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Abstract

This thesis includes 2 parts. Part 1 is: Discretization on High Dimensional Compact Do-

mains. Part 2 is: Polynomial Approximation on High Dimensional Spheres. A special example

for part 1 is the result on the unit sphere of high-dimensional Euclidean spaces.

In chapter 2, we obtained general results about discretization of integration on compact met-

ric domains. Related results on spheres, closed balls and simplexed could be as special exam-

ples of our results. The first main result is about regular partitions on compact path-connected

metric space equipped with non-atomic Borel probability measure. An example of this result

is the regular partition on the unit sphere, which improves the previous results by the uniform

absolute constant in the diameter of each partition. Many similar results were obtained with

constants depending on the dimension of the Euclidean space (they are an exponential form

of the dimension). It is a pity that our method here is not constructable. Resting main results

are about numerical integration. Numerical integration plays an important role in approxima-

tion theory. To integrate a given function, we sometimes do not know its original function,

sometimes it is too complicated to find its original function. Thus in many applied problems,

we need to use numerical integration (discrete weighted summation) to asymptotically express

it. A main topic is finding fixed nodes and weights to approximately express integration for
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a class of function, modifying weights and notes to improve the uniform approximation error

for the class of functions. We here used methods from [4] to prove the existence of nodes and

weights for numerical integration which result in a better approximation error. One result is

about discretization of integration on compact matric spaces that equipped with certain mea-

sures. Results here is better than previous results under the following points. First, we reduced

the smoothness requirements. Functions here do not need to be differentiable, satisfying Lips-

chitz condition is enough. Second, example of our result about discretization of integration for

piecewise polynomials on the unit sphere gives a better approximation error, somewhat over-

come the curse of dimensionality. The last main result is about discretization of integration on

finite-dimensional compact domains.

Chapter 3 mainly discusses the Jackson type’s inequality and its matching inverse inequal-

ity, equivalence of K-functional and modulus of smoothness on the unit sphere Sd−1. There

are many definitions for K-functional and modulus of smoothness. Here we use the modulus

of smoothness defined by Z. Ditzian via rotation operator on the unit sphere. K-functional

here we defined through partial derivative in Euler angles. In 1964, D. J. Newman, and H. S.

Shapiro [28] proved that for f ∈ C(Sd−1), the constant appear in Jackson type’s inequality for

r = 1, p =∞ can be a dimension-free constant. Results in this chapter show that this result can

be extended to all cases of positive integer r and p ≥ 1. We also obtain the matching inverse

Jackson’s inequality, equivalence of K−functional and modulus of smoothness with constant

in equivalence independent of dimension d. In this sense, we improved Ditzian’s results on

Jackon’s inequality. Jackson type’s inequality and its matching inverse inequality connect the

rate of polynomial approximation to the smoothness properties of functions on the sphere. E-

quivalence of K-functional and modulus of smoothness builds the relation between difference
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with differentiation.

I will describe in detail my current research projects in these two directions and the progress

I’ve made.
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Preface

Chapter 2 of this thesis is a joint paper with Professor Feng Dai and Professor Martin D.

Buhmann. This paper is published to Adv. Math. on Apr. 2021 as [9]: Martin Buhmann,

Feng Dai, Yeli Niu. Discretization of integrals on compact metric measure spaces. Advances

in Mathematics 381 (2021).32 pages. Professor Feng Dai is the main designer of this paper.

He introduced the problem. Main proofs are given by Professor Feng Dai and me. Professor

Martin D. Buhmann gave several examples and references. All of the proofs in this chapter are

joint work of Professor Feng Dai and me.

Chapter 3 was a joint work with Professor Feng Dai. He came up with the problem. Proofs

of main results in this chapter is solved by both of us.
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Chapter 1

Introduction

The first part, chapter 2 of this thesis is mainly about discretization of integration on compact

metric domains. Given a set Ω ⊂ Rd+1 with a normalized Borel measure µ, a function f defined

on Ω.

Λm(f, ξξξ) :=
m∑
j=1

λjf(ξj), ξξξ = (ξ1, . . . , ξm) ∈ Ω× · · · × Ω.

Such a formula Λm(·, ξξξ) is called a cubature formula (C.F.) with fixed nodes ξξξ = (ξ1, . . . , ξm)

and fixed weights Λ := (λ1, . . . , λm) ∈ Rm. A C.F. is called positive if λ1, · · · , λm ≥ 0.

Typically, one assumes that the target function f lies in some class W of continuous func-

tions on Ω in the numerical approximation

∫
Ω

f(x)dµ(x) ≈ Λm(f, ξξξ) =
m∑
j=1

λjf(ξj),

and then looks for good C.F.s for all functions in W. That is, the interest here is on good

C.F.s for a given class of functions W rather than an individal function. The error of such

approximation is measured by the following quantity:

Λm(W, ξξξ) := sup
f∈W

∣∣∣∣∫
Ω

fdµ− Λm(f, ξξξ)

∣∣∣∣ .
One can further optimize the C.F.s and study the quantity with infinimum taken over all possible
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Λ, ξξξ in Λm

inf Λm(W, ξξξ)

In classical approximation theory, a typical method of estimating the quantity infΛm Λm(W, ξξξ)

with Ω = Sd involves the following two steps:

(I). Reduce the dimension: find a “good” XN ⊂ L1(Sd) to approximate functions from W

with N ≈ m.

(II). Find a good C.F. Λm to approximate integrals of functions on XN :

∫
Sd
f(x) dµ(x) = Λm(f) =

m∑
j=1

λjf(ξj), ∀f ∈ XN .

In the second step, one can use the following theorem:

Tchakaloff’s theorem.[17] Let Ω be a compact metric space and µ a Borel probability

measure on Ω. If XN is an N -dimensional space of continuous functions on Ω, then there exist

exactly N points ξj ∈ Ω and numbers λj ≥ 0, 1 ≤ j ≤ N such that

∫
Ω

f(x) dµ(x) =
N∑
j=1

λjf(ξj), ∀f ∈ XN . (1.0.1)

Indeed, using this method, one can show

Corollary 1.0.1. Let W be a compact subset of C(Sd). Then

inf
ξj∈Sd,λj∈R
j=1,2,··· ,m

sup
f∈W

∣∣∣∫
Sd
f dµ−

m∑
j=1

λjf(ξj)
∣∣∣ ≤ 2dm(W, L∞),

where dm(W, L∞) is the Kolmogorov m-width of W in the space C(Sd):

dm(W, L∞) := inf
Xm

sup
f∈W

inf
g∈Xm

‖f − g‖∞

In the case when W is the unit ball Br := {f ∈ W r
∞(Sd) : ‖f‖W r

∞ ≤ 1} of the usual
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Sobolev space W r
∞ of order r on the sphere Sd, we have the following sharp estimates [5, 18]:

inf
ξj∈Sd,λj∈R
j=1,2,··· ,N

sup
f∈Br

∣∣∣∫
Sd
f dµ−

N∑
j=1

λjf(ξj)
∣∣∣ � N−

r
d−1 , (1.0.2)

where the constants of equivalence depend on d and r.

The problem with the estimate (1.0.2) lies in the following two facts:

(i) if the dimension d is large and the smoothness parameter r is small (say, r = 1), then the

rate approximation N−
r
d−1 in (1.0.2) goes to zero very slowly as N →∞;

(ii) the implied constant of equivalence in (1.0.2) grows exponentially fast to∞ as d→∞.

In this part, an example of one main results is the following discritization problem for zonal

functions on the sphere:

inf
λ1,λ2,··· ,λN∈R

inf
ξ1,··· ,ξN∈Sd

max
x∈Sd

∣∣∣∫
Sd

Φ(x · y)g(y)dµ(y)−
N∑
j=1

λjΦ(x · ξj)
∣∣∣

where g ∈ L∞(Sd) and Φ : [−1, 1] → R is a Lipschit-function satisfying certain conditions.

The result shows that the above quantity can be controlled by a better error that goes to zero

faster as d goes to infinity (faster than previous results). Our result somewhat overcome the

curse of dimensionality. For more details, please read the section 2.5 in the chapter 2.

Now we introduce several useful definitions and main results in the chapter 2. Let (Ω, ρ) be

a compact metric space. Open balls and closed balls in Ω will be denoted by Bζ(x) := {y ∈ Ω :

ρ(x, y) < ζ}, and Bζ [x] := {y ∈ Ω : ρ(x, y) 6 ζ}, respectively. A path connecting two points

x, y ∈ Ω is a continuous map γ : [0, 1] → Ω with γ(0) = x and γ(1) = y. A metric space

(Ω, ρ) is called path-connected if every two distinct points in Ω can be connected with a path.

As is well known, every open connected subset of Rd+1 is path-connected. Given a set A ⊂ Ω

and a point x ∈ Ω, define

dist(x,A) := inf
y∈A

ρ(x, y).

A measure µ on Ω is called non-atomic if for any measurable set A ⊂ Ω with µ(A) > 0
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there exists a measurable subset B of A such that µ(A) > µ(B) > 0. For non-atomic Borel

probability measure µ on Ω, we have the property: If A0 ⊂ A1 ⊂ Ω, 0 < µ(A1) and µ(A0) ≤

t ≤ µ(A1), then there exists a measurable subset Et ⊂ A1 satisfies µ(Et) = t. Normalized

discrete measure is an example of atomic measure. Its subsets only have two possible valued

measures: zero or 1.

A partition of Ω consists of finitely many pairwise disjoint subsets of Ω whose union is

Ω. We first introduce the following theorem about regular partition on path-connected compact

metric space, this theorem will be proved in Section 2.2.

Theorem 1.0.2. Let (Ω, ρ) be a compact path-connected metric space with diameter diam(Ω) =

supx,y∈Ω ρ(x, y) = π. Let µ be a non-atomic Borel probability measure on Ω, and N ≥ 2 a pos-

itive integer. Assume that the inequality

inf
x∈Ω

µ
(
Bδ/2(x)

)
>

1

N
(1.0.3)

holds for some δ > 0. Then there exists a partition {R1, . . . , RN} of Ω such that

(i) the Rj are pairwise disjoint subsets of Ω,

(ii) for each 1 ≤ j ≤ N , µ(Rj) = 1
N

and diam(Rj) ≤ 4δ.

Theorem 1.0.2 with constants depending on certain geometric parameters of the underlying

space (Ω, ρ, µ) (e.g. dimension) is known in a more general setting. In result about area-regular

partition on the unit sphere Sd, the constant in the diameter of each partition is of an exponential

form of the dimension d. The crucial point here lies in the fact that the constant 4 in the estimates

of diam(Rj) is absolute.

Let (X, ρ) be a compact metric space with metric ρ and diameter π. For x ∈ X and 0 ≤

a < b ≤ π, set

E(x; a, b) := {y ∈ X : a ≤ ρ(x, y) ≤ b}.

Definition 1.0.3. Let 0 = t0 < t1 < · · · < t` = π be a partition of the interval [0, π], and

let r ∈ N. We say Φ ∈ C[0, π] belongs to the class Sr ≡ Sr(t1, . . . , t`) if there exists an
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r-dimensional linear subspace Vr of C(X) such that for any x ∈ X and each 1 ≤ j ≤ `,

Φ(ρ(x, ·))
∣∣∣
E(x;tj−1,tj)

∈
{
f
∣∣∣
E(x;tj−1,tj)

: f ∈ Vr
}
.

Next, let µ be a Borel probability measure on X satisfying the following condition for a

parameter β ≥ 1 and some constant c1 > 1:

(a) for each positive integer N , there exists a partition {X1, . . . , XN} of X such that µ(Xj) =

1
N

and diam(Xj) ≤ δN := c1N
− 1
β for 1 ≤ j ≤ N .

According to Theorem 1.0.2, Condition (a) holds automatically with c1 = 20π if the metric

space X is path-connected, and µ is a non-atomic Borel probability measure on X satisfying

that for any 0 < t ≤ 1,

inf
x∈X

µ(Bt(x)) ≥
( 8

c1

)β
tβ. (1.0.4)

One main result in this chapter is:

Theorem 1.0.4. Let Φ ∈ C[0, π] satisfy

|Φ(s)− Φ(s′)| ≤ |s− s′|, ∀s, s′ ∈ [0, π], (1.0.5)

and belong to a class Sr(t1, . . . , t`) for some compact metric space (X, ρ), where r ∈ N and

0 = t0 < t1 < · · · < t` = π. Let µ be a Borel probability measure onX satisfying the condition

(a) and the following condition:

(b) for each x ∈ X and δ ∈ (0, π),

µ
(
E(x; tj − δ, tj + δ)

)
6 c2δ, 1 ≤ j < `, (1.0.6)

where c2 > 1 is a constant independent of δ and x.

Then for each positive integer N ≥ 4 , there exist points y1, . . . , y(r+2)N
∈ X and nonnegative
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numbers λ1, . . . , λ(r+2)N
such that

∑(r+2)N
j=1 λj = 1 and

max
x∈X

∣∣∣∣∣∣
∫
X

Φ(ρ(x, y)) dµ(y)−
(r+2)N∑
j=1

λjΦ(ρ(x, yj))

∣∣∣∣∣∣ 6 c3N
− 1

2
− 3

2β

√
logN,

where c3 := 8c2
1

√
c2`
√
β.

In the case when the metric space X is path-connected and the borel probability measure µ

on X be non-atomic, with the Theorem 1.0.2 we have:

Theorem 1.0.5. Let (X, ρ) be a compact path-connected metric space. Let Φ ∈ C[0, π] satisfy

(1.0.5) and belong to a class Sr(t1, . . . , t`) for some r ∈ N and 0 = t0 < t1 < · · · < t` = π. Let

µ be a non-atomic Borel probability measure on X satisfying (1.0.4). Assume in addition that

the condition (b) in Theorem 1.0.4 is satisfied. Then for any g ∈ L∞(X, dµ) with ‖g‖L∞(dµ) ≤ 1,

and each positive integer N ≥ 20, there exist points y1, . . . , y2(r+2)N
∈ X and real numbers

λ1, . . . , λ2(r+2)N
such that

max
x∈X

∣∣∣∣∣∣
∫
X

Φ(ρ(x, y))g(y) dµ(y)−
2(r+2)N∑
j=1

λjΦ(ρ(x, yj))

∣∣∣∣∣∣ 6 45c3N
− 1

2
− 3

2β

√
logN.

The proof of this theorem will partly rely on the regular-partition Theorem 1.0.2. Proofs of

Theorem 1.0.4 and Theorem 1.0.5 appear in Section 2.3.

Let us give some examples of the metric spaces (X, ρ) and the associated classes Sr which

satisfy the conditions of Theorem 1.0.5 .

Example 1.0.6. (i) Let X = Sd be the unit sphere of Rd+1 equipped with the usual geodesic

distance ρ(x, y) = arccos x · y for x, y ∈ Sd. If ϕ ∈ C[−1, 1] is a piecewise algebraic polyno-

mial of degree at most n0 on [−1, 1], then the function Φ(θ) := ϕ(cos θ), θ ∈ [0, π] belongs to a

class Sr with r being the dimension of the space of all spherical polynomials of degree at most

n0 on the sphere Sd−1. In this case, Φ(ρ(x, y)) = ϕ(x · y), and the condition (1.0.4) implies

both the condition (a) and the condition (b).

(ii) Let X = Bπ
2
(0) ⊂ Rd+1 be the Euclidean ball with centre 0 and radius π

2
. If ϕ ∈

C[0,∞) is a piecewise algebraic polynomial of degree at most n0, then the function Φ(t) :=
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ϕ(t2), t ≥ 0 belongs to a class Sr with r being the dimension of the space of all algebraic

polynomials of degree at most 2n0 in d + 1 variables. In this case, Φ(ρ(x, y)) = ϕ(‖x− y‖2),

and the condition (1.0.4) implies both the condition (a) and the condition (b).

We will discuss these examples in details in section 2.5 and 2.6. The Theorem 1.0.5 along

with the Theorem 1.0.4 will be proved in Section 2.3.

We also give a result for discretization on finite-dimensional compact domains. It is an

analogue of Theorem 1.0.5 for all g ∈ L1(dµ) (instead of g ∈ L∞(dµ)) on finite-dimensional

domains. The implied constant in section 2.4 will depend on the dimension and the underlying

domain.

Let (X, ‖ · ‖) be a finite-dimensional real normed linear space. Let Bζ(x) (resp. Bζ [x])

denote the open balls (resp. closed balls) with centre x ∈ X and radius ζ > 0 defined with

respect to the metric ρ(x, y) = ‖x − y‖. Here ‖ · ‖ is not necessarily the Euclidean norm. Let

Ω ⊂ B1[0] be a compact subset of X (not necessarily connected). Let µ be a Borel probability

measure supported on Ω satisfies the following two conditions:

(i) there exist a positive constant c4 > 1 and a parameter β > 1 such that for any x ∈ Ω and

δ ∈ (0, 2]

c−1
4 δβ ≤ µ

(
Bδ(x)

)
≤ c4δ

β; (1.0.7)

(ii) there exists a constant c5 > 0 such that for any x ∈ Ω and t, s ∈ (0, 2],

µ
(
{y ∈ Ω : t ≤ ‖y − x‖ ≤ t+ s}

)
≤ c5s. (1.0.8)

Under these two conditions, we shall prove

Theorem 1.0.7. Let Φ : [0,∞)→ R be a function such that

|Φ(s)− Φ(s′)| ≤ |s− s′|, ∀s, s′ ∈ [0, 2]. (1.0.9)

Assume that there exist a partition 0 = t0 < t1 < · · · < t` = 2 of [0, 2] and a translation-

invariant linear subspace Xr of C(Ω) with dimXr = r such that with Ej := {x ∈ Rd :
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tj−1 ≤ ‖x‖ ≤ tj}, j = 1, 2, . . . , `,

Φ(‖ · ‖)
∣∣∣
Ej
∈
{
f
∣∣∣
Ej

: f ∈ Xr

}
.

Let g ∈ L1(Ω, µ) be such that ‖g‖L1(dµ) = 1. Then for each positive integer n ≥ 2, there exist

points y1, . . . , yn ∈ Ω and real numbers λ1, . . . , λn, such that

sup
x∈Ω

∣∣∣∫
Ω

Φ(‖x− y‖)g(y) dµ(y)−
n∑
k=1

λkΦ(‖x− yk‖)
∣∣∣

≤ C(X)


n−

1
2
− 3

2β (log n)
1
2 , if 1 < β < 3,

n−1(log n)
3
2 , if β = 3,

n−
β+1

2(β−1) (log n)
1
2 , if β > 3,

(1.0.10)

where the constant C(X) depends only on dimX , c4, c5, r, ` and β.

The proof of this result will be given in section 2.4.

The second main part of this thesis is about: polynomial approximation on high dimensional

spheres.

Let Sd−1 denote the unit sphere of Rd equipped with the surface Lebesgue measure normal-

ized by
∫
Sd−1 1 dσ(x) = 1. Given 1 ≤ p < ∞, we denote by Lp(Sd−1) the Lebesgue Lp-space

on Sd−1 equipped with the norm

‖f‖p :=
(∫

Sd−1

|f(x)|p dσ(x)
) 1
p
.

In the limiting case, we identify L∞(Sd−1) with the space C(Sd−1) of all continuous functions

on Sd−1 equipped with the uniform norm

‖f‖∞ = max
x∈Sd−1

|f(x)|.

A spherical polynomial of degree at most n on Sd−1 is the restriction on Sd−1 of an algebraic

polynomial in d variables of total degree at most n. Denote by Πd
n the space of all real spherical
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polynomials of degree at most n on the sphere Sd−1. As is well known (see [19]), Πd
n is a finite

dimensional vector space with

dim Πd
n =

(2n+ d− 1)Γ(n+ d− 1)

Γ(n+ 1)Γ(d)
=

2n+ d− 1

Γ(d)

d−2∏
j=1

(n+ j). (1.0.11)

For 1 ≤ p ≤ ∞ and f ∈ Lp(Sd−1), we define

En(f)p := min
P∈Πdn

‖f − P‖p, n = 0, 1, · · · .

Let SO(d) denote the group of rotations on Rd equipped with the normalized Haar measure

dQ. As is well known, for each integrable function f on SO(d) and any ρ ∈ SO(d),

∫
SO(d)

f(Q)dQ =

∫
SO(d)

f(ρQ)dQ =

∫
SO(d)

f(Qρ)dQ =

∫
SO(d)

f(Q−1)dQ. (1.0.12)

Furthermore, for each f ∈ L1(Sd−1) and e ∈ Sd−1,

∫
SO(d)

f(Qe) dQ =

∫
Sd−1

f(x) dσ(x). (1.0.13)

For each Q ∈ SO(d), we define the “translation” operator TQ by TQf(x) = f(Qx), where

f ∈ L1(Sd−1) and x ∈ Sd−1. Accordingly, givenQ ∈ SO(d), we define the r-th order difference

operator4r
Q : Lp(Sd−1)→ Lp(Sd−1), 1 ≤ p ≤ ∞ by

4r
Qf(x) = (I − TQ)rf(x) =

r∑
j=0

(−1)j
(
r

j

)
f(Qjx), x ∈ Sd−1.

where I denotes the identity operator.

Definition 1.0.8. Given t > 0, we define O(t) to be the class of all rotations ρ ∈ SO(d) taking
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the form ρ = Q−1MθQ for some Q ∈ SO(d) and θ ∈ [−t, t], where

Mθ :=



cos θ sin θ

− sin θ cos θ

1

. . .

1


d×d

, θ ∈ R. (1.0.14)

Clearly, the matrix Mθ defined above is a rotation in x1x2-plane satisfying M j
θ = Mjθ for

j ∈ Z.

Definition 1.0.9. Let 1 ≤ p ≤ ∞ and r ∈ N. The rth order modulus of smoothness of

f ∈ Lp(Sd−1) is defined by

ωr(f, t)p : = sup
Q∈O(t)

‖4r
Qf‖p, t > 0. (1.0.15)

Clearly, by the definition, for each Q ∈ SO(d) and θ ∈ R,

4r
Q−1MθQ

= T−1
Q 4

r
Mθ
TQ, (1.0.16)

and

ωr(f, t)p = sup
|θ|≤t

sup
Q∈SO(d)

∥∥∥ r∑
j=0

(−1)j
(
r

j

)
f(Q−1MjθQ ·)

∥∥∥
p
. (1.0.17)

The following properties follow directly from the properties of modulus of smoothness on

the unit circle.

Lemma 1.0.10. [22] Let 0 < p ≤ ∞. The modulus of smoothness ωr(f, t)p defined above have

the following properties:

(i) For any r ∈ N, ωr(f, t)p ≤ 2r‖f‖p.

(ii) For 0 < s < r, ωr(f, t)p ≤ 2r−sωs(f, t)p.

10



(iii) For any ` ∈ N, ωr(f, `t)p ≤ `rωr(f, t)p.

(iv) (Marchaud inequality) m > r,

ωr(f, t)p ≤ C1(m)tr
∫ 1

t

ωm(f, u)p
ur+1

du, (1.0.18)

where the constant C1(m) depends only on m.

The modulus of smoothness ωr(f, t)p was introduced by Z. Ditzain [22, Section 10], where

the ωr∗(f, t)p was used for ωr(f, t)p. It has the advantage that the difference 4r
Qf(x) for Q ∈

O(t) is essentially taken over a unit circle (see (1.0.17)) as the class O(t) consists of two-

dimensional rotations on planes only. Note that in [22], the supremum is taken over the set

O′(t) :=
{
Q ∈ SO(d) : max

x∈Sd−1
arccos(x ·Qx) ≤ t

}
.

Since each Q ∈ O′(t) can be expressed as Q = A1MθA
−1
1 A2MθA

−1
2 · · ·AlMθA

−1
l with some

orthogonal matrix A1, A2, . . . Al, those two modulis of smoothness are dimension-free equiva-

lent with each other.

Both the Jackson inequality,

En(f)p ≤ Cp,d,rω
r(f, n−1)p, 1 ≤ p ≤ ∞, (1.0.19)

and its matching inverse inequality

ωr(f, n−1)p ≤ Cp,r,dn
−r

n∑
k=1

kr−1Ek−1(f)p (1.0.20)

were proved by Ditzian [14, 21]. A relatively simpler proof of the Jackson inequality (1.0.19)

can be found in [15]. However, the dependence of the degree of approximation on the number

of dimensions was not taken into account in these papers. Indeed, the implicit constants Cp,d,r

obtained in these papers have the asymptotic behavior ddα for some α ∈ (0, 1) as d→∞.
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In 1964, D. J. Newman, and H. S. Shapiro [28] proved that for f ∈ C(Sd−1),

En(f)∞ ≤ Cω(f,
d

n
)∞. (1.0.21)

The crucial point here lies in the fact that the constant C is absolute and is independent of the

dimension d. The authors [28] also raised the question whether similar estimates with constants

independent of the dimension d can be extended to higher order moduli of smoothness. They

remarked that the technique of the paper [28] does not seem to yield such extensions.

One main aim in this chapter is to show the following Jackson inequality and the matching

inverse with dimension-free constants:

Theorem 1.0.11. If 1 ≤ p ≤ ∞ and r ∈ N, then there exists a constant Cr > 0 depending only

on r such that for all f ∈ Lp(Sd−1) and n = 1, 2, · · · ,

En(f)p ≤ Crω
r
(
f,
d3

n

)
p
, (1.0.22)

and

ωr(f, n−1)p ≤ Crn
−r

n∑
k=1

kr−1Ek(f)p. (1.0.23)

Another main result in this chapter is the dimension free equivalent of K-functional and

modulus of smoothness. The partial derivative in Euler angles is given by

Definition 1.0.12. For r ∈ N, f ∈ Cr(Sd−1) and Q ∈ SO(d), we define the r-th order deriva-

tive DrQf to be a function on Sd−1 by

DrQf(x) :=
( ∂
∂t

)r(
f(Q−1MtQx)

)∣∣∣
t=0
, x ∈ Sd−1. (1.0.24)

The related K-functional is defined as:

Definition 1.0.13. Let r ∈ N and 1 ≤ p ≤ ∞. We define the r-th order K-functional of

12



f ∈ Lp(Sd−1) by

Kr(f, t)p := inf
{
‖f − g‖p + tr sup

Q∈SO(d)

‖DrQg‖p : g ∈ Cr(Sd−1)
}
, t > 0.

This K-functional and its equivalence with modulus of smoothness defined above can be

found in [16] and [20], but the independence of dimension appear in the degree of approxi-

mation were not considered. Here with the Jackson inequality proved above, we will show

dimension free equivalence of modulus of smoothness and K-functional.

Theorem 1.0.14. If r ∈ N and 1 ≤ p ≤ ∞, then there exist a constant Cr > 0 depending only

on r such that for all f ∈ Lp(Sd−1) and t ∈ (0, 1),

C−1
r Kr(f, d

−3t)p ≤ ωr(f, t)p ≤ CrKr(f, t)p. (1.0.25)

This chapter is organized in the following way. Section 3.1 introduces De La Vallee Poussin

type operator on Lp(Sd−1) and the average operator. The most importance of the De La Vallee

Poussin type operator is that its norm is bounded by the absolute constant 10 for any p and d.

With the average operator and Newman-Shapiro operator, De La Valle Poussin type operator

and Newman-Shapiro operators, section 3.2 gives the proof of Theorem 1.0.11. The proof

of Marchaud inequality 1.0.18 will be given in section 3.3, as the proof rely on the Jackson

inequality 1.0.22. Here we gave a more detailed proof of the Marchaud inequality. Section 3.4

discovers properties of Euler angle partial derivative and presents the proof of Theorem 3.4.3
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Chapter 2

Discretization on High Dimensional

Domains

2.1 Preliminaries

In this section, we list several basic results from functional analysis and probability that will

be needed in later sections. All of the materials in this section can be found in the book [32].

Theorem 2.1.1. Let X be a real linear topological space with dual space X∗. Then the follow-

ing statements hold:

(i) Let A and B be two nonempty disjoint convex sets in X . If A is open, then there exists

Λ ∈ X∗ such that

Λx < inf
y∈B

Λy, ∀ x ∈ A.

If A is compact, B is closed and X is locally convex, then there exist Λ ∈ X∗ such that

sup
x∈A

Λx < inf
y∈B

Λy.

(ii) If X is an F-space ( i.e., a complete vector space with metric that is translation invariant

whose multiplications and additions are continuous), then for every compact subset K ⊂

X , the closure of the convex hull of K is compact in X .
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Next, we recall some basic facts on weak and weak*-topologies. A topology τ1 on a

nonempty set X is said to be weaker than another topology τ2 on X if τ1 ⊂ τ2.

Theorem 2.1.2. Let X be a real vector space, and X ′ a vector space of linear functionals on X

which separates points in X (i.e., given any two distinct points x1, x2 ∈ X there exists Λ ∈ X ′

such that Λx1 6= Λx2). If τ denotes the weakest topology on X with respect to which every

element in X ′ is a continuous linear functional on X , then (X, τ) is a locally convex space

whose dual is X ′.

Let X be a real, locally convex linear topological space with topology τ and the dual space

X∗. Let τw denote the weak topology of X , i.e., the weakest topology of X with respect to

which every linear functional in X∗ is continuous. Then τw ⊂ τ , and Xw = (X, τw) is a locally

convex space whose dual is also X∗. We denote by τw∗ the weak∗ -topology of X∗; that is,

τw∗ is the weakest topology of X∗ with respect to which for every x ∈ X , the linear functional

f ∈ X∗ → f(x) is continuous. Then (X∗, τw∗) is a locally convex linear topological space

whose dual is X . If X is separable, then every weak*-compact set K in X∗ is metrizable in the

weak*-topology.

Theorem 2.1.3. [Banach-Alaoglu theorem] For every neighborhood V of 0 in X , its polar

K := {Λ ∈ X∗ : |Λx| ≤ 1,∀x ∈ V }

is weak* -compact in X∗. If, in addition, X is separable, then K is sequentially compact in the

weak* -topology.

Third, we review some basic results on vector-valued integration. We start with the follow-

ing definition:

Definition 2.1.4. Let X be a real locally convex topological vector space, and let (Q, µ) be a

measure space. A vector-valued function f : Q → X is said to be integrable with respect to µ

if

Λ(f(·)) = 〈Λ, f(·)〉 ∈ L1(Q, µ), ∀Λ ∈ X∗
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and there exists y ∈ X such that

〈Λ, y〉 =

∫
Q

〈Λ, f(x)〉 dµ(x), ∀Λ ∈ X∗.

If such a vector y ∈ X exists, it must be unique, and is denoted by
∫
Q
f(x) dµ(x).

Recall that a positive Borel measure µ on a topological space Q is regular if

µ(E) = sup{µ(K) : K ⊂ E is compact}

= inf{µ(G) : E ⊂ G,G is open in X}

for every Borel set E ⊂ Q. Each Borel probability measure on a locally compact Hausdorff

space with a countable base for its topology, or on a compact metric space is regular. If Q is

a compact Hausdorff space, and C(Q) is the space of all continuous functions on Q (with the

uniform norm), then the dual of C(Q) is the space of all finite regular Borel measures (i.e.,

Radon measures) on Q (with the norm of total variation).

Theorem 2.1.5. Suppose that

(i) X is a real, locally convex topological vector space;

(ii) Q is a compact Hausdorff space;

(iii) f : Q→ X is continuous;

(iv) conv(f(Q)) is compact in X (this is automatically true if X is an F-space).

Then given any Borel probability measure µ on Q, the function f : Q −→ X is integrable with

respect to µ and moreover,

y =

∫
Q

f dµ =

∫
f(Q)

z dµf (z) ∈ conv(f(Q)),
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where µf is a Borel probability measure on f(Q) given by

µf (E) = µ(f−1(E)), E ⊂ f(Q).

Conversely, if y ∈ conv(f(Q)), then there exists a regular Borel probability measure µf on

f(Q) such that

y =

∫
f(Q)

z dµf (z).

Theorem 2.1.6. Suppose that Q is a compact Hausdorff space, X is a Banach space, f : Q→

X is continuous, and µ is a positive Borel measure on Q. Then

∥∥∥∥∫
Q

f dµ
∥∥∥∥ ≤ ∫

Q

‖f‖ dµ.

We now show some preliminary results that would be of great importance in the proof of

main results.

Let Q be a compact metric space equipped with a Borel probability measure µ. Let M(Q)

denote the space of all finite signed Borel measures on Q. Then M(Q) is a Banach space with

respect to the norm

‖ν‖ := |ν|(Q) = sup

{∣∣∣∣∫
Q

f dν
∣∣∣∣ : f ∈ C(Q), ‖f‖C(Q) ≤ 1

}
.

Such a Banach space is the dual space of C(Q). Note that C(Q) is a separable Banach space.

Let M(Q)w
∗ denote the space M(Q) endowed with the weak* -topology τw∗ . Then M(Q)w

∗ is

a locally convex topological space with dual space C(Q).

Next, let Xm denote an m-dimensional linear subspace of C(Q). Let Σ0 ⊂ M(Q) denote

the set of all probability measures ρ ∈M(Q) of the form

ρ =
m+2∑
j=1

λj(ρ)δyj(ρ),

where λj(ρ) ≥ 0, yj(ρ) ∈ Q for j = 1, 2, . . . ,m+ 2 and
∑m+2

j=1 λj(ρ) = 1.
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Let Σ ⊆ Σ0 denote the set of all probability measures ρ ∈ Σ0 such that

∫
Q

f(x) dµ(x) =

∫
Q

f(x) dρ(x), ∀f ∈ Xm.

Theorem 2.1.7. There exists a Borel probability measure ν on the space M(Q)w
∗

which is

supported in the set Σ ⊂M(Q) and satisfies

µ =

∫
Σ

ρ dν(ρ),

where the equality holds in the sense that for any f ∈ C(Q),

∫
Q

f(x) dµ(x) =

∫
Σ

m+2∑
j=1

λj(ρ)f(yj(ρ)) dν(ρ)

and where µ is the probability measure we wish to discretise.

Lemma 2.1.8. The set Σ is w∗-compact in M(Q).

Proof. Define

S :=

{
λ = (λ1, . . . , λm+2) ∈ Rm+2 : λ1, . . . , λm+2 ≥ 0,

m+2∑
j=1

λj = 1

}
.

Then S × Qm+2 is a compact topological space with respect to the product topology. Next,

consider the mapping T : S ×Qm+2 → M(Q)w∗ that takes (λ, x) ∈ S ×Qm+2 to the measure∑m+2
j=1 λjδxj ∈ M(Q). Note that for any f ∈ C(Q), and any (λ, x), (α, y) ∈ S × Qm+2, we

have

∣∣∣∣∣〈
m+2∑
j=1

λjδxj −
m+2∑
j=1

αjδyj , f
〉∣∣∣∣∣ ≤

m+2∑
j=1

|λjf(xj)− αjf(yj)|

→ 0, as (α, y)→ (λ, x).

This implies that the mapping T is continuous, and hence Σ0 = T (S×Qm+2) isw∗-compact.
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Finally, for each f ∈ C(Q), set µf :=
∫
Q
f dµ. Then

Σ = {ρ ∈ Σ0 : 〈f, ρ〉 = µf , ∀f ∈ Xm}.

Since eachXm ⊂ C(Q) and C(Q) is the dual space ofM(Q)w
∗ , it follows that Σ is a w∗-closed

subset of the w∗-compact set Σ0. Thus, Σ is a weak*-compact subset of M(Q).

Lemma 2.1.9. The probability measure µ ∈ M(Q) is in the weak*-closure of the convex hull

K of Σ ⊂M(Q)w
∗
.

Proof. Assume to the contrary that µ 6∈ K = conv Σ
w∗

. Then by the convex separation

theorem, there exists g ∈ C(Q) such that

∫
Q

g dµ > sup
ρ∈Σ

∫
Q

g dρ. (2.1.1)

Let Xm+1 = span{Xm, g}. By Corollary 4.1 of [17], there exist x1, x2, . . . , xm+2 ∈ Q and

λ1, . . . , λm+2 > 0 such that
∑m+2

j=1 λj = 1 and

∫
Q

f dµ =
m+2∑
j=1

λjf(xj), ∀f ∈ Xm+1.

This implies that ρ =
∑m+2

j=1 λjδxj ∈ Σ and
∫
Q
g dµ =

∫
Q
gdρ, which contradicts (2.1.1).

Proof. Proof of Theorem 2.1.7

Let X = C(Q). Then M(Q) = X∗. By Lemma 3.4.2, µ lies in the w∗-closure of the

convex hull of Σ; that is, µ ∈ K := conv(Σ)
w∗

. By Lemma 2.1.8 , Σ is compact in the space

(X∗, w∗). Thus, by Theorem 2.1.5, it is enough to show that K is also compact in the space

(X∗, w∗). Note that

Σ ⊂ Σ0 ⊂ BX∗ := {ν ∈ X∗ : ‖ν‖ 6 1},

which also implies that conv(Σ) ⊂ BX∗ . Since BX∗ is compact in the space (X∗, w∗) (By

Theorem 2.1.3 ), it follows that K := conv(Σ)
w∗

is a closed subset of BX∗ , which also implies
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that K is compact in the space (X∗, w∗). The theorem is proved.

To prove Theorem 1.0.4 and Theorem 1.0.7 in this chapter, we also need the following

Bernstein’s inequality.

Theorem 2.1.10. Let {ξj}∞j=1 be a sequence of independent random variables such that Eξj = 0

and |ξj| ≤ 1 for all j. Then for any ε > 0,

Prob
{∣∣∣ 1
n

n∑
j=1

ξj

∣∣∣ > ε
}
≤ 2e−

nε2

2 .

2.2 Regular partitions on path-connected compact metric s-

pace

To prove Theorem 1.0.2, we first introduce a lemma:

Lemma 2.2.1. Let (Ω, ρ) be a compact path-connected metric space with diameter π. Then

for each δ ∈ (0, π), there exist a finite set Λ = {a1, . . . , aM} ⊂ Ω with M > 1 such that

Ω =
⋃M
j=1 Bδ(aj) and

dist(aj,Λj−1) = δ, j = 2, 3, . . . ,M,

where Λk := {a1, a2, . . . , ak}, k = 1, . . . ,M.

Proof. Since the metric space Ω is path-connected and has diameter π ≥ δ, there exist two

points a1, a2 ∈ Ω such that ρ(a1, a2) = δ. Assume that Λn = {a1, . . . , an} is a finite subset of

Ω such that

dist(aj,Λj−1) = δ, j = 2, . . . , n,

where Λj = {a1, a2, . . . , aj}. If Ω =
⋃n
j=1 Bδ(aj), then it is sufficient to use M = n. Now

assume that, in contrast, Ω 6=
⋃n
j=1Bδ(aj). Then there exists a point y ∈ Ω \ Λn such that

dist(y,Λn) > δ.

Without loss of generality, we may assume that dist(y,Λn) = ρ(y, a1). Let γ : [0, 1] → Ω be a
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path such that γ(0) = y and γ(1) = a1. Define f(t) := dist(γ(t),Λn) for t ∈ [0, 1]. Clearly, f

is a continuous function on [0, 1] with

f(0) = dist(y,Λn) ≥ δ and f(1) = dist(a1,Λn) = 0.

Thus, there exists a point an+1 = γ(tn) ∈ Ω for some tn ∈ [0, 1] such that

dist(an+1,Λn) = f(tn) = δ.

We may continue this selection procedure with Λn+1 = {a1, . . . , an+1}. Since Ω is compact,

this procedure must terminate after a finite number of steps.

Proof of Theorem 1.0.2. Let

{a1, . . . , aM}

be a finite subset of Ω as given in Lemma 2.2.1.

For 1 < j ≤M , let 1 ≤ kj < j be an integer such that

dist(aj,Λj−1) = ρ(aj, akj) = δ.

For each 1 ≤ j ≤M , define

Vj :=

{
x ∈ Ω : ρ(x, aj) = dist(x,Λ) and dist(x,Λ) < min

1≤i<j
ρ(x, ai)

}
.

That is, x ∈ Vj if and only if j is the smallest positive integer such that dist(x,Λ) = ρ(x, aj).

Clearly, the sets Vj are pairwise disjoint,

B δ
2
(aj) ⊂ Vj ⊂ Bδ[aj], j = 1, 2, . . . ,M, (2.2.1)

and Ω =
⋃M
j=1 Vj . Moreover, using (1.0.3), we have

µ(Vj) >
1

N
, ∀1 6 j 6M.
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Now we construct the desired partition of Ω as follows via a finite number of steps. In the

first step, we write V 0
j = Vj for j = 1, . . . ,M , and modify the cells VM and VkM slightly so that

Nµ(VM) is an integer. Let EM ⊂ V 0
M be such that µ(EM) < 1

N
and Nµ(V 0

M \EM) is a positive

integer. We then update the cells as follows:

V 1
j :=


V 0
j , if j 6= M and j 6= kM ,

V 0
j \ EM , if j = M,

V 0
j ∪ EM , if j = kM .

Note that the sets V 1
j are pairwise disjoint, Ω =

⋃M
j=1 V

1
j , V 0

j ⊂ V 1
j for 1 ≤ j ≤ M − 1 and

V 1
M ⊂ V 0

M .

In the second step, we continue the process with the collection of the first M − 1 updated

cells: V 1
j , 1 ≤ j ≤ M − 1. More precisely, we choose a subset EM−1 of V 0

M−1 such that

µ(EM−1) < 1
N

andNµ(V 1
M−1\EM−1) is a positive integer, and then update the cells as follows:

V 2
j :=


V 1
j , if j 6= M − 1 and j 6= kM−1,

V 1
j \ EM−1, if j = M − 1,

V 1
j ∪ EM−1, if j = kM−1.

It is very important here that the set EM−1 is selected as a subset of V 0
M−1 (rather than a general

subset V 1
M−1) because this way of selection yields a better control of the diameter of the updated

cell V 1
kM−1

:= EM−1 ∪ V 1
kM−1

.

In general, at the `-th step with 1 ≤ ` < M , we modify the cells V `−1
M−`+1 and V `−1

k
M−`+1

in a

similar manner. Indeed, let EM−`+1 ⊂ V 0
M−`+1 ⊂ V `−1

M−`+1 be such that µ(EM−`+1) < 1
N

and

Nµ(V `−1
M−`+1 \ EM−`+1) is a positive integer. We then define

V `
j :=


V `−1
j , if j 6= M − `+ 1 and j 6= kM−`+1,

V `−1
M−`+1 \ EM−`+1, if j = M − `+ 1,

V `−1
kM−`+1

∪ EM−`+1, if j = kM−`+1.
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Clearly, the sets V `
j are pairwise disjoint, Ω =

⋃M
j=1 V

`
j ,

V 0
j ⊂ V `−1

j ⊂ V `
j for j = 1, 2, . . . ,M − `,

and for j = M − `+ 1, . . . ,M ,

V `
j ⊂ V `−1

j and Nµ(V `
j ) is a positive integer.

Furthermore, by the above construction, it is easily seen that for each 1 ≤ j ≤M − `,

V `
j ⊂

⋃
M − `+ 1 ≤ k ≤M

ρ(ak, aj) = δ

(V 0
j ∪ V 0

k ),

which, using (2.2.1), implies that V `
j ⊂ B2δ[aj] and diam(V `

j ) ≤ 4δ for all 1 ≤ j ≤M .

The above process will be terminated after the (M − 1)-st step, where we obtain pairwise

disjoint subsets V M−1
j , j = 1, 2, . . . ,M, of Ω with diameter ≤ 4δ such that Ω =

⋃M
j=1 V

M−1
j

and Nµ(V M−1
j ) is a positive integer for 2 ≤ j ≤M . Since µ is a probability measure, we have

N = Nµ(Ω) =
M∑
j=1

Nµ(V M−1
j ).

This implies that Nµ(V M−1
1 ) is a positive integer as well. Since µ is non-atomic, for each

1 ≤ j ≤M , we may write V M−1
j as a disjoint union

V M−1
j =

`j⋃
k=1

Sj,k

such that µ(Sj,k) = 1
N

and diam(Sj,k) ≤ 4δ for 1 6 k 6 `j . This leads to a partition of Ω with

the desired properties:

Ω =
M⋃
j=1

`j⋃
k=1

Sj,k.
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2.3 Discretization on compact metric spaces

2.3.1 Proof of Theorem 1.0.4

The proof of Theorem 1.0.4 follows along the same idea as that of [4].

Let {X1, . . . , XN} be a partition of X satisfying the condition (a). By the inner regularity

of the measure µ, for each 1 6 j 6 N , there exists a compact subset Qj ⊂ Xj such that

1

N
− µ(Qj) 6

1

2
(1 + ‖Φ‖∞)−1N−

3
2
− 3

2β .

Let µj denote the probability measure on Qj given by µj(E) = µ(E)
µ(Qj)

for each Borel subset

E ⊂ Qj . Then it is easily seen that

sup
x∈X

∣∣∣∣∣
∫
X

Φ(ρ(x, y)) dµ(y)− 1

N

N∑
j=1

∫
Qj

Φ(ρ(x, y)) dµj(y)

∣∣∣∣∣ 6 N−
1
2
− 3

2β . (2.3.1)

Let Σj denote the set of all Borel probability measures σj on Qj that take the form

σj =
r+2∑
i=1

λi(σj)δyi(σj), λi(σj) ≥ 0, yi(σj) ∈ Qj, 1 6 j 6 r + 2,

such that
∑r+2

i=1 λi(σj) = 1 and

∫
Qj

f(y) dµj(y) =
r+2∑
i=1

λi(σj)f(yi(σj)), ∀f ∈ Vr. (2.3.2)

According to Theorem 2.1.7, there exists a Borel probability measure νj on Σj such that

∫
Qj

f dµj =

∫
Σj

r+2∑
i=1

λi(σj)f(yi(σj)) dνj(σj), ∀f ∈ C(Qj). (2.3.3)
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Now we consider the following product probability space:

(Σ̃, ν) =
N∏
j=1

(Σj, νj).

We first claim that for each fixed x ∈ X and parameter t >
√

log 2, there exists a subset

G(x) ⊂ Σ̃ with ν(G(x)) ≤ 2e−t
2
< 1 such that for each σ := (σ1, σ2, . . . , σN) ∈ Σ̃ \G(x),

∣∣∣∣∣ 1

N

N∑
j=1

r+2∑
i=1

λi(σj)Φ(ρ((x, yi(σj)))−
1

N

N∑
j=1

∫
Qj

Φ(ρ(x, y)) dµj(y)

∣∣∣∣∣
6

4√
3
c1

√
c1c2`tN

− 1
2
− 3

2β . (2.3.4)

To show this claim, we consider the following independent random variables on the probability

space (Σ̃, ν):

hj(σ) ≡ hj(σj) :=
r+2∑
i=1

λi(σj)Φ
(
ρ(x, yi(σj))

)
−
∫
Qj

Φ(ρ(x, y)) dµj(y),

where σ = (σ1, . . . , σN) ∈ Σ̃ and j = 1, . . . , N. By (1.0.5) and (2.3.3), we have

Ehj = 0, |hj| ≤ diam(Xj) ≤ δN , 1 ≤ j ≤ N.

For each 1 ≤ j ≤ N , pick a point yj ∈ Qj and set Rj := BδN [yj] so that Qj ⊂ Xj ⊂ Rj . Set

Si(x) := E(x; ti−1, ti) =
{
y ∈ X : ti−1 ≤ ρ(x, y) ≤ ti

}
, i = 1, . . . , `.

Note that if Rj ⊆ Sk(x) for some 1 6 k 6 ` and 1 ≤ j ≤ N , then there exists a function

fk,x ∈ Vr such that

Φ(ρ(x, ·))
∣∣∣
Qj

= fk,x

∣∣∣
Qj
,
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which, using (2.3.2), implies that

hj(σj) =
r+2∑
i=1

λi(σj)fk,x(yi(σj))−
∫
Qj

fk,x(y) dµj(y) = 0.

For 1 6 k 6 `− 1 and if ` > 1, let

Ek(x) := {y ∈ X : tk − δN 6 ρ(x, y) 6 tk + δN} .

Denote by I the set of all positive integers 1 6 j 6 N such that

yj ∈
`−1⋃
k=1

Ek(x).

Let Ic = {1, 2, . . . , N} \ I . Note that if j ∈ Ic, then there exists 1 ≤ k ≤ ` such that

Rj ⊂ Sk(x), which implies hj = 0. Furthermore, since

⋃
j∈I

Xj ⊆
⋃
j∈I

Rj ⊆
`−1⋃
k=1

{y ∈ X : tk − 2δN 6 ρ(x, y) 6 tk + 2δN} ,

it follows by Condition (b) that

#I ≤ 2c2`NδN = 2c2c1`N
1−β−1

.

We shall use this in our next estimate. Now setting

ξj =
1

δN
hj, j = 1, 2, . . . , N,

and using the Bernstein inequality in probability, we obtain that for any ε > 0,

Prob

{
1

N

∣∣∣∣∣
N∑
j=1

ξj

∣∣∣∣∣ > ε

}
= Prob

{
1

#I

∣∣∣∣∣∑
j∈I

ξj

∣∣∣∣∣ > εN

#I

}

≤ 2 exp

(
−3

8
(#I)

ε2N2

(#I)2

)
≤ 2 exp

(
−3ε2N1+β−1

16c1c2`

)
.
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It follows that for any δ > 0,

Prob

{
1

N

∣∣∣∣∣
N∑
j=1

hj

∣∣∣∣∣ > δ

}
≤ 2 exp

(
−3δ2N1+3β−1

16c3
1c2`

)
.

Given a parameter t > 0, setting

δ :=
4√
3
c1

√
c1c2`N

− 1
2
− 3

2β t,

we conclude that the inequality

1

N

∣∣∣∣∣
N∑
j=1

hj

∣∣∣∣∣ ≤ 4√
3
c1

√
c1c2` · t ·N−

1
2
− 3

2β

holds with probability at least 1− 2e−t
2 on the probability space (Σ̃, ν). This proves the claim

(2.3.4).

Now let t :=
√
A logN ≥

√
log 2 with A > 1 being a parameter to be specified later. By

(2.3.1) and (2.3.4), for each x ∈ X , there exists a set G(x) ⊂ Σ̃ with ν(G(x)) ≤ 2N−A such

that for each

σ = (σ1, . . . , σN) ∈ Σ̃ \G(x),

∣∣∣∣ 1

N

N∑
j=1

r+2∑
i=1

λi(σj)Φ(ρ(x, yi(σj)))− Φ0(x)

∣∣∣∣
≤ 7

2
c1

√
c1c2`

√
A
√

logNN−
1
2
− 3

2β , (2.3.5)

where

Φ0(x) :=

∫
X

Φ(ρ(x, y)) dµ(y).

Let M be a positive integer such that

M − 1 < cβ1N
3
2

+β
2 ≤M.
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Then, using Condition (a) with M in place of N , we obtain a partition

{X ′1, X ′2, . . . , X ′M}

of X such that µ(X ′j) = 1
M

and

diam(X ′j) ≤ δM = c1M
−β−1 ≤ N−

1
2
− 3

2β

for each 1 ≤ j ≤M. Choose zj ∈ X ′j for each 1 ≤ j ≤M , and let G =
⋃M
k=1 G(zk). Then

ν(G) ≤
M∑
j=1

ν(G(zj)) ≤ 2MN−A ≤ 3cβ1N
β
2

+ 3
2
−A.

Thus, setting A = 1+2c1
2
β + 3

2
, we obtain that for N ≥ 4, ν(G) is at most

3cβ1N
−c1β ≤

(
3c1

4c1

)β
< 1.

Finally, using (1.0.5), we have that for each σ = (σ1, . . . , σN) ∈ Σ̃ \G

sup
x∈X

∣∣∣∣∣ 1

N

N∑
j=1

r+2∑
i=1

λi(σj)Φ(ρ(x, yi(σj)))− Φ0(x)

∣∣∣∣∣
≤ max

1≤k≤M

∣∣∣∣∣ 1

N

N∑
j=1

r+2∑
i=1

λi(σj)Φ(ρ(zk, yi(σj)))− Φ0(x)

∣∣∣∣∣+ δM ,

which, using (2.3.5), is estimated from above by

(
7

2
c

3
2
1 (c2`)

1
2

√
2c1 + 1

2
β +

3

2
+ 1

)
N−

1
2
− 3

2β

√
logN ≤ 8c2

1(c2`)
1
2

√
βN−

1
2
− 3

2β

√
logN.

This completes the proof.
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2.3.2 Proof of Theorem 1.0.5

Let h(x) = b(2 + g(x)), where b is a normalizing constant so that ‖h‖L1(dµ) = 1. Clearly,

1

3
≤ b ≤ h(x) ≤ 3b ≤ 3, ∀x ∈ X, (2.3.6)

because ‖g‖∞ ≤ 1. Let τ denote the Borel probability measure given by dτ = hdµ. By (1.0.4),

we have that for N ≥ 15,

τ(Bδ̃N/8
(x)) ≥ bµ(Bδ̃N/8

(x)) ≥ 1

N
, x ∈ X, (2.3.7)

where

δ̃N = c1([Nb])−β
−1 ≤

(
5

4b

)1/β

c1N
−β−1 ≤ 5

4b
c1N

−β−1

,

because β ≥ 1. Furthermore, by (1.0.6), we have that for each x ∈ X and δ ∈ (0, π),

τ

(
`−1⋃
j=1

{
y ∈ X : tj − δ 6 ρ(x, y) 6 tj + δ

})
6 3bc2`δ. (2.3.8)

Since X is a compact path-connected metric space, using Theorem 1.0.4 with τ in place of µ,

we may find points y1, . . . , y(r+2)N
∈ X and nonnegative real numbers a1, . . . , a(r+2)N

, such that

max
x∈X

∣∣∣∣∣∣
∫
X

Φ(ρ(x, y))h(y) dµ(y)−
(r+2)N∑
j=1

ajΦ(ρ(x, yj))

∣∣∣∣∣∣ 6 25
√

3

16b
3
2

c3N
− 1

2
− 3

2β

√
logN.

On the other hand, using Theorem 1.0.4, we can also find points z1, . . . , z(r+2)N ∈ X and

nonnegative real numbers b1, . . . , b(r+2)N , such that

max
x∈X

∣∣∣∣∣∣
∫
X

Φ(ρ(x, y)) dµ(y)−
(r+2)N∑
j=1

bjΦ(ρ(x, zj))

∣∣∣∣∣∣ 6 c3N
− 1

2
− 3

2β

√
logN.
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Since

∫
X

Φ(ρ(x, y))g(y) dµ(y) =
1

b

∫
X

Φ(ρ(x, y))h(y) dµ(y)− 2

∫
X

Φ(ρ(x, y)) dµ(y)

and 1
3
≤ b ≤ 1, it follows that

sup
x∈X

∣∣∣∫
X

Φ(ρ(x, y))g(y) dµ(y)− 1

b

(r+2)N∑
j=1

ajΦ(ρ(x, yj)) + 2

(r+2)N∑
j=1

bjΦ(ρ(x, zj))
∣∣∣

≤
(

25
√

3

16b
5
2

+ 2

)
c3N

− 1
2
− 3

2β

√
logN ≤ 45c3N

− 1
2
− 3

2β

√
logN.

The theorem is proved.

2.4 Discretization on finite-dimensional compact domains

2.4.1 Proof of Theorem 1.0.7

The main idea of our proof comes from the paper [4]. We need the following Besicovitch

covering theorem on finite-dimensional normed linear spaces [26]:

Lemma 2.4.1. [24] Let E ⊂ X be an arbitrarily given nonempty subset of a finite dimensional

normed linear space X . Assume that for each x ∈ E there exists a closed ball Br(x)[x] with

centre x and radius r(x) > 0. Assume in addition that supx∈E r(x) < ∞. Then there exists a

sub-collectionR of the closed balls Br(x)[x], x ∈ E, which covers the set E and can be written

in the form

R = R1 ∪R2 ∪ · · · ∪ Rm

with m ≤ N (X), and each Rj being a collection of pairwise disjoint balls, 1 ≤ j ≤ m. Here

N (X) is a positive constant depending only on the normed space (X, ‖ · ‖).

The best constant N (X) for the Besicovitch covering theorem has been well studied in

literature (see [24, 26] and the references thererin). In the case when (X, ‖ · ‖) = Rd, it was
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known [26] thatN (X) ≤ 6d. The sharp estimate of this constant appears in [33]. A much more

general version of the Besicovitch covering theorem can be found in [23].

The proof runs along the same line as that of Theorem 1.0.4. We sketch it as follows.

Without loss of generality, we may assume that g ≥ 0 since otherwise we may write g =

g+− g− with g± ≥ 0. We may also assume that N ≥ 4N (X)(r+ 2) since otherwise the stated

estimates hold trivially. For the rest of the proof, the letter C denotes a general positive constant

depending only on N (X), c4, c5, r, ` and β.

Let τ denote the probability measure given by dτ(x) = g(x) dµ(x). Let n1 = [ n
2N (X)(r+2)

].

For x ∈ Ω, let 0 < θx ≤ δn1 := (c4/n1)
1
β be such that

∫
Bθx [x]

(1 + g(y)) dµ(y) =
1

n1

. (2.4.1)

By the Besicovitch covering theorem, we can find finitely many open balls Bj = Bθxj
(xj),

j = 1, 2, . . . ,m, such that Ω ⊂
⋃m
j=1 Bj ,

{B1, . . . , Bm} = R1 ∪R2 ∪ · · · ∪ RN (X) (2.4.2)

with each Rj being a subcollection of pairwise disjoint balls. By (2.4.1) and (2.4.2), we then

have m ≤ 2N (X)n1 ≤ n
r+2

. Note that µ(Br(x)) = µ(Br[x]) for any x ∈ Ω and r > 0, since

by (3.2.6)

µ(Br[x] \Br(x)) = lim
j→∞

µ
{
y ∈ X : r − j−1 ≤ ρ(x, y) ≤ r + j−1

}
= 0.

Now define Q1 = B1 ∩ Ω and

Qj =
(
Bj \

j−1⋃
i=1

Bi

)
∩ Ω, j = 2, . . . ,m.

Then Ω =
⋃m
j=1 Qj , τ(Qi ∩ Qj) = 0 for 1 ≤ i 6= j ≤ m, Qj ⊂ Bj and τ(Qj) ≤ 1

n1

for 1 ≤ j ≤ m. Without loss of generality, we may also assume that τ(Qj) > 0 for each

1 ≤ j ≤ m, since otherwise we remove Qj from the partition.
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For each 1 ≤ j ≤ m, let Σj denote the set of all probability measures σj on Qj of the form

σj =
r+2∑
i=1

λi(σj)δyi(σj), λi(σj) ≥ 0, yi(σj) ∈ Qj,

such that
1

τ(Qj)

∫
Qj

P (x) dτ(x) =
r+2∑
i=1

λi(σj)P (yi(σj)), ∀P ∈ Xr.

By Theorem 2.1.7, there exists a Borel probability measure νj on Σj such that

∫
Qj

f(x) dτ(x) =

∫
Σj

r+2∑
i=1

τ(Qj)λi(σj)f(yi(σj)) dνj(σj), ∀f ∈ C(Qj).

Now we consider the product probability space (Σ̃, ν) =
∏m

j=1(Σj, νj). Fix x ∈ Ω temporarily.

For 1 ≤ j ≤ m, define

hj,x(σj) = τ(Qj)
r+2∑
i=1

λi(σj)Φ(‖x− yi(σj)‖)−
∫
Qj

Φ(‖x− y‖) dτ(y).

Then Ehj,x = 0,

|hj,x(σj)| ≤ τ(Qj) · diam(Qj) ≤ τ(Bj)diam(Qj) ≤ Cθxjn
−1. (2.4.3)

For 0 < θ ≤ 2δn1 , we denote by Iθ := Iθ(x) the set of all integers 1 ≤ j ≤ m such that

θ/2 < θxj ≤ θ and tk− θ ≤ ‖x−xj‖ ≤ tk + θ for some 1 ≤ k ≤ `. Note that if θ/2 < θxj ≤ θ

and j /∈ Iθ(x), then there exists k in the interval 1 ≤ k ≤ ` such that tk−1 ≤ ‖x − y‖ ≤ tk for

every y ∈ Qj ⊂ Bj := Bθxj
(xj), which implies that hj,x ≡ 0. Note also that

⋃
j∈Iθ

(
Bj ∩ Ω

)
⊂
{
y ∈ Ω : t− 2θ ≤ ‖x− y‖ ≤ t+ 2θ

}
.

It then follows by (2.4.2) and (3.2.6) that

#Iθc4

(
θ

2

)β
≤
∑
j∈Iθ

µ(Bj) ≤ 4N (X)c5θ`,
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which implies that

#Iθ ≤ C1θ
1−β. (2.4.4)

Note that (2.4.4) holds trivially if

θ ≤
(

(r + 2)C1

n

) 1
β−1

= C2n
− 1
β−1 (2.4.5)

since #Iθ ≤ m ≤ n
r+2

. Thus, we will mainly consider those index sets Iθ with

C2n
− 1
β−1 ≤ θ ≤ 2δn1 := 2

( c4

n1

) 1
β
, (2.4.6)

the second bound being the bound on θ stated at the beginning of the paragraph.

To be more precise, let k0, k1 be integers such that

2k0 < 2−1(n1/c4)
1
β ≤ 2k0+1

and

2k1−1 < C−1
2 n

1
β−1 ≤ 2k1 .

Define Jk = Jk(x) := I2−k(x) for k0 ≤ k ≤ k1 and

Jk1+1 ≡ Jk1+1(x) =
∞⋃

k=k1+1

I2−k(x).

Then by (2.4.4) and the remark after (2.4.4), we have

#Jk ≤ nk := C−1
1 2k(β−1), k0 ≤ k ≤ k1 + 1. (2.4.7)

Moreover, by (2.4.3), we have

|hj,x| ≤ Cθxjn
−1 ≤ C2−kn−1, j ∈ Jk, k0 ≤ k ≤ k1 + 1. (2.4.8)
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Thus, using (2.4.8), (2.4.7), and the Bernstein inequality, we conclude that for each k0 ≤ k ≤

k1 + 1 and each εk > 0, the inequality

∣∣∣∑
j∈Jk

hj,x(σj)
∣∣∣ > εk

holds with probability at most

2 exp
(
−Cε2

kn
22−k(β−3)

)
. (2.4.9)

Now we write

m∑
j=1

hj,x(σj) =
∞∑

k=k0

∑
{j:2−k≤θxj≤2−k+1}

hj,x(σj) =

k1+1∑
k=k0

∑
j∈Jk

hj,x(σj),

where we used the fact that θxj ≤
(
c4
n1

) 1
β
< 2−k0−1 for all 1 ≤ j ≤ m in the first step, and the

fact that hj,x ≡ 0 if 2−k−1 ≤ θxj ≤ 2−k and j /∈ I2−k(θ) in the last step.

Given ε > 0, let {εk}k1+1
k=k0

be a sequence of positive numbers such that
∑k1+1

k=k0
εk ≤ ε. Then

using (2.4.9), we have

Prob
{
|
m∑
j=1

hj,x| > ε
}
≤

k1+1∑
k=k0

Prob
{
|
∑
j∈Jk

hj,x| > εk

}
≤ 2

k1+1∑
k=k0

exp
(
−Cε2

kn
22−k(β−3)

)
. (2.4.10)

Noting that k0 ∼ k1 ∼ log n, we may choose for k0 ≤ k ≤ k1 + 1,

εk =


2
β−3
2

(k−k1)ε, if β > 3,

ε
logn

, if β = 3,

2(k−k0)β−3
2 ε, if β < 3.

We use here that n 6= 1 so that log n 6= 0.
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For simplicity, we shall assume that β > 3. The proof below with slight modifications

works equally well for the case β ≤ 3. We then obtain from (2.4.10) that

Prob
{∣∣∣ m∑

j=1

hj,x

∣∣∣ > ε
}
≤ C(log n) exp

(
−Cn2−β−3

β−1 ε2
)
.

Setting

ε = C−
1
2 t · n−

β+1
2(β−1) with t > 0,

we conclude that for each x ∈ Ω, the inequality

∣∣∣ m∑
j=1

τ(Qj)
r+2∑
i=1

λi(σj)Φ(‖x− yi(σj)‖)−
∫

Ω

Φ(‖x− y‖) dτ(y)
∣∣∣

≥ Ctn−
β+1

2(β−1)

holds with probability bounded above by a multiple of (log n)e−t
2 . Let

t :=
√
A log n with A =

β(β + 1)

2(β − 1)
> 1.

The last inequality holds since β2 − β + 2 has no real zeos.

We further conclude that for each x ∈ Ω, there exists a set G(x) ⊂ Σ with ν(G(x)) ≤

C2(log n)n−A such that for any σ = (σ1, . . . , σm) ∈ Σ \G(x),

∣∣∣ m∑
j=1

τ(Qj)
r+2∑
i=1

λi(σj)Φ(‖x− yi(σj)‖)−
∫

Ω

Φ(‖x− y‖) dτ(y)
∣∣∣

≤ C−1/2
√
An−

β+1
2(β−1) (log n)

1
2 .

Finally, let {z1, . . . , zL} be a maximal ε1-separated subset of Ω with ε1 := n−
β+1

2(β−1) (log n)
1
2 .

By (1.0.7), we have

L ≤ c4

(
2

ε1

)β
≤ C3n

β(β+1)
2(β−1) (log n)−

1
2
β.
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Setting A = β(β+1)
2(β−1)

, we have that

L∑
j=1

ν(G(zj)) ≤ C2C3(log n)1− 1
2
β.

Since β > 3, it follows that the following inequality holds with positive probability:

sup
x∈Ω

∣∣∣ m∑
j=1

τ(Qj)
r+2∑
i=1

λi(σj)Φ(‖x− yi(σj)‖)−
∫

Ω

Φ(‖x− y‖) dτ(y)
∣∣∣

≤ Cn−
β+1

2(β−1) (log n)
1
2 .

The theorem is proved.

2.5 Discretization on the unit sphere Sd

In this section, we will estimate the constants c1 and c2 for the unit sphere Sd ⊂ Rd+1 e-

quipped with the normalized surface Lebesgue measure µd and the geodesic distance ρ(x, y) =

arccos(x · y), x, y ∈ Sd. We will prove on the unit sphere Sd that

c1 ≤ 40π, c2 ≤
3

2

√
d, α =

1

d
. (2.5.1)

The main point here lies in the fact that the upper bounds for c1 and c2/
√
d are independent of

the dimension d.

By (2.5.1), we also have

45c3 = 45 · 8c2
1c

1
2
2

√
d ≤ 7× 106d

3
4 . (2.5.2)

As a consequence of Theorem 1.0.2 and Lemma 2.5.4, we have that

Theorem 2.5.1. For each integer N ≥ 1, there exists a partition {R1, . . . , RN} of Sd such that

(i) the Rj are pairwise disjoint subsets of Sd;
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(ii) for each 1 ≤ j ≤ N , µd(Rj) = 1
N

and diam(Rj) ≤ 40πN−
1
d .

Again, the main point here is that the upper bound for N
1
d maxj diam(Rj) is independent of

the dimension d. Theorem 2.5.1 with dimension dependant upper bound forN
1
d maxj diam(Rj)

can be found in [2].

Theorem 2.5.2. Let Φ : [−1, 1]→ R be a piecewise polynomial of degree at most r with knots

−1 = s0 < s1 < · · · < s` = 1 such that |Φ(s) − Φ(s′)| ≤ |s − s′| for any s, s′ ∈ [−1, 1]. Let

mr = md
r denote the dimension of the space of all spherical polynomials of degree at most r on

Sd. Let g ∈ L∞(Sd) be such that ‖g‖∞ ≤ 1. Then for each positive integer N ≥ 20, there exist

points ξ1, . . . , ξ2(mr+2)N ∈ Sd and real numbers λ1, . . . , λ2(mr+2)N such that

max
x∈Sd−1

∣∣∣∣∣∣
∫
Sd

Φ(x · y)g(y) dµd(y)−
2(mr+2)N∑

j=1

λjΦ(x · ξj)

∣∣∣∣∣∣
≤ 7 · 106

√
` · d

3
4N−

1
2
− 3

2d

√
logN.

In the case when Φ(t) = |t|, Theorem 2.5.2, but with constants depending on the dimension

of the sphere, was previously obtained in [4].

2.5.1 Proof of (2.5.1)

For θ ∈ (0, π) and x in the d-dimensional sphere Sd, set

Bθ(x) := {y ∈ Sd : ρ(x, y) < θ}, and Bθ[x] := {y ∈ Sd : ρ(x, y) ≤ θ}.

Let ωd := 2π
d+1
2

Γ( d+1
2

)
denote the surface area of Sd. Using the following known estimates on gamma

functions [1],

x1−s <
Γ(x+ 1)

Γ(x+ s)
< (x+ 1)1−s, x > 0, s ∈ (0, 1),

we have that

π−
1
2

(
d− 1

2

) 1
2

≤ ωd−1

ωd
=

Γ(d+1
2

)

Γ(d
2
)
√
π
≤ π−

1
2

(
d+ 1

2

) 1
2

. (2.5.3)
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Lemma 2.5.3. For 0 < θ ≤ π
4

and x ∈ Sd,

1√
2d
≤ µd(Bθ(x))

sind θ
≤ 2√

d
.

Proof. For θ ∈ (0, π], we have

µd(Bθ(x)) =
ωd−1

ωd

∫ 1

cos θ

(1− t2)
d−2
2 dt =

ωd−1

ωd

∫ sin2 θ

0

t
d−2
2 (1− t)−

1
2 dt.

If 0 < θ ≤ π
4
, then for any 0 ≤ t ≤ sin2 θ, we have

1 ≤ (1− t)−
1
2 ≤
√

2.

Thus,

ωd−1

ωd

2

d
(sin θ)d ≤ µd(A(x, θ)) ≤ ωd−1

ωd

2
√

2

d
(sin θ)d,

which, using (2.5.3), implies that

1

2
√
d
≤
√

1

π
d−

1
2 ≤
√

2π−
1
2d−1(d− 1)

1
2 ≤ µd(A(x, θ))

sind θ
≤ 2π−

1
2d−1(d+ 1)

1
2 ≤ 2√

d
.

The following lemma shows that c1 ≤ 40π:

Lemma 2.5.4. For any positive integer N ,

inf
x∈Sd

µd(BδN (x)) ≥ 1

N
with δN := 5πN−

1
d . (2.5.4)

Proof. We consider the following two cases:

Case 1. N ≥ 2
d
2

+1
√
d.
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In this case, set

δ := min

{
θ : 0 ≤ θ ≤ π

4
,

1

2
√
d

sind θ >
1

N

}

and our condition on the N ensures that δ be well-defined. Using Lemma 2.5.3, we have that

µd(Bδ(x)) >
1

N
, ∀x ∈ Sd.

It remains to estimate the constant δ. By definition of δ, we have that

1

2
√
d

sind δ >
1

N
>

1

2
√
d

sind
δ

2
.

This implies that

δ 6 π sin
δ

2
< π

(
2
√
d

N

) 1
d

6 2πe
1
2eN−

1
d < 3πN−

1
d .

Here we have used the fact that the maximum of (log y)/y is attained at y = e.

Case 2. 1 ≤ N < 2
d
2

+1
√
d.

In this case,

N−
1
d > 2−

1
d
− 1

2d−
1
2d ≥ 2−

3
2 e−

1
2e > 0.2,

and

δN = 5πN−
1
d ≥ π.

Hence, (2.5.4) holds trivially in this case.

The following lemma shows that c2 ≤ 3
2

√
d:
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Lemma 2.5.5. For any δ > 0, x ∈ Sd and t ∈ (0, π),

µd

({
y ∈ Sd : t− δ 6 ρ(x, y) 6 t+ δ

})
6

3

2

√
dδ. (2.5.5)

Proof. Without loss of generality, we may assume that 0 < t ≤ π
2
. Setting

Sδ(x) :=
{
y ∈ Sd : t− δ 6 ρ(x, y) 6 t+ δ

}
,

and using (2.5.3), we have

µd(Sδ(x)) =
ωd−1

ωd

∫ t+δ

max{t−δ,0}
sind−1 u du ≤ π−

1
2

(d+ 1

2

) 1
2
2δ

≤ 2√
π

√
d <

3

2

√
d.

2.6 Further Examples

Further examples for our results stem from the fact that not only piecewise polynomials are

suitable for our spaces Vr of dimension r, but also piecewise exponentials [30], [12] and [13],

as well as radial basis functions of compact support [7], [6] and [10], [11].

All these function spaces are defined not over piecewise polynomials (splines) with a simple

continuity condition, but for instance over piecewise exponentials.

In the most general form, see [30], the exponential splines of compact support are, say, in d

dimensions of degree n− 1 for equally spaced knots defined as distributions B that satisfy

B(ϕ) =

∫
[0,1]n

ϕ(Ξt) exp(λ · t) dt,

where ϕ is a test-function from the Schwartz space S, Ξ is a linear map Rn → Rd and λ is a
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vector from Rn to define the exponentials. Alternatively we can write for φ ∈ L1
loc(Rd)

∫
Rd
B(x)φ(x) dx =

∫
[0,1]n

φ(Ξt) exp(λ · t) dt.

In the multivariate setting, these functions are called exponential box-splines, in the univari-

ate case they are exponential B-splines. The piecewise polynomial case corresponds to λ ≡ 0.

They may also be conveniently defined by their Fourier transforms

n∏
j=1

exp(λj − iξj · x)

λj − iξj · x
.

Here, λ = (λj)
n
j=1 and Ξ = (ξj)

n
j=1.

The univariate piecewise polynomial case corresponds to Ξ = (1, 1, . . . , 1) ∈ Rn, d = 1.

In this case the splines are defined over the interval or cube for d = 1 and d > 1, respectively,

Ξ[0, h]n, e.g., h = 1/` as in our cases. The Vr space is here the space of univariate exponential

splines spanned by the exponential B-splines with d+ 1 knots.

More generally, we can define space of piecewise exponentials including piecewise polyno-

mials and exponentials as the span of

xr1 exp(λix), ri = 0, 1, . . . , τi − 1, i = 1, 2, . . . n,

on each subinterval between two knots, now of no longer necessarily equally spaced knots, of

dimension r =
∑n

i=1 τi when they are required to be continuous. The λis may be complex and

must be pairwise distinct.

Special cases [12] are λ ≡ 0 (piecewise polynomials), λ ∈ iR (Vr containing piecewise

trigonometric functions sin, cos and constants) and λ ∈ R, Vr containing sinh and cosh and

constants. In fact, it is usual (but not necessary) to restrict the exponents that form the com-

ponents of λ to R ∪ iR. Examples for the spaces are the polynomials for some fixed maximal

degree (classical spline case) or the spans of, e.g.,

1, cos(Imλt), sin(Imλt), t cos(Imλt), t sin(Imλt),
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or

1, cosh(Reλt), sinh(Reλt), t cosh(Reλt), t sinh(Reλt).

These two examples are the suitable generalisations of the Φ(t) = |t| case (piecewise lin-

ears) referred to in the paragraph after the statement of Theorem 2.5.1. For higher powers,

larger r and more exponentials, the other piecewise polynomials used in the first sentence of the

statement of Theorem 2.5.1 are generalised.

Univariate piecewise polynomial B-splines on equally spaced knots can be generated in a

computational useful, recursive way by convolutions [3] but now, for exponential splines we get

a weight function, so that, for the B-spline of degree n, the exponential spline

eλitH
(
t
)
− eλiH

(
t− 1

)
eλi(t−1)

needs to be convolved with itself n-times, once for the case of piecewise linears multiplied with

exponentials. In the display, H denotes the Heaviside function which is identically zero for

negative argument and identically one for positive argument.

This results from the identities which we stated already in s dimensions

B ? f =

∫
[0,1]n

exp(λ · t)f(· − Ξt) dt

or

B =

∫ 1

0

exp(λγt)B̃(· − ξγt) dt.

Here B is the exponential box-spline as above, B̃ is the same with the direction ξγ removed

from Ξ.

As with the piecewise polynomials and the special case of piecewise constants above, we

consider the special case of piecewise exponentials only (no polynomials as in our example with

sin, cos, cosh, sinh).

For this, consider again the vector of exponents λ, set n = d and let λ̃ = λΞ−1. Then the
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spline is

B(x) =
1

| det Ξ|
exp(λ̃ · x)χ(0,1]d

(
Ξ−1x

)
, x ∈ Rd.

Here, χ is the characteristic function. Starting from this piecewise “constant” function (i.e., one

that contains no polynomials, just one exponential), other splines can be generated recursively

by

B(x) = eµ·x
∫ 1

0

B̃(x− tξ) dt,

where B is the exponential spline with one direction ξ more in the direction set and the µs are

chosen arbitrarily from Rn.

The corresponding radial basis functions of compact support with exponentials are

(
1/e− exp(−x)

)ν
+

and (
1− exp(−(1− x)ν+)

)µ
which are positive definite for suitable parameters µ and ν depending on the dimension because

they are logarithmically monotone of order µ in the first case and of order min(µ, ν) in the

second case [10]. The Vrs are then defined by the translates

(1/e− exp(−|x|))ν+

and

(1− exp(−(1− |x|)ν+))µ,

respectively.
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Chapter 3

Polynomial Approximation on High

Dimensional Spheres.

3.1 Preliminaries

3.1.1 The de la Vallèe Poussin type operators

Recall that the reproducing kernel of the space of Πd
n is given by

Gn(x · y) =
n∑
k=0

k + λ

λ
Cλ
k (x · y), x, y ∈ Sd−1.

By the addition formula for spherical harmonics, we have

Gn(1) =
n∑
k=1

k + λ

λ
Cλ
k (1) =

∫
Sd−1

|Gn(x · y)|2 dσ(y) = dim Πd
n, x ∈ Sd−1. (3.1.1)

Denote by Pn the space of all univariate algebraic polynomials of degree at most n. Then for

each x ∈ Sd−1,

Pn(1) =

∫
Sd−1

Pn(x · y)Gn(y · x) dσ(y) = cd

∫ 1

−1

Pn(t)Gn(t)(1− t2)λ−
1
2 dt, (3.1.2)

44



where

cd =
Γ(d

2
)

√
πΓ(d−1

2
)

=
(∫ 1

−1

(1− t2)λ−
1
2 dt
)−1

. (3.1.3)

Definition 3.1.1. For n ∈ N and f ∈ L1(Sd−1), we define the de la Vallèe Poussin type operator

Vn by

Vnf(x) =

∫
Sd−1

f(y)Kn(x · y) dσ(y), x ∈ Sd−1,

where

Kn(t) =
1

dim(Πd
d1n

)
G(1+d1)n(t)Gd1n(t),

and d1 is the largest integer ≤ d−1
2

.

Theorem 3.1.2. The operators Vn defined above have the following properties:

(i) Vnf ∈ Πd
(1+2d1)n ⊂ Πd

dn for each f ∈ L1(Sd−1).

(ii) VnP = P for each P ∈ Πd
n.

(iii) For each 1 ≤ p ≤ ∞,

‖Vn‖(p,p) := sup
‖f‖p=1

‖Vnf‖p < 10.

Proof. (i) By definition, Kn is an algebratic polynomial of degree at most (1 + 2d1)n. Thus,

Vnf ∈ Πd
(1+2d1)n for each f ∈ L1(Sd−1).

(ii) Expanding the function Kn in terms of Gegenbauer polynomials, we have

Kn(t) =
1

dim Πd
d1n

(1+2d1)n∑
j=0

an(j)
j + λ

λ
Cλ
j (t),

where

an(j) :=
cd

Cλ
j (1)

∫ 1

−1

G(1+d1)n(t)Gd1n(t)Cλ
j (t)dµ∗(t),

dµ∗(t) = cd(1− t2)λ−
1
2 dt, and the constant cd is given in (3.1.3).

If 0 ≤ j ≤ n, then Gd1n(t)Cλ
j (t) ∈ P(d1+1)n, and hence using (3.1.2), we have

an(j) =
1

Cλ
j (1)

Gd1n(1)Cλ
j (1) = Gd1n(1) = dim Πd

d1n
, 0 ≤ j ≤ n,
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which implies (ii).

(iii) It is enough to show that

Ln := sup
x∈Sd−1

∫
Sd−1

|Kn(x · y)| dσ(y) ≤ 10. (3.1.4)

Indeed, using (3.1.1), we obtain

(dim Πd
d1n

)Ln =

∫ 1

−1

|G(1+d1)n(t)||Gd1n(t)|dµ∗(t)

≤
(∫ 1

−1

|G(1+d1)n(t)|2dµ∗(t)
) 1

2
(∫ 1

−1

|Gd1n(t)|2dµ∗(t)
) 1

2

=
√

dim(Πd
(1+d1)n) dim(Πd

d1n
).

It follows that

Ln ≤

√
dim Πd

(1+d1)n

dim Πd
d1n

.

Let N1 = d1n and N2 = N1 + n. Then using (1.0.11), we obtain

L2
n =

2N2 + d− 1

2N1 + d− 1

d−2∏
j=1

(N2 + j

N1 + j

)
=

2N2 + d− 1

2N1 + d− 1

d−2∏
j=1

(
1 +

N1

d1(N1 + j)

)
≤
(

1 +
2N1

d1(2N1 + d− 1)

)(
1 +

N1

d1(N1 + 1)

)d−2

≤
(

1 +
1

d1

)d−1

If d ≥ 8, then (
1 +

1

d1

)d−1

≤
(

1 +
2

d− 2

)d−1

≤ 4

3
e2 < 10.

On the other hand, a straightforward calculation shows that

max
3≤d≤7

(
1 +

1

d1

)d−1

= 23 < 10.
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3.1.2 An average operator

Definition 3.1.3. For θ ∈ R, we define the average operator Aθ by

Aθf(x) :=

∫
SO(d)

f(Q−1MθQx) dQ, x ∈ Sd−1,

where dQ is the normalized Haar measure on SO(d), andMθ is a d×dmatrix given by (1.0.14).

For α, β ≥ 0, write

R(αβ)
n (x) =

P
(α,β)
n (x)

P
(α,β)
n (1)

.

Theorem 3.1.4. (i) For 1 ≤ p ≤ ∞, sup‖f‖p=1 ‖Aθf‖p = 1.

(ii) For any θ ∈ R and f ∈ L2(Sd−1),

projn(Aθf) = an(cos θ) projn f, n = 0, 1, · · · , (3.1.5)

where

an(x) =
λ+ 1

2

(1− x)λ+ 1
2

∫ 1

x

R
(λ− 1

2
,λ− 1

2
)

n (y)(y − x)λ−
1
2dy, x ∈ [−1, 1].

Lemma 3.1.5. For each f ∈ L1(Sd−1) and 1 ≤ m ≤ d− 2,

∫
Sd−1

f(x) dσ(x) = cm

∫
Bm

[∫
Sd−m−1

f(u,
√

1− ‖u‖2v) dσ(v)
]
(1− ‖u‖2)

d−m−2
2 du,

where Bm := {y ∈ Rm : ‖y‖ ≤ 1}, and

cm =
(∫

Bm
(1− ‖u‖2)

d−m−2
2 du

)−1

.

Theorem 3.1.4 was proved in [21]. Here we give a relatively simpler proof.

Proof of Theorem 3.1.4. Clearly, (i) follows directly from the Minkowskii inequality and the

rotation invariance of dσ(x) on Sd−1. We only need to prove (ii).
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First, it is easily seen from (1.0.12) that

AθTρ = TρAθ, ∀ρ ∈ SO(d).

This means that Aθ is a rotation-invariant bounded linear operator on L2(Sd−1).

Thus, Aθ is a multiplier operator with respect to the spherical harmonic expansions on Sd−1;

that is, there exists a bounded sequence {µk(θ)}∞k=0 of real numbers such that for any f ∈

L2(Sd−1),

projn(Aθf)(x) = µn(θ) projn f(x), ∀x ∈ Sd−1, n = 0, 1, · · · . (3.1.6)

Next, we determine the sequence {µn(θ)}∞n=0. Let e ∈ Sd−1 be an arbitrarily given point on

Sd−1, and let f(x) := Cλ
n(x · e). Then f ∈ Hn, and (3.1.6) with x = e implies that

µn(θ)Cλ
n(1) = projn(Aθf)(e) =

n+ λ

λ

∫
Sd−1

Aθf(x)Cλ
n(x · e) dσ(x)

=
n+ λ

λ

∫
Sd−1

[∫
SO(d)

Cλ
n

((
Q−1MθQx

)
· e
)
dQ
]
Cλ
n(e · x)dσ(x)

=
n+ λ

λ

∫
Sd−1

[∫
SO(d)

Cλ
n

((
Mθy

)
·Qe

)
Cλ
n(Qe · y)dQ

]
dσ(y)

=
n+ λ

λ

∫
Sd−1

[∫
Sd−1

Cλ
n

(
x ·Mθy

)
Cλ
n(x · y)dσ(x)

]
dσ(y)

=

∫
Sd−1

Cλ
n(y ·Mθy) dσ(y),

where we used (1.0.12) and the change of variable y = Qx in the fourth step, (1.0.13) in the

fifth step, and the fact that n+λ
λ
Cλ
n(x · y) is the reproducing kernel of the space Hd

n in the last

step.

Now for each y ∈ Sd−1,

y ·Mθy = (y2
1 + y2

2) cos θ +
d∑
j=3

y2
j = (1− ‖u‖2) cos θ + ‖u‖2,
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where u = (y3, y4, · · · , yd). Thus, using Lemma 3.1.5 with m = d− 2, we obtain

∫
Sd−1

Cλ
n(y ·Mθy) dσ(y) = c

∫
Bd−2

Cλ
n

(
(1− ‖u‖2) cos θ + ‖u‖2

)
du

= c

∫ 1

0

Cλ
n

(
(1− t) cos θ + t

)
tλ−

1
2 dt =

c

(1− cos θ)λ+ 1
2

∫ 1

cos θ

Cλ
n(y)(y − cos θ)λ−

1
2 dy.

It follows that

µn(θ) =
c

(1− cos θ)λ+ 1
2

∫ 1

cos θ

R
(λ− 1

2
,λ− 1

2
)

n (y)(y − cos θ)λ−
1
2dy.

Finally, since limθ→0+Aθf = f , we have

1 = lim
θ→0+

µn(θ) =
c

λ+ 1
2

.

Thus, c = λ+ 1
2
.

3.2 Proof of Theorem 1.0.11

3.2.1 Proof of inequality 1.0.22 for r = 2

In this subsection, we shall prove

Theorem 3.2.1. Let f ∈ Lp(Sd−1) if 1 ≤ p <∞ or f ∈ C(Sd−1) if p =∞. Then

En(f)p ≤ 5ω2
(
f,

2d

n

)
p
, n = 1, 2, · · · .

For the proof of Theorem 3.2.1, we need to introduce the Newman-Shapiro operators on the

sphere Sd−1. For m = 1, 2, · · · , we set

Bm(t) := γm

[ Cλ
m(t)

t− ηm

]2

, t ∈ [−1, 1],

where ηm := cos θm is the largest zero of Cλ
m(t), 0 < θm ≤ π

2
and γm > 0 is a constant
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normalized by ∫
Sd−1

Bm(x · y) dσ(y) = 1, x ∈ Sd−1.

It was shown in [31] that

Bm(t) =
2m−2∑
k=0

am,k
k + λ

λ
Cλ
k (t), t ∈ [−1, 1], m = 1, 2, · · · ,

where am,k > 0 for 0 ≤ k ≤ 2m− 2, and

am,0 = 1, am,1 = 1− 2 sin2 θm
2

= cos θm = ηm. (3.2.1)

Moreover, the zero ηm satisfies (see [27])

1− η2
m = sin2 θm <

(2λ+ 1)(2λ+ 5)

2m(m+ 2λ) + 2λ+ 1
, (3.2.2)

which in particular implies that

0 < 1− am,1 = 1− ηm < 1− η2
m <

(d− 1)(d+ 3)

2m2
. (3.2.3)

Definition 3.2.2. For a positive integer m and f ∈ L1(Sd−1), we define

Smf(x) :=

∫ π

0

Aθf(x)Bm(cos θ)dµd(θ), x ∈ Sd−1,

where

dµd(θ) = cd sind−2 θ dθ and cd =
(∫ π

0

sind−2 θ dθ
)−1

.

Lemma 3.2.3. Let 1 ≤ p ≤ ∞ and f ∈ Lp(Sd−1). Then for any positive integer m, Smf ∈

Πd
2m−2 and

‖f − Smf‖p ≤ 5ω2
(
f,
d

m

)
p
. (3.2.4)
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Proof. First, it is easily seen from Lemma 3.1.4 that Smf ∈ Πd
2m−2 and Aθf = A−θf . Thus,

|f(x)− Smf(x)| =
∣∣∣∫ π

0

(f(x)− Aθf(x))Bm(cos θ) dµd(θ)
∣∣∣

=
1

2

∣∣∣∫ π

0

[
2f(x)− Aθf(x))− A−θf(x)

]
Bm(cos θ) dµd(θ)

∣∣∣
=

1

2

∣∣∣∫ π

0

[∫
SO(d)

TQ−1M−θQ(I − TQ−1MθQ)2f(x) dQ
]
Bm(cos θ) dµd(θ)

∣∣∣.
By the Minkowskii inequality, we then obtain

‖f − Smf‖p ≤
1

2

∫ π

0

[∫
SO(d)

∥∥∥(I − TQ−1MθQ)2f
∥∥∥
p
dQ
]
Bm(cos θ)dµd(θ)

≤ 1

2

∫ π

0

Bm(cos θ)ω2(f, θ)pdµd(θ) =: Im,1

For any m > d, Choose n = [m
d

], then m
d
− 1 < n ≤ m

d
and 1 + π2

3
(dn
m

)2 ≤ 5. and using Lemma

1.0.10 (iii), we have

Im,1 ≤ ω2(f, n−1)p

∫ π

0

(1 + n2θ2)Bm(cos θ)dµd(θ)

≤
[
1 +

π2

2
n2

∫ π

0

(1− cos θ)Bm(cos θ)dµd(θ)
]
ω2(f, n−1)p =: Im,2.

Since the function y → x · y is a spherical harmonic of degree one on Sd−1 for each fixed

x ∈ Sd−1, it follows from (3.2.3) that

∫ π

0

(1− cos θ)Bm(cos θ)dµd(θ) = 1−
∫
Sd−1

(x · y)Bm(x · y) dσ(y)

= 1− am,1 ≤
(d− 1)(d+ 3)

2m2
≤ 2

3

( d
m

)2

.

Thus,

Im,2 ≤
(

1 +
π2

3

(dn
m

)2)
ω2(f, n−1)p ≤ 5ω2

(
f,
d

m

)
p
.
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Proof of Theore 3.2.1. Let m ∈ N be such that m ≤ 2m − 2 ≤ n ≤ 2m − 1 ≤ 2m. Then

d
m
≤ 2 d

n

En(f)p ≤ ‖f − Smf‖p ≤ 5ω2(f,
d

m
)p ≤ 5ω2(f,

2d

n
)p.

3.2.2 Proof of inequality 1.0.22 for r ≥ 3

The case for r = 2 has already been proven in the last subsection. We need to prove that for

r ≥ 3,

En(f)p ≤ Crω
r
(
f,
d3

n

)
p
, ∀f ∈ Lp(Sd−1), n = 1, 2, · · · , (3.2.5)

Let n1 ∈ N be such that n1d
2 ≤ n < (n1 + 1)d2, and set g := f − Vn1df . Since Vn1df ∈

Πd
n1d2
⊂ Πd

n, we have En(f)p ≤ ‖g‖p. Thus, it suffices to prove that

‖g‖p ≤ Crω
r(f,

d3

n
)p. (3.2.6)

Since Vn1f ∈ Πd
n1d

, we have Vn1Vn1df = Vn1dVn1f = Vn1f , and

Vn1g = Vn1f − Vn1dVn1f = 0.

It follows that

‖g‖p = ‖g − Vn1g‖p ≤ cEn1(g)p ≤ Cω2
(
g,

d

n1

)
p
≤ Cω2

(
g,
d3

n

)
p
. (3.2.7)

On the other hand, by inequality 3.3.1

ω2(g, t)p ≤ crt
2

∫ 2mt

t

ωr(g, u)p
u3

du+ cr2
rt2‖g‖p

∫ ∞
2mt

u−3 du

≤ crω
r(g, 2mt)p + cr2

−2m+r‖g‖p ≤ cr2
(m+1)rωr(g, t)p + cr2

−2m+r‖g‖p
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Hence:

‖g‖p = ‖g − Vn1g‖p ≤ 2(10 + 1)En1(g)p ≤ 22 ∗ 5 ∗ 22ω2
(
g,

d

n1

)
p

≤ 440ω2
(
g,
d3

n

)
p
≤ 440cr2

(m+1)rωr(g,
d3

n
)p + 440cr2

−2m+r‖g‖p

Selecting m: 1
4
≤ 440cr2

−2m+r ≤ 1
2
, then

‖g‖p ≤ 880cr2
r(4 ∗ 440cr2

r)r/2ωr(g,
d3

n
)p

Thus, to complete the proof of (3.2.6), it suffices to prove that

ωr(g, t)p ≤ 11ωr(f, t)p, ∀t > 0. (3.2.8)

Indeed, by definition, ωr(g, t)p ≤ ωr(f, t)p + ωr(Vn1df, t)p. However,

ωr(Vn1df, t)p = sup
Q∈O(t)

‖(I − TQ)rVn1df‖p = sup
Q∈O(t)

‖Vn1d(I − TQ)rf‖p

≤ 10 sup
Q∈O(t)

‖(I − TQ)rf‖p = 10ωr(f, t)p.

Denote Dr = 880cr2
r(4 ∗ 440cr2

r)r/2. Then

En(f)p ≤ ‖g‖p ≤ 11Drω
r(f,

d3

n
)p

3.2.3 Proof of the matching inverse inequality 1.0.23

.

Proof. We need to prove

ωr(f, n−1)p ≤ Crn
−r

n∑
k=1

kr−1Ek(f)p.

The main idea of this proof comes from [22, Theorem 4.1]. Replacing the Delayed mean
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for spherical harmonics by the de la Vallée Poussin type operator Vn in the last step, with

Bernstein’s inequality, we can get the proof of this inverse inequality.

It is enough to prove this result for n = 2m. Assume the result is true for cases of n = 2m,

then for n : 2m−1 < n < 2m.

ωr(f, n−1)p ≤ ωr(f, 2−(m−1))p ≤ Cr2
−r(m−1)

2m−1∑
k=1

kr−1Ek(f)p

≤ Cr2
−rm

n∑
k=1

kr−1Ek(f)p

≤ Crn
−r

n∑
k=1

kr−1Ek(f)p.

For n = 2m, given f and each j : 1 ≤ j ≤ n, we choose Pj ∈ Πd
j satisfies ‖f−Pj‖p ≤ 2Ej(f)p.

We have

ωr(f, 1/n)p ≤ ωr(f − Pn, 1/n)p + ωr(Pn, 1/n)p ≤ 2r‖f − Pn‖p + ωr(Pn, 1/n)p

and

ωr(Pn, 1/n)p ≤
m−1∑
j=0

ωr(P2j+1 − P2j , 1/n)p + ωr(P1, 1/n)p

P1 is a constant, hence ωr(P1, 1/n)p = 0. In order to prove the result, we only need to show

that for any spherical harmonic gk of degree k,

‖4r
ρgk‖p ≤ Ctrkr‖gk‖p for ρ ∈ O(t)

with C independent of t, k and d. We first prove cases for r = 1 with p =∞ and p = 1. Then

use induction and interpolation theorem to get the result as4r−1
ρ gk is also a spherical harmonic

of degree k.

In the case of r = 1 and p = ∞. For each fixed point x ∈ Sd−1, we may connect ρx and

x by the part of circle created by the intersection of Sd−1 with the plane generated by vectors x
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and ρx. On that circle, gk(y) = Tk(θ) is a trigonometric polynomial with Tk(0) = gk(x) and

Tk(t1) = gk(ρx), ρx · x = cos t1 ≥ cos t. Hence, with Bernstein’s inequality,

|gk(ρx)− gk(x)| = |Tk(t1)− Tk(0)| ≤ t1|T ′k(c)| ≤ t1k‖Tk‖L∞(T )

≤ t1k‖gk‖∞ ≤ tk‖gk‖∞

In the case of r = 1 and p = 1, we have

‖4ρgk‖1 = sup
‖g‖∞=1

|〈4ρgk, g〉| = sup
‖g‖∞=1

|〈Vk(4ρgk), g〉| = sup
‖g‖∞=1

|〈4ρgk, Vk(g)〉|

= sup
‖g‖∞=1

|〈gk,4ρVk(g)〉| ≤ sup
‖g‖∞=1

‖gk‖1‖4ρVk(g)‖∞ ≤ sup
‖g‖∞=1

‖gk‖1tk‖Vk(g)‖∞

≤ sup
‖g‖∞=1

10tk‖gk‖1‖g‖∞ ≤ 10tk‖gk‖1

Therefore,

ωr(Pn, 1/n)p ≤
m−1∑
j=0

ωr(P2j+1 − P2j , 1/n)p ≤ C
m−1∑
j=0

n−r2r(j+1)‖P2j+1 − P2j‖p

≤ C
m−1∑
j=0

n−r2r(j+1)

(
E2j+1(f)p + E2j(f)p

)
≤ Cr

m−1∑
j=0

n−r2(r−1)j2j
(
E2j+1(f)p + E2j(f)p

)

≤ Cr

m−1∑
j=0

n−r2(r−1)j

(
E2j+1(f)p + E2j+1−1(f)p + · · ·+ E2j(f)p

)

≤ Cr

m−1∑
j=0

n−r
( 2j+1∑
l=2j

lr−1El(f)p

)
= Crn

−r
n∑
k=1

kr−1Ek(f)p

Hence:

ωr(f, n−1)p ≤ Crn
−r

n∑
k=1

kr−1Ek(f)p.

with Cr = 10r2r

3.3 Proof of Marchaud inequality 1.0.18
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Proof. For the polynomial g(x) := [1−2−k(x+1)k]/(x−1) of degree k−1, we have (x−1)k =

2−k(x2 − 1)k + g(x)(x− 1)k+1. Replacing x by the translation operator Tρ with ρ ∈ O(t), we

obtain

(Tρ − I)k = 2−k(Tρ2 − I)k + g(Tρ)(Tρ − I)k+1

For g(Tρ), we have M := ‖g(Tρ)‖p ≤ k/2, therefore:

‖4k
ρf‖p ≤ 2−k‖4k

ρ2f‖p +M‖4k+1
ρ f‖p ≤ 2−k‖4k

ρ2f‖p +Mωk+1(f, t)p

Repeating this process, we obtain

‖4k
ρf‖p ≤ 2−km‖f‖p +M

m∑
j=0

2−kjωk+1(f, 2jt)p

Taking m→∞, we obtain:

ωk(f, t)p ≤Mtk
∞∑
j=0

(2jt)−kωk+1(f, 2jt)p ≤ C0(k)tk
∫ ∞
t

ωk+1(f, u)p
uk+1

du (3.3.1)

where C0(k) = k2

2
1

1−2−k
. Finally, we obtain the marchaud inequality via induction on r. As-

sume the marchaud inequality is true for r, from (3.3.1), we obtain:

ωk(f, t)p ≤ C0(k)tk
∫ ∞
t

ωr(f, u)p
uk+1

du

≤ C0(k)tk
∫ ∞
t

u−k−1ur
∫ ∞
u

ωr+1(f, z)p
zr+1

dz du

= C0(k)tk
∫ ∞
t

ωr+1(f, z)p
zr+1

∫ z

t

ur−k−1 du dz

≤ C0(k)tk
∫ ∞
t

ωr+1(f, u)p
uk+1

du

As there exists Q ∈ SO(d) and Skew-Symmetric matrix Mθ such that ρ = Q−1MθQ and

ρj = Q−1MjθQ ∈ O(jt).
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By induction, we have

ωr(f, t)p ≤ C(m)tr
∫ ∞
t

ωm(f, u)p
ur+1

du (3.3.2)

with C(m) = C0(r)C0(r + 1) · · ·C0(m− 1).

ωr(f, t)p ≤ C(m)tr
∫ ∞
t

ωm(f, u)p
ur+1

du

= C(m)tr
∫ 2lt

t

ωm(f, u)p
ur+1

du+ C(m)tr
∫ ∞

2lt

ωm(f, u)p
ur+1

du

≤ C(m)tr
∫ 2lt

t

ωm(f, u)p
ur+1

du+
C(m)

r
2m−lr‖f‖p

There exists c0 such that ‖f − c0‖p ≤ 2 infc∈R ‖f − c‖p = E0(f)p. By Jackson’s inequality, we

have (Cr is a constant from Jackson’s inequality.)

‖f − c0‖p ≤ 2 inf
c∈R
‖f − c‖p = 2E0(f)p

≤ Crω
r(f, d3)p = Crω

r(f, π)p

≤ Crω
r(f − c0,

1

2
)p

≤ CrC(m)tr
∫ 2lt

t

ωm(f, u)p
ur+1

du+
CrC(m)

r
2m−lr‖f − c0‖p

Choose l large enough such that

1

4
≤ CrC(m)

r
2m−lr ≤ 1

2

Then

‖f − c0‖p ≤ 2CrC(m)tr
∫ 2lt

t

ωm(f, u)p
ur+1

du
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ωr(f, t)p = ωr(f − c0, t)p ≤ C(m, r)tr
∫ 2lt

t

ωm(f, u)p
ur+1

du

Denote M0 = 2lt > 1, (if M0 ≤ 1, proof ended) then for any s, 1
2
≤ s < 1

tr
∫ M0

1

ωm(f, u)p
ur+1

du ≤ Ctrωm(f, π)p ≤ C

(
π

s

)m
trωm(f, s)p

≤ C(2π)mtrωm(f, s)p ≤ Ctr
∫ 1

1
2

ωm(f, u)p
ur+1

du

Thus, we obtain:

ωr(f, t)p ≤ C1(m)tr
∫ 1

t

ωm(f, u)p
ur+1

du,

3.4 Equivalence with K-functionals

Recall that the r−th order partial derivative in Euler angles is defined by

DrQf(x) :=
( ∂
∂t

)r(
f(Q−1MtQx)

)∣∣∣
t=0
, x ∈ Sd−1.

for r ∈ N, f ∈ Cr(Sd−1) and Q ∈ SO(d). r-th order K-functional of f ∈ Lp(Sd−1) is

Kr(f, t)p := inf
{
‖f − g‖p + tr sup

Q∈SO(d)

‖DrQg‖p : g ∈ Cr(Sd−1)
}
, t > 0.

for r ∈ N and 1 ≤ p ≤ ∞.

Lemma 3.4.1. Let r ∈ N and Q ∈ SO(d). Then the following statements hold:

(i) For each θ ∈ R,

DrQTQ−1MθQ = TQ−1MθQD
r
Q.
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(ii) For x = (x1, x2, · · · , xd) ∈ Sd−1 and f ∈ C1(Sd−1),

(T−1
Q DQTQ)f(x) = D12f(x) := x2∂1f(x)− x1∂2f(x). (3.4.1)

(iii) If f ∈ Cr+1(Sd−1), then

Dr+1
Q f(x) = DQ

(
DrQf

)
(x), x ∈ Sd−1.

(iv) The operator DrQ is invariant on the spaces of spherical harmonics; that is, DrQHn ⊂ Hn

for n = 0, 1, · · · . In particular, this implies DrQVn = VnDrQ.

Proof. (i) For θ ∈ R, set ρ(θ) := Q−1MθQ. Clearly, ρ(θ1 + θ2) = ρ(θ1)ρ(θ2) for any

θ1, θ2 ∈ R. For f ∈ Cr(Sd−1), we define

Ff (θ, x) := f
(
ρ(θ)x

)
, θ ∈ R, x ∈ Sd−1.

Then

DrQf(x) = ∂r1Ff (0, x).

Moreover, for any θ1, θ2 ∈ R and x ∈ Sd−1,

Ff (θ1 + θ2, x) = f
(
ρ(θ1 + θ2)x

)
= f

(
ρ(θ1)ρ(θ2)x

)
= Ff (θ1, ρ(θ2)x)

=
(
Tρ(θ2)f

)(
ρ(θ1)x

)
= FTρ(θ2)f (θ1, x).

Differentiating with respect to θ1 then gives

∂r1Ff (θ1 + θ2, x) = ∂r1Ff (θ1, ρ(θ2)x) = ∂r1FTρ(θ2)f (θ1, x).

Setting θ1 = 0 and θ2 = θ, we deduce

∂r1Ff (0, ρ(θ)x) = ∂r1FTρ(θ)f (0, x),
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which implies

Tρ(θ)DrQf(x) = (DrQTρ(θ)f)(x).

This shows (i).

(ii) By definition,

TQ−1DQTQf(x) = DQTQf(Q−1x) =
∂

∂t

[
(TQf)(Q−1Mtx)

]∣∣∣
t=0

=
∂

∂t

(
f(Mtx)

)∣∣∣
t=0

= D12f(x).

(iii) It is known that Dr+1
12 = Dr

12D12. Thus,

Dr+1
Q = TQD

r+1
12 T−1

Q = TQD12T
−1
Q TQD

r
12T

−1
Q = DQDrQ.

(iv) It is known that D12 is invariant on each space Hn of spherical harmonics. Since each

spaceHn is also rotational invariant, it follows that

DQHn = TQD12T
−1
Q Hn ⊂ Hn.

Since every multiplier operator restricted on each space Hn is a constant multiple of the

identity operator, it follows by linearity that DQ commutes with every multiplier operator.

Lemma 3.4.2 (Bernstein). For any r ∈ N, 1 ≤ p ≤ ∞ and f ∈ Πd
n,

sup
Q∈SO(d)

‖DrQf‖p ≤ nr‖f‖p. (3.4.2)

Proof. It is known that for each 1 ≤ p ≤ ∞,

‖Dr
12f‖p ≤ nr‖f‖p, ∀f ∈ Πd

n.
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Thus, using (3.4.1), we obtain that for each 1 ≤ p ≤ ∞, f ∈ Πd
n and Q ∈ SO(d),

‖DrQf‖p = ‖TQDr
12TQ−1f‖p = ‖Dr

12TQ−1f‖p ≤ nr‖TQ−1f‖p = nr‖f‖p.

Theorem 3.4.3. If r ∈ N and 1 ≤ p ≤ ∞, then there exist a constant Cr > 0 depending only

on r such that for all f ∈ Lp(Sd−1) and t ∈ (0, 1),

C−1
r Kr(f, d

−3t)p ≤ ωr(f, t)p ≤ CrKr(f, t)p. (3.4.3)

For the proof of Theorem 3.4.3, we need a few lemmas.

Lemma 3.4.4. Let 1 ≤ p ≤ ∞, r ∈ N and M ∈M. Then for any f ∈ Πd
n,

n−r‖DrQf‖p ≤ Crω
r(f, n−1)p. (3.4.4)

Proof. For the moment, we assume that p < ∞. Since DrQ = TQD
r
12TQ−1 , setting g = TQ−1f ,

we have

‖DrQf‖pp = ‖Dr
12g‖pp = cd

∫
Bd−2

∫ 2π

0

|Dr
12g(

√
1− ‖u‖2(cos θ, sin θ), u)|pdθdu

= cd

∫
Bd−2

∫ 2π

0

∣∣∣T (r)
u (θ)

∣∣∣pdθdu,
where

Tu(θ) := g
(√

1− ‖u‖2(cos θ, sin θ), u
)
, θ ∈ [0, 2π], u ∈ Bd−2.

Since g ∈ Πd
n, it is easily seen that for each fixed u ∈ Bd−2, Tu is a trigonometric polynomial

of degree at most n. Thus, by the Stechkin inequality, we obtain that for each u ∈ Bd−2,

n−r
(∫ 2π

0

∣∣∣T (r)
u (θ)

∣∣∣pdθ) 1
p ≤ Cr

(∫ 2π

0

|4r
n−1Tu(θ)|p dθ

) 1
p
,

61



where

4r
hTu(θ) =

r∑
j=0

(
r

j

)
(−1)jTu(θ + jh), θ, h ∈ R.

However, by the dfinition, it is easily seen that

4r
hTu(θ) = 4r

Mh
g
(√

1− ‖u‖2(cos θ, sin θ), u
)
.

Thus, we get

n−rp‖DrQf‖pp ≤ Cp
r cd

∫
Bd−2

∫ 2π

0

∣∣∣4r
Mn−1

g(
√

1− ‖u‖2(cos θ, sin θ), u)
∣∣∣pdθdu

= Cp
r

∫
Sd−1

∣∣∣4r
Mn−1

g(x)
∣∣∣p dx = Cp

r

∫
Sd−1

∣∣∣TQ4r
Mn−1

T−1
Q f(x)

∣∣∣p dx
= Cp

r

∫
Sd−1

∣∣∣4r
Q−1Mn−1Q

f(x)
∣∣∣p dx ≤ Cp

rω
r(f, n−1)pp.

A slight modification of the above proof works equally well for p =∞.

Proof of Theorem 3.4.3. First, we prove that for any g ∈ Cr(Sd−1) and t > 0,

ωr(g, t)p ≤ tr sup
Q∈SO(d)

‖DrQg‖p. (3.4.5)

Let ρ = Q−1MθQ with Q ∈ SO(d) and θ ∈ R. For each fixed x ∈ Sd−1, define

Tx(t) = g(Q−1MtQx), t ∈ R.

Then

T (r)
x (t) =

( ∂
∂t

)r
g(Q−1MtQx), t ∈ R.
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Thus, for any x ∈ Sd−1,

4r
ρg(x) =

∫
[0,θ]r

T (r)
x (u1 + u2 + · · ·+ ur)du1 · · · dur

=

∫
[0,θ]r

( ∂
∂t

)r
g
(
Q−1Mu1+···+urQx

)
du1 · · · dur.

It follows that

‖4r
ρg‖p ≤

∫
[0,θ]r

∥∥∥( ∂
∂t

)r
g
(
Q−1Mu1+···+urQ·

)∥∥∥
p
du1 · · · dur

≤ θr‖DrQg‖p.

This proves (3.4.5).

Next, we show that

ωr(f, t)p ≤ CrKr(f, t)p. (3.4.6)

Let g ∈ Cr(Sd−1) be such that

‖f − g‖p + tr sup
Q∈SO(d)

‖DrQg‖p ≤ 2Kr(f, t)p.

Indeed, by (3.4.5), we have

ωr(f, t)p ≤ ωr(f − g, t)p + ωr(g, t)p ≤ Cr‖f − g‖p + Cωr(g, t)p

≤ Cr‖f − g‖p + Ctr sup
Q∈SO(d)

‖DrQg‖p ≤ CrKr(f, t)p.

Finally, we show that

Kr(f, td
−3)p ≤ Crω

r(f, t)p (3.4.7)

Let n be the largest integer s.t. n − 1 ≤ d3t−1. Let Pn ∈ Πd
n be such that En(f)p =

‖f − Pn‖p. Using Lemma 3.4.4, we have
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Kr(f, d
−3t)p ≤ ‖f − Pn‖p + n−r sup

Q∈SO(d)

‖DrQPn‖p

≤ En(f)p + Crω
r(Pn, n

−1)p ≤ CrEn(f)p + Crω
r(f, n−1)p

≤ Crω
r(f, d3n−1)p ≤ Crω

r(f, t)p.
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