0090, 0.0077, and 0.0072 for the channel
heights of 34, 60, 122, and 164 pum respectively. By examining the curve for A =5 95x107,
it is clear that there is no such problem for the receding contact angle and Cox’s method can
be applied.

Another formulation to handle the advancing air contact angle must be found. The
results from Chapter 3, where the extreme values of the dynamic advancing and receding

contact angles were determined experimentally, can be used. The maximum static advancing
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contact attainable was found to 163.6° + 3.6°. Though Cox’s analysis cannot successfully
be utilized in this case, the patterns identified may be of some help. For a situation of
Ca*In(b/s) = 0, the contact angle will not change from its equilibrium value. As Ca*In(h/s)
increases, the advancing contact angle should increase monotonically as per Figures 5.4. The
maximum value this angle can achieve is 163.6° and the minimum is the equilibrium value of
140.4°. Since the angle must continually increase with Ca*In(h/s), the advancing contact
angle should asymptotically approach the value of 163.6° as the product Ca*In(h/s) mcreases.
The behavior of the advancing contact angle will thus have to be approximated using the
following criterion:

Caln(h/s) =0, 9,=140.4°

(5.29)
Caln(h/s) > =, 8, —> 163.6°

It is not clear exactly how the dynamic advancing air contact angle should behave to
satisfy these conditions. At a later time, this function will be adjusted to improve the
modeling accuracy. The empirically determined behavior of 6, will have to checked to ensure

that it obeys the conditions set up in Equation 5.29.

5.3 DETERMINATION OF THE CRITICAL STATE

The critical state will be found when the drag force is equal to the adhesion force.

Equating Equation 5.21 and Equation 5.26 results in:

104



124D U . 16574(D*8a+5,) Un

2 =2y D.(cos@,-cos6.) (5.30)
"hw+ws) h(W 1+ W)

W

To be consistent with the experimental results presentation, Equation 5.30 can be

manipulated to solve for the critical capillary number.

_ 2(cos@,-cos@,)D (W +W>)
Caw = 4 > (5.31)
12W,D; +7.65TW2(Dc+85a+6,)

where 8, and 6, depend on h and Ca as per Cox’s(1986) formulation, and 3, and . depend
upon 6,, 6, h, and D. as per Laplace’s Equation of Capillarity. A specialized numerical
technique to solve Equation 5.31 is required as both sides of the equation have dependence

upon Ca and it is not possible to simplify further.

5.3.1 Solution Technique

The model given in the preceding paragraphs must be solved in an iterative manner.

Most terms given in Equation 5.31 have a complex dependence upon Ca, h, and D.. Keeping

the form given in Equation 5.31, the solution procedure can be organized such that the
Capillary number may be solved for with a fixed-point iteration technique.

The algorithm for this iterative technique is as follows: First an initial guess for the
Capillary number is made. With this guess the receding dynamic air contact angle can be
evaluated via Cox’s method and adjusting the advancing air contact angles to fit the data.
The assumed values for the advancing air contact angle will be checked later to ensure they
make sense physically. With these contact angles, the Laplace equation of Capillarity can be

solved as shown in Chapter 4 and the quantities &, and & can be evaluated. These quantities
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can relate the actual bubble diameter to the bubble contact diameter and the right hand side
of Equation 5.31 can be fully evaluated. The capillary number arrived at becomes the next
initial guess and the process is repeated until convergence. The initial guess was determined
from examining the experimental data. An inital guess of Ca=0.001 was used for all cases.

The iterations continued until a relative change of less 1x10™ was observed in Ca. This
algorithm is available as Code 5.2 in Appendix A. The code was run for 2<D./h<20 and for
all channel heights. The weighting averages were handled by simply setting W,=0 and W>=1
and solving and then setting W;=1 and W»=0 and solving. This resulted in 2 sets of data
representing the upper and lower limits of the drag force formulation. The microscopic slip

length was set to a value of 1 pum as per most of the literature values.

5.4 MODEL RESULTS

For each channel height the modeling results were compared to the experimental data.
Figures 5.5-5.8 show the upper and lower limits (corresponding to Drag Force 1 and 2) of
the modeling Ca. plotted on the same graph as the experimental values for each channel
height. The error bars are the average errors found from the uncertainty analysis in Chapter

2.

5.4.1 Model predictions compared to experimental data
The model prediction for h=34 um is shown in Figure 5.5. The experimental data

showed a small negative slope as the D./h ratio increased. The modeling seems to do a good
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job with showing this as well. It can be seen that the experimental data points mostly fall
between the two theoretical curves. The exceptions are the two points nearest Do/h=1. Small
ratios of D/h will be shown to disagree with theory for nearly every channel height. A
possible explanation of this is shown in Figure 5.9. Asa bubble becomes smaller in volume,
it has less tendency to be adhered to both surfaces. It will be more likely to completely detach
from one surface and form a sessile drop on the other. The modeling, however, does not take
this into account. The model assumes that as the bubble shrinks it will always remain firmly
attached to both surfaces with the same contact angles as a large volume bubble would have.

However, the bubble will physically become more spherical and less cylindrical as the bubble
volume decreases. This will cause the adhesion force to become weakened, as the contact
angles will approach 180 degrees on both sides of the bubble. That is, as h approaches the
value of D, a spherical bubble will just be able to make contact with both surfaces. The
model does not consider this potential change in bubble geometry. It considers only that the
bubble must remain cylindrical in the limit of h going to D.. This is demonstrated in Figure
5.10. This shows what the model is approximating as the bubble volume gets small. The
needle shaped bubbles shown are clearly not what should happen physically. The set of
images in Figure 5.9 is far more likely to occur and it is intuitive that this should be the
expected behavior of a shrinking bubble. This is the source of the discrepancies for D/h near
unity. In fact, at Do/h = 1, it is not clear as to whether the problem description holds as the
bubbles do not have sufficient volume to be able to adhere to both surfaces of a microchannel.
For D./h <1, a bubble will not be able to adhere to both channel surfaces and the nature of

the problem changes dramatically. In any event, the model does well for the larger values of
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D./h where the vast majority of the experimental points exist.

The theoretical curve for a channel height of 60 um is compared to the experimental
data in Figure 5.6. As for the 34 um channel, the theoretical curves do an excellent jobof
defining the range of expected shearing forces at larger values of Ds/h. Again, both
theoretical curves begin to perform badly as D./h approaches unity for the same reasons
outlined in the previous paragraph. The experimental results at this channel height showed
a small negative slope and this is in agreement with the theoretical modeling. The model
predicts that the critical capillary numbers should be larger than for the h=34 pm channel
results which is in agreement with the experimental results.

Figure 5.7 compares the theoretical predictions to the experimental data for h=122
um. The two theoretical curves can be seen to predict the range in which most of the data
falls very well. Again, discrepancy is found for values of Dc/h near unity. In comparison to
the other channels, the model predicts a much larger slope as Dc/h increases as was shown in
the experimental results. As expected, the critical capillary numbers are, in general, larger
than those for channels with smaller values for channel height.

Figure 5.8 compares the modeling results to the experimental data for h=164 pm.
Again, the theoretical model does an excellent job of describing where the exp erimental data
will fall at larger values of D/h. The discrepancy at Do/h values near unity is once again
present. The slope of the curves becomes larger as h increases from 122 pm to 164 pum as
the experimental data suggests. The model also predicts larger critical capillary numbers at

similar values of D./h for this channel in comparison to the smaller channels.
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5.4.2 Dynamic Advancing Air Contact Angle Estimation

The results presented in this section are dependent upon the estimated function that
the dynamic advancing air contact angle obeys. For each channel height, the value for 8, that
best fits the experimental data was chosen. A plot of the best 8, versus h is given in Figure
5.11. The behavior of the curve is that it increases at a moderate rate from the equilibrium
contact angle. The maximum value of 6, = 156° was found at the largest channel height. That
the maximmum value of 8, was found to be less than the maximum possible dynamic advancing
contact angle of 163.6° means that the values of 6, that agree best with the experimental are

within its physical bounds.

5.5 MODEL PERFORMANCE

The model provided in this chapter uses two formulations for the drag force. One
formulation was shown to be an underestimate and the other was shown to be an
overestimate. Together, they define a range in which the actual drag force is expected to fall.

Equating the drag force to a model for the adhesion force, and accounting for the variation
of the receding contact angle with the Capillary number and channel dimensions, completed
the model. The advancing dynamic contact angle was adjusted for each channel height to fit
the experimental data. The behavior of the empirically determined function for 6, increases
from the equilibrium contact angle towards the maximum static advancing contact angle. The
behavior of 8, with channel height is acceptable from a physical standpoint as it obeys the

boundary conditions given in Equation 5.29.
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Figure 5.1 — Sphere tangent to a wall in shear flow

D; =D»
Surface Area 1 >> Surface Area 2

Figure 5.2 — Geometrical differences between experimental and modeling bubbles
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Figure 5.3 — Diagram of a moving oil-air interface across a solid surface
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Figure 5.4 —Solution of Cox’s Model for advancing and receding contact angle
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Figure 5.9 — Unaccounted for contact angle variation with D. as D./h approaches unity
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Figure 5.10 — Sketch of model’s handling of contact angles as D. decreases
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Figure 5.11 — Advancing contact angle versus channel height. Values plotted are those

found by fitting the model predictions to the experimental data.
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CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 SUMMARY

The experimental results produced several identifiable trends:

1) Ca. will decrease as D, increases for a specific channel height. The drag forceona
bubble should increase with the bubble’s contact diameter which explains this
observation.

2) Ca. will decrease as h decreases. Several physical factors govern this observation. It
was seen that the pressure gradient increase with decreasing h will be larger than the
effects of decreasing surface area and decreasing flow velocity. The net effect is that
the drag force of a bubble with contact diameter, De, will be larger in a smaller
channel.

3) Cac has decreasing dependence upon the ratio D¢/h as h decreases. This was shown

to be due to the limited range of D, that could be generated in the smaller channels.

The experimental data was shown to be very accurate for the measurements taken for
h=164 pm and h=122 pm. Due to difficulties in generating small flow increments, the

uncertainty for the h=60 um and h=34 pm data is much larger.

A model was developed which performed well for much of the data tested. The

model uses two formulations for drag force. The first is based upon the drag force
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calculated from a simple pressure drop formulation. This method was shown to be an
underestimate. The second method used the theoretical formulation for the drag force on
a sphere in shear flow which was shown to be an overestimate. Combining the two drag
force formulations results in a range for the drag force. The adhesion force was modeled
with a dynamic contact angle hysteresis analysis. The receding contact angle was
modeled using the method of Cox(1986). The advancing contact angle could not
modeled this way due to the limitations of Cox’s method. The advancing contact was
used as a tuning factor to fit the model predictions to the model data. Equating the
formulations for the drag force to the adhesion force allows the critical capillary number
to be solved for. The model was shown to predict the critical state well. The advancing
contact angles used to fit the model fell in a range which was acceptable from a physical
point of view. All ‘best fit’ advancing contact angles fell between the equilibrium

contact angle and the maximum static contact angle as expected.

6.2 FUTURE WORK

Experimentally, it would be useful to continue by examining the effects of
changing the shearing fluid. This would allow comparison between the data of this study.
In addition, if the oil viscosity is lowered sufficiently, the advancing contact angle would
be able to be modeled with Cox’s method. This would eliminate the need for a tuning

factor in the adhesion force modeling.
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The drag force formulation could be improved with a three dimensional
computational fluid dynamics(CFD) simulation. Such a simulation would have to
account for the complex shape of the bubble interface as it changes with the dynamic
contact angle changes. Coupling Cox’s method, the Laplace Equation of Capillarity, and
the CFD solver would allow the drag force to determined very precisely. To simplify this
work, the results of Chapter 4 could be used to approximate the bubble as a cylinder

under certain combinations of D. and h.
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APPENDIX A — COMPUTER PROGRAMS

Code 2.1 — Sum of Squares Minimization for a Circular Profile

program least
************************************************************************

* Program fits a circle to a file of x,y coordinates. The egn
* (yv-a)A2 + (x-b)A2 = rA2 is used and the sum of squares is
* minimized with respect to a,b,and r.

khkhkhhkhhdhhhhkkhkhkrkhhhkrhkhhkhhhkhhhhhhkhkdohkhkhhrhkhhhrhkkrkrkhkrhkhohkkdrrhrrrhhhhrhhkhrhhscrr

real a,b,r,sos,x(100),y(100),xmin,xmax,ymin, ymax
real abest,bbest,rbest,best, temp
integer i,j.,n

+ QPEN FILES, SET UP INITIAL GUESS FOR PARAMETERS
open(8,file='bubble.txt', status='unknown')
read (8, *)n
xmin=10000
ymin=10000
xmax=-10000
ymax=-10000

* READ IN COORDINATES AND FIND MINIMUM AND MAXIMUM VALUES FOR X&Y
do 10 i=1,n
read (8, *)y (i) ,x(i)
if(x(i).lt.xmin) then
xmin=x (i)
endif
if(x(i) .gt.xmax) then
xmax=x (i)
endif
if(y(i).1lt.ymin) then
ymin=y (i)
endif
if(y (i) .gt.ymax) then
ymax=y (i)
endif

10 continue
close(8)

*+ USE MINMAX VALUES TO FIND INITIAL GUESSES FOR B AND R
bbest=0.5* (ymin+ymax)
rbest=0.5* (ymax-ymin+xmax-xmin) /2.0

* MINIMIZE 'A' KEEPING 'B' AND ‘R' CONSTANT
do 50 j=1,10
best=lel2
do 20 a=xmin,xmax,1l
call square(n,x,v,a,bbest,rbest, sos)
if (sos.lt.best) then
best=sos
abest=a
endif
20 continue

* MINIMIZE 'B' KEEPING 'R' CONSTANT AND WITH OPTIMAL 'A'
best=1lel2
do 21 b=ymin,ymax,1l
call square(n,x,y,abest,b,rbest, sos)
if (sos.lt.best) then
best=sos
bbest=b
endif
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21 continue

* MINIMIZE 'R' KEEPING OPTIMAL 'A' AND OPTIMAL 'B’
best=1lel2
do 22 r=rbest-50,rbest+50,1
call square(n,x,y,abest,bbest,r,sos)
if(sos.lt.best) then
best=sos
rbest=r
endif
22 continue
50 continue
print *, 'DIAMETER =',rbest*2,' pixels'
end
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* Subroutine calculates error via sum of squares method. The
error
* is the distance from (x(i),v(i)) to the center of a circle
* with equation (y-b)A2+(x-a)A2 = rA2
B L A R R R R A R AR R R TR LT L E LS L SRS RS LI LR R R R R R R R R Rl ko R
subroutine square(n,x,y,a,b,r,sos)
real a,b,r,sos,xerr,verr,rot,x(100),y(100)
integer i,n
xerr=0.0
verr=0.0
do 100 i=1,n
rot=sqrt ((x(i) -a) **2+(y (i) -b) **2)
if (rot.ne.0) then
rot=abs (rot-r) /rot
xerr=xerr+ (rot*abs(x(i) -a)) **2
verr=yerr+ (rot*abs(y(i) -b)) **2
else
Xerr=r**2
yerr=r**2
endif
100 continue
sos=xerr+yerr
return
end

122



Code 3.1 — Determine Contact Angles from 20 interface profile points near surface

program contact
I R R R R R R R EII S RIS Z RS LSRR R S 2 2R R g R g Rkt i o
* This program will calculate matrix coefficents for computing
* contact angles if given bubble perimeter points and stopping pts.
************************************************************************
real x(20),y(20),xs1,xs2,vysl,ys2,theta, angle
integer i,xread,yread

* MANUALLY CHANGE THE FOLLOWING VALUES. THEY REPRESENT THE PIXEL COORD
*+ OF THE BUBBLE INTERFACE AT THE SOLID SURFACE

xs1=148

ysl=281

xs2=160

ys2=426

* COMPUTE THE ANGLE BETWEEN THE TWO POINTS AT THE SURFACE. ACCOUNTS FOR
* ANY TILTING OF THE IMAGE.

if (xsl.eqg.xs2) then

angle=0.0

else

angle=atan2 (xs2-xsl,ys2-ysl)

endif

* FIND THE 20 POINTS NEAREST TO THE ADVANCING CONTACT ANGLE AND CALL
* THE CURVING FITTING AND ANALYSIS SUBROUTINE
open(8,file='input.txt',status='unknown’)
do 10 i=1,20
read (8, *)xread,yread
x (i) =xread
y (i) =yread
10 continue
11 call shift(x,y)
read (8,*)x(20),y(20)
if (x{(20) .eqg.xsl.and.y(20) .eqg.ysl) then
call compute(x,y,theta)
goto 12
endif
goto 11
12 print *, 'Contact angle #1 ', (theta+angle)*180.0/3.1415+90.0

* FPOLLOW THE SAME PROCEDURE FOR THE 20 POINTS NEAREST THE RECEDING
* CONTACT ANGLE
do 30 i=1,20
read (8, *)xread,yread
x (i) =xread
y{(i)=yread
30 continue
41 call shift(x,y)
read (8, *)x{(20),y(20)
if (x(20) .eq.xs2.and.y{(20) .eq.ys2) then
call compute(x,v,theta)
goto 42
endif
goto 41
a2 print =*,'Contact Angle #2 ', (theta-angle)*180.0/3.1415+390.0

end
************************************************************************

* This subroutine shifts the data back one position in the xy array
************************************************************************

subroutine shift(x,y)

123



20

real x(20),vy(20)
integer i

do 20 i=2,20
x(i-1)=x(i)
y(i-1)=y (1)
continue

return

end
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*
*
*

This subroutine calculates a quadratic best £it to the interface
profile. Computing the slope of this curve at the contact surface
allows the contact angle to be found.
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87

88

subroutine compute(x,¥y,theta)

real x(20),v(20), result(8),a,b,c, theta,slope
double precision mat (3,4), temp

integer 1

do 87 i=1,10

result(i)=0.0

continue

result(1)=20.0

do 88 i=1,20
result(2)=result (2)+x (i)
result (3)=result(3)+x (i) **2
result (4)=result (4)+x (i) **3
result (5)=result (5) +x (i) **4
result (6) =result (6) +y (i)
result (7)=result (7)+x (i) *y (1)
result (8) =result(8)+x (i) **2*y (i)
continue

mat(l,1l)=result(l)
mat (1,2)=result(2)
mat(1l,3)=result (3}
mat(1l,4)=result(6)
mat(2,1)=result(2)
mat (2,2)=result(3)
mat (2, 3)=result (4)
mat(2,4)=result(7)
mat (3,1)=result(3)
mat (3, 2) =result(4)
mat (3, 3)=result(5)
mat (3,4)=result (8)

* STANDARD GAUSSIAN ELIMINATION TO SOLVE FOR THE UNKNOWNS OF A 3X3
MATRIX

110

111

112

113

temp=mat (1,1)

do 110 i=1,4
mat{(l,i)=mat(l,i)/temp

continue

temp=mat (2, 1)

do 111 i=1,4

mat (2,1i)=-mat(2,1i) -mat (1,1i) *temp
continue

temp=mat (3,1)

do 112 i=1,4

mat(3,i)=mat(3,i) -mat(1,i) *temp
continue

temp=mat (2, 2)

do 113 i=1,4
mat(2,i)=mat(2,1i) /temp

continue

temp=mat (3, 2)
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114

115

* THE

do 114 i=1,4

mat (3,1)=mat(3,1i) -mat(2,1i) *temp
continue

temp=mat (3, 3)

do 115 i=1,4

mat (3,1)=mat(3,i) /temp
continue

SOLUTION IS: AXA2 + BX + C
a=mat (3,4)

b=mat (2, 4) -a*mat (2, 3)
c=mat(1l,4)-a*mat(1l,3)-b*mat(1,2)

DERIVATIVE IS: 22X + B
slope=2.0*a*x(20) +b
theta=atan(abs (slope))

return
end
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Code 5.1 — Evaluation of Cox’s method using Simpson’s method of integration

program simpson
************************************************************************
real L,deltax,sum,theta,beta,eval,£(1000),pi
integer n,1i

* SET UP PROBLEM
L=16800.0
pi=3.141592654
n=1000
open (8, file='output.txt',status="'unknown’)

do 40 theta=1.0*3.1415/1000.0,3.1415,3.1415/1000.0
deltax=theta/n
sum=0.0

* FOLLOW SIMPSON’S INTEGRATION ALGORITHM WITH 1000 FUNCTION EVALUATIGCNS
do 10 i=1,n
beta=theta/n~*i
call func(L,beta,eval,pi)
f(i)=eval

10 continue
sum=f (1) +£ (n)
do 20 i=2,n-1,2
sum=sum+4.0*f (i)
sum=sum+2.0*f (i+1)

20 continue
sum=sum*deltax/3.0
write(8, *) theta, sum

40 continue
end
************************************************************************

*This subroutine evaluates the function 1/f (theta) in Cox’s method
************************************************************************
subroutine func(L,beta,eval,pi)
real L,beta,eval,num,dem

num=L**2* (beta**2- (sin(beta) ) **2)
num=num+2*L* (beta* (pi-beta)+(sin (beta)) **2)

num=num+ (pi-beta) **2- (sin (beta)) **2

num=num*2*sin (beta)

dem=L* (beta**2- (sin (beta) ) **2)

dem=den* { (pi-beta) +sin (beta) *cos (beta))

dem=dem+ ( (pi-beta) **2- (sin (beta) ) **2) * (beta-sin (beta) *cos (beta) )
eval=dem/nium

return

end
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Code 5

.2 —Solving for Critical State in an iterative fashion.

program capillar

double precision £a,ca,one, two, three,d,h,delta,deltaa,deltar
double precision temp,error,a,vp,den,litr, height(4)

real rx,ry.,gof,tr,ad

integer n,k

integer i

open (9,file=‘ocutput.txt',status='unknown’')
height (1) =34e-6

height (2)=60e-6

height(3)=122e-6
height(4)=164e-6

* START LOOPS THROUGH H AND D

do 32 i=1,4
h=height (1)
do 10 d=2+*h,20*h,h

* INITIAL GUESS FOR CA

* USE
37

ca=0.001
orig=ca

COX'S METHOD TO OBTAIN RECEDING ANGLE FOR THIS CA AND H
call ggof (0.6981, gof)

gof=gof+ca*log(h/le-6)

call gtheta(tr,gof)

tr=3.1415927-tr

* THIS SECTION IS WHERE THE ADVANCING CONTACT ANGLE IS GUESSED

if(i.eqg.1l) then

ad=2.45%5

endif
if(i.eq.2) then

ad=2.57

endif
if(i.eq.3) then
ad=2.625

endif
if(i.eq.4) then
ad=2.73

endif

* COMPUTE THE ADHESION FORCE

fa=(cos(tr) -cos(ad))

* CALL LAPLACE SUB TO COMPUTE NECESSARY ADDITIONS TO D

call laplace(d,h,ad,deltaa)
call laplace(d,h, tr,deltar)
delta=deltaa+deltar

* COMPUTE CA..TO SET FOR DRAG FORCE ONE, CHANGE THE LAST ‘2.0’ TO A

*11.01

ca=2.0/(7.65225*3.1415) /(((d+delta)) **2) *d*h*fa*2.0
if (abs{ca-orig) .gt.le-7) then

orig=ca
goto 37
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32

endif
write(9,*)d/h,1000*ca,h

continue
continue

close(9)
end

kA ETETETIT AT LEATITIR TRk AT kIR hAk AT T I TRk *Fhhkkkhkdhhrdhkhkhkhkhkhhxkhkixk

*This subroutine solves the laplace equation of capillarity to £ind the

*largest deviation from a vertical interface assumption
I EE XSS R ESESEE S EE S EEE LRSI LSRR SRS SEE S L ST SRS EL LRSS S & S A SR8 L R0 R 8 8 & 8 5 &8 &4

* SET

91

* SET

92

23

20

subroutine laplace(d,h,angle,delta)

double precision 4,h,radius,g,dx,gamma, rho,delta
double precision y(500),ynot(500),forw,den

real angle

radius=4/2.0
g=9.81
dx=h/501.0
gamma=0.03
rho=879.2-1.2

litr=((tan(angle-1.57079%6)) ** (-2}+1.0) *h*h/4.0

UP INITIAL GUESS AS A CIRCULAR PROFILE

do 91 n=1,500

v (n)=radius+(litr-((n-1) *dx-h/2.0) **2)**0.5-h/2.0/tan (angle-
&1.5707¢96)

ynot (n) =y (n)

continue

UP BOUNDARY CONDITIONS
v (1)=radius
ynot (1) =radius

v (500)=radius

ynot (500) =radius
temp=0.0

do 93 n=1,500
temp=temp+y (n) -radius
ynot (n) =y (n)

continue

forw=(2.0*y (1) -5.0*y(2)+4.0*v (3) -y (4)) /(dx**2.0)
do 20 n=2,499
x=(n-1) *dx

yp=(y(n+l) -y(n-1)) /2.0/dx
den=(1.0+(tan(angle-3.1415/2.0)) **2)

a=forw*den** (1.5)+tan (angle3.1415/2.0) *den** (0.5) /radius+rho*g*x/

&amma
a=a-yp/yv(n) / ((1+yp**2) **0.5)

a=axr (1.0+Yp**2) **(1.5)
y(n)=0.5*(y(n+l)+y(n-1) -a* (dx**2))
continue

* OVER-RELAXATION IMPLEMENTATION

do 44 n=1,500
v {(n)=ynot (n)+1.5*(y(n) -ynot (n))
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44 continue

error=0.0
do 12 n=1,500
error=error+y(n) -radius
12 continue
error=abs ((error-temp) / (error))

if (error.gt.le-5) then
goto 92
endif

* DETERMINE LARGEST DEVIATION FROM CONVERGED PROFILE
call bigges(y,delta)
delta=delta-radius

returm
end
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*This subroutine finds the largest deviation from a converged profile
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subroutine bigges (y.,delta)
double precision y(500),delta
integer q

delta=0.0
do 109 g=1,500
if(y(qg) .gt.delta) then
delta=y(q)
endif
109 continue
return
end
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*This subroutine returns the value of g(theta) given theta
*for the receding contact angle sclution of Cox’s method
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subroutine ggof (alpha,gof)
real alpha,gof,beta(2),func(2),per
integer i

open (8,file='gtheta.txt', status='unknown’')
read (8, *)beta(l) , func(l)
59 read (8, *)beta (2) , func(2)
if (alpha.le.beta (2) .and.alpha.gt.beta(l)) then
per=(alpha-beta(l)) /(beta(2) -beta (1))
gof=func (1) +per~* (func(2) - func(l))
else
beta(l) =beta (2)
func (1) =func(2)
goto 99
endif
close (8)
return
end
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*This subroutine returms theta given g(theta) for the receding
*contact angle solution to Cox‘s method
e Y R I R R R R R R R R A T R TR TS SR TSR LI LR RS R R R R L S
subroutine gtheta (alpha,gof)
real alpha,gof,beta(2),func(2) ,per
integer i
open (8,file='gtheta.txt', status='unknown')
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read (8, *)beta(l), func(l)
599 read (8, *)beta(2),func(2)
if (gof.le.func(2) .and.gof.gt.func(l)) then
per={(gof-func(l) )/ (func(2) -func(l))
alpha=beta (1) +per* (beta(2) -beta (1))
else
beta (1) =beta(2)
func (1) =func(2)
goto 599
endif
close (8)
return
end
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