

Figure 2: Graphical abstract for the proposed work.

• Global demand for PO_4^{3-} is increasing and supply of PO_4^{3-} rock is decreasing. As it is a nonrenewable resource, we must find other ways to recover PO_4^{3-} .

Objectives

- To determine the effect of pyrolysis temperature on the properties of Canola Straw (CS) biochar.
- 2. To evaluate the influence of surface and physicochemical properties of CS biochar on its seeding characteristics.

Figure 3: Flowchart showing the overall methodology of the work

Canola Straw Biochar Properties Affect its Seed Characteristics for Struvite Crystallization Tanushri Koorapaty, Nageshwari Krishnamoorthy, Dr. Scott X. Chang Department of Renewable Resources, University of Alberta

a) Shaker

Instruments Used:

b) Hot-Air Oven

Results

Pyrolysis Temperature (°C)	Yield (%)	рН	Electrical Conductivity (dS m ⁻¹)
300	41.9	8.9	4.8
400	31	9.6	4.6
500	29.8	12.1	7.2

Table 1: The effect of pyrolysis temperature on basic physicochemical properties of CS biochar.

Figure 5: The effect of pyrolysis temperature on the O/C ratio of CS biochar

c) Spectrophotometer

- correlated well with the experimental results.

- Appl. Environ. Soil Sci. 2012, 1–13.
- https://doi.org/10.1016/j.biortech.2020.124282

Acknowledgments

This project would not have been possible without the help of my supporters. I would like to express my gratitude towards:

- WISEST
- University of Alberta
- Women and Gender Equality Canada • Forest Soils Lab

Figure 6: Struvite yield obtained with respect to seeding CS biochars produced at different pyrolysis temperatures.

Figure 7: The relative increase in the PO₄³⁻ recovery with the addition of CS biochar seeds produced at different pyrolysis temperatures.

Conclusion

1. Biochar produced at pyrolysis temperature 400 °C performed as the best seeding material due to comparatively higher surface area, struvite yield, and PO₄³⁻recovery. 2. The hydrophobicity of CS biochar produced at 400 °C was optimum for seeding, which

References

• Lu, Q., He, Z.L., Stoffella, P.J., 2012. Land application of biosolids in the USA: a review.

• Muhmood, A., Lu, J., Kadam, R., Dong, R., Guo, J., & Wu, S. (2019). Biochar seeding promotes struvite formation, but accelerates heavy metal accumulation. Science of The *Total Environment*, 652, 623–632. https://doi.org/10.1016/j.scitotenv.2018.10.302 • Nzediegwu, C., Arshad, M., Ulah, A., Naeth, M. A., & Chang, S. X. (2021). Fuel, thermal and surface properties of microwave-pyrolyzed biochars depend on feedstock type and pyrolysis temperature. *Bioresource Technology*, 320, 124282.

- Dr. Scott X. Chang
- Nageshwari Krishnamoorthy