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Abstract 

Apolipoprotein E (APOE) ɛ4 and Clusterin (CLU) C alleles are risk factors for 

Alzheimer’s disease (AD) and preclinical cognitive and memory decline in older adults. We 

investigated whether memory resilience to genetic risk (i.e., Apolipoprotein E [APOE] ɛ4, 

Clusterin [CLU] CC, and a high additive genetic risk score [GRS]) is predicted by factors that 

are sex-specific and genetically robust. Using a longitudinal sample of cognitively normal adults 

(n = 642, aged 53-95) we defined memory resilience as possessing specified genetic risk while 

sustaining high episodic memory (EM) function over time. Random forest analysis, stratified by 

sex, tested the predictive importance of 22 risk factors derived from five documented AD risk 

domains: (a) demographic (e.g., education), (b) functional biomarker (e.g., pulse pressure), (c) 

health (e.g., diabetes), (d) mobility (e.g., walking time), and (e) lifestyle (e.g., everyday physical 

activity). For both sexes, younger age, higher education, stronger grip, and everyday novel 

cognitive activity predicted memory resilience. For females, demographic, functional, health, 

mobility, and lifestyle factors predicted resilience. For males, fewer depressive symptoms was an 

important predictor. Prediction patterns were similar for the two variants and the GRS. Long-

term memory resilience in non-demented aging is predicted by risk and protective factors that are 

both common and unique to females and males. The greater number and wider breadth identified 

for females may enhance opportunities for sex-specific multi-factorial interventions to promote 

functional maintenance and delay cognitive decline. Promoting memory and cognitive resilience 

is especially crucial for aging adults with unmodifiable AD genetic risk. 
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Chapter 1 – Introduction 

There is an urgent need to develop methods of promoting cognitive maintenance and 

functional capacity during aging (Jin, Simpkins, Ji, Leis, & Stambler, 2015). The emerging 

epidemic of AD and dementia in our rapidly aging society has prompted large-scale efforts to 

minimise their impact on individual well-being and their societal cost. At this time, secondary 

prevention of cognitive decline and dementia through individualized risk-reduction may be the 

optimal course of action (Anstey, Eramudugolla, Hosking, Lautenschlager, & Dixon, 2015; 

Bongaarts, 2009; Smetanin et al., 2009; Wortmann, 2012). To accomplish this task, a better 

understanding of the dramatic variations in neurobiological and neurocognitive aging processes 

is essential.  

Older adults exhibit considerable heterogeneity in cognitive performance and trajectory. 

Although slight decline in ability is considered normal (Deary et al., 2009) and more rapid 

decline is evidence of preclinical disease, another empirically interesting subset of the population 

is able to maintain high levels of cognitive performance into late life (Josefsson, de Luna, Pudas, 

Nilsson, & Nyberg, 2012; Yaffe et al., 2009). With the relatively new and emphasized endeavor 

to supplement post-diagnosis management with methods of delaying or preventing cognitive 

decline and dementia, research has also shifted from a focus on aging-related losses to include 

determinants of positive phenotypes (Martin et al., 2014). These recent initiatives include 

attention to protective or risk-reducing factors and mechanisms that may contribute to the 

attainment and maintenance of relatively healthy brain and cognitive aging (Depp, Harmell, & 

Vahia, 2012).  

A wealth of evidence supports the independent and synergistic contribution of both non-

modifiable (e.g., genetics, age) and modifiable (e.g., environment, lifestyle, health) factors to 
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interindividual differences in cognitive performance and dementia risk (Armstrong, Mitnitski, 

Launer, White, & Rockwood, 2013; de Frias & Dixon, 2014; McFall, Sapkota, McDermott, & 

Dixon, 2016; Thibeau, McFall, Wiebe, Anstey, & Dixon, 2016; Yaffe et al., 2009). In fact, a 

complex interaction between the genetic background and lifestyle-environmental influences of 

individuals can predict cognitive status and outcome, often independent of, or supplemented by, 

chronological age (DeCarlo, Tuokko, Williams, Dixon, & MacDonald, 2014; Rogalski et al., 

2013). Given that some AD risk factors are non-modifiable, understanding which risk factors for 

cognitive decline are preventable and which protective factors for cognitive maintenance are 

attainable will enable us to develop strategies to preserve cognition and functional independence 

into late life, even in high-risk individuals. Such strategies may substantially decrease the 

prevalence of cognitive decline and dementia by delaying onset (Brookmeyer, Gray, & Kawas, 

1998; Fratiglioni & Wang, 2007), or, more excitingly, preventing them altogether.  

Despite carrying genetic risk for neurocognitive decline, some older adults maintain 

unexpectedly high levels of cognitive performance into late life (Kaup et al., 2015). The 

phenomenon of cognitive resilience may be influenced and predicted by other factors that 

contribute to risk reduction or brain and cognitive reserve and resilience. Therefore, although 

genetic risk is non-modifiable, other potentially modifiable factors exist that can attenuate, 

counteract, or protect against the accelerated risk of cognitive decline or impairment. For 

individuals with AD-related genetic risk, factors from demographic, cognitive, health, biological, 

and environmental-lifestyle domains play a role in determining cognitive trajectories and 

outcomes. Understanding how to predict or support cognitive resilience in at-risk older adults 

may enable researchers to identify specific, targetable mechanisms and pathways that influence 

these differential and variable patterns. Arguably, both delay and prevention of preclinical 
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cognitive decline, cognitive impairment, or dementia will be aided by a better understanding of 

the factors associated with healthy or resilient brain and cognitive aging (Anstey et al., 2014; 

Fotuhi, Hachinski, & Whitehouse, 2009). 

The present thesis investigates a novel phenomenon: Memory resilience to AD genetic 

risk. We define resilience to two established and mechanistically similar AD genetic risk 

factors—the Apolipoprotein E (APOE) ɛ4 and Clusterin (CLU) C alleles. Because sporadic AD 

is a multi-factorial neurodegenerative condition and not all genetic risk carriers convert to 

clinical diagnosis or even to preclinical cognitive decline (Kaup et al., 2015), we reasoned that 

some genetic risk carriers would also maintain high levels of memory performance over time. 

We specifically investigated whether memory resilience to AD genetic risk is predicted by 

modifiable factors that are sex-specific and genetically robust. We used a large, longitudinal 

sample of cognitively normal older adults to examine three main research goals. First, we 

distinguished phenotypes of longitudinal memory performance to extract a relatively higher-

performing memory aging group. This group was defined as having high levels of memory 

functioning that were sustained over time. Second, using a comprehensive set of 22 known AD 

risk and protective factors, we investigated sex differences in predictors of resilience in terms of 

(a) risk domain and specific factor and (b) relative importance. Third, we informally compared 

the generalizability of prediction patterns across both AD risk genes (APOE and CLU) and their 

combined genetic risk score (GRS).  

Strategies to promote cognitive resilience in aging may arise following the examination 

of modifiable factors that can be assessed and targeted for intervention as early as mid-life. The 

present thesis focuses on 22 factors from five key AD risk and protective domains. We examine 

their importance in predicting resilience to memory decline in adults ranging from midlife to old 
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(53 – 95 years). The following literature review provides the relevant background material for 

this thesis, including: (a) an overview of resilient cognitive aging phenotypes, (b) brain and 

cognitive reserve, (c) episodic memory (EM), and (d) the unmodifiable (i.e., genetics, sex, age, 

education) and modifiable (i.e., demographics, functional biomarkers, health, mobility, and 

lifestyle) factors associated with cognitive and memory outcomes in aging adults. 
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Chapter 2 – Literature Review 

2.1. Positive Phenotypes: Resilient Cognitive Aging 

Across the globe, older adults are comprising a larger portion of the total population. 

Accordingly, there are greater numbers of age-related illnesses than ever before, including 

Alzheimer’s disease (AD) as well as other causes of dementia and neurodegeneration. These 

cognitively devastating diseases severely diminish functional independence and societal 

contribution of both affected individuals and their caretakers. Even among non-demented adults, 

aging is associated with cognitive decline and impairment within most domains. These include 

episodic memory, processing speed, working memory, and executive function (Kirova, Bays, & 

Lagalwar, 2015; Park & Reuter-Lorenz, 2009). However, older adults exhibit vast interindividual 

variability in cognitive performance and trajectory (Small, Dixon, & McArdle, 2011; Wilson et 

al., 2002). In fact, some older adults experience little to no cognitive decline in aging (globally or 

within domains), suggesting that more severe impairment and decline is not necessarily an 

inevitable consequence of aging (Rowe & Kahn, 1987; Yaffe et al., 2009).  

 Interest in aging outcomes has thus shifted from a disease-centered focus to include 

complementary “positive biology” approaches that consider the neurobiology of healthy brain 

and cognitive aging. Specifically, this new focus seeks to identify protective factors, 

mechanisms, and neural correlates that contribute to an individual’s ability to (a) attain and 

maintain healthy or successful cognitive phenotypes and (b) resist or be resilient to other risk 

factors that typically promote impairment and decline (Farrelly, 2012; Kaup et al., 2015; Martin 

et al., 2014; Rogalski et al., 2013; Rowe & Kahn, 1987; Yaffe et al., 2009; Yaffe et al., 2010). 

Thorough characterization of positive aging phenotypes may help us (a) develop interventions 

that promote cognitive and functional maintenance into late life and (b) delay, prevent, or treat 
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cognitive decline. Healthy cognitive aging phenotypes are associated with increased quality of 

life and decreased risk of death (Guehne, Luck, Busse, Angermeyer, & Riedel-Heller, 2007; 

Vance et al., 2008; Yaffe et al., 2010; Yaffe, Petersen, Lindquist, Kramer, & Miller, 2006) and 

are distinguished by a number of characteristics. For example, above-average cognitive and 

memory aging phenotypes are associated with favorable demographic (e.g., higher literacy 

level), lifestyle (e.g., weekly exercise), health (e.g., no vascular disorders), genetic (i.e., APOE 

ɛ4-), cognitive (e.g., multi-domain advantages), brain (e.g., fewer markers of AD pathology), and 

clinical (i.e., lower levels of inflammatory markers) factors (de Frias, Dixon, & Strauss, 2009; 

Dixon & de Frias, 2014; Gefen et al., 2014; Harrison, Weintraub, Mesulam, & Rogalski, 2012; 

Josefsson et al., 2012; Rogalski et al., 2013; Yaffe et al., 2009).  

 Healthy brain and cognitive aging phenotypes also derive from another positive construct 

deemed “resilience”. Resilient cognitive aging occurs when aging adults maintain relatively high 

levels of cognitive performance and functional independence into late life despite have a strong 

risk factor for impairment and decline. Researchers interested in cognitive resilience in aging 

adults typically investigate resilience to AD risk factors such as brain pathology. Those 

individuals identified as cognitively resilient often demonstrate an apparent discordance between 

AD-related pathology and cognitive performance and outcome (Negash et al., 2013a). More 

specifically, resilient older adults may exhibit substantial amyloid plaques, tau tangles, Lewy 

bodies, or vascular pathology yet maintain unexpectedly high levels of cognitive ability. 

Cognitive resilience to brain pathology is associated with a variety of favorable characteristics 

such as mid-life socioeconomic status, reading ability, genetics [e.g., APOE, HS3ST3A1], 

intracranial volume, cellular and synaptic features, and cognitive activity (Arnold et al., 2013; De 

Jager et al., 2013; Negash et al., 2013a; Negash et al., 2013b). Associating resilient phenotypes 
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with potentially modifiable factors from various domains (i.e., health, biomarkers, 

environmental) has promise for identifying (a) personalized ways to promote resilience or (b) 

mechanistic pathways for future intervention or treatment targets. Therefore, further examination 

of characteristics and pathways potentially involved in susceptibility or resilience to Alzheimer’s 

risk factors is warranted. 

 Cognitive resilience to susceptibility genes for late-onset AD (namely the APOE ɛ4 

allele) is another promising way to investigate factors that delay or prevent cognitive decline or 

dementia in the face of a strong, unmodifiable risk factor. Ferrari and colleagues (2011), with 

data from the Kungsholmen Project (individuals aged 75+ at baseline), investigated modifiable 

factors associated with reduced risk of AD and dementia in initially non-demented older adults 

with AD genetic risk. Their results indicated that carriers of the APOE ɛ4 allele with high 

education (i.e., ≥ 8 years), no vascular risk factors (i.e., high blood pressure, stroke, heart failure, 

diabetes, or prediabetes), and high participation in leisure activities (based on a combined score 

including participation in mental, social, and physical activities) had a reduced risk of dementia 

and AD as well as delayed time to onset (Ferrari et al., 2013).  

 A more recent study specifically investigated cognitive resilience to the APOE ɛ4 allele 

in a sample of 2487 cognitively normal older adult participants in the Health, Aging, and Body 

Composition study (69-80 years old at baseline; followed for up to 11 years). Kaup and 

colleagues (2015) defined participants as resilient if they had an above-average longitudinal 

global cognitive trajectory (i.e., were in the upper tertile based on Modified Mini-Mental State 

Examination performance trajectory) despite carrying the APOE ɛ4 allele (included ɛ2ɛ4, ɛ3ɛ4, 

and ɛ4ɛ4 genotypes). After stratifying their sample by race (i.e., black and white older adults), 

they tested predictors of cognitive resilience (versus non-resilience) to APOE ɛ4 allelic risk. In 
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both black and white older adults, resilience was predicted by demographic (i.e., literacy level of 

at least 9
th

 grade, higher education) factors. Specifically for white older adults, resilience was 

also predicted by demographic (i.e., older age), psychosocial (i.e., no negative life events in the 

past year), and lifestyle (i.e., more time spent reading) factors. For black older adults, resilience 

was also predicted by demographic (i.e., female sex) and health (e.g., not being diabetic) factors. 

Their results support conclusions that (a) the phenomenon of cognitive resilience to AD genetic 

risk exists in non-demented aging adults and (b) numerous potentially modifiable factors predict 

resilience. However, their results also indicate that resilience is predicted differentially for 

nationally similar but demographically (i.e., racially) separate groups. Altogether, these two 

studies investigating cognitive resilience to AD genetic risk suggest that, although the APOE ɛ4 

allele is a strong risk factor for cognitive decline and dementia, there are a number of modifiable 

psychosocial, environmental, demographic, health, and lifestyle factors that can promote 

resilience to the presumed negative neuropathological effects of AD genetic risk.  

 We developed a novel resilience classification of memory resilience. We define memory 

resilience as episodic memory (EM) performance that is relatively high and is maintained over 

time despite the presence of AD genetic risk. We specify two AD risk genes: APOE and CLU 

independently and in combination (i.e., an additive genetic risk score [GRS]). Our overall aim is 

to investigate whether memory resilience to multiple forms of AD genetic risk is predicted by 

modifiable, epidemiologically-indicated dementia risk factors. EM was evaluated over nine years 

based on performance on a latent variable composed of three indicators from two validated tasks. 

We examine three research goals. First, we aim to separate phenotypes of longitudinal memory 

performance to extract a relatively higher-performing memory aging group. Second, we 

investigate sex differences in predictors of resilience in terms of (a) risk domain and specific 
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factor and (b) relative importance. Third, we compare the generalizability of prediction profiles 

across APOE-, CLU-, and GRS-based resilience classification. We test the predictive importance 

of 22 factors: age, education, and 20 modifiable factors from demographic, functional biomarker, 

health, mobility, and lifestyle domains. We selected these domains and specific factors based on 

previous aging, resilience, epidemiological, and dementia research (Anstey et al., 2015; Ferrari et 

al., 2013; Josefsson et al., 2012; Kaup et al., 2015). The remainder of this literature review 

details the relevant background information specific to accomplishing the goals of this thesis. 

2.2. Brain and Cognitive Reserve 

 External influences can promote or support cognitive resilience, potentially by enhancing 

reserve (Daffner, 2010), of which there are two main types. Brain reserve encompasses physical 

characteristics of the brain, such as volume and synaptic density, which enables it to withstand 

greater pathology (e.g., AD-related plaques and tangles) before a threshold is reached in which 

symptoms clinically manifest (Negash et al., 2013b; Sachdev & Valenzuela, 2009). Cognitive 

reserve arises from functional advantages such as network efficiency which also increase the 

threshold for pathological effects on cognition. Sufficient delay of cognitive decline and 

dementia through enhanced brain and cognitive reserve may decrease the number of diagnosed 

AD cases substantially (Brookmeyer et al., 1998; Fratiglioni & Wang, 2007). As such, there is 

much interest in identifying factors associated with brain and cognitive reserve. 

 Both forms of reserve independently and interactively contribute to resilience by (a) 

compensating for the loss and (b) buffering the pathology (Tucker & Stern, 2011; Valenzuela & 

Sachdev, 2006) imparted by identified risk factors, including AD risk alleles (Stern, 2012). In 

this thesis, we consider a number of risk and protective factors that may stimulate memory 

resilience to AD genetic risk factors by enhancing brain and cognitive reserve. Notably, reserve 
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can be promoted by lifestyle and environmental factors, including: (a) higher education, (b) 

occupational complexity, (c) socioeconomic status, (d) cognitively-stimulating lifestyle 

activities, (e) social activities, and (f) physical activities (Barulli & Stern, 2013; Fratiglioni & 

Wang, 2007). Reciprocally, lower reserve makes older adults more susceptible to the effects of 

risk factors (e.g., poor lifestyle), thereby negatively affecting global or specific (e.g., EM) 

cognitive performance. Based on our predictor analyses, we will contribute information about 

factors that promote resilience to AD genetic risk potentially by increasing brain and cognitive 

reserve. 

2.3. Episodic Memory 

 EM is a declarative memory subtype broadly defined as the long-term memory for 

personal events situated in time and place. It allows for “mental time travel” to recall past 

personal experiences in detail and is imperative to shaping how we act and feel in each present 

moment (Tulving, 2002). EM generally declines with advancing age, but does exhibit differential 

aging changes among individuals and shows exacerbated decline in mild cognitive impairment 

(MCI) and AD (Dixon, Small, MacDonald, & McArdle, 2012; Jones, Harold, & Williams, 2010; 

Josefsson et al., 2012; Nyberg, Lövdén, Riklund, Lindenberger, & Bäckman, 2012). 

Neuropathological outcomes of the aging process, including neuronal dysfunction and other 

brain pathologies (Nilsson, 2003), influence gradual EM decline in typically-aging adults (Dixon 

et al., 2004). Brain areas and neurotransmitters necessary for EM ability (e.g., the hippocampus 

and acetylcholine, respectively) are some of the first affected, and hardest hit, in preclinical 

cognitive decline and AD (Anand & Singh, 2013; Hasselmo, 2006; Nelson et al., 2012; Rugg & 

Vilberg, 2013). Correspondingly, a frequent complaint of older adults is diminished EM ability; 
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an abnormally pronounced deficit is one of the earliest signs of AD (Bäckman, Small, & 

Fratiglioni, 2001).  

 However, EM performance and change exhibits wide variation among individuals due to 

direct and indirect contributions of epidemiological risk and protective factors (Dixon et al., 

2012). Accordingly, there is demonstrated potential for aging adults to have high (i.e., above 

average) and sustained EM performance trajectories, even into advanced age (Josefsson et al., 

2012). Positive memory aging phenotypes are associated with a number of protective or risk-

reducing factors (i.e., lifestyle engagement) that promote maintenance or contribute to reserve 

and resilience (Dixon et al., 2012; Nyberg et al., 2012). We aim to identify a relatively more 

adaptive or higher-performing memory aging phenotype in our sample based on each 

participant’s longitudinal performance on an EM latent variable. We then define memory 

resilience as EM performance that is relatively high and is maintained over time despite the 

presence of AD genetic risk  

2.4. Unmodifiable Risk Factors Influencing Cognition and Memory in Aging and AD 

 In this thesis, we considered four generally unmodifiable factors associated with AD risk, 

memory performance, and resilience. However, we assigned them different roles in this research. 

The first factor, AD genetic risk, defines our memory resilient groups. The second factor, sex, is 

used to stratify all our analyses in order to elucidate differences in predictors of resilience 

between females and males. The third and fourth factors, age and education, are used to define 

phenotypes of longitudinal EM performance and are also 2 of the 22 tested predictors of memory 

resilience (given their relevance and importance in resilient outcomes).   
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2.4.1. Genetics 

Aside from age, genetic risk is the major non-modifiable risk factor for AD. Recently, 

there has been considerable interest, and success, in elucidating risk alleles for AD using 

genome-wide association studies (GWAS). As a result, several genetic single nucleotide 

polymorphisms (SNPs) have been identified as risk factors for sporadic AD. Interestingly, many 

of the risk SNPs identified also predispose normally-aging carriers to cognitive impairment or 

decline. Thus, researchers study risk alleles for AD in order to (a) understand the mechanisms 

behind AD and cognitive change and (b) predict transitions from normal aging to MCI or AD. 

Several genetic polymorphisms have been robustly associated with increased risk of 

developing sporadic AD. Two such genes are APOE (rs429358 and rs7412; risk: ɛ4 allele) and 

CLU (CLU: rs11136000; risk: C allele). Both are associated with non-pathological and 

preclinical cognitive and memory decline in older adults (Schiepers et al., 2012; Thambisetty et 

al., 2013; Wu, Yu, Li, & Tan, 2012). Heritability estimates for EM are between 30% and 70% 

(Barral et al., 2013; Koppel & Goldberg, 2009). One study in particular indicated a heritability 

estimate of 62% in healthy older adults which remained unchanged after adjustment for number 

of APOE risk (ɛ4) alleles (Wilson et al., 2011). Studies investigating the association of novel 

genetic risk factors for cognitive decline and AD with neuropsychological performance have 

shown promise in elucidating potentially modifiable mechanisms of decline associated with 

genetic risk. 

Apolipoprotein E 

 APOE is a gene located on chromosome 19 with three major isoforms: ɛ2, ɛ3, and ɛ4. It is 

implicated in many key brain health functions, including: (a) amyloid beta (Aβ) metabolism 

(e.g., aggregation and clearance), (b) neuroinflammation, (c) lipid transport, (d) glucose 
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metabolism, (e) neurogenesis and neuronal repair (e.g., of cholinergic neurons), (f) protection 

against oxidative stress, (g) synaptic plasticity, and (h) neuronal signaling (Bennet et al., 2007; 

Corder et al., 1993; Fotuhi et al., 2009; Liu, Kanekiyo, Xu, & Bu, 2013). The three isoforms 

differentially influence the listed functions—a notable example is their respective influence on 

Aβ deposition and clearance. Improper Aβ metabolism plays a major role in memory outcomes 

through direct (e.g., accumulation in memory brain areas) and indirect (e.g., synaptoxicity) 

pathways (Hudry et al., 2013; Lim et al., 2012; Lim et al., 2013b). 

 The APOE ɛ4 allele is the strongest known genetic risk factor for late-onset AD and is 

associated with both cognitive decline and MCI (Dixon et al., 2014; Liu et al., 2013; Schiepers et 

al., 2012). Each APOE ɛ4 allele increases AD risk by approximately four-fold and decreases age 

of onset (Brainerd, Reyna, Petersen, Smith, & Taub, 2011; Corder et al., 1993). Even healthy 

young (e.g., 20-39 year olds) carriers of the risk allele exhibit functional brain abnormalities 

(Reiman et al., 2004). The ɛ4 allele can predispose carriers to cognitive decline by acting alone 

(Schiepers et al., 2012) or in combination with other risk factors such as poor vascular health 

(Bangen et al., 2013), history of traumatic brain injury (Dardiotis et al., 2010), or other genes 

(Hayden, Lutz, Kuchibhatla, Germain, & Plassman, 2015). Conversely, the ɛ2 allele is 

considered non-risk or, more often, protective, as carriers exhibit reduced risk of cognitive 

decline and AD (Suri, Heise, Trachtenberg, & Mackay, 2013) and better cognitive performance 

(Small, Rosnick, Fratiglioni, & Backman, 2004). The most common ɛ3 allele is generally 

considered neutral or non-risk (Corbo & Scacchi, 1999). 

Research examining the relationship between APOE and EM has indicated that typically 

aging carriers of at least one ɛ4 allele exhibit worse EM performance and steeper decline (Lim et 

al., 2015; McFall et al., 2015; Schiepers et al., 2012; Small et al., 2004). Specifically, EM may 
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be negatively affected in ɛ4 carriers through (a) reduced functional connectivity in brain areas 

associated with EM (Chen, Shu, Wang, Liu, & Zhang, 2016), (b) hippocampal atrophy 

(Kerchner et al., 2014), (c) abnormal cell turnover (Wikgren et al., 2012), and (d) AD pathology 

(i.e., plaques and tangles) (Lim et al., 2015; Yu, Boyle, Leurgans, Schneider, & Bennett, 2014). 

Some controversy about this relationship still exists as some studies have failed to find evidence 

of an association between the ɛ4 allele and EM performance (Raz, Rodrigue, Kennedy, & Land, 

2009). However, because the ɛ4 allele is an established AD risk allele, we define normally-aging 

APOE ɛ4 carriers with little-to-no EM decline over nine years as memory resilient to APOE risk 

and investigate modifiable predictors of this novel phenotype.  

Clusterin 

A related genetic risk factor in a SNP within the CLU gene, located on chromosome 8, is 

also significantly associated with AD as demonstrated by recent GWAS (Carrasquillo et al., 

2010; Harold et al., 2009; Wijsman et al., 2011). On average, it increases the risk of AD by 

approximately 10-15% (Bertram, McQueen, Mullin, Blacker, & Tanzi, 2007; Harold et al., 

2009). Apolipoprotein J (ApoJ)—the protein encoded by CLU—is involved in brain-related 

functions such as: (a) Aβ metabolism and pathophysiology (Desikan et al., 2014), (b) lipid 

regulation and transport (Baralla et al., 2015), (c) oxidative stress (Trougakos, 2013), and (d) 

inflammation (Falgarone & Chiocchia, 2009). The CLU rs11136000 SNP has two alleles—C and 

T. The major C allele increases AD risk whereas the T allele is considered non-risk (Bertram et 

al., 2007). 

GWAS have implicated the CLU C allele in poorer cognitive and EM performance and 

decline (Sweet et al., 2012), even after ruling out effects of the APOE ɛ4 allele. The C allele is 

associated with steeper memory decline in cognitively normal, pre-symptomatic individuals who 
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later progress to MCI (Thambisetty et al., 2013). The risk allele may negatively affect EM by 

influencing: (a) white matter integrity (Bertram & Tanzi, 2010; Braskie et al., 2011; Lockhart et 

al., 2012), (b) functional connectivity between memory brain regions (e.g., coupling between the 

hippocampus and dorsolateral prefrontal cortex) during EM retrieval (Erk et al., 2011), (c) brain 

activity during demanding memory tasks (Lancaster et al., 2011), (d) hippocampal blood flow 

(Thambisetty et al., 2013), and (e) ventricular expansion (Roussotte, Gutman, Madsen, Colby, & 

Thompson, 2014). Even healthy young individuals with the CC genotype exhibit hyperactivation 

in memory brain areas (Lancaster et al., 2011; Lancaster et al., 2015). In contrast, the AD non-

risk CLU T allele was associated with better general cognitive performance (in a sample of 

individuals 90 years or older) on a composite consisting of EM, working memory, and verbal 

fluency tasks (Mengel-From, Christensen, McGue, & Christiansen, 2011). CLU TT homozygotes 

are also protected from the negative cognitive effects attributed to worse personality phenotypes 

(i.e., high neuroticism) (Sapkota, Wiebe, Small, & Dixon, 2015). As with APOE, we define 

normally-aging adults with a high-risk (i.e., CC) CLU genotype and little-to-no EM decline as 

memory resilient to CLU risk and investigate predictors of the phenotype. Because the CLU C 

allele imparts lower relative risk for AD than the APOE ɛ4 allele (Adams et al., 2015; Bertram et 

al., 2007), we defined memory resilience to the CC genotype as opposed to just C allele carriers 

(i.e., CC or CT genotype). 

Apolipoprotein E and Clusterin 

We chose to investigate memory resilience to these two genes specifically due to their 

mechanistic similarities, functional relationship, cooperative roles (e.g., Aβ metabolism), and 

potential to influence EM in normal aging. For example, McFall and colleagues (2016) recently 

found that both the APOE and CLU non-risk alleles and their combined GRS attenuated the 
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negative effect of poor vascular health on executive function performance and decline. In another 

study, these risk alleles were associated (independently and in combination) with entorhinal 

cortex volume in young adults (DiBattista, Stevens, Rebeck, & Green, 2014). Therefore, this 

thesis will additionally consider memory resilience to an additive APOE and CLU GRS. 

We briefly discuss the rationale for including a GRS component in this paper. The 

multifunctional proteins encoded by APOE and CLU (Apolipoprotein E [ApoE] and ApoJ, 

respectively) are related and involved in maintaining healthy brain function (Elliott, Weickert, & 

Garner, 2010). The molecules share some common functions, including: (a) cholesterol and lipid 

transport and metabolism (Elliott et al., 2010), (b) Aβ metabolism and clearance (DeMattos et 

al., 2004), (c) binding to common receptors (Leeb, Eresheim, & Nimpf, 2014), (d) promotion of 

neuronal growth, (e) synapse turnover (Bertram & Tanzi, 2010), and (e) brain structure, even in 

young adults (Braskie et al., 2011; DiBattista et al., 2014). Although still under investigation, 

ApoJ may interact with ApoE to provide supplemental neuroprotection and process Aβ (i.e., 

moderate its uptake, clearance, solubility, degradation, and transport) (Holtzman, 2004). Taken 

together, the risk alleles of APOE and CLU may influence cognitive decline through increased 

AD pathology and neuronal loss (Elliott et al., 2010; Morris et al., 2010; Roussotte et al., 2014). 

The additional risk imparted by having a high additive GRS may be reflected by a slightly 

differential pattern of predictors of memory resilience. However, we expect similar patterns of 

predictions to those obtained by testing resilience to the risk genes independently. 

2.4.2. Sex 

 Males and females have many important biological and behavioural differences which 

contribute to dissimilarities in cognition, aging trajectory, and risk of disease. Although the terms 

sex and gender are often used interchangeably, in this study we specifically use the term sex to 
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underscore the biological nature of this research. Briefly, sex is generally considered innate and 

biological whereas gender arises from psychosocial and cultural factors (Johnson & Repta, 

2012). As such, sex- and gender-derived factors or differences influence cognitive outcomes in 

aging from slightly different perspectives (e.g., hormones and brain structure versus accessibility 

to education and caregiver roles, respectively) (Mielke, Vemuri, & Rocca, 2014). In this study, 

we target a large number of biologically-focused factors and their potential effect on systems and 

mechanisms within the brain and body which can contribute to differences in cognition and 

memory, health and physiology, and dementia prevalence (Li & Singh, 2014). However, 

characteristics associated with both sex and gender likely influence the processes and outcomes 

we investigated. For example, whereas grip strength and statin use may be more sex-related, 

marital status and level of social activity may reflect gender influences. 

 Specific to cognition and cognition-related outcomes, aging males demonstrate steeper 

decline in performance on tests from numerous cognitive domains (McCarrey, An, Kitner-Triolo, 

Ferrucci, & Resnick, 2016) and are at a higher risk of MCI (Roberts et al., 2012). As such, 

females may be less vulnerable (or more resilient) to the neuropathological effects of aging on 

cognition (McCarrey et al., 2016). However, females are disproportionally more likely to 

develop AD (Li & Singh, 2014; Thies & Bleiler, 2013) because of neurobiological mechanisms 

that are beginning to be understood. Manifestations of these mechanisms include earlier onset of 

pathogenic brain changes and steeper trajectories of decline (Zhao, Mao, Woody, & Brinton, 

2016). Furthermore, although the APOE ɛ4 allele increases risk of conversion to MCI and AD in 

both females and males, the effect is stronger in women, possibly because of differing levels of 

brain pathology (Altmann, Tian, Henderson, & Greicius, 2014).  
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 There are also established sex differences in EM performance and change which vary by 

task (Nilsson, 2003). Across the lifespan, females generally outperform males on verbal and 

word list tasks. In contrast, males outperform females on EM tasks with a visuospatial 

component (de Frias, Nilsson, & Herlitz, 2006; Herlitz & Rehnman, 2008). Notably, aging 

females also have a greater likelihood of following above-average (i.e., successful) EM 

trajectories (Josefsson et al., 2012). To investigate longitudinal EM performance in this study, 

we used three indicators from two EM tasks (Word Recall and Rey Auditory Verbal Learning 

[RAVLT]) to create a latent EM variable. On average, females outperform males on both these 

EM tasks (Herlitz & Rehnman, 2008; Jack et al., 2015) further emphasizing the importance of 

our decision to include sex-stratification. As with general cognition, a variety of factors from 

lifestyle, environmental, health, and biological domains can further affect the magnitude of sex 

differences in EM. For instance, sex-specific differences in EM may arise as a result of divergent 

(a) brain structure and function, such as memory retrieval strategies (Young, Bellgowan, 

Bodurka, & Drevets, 2013), (b) stress response (Guenzel, Wolf, & Schwabe, 2014), (c) 

hormones (Li & Singh, 2014), and (d) lifestyle (e.g., cognitive and physical activity, education 

and occupation, and smoking habits) (Mielke et al., 2014). 

 Given that sex strongly influences cognitive performance and risk of disease (Li & Singh, 

2014), many cognitive aging studies are now stratifying by sex as part of their research 

prerogative (Kok, Aartsen, Deeg, & Huisman, 2015). One major aspect of this study will be to 

examine sex differences (and similarities) in predictors of memory resilience to AD genetic risk. 

Given observed sex differences in risk and performance, patterns of predictors of memory 

resilience to the APOE and CLU risk alleles may also vary by sex. Examining sex differences in 

memory resilience to AD genetic risk may have implications for interventions to reduce risk of 
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functional disability and neurodegenerative disease. A better understanding of sex differences 

(and their biological basis) will provide insight into specific or targeted risk factors that 

contribute to normal and pathological cognitive impairment and decline (Li & Singh, 2014). 

Although sex-specificity is still not in the mainstream of cognitive aging, impairment, and AD 

research, we emphasize the need for such considerations in standard research, mechanistic 

interpretation, interventions, clinical trials, preventions, and treatments. 

2.4.3. Age 

 Age is the single greatest risk factor for sporadic AD (Kawas, Gray, Brookmeyer, Fozard, 

& Zonderman, 2000) and incidence of AD spikes after age 65 (Alzheimer's Association, 2016). 

The brains of non-demented aging adults often display AD-like pathology, including regions of 

Aβ accumulation and cortical volume loss (Chetelat & Fouquet, 2013). As such, older age is also 

a strong, unmodifiable risk factor for cognitive decline across multiple domains, including 

memory (Lipnicki et al., 2013), in normally-aging adults. However, the effect of age on 

cognitive function can be reduced in the presence of protective factors from multiple domains 

(e.g., health, physiological, and psychosocial) (Hendrie et al., 2006). In this study, we used age 

as one of our 22 predictors of memory resilience to AD genetic risk. Although our focus was on 

potentially modifiable factors, we included age to (a) control for its strong effect on EM outcome 

and (b) assess its relative importance (with respect to the other, modifiable factors) in predicting 

resilience.  

2.4.4. Education 

 Low education is a risk factor for cognitive impairment, decline, and AD (Bennett et al., 

2003; Caamano-Isorna, Corral, Montes-Martinez, & Takkouche, 2006). Accordingly, higher 

levels of education are generally associated with favorable outcomes (Britton, Shipley, Singh-
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Manoux, & Marmot, 2008), including better cognition (Le Carret, Lafont, Mayo, & Fabrigoule, 

2003) and lower risk of dementia. Higher levels of education may exert benefit by increasing 

cognitive reserve (Le Carret et al., 2003). Further evidence for the reserve theory comes from 

AD patients. Those AD patients with higher education exhibit greater brain pathology and 

dysfunction at diagnosis (e.g., more severe reduction in brain glucose metabolism) (Garibotto et 

al., 2008) and steeper cognitive decline in early disease stages (Andel, Vigen, Mack, Clark, & 

Gatz, 2006). One possible reason is that the pathological effects on function and cognition are 

buffered by reserve and appear later (Hall et al., 2007). However, results from studies 

investigating the association between educational attainment and cognition in aging are mixed. 

For example, one study found that education did not have an effect on cognitive change over six 

years (Van Dijk, Van Gerven, Van Boxtel, Van der Elst, & Jolles, 2008). Some studies instead 

suggest that education is associated with passive cognitive reserve such that individuals with 

higher levels of education have better cognitive performance but decline at the same rate as their 

less-educated peers (Zahodne et al., 2011). 

 In this study, we consider level of education to be an unmodifiable risk (or protective) 

factor for EM performance and change. However, we note that there is evidence that education 

late in life (e.g., between 50 – 79 years of age) can increase cognitive reserve, offering another 

potential strategy to improve cognitive function or delay decline (Lenehan et al., 2015). 

Regardless, we proceed with the assumption that the vast majority of adults 53 years of age and 

older (as represented in our sample) will participate in further education or training at a level 

negligible to the current study. Moreover, those who do participate in further educational 

activities would likely benefit only marginally. Like age, we (a) account for the effect of 

education on EM and predictors of resilience by including it as a covariate in all our statistical 
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models and (b) test its relative importance as a predictor of resilience compared to the other 

(modifiable) factors. 

2.5. Modifiable Factors from Five Domains of AD Risk and Protection 

 A wealth of potentially modifiable factors affect cognition and memory in aging. A 

number of lifestyle choices, environmental influences, health characteristics, and demographic 

factors act independently or interactively to affect cognition and risk of AD (Anstey et al., 2014). 

This section will discuss the 20 modifiable factors within five major domains of AD risk and 

protection (i.e., demographic, functional biomarker, health, mobility, and lifestyle) that we 

investigated as possible predictors of memory resilience. We emphasize that, in total, we test 22 

factors as predictors of resilience: age, education, and the following 20 modifiable factors. 

2.5.1. Demographic Factors 

 Some potentially modifiable demographic characteristics that may affect memory 

resilience include marital status, living with someone, and owning a pet. Previous studies have 

found that living with someone (including through marriage) is associated with successful 

cognitive and memory aging (Josefsson et al., 2012; Yaffe et al., 2009). Marriage and living with 

someone may provide social support and prevent isolation which protect against cognitive 

decline and dementia (i.e., provide resilience) by enhancing cognitive reserve, promoting a 

healthier lifestyle, providing widespread brain stimulation, and reducing stress (Pillai & 

Verghese, 2009). Older adult participants (aged 65+), particularly men, in the Swedish National 

Study on Aging and Care-Kungsholmen projects that reported living alone were at a higher risk 

of institutionalization and mortality than those who lived with at least one other person 

(Pimouguet et al., 2015). For older adults who are not able to live with a spouse or other human, 

pet ownership may provide some of the benefits of cohabitation by encouraging participation in 
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beneficial lifestyle activities (e.g., physical, cognitive, and social) and reducing stress (Cherniack 

& Cherniack, 2014). Given that being married and living with someone have widespread 

beneficial effects, we expect that both factors will emerge as important predictors of memory 

resilience.  

2.5.2. Functional Biomarkers 

 Functional biomarkers are measures of physiological functioning, such as cardiovascular 

health (blood pressure, lung capacity, heart rate) and strength (sarcopenia, grip strength). 

Biomarkers representing these functions decline with typical aging and can be indicative or 

predictive of cognitive decline, impairment, and AD (DeCarlo et al., 2014; Dolcos, MacDonald, 

Braslavsky, Camicioli, & Dixon, 2012). Based on previous neuroepidemiological and cognitive 

aging literature, we focused on four main functional biomarkers available in our dataset: (a) 

pulse pressure (PP), (b) grip strength (GS), (c) peak expiratory flow (PEF), and (d) body mass 

index (BMI).  

 PP (systolic blood pressure minus diastolic blood pressure) is a representation of arterial 

stiffness whereby higher values indicate decreased vascular health (Raz, Dahle, Rodrigue, 

Kennedy, & Land, 2011; Steppan, Barodka, Berkowitz, & Nyhan, 2011). It is considered a better 

predictor of vascular health than systolic or diastolic blood pressure alone (Raz et al., 2011). 

Higher levels of PP are associated with poorer cognition (including executive function and EM) 

and increased risk of AD (Al Hazzouri & Yaffe, 2014; McFall et al., 2015; Qiu, Winblad, 

Viitanen, & Fratiglioni, 2003; Raz et al., 2011). Researchers with the Victoria Longitudinal 

Study (VLS) found that higher PP increases the risk of EM decrements in aging APOE e4 

carriers (McFall et al., 2015). In the Baltimore Longitudinal Study of Aging, higher PP was 

associated with declines across multiple cognitive tasks including global cognition, verbal 
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learning, working memory, and nonverbal memory (Waldstein et al., 2008). Conversely, better 

cardiovascular health (i.e., lack of hypertension) has been associated with successful cognitive 

aging (Yaffe et al., 2009). 

 GS is reliably associated with clinical and cognitive outcomes. Assessing GS is the 

recommended way to measure sarcopenia (loss of muscle tissue) in older adults (Lauretani et al., 

2003). Both GS and sarcopenia have been studied as markers of aging transitions—GS declines 

and sarcopenia increases with aging, respectively—and cognitive change (Lauretani et al., 2003; 

MacDonald, DeCarlo, & Dixon, 2011; MacDonald, Dixon, Cohen, & Hazlitt, 2004). Maintained 

muscle strength is associated with slowed rates of cognitive decline and decreased risk of MCI 

and AD (Boyle, Buchman, Wilson, Leurgans, & Bennett, 2009). In a cross-sectional cohort of 

healthy older male veterans (aged 65+) sarcopenia was related to both cognitive impairment and, 

interestingly, depressive symptoms (Hsu et al., 2014). A similar, longitudinal result was found in 

older females: Change in global cognition was associated with grip strength (as well as chair 

stands) (Atkinson et al., 2010).  

 PEF, a measure of lung function, is linked to maintenance of cognitive function or 

cognitive decline (Cook et al., 1995; MacDonald, DeCarlo, & Dixon, 2011; Rowe & Khan, 

1997). Very impaired PEF in older adults is a strong predictor of incident AD (Simons, Simons, 

McCallum, & Friedlander, 2006) but respiratory function as early as in midlife is associated with 

an individual’s risk of developing AD (Guo et al., 2007). A physical fitness indicator variable 

composed of expiratory volume, grip strength, and walking time was associated with cognition 

in older adult participants in the Lothian Birth Cohort 1921 (Deary, Whalley, Batty, & Starr, 

2006). Remarkably, respiratory training may have the potential to improve cognitive function in 

older adults (Ferreira, Tanaka, Santos-Galduróz, & Galduróz, 2015).  
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 Obesity (generally defined as BMI ≥ 25) at midlife increases the risk of dementia. 

However, there is some evidence of age effects such that, in older adults, low BMI may be a 

greater risk factor for dementia. Nevertheless, Barnes and Yaffe (2011) suggest that a 10-25% 

reduction in obesity rates could substantially decrease the prevalence of AD (Barnes & Yaffe, 

2011). Obesity can negatively affect cognition in midlife and during normal aging, possibly 

through influences on ischemic white matter damage and general brain atrophy (Gustafson, 

Steen, & Skoog, 2004; Ward, Carlsson, Trivedi, Sager, & Johnson, 2005). Notably, older adults 

that maintained high levels of global cognition had lower BMI (Yaffe et al., 2009). 

 Altogether, these four biomarkers represent a range of functional health and related 

factors related to brain health and memory resilience in aging. Each of the four biomarkers may 

be related to (a) levels of brain and cognitive reserve, (b) frailty, (c) overall physiological health, 

or (d) brain and vascular pathology. As such, we expect that favorable levels of each factor will 

emerge as important predictors of resilience, perhaps differentially by sex. 

2.5.3. Health Characteristics 

Although a wealth of health characteristics influence cognitive aging and may affect 

memory resilience, we have selected six health characteristics available in the VLS that were 

also investigated in other successful and resilient cognitive aging studies (Ferrari et al., 2013; 

Josefsson et al., 2012; Kaup et al., 2015; Yaffe et al., 2009). Specifically, we tested: (a) 

subjective health, (b), depressive symptoms, (c) diabetes, (d) anti-inflammatory medication, (e) 

statin use, and (f) history of head injury. 

Older adults following successful or resilient cognitive aging trajectories with a healthy 

profile within other domains may be aware of their more favorable aging outcome. For example, 

adults that rate their subjective health as “good” or better are more likely to maintain global 
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cognitive function over time (Yaffe et al., 2009), but only in some studies (Yaffe et al., 2010). 

We will determine whether this effect exists for memory resilient female and male older adults. 

Non-clinical depressive symptoms may be a preventable risk factor for cognitive 

impairment and dementia (Wang & Blazer, 2015). In normal aging, elevated depressive 

symptoms are associated with lower memory performance and steeper decline (Lohman et al., 

2013). Furthermore, older adults with relatively high levels of depressive symptoms (i.e., with 

scores in the upper tertile) are at a 50% higher risk of dementia (Simons et al., 2006). Therefore, 

we expect that lower depressive symptoms will be predictive of memory resilience. 

Type 2 diabetes is an established risk factor for cognitive dysfunction and AD or other 

forms of dementia (Biessels, Staekenborg, Brunner, Brayne, & Scheltens, 2006; Yeung, Fischer, 

& Dixon, 2009). Dysregulated brain insulin can contribute to AD-related pathology thereby 

affecting cognition (Roriz-Filho et al., 2009; Umegaki, 2014). Older adults with diabetes 

symptoms have specifically demonstrated EM deficits, including impairment (Dahle, Jacobs, & 

Raz, 2009) and faster rates of decline (Okereke et al., 2009). Not being diabetic was an important 

predictor of cognitive resilience in black (but not white) older adults (Kaup et al., 2015). Because 

our sample is primarily composed of Caucasian Canadians, we suspect that memory resilience 

may not be predicted by diabetes status. However, our sex-stratified sample may yield different 

results than those obtained by Kaup and colleagues (2015). 

Inflammation and cholesterol levels were recently investigated as predictors of cognitive 

resilience to the APOE ɛ4 allele (Kaup et al., 2015). Although we did not collect data on blood 

markers of inflammation and cholesterol, we reasoned that taking anti-inflammatory and 

cholesterol medication (i.e., statins) could act as proxy measures. Both inflammation and high 

cholesterol have been associated with exacerbated age-related cognitive decline (Lim, Krajina, & 
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Marsland, 2013a; van Vliet, 2012) and increased risk of dementia (Engelhart et al., 2004; 

Mainous, Eschenbach, Wells, Everett, & Gill, 2005). Of note, ApoE and ApoJ are involved in 

lipid function. However, it is possible that statin use may actually decrease the risk of cognitive 

decline or dementia (Cramer, Haan, Galea, Langa, & Kalbfleisch, 2008).  

Self-reported history of head injury (e.g., concussion) is associated with increased risk, 

and earlier onset, of MCI and AD (Abner et al., 2014; LoBue, Lacritz, Hart, Kyle, & Cullum, 

2014). The brains of individuals that have experienced a traumatic brain injury show accelerated 

brain atrophy and appear “older”, which can affect cognitive and memory outcome (Cole, Leech, 

& Sharp, 2015). Given the long-term cognitive risk associated with head injuries, we expect that 

not having history of a head injury will emerge as a predictor of memory resilience. 

2.5.4. Mobility 

 We investigate two principal indicators of mobility: walking time (i.e., gait) and turning 

time (i.e., balance). A recent review suggests that aging adults who maintain a high combined 

level of fitness and mobility are protected from aging effects on the brain, including areas 

involved in memory, which slows cognitive decline (Zhao, Tranovich, & Wright, 2014). 

Accordingly, cognition and mobility are related (Buchman, Boyle, Leurgans, Barnes, & Bennett, 

2011) such that reduced mobility is associated with cognitive impairment, including MCI 

(Sachdev et al., 2012) and dementia (Abellan van Kan et al., 2012). Given the relationship 

between physical health, mobility, and cognitive performance (Mielke et al., 2013), it is possible 

that maintaining higher levels of both mobility factors may (a) promote memory resilience 

directly or (b) be a marker for a level of physical health associated with resilience through 

enhanced brain reserve. 
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2.5.5. Lifestyle 

 There is a general consensus that a healthy lifestyle (e.g., participation in physical, social, 

and cognitive activities) is beneficial to present and future cognitive ability (Hughes, 2008). 

Participation in lifestyle activities may promote healthy brain and memory aging by building 

brain and cognitive reserve, improving cardiovascular health, or reducing stress (Anstey et al., 

2014; Dolcos et al., 2012; Small, Dixon, McArdle, & Grimm, 2012). More specifically, lifestyle-

related boosts in brain and cognitive reserve can emerge as a result of increases in neurotropic 

factors, neurogenesis, and enhanced functional connectivity and flexibility of neural networks 

and processes (Hertzog, Kramer, Wilson, & Lindenberger, 2008; Kempermann, Gast, & Gage, 

2002). Increasing participation in cognitive, physical, and social lifestyle activities is one of the 

easiest interventions strategies to implement in early-, mid-, and late-life to promote cognitive 

maintenance and resilience.  

 Frequent engagement in physically-, socially-, and cognitively-stimulating lifestyle 

activities is associated with better cognitive and memory performance and trajectory (Fratiglioni 

& Wang, 2007; Kramer, Erickson, & Colcombe, 2006; Lachman, Agrigoroaei, Murphy, & Tun, 

2010; Nouchi et al., 2014; Scarmeas & Stern, 2003). We broadly considered physical and 

cognitive activity based on self-reported participation in 4 and 27 activities, respectively. For 

social activity, we specifically measured frequency of social visits and volunteering to replicate 

what was done by Kaup and colleagues (2015). Given that high participation in all social, 

cognitive, and mental activities predicted resilience in a previous study (Ferrari et al., 2013), we 

expect that each of the four activities will predict memory resilience, although perhaps 

differentially by sex. 
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 We consider two additional lifestyle-related AD risk factors: consumption of alcoholic 

beverages and tobacco use. We note that neither smoking nor alcohol consumption were 

important predictors of cognitive resilience to the APOE ɛ4 allele, suggesting their overall effect, 

at least when other factors are considered, may be negligible (Kaup et al., 2015). However, both 

smoking and moderate alcohol consumption have documented risk and protective effects, 

respectively, for AD and dementia and are often used in risk indices (Anstey et al., 2014; Simons 

et al., 2006). Even in normal aging, older adults whose performance on a test of global cognition 

does not decline over time are more likely to have moderate alcohol intake and to be non-

smokers (Barnes et al., 2007; Yaffe et al., 2009). Unfortunately, smoking status could not be 

included in any of our prediction models due to low prevalence of smokers when we parsed 

participants into groups by sex and genetic risk. 

2.6. The Present Study 

This study examined whether memory resilience to AD genetic risk is predicted by 

factors that may differ by sex but are similar across three genetic risk indicators (i.e., the APOE 

ɛ4 allele, the CLU CC genotype, and a high additive GRS). We had three research goals. First, 

we differentiated female and male participants as memory resilient or non-resilient to AD genetic 

risk based on nine-year longitudinal EM latent variable trajectory. This goal was accomplished 

using group-based trajectory (i.e., growth mixture) modelling to determine phenotypes of EM 

performance over nine years (Pietrzak et al., 2015). Second, we investigated sex differences in 

predictors of resilience in terms of (a) risk domain and specific factor and (b) relative importance 

using random forest analysis (RFA). Although still novel in its application to biomedical and 

neuroscience research, we specifically chose RFA because it is a nonparametric technique that 

can deal with large numbers of (potentially correlated) predictor variables even with relatively 
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small sample sizes (Strobl, Malley, & Tutz, 2009). We identified a pool of predictors derived 

from demographic, functional, health, mobility, and lifestyle domains based on previous brain 

and cognitive aging research  (Anstey et al., 2015; Josefsson et al., 2012) and two studies that 

investigated general cognitive resilience associated with the APOE ɛ4 allele (Ferrari et al., 2013; 

Kaup et al., 2015). Third, we informally (a) compared the generalizability of prediction patterns 

across APOE- and CLU-based resilience classification and (b) assessed the overlap between 

genetically robust predictors and GRS-based resilience predictors.  

We expected our trajectory analyses would reveal two or three distinguishable memory 

trajectory phenotypes from which “high-performers” and “low-performers” could be 

appropriately differentiated (Pietrzak et al., 2015; Terrera, Brayne, & Matthews, 2010; Zahodne 

et al., 2015). Based on previous findings, we hypothesized resilience prediction patterns would 

comprise a number of risk-reduction or protective factors. We expected the profiles would 

represent a range of domains, including demographic (e.g., marital status), functional biomarker 

(e.g., grip strength), health (e.g., subjective health), mobility (e.g., walking time), and lifestyle 

(e.g., physical activity) domains (Ferrari et al., 2013; Kaup et al., 2015). Because different 

cognitive domains and trajectories may respond differently to environmental and lifestyle factors 

(Kramer, Bherer, Colcombe, Dong, & Greenough, 2004), we suspected we would find 

interesting similarities and differences in predictors to those obtained by Kaup and colleagues 

(2015). We further hypothesized that some factors predictive of resilience to AD genetic risk 

would emerge as sex-similar whereas other would be sex-specific. Finally, we expected 

generalizability of any sex-specific differences across APOE, CLU, and GRS risk given their 

mechanistic similarities. 
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There is currently much demand for the identification of (a) risk factors for preclinical 

cognitive decline and (b) protective factors that can promote sustained, high levels of cognition 

into late life. Different cognitive aging trajectories reflect varying contributions of combined 

behavioural, environmental-lifestyle, demographic, and genetic factors. Research is shifting to 

include a focus on uncovering modifiable, non-pharmaceutic influences on cognitive aging 

outcome to develop disease prevention strategies. Our research aims to contribute to the 

discovery of potential risk-reduction targets that could conceivably increase or maintain the 

quality of life of older adults and, in turn, decrease the societal and economic burden of our 

aging population. 
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Chapter 3 – Method 

3.1. Participants 

Participants were community-dwelling older adult volunteers of the Victoria 

Longitudinal Study (VLS), an ongoing, multi-cohort, longitudinal-sequential study of genetic, 

health, cognitive, biomedical, and neuropsychological aspects of human aging. Participants were 

enrolled through community advertisements and received a small honorarium. All participants 

provide written informed consent and all data collection procedures are in full compliance with 

human research ethics. Further information regarding participant recruitment and longitudinal 

procedures can be found elsewhere (Dixon & de Frias, 2004). 

We assembled archived longitudinal data from three VLS samples. Participants in each 

sample were initially recruited during a different decade (i.e., 1980s, 1990s, 2000s), reflecting 

the longitudinal-sequential nature of these data. At intake, participants were aged 53-85 and then 

were followed at regular intervals. Specifically, we obtained data from: (a) Sample 1 Wave 6 and 

7, (b) Sample 2 Waves 4 and 5, and (c) Sample 3 Waves 1, 2, and 3. The respective earliest wave 

of each sample became Wave 1 (W1 or baseline, consisting of Sample 1 Wave 6, Sample 2 

Wave 4, and Sample 3 Wave1), the second wave became Wave 2 (W2, consisting of Sample 1 

Wave 7, Sample 2 Wave 5, and Sample 3 Wave 2) and the third wave became Wave 3 (W3, 

consisting only of Sample 3 Wave 3). The mean interval between the waves of data collection 

was 4.5 years (W1-W2; W2-W3).  

A subset of the VLS database was used for this study. Specifically, we targeted 

genotyped participants. The VLS genotyping occurred in the 2009-2011 period and was limited 

by funding arrangement to approximately 700 continuing VLS participants in Samples 1 - 3. 

This VLS genetic cohort (n = 695; 67.2% female; mean age = 70.6 years; age range, 53 – 95 
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years) has accumulated up to three waves (nine years) of data. With these data, an accelerated 

longitudinal design covers a 40-year band of aging. We applied the following exclusionary 

criteria to the source sample: (a) EM data missing from all three waves (n = 45), (b) diagnosis of 

AD or dementia (n = 0), (c) self-report of “severe” for potentially comorbid conditions (i.e., 

epilepsy, head injury, encephalitis) (n = 7), and (e) self-report of “moderate” or “severe” for 

comorbid disease (i.e., Parkinson’s disease) (n = 1). As with previous research (Kaup et al., 

2015), our limited exclusionary criteria allowed us to maintain a reasonably diverse study sample 

that was fully genotyped.  

Participant demographic and retention data for our study sample are presented in Table 

3.1. N = 642 participants were available at Wave 1 (426 [66.4%] female and 216 [33.6%] male; 

mean age = 70.7 years; age range, 53 – 95). At Wave 2 we had 529 participants (349 female and 

180 male) and at Wave 3 we had 304 participants (207 female and 97 male). Like prior VLS 

research (McFall et al., 2015), the subsample wave-to-wave retention rates ranged from 78% to 

91% (Table 3.1). In this study, the longitudinal design was used only to develop memory 

trajectories for resilience classification. 

3.2. DNA Extraction and Genotyping 

 Using the manufacturers’ protocol, we obtained genetic markers from saliva samples that 

were collected according to Oragene DNA Genotek technology and stored at room temperature. 

DNA was manually extracted from 0.8 ml of saliva sample mix. Genotyping was carried out by 

using a polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) 

strategy to analyze allele status for APOE (determined by the combination of the single 

nucleotide polymorphisms [SNPs] rs429358 and rs7412) and CLU (rs11136000). Briefly, SNP-

containing PCR fragments were amplified from 25ng of genomic DNA using primers for APOE 
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(Forward: 5’-GGCACGGCTGTCCAAGGA-3’, Reverse: 5’-

GCCCCGGCCTGGTACACTGCC-3’) and CLU (Forward: 5’-AAAGCAGGCTGCAGACTCC-

3’, Reverse: 5’-AGTGCTGGGATTACAGGTGTC-3’). PCRs were completed in the QIAgility 

robotic system (QIAgen). RFLP was performed on a high-resolution DNA screening cartridge on 

a QIAxcel capillary electrophoresis system using the protocol OL700 after digestion of the PCR 

amplicons. Restriction enzymes (from NE Biolabs) included (a) HhaI (16 hours at 37°C) for 

APOE and (b) Tsp509I (4 hours at 65°C) for CLU. Migration of the restriction fragments on 10% 

or 15% of acrylamide gels for each SNP confirmed the analyses. 

 As mentioned, APOE genotype was determined by the combination of SNPs rs429358 

and rs7412. The APOE ɛ4- genotype consisted of ɛ2ɛ2, ɛ2ɛ3, and ɛ3ɛ3 (n = 463) and the ɛ4+ 

genotype consisted of ɛ2ɛ4, ɛ3ɛ4, and ɛ4ɛ4 (n = 179). There were three potential CLU genotypes:  

TT (n = 105), TC (n = 320), and CC (n = 216). One participant only contributed an APOE 

genotype due to an error during CLU extraction. Results of Hardy-Weinberg equilibrium 

analyses showed that the allele frequency distributions of both APOE (clustered according to the 

presence of the risk ɛ4 genotype; χ
2 

= 0.47, p = 0.492) and CLU (χ
2 

= 0.55, p = 0.458) were 

within population norms (Table 3.2). Our sample consisted of mainly Caucasian Canadians, and 

the allelic frequencies were comparable to those of previous studies with participants of similar 

demography (Barral et al., 2012; Deary et al., 2004; Ferencz et al., 2014)   

 Resilience to APOE genetic risk required carrying at least one APOE ɛ4 allele. Given the 

disparity in odds ratios between CLU (C = 1.14) and APOE (ɛ4 = 3.81) risk alleles (Adams et al., 

2015; Bertram et al., 2007), resilience to CLU risk required having the CC genotype. Genetic 

risk score (GRS) analysis was based on the cumulative risk of APOE and CLU given each alleles 

odds ratio. Each APOE ɛ4 allele was given a risk score of 3.81 and each CLU C allele was given 
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a risk score of 1.14, based on odds ratios generated by previous studies (Adams et al., 2015; 

Bertram et al., 2007). For the purposes of this study, both the APOE ɛ2 and ɛ3 alleles were given 

a risk score of 0.00. Participants were given a final GRS based on the sum of their risk conferred 

from ɛ4 and C alleles; scores ranged from 0.00 – 9.90. For example, a participant with an APOE 

ɛ3ɛ4 genotype and CLU TC genotype would receive a risk score of 4.95 whereas a participant 

with an APOE ɛ2ɛ3 genotype and CLU CC genotype would receive a risk score of 2.28.  Given a 

maximum GRS of 9.90, we determined four levels of additive genetic risk based on quartile split 

(i.e., ≤ 25% = low risk, >25% to 50% = moderate-low risk, >50% to 75% = moderate-high risk, 

>75% = high risk). We only considered participants in the highest risk quartile as having a high 

GRS. Based on this definition, high GRS included: (a) carrying at least one APOE ɛ4 allele and 

1-2 CLU C alleles or (b) carrying two APOE ɛ4 alleles and 0-2 CLU C alleles. 

3.3. Episodic Memory Measures  

We assembled a latent EM variable using three manifest indicators from the following 

two EM tasks. Both tasks have previously been used in the VLS (and elsewhere) and testing 

procedures were identical across waves.  

Word recall (Dixon & de Frias, 2004; Dixon et al., 2004). Participants were asked to 

remember as many words as possible from a typed list of 30 English words, followed by 

immediate free recall. Two trials were performed. Each list consisted of six words from five 

taxonomic categories (e.g., flowers, birds) in random order. Participants were given two minutes 

to study the list and five minutes to write down as many words as they could remember. In total, 

six equivalent lists exist and were administered such that no participant saw the same list twice 

over three waves (in order to minimize practice effects). Each participant-specific score was the 

average number of words correctly recalled across the two lists (maximum score of 30).  
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Rey Auditory Verbal Learning Test (RAVLT) (Lezak, 1983; Vakil & Blachstein, 1993). 

Participants listened to fifteen nouns read aloud and immediately recalled, aloud, as many of the 

nouns as possible. This procedure was repeated five times (A1-A5). A second list (B1) of fifteen 

unrelated nouns was then read aloud and the participants recalled as many as possible. Finally, 

participants were asked to recall as many words as possible from the first list (A6). The number 

of nouns recalled from B1 was used as a measure of free recall, with a total score out of 15. The 

number of nouns recalled from A6 was used as a measure of recall after interference, with a total 

score out of 15 (McFall et al., 2015). 

3.4. Twenty-two Risk and Protective Factors from Five Domains 

 For the purposes of this study, each of the 22 factors was collected from, or reported by, 

participants at their respective baseline: Sample 1 Wave 6, Sample 2 Wave 7, and Sample 3 

Wave 1. We tested 22 factors for their ability to predict memory resilience (2 unmodifiable [age 

and education] and 20 modifiable). 

3.4.1. Demographic Factors 

 Demographic data were collected by having participants fill out the VLS Personal Data 

Sheet. We examined five demographic factors. Although the aim of this study was to focus on 

modifiable predictors of resilience to AD genetic risk, we included age and education to (a) 

assess their relative strength with respect to other, modifiable factors and (b) completely account 

for their effect on other factors within our models. For example, had we not included age in our 

prediction models, other factors that are highly influenced by age (e.g., pulse pressure) may have 

differentiated groups based on age effects as opposed to memory resilience. 
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 Age. The specific (i.e., to the decimal) age of each participant was calculated based on 

their date of birth and date of testing at each wave of testing. Age at each wave was used in 

memory trajectory analyses. Baseline age was tested as a predictor of memory resilience. 

 Education. Participants self-reported the number of years of education they completed. 

Baseline level of education was (a) used as a covariate in memory trajectory analyses and (b) 

tested as a predictor of memory resilience.  

 Marital status. Participants reported whether they were currently unmarried (coded as 0) 

or married (coded as 1). Being unmarried included for any reason (e.g., divorced, widowed, 

single). 

 Living status. Participants reported their current living arrangement. Participants that 

were not currently living with someone were coded as 0. Those that were living with someone 

(e.g., spouse, family member, caregiver) were coded as 1. 

 Pet ownership. Participants that reported owning a pet (of any kind) at baseline were 

coded as 1. Those that reported not owning a pet were coded as 0.  

3.4.2. Functional Biomarkers 

 Data pertaining to four functional biomarkers was collected from participants using 

physical in-lab tests. 

Pulse pressure (PP). Blood pressure (BP) was collected eight times (four times during 

each of two sessions, approximately one week apart) from seated participants using an Omron 

Automatic Oscillometric Digital Blood Pressure monitor (MacDonald et al., 2004). Two readings 

were taken at the beginning of each session and two were taken at the end. The average of the 

eight BP readings was calculated to get an overall average BP value (systolic/diastolic) for each 

participant. PP was calculated as: PP = systolic BP – diastolic BP for all participants that had at 
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least four BP measurements. During analysis, PP (in mm Hg) was used as a continuous variable 

(McFall et al., 2015). 

Grip strength (GS). The GS of each participants was collected over two trials as 

measured by a Smedley hand dynamometer. GS was measured in kilograms of force (kg/f) 

(MacDonald et al., 2004). The highest score obtained from the average of each hand was used in 

analyses, as a continuous variable.  

Peak expiratory flow (PEF). Participants, while standing, were asked to take a 

maximally-deep breath then executive a quick, hard blow into the mouthpiece of the MiniWright 

Peak Flow meter. Score (in litres/minute [L/min]) was based on largest volume expired over 

three attempts and was analyzed as a continuous variable.  

Body mass index (BMI). The height (m) and weight (kg) of each participant were 

measured via a wall-mounted measuring scale and digital scale, respectively. Height and weight 

measurements were then used to calculate each participant’s BMI (as weight/height
2
 in kg/m

2
). 

BMI was used as a continuous variable during analyses. 

3.4.3. Health Characteristics 

 We compiled data from six health characteristics (obtained via self-report and 

questionnaire). We originally included history of stroke (i.e., yes or no) but there were never 

enough participants with a history of stroke in each analytic group (i.e., < 10%) so the factor was 

not used in analyses. 

Subjective health. Participants were asked to rate their overall health on a 5-point Likert 

scale (“very good” = 1, “good” = 2, “fair” = 3, “poor” = 4, “very poor” = 5) relative to a perfect 

state of health (Dolcos et al., 2012). 
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Depressive symptoms. Participants completed the Center for Epidemiological Studies 

Depression Scale (CES-D) (Radloff, 1977), a 20-question scale designed to measure depressive 

symptoms in the general population. The CES-D has demonstrated ability to screen symptoms in 

older adults (Lewinsohn, Seeley, Roberts, & Allen, 1997). Responses are based on the frequency 

of occurrence during the past week, out of four choices: “rarely or none of the time (less than 1 

day)” = 0, “some or a little of the time (1 – 2 days)” = 1, “occasionally or a moderate amount of 

the time (3 – 4 days)” = 2, and “most or all of the time (5 – 7 days)” = 3. Examples of questions 

include “I felt lonely” and “I could not get ‘going’”. There are four positive affect questions 

(e.g., “I felt hopeful about the future”) and their answers were reverse-coded when determining 

each participant’s final score (out of 60). Higher scores indicate more depressive symptoms. 

CES-D score was used as a continuous variable in analyses. 

Diabetes. Participants self-reported whether or not they had been diagnosed with type II 

diabetes (yes = 1, no = 0).  

Anti-inflammatory (i.e., arthritis) medication. Participants self-reported whether or not 

they were currently taking anti-inflammatory medication (yes = 1, no = 0). 

Cholesterol medication (e.g., statins). Participants self-reported whether or not they were 

currently taking medication to mnage their cholesterol (yes = 1, no = 0). 

History of a head injury. Participants self-reported whether or not they had a history of 

head injury (either “not serious” or “moderately serious” [participants that had experienced a 

“very serious” head injury were excluded from this study]; yes = 1, no = 0). 

3.4.4. Mobility 

 There are two mobility measures collected by the VLS testing battery. 
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Timed Walk.  Participants were asked to walk a distance of 20 feet as quickly (but safely) 

as possible (10 feet one way, cross a line, turn around, 10 feet back). Orthotic devices were 

acceptable. The time taken to complete the task (in seconds [s]) was used as a continuous 

variable in analyses. 

Timed Turn. Participants were asked to make a complete 360 degree turn in place in 

whatever direction they were most comfortable, returning to their starting position with their toes 

lined up behind the starting line. They were asked to do the task as quickly as possible but not to 

go so fast that they would lose their balance. Orthotic devices were acceptable. The time taken to 

complete the task (in seconds) was used as a continuous variable in analyses. 

3.4.5. Lifestyle 

 We assembled five relevant lifestyle factors. We originally included current smoking 

status (i.e., smoker or non-smoker) but there were never enough smokers in each analytic group 

(i.e., < 10%) so the factor was not used in analyses. 

 Alcohol consumption. Alcohol use was self-reported by each participant. The variable 

measured was current consumer (scored as 1) versus non-consumer (scored as 0).  

 Everyday physical activity. Engagement in physical lifestyle activities was assessed using 

the VLS Activity Lifestyle Questionnaire (VLS-ALQ), a 54-item self-report questionnaire that 

measures the frequency of participation in various activities over the past two years (Small et al., 

2012). The everyday physical activity subscale includes four items. A nine-point scale was used 

to rate the frequency of participation: “never” = 0, “less than once per year” = 1, “about once per 

year” = 2, “two to three times per year” = 3, “about once per month” = 4, “two to three times per 

month” = 5, “about once per week” = 6, “two to three times per week” = 7, “daily” = 8 (Small et 
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al., 2012). The scores were summed across the items within each subdomain, creating a 

maximum score of 32. Total score was used as a continuous variable. 

 Everyday novel cognitive activity. Another subdomain included in the VLS-ALQ is 

everyday novel cognitive activity (e.g., playing bridge, doing taxes, learning a language) [n = 

27]), which is differentiated from passive and integrative cognitive activity subscales. The same 

nine-point scale described above was used to rate the frequency of participation. The scores were 

summed across the items within each subdomain, creating a maximum score of 216. Total score 

was used as a continuous variable. 

 Social visits. We used one specific question within the social activity subdomain of the 

VLS-ALQ to assess the frequency of social visits (i.e., “How often do you visit family, friends, 

or neighbors?”). The same nine-point scale described above was used to rate the frequency of 

participation therefore the maximum score was 8. Total score was used as a continuous variable. 

 Volunteering. We used another specific question with the social activity subdomain of the 

VLS-ALQ to assess frequency of volunteer activity (i.e., “How often do you volunteer?”). The 

same nine-point scale described above was used to rate the frequency of participation therefore 

the maximum score was 8. Total score was used as a continuous variable. 

3.5. Statistical Analyses 

3.5.1. Data preparation 

 IBM SPSS 23.0 for Windows (IBMCorp., 2015) was used to combine datasets for the 

source sample of 642 older adults. We included the EM measures at all three time-points, sex, 

the twenty-two risk and protective factors at baseline, and genetic data. Missing values were 

coded ‘99999’. 
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3.5.2. Episodic Memory Latent Variable, Measurement Invariance, and Growth Model 

 Foundational statistical analyses included confirmatory factor analysis and latent growth 

modeling. Model fit for all analyses was determined using the following standard indices: (a) 

chi-square test of model fit (χ
2
) for which a good fit would produce a non-significant outcome (p 

> 0.05), indicating that the data are not significantly different from the estimates associated with 

the model, (b) Akaike Information Criterion (AIC) for which better fit is associated with a lower 

value, (c) Bayesian Information Criterion (BIC; which is the sample-size adjusted value of AIC 

and is defined as -2logL + plogn [where p is the number of parameters and n is the sample size]), 

lower values imply better model fit, (d) root mean square error of approximation (RMSEA) for 

which a value of ≤ 0.05 is deemed good fit and ≤ 0.08 is deemed adequate fit, (e) comparative fit 

index (CFI) for which a value of ≥ 0.95 is deemed good fit and ≥ 0.90 is deemed adequate fit, 

and (f) standardized root mean square residual (SRMR), for which good fit is judged by a value 

of ≤ 0.08 (Kline, 2011; Little, 2013).  

 For these foundational analyses, we used Mplus 7.4 (Muthén & Muthén, 1998-2012). We 

first conducted confirmatory factor analysis. We tested a one-factor latent variable reflecting 

contributions from the three EM manifest indicators. We then tested longitudinal (three-wave) 

measurement invariance, including: (a) configural invariance (the same indicator variables load 

onto the latent variable at each time point), (b) metric invariance (factor loadings are constrained 

as equal for each latent variable to indicate that it is measuring the same construct), (c) scalar 

invariance (indicator intercepts are constrained to be equal which allows mean differences to be 

evident at the latent level), and (d) residual invariance (indicator intercepts are constrained to be 

equal to account for error variability so group differences are based on common variability) 

(Little, 2013). We estimated EM factor scores in Mplus and used them in subsequent latent 
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growth models. We used multiple imputations to estimate any missing EM values at all three 

waves. Specifically, we ran models with 50 datasets and pooled parameter sets across them. 

Mplus robustly produces estimates of missing data using maximum likelihood methods (Terrera 

et al., 2010).   

 To examine change patterns for the EM latent variable we used latent growth modelling. 

We centered age at 75 years (the approximate mean of the 40-year span of data) and used age as 

the metric of time. Using age in this manner accounted for the variability associated with age as 

if it were a covariate. Our combined EM performances across multiple cohorts of longitudinal 

participants produced an accelerated longitudinal design with a 40-year band of aging. We 

established the best fitting model by testing, in sequence: (a) a fixed intercept model (assumes no 

inter- or intra-individual variation), (b) a random intercept model (assumes no intraindividual 

change but models interindividual variability), (c) a random intercept fixed slope model (allows 

interindividual variation in level, but assumes all individuals change at the same rate, and (d) 

random intercept random slope model (allows interindividual variation in initial level and change 

(Singer & Willett, 2003) 

3.5.3. Growth Mixture Modelling 

 Conventional growth modelling assumes that all participants have the same expected 

trajectory with random individual variation across intercept and slope. Group-based trajectory 

models employ multiple classes (by introducing a categorical latent variable C), each with their 

own trajectory, to capture variation within a sample (Kreuter & Muthén, 2008). In other words, 

group-based modelling is a person-centered technique that allows for the post-hoc parsing of 

individual trajectories based on similarities over time due to the underlying assumption that each 

individual belongs to a latent class (Leoutsakos, Muthen, Breitner, & Lyketsos, 2012; Ram & 
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Grimm, 2009). We considered two main types. Latent class growth analysis (LCGA) and Growth 

Mixture Modelling (GMM). LCGA models assume variation across individuals is explained by 

group membership (which have different developmental pathways) such that there is zero within-

class variance in intercept or slope. Fixing the intercepts and growth terms to zero in this way 

allows for fast and clear identification of classes. GMM also identifies sub-groups of participants 

but allows for the intercept and slopes to have random effects (i.e., non-zero variances) (Kreuter 

& Muthén, 2008). If all the variances in a GMM model are constrained to zero, the results are the 

same as that of a LCGA model. Therefore, LCGA is a special (i.e., fully constrained) case of 

GMM. In both instances, each participant is assigned an estimated probability of belonging to 

each specified class. Generally, analysts start with LCGA models then move to GMM to 

determine the best-fitting multiple (or single) trajectory model (Jung & Wickrama, 2008). See 

Figure 3.1 for a comparison of LCGA and GMM path diagrams (Feldman, Masyn, & Conger, 

2009). 

 We systematically tested a series of LCGA and GMM models to determine which model 

optimally identified subgroups (i.e., phenotypes) of older adults based on their baseline EM 

performance and longitudinal trajectory. Wave was not used as the metric of longitudinal 

change; instead, age was used centered at 75 years (McFall et al., 2016; Terrera et al., 2010). 

Using age in this manner allowed us to account for variability associated with age in a similar 

manner to being a covariate in the model. We first compared fully constrained, linear 2- and 3-

class LCGA models with the most parsimonious one-class model (with and without education as 

a covariate). We then tested 1- to 3-class GMM models for which education was a covariate 

(affecting class membership) in all models. For each GMM model, we tested: (a) freed intercept 

variances, (b) freed slope variances, and (c) freed intercept and slope variances. For both LCGA 
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and GMM, quadratic models had significantly worse fit than the linear models and demonstrated 

convergence problems which is typical with only three waves of data. As such, we did not report 

the quadratic model statistics and will not discuss them further.  

 Mplus incorporates random starts to avoid problems, such as convergence issues or 

hitting local maxima, which are associated with LCGA and GMM models. To ensure the 

solution was not local, we replicated the maximum for multiple random starts. We used 100 

random starting values with 10 final optimizations. If the model did not replicate the 

loglikelihood, we increased to 500 random starting values and 20 final optimizations, as 

recommended (Jung & Wickrama, 2008). We did not consider models that did not replicate their 

loglikelihood after increasing the number of random starting values. We confirmed each final, 

best-fitting model by replicating the results with the outputted optimizations.  

Model Assessment and Selection 

 Conventional chi-square based fit indices (e.g., CFI, RMSEA) used to assess growth 

model fit are not available when testing more than one latent class (as there is not a single 

covariance matrix to fit the data) (Wang & Bodner, 2007). Instead, we used standard LCGA and 

GMM procedures to assess model fit (Hayden et al., 2011; Jung & Wickrama, 2008; Nylund, 

Asparouhob, & Muthén, 2007; Pietrzak et al., 2015; Ram & Grimm, 2009) which will now be 

discussed. 

 Comparative fit. We report AIC and BIC which account for model loglikelihood and 

model complexity. Although we report both values, BIC performs better and more consistently 

than AIC (and it penalizes more for model complexity) so we primarily used it for model 

comparison (Kreuter & Muthén, 2008). The BIC is also preferred over other model statistics that 

are sensitive to sample size (which can lead to interpretation bias) (Hox & Bechger, 2007). A 
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lower value indicated better model fit. We also report -2 loglikelihood (-2LL), which is -2 x the 

loglikelihood of the restricted model minus the loglikelihood of the unrestricted model. Again, 

lower values indicate better model fit. 

 Entropy. Entropy measures the precision of classification—higher entropy indicates 

clearer class separation. In other words, entropy indicates how well group membership can be 

predicted using the observed data. Values ranges from 0 to 1. Although not a measure of model 

fit or intended for model selection (Ramaswamy, Desarbo, Reibstein, & Robinson, 1993), 

extremely low values indicate that the model may too poor to distinguish homogenous groups of 

participants. There are no set cut-off criteria for entropy, however values of around 0.80 or 

higher are preferred. Entropy values > 0.6 represent at least 80% correct assignment of 

participants (Lubke & Muthén, 2007) and indicate the model has reasonable classification of 

participants into their classes (Lenehan et al., 2015) 

  Proportion. One important consideration when determining the best mixture model is 

that there should be no less than 1% of the sample in a class (Jung & Wickrama, 2008). In other 

words, LCGA or GMM models that determine a class with a proportion less than 0.010 should 

be discarded in favor of a different model. Because we performed additional analyses with the 

classes obtained, we did not consider models with a latent class that included a proportion of < 

10% of subjects (Uher et al., 2010). 

 Probability. High posterior probabilities (i.e., near 1.00) are ideal. 

 Convergence. Models that did not converge, even after increasing the number of random 

starts (which suggests the model’s parameter estimates are untrustworthy), were not considered 

further. 
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 Plots. Visual inspection of graphical model fit and classes aids in the judgement of model 

fit and class separation (e.g., do the results make theoretical sense?) and should be considered in 

terms of theory and interpretability (Feldman et al., 2009; Kok et al., 2015). We created spaghetti 

plots for the classes identified.  

3.5.4. One-way Analysis of Variance and Chi-Square Tests 

 We employed multiple one-way analysis of variance (ANOVA) tests using IBM SPSS 23 

(IBMCorp., 2015). The purpose of these analyses was to provide a baseline comparison in two 

cases. The first case was to determine if differences in baseline factors exist between females and 

males. The second case was to compare risk factor values between (a) females resilient and non-

resilient to the APOE ɛ4 allele, (b) males resilient and non-resilient to the APOE ɛ4 allele, (c) 

females resilient and non-resilient to the CLU CC genotype, (d) males resilient and non-resilient 

to the CLU CC genotype, (e) females resilient and non-resilient to a high GRS, and (f) males 

resilient and non-resilient to a high GRS. The independent variable (e.g., resilience status) was a 

between-subjects factor with two levels (e.g., resilient versus non-resilient). The dependent 

variable was a characteristic from each domain. For categorical variables, we used chi-square 

(χ
2
) tests. P-values were not reported for χ

2
-tests in which the expected cell count was too low 

(i.e., < 5). For all continuous variables, outcomes that were more than 3 SD above or below the 

mean were considered outliers and were removed before ANOVA tests. We emphasize that these 

tests are not the main focus of this study. As such, ANOVA and χ
2
-tests results are not described 

or discussed in the subsequent sections of this thesis. We report means and standard deviations 

(or percentages, where applicable) for each factor within each group to enhance interpretability 

of the remaining analyses. 
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3.5.5. Random Forest Analysis 

 To determine which of the 22 factors were the most important predictors of memory 

resilience, we used Random Forest Analysis (RFA)—a recursive partitioning multivariate data 

exploration technique with robust ability to cope with large numbers of predictor variables 

(Breiman, 1996, 2001; Strobl et al., 2009). RFA is based on the assembly of a set of 

classification and regression trees (CART). CART utilizes a nonparametric regression approach 

wherein a predictor value that most effectively partitions the data into two distinct groups is used 

at each split (Kuhn & Johnson, 2013). Each tree is independent and composed of a bootstrap 

sample of random data and predictor variables. For each predictor, the tree finds the distinct 

value that partitions the data into two groups (minimizing the overall sum of squares). At each 

new node the predictor most strongly associated with the outcome is selected for the next split. 

Thus, as more predictor variables are used in the tree (recursive partitioning), each split results in 

nodes that are more homogeneous and distinct from each other (an example is presented in 

Figure 3.2). CART can handle both categorical and continuous predictor variables—even if they 

are skewed, sparse, or contain missing values (Kuhn & Johnson, 2013). Therefore, data pre-

processing is minimal.  

 However, single trees demonstrate instability in classification and poor predictive power. 

By combining an ensemble of trees (to create a “forest”), prediction variation is substantially 

reduced. RFA simultaneously processes large number of variables through bootstrap aggregation 

of single trees to combine the predictions of many trees. This procedure (a) improves model 

stability, (b) improves prediction accuracy, (c) reduces bias, and (d) negates risk of overfitting 

(Strobl et al., 2009). Notably, because each tree is created from an arbitrary selection of 

predictors and participants, there is considerable randomness in the tree construction process 
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which (a) reduces correlation among predictors and trees (Kuhn & Johnson, 2013) and (b) can 

give high importance scores to variables involved in complex interactions that would have 

otherwise gone unnoticed (Strobl et al., 2009). RFA is suitable for (a) datasets with a large 

number of predictors even when the sample size is relatively small in comparison (e.g., when 

logistic regression would not be possible) and (b) testing a number of predictors that may be 

correlated (Strobl, Boulesteix, Zeileis, & Hothorn, 2007). RFA robustly adapts to sparsity; that 

is, rate of convergence in RFA depends on the number of strong features, not on how many noise 

variables are present (Biau, 2012). 

 Further diversity is introduced to RFA models by specifying (a) mtry, or the number of 

randomly selected predictor variables used to create each tree and (b) ntree, or the overall 

number of trees. Restricting the number of predictor variables used in each tree can reveal 

important variables that would have otherwise been overshadowed by a stronger competitor. By 

combining the predictions of all the individual trees, RFA provides a ranked order of variable 

importance (Strobl et al., 2009). Ntree values are recommend to start at 1000 but can be 

increased if it improves the area under the receiver operating characteristic curve (C-statistic) as 

RFA is protected from over-fitting (Kuhn & Johnson, 2013). Generally, mtry is set at 

√# 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠 (Genuer, Poggi, & Tuleau-Malot, 2010).  

 RFA produces an internal estimate of its predictive performance. Misclassification rates 

(area under the receiver operating curve) are assessed with cross-validation (out-of-bag [OOB] 

error rate). Briefly, a random two thirds of the sample is used to construct a tree with a random 

sample of predictors. The outcome of the remaining one third of the sample (OOB) is predicted 

using the tree to determine the misclassification rate (Kuhn & Johnson, 2013). The OOB error 

for that specific tree and variable importance for each factor in the tree are aggregated across all 
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trees in the model to determine the overall model OOB error rate (i.e., percentage of 

misclassification) and overall variable importance score for each factor. 

 We conducted RFA using R 3.2.5, a free software environment and programming 

language for statistical computing (R Development Core Team, 2015). User-created packages 

extend the usability of R to include specialized statistical techniques, tools, or graphical devices. 

Before RFA, we enhanced model performance with two R packages. Although missing predictor 

data were minimal (< 1%), we imputed missing values using the missForest package (Stekhoven 

& Bühlmann, 2012; Waljee et al., 2013). We also balanced the datasets using the Synthetic 

Minority Over-sampling Technique (SMOTE) operation in the DMwR package (Chawla, 

Bowyer, Hall, & Kegelmeyer, 2002; Torgo, 2010). SMOTE over-samples the minority class (by 

introducing synthetic examples based on k-nearest neighbor classification and bootstrapping) 

and down-samples the majority class, if required. Three main parameters exist for the SMOTE 

function in the DMwR package: k-nearest neighbor, perc.under (percentage of under-sampling), 

and perc.over (percentage of over-sampling). In all SMOTE calculations, the k value was set to 

the default value of 5. We set our SMOTE controls to obtain balanced datasets with minimal loss 

of the majority class (see Table 3.3).  

 To perform RFA (i.e., determine which factors were the best predictors of EM 

resilience), we installed and used the “Party” package (Hothorn, Buehlmann, Dudoit, Molinaro, 

& Van Der Laan, 2006). Each forest was composed of ntree = 5000 trees (which is sufficient for 

good model stability). At each potential split we evaluated a random sample of mtry = 5 

predictors (the square root of the number of predictors rounded up to the nearest integer value) 

(Guo, Graber, McBurney, & Balasubramanian, 2010). Of note, when predictors vary in scale of 

measurement and number of categories, RFA may favor variables with many possible cut points 
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(e.g., continuous variables are favored over categorical). However the RFA cforest function in 

the Party package uses an adequate resampling scheme to negate that risk (Kuhn & Johnson, 

2013). Categorical variables with too few cases in the minority cell (i.e., < 10%) for each sex x 

genetic risk group were eliminated for a specific analysis (n=9). The nine cases included: 

diabetes status for female APOE ɛ4 carriers and females with a high GRS; arthritis medication 

for all three male genetic risk groups; head injury for male ɛ4 carriers and males and females 

with a high GRS; and alcohol use for male CLU C homozygotes.  

 Factors were ranked by the advanced variable importance measure permutation accuracy 

importance, which reflects the relative strength of each variable in predicting the outcome (i.e., 

resilience or non-resilience). Briefly, each factor used to construct the tree is permuted and the 

OOB error rate is recomputed. The permuted variable’s OOB (prediction accuracy) is compared 

to the original OOB error. A large difference in prediction accuracy would mean the variable is 

important whereas a small difference in prediction accuracy following permutation would mean 

the variable is unimportant. Predictors are considered unimportant and can be excluded from 

further exploration if they obtain an importance value that is (a) negative, (b) zero, or (c) a small 

positive value within the same range as the negative values. Strobl and colleagues (2009) suggest 

that absolute values of importance variables not be compared, and instead urge readers to rely on 

a descriptive ranking of the predictor variables. As has been done previously (Kaup et al., 2015), 

we used these criteria for considering a variable to be an important predictor of resilience.  
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Table 3.1. Study sample demographic and retention data by wave and sex. 

 Wave 1 Wave 2 Wave 3 W1-W2 W2-W3 

Females   

N Sample 1 

N Sample 2 

N Sample 3 

Age 

Education 

42 

111 

273 

70.05 (8.91) 

14.85 (2.88) 

35 

86 

228 

74.24 (8.77) 

15.13 (2.87) 

0 

0 

207 

74.59 (7.38) 

15.15 (2.98) 

83.3% 

77.5% 

83.5% 

- 

- 

90.8% 

Males   

N Sample 1 

N Sample 2 

N Sample 3 

Age 

Education 

17 

71 

128 

72.01 (8.13) 

15.94 (3.00) 

14 

58 

108 

76.24 (7.97) 

15.84 (3.20) 

0 

0 

97 

76.65 (7.46) 

15.93 (3.26) 

82.4% 

81.7% 

84.3% 

- 

- 

89.8% 

Note.  Age and education, in years, are presented as Mean (Standard Deviation). 

Abbreviations: W1-W2, Wave 1 to Wave 2; W2-W3, Wave 2 to Wave 3; N, sample size. 

 

 

 

 

 

 

 

 

 

Table 3.2. Observed genotypic frequencies compared to 

expected genotypic frequencies based on Hardy-Weinberg 

equilibrium analyses. 

Gene, SNP Genotype Expected n Observed n 

APOE 

rs429358; 

rs7412 

ɛ2ɛ2, ɛ2ɛ3, ɛ3ɛ3 

ɛ2ɛ4, ɛ3ɛ4 

ɛ4ɛ4 

465.2 

162.6 

14.2 

463 

167 

12 

CLU 

rs11136000 

CC 

CT 

TT 

220.6 

310.9 

109.6 

216 

320 

105 

Note. Abbreviations: SNP, single nucleotide polymorphism; 

APOE, Apolipoprotein E; CLU, Clusterin; ɛ2, epsilon 2 allele; 

ɛ3, epsilon 3 allele; ɛ4, epsilon 4 allele; C, Cytosine; T, Thymine. 
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Table 3.3. Synthetic Minority Oversampling Technique (SMOTE) ratios employed in order to 

balance sample sizes prior to random forest analysis. 

 APOE ɛ4 Carriers CLU C Homozygotes High GRS 

 Female Male Female Male Female Male 

Unbalanced Model 

   N Resilient 

   N Non-resilient 

   Model C-statistic 

Balanced Model 

  perc.over:perc.under 

   N Resilient 

   N Non-resilient 

   Model C-statistic 

 

76 

43 

0.73 

 

80:225 

76 

77 

0.82 

 

34 

26 

0.72 

 

25:550 

33 

32 

0.78 

 

112 

41 

0.78 

 

200:137 

112 

123 

0.91 

 

24 

39 

0.69 

 

50:300 

36 

36 

0.77 

 

68 

31 

0.70 

 

100:220 

62 

68 

0.80 

 

27 

22 

0.68 

 

40:340 

27 

30 

0.78 

Note.  Abbreviations: APOE, Apolipoprotein E; CLU, Clusterin; ɛ4, epsilon 4 allele; C, 

Cytosine; GRS, genetic risk score; perc.over:perc.under, percentage of over-sampling and 

percentage of under-sampling; N, sample size; C-statistic, area under the receiver operating 

characteristic curve. 
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Figure 3.1. Path diagrams for growth mixture modeling and latent class growth analysis with a 

covariate (‘x’). From Feldman et al. (2009).  
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Figure 3.2. A hypothetical example of how a classification and regression tree (with mtry = 5) 

may look.  
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 Chapter 4 – Results  

4.1. Episodic Memory Latent Variable, Measurement Invariance, and Growth Model 

We performed confirmatory factor analysis for EM and determined that the single factor 

EM model fit the data well. We then conducted measurement invariance testing (Table 4.1). 

There was support for configural and metric invariance. Our test for scalar invariance resulted in 

significantly poorer model fit so we conducted tests of partial scalar invariance by freeing 

intercepts for each indicator in turn. Despite a significant decrease in model fit, we retained the 

partial scalar model given the pattern of good fit indices as has been done previously with this 

VLS sample (e.g., McFall et al., 2015). Our optimal model had the Word Recall indicator 

invariant and the RAVLT B1 and A6 indicators free to vary across time. Because we did not 

observe full scalar invariance, we did not test for invariance of residual variances. In sum, results 

from invariance testing showed that our model measured the same EM construct across time and 

the same indicator variables marked EM at each wave. Partial scalar invariance allowed us to 

compare latent variable means, but the manifest variables had some longitudinal mean 

differences outside latent differences. The results permit further analyses of the EM latent 

variable. 

To determine how EM changed across time, we tested latent growth models using the 

estimated factor scores and with age (centered at 75) as the metric of time. The EM factor score 

skewness at each wave ranged from -0.374 to -0.433 and kurtosis ranged from 0.059 to 0.250 

indicating that the data were approximately normally distributed (George & Mallery, 2010). The 

best fitting model was a random intercept, random slope latent growth model (Table 4.1).  We 

observed that individuals varied in performance at age 75 (b = 0.900, p = 0.000), exhibited 
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significant decrease in EM performance (M = -0.023 , p = 0.000), and showed variable patterns 

of decrease (b = 0.002, p = 0.000). 

4.2. Test Genetic Risk for Episodic Memory Decline  

 Before conducting our primary analyses, we determined whether APOE ɛ4 status, the 

CLU CC genotype, and a high GRS were risk factors for EM impairment and decline among 

females and males.  

For females, APOE risk status (ɛ4+ vs ɛ4-; n = 426) did not exhibit differential patterns in 

EM at age 75 (βi = -0.124 [0.105], p = 0.237) but did exhibit differential patterns in EM change 

(βs = -0.014 [0.006], p = 0.015). CLU genotype (CC vs TC and TT; n = 425) did not exhibit 

differential patterns in EM at age 75 (βi = 0.081 [0.105], p = 0.443) but exhibited differential 

patterns in EM change in the unexpected direction (βs = 0.013 [0.006], p = 0.047). GRS 

(continuous; based on ɛ4 and C as risk alleles; n = 425) did not exhibit differential patterns in 

EM at age 75 (βi = -0.015 [0.025], p = 0.534) or change in EM (βs = -0.002 [0.001], p = 0.271).  

For males, we observed no significant independent genotype or GRS association with 

EM performance or decline (APOE βi = -0.112 [0.133], p = 0.399, βs = -0.005 [0.009], p = 0.558; 

CLU βi = -0.111 [0.135], p = 0.411, βs = -0.014 [0.009], p = 0.123; GRS βi = -0.006 [0.026], p = 

0.814, βs = -0.001 [0.002], p = 0.789; all n = 216). 

4.3. Growth Mixture Modelling 

 Based on prior research (e.g., Zahodne et al., 2015) and our sample size restrictions, we 

tested one-, two-, and three-class LCGA and GMM models. Generally, more classes are needed 

to optimally characterize variation using LCGA (compared to GMM) given that individual 

differences are modeled by class membership only (Feldman et al., 2009). Therefore, we 

expected the best-fitting LCGA model to contain more classes than the best-fitting GMM model. 
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When comparing model fit, the model with the smallest BIC was preferred (Geiser, 2013). We 

used additional model fit statistics and considerations as necessary. 

Females (see Table 4.2). Of the LCGA models, the 3-class model with education as a 

covariate fit the data best (BIC = 1838.0). In most cases, the GMM models provided even better 

fit. The best-fitting GMM model was the 2-class model with estimated intercept variance (BIC = 

1347.5). Although the 2- and 3-class models with estimated intercept and slope variances fit the 

data better (BIC = 1322.7 and 1317.5, respectively), both resulted in a class with proportion < 

10% so they were not considered further. Finally, the 3-class model with estimated intercept 

variance had a better BIC (1317.0) than the 2-class model but the loglikelihood was not 

replicated and one class had a proportion < 10% so it was not considered further. 

Males (see Table 4.3). Of the LCGA models, the 3-class model with education as a 

covariate fit the data best (BIC = 852.5). In most cases, the GMM model provided even better fit. 

The best-fitting GMM model was the 2-class model with estimated intercept variance (BIC = 

654.3). Although both the 2- and 3-class models with estimated intercept and slope variances fit 

the data better (BIC = 647.0 and 645.1, respectively) both resulted in a class with proportion < 

10% so they were not considered further.  

 For both females and males, each two-class model consisted of a class of participants 

characterized by (a) higher baseline performance (level; MI) and stable trajectory (slope; MS) of 

EM scores (hereafter defined as “higher-performing”) and (b) lower baseline performance and 

declining trajectory of EM scores (hereafter defined as “lower-performing”). Higher-performing 

females had a MI = 0.599 (SD = 0.057) and MS = -0.003 (SD = 0.003); lower-performing females 

had a MI = -0.624 (SD = 0.0.072) and MS = -0.065 (SD = 0.005) (Table 4.4, Figure 4.1). Higher-

performing males had a MI = 0.077 (SD = 0.093) and MS = 0.010 (SD = 0.004); lower-
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performing males had a MI = -0.895 (SD = 0.094) and MS = -0.066 (SD 0.005) (Table 4.4, Figure 

4.2).   

4.4. Analysis of Variance and Chi-square Tests 

 Descriptive sex differences. Significant sex differences for level of performance or 

response were observed for multiple factors across all five risk domains (Table 4.5). Specifically, 

males: (a) were older (MF = 70.1, MM = 72.1, p = 0.005), (b) were more highly educated (MF = 

14.9, MM = 15.9, p = 0.000), (c) were more likely to be married (%F = 47.9, %M = 86.6, p = 

0.000) and/or living with someone (%F = 54.5, %M = 88.4, p = 0.000), (d) had higher pulse 

pressure (MF = 51.3, MM = 52.9, p = 0.049), (e) had greater peak expiratory flow (MF = 372.4, 

MM = 523.5, p = 0.000), (f) had stronger grip (MF = 24.2, MM = 39.4, p = 0.000), (g) were more 

likely to be taking cholesterol-lowering medication (%F = 10.1, %M = 16.7, p = 0.022), (h) had 

faster walking times (MF = 6.5, MM = 6.0, p = 0.000), (i) were more physically active (MF = 15.4, 

MM = 16.4, p = 0.030), (j) were more cognitively active (MF = 73.3, MM = 78.5, p = 0.000), and 

(k) had less social visits with family, friends, and neighbors (MF = 5.6, MM = 5.1, p = 0.000) than 

females. Approaching significance, males (a) were more likely to be diabetic (%F = 5.9, %M = 

10.2, p = 0.055) and (b) volunteered less often (MF = 3.8, MM = 3.2, p = 0.074) than females. 

4.5. Random Forest Analysis 

The sample sizes for each sex x genetic risk before and after SMOTE were presented in 

Table 3.3. As indicated, RFA model C-statistics improved for all models following SMOTE 

(showing good to very good classification performance: 0.77 - 0.91) and we proceeded to use the 

balanced models as recommended (Torgo, 2010). 
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Important Predictors of Resilience by Sex 

 Prediction analyses for APOE-based resilience groups: Memory trajectories for resilient 

and non-resilient females and males carrying an ɛ4 allele are presented in Figures 4.3-4.4. As can 

be seen in Figures 4.5-4.6, we observed that four predictors were common to males and females. 

The demographic variables age and education emerged within the top three overall most 

important predictors of resilience in both sexes. From the functional biomarker domain, GS was 

an important predictor of resilience. From the lifestyle domain, everyday novel cognitive activity 

was a top predictor of resilience for both sexes. Predictors of resilience specific to females arose 

from the demographic (i.e., living status and marital status), functional biomarker (i.e., PEF and 

PP), health (i.e., subjective health), mobility (i.e., timed turn and timed walk), and lifestyle (i.e., 

volunteering and social visits) domains. Males had one unique predictor of resilience from the 

health domain (i.e., CES-D score). For full results see Tables 4.6-4.7.   

Prediction analyses for CLU-based resilience groups: Memory trajectories for resilient 

and non-resilient female and male CLU C homozygotes are presented in Figures 4.7-4.8. As can 

be seen in Figures 4.9-4.10, we observed that six predictors were common to both males and 

females. The demographic variables age and education predicted resilience for both sexes. Both 

demographic factors were of high importance, with the exception of age in females which was 

lower in the predication hierarchy. One functional biomarker (GS) and three lifestyle 

characteristics (everyday cognitive activity, volunteering, and social visits) predicted resilience 

in both sexes. However, more participation in both social lifestyle activities predicted resilience 

in females whereas less participation predicted resilience in males. Predictors of resilience 

specific to females arose from the demographic (i.e., marital status and living status), functional 

biomarker (i.e., PP, PEF, and BMI), health (i.e., subjective health, and arthritis medication), 
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mobility (i.e., timed walk and timed turn), and lifestyle (i.e., current alcohol use) domains. Males 

had two unique predictors of resilience from the demographic (i.e., pet ownership) and health 

(i.e., CES-D score) domains. For full results see Tables 4.8-4.9. 

Prediction analyses for GRS-based resilience groups: Memory trajectories for resilient 

and non-resilient females and males with a high GRS are presented in Figures 4.11-4.12. As can 

be seen in Figures 4.13-4.14, we observed that five predictors were common to both males and 

females. The demographic variables age and education predicted resilience for both sexes and 

both were of high importance. Two functional biomarkers (i.e., GS, PEF) and one lifestyle factor 

(i.e., everyday novel cognitive activity) predicted resilience in both sexes. Predictors of resilience 

specific to females arose from the demographic (i.e., living and marital status), functional 

biomarker (i.e., PP, BMI), health (i.e., subjective health), mobility (i.e., timed walk and timed 

turn), and lifestyle (i.e., social visits, volunteering) domains. Males did not have any unique 

predictors of resilience. For full results see Tables 4.10-4.11. 

Generalizability of Predictor Patterns across Genetic Risk 

Among females, 18 (85.7%) of the 21 predictors tested in the APOE and CLU risk groups 

were genetically robust. Specifically, 13 factors were reported as important predictors of both 

APOE-, and CLU -based resilience and three factors were unimportant. The 13 important and 

genetically robust predictors arose from demographic (i.e., age, education, marital status, and 

living status), functional biomarker (i.e., PP, PEF, and grip strength), health (i.e., subjective 

health), mobility (i.e., turning time and walking time), and lifestyle (i.e., everyday cognitive 

activity, social visits, and volunteering) domains. Notably, the top predictors had different 

relative importance for APOE- versus CLU-based resilience. Three factors were only important 

predictors of resilience to the CLU CC genotype: lower BMI, taking arthritis medication, and 
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current alcohol use. All of the genetically robust predictors of resilience for females were 

matched in GRS-based resilience analyses. The relative importance of the predictors in GRS-

based analyses was most similar to that of predictors for APOE-based resilience. Of the 

predictors specific to CLU-based resilience, lower BMI also predicted resilience to a high GRS. 

See Figure 4.15 for a visual comparison of predictors by sex and genetic risk. 

Among males, 16 (84.2%) of the 19 predictors tested in the APOE and CLU risk groups 

were genetically robust. Specifically, five factors were reported as important predictors of 

APOE- and CLU-based resilience and 11 factors were unimportant. The important and 

genetically robust predictors arose from demographic (i.e., age and education), functional 

biomarker (i.e., grip strength), health (i.e., CES-D score) and lifestyle (i.e., everyday cognitive 

activity) domains. One demographic factor (i.e., pet ownership) and two lifestyle factors (i.e., 

less social visits and volunteering less often) predicted resilience to the CLU CC genotype only.  

The majority of the genetically robust predictors of resilience for males were matched in the 

GRS-based resilience analyses. However, higher CES-D score was not an important predictor of 

GRS-based resilience. Additionally, PEF emerged as an important predictor of resilience to a 

high GRS. See Figure 4.15 for a visual comparison of predictors by sex and genetic risk. 
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Table 4.1. Goodness of fit indexes for episodic memory models confirmatory factor analyses 

and latent growth models. 

Model AIC BIC Χ
2 

df p RMSEA CFI SRMR 

CFA for One Factor Model 

Configural  25963.5 26137.6 15.4 15 .421 .007 (.000-.038) 1.00 .014 

Metric  25978.6 26134.9 38.5 19 .005 .040 (.021-.058) .991 .049 

Scalar  26195.9 26325.3 267.8 25 <.001 .123 (.110-.137) .886 .106 

Partial Scalar
† 

 26064.5 26211.9 128.4 21 <.001 .089 (.075-.104) .950 .091 

Model AIC BIC -2LL D Δdf p 

Latent growth model 

Fixed Intercept 4198.9 4207.8 4194.9 - - - 

Random Intercept 2402.8 2416.2 2396.8 1798.1 1 <.001 

Random Intercept Fixed Slope 2255.5 2270.4 2244.9 151.9 1 <.001 

Random Intercept Random Slope* 2008.0 2034.8 1996.0 248.9 2 <.001 

Note. 
† 

REY B1 and A6 free to vary; * best fitting model. Abbreviations: AIC, Akaike 

information criteria; BIC, Bayesian information criteria; χ
2
, chi-square test of model fit; df, 

degrees of freedom for model fit; p, p-value; RMSEA, root mean square error of approximation; 

CFI, comparative fix index; SRMR, standardized root mean square residual; CFA, confirmatory 

factor analysis; -2LL, -2 log likelihood; D, difference statistic (using -2LL); Δdf, change in 

degrees of freedom. 
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Table 4.2. Goodness of fit indexes for one- to three-class episodic memory Latent Class Growth 

Analysis (LCGA) and Growth Mixture Modelling (GMM) for females. 

Model Class AIC BIC -2LL Entropy Prob. Prop. n 

LCGA: 1-Class,  

no covariate 

1 2532.2 2552.5 2522.2 - 1.00 1.00 426 

LCGA: 1-Class, 

education covariate  

1 2474.6 2503.0 2460.6 - 1.00 1.00 426 

LCGA: 2-Class,  

no covariate 

1 

2 

2104.3 2136.7 2111.3 0.765 0.937

0.915 

0.577 

0.423 

246 

180 

LCGA: 2-Class, 

education covariate 

1 

2 

2071.6 2116.2 2049.6 0.769 0.932 

0.930 

0.592 

0.408 

252 

174 

LCGA: 3-Class,  

no covariate 

1 

2 

3 

1806.4 1851.4 1784.8 0.858 0.945 

0.946 

0.922 

0.117 

0.392 

0.490 

50 

167 

209 

LCGA: 3-Class, 

education covariate  

1 

2 

3 

1777.1 1838.0 1747.1 0.852 0.923 

0.939 

0.935 

0.481 

0.399 

0.120 

205 

170 

51 

GMM: 1-Class, est. 

intercept variances 

1 1473.9 1490.2 1465.9 - 1.00 1.00 426 

GMM: 1-Class, est. slope 

variances 

1 2436.9 2453.2 2429.0 - 1.00 1.00 426 

GMM: 1-Class, est. 

intercept, slope variances 

1 1314.3 1338.6 1302.3 - 1.00 1.00 426 

GMM: 2-Class, est. 

intercept variances* 

1 

2 

1315.1 1347.4 1299.1 0.623 0.854 

0.902 

0.324 

0.676 

138 

288 

GMM: 2-Class, est. slope 

variances 

1 

2 

1973.1 2005.6 1957.1 0.736 0.918 

0.925 

0.399 

0.601 

170 

256 

GMM: 2-Class, est. 

intercept, slope variances 

1 

2 

1282.2 1322.7 1262.2 0.913 0.887 

0.983 

0.023 

0.977 

10 

416 

GMM: 3-Class, est. 

intercept variances
 ‡
 

1 

2 

3 

1268.3 1317.0 1244.3 0.729 0.882 

0.852 

0.900 

0.636 

0.347 

0.016 

271 

148 

7 

GMM: 3-Class, est. slope 

variances 

1 

2 

3 

1694.5 1743.2 1670.5 0.788 0.925 

0.877 

0.914 

0.120 

0.465 

0.415 

51 

198 

177 

GMM: 3-Class, est. 

intercept, slope variances 

1 

2 

3 

1260.7 

 

1317.5 1232.7 0.562 0.808 

0.801 

0.755 

0.502 

0.028 

0.469 

214 

12 

200 

Note. All models are specified with a linear growth function. All growth mixture models 

included education as a covariate. *
 
Best fitting model. 

‡
The best loglikelihood was not 

replicated, even after increasing the number of random starts. Abbreviations: AIC, Akaike 

information criteria; BIC, Bayesian information criteria; χ
2
, chi-square test of model fit; -2LL, -2 

log likelihood; Probability, probability of latent class membership; Proportion, proportion for the 

latent classes based on estimate model; n, sample size; est., estimated. 
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Table 4.3. Goodness of fit indexes for one- to three-class episodic memory Latent Class Growth 

Analysis (LCGA) and Growth Mixture Modelling (GMM) for males. 

Model Class AIC BIC -2LL Entropy Prob. Prop. n 

LCGA: 1-Class,  

no covariate 

1 1216.2 1233.1 1206.2 - 1.00 1.00 216 

LCGA: 1-Class, 

education covariate  

1 1187.6 1211.2 1173.6 - 1.00 1.00 216 

LCGA: 2-Class,  

no covariate 

1 

2 

1012.7 1039.7 996.7 0.790 0.932 

0.938 

0.435 

0.565 

94 

122 

LCGA: 2-Class, 

education covariate 

1 

2 

987.4 1024.6 965.4 0.787 0.943 

0.930 

0.556 

0.444 

120 

96 

LCGA: 3-Class,  

no covariate 

1 

2 

3 

873.0 910.2 851.0 0.844 0.923 

0.939 

0.908 

0.518 

0.338 

0.144 

112 

73 

31 

LCGA: 3-Class, 

education covariate  

1 

2 

3 

801.8 852.5 771.9 0.893 0.946 

0.952 

0.956 

0.255 

0.486 

0.259 

55 

105 

56 

GMM: 1-Class, est. 

intercept variances 

1 719.9 733.4 711.9 - 1.00 1.00 216 

GMM: 1-Class, est. slope 

variances 

1 1174.3 1187.8 1166.3 - 1.00 1.00 216 

GMM: 1-Class, est. 

intercept, slope variances  

1 637.5 657.7 625.5 - 1.00 1.00 216 

GMM: 2-Class, est. 

intercept variances* 

1 

2 

627.3 654.3 611.3 0.615 0.871 

0.887 

0.528 

0.472 

114 

102 

GMM: 2-Class, est. slope 

variances 

1 

2 

989.8 1016.8 973.8 0.707 0.903 

0.924 

0.481 

0.519 

104 

112 

GMM: 2-Class, est. 

intercept, slope variances 

1 

2 

613.3 647.0 593.3 0.973 0.817 

0.997 

0.023 

0.977 

5 

211 

GMM: 3-Class, est. 

intercept variances
 ‡
 

1 

2 

3 

626.5 667.0 602.5 0.571 0.777 

0.850 

0.744 

0.097 

0.477 

0.426 

21 

103 

92 

GMM: 3-Class, est. slope 

variances 

1 

2 

3 

846.6 887.1 822.6 0.824 0.917 

0.925 

0.929 

0.560 

0.120 

0.319 

121 

26 

69 

GMM: 3-Class, est. 

intercept, slope variances 

1 

2 

3 

597.9 645.1 569.9 0.683 0.857 

0.829 

0.883 

0.569 

0.407 

0.023 

123 

88 

5 

Note. All models are specified with a linear growth function. All growth mixture models 

included education as a covariate. *
 
Best fitting model. 

‡
The best loglikelihood was not 

replicated, even after increasing the number of random starts. Abbreviations: AIC, Akaike 

information criteria; BIC, Bayesian information criteria; χ
2
, chi-square test of model fit; -2LL, -2 

log likelihood; Probability, probability of latent class membership; Proportion, proportion for the 

latent classes based on estimate model; n, sample size; est., estimated. 
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Table 4.4. Baseline characteristics for higher- and lower-performing females and males. 

Characteristic Higher-

Performing 

Females 

(n = 288) 

Higher-

Performing 

Males 

(n = 114) 

Lower-

Performing 

Females 

(n = 138) 

Lower-

Performing 

Males 

(n = 102) 

EM Performance 

  Intercept   

  Slope 

Demographics 
  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pet Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health 

  Subjective Health* 

  Depression (CES-D) 

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility 

  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 

  Alcohol Use (%) 

  Current Nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

Genetics 

  APOE ɛ4+ n (%) 

  CLU CC n (%) 

 

0.599 (0.057) 

-0.003 (0.003) 

 

68.02 (8.75) 

15.57 (2.73) 

49.7 

57.3 

29.5 

 

49.94 (9.75) 

378.64 (79.59) 

24.79 (4.95) 

26.69 (4.32) 

 

1.79 (0.71) 

8.77 (5.16) 

5.2 

9.1 

12.2 

11.8 

 

2.73 (0.93) 

6.27 (1.31) 

 

88.5 

95.8 

15.82 (4.57) 

76.23 (15.84) 

5.68 (1.40) 

3.81 (2.66) 

 

76 (26.4) 

112 (38.9) 

 

0.077 (0.093) 

0.010 (0.004) 

 

69.75 (8.05) 

17.21 (2.67) 

86.0 

88.6 

35.1 

 

51.55 (9.49) 

540.32 (101.45) 

41.21 (7.41) 

26.88 (3.14) 

 

1.72 (0.69) 

7.42 (3.82) 

6.1 

18.4 

7.0 

10.5 

 

2.64 (0.80) 

5.89 (1.06) 

 

93.9 

96.4 

17.17 (5.75) 

84.19 (14.15) 

5.08 (1.57) 

3.14 (2.53) 

 

34 (29.8) 

24 (21.1) 

 

-0.624 (0.072) 

-0.065 (0.005) 

 

74.29 (7.69) 

13.36 (2.62) 

44.2 

48.6 

25.5 

 

54.16 (9.30) 

358.81 (86.45) 

23.06 (4.79) 

26.90 (4.32) 

 

1.95 (0.80) 

9.43 (5.76) 

7.2 

12.3 

13.0 

12.3 

 

2.99 (0.92) 

6.88 (1.57) 

 

84.8 

96.4 

14.55 (4.65) 

67.12 (16.51) 

5.40 (1.44) 

3.91 (8.60) 

 

43 (31.1) 

41 (29.9) 

 

-0.895 (0.094) 

-0.066 (0.005) 

 

74.73 (7.43) 

14.53 (2.71) 

87.3 

88.2 

25.5 

 

54.49 (9.81) 

504.54 (110.29) 

37.30 (7.39) 

27.05 (3.56) 

 

1.77 (0.70) 

8.37 (4.74) 

14.7 

14.7 

10.3 

10.9 

 

2.88 (0.82) 

6.25 (1.21) 

 

85.3 

94.1 

15.44 (6.16) 

72.16 (18.14) 

5.15 (1.42) 

3.16 (2.86) 

 

26 (25.5) 

39 (38.2) 

Note.    Results presented as Mean (Standard Deviation) unless otherwise stated. 
†
 Self-reported 

health relative to perfect based on 1 = very good to 5 = very poor. Abbreviations: n, sample size; 

APOE, Apolipoprotein E; CLU, Clusterin; ɛ4+, carrying at least one epsilon 4 allele; C, 

Cytosine. 
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Table 4.5. Differences in characteristics between female and male participants. 

Factor Females 

(n = 426) 

Males 

(n = 216) 

p-value
†
 

Demographics 

  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pet Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health 

  Subjective Health* 

  Depression (CES-D) 

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility 

  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 

  Alcohol Use (%) 

  Current Nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

Genetic Risk  

  APOE ɛ4+ (%) 

  CLU CC (%) 

 

70.05 (8.91) 

14.85 (2.88) 

47.9 

54.5 

28.4 

 

51.29 (9.80) 

372.42 (82.21) 

24.24 (4.96) 

26.76 (4.32) 

 

1.84 (0.75) 

8.89 (5.36) 

5.9 

10.1 

12.8 

12.0 

 

2.81 (0.93) 

6.47 (1.42) 

 

87.3 

96.0 

15.41 (4.63) 

73.27 (16.60) 

5.59 (1.42) 

3.84 (5.35) 

 

27.9 

36.0 

 

72.10 (8.13) 

15.94 (3.00) 

86.6 

88.4 

30.6 

 

52.92 (9.73) 

523.54 (106.94) 

39.35 (7.64) 

26.96 (3.34) 

 

1.75 (0.69) 

7.86 (4.30) 

10.2 

16.7 

9.1 

10.7 

 

2.76 (0.81) 

6.01 (1.14) 

 

89.8 

95.4 

16.35 (6.00) 

78.48 (17.22) 

5.11 (1.50) 

3.15 (2.68) 

 

29.8 

29.2 

 

0.005 

0.000 

0.000 

0.000 

0.581 

 

0.049 

0.000 

0.000 

0.551 

 

0.103 

0.157 

0.055 

0.022 

0.224 

0.696 

 

0.434 

0.000 

 

0.438 

0.683 

0.030 

0.000 

0.000 

0.074 

 

- 

- 

Note.    Results presented as Mean (Standard Deviation) unless otherwise 

stated. * Self-reported health relative to perfect based on 1 = very good to 5 = 

very poor. 
† 

P-values were obtained with one-way analyses of variance and 

χ
2
-tests to compare female and male participants. For all continuous 

variables, values more than 3 SD above or below the mean were removed as 

outliers. P-values were not reported for χ
2
-tests when the expected cell count 

was < 5. Abbreviations: n, sample size; APOE, Apolipoprotein E; CLU, 

Clusterin; ɛ4+, carrying at least one epsilon 4 allele; C, Cytosine. 
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Table 4.6. Baseline characteristics for resilient and non-resilient female 

APOE ɛ4 carriers.  

Factor Resilient 

(n = 72) 
Non-resilient 

(n = 47) 
p-

value
†
 

Demographics 

  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pet Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health 

  Subjective Health* 

  Depression (CES-D) 

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility 

  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 
  Alcohol Use (%) 

  Current Nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

 

67.00 (8.09) 

15.43 (2.70) 

52.6 

56.6 

28.9 

 

50.17 (10.03) 

402.16 (62.45) 

25.37 (4.60) 

26.08 (4.07) 

 

1.63 (0.67) 

8.36 (4.43) 

2.6 

13.2 

19.4 

11.8 

 

2.60 (0.87) 

6.11 (1.23) 

 

86.8 

96.1 

15.97 (4.19) 

77.24 (13.41) 

5.71 (1.43) 

3.83 (2.63) 

 

74.21 (8.05) 

14.35 (2.21) 

37.2 

46.5 

32.6 

 

53.87 (10.41) 

369.88 (83.37) 

23.52 (4.77) 

26.26 (4.05) 

 

1.81 (0.82) 

10.17 (5.99) 

2.3 

16.3 

11.6 

7.0 

 

2.97 (0.73) 

6.89 (1.46) 

 

86.0 

95.3 

15.33 (4.77) 

69.44 (17.48) 

5.33 (1.46) 

3.37 (2.50) 

 

0.000 

0.027 

0.093 

0.161 

0.490 

 

0.060 

0.021 

0.044 

0.818 

 

0.785 

0.064 

NA 

0.416 

0.204 

NA 

 

0.021 

0.003 

 

0.555 

NA 

0.444 

0.008 

0.170 

0.359 

Note.    Results presented as Mean (Standard Deviation) unless otherwise 

stated. * Self-reported health relative to perfect based on 1 = very good to 5 

= very poor.
 †

 P-values were obtained with one-way analyses of variance 

and χ
2
-tests to compare resilient and non-resilient participants. For all 

continuous variables, values more than 3 SD above or below the mean were 

removed as outliers. P-values were not reported for χ
2
-tests when the 

expected cell count was < 5. Abbreviations: n, sample size; NA, not 

available, cell count too small. 
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Table 4.7. Baseline characteristics for resilient and non-resilient male APOE ɛ4 

carriers.  

Factor Resilient 

(n = 34) 
Non-resilient 

(n = 26) 

p-value
†
 

Demographics 

  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pets Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health 

  Subjective Health* 

  Depression (CES-D)  

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility 

  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 
  Alcohol Use (%) 

  Current nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

 

67.59 (6.66) 

17.85 (2.68) 

79.4 

85.3 

35.3 

 

51.43 (10.44) 

542.06 (118.28) 

41.11 (7.12) 

27.13 (2.96) 

 

1.56 (0.61) 

6.88 (3.25) 

8.8 

8.8 

8.8 

5.9 

 

2.67 (0.86) 

5.97 (1.04) 

 

94.1 

94.1 

17.71 (5.93) 

86.18 (11.97) 

5.03 (1.59) 

2.71 (2.46) 

 

74.12 (6.38) 

14.08 (2.94) 

96.2 

96.2 

38.5 

 

55.24 (10.18) 

507.80 (110.06) 

36.56 (6.94) 

26.75 (2.57) 

 

1.65 (0.80) 

9.15 (5.30) 

11.5 

15.4 

7.7 

3.8 

 

2.88 (0.91) 

6.31 (1.12) 

 

76.9 

92.3 

15.96 (5.93) 

74.04 (19.98) 

5.42 (1.42) 

2.46 (2.96) 

 

0.000 

0.000 

NA 

NA 

0.506 

 

0.162 

0.262 

0.019 

0.612 

 

0.603 

0.047 

NA 

NA 

NA 

NA 

 

0.356 

0.222 

 

NA 

NA 

0.264 

0.005 

0.323 

0.728 

Note.    Results presented as Mean (Standard Deviation) unless otherwise stated. 

* Self-reported health relative to perfect based on 1 = very good to 5 = very poor. 
† 

P-values were obtained with one-way analyses of variance and χ
2
-tests to 

compare resilient and non-resilient participants. For all continuous variables, 

values more than 3 SD above or below the mean were removed as outliers. P-

values were not reported for χ
2
-tests when the expected cell count was < 5. NA = 

not available, cell count too small. Abbreviations: n, sample size; NA, not 

available, cell count too small. 
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Table 4.8. Baseline characteristics for resilient and non-resilient female CLU C 

homozygotes. 

Factor Resilient 

(n = 112) 
Non-resilient 

(n = 41) 

p-value
†
 

Demographics 

  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pet Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health  
  Subjective Health* 

  Depression (CES-D) 

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility  

  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 
  Alcohol Use (%) 

  Current Nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

 

68.68 (8.86) 

15.91 (2.81) 

47.3 

53.2 

29.5 

 

50.79 (9.69) 

372.80 (80.80) 

25.08 (5.18) 

26.61 (4.16) 

 

1.82 (0.67) 

8.46 (5.21) 

4.5 

8.0 

9.8 

14.3 

 

2.68 (0.84) 

6.28 (1.29) 

 

88.4 

97.3 

15.88 (4.38) 

76.18 (15.81) 

5.92 (1.31) 

3.71 (2.63) 

 

73.34 (7.60) 

12.92 (2.39) 

41.5 

43.9 

19.5 

 

55.95 (8.57) 

363.65 (76.69) 

21.74 (4.98) 

27.22 (4.13) 

 

2.22 (0.85) 

9.48 (6.11) 

12.2 

14.6 

17.1 

9.8 

 

3.06 (0.89) 

7.06 (1.71) 

 

70.7 

97.6 

14.49 (4.84) 

67.00 (16.04) 

5.24 (1.36) 

3.54 (2.68) 

 

0.003 

0.000 

0.323 

0.203 

0.171 

 

0.004 

0.546 

0.001 

0.429 

 

0.006 

0.312 

NA 

NA 

0.170 

0.593 

 

0.017 

0.004 

 

0.011 

NA 

0.092 

0.002 

0.006 

0.718 

Note.    Results presented as Mean (Standard Deviation) unless otherwise stated. 

* Self-reported health relative to perfect based on 1 = very good to 5 = very poor. 
† 

P-values were obtained with one-way analyses of variance and χ
2
-tests to 

compare resilient and non-resilient participants. For all continuous variables, 

values more than 3 SD above or below the mean were removed as outliers. P-

values were not reported for χ
2
-tests when the expected cell count was < 5. NA = 

not available, cell count too small. Abbreviations: n, sample size; NA, not 

available, cell count too small. 
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Table 4.9. Baseline characteristics for resilient and non-resilient male CLU C 

homozygotes. 

Factor Resilient 

(n = 24) 
Non-resilient 

(n = 39) 

p-value
†
 

Demographics 

  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pet Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health 
  Subjective Health* 

  Depression (CES-D) 

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility 
  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 
  Alcohol Use (%) 

  Current Nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

 

67.21 (7.44) 

16.50 (1.74) 

83.3 

87.0 

33.3 

 

48.20 (9.31) 

559.37 (115.68) 

43.81 (7.63) 

26.06 (3.07) 

 

1.58 (0.65) 

7.38 (2.41) 

8.3 

20.8 

5.6 

16.7 

 

2.74 (0.84) 

5.70 (1.18) 

 

95.8 

95.8 

15.21 (5.24) 

80.96 (11.96) 

4.42 (1.59) 

2.46 (2.50) 

 

75.44 (7.02) 

14.90 (2.78) 

87.2 

87.2 

20.5 

 

54.48 (10.02) 

519.23 (106.13) 

37.31 (6.56) 

27.03 (3.69) 

 

1.74 (0.64) 

10.32 (5.56) 

17.9 

17.9 

11.1 

10.3 

 

2.97 (0.86) 

6.21 (1.21) 

 

92.3 

92.3 

15.92 (5.54) 

77.89 (19.40) 

5.13 (1.45) 

3.56 (2.92) 

 

0.000 

0.014 

NA 

NA 

0.200  

 

0.020 

0.164 

0.001 

0.295 

 

0.341 

0.017 

0.251 

NA 

NA 

NA 

 

0.300 

0.106 

 

NA 

NA 

0.614 

0.490 

0.073 

0.129 

Note.    Results presented as Mean (Standard Deviation) unless otherwise stated. * 

Self-reported health relative to perfect based on 1 = very good to 5 = very poor. 
† 

P-

values were obtained with one-way analyses of variance and χ
2
-tests to compare 

resilient and non-resilient participants. For all continuous variables, values more 

than 3 SD above or below the mean were removed as outliers. P-values were not 

reported for χ
2
-tests when the expected cell count was < 5. NA = not available, cell 

count too small. Abbreviations: n, sample size; NA, not available, cell count too 

small. 
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Table 4.10. Baseline characteristics for resilient and non-resilient females with a 

high genetic risk score. 

Factor Resilient 

(n = 68) 
Non-resilient 

(n = 31) 

p-value
†
 

Demographics 

  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pet Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health  
  Subjective Health* 

  Depression (CES-D) 

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility  

  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 
  Alcohol Use (%) 

  Current Nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

 

67.22 (8.41) 

15.41 (2.75) 

50.0 

54.4 

27.9 

 

50.02 (10.16) 

402.16 (62.78) 

25.27 (4.57) 

25.53 (3.65) 

 

1.57 (0.63) 

8.57 (4.58) 

2.9 

13.2 

16.9 

7.4 

 

2.64 (0.89) 

6.15 (1.27) 

 

85.3 

95.6 

16.03 (4.33) 

76.96 (13.73) 

5.72 (1.44) 

3.78 (2.62) 

 

73.65 (8.28) 

14.26 (2.18) 

28.7 

38.7 

25.8 

 

54.28 (11.08) 

370.65 (85.54) 

23.53 (4.33) 

26.52 (4.16) 

 

1.90 (0.91) 

10.55 (6.12) 

3.2 

16.1 

9.7 

3.2 

 

3.07 (0.74) 

6.91 (1.57) 

 

80.6 

96.8 

15.29 (5.24) 

67.32 (15.35) 

5.26 (1.46) 

3.58 (2.41) 

 

0.001 

0.042 

0.244  

0.137  

0.551  

 

0.063 

0.043 

0.089 

0.241 

 

0.039 

0.077 

NA 

NA 

NA 

NA 

 

0.024 

0.015 

 

NA 

NA 

0.465 

0.002 

0.149 

0.726 

Note.    Results presented as Mean (Standard Deviation) unless otherwise stated. 

* Self-reported health relative to perfect based on 1 = very good to 5 = very poor. 
† 

P-values were obtained with one-way analyses of variance and χ
2
-tests to 

compare resilient and non-resilient participants. For all continuous variables, 

values more than 3 SD above or below the mean were removed as outliers. P-

values were not reported for χ
2
-tests when the expected cell count was < 5. 

Abbreviations: n, sample size; NA, not available, cell count too small. 
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Table 4.11. Baseline characteristics for resilient and non-resilient males with a 

high genetic risk score. 

Factor Resilient 

(n = 27) 
Non-resilient 

(n = 22) 

p-value
†
 

Demographics 

  Age (years) 

  Education (years) 

  Married (%) 

  Living with Someone (%) 

  Pet Ownership (%) 

Functional Biomarkers 

  Pulse Pressure (mm Hg) 

  Peak Flow (L/min) 

  Grip Strength (kg/f) 

  Body Mass Index (kg/m
2
) 

Health 
  Subjective Health* 

  Depression (CES-D) 

  Diabetes (% with) 

  Statins (% taking) 

  Arthritis Meds (% taking) 

  Head Injury History (%) 

Mobility 
  Timed Turn (s) 

  Timed Walk (s) 

Lifestyle 
  Alcohol Use (%) 

  Current Nonsmoker (%) 

  Physical Activity 

  Novel Cognitive Activity 

  Social Visits 

  Volunteering 

 

68.00 (6.98) 

17.85 (2.64) 

77.8 

85.2 

40.7 

 

52.94 (11.09) 

564.07 (105.03) 

41.95 (7.64) 

26.99 (2.96) 

 

1.52  (0.51) 

8.44 (3.27) 

11.1 

11.1 

14.3 

7.4 

 

2.73 (0.87) 

5.99 (1.00) 

 

92.6 

96.3 

17.78 (6.17) 

84.81 (11.68) 

4.81 (1.64) 

2.63 (2.44) 

 

73.68 (6.79) 

13.82 (2.48) 

95.5 

95.5 

45.5 

 

54.82 (9.08) 

487.62 (101.34) 

36.98 (7.22) 

27.00 (2.69) 

 

1.73 (0.83) 

8.52 (5.28) 

13.6 

13.6 

9.5 

4.5 

 

2.99 (0.94) 

6.38 (1.21) 

 

72.7 

90.9 

15.36 (6.23) 

73.77 (21.01) 

5.41 (1.53) 

2.64 (3.11) 

 

0.006 

0.000 

NA 

NA 

0.779  

 

0.526 

0.015 

0.029 

0.984 

 

0.284 

0.949 

NA 

NA 

NA 

NA 

 

0.323 

0.231 

 

NA 

NA 

0.181 

0.026 

0.201 

0.993 

Note.    Results presented as Mean (Standard Deviation) unless otherwise stated. 

* Self-reported health relative to perfect based on 1 = very good to 5 = very poor. 
† 

P-values were obtained with one-way analyses of variance and χ
2
-tests to 

compare resilient and non-resilient participants. For all continuous variables, 

values more than 3 SD above or below the mean were removed as outliers. P-

values were not reported for χ
2
-tests when the expected cell count was < 5. 

Abbreviations: n, sample size; NA, not available, cell count too small. 
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Figure 4.1. Female episodic memory trajectories differentiated into “higher-performing” and 

“lower-performing” with growth mixture modelling. Only participants with at least two waves of 

episodic memory data were included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Male episodic memory trajectories differentiated into “higher-performing” and 

“lower-performing” with growth mixture modelling. Only participants with at least two waves of 

episodic memory data were included. 
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Figure 4.3. Episodic memory trajectories for females resilient and non-resilient to the APOE ɛ4 

allele. Only participants with at least two waves of episodic memory data were included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Episodic memory trajectories for males resilient and non-resilient to the APOE ɛ4 

allele. Only participants with at least two waves of episodic memory data were included. 
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Figure 4.5. Random forest analysis results to identify the strongest predictors of episodic 

memory resilience in female APOE ɛ4 carriers. Dotted black line represents cut-off for variable 

importance. Model statistics: N = 153 (76 resilient, 77 non-resilient), Ntree = 5000, Mtry = 5, C 

= 0.82.  
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Figure 4.6. Random forest analysis results to identify the strongest predictors of episodic 

memory resilience in male APOE ɛ4 carriers. Dotted black line represents cut-off for variable 

importance. Model statistics: N = 65 (33 resilient, 32 non-resilient), Ntree = 5000, Mtry = 5, C = 

0.78. 
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Figure 4.7. Episodic memory trajectories for females resilient and non-resilient to the CLU CC 

genotype. Only participants with at least two waves of episodic memory data were included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8. Episodic memory trajectories for males resilient and non-resilient to the CLU CC 

genotype. Only participants with at least two waves of episodic memory data were included. 
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Figure 4.9. Random forest analysis results to identify the strongest predictors of episodic 

memory resilience in female CLU C homozygotes. Dotted black line represents cut-off for 

variable importance. Model statistics: N = 235 (112 resilient, 123 non-resilient), Ntree = 5000, 

Mtry = 5, C = 0.91. 
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Figure 4.10. Random forest analysis results to identify the strongest predictors of episodic 

memory resilience in male CLU C homozygotes. Dotted black line represents cut-off for variable 

importance. Model statistics: N = 72 (36 resilient, 36 non-resilient), Ntree = 5000, Mtry = 5, C = 

0.77. 
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Figure 4.11. Episodic memory trajectories for females resilient and non-resilient to a high 

genetic risk score. Only participants with at least two waves of episodic memory data were 

included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Episodic memory trajectories for males resilient and non-resilient to a high genetic 

risk score. Only participants with at least two waves of episodic memory data were included. 
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Figure 4.13. Random forest analysis results to identify the strongest predictors of episodic 

memory resilience in female participants with a high genetic risk score. Dotted black line 

represents cut-off for variable importance. Model statistics: N = 124 (62 resilient, 62 non-

resilient), Ntree = 5000, Mtry = 5, C = 0.80.  
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Figure 4.14. Random forest analysis results to identify the strongest predictors of episodic 

memory resilience in male participants with a high genetic risk score. Dotted black line 

represents cut-off for variable importance. Model statistics: N = 124 (62 resilient, 62 non-

resilient), Ntree = 5000, Mtry = 5, C = 0.78.  
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Figure 4.15. Summary of predictors of resilience by genetic variant 

and sex. Blue boxes indicate the factor was an important predictor of 

resilience across sex and genetic risk. Purple boxes indicate the factor 

was a sex-specific and genetically robust predictor of resilience. 

Green boxes indicate the factor an important predictor of resilience 

but not genetically robust. Grey boxes represent factors not included 

in analyses due to low prevalence. White boxes represent factors that 

were not important predictors of resilience. Abbreviations: F, female; 

M, male; ɛ4, carries of the APOE ɛ4 allele; CC, carriers of the CLU 

CC genotype; GRS , high genetic risk score; PP, pulse pressure; PEF, 

peak expiratory flow; GS, grip strength; BMI, body mass index.  
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Chapter 5 – Discussion 

The overall purpose of this study was to examine predictors of memory resilience to AD 

genetic risk. We had three main research goals. Regarding research goal 1, we examined whether 

multiple longitudinal memory performance phenotypes could be differentiated for females and 

males based on their EM latent variable performance and nine-year trajectory. Our single-factor 

EM latent variable was unified and stable across all three waves (as it exhibited configural, 

metric and partial scalar invariance). To distinguish memory performance phenotypes, we used 

growth mixture modelling. As expected, we differentiated two classes of memory trajectories for 

females and males: a “higher-performing” class, characterized by better baseline performance 

and more favorable trajectory and a “lower-performing” class, characterized by worse baseline 

performance and more steeply declining slope. Our results support the idea that, although 

memory performance declines in normal aging (an effect which may be enhanced in carriers of 

AD genetic risk), substantial interindividual variability exists within a large cohort of older 

adults. We note that, of our three specified genetic risk factors, only the APOE ɛ4 allele was a 

risk for steeper memory decline, specifically in females. Although somewhat surprising, it is not 

uncommon for established genetic risk variants to demonstrate insignificant effects on cognition 

independently (McFall et al., 2016; McFall et al., 2015). We felt confident in our definition of 

resilience to AD genetic risk and moved forward with the planned analyses. 

Once the memory trajectories were distinguished we defined memory resilience as being 

within the higher-performing class despite carrying specified AD genetic risk (i.e., the APOE ɛ4 

allele, the CLU CC genotype, or a high GRS). Non-resilient participants carried AD genetic risk 

but were in the lower-performing class. For research goals 2 and 3, we tested 22 predictors of 

resilience from five relevant domains. Specifically, we were interested in which predictors (and 
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predictor profiles) of resilience would emerge as sex-similar, sex-specific, and genetically robust. 

To accomplish these goals, we used random forest analysis (RFA). Our resilient participants had 

a more favorable profile of factors from multiple AD risk domains. However, the specific 

predictor profiles varied by sex. We found several important similarities in predictors of 

resilience but also (a) numerous factors from all five domains that differentially predicted 

resilience in females and (b) relatively few unique factors from the demographic and health 

domains that predicted resilience in males. For both sexes, most of the factors tested were 

genetically robust predictors across APOE- and CLU-based resilience. The majority of the 

genetically robust predictor profiles were also matched, by informal comparison, in GRS-based 

resilience. In the subsequent sections, we discuss our RFA results by domain and assess their 

implications more broadly. 

Altogether, our findings suggest that diverse AD risk and protective factors predict 

memory resilience in adults with AD genetic risk. However, the specific predictor profiles 

exhibit similarities and differences between males and females. Our results contribute to, and 

enhance the, findings of previous research by (a) specifically assessing EM with a robust latent 

variable, (b) investigating sex effects in predictors of resilience, and (c) testing 22 documented 

non-genetic AD risk and protective factors. Modifiable factors offer targets for sex-specific, 

multifactorial interventions to promote healthy brain aging, sustain functional independence, and 

delay cognitive impairment in adults with AD genetic risk.  

5.1. Demographic Factors  

Within the demographic domain, younger age emerged as (a) an important predictor of 

resilience for both sexes and (b) genetically robust. Our design permitted a strong test of 

chronological age predictions within an older adult sample spanning a 40-year band of aging. 
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This effect was likely due, in part, to the numerous aging-related brain changes that affect 

cognition progressively even in non-demented older adults. For example, brain volume decreases 

with age including within areas essential to memory performance such as the hippocampus 

(Bherer, Erickson, & Liu-Ambrose, 2013). Non-demented older adults exhibit greater AD 

pathology with age which can also negatively impact memory ability; this effect is further 

exacerbated in APOE ɛ4 carriers (Chetelat & Fouquet, 2013). However, our age results differ 

from those of a recent study in which older age was an important predictor of global cognitive 

resilience to the APOE ɛ4 allele in white older adults (Kaup et al., 2015). Conceivably, EM 

trajectories may be more systematically distributed and sensitive to subtle age changes. We 

underscore the importance of age as a predictor in all of our models but because it is 

unmodifiable factor we focus on other, potentially modifiable, predictors of resilience. 

Furthermore, we note that by including age in all of our models (despite our primary interest in 

modifiable predictors of resilience), we thereby accounted for its effect on other variables (e.g., 

grip strength) that may have emerged as more important simply due to age differences between 

resilient and non-resilient groups. 

Cognitive resilience (to the APOE ɛ4 allele; in black and white older adults) and memory 

resilience (to the ɛ4 allele, CC genotype, and a high GRS; in females and males) were both 

strongly predicted by higher educational attainment. Education may promote resilience to APOE 

and CLU risk alleles and their combined GRS by enhancing cognitive reserve (Josefsson et al., 

2012; Schneeweis, Skirbekk, & Winter-Ebmer, 2014), thereby protecting against memory 

decline by counteracting negative effects of genetic risk factors (Arenaza-Urquijo et al., 2015). 

Although level of education is not generally modified after age 55, our results further support 
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that (a) cognitive reserve likely play a major role in resilient phenotypes and (b) we should 

encourage young and mid-life adults to pursue further training or education. 

Two related demographic factors—being married and living with someone—were 

genetically robust predictors of resilience in females. In previous studies, above-average global 

cognition and EM ability have both been associated with living with someone (Josefsson et al., 

2012; Yaffe et al., 2009). Close social ties have been shown in multiple studies to protect against 

dementia and promote cognitive maintenance, however the exact mechanisms are unclear (Pillai 

& Verghese, 2009). These results coincide with the social lifestyle factors (i.e., volunteering and 

social visits) which also emerged as important, genetically robust predictors of resilience for 

females in our study. We note, however, that cognitive resilience to the APOE ɛ4 allele was not 

predicted by either living status or marital status in mixed-sex analyses stratified by race (Kaup 

et al., 2015). The differing results could be a result of our sex-stratification or because living 

status may have more of an effect on memory resilience. Neither factor predicted resilience in 

males with any form of AD genetic risk. It is possible that such measures may be more salient 

for females because, on average, they outlive males (Kannel, 2002). 

Finally, pet ownership predicted CLU-based memory resilience in males. This effect was 

not genetically robust so likely not a strong candidate for future investigation. However, owning 

a pet may encourage healthy lifestyle activities or reduce stress so may warrant future study in 

other areas (Arhant-Sudhir, Arhant-Sudhir, & Sudhir, 2011; Cherniack & Cherniack, 2014). 

5.2. Functional Biomarkers 

We found that stronger grip was an important predictor of resilience across both sexes 

and within all genetic risk groups. Furthermore, GS often emerged as relatively more important 

than many other factors. GS is considered one of the best measures of age-related loss of muscle 
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mass (Cruz-Jentoft, Landi, Topinkova, & Michel, 2010). Sarcopenia and poor grip strength have 

been associated with cognitive impairment and decline, frailty, disability, and mortality in older 

adults (den Ouden, Schuurmans, Mueller-Schotte, & van der Schouw, 2013; Hsu et al., 2014; 

Legrand et al., 2014; Sternäng et al., 2015). GS is a key marker of frailty, more so than 

chronological age (Bohannon, 2008; Syddall, Cooper, Martin, Briggs, & Aihie Sayer, 2003), and 

its effects on cognition and health outcomes can be differentially influenced by genetic and 

environmental factors (Petersen et al., 2016). Frailty (as measured with grip strength, timed walk, 

BMI, and fatigue) is associated with an increased risk of cognitive decline and AD (Buchman, 

Boyle, Wilson, Tang, & Bennett, 2007). That our GS results were general across sex and genetic 

risk underscores the importance of staying physically healthy and avoiding frailty in old age. 

Overall, the relationship between memory and fine muscle strength suggests that (a) grip strength 

is a useful and simple biomarker of cognitive performance or change and (b) interventions 

involving strength-training may be associated with sustained memory performance in at-risk 

older adults, possibly by reducing frailty. 

The remaining functional biomarkers emerged as important predictors of resilience 

almost exclusively in females: lower PP and higher PEF were genetically robust predictors of 

resilience whereas lower BMI was specific to CLU- and GRS-based resilience. There was one 

effect in males: PEF was a predictor of resilience in males with a high GRS, but not with APOE 

or CLU risk independently.  

Our PP results support that better vascular health has positive effect on memory and 

cognition, albeit specifically in females. For example, poor vascular health (i.e., higher PP) can 

increase the risk of (a) EM decrements in aging APOE ɛ4 carriers (McFall et al., 2015) and (b) 

cognitive impairment in non-demented older females (Yasar, Ko, Nothelle, Mielke, & Carlson, 
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2011). Interestingly, hypertension was not an important predictor of cognitive resilience in the 

resilience study undertaken by Kaup and colleagues (2015). Focusing on PP, a continuous 

indicator of arterial stiffness, may have been more sensitive for our population. Maintaining 

good vascular health prevents the negative effects associated with hypertension, such as cerebral 

vascular damage and mini-infarcts, which can severely affect memory ability (Cooper et al., 

2016). Notably, a recent study found that lower PP contributes positively to both cognitive 

reserve and memory performance (Alipour & Goldust, 2016). Furthermore, elevated PP is 

associated with increased AD-related cerebrospinal fluid biomarkers (i.e., Aβ and 

phosphorylated tau) (Nation et al., 2013). Maintaining vascular health likely plays a major role in 

promoting resilience to genetic risk by (a) preventing additional, vascular-related damage in the 

brain, (b) enhancing reserve, and (c) reducing Aβ- and tau-related neurodegeneration. Why this 

effect may be specific to females should be further investigated. 

Higher PEF emerged as a genetically robust predictor of resilience in females and an 

important predictor in males with the highest form of genetic risk in our study (i.e., a high GRS). 

We can quantify relative level of risk within our population by looking at individual genetic risk 

scores based on allelic status. In our sample, the average GRS was 5.14 for males resilient to 

APOE, 3.39 for males resilient to CLU, and 5.49 for males resilient to a high GRS. Thus, PEF 

was an important predictor of resilience for males with the highest level of genetic risk. PEF 

assesses force of expiration and is an objective measure of aerobic fitness (Smith, Potter, 

McLaren, & Blumenthal, 2013). Like poor grip strength, decreased PEF is sometimes used as a 

marker of frailty (Sternberg, Schwartz, Karunananthan, Bergman, & Mark Clarfield, 2011). 

Because higher PEF predicted memory resilience in our sample, we further emphasize (a) the 

potential importance that preventing or avoiding frailty may play in promoting resilience to 
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genetic risk and (b) that physical fitness, at least objectively measured by functional biomarkers, 

is strongly associated with memory resilience in females. Notably, a recent study found that 

respiratory training improves cognitive function in the elderly (Ferreira et al., 2015). Although 

their results were for both females and males, other studies have also noted sex differences in 

PEF performance and change in older adults (Puts, Lips, & Deeg, 2005). 

Finally, lower BMI predicted resilience in females with the CLU CC genotype and a high 

GRS. We found it interesting that BMI did not also predict resilience in females with the APOE 

ɛ4 allele because most (i.e., 83%) of the participants resilient to the APOE ɛ4 allele were also 

classified as resilient to a high GRS. Additionally, the respective average BMI was similar across 

all three resilience groups (see Tables 4.6, 4.8, and 4.10). We suggest two possibilities: (a) there 

is something specific about CLU-based resilience driving this effect or (b) resilience to APOE ɛ4 

is more strongly predicted by other factors (for both CLU-and GRS-based resilience, BMI was 

relatively low in the prediction hierarchy). Nevertheless, lower BMI is related to our other 

indices of physiological health status. The lifestyle and physiological state associated with high 

BMI (i.e., obesity) likely contributes to poorer cognitive outcomes (Gunstad, Lhotsky, Wendell, 

Ferrucci, & Zonderman, 2010). Although not robust, our results suggest that older females with 

AD genetic risk may benefit from maintaining a healthy body weight along with healthy levels 

of other objective physiological indicators.  

Broadly, our results within the functional biomarker domain suggest that females 

carrying AD genetic risk may benefit more than males from efforts to broadly improve or 

maintain their physiological health status. Possible interventions could target combined 

improvement in cardiovascular and general fitness, such as by encouraging physical exercise.  

Clinicians and researchers should note that frailty or poor physiological health in older females 
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may exacerbate the pathological effects of AD genetic risk on neurocognitive outcomes. For both 

males and females with genetic risk, preventing or reducing frailty (as assessed, at least in part, 

by GS and possibly by PEF) may be beneficial.  

5.3. Health Characteristics 

Only a few factors from our health domain emerged as important predictors of memory 

resilience. For females, better subjective health rating was a genetically robust predictor of 

resilience. Resilient females appear to be accurately aware of their relatively good health status 

(as indicated objectively by the biomarkers). We note, however, that maintained cognitive ability 

may conceivably play a role in the ability to accurately assess subjective health status. 

Exclusively for males, a lower CES-D score (i.e., fewer depressive symptoms) was a 

genetically robust predictor of APOE and CLU-based memory resilience, but, oddly, it was not 

also a predictor of GRS-based resilience. Opposite to PEF results for males, the protective effect 

of a lower CES-D score seems to diminish for males with the highest genetic risk. Depression 

affects cognitive performance and may be a preventable risk factor for dementia (Wang & 

Blazer, 2015). Relevant to our study, the risk of MCI and dementia in cognitively normal adults 

that is associated with depression is (a) stronger in men, (b) enhanced in carriers of the APOE ɛ4 

allele, and (c) related to plasma apolipoprotein J levels (Geda et al., 2006; Silajdzic, Minthon, 

Bjorkqvist, & Hansson, 2012). Furthermore, antidepressant use protects against memory and 

cognitive decline, particularly in males (Lipnicki et al., 2013). Interestingly, depressive 

symptoms are associated with cognitive decline independently of dementia-related 

neuropathology, implying that there are different underlying mechanisms (Wilson et al., 2014). 

Our results suggest that preventing or treating mood disorders such as depression may have 
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beneficial effects for aging males with AD genetic risk. However, this effect diminishes for 

males with high, combined AD genetic risk (i.e., a high GRS).  

In our sample, diabetes status, head injury history, and statin use did not predict resilience 

for either sex in any case. However, we note that diabetes status and head injury were not tested 

as predictors in all groups due to low prevalence. For females, not taking anti-inflammatory 

medication predicted CLU-based resilience. It was low in the prediction hierarchy and not 

genetically robust so the benefit obtained from avoiding arthritis on memory resilience may be 

minimal, at least in our sample. We note that this factor was not tested as a predictor of resilience 

in any male genetic risk group because of low prevalence. Kaup and colleagues (2015) similarly 

found that cholesterol level, diabetes status, and level of inflammation were not important 

predictors of cognitive resilience for white older adults. 

5.4. Mobility 

Exclusively for females, both mobility factors (i.e., walking time and turning time) were 

important predictors of memory resilience and these effects were robust across genetic variants 

and the GRS. Neither mobility factor emerged as a predictor of resilience for males. Because 

physical fitness influences neuromuscular systems, physical health may be reflected by 

performance on mobility tasks that assess gait speed and balance (Laudani et al., 2013). 

Correspondingly, our mobility performance measures may also be related to our functional 

biomarker results which also showed sex-specificity in predicting resilience. Another study 

found that reduced walking speed was associated with cognitive impairment in older women 

(Sachdev et al., 2012). Carrying the APOE ɛ4 allele has even been associated with poorer 

performance on mobility tests in older adults (Melzer, Dik, van Kamp, Jonker, & Deeg, 2005). 

Our results further emphasize that older females with AD genetic risk may benefit from 
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maintenance or improvement in physical, physiological, and neuromuscular health from a variety 

of perspectives. There may also be a mechanistic relationship between resilience, fitness and 

mobility, and these apolipoproteins that could be further explored.  

5.5. Lifestyle 

From the lifestyle domain, greater participation in everyday novel cognitive activity was 

an important and genetically robust predictor of resilience across both sexes. It emerged as one 

of the most important predictors of resilience within most resilient groups. Maintaining a 

cognitively-stimulating lifestyle can promote resilience to age- and genetic risk-related EM 

decline by (a) enhancing cognitive reserve (Lachman et al., 2010) or plasticity (Runge, Small, 

McFall, & Dixon, 2014), (b) compensating for low educational attainment (Lachman et al., 

2010), and (c) reducing AD pathology in genetic risk carriers (Wirth, Villeneuve, La Joie, 

Marks, & Jagust, 2014). Because both everyday novel cognitive activity and level of education 

were important predictors of resilience in all six cases, we emphasize the role that cognitive 

reserve likely plays in promoting memory resilient phenotypes. 

We also found that both social factors—more regular social visits (i.e., visiting family, 

friends, and neighbors) and volunteering more often—were genetically robust predictors of 

resilience in females. In contrast, socializing less (i.e., less social visits and volunteering less 

often) was predictive of CLU-based memory resilience selectively for males. It is possible that 

non-resilient males require more assistance from family and friends due to their declining 

cognitive status. Similar to the social-related demographic factors we tested, neither volunteering 

nor social visits predicted cognitive resilience to the APOE ɛ4 allele (Kaup et al., 2015) which 

could have been due to their mixed-sex analyses. Social factors have been previously associated 

with memory and cognition. For example, levels of social isolation and loneliness are both 
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negatively associated with memory performance, an effect which is enhanced in people with low 

education (Shankar, Hamer, McMunn, & Steptoe, 2013). Like lifestyle-related cognitive 

activities, social activities also contribute to cognitive reserve (Fratiglioni & Wang, 2007). In 

addition, some social activities can promote widespread lifestyle improvements (e.g., enhance 

physical activity). Recently, older females (but not males) that volunteered within a school 

system for two years spent significantly more time walking than those females that did not 

volunteer (Varma et al., 2016) . Such complex lifestyle activities (broadly classified as “social”) 

may actually promote enhanced participation in social, cognitive, and physical activity which 

can, in effect, triply impact resilience and reserve. The mechanisms through which social 

activities promote cognitive reserve may vary across demographic groups, however, as this effect 

was specific to females in our sample. 

Although markers of physiological health, fitness, and mobility emerged as genetically 

robust predictors of resilience in females, self-reported physical activity never emerged as a 

predictor of resilience for either sex. It is possible that our self-report questionnaire for 

participation in physical activity does not distinguish healthy older adults as well as objective 

biomarkers. Similarly, Kaup and colleagues (2015) did not find physical activity to be an 

important predictor of cognitive resilience. Their measure of physical activity was similar to ours 

in that it was self-report, but different in that they classified participants as having low, moderate, 

or high energy expenditure based on kilocalories per kilogram per week. It is possible that 

replacing the self-reported variables with objective measurements may yield different results 

(Celis-Morales et al., 2012). However, it is also possible that everyday physical activity is simply 

not a predictor of cognitive resilience (among races) or memory resilience (among sexes) in 



95 
 

older adults. Testing resilience within other cognitive domains (e.g., executive function) or with 

different methods of stratification (e.g., by age group) may produce different results.  

Finally, current alcohol consumption predicted memory resilience in female CLU C 

homozygotes. Although there is some evidence that moderate alcohol consumption can protect 

against cognitive decline in aging (Baumgart et al., 2015), controversy exists for this relationship 

and genotypic effects (Kim et al., 2012). Our results do not implicate alcohol consumption as a 

strong or reliable predictor of memory resilience to AD genetic risk.  

Taken together, the results we obtained within the lifestyle domain support the 

importance of maintaining an active lifestyle for memory resilience to genetic risk. Similarly, 

Ferrari and colleagues (2013) demonstrated that high participation in social, cognitive, and 

physical leisure activities prevents or delays dementia in APOE ɛ4 carriers, at least in part by 

increasing brain and cognitive reserve. In our sample, participation in cognitive and social 

activities promoted memory resilience to AD genetic risk, although differentially for females and 

males.  

5.6. Interpretation and Implications 

A major focus of this study was sex effects in predictors of resilience. Among both sexes, 

factors associated with cognitive reserve (i.e., level of education and everyday novel cognitive 

activity) were strong predictors of resilience to all forms of genetic risk. Given that cognitive 

activity and education were two of the top predictors of resilience in most cases, our results 

support that engaging in activities that boost cognitive reserve throughout the lifetime (e.g., 

higher education in young adulthood and cognitive activity in mid to older adulthood) is strongly 

implicated in providing resilience to risk factors in aging (Kemppainen et al., 2008; Reed et al., 

2011), regardless of sex. Of note, we specifically investigated novel everyday cognitive 
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activities, which included activities such as playing bridge and doing taxes, as opposed to 

“passive” (e.g., reading the newspaper) or “integrative” (e.g., playing an instrument) cognitive 

activities. We reasoned that novel activities would have the greatest effect on resilience, given 

that they are more complex, stimulating, and cognitively-demanding. Our results indeed suggest 

that greater participation in complex everyday cognitive activities is beneficial, as has been 

found previously (de Frias & Dixon, 2014).  

Examining sex differences in resilience to AD genetic risk in non-demented older adults 

may have implications for differential assessment and potential early interventions to reduce risk 

of cognitive decline and neurodegenerative disease. Specifically, understanding sex differences 

in risk and protective factors for resilience, decline, and neurodegenerative disease may aid in the 

development of individualized assessment, intervention, and treatment strategies (Mielke et al., 

2014). As discussed, there are documented sex differences in cognitive performance throughout 

the lifespan, including older adult cognitive trajectories and AD risk (Li & Singh, 2014; 

McCarrey et al., 2016). Biological mechanisms for sex differences in AD prevalence—including 

varying pathological brain aging trajectories, onset of change, and mechanisms of risk—are 

beginning to be understood (Altmann et al., 2014; Zhao et al., 2016). Determining the biological 

basis in sex differences for cognitive aging and AD risk could potentially uncover new directions 

for reducing or preventing the risk of neurodegenerative disease, specifically in high-risk older 

adults.  

We briefly report results from a recent study that support the multifactorial and sex-

specific nature of our results. Artero and colleagues (2008) investigated sex-specific predictor 

profiles for MCI and conversion from MCI to dementia. In their sample, both females and males 

classified as MCI were more likely to have depressive symptoms (as measured with the CES-D 
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scale) and be taking anticholinergic medication. Females with MCI were more likely to (a) have 

poor subjective health, (b) have a disability, (c) be socially isolated, and (d) have insomnia. 

Males were more likely to have (a) a higher BMI, (b) diabetes, and (c) a history of stroke. They 

also tested sex effects in predictors of progression from MCI to dementia. For both females and 

males, declines in instrumental activities of daily living, carrying the APOE ɛ4 allele, low 

education, and older age predicted progression to dementia. For females, (a) subclinical 

depression and (b) taking anticholinergics also predicted progression. For males, history of 

stroke predicted progression (Artero et al., 2008). Other factors similar to those in our study (i.e., 

physical activity, current alcohol consumption, tobacco use, blood pressure [hypertension], 

history of head trauma) were not predictive of MCI or progression from MCI to dementia. 

Overall, they found that MCI can be differentiated by a large number of factors and that the 

factors differ for females and males. Notably, many of their sex differences in predictors of MCI 

or progression to dementia were similar to ours. They conclude that MCI is a common outcome 

of multiple aetiological pathways.  

Our results also suggest possible complex sex differences in what promotes resilience. 

We briefly interpret and discuss the implications of the sex effects presented in this thesis. 

Similar to the Artero and colleagues (2008) study, our results suggest that although memory 

resilience is predicted in both sexes by some factors (e.g., high cognitive reserve, low frailty), 

memory resilience is a common outcome of multiple pathways that can differ substantially 

between males and females. In our sample, females had many more predictors of resilience than 

males. One possible reason for this could be the relative risk of the genes investigated, which 

may be stronger in females (Altmann et al., 2014; Farrer et al., 1997). However, testing other 

factors from these, or additional, domains could yield different results. 
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Notably, multiple indices of physical health (i.e., PP, PEF, and BMI) and both mobility 

factors (i.e., gait and balance) predicted resilience specifically in females, suggesting that there is 

a selective benefit of overall physiological and physical fitness for memory resilience in females 

with AD genetic risk. Moreover, resilient females appear to be aware of their relatively more 

favourable health status (because higher subjective health was an important predictor). There is 

evidence that various exercise training techniques (including aerobic, resistance, balance, and 

strength) benefit cognition through direct biological mechanisms (e.g., angiogenesis and 

neurogenesis) (Bherer et al., 2013; Hogan, Mata, & Carstensen, 2013; Nokia et al., 2016). 

Broadly, exercise and better overall health have beneficial effects on (a) brain structure and 

function, (b) sleep, (c) stress level, and (d) risk reduction for negative health outcomes (e.g., 

heart disease) (Bherer et al., 2013). Why this effect was specific to (a) females and (b) objective 

markers of physiological health and mobility (as opposed to self-reported physical activity) is 

unclear. It is possible that because older females are generally less active than males (Azevedo et 

al., 2007; DiPietro, 2001), they may benefit more from better physiological and physical health. 

As was shown in Table 4.5, we found that compared to females, males had significantly better 

PP, PEF, and GS as well as faster walking time. 

Our results also highlight the importance of targeting multiple, modifiable risk factors for 

potential use as a panel of prevention of intervention targets (Figures 5.1-5.2). Like frailty 

indices (Song, Mitnitski, & Rockwood, 2011), we propose that methods to promote resilience to 

unmodifiable AD risk factors should consider approaches that take multiplicity of causes into 

account and, possibly, determine the underlying mechanisms. Anstey and colleagues (2014) 

recently developed the Australian National University Alzheimer’s Disease Risk Index (ANU-

ADRI), a dynamic model that represents the network of influences on cognitive aging. The risk 
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index is a self-report tool to identify risk of AD and dementia. Briefly, it is an evidence-based 

composite risk score for AD and dementia derived from a number of validated risk and 

protective factors, many of which are similar to those used in this study. Specifically, it asks 

relevant demographic questions (e.g., age, gender, and education) and much more detailed 

questions about diabetes, history of head injury, lifestyle activities (cognitive, physical, social), 

smoking, eating habits, and depressive symptoms. Modifiable factors included in our study as 

well as the ANU-ADRI offer timely precision intervention targets for multi-factorial programs to 

sustain functional independence and delay cognitive impairment and decline, particularly in 

older adults with other, unmodifiable AD risk factors (Anstey et al., 2014). Non-invasive 

intervention strategies (including lifestyle and health improvement) for middle-aged and older 

adults are an easy and low-cost method of (a) promoting cognitive and memory resilience and 

(b) decreasing the risk of cognitive decline and dementia. Our study provides further evidence 

that risk management protocols, including risk reduction and protection elevation (e.g., resilience 

and reserve), should consider the multiple domains of risk and protection and the factors within 

that independently and interactively contribute to cognitive aging outcomes (Anstey et al., 2015). 

Given the evidence that AD risk (and potential for resilience) can be quantified, clinical practice 

guidelines may need to implement personalized risk-reduction assessments. 

Very recently, an individualized, long-term, multifactorial approach lead to cognitive and 

functional improvements in APOE ɛ4 carriers diagnosed as having MCI or early AD (Bredesen 

et al., 2016). Dubbed Metabolic Enhancement for Neurodegeneration (MEND), the program had 

an array of targets that were individualized as needed (e.g., optimize sleep, reduce stress, 

improve diet, exercise, take vitamins, balance hormones) (Bredesen, 2014). Although the sample 

size was small (n = 9), there were marked improvements in neuropsychological performance, 
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functional ability, and, in one case, hippocampal volume (Bredesen et al., 2016) following the 

targeted intervention program. Altogether, the results of recent resilience research, the ANU-

ADRI, and MEND suggest there may be merit in identifying genetically at-risk individuals in 

order to evaluate personalized delay, prevention, and intervention options from a wide array of 

easily modifiable factors (with the potential to promote resilience and healthy brain and 

cognitive aging). Even delaying age of onset (or slowing decline) of impairment and 

neurodegenerative disease will substantially reduce the societal and economic burden of 

cognitively-impaired and demented older adults (Anstey et al., 2015). 

5.7. Limitations and Strengths 

 We note several limitations of the present study. First, we tested multiple predictor 

variables and, given that we stratified by sex and required participants to carry allelic risk, some 

cell sizes were relatively small. Although RFA is suitable for use in these circumstances (Strobl 

et al., 2009), we note that, like previous studies (e.g., Josefsson et al., 2012), null findings from 

promising domains (e.g., health) could be due to a lack of power. However, the present results 

are systematic and generally robust, suggesting stability of the phenomenon.  

Second, VLS participants represent a relatively more advantaged segment of the 

population (e.g., high levels of education and standard of living, easy access to health care) 

(Dixon & de Frias, 2004). The intact nature of our sample may have decreased the strength of the 

factors associated with resilience. In other words, had our sample been more representative of a 

diverse population in terms of education and lifestyle some of the factors tested here may have 

emerged as important or relatively more important. Although the sample is not representative of 

all older adults, it provided a good estimation of adults in developed or western countries where 

the older segment of the population is rapidly growing. Our third limitation is related to the 
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second: We included a relatively homogenous group of older Caucasians which limits the 

generalization of these results across multiple races. Previous research has demonstrated 

differences in predictors of cognitive resilience within black and white older adults (Kaup et al., 

2015) so future studies with more diverse populations could consider race-stratification.  

Fourth, not all participants had an opportunity to provide a third wave of EM data; 

specifically participants in Samples 1 and 2 were only able to provide up to two waves of data. A 

more complete design would include nine years of data from all participants. Broader sampling 

could supplement prediction patterns. However, these data were only used for classification and 

missing data were imputed using gold-standard techniques. Fifth, we were only able to achieve 

partial scalar invariance of our EM latent variable (not full scalar or residual invariance, which 

would have been more desirable). However, our model fit statistics were adequate and we felt 

confident that our model was good enough to proceed. 

Sixth, we investigated only two of many AD-related genes with the potential to influence 

EM in older adults. Based on a thorough review of extant literature, we chose these variants 

given their mechanistic similarities and known association with EM performance and change in 

aging adults. There may be merit in evaluating other relevant genotypes in future studies, 

including those with odds ratios more similar to APOE (e.g., TREM2). Seventh, some of our 

variables were limited by being self-report. Self-reported variables have the potential to bias 

results or not reflect objective measures. However, we expect that seriously misreported 

information was minimal and likely not systematically distributed in a manner that would bias 

our results. All of the present self-report measures have been used extensively and productively 

in the VLS and other projects. For example, other studies in AD risk assessment and risk 

reduction use combinations of self-report and objective variables and some relevant phenomena 
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can be efficiently assessed via self-report (Anstey, 2014; Anstey et al., 2014). Additionally, for 

the purposes of this study, we considered it better to have a large number of self-reported 

variables than a small number of objective measures. Nevertheless, in some cases, replication of 

findings using objective measures (e.g., physical activity) would clarify our results.  

There are also several strengths of this study. First, we had a large, well characterized, 

and broadly assessed longitudinal dataset with an extensive 40-year band of aging (range: 53-95 

years). Each participant contributed up to nine years of data. We collected comprehensive 

neuropsychological, demographic, biomarker, health, mobility, and lifestyle data from each 

participant, including those known to be associated with AD risk and protection. Second, we 

used multiple standard manifest variables to create a validated, longitudinal EM latent variable. 

Our longitudinal analysis of this latent memory score included two follow-up waves, which is 

desirable in longitudinal latent variable analyses.  

Third, our approach limited EM practice effects (a major concern for longitudinal 

studies) by (a) having multiple word recall lists and rotating them through waves such that no 

participant saw the same list twice, (b) using more complex memory tasks (e.g., RAVLT and 

long memory lists), (c) combining multiple manifest memory measures into a latent variable, 

which reduces potential practice effects that could occur for any one indicator, (d) having long 

intervals between testing occasions (i.e., 4.5 years), and (e) achieving partial scalar invariance for 

our confirmatory factor analysis. Fourth, we employed contemporary statistical methods 

(including GMM and RFA) to most accurately and effectively investigate our research goals. 

More specifically, GMM allowed us to statistically uncover two latent groups of memory 

performance over time in order to define memory resilient participants. RFA allowed us to 

examine the relative importance of 22 AD risk factors from five validated AD risk domains in 
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predicting memory resilience. RFA is a novel multivariable analytic technique that revealed the 

factors most strongly predictive of resilience which may have potential as future intervention 

targets. 

5.8. Future Directions 

This thesis research was driven by the desire to investigate ways in which older adults 

with non-modifiable genetic risk can remain resilient to memory decline. Our results support the 

goal of reducing risk and promoting healthy brain aging in genetically at-risk older adults. 

Prevention strategies to increase or sustain healthy brain and cognitive aging should be started 

early, before the onset of MCI or AD. Future intervention studies could select individuals with 

AD genetic risk and conduct a broad risk assessment that includes modifiable factors (Anstey et 

al., 2015). Several of the factors identified by Anstey and colleagues (2014) are included in the 

present study. Our results suggest that intervention studies would benefit from the use of multi-

factorial protocols that target modifiable factors with independent and interactive influences for 

all adults. Additionally, tailoring the prevention protocol to reflect sex differences in predictors 

and mechanics of cognitive and memory resilience would increase precision. A very large, long-

term intervention study that considered the effect of sex, age group, and ethnicity would be 

beneficial. Complementing the work of Kaup and colleagues (2015), our random forest analyses 

provide groundwork for future studies to selectively evaluate the most important predictors (or 

domains of predictors) of resilience by sex, ethnicity, and genotype. For example, mobility and 

physiological health could be further explored for their predictive, mechanistic, and preventative 

potential in females with AD genetic risk. Further study of factors associated with resilience to 

non-modifiable genetic risk will elucidate or support modifiable options (e.g., vascular health, 
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novel cognitive activity) to promote cognitive maintenance or reduce the risk of cognitive 

decline. 

Future studies could also investigate resilience to other AD risk genes (e.g., TREM2) and 

within other cognitive domains (e.g., executive function). A greater understanding of the specific 

mechanisms underlying resilient phenotypes may be beneficial for potential targeting treatments. 

Studies that follow-up on the sex effects presented here should attempt to recruit more male 

participants so that analyses can be done on samples more comparable in sample size and age 

range. Future studies may also benefit from investigating timing effects. For instance, should 

intervention studies be started in middle age or can they provide resilience to cognitive and 

memory decline even when initiated in late life? Further and more specific understanding of 

resilience phenotypes will enable us to promote healthy brain aging or delay cognitive decline 

and neurodegenerative disease, allowing older adults to maintain their functional independence 

for as long as possible. 

In sum, our study highlights the importance of (a) using longitudinal trajectories to 

establish common phenotypes, (b) the value of studying brain and cognitive resilience as well as 

decline and impairment, (c) considering sex differences in brain, cognitive, and dementia aging 

research, and (d) assessing and targeting multiple, modifiable risk factors. 

5.9. Conclusion 

Our main objective was to determine if memory resilience to AD genetic risk is predicted 

by factors that are sex-specific and genetically robust. First, we differentiated a higher and stable 

nine-year memory trajectory group and established that resilient participants exist within this 

group despite the presence of specified AD risk alleles. Second, we found that several AD risk 

factors (i.e., age, education, grip strength, and novel cognitive activity) predict memory 
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resilience in both sexes but a greater number and wider breadth of factors applied only to females 

(Figure 5.1). Third, our predictor profiles were similar across the two AD risk genotypes (i.e., 

genetically robust) and the GRS for both sexes. Our results suggest that memory resilience in 

older adults carrying AD genetic risk may be optimally promoted by multi-factorial interventions 

that target modifiable factors from a variety of relevant domains. Intervention strategies for both 

female and male older adults should aim to increase cognitive reserve (e.g., higher education, 

more everyday novel cognitive activities) and prevent frailty (e.g., as assessed by grip strength) 

(Figure 5.2). Females carrying AD genetic risk may especially benefit from early clinical 

interventions that target broad improvements in physiological health (e.g., cardiovascular) and 

emphasize the importance of participating in diverse social activities. Males with AD genetic risk 

may also benefit from the treatment or prevention of depression or depressive symptoms.  

We highlight the importance of (a) integrating sex-specific differences in normal, 

impaired, and resilient brain and cognitive aging research and (b) targeting multiple, modifiable 

factors for potential use as a panel of risk-reduction intervention targets to promote healthier 

brain aging. As recently expressed by the Alzheimer’s Association, there is sufficient evidence 

that modifiable risk factors may be associated with reduced risk of dementia (e.g., physical and 

cardiovascular health, cognitive activity) such that a multivariate approach to risk reduction in 

which multiple lifestyle (e.g., physical activity) and health (e.g., cardiovascular) factors are 

targeted may be widely beneficial (Baumgart et al., 2015). By identifying predictive or 

modifiable factors that contribute to resilience, our results contribute strategies to promote high 

functional capacity and prevent or delay cognitive decline and dementia which is especially 

crucial for those individuals with non-modifiable genetic risk. 
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Figure 5.1. Genetically robust predictors of memory resilience to Alzheimer’s disease (AD) 

genetic risk by sex. These factors were important predictors of both APOE- and CLU-based 

resilience. In most cases, they were also predictors of GRS-based resilience. However, we note 

that less depressive symptoms was only predictive of APOE- and CLU-based resilience (not 

GRS-based resilience) for males.  
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Figure 5.2. Possible intervention or prevention strategies to promote memory resilience in 

carriers of Alzheimer’s disease (AD) genetic risk. 
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