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ABSTRACT

In this thesis, we study subdivision schemes, biorthogonal wavelets and wavelet-
based image compression. Subdivision schemes are important in computer aided
geometric design to generate curves and high dimensional surfaces. First, We shall
characterize the L, convergence of any subdivision scheme with a finitely supported
refinement mask in multivariate case. Then we shall study the error behaviour of
any subdivision scheme if there is a round-off of its refinement mask. Next, we study
a special kind of subdivision schemes - interpolatory subdivision schemes. We shall
analyze the optimal properties, such as sum rules of an interpolatory refinement mask
and the smoothness of its associated refinable function, of any interpolatory subdi-
vision scheme. A general construction of optimal interpolatory subdivision schemes
is presented. Next, we shall study biorthogonal multivariate wavelets since there is a
well known close relation between interpolatory subdivision schemes and biorthogo-
nal wavelets. We shall study the optimal approximation and smoothness properties
of any biorthogonal wavelet. More importantly, a general and easy way (CBC algo-
rithm) is presented to construct multivariate biorthogonal wavelets. As an example,
a family of optimal bivariate biorthogonal wavelets is given. Finally, we try to ap-
ply our results in image compression and a 2-D wavelet transform C-++ program is

established which can use a library of bivariate biorthogonal wavelet filters.
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Chapter 1

Ly Convergence of Subdivision

Schemes

1.1 Introduction

A refinable function ¢ is a function satisfying the following so-called refinement
equation:

#(z) = Z a(a)é(2z — a), z € R’ (1.1.1)

«€Zs

where a is a sequence on Z* called the refinement mask. If a is a finitely supported
sequence with ) ,,a(a) = 2°, then it is known that (see [6]) there exists a unique
compactly supported distribution ¢ satisfying the refinement equation (1.1.1) subject
to the condition 3(0) = 1. This distribution is said to be the normalized solution
of the refinement equation (1.1.1) with the refinement mask a and will be denoted by
¢q throughout this thesis. The Fourier transform of a function f in L,(R?) is defined
to be

floy= fg f(z)e™*¢dz,  £€R (1.1.2)

1



where z - § denotes the inner product of two vectors £ and £ in R®. The domain
of the Fourier transform can be naturally extended to include compactly supported

distributions.

In order to solve the refinement equation (1.1.1), we start with the initial function

¢o(z) = [[rlz),  z=(z1,--,2,) €R’, (1.1.3)

i=1

where A is the hat function defined by

f
l+z forze€[-1,0),

h(z):==q1-z forz€[0,1], (1.1.4)
0 for z € R\[-1, 1].
Then we employ the iteration scheme Q2 ¢g, n =0,1,2,--- , where Q, is the bounded

linear operator on L,(R*) (1 < p < c0) given by

Quf =Y a(B)f(2-~B),  fe L(R) (1.1.5)

BeZs

This iteration scheme is called a subdivision scheme (see [6]) or a cascade algo-
rithm (see [28]) associated with the mask a. We say that the subdivision scheme
associated with a converges in the L, norm if there exists a function f € L,(R?)
such that limne | @7 60— fllp = 0. If this is the case, then it is necessary that f must
be the normalized solution ¢, of the refinement equation (1.1.1) with the refinement

mask a.

Refinable functions are encountered in computer aided geometric design where
subdivision schemes are used to construct smooth curves and surfaces. The reader is
referred to [6, 30, 31, 38, 39, 40, 51, 52, 59, 62, 84, 85, 89] and the references cited
there for detailed discussion on subdivision schemes and their applications to generate
curves and surfaces. They are also known as scaling functions in the wavelet theory,
for example, see [10, 13, 15, 16, 18, 26, 27, 62, 67, 79, 102]. For more detail about the

applications of subdivision schemes on computer graphics, please see Chapter 3.

2



The structure of this chapter is as follows. In Section 1.2, we will introduce the
concepts of subdivision operators and £,-norm joint spectral radius, then we shall
study the relation between the subdivision operator and the £,-norm joint spectral
radius. In Section 1.3, based on the work Jia [59], by employing £,-norm joint spectral
radius, we characterize the L, convergence of a multivariate subdivision scheme. In
Section 1.4, we demonstrate that when p = 2, the £,-norm joint spectral radius can
be easily computed by calculating the eigenvalues of a transition operator on a finite
dimensional linear space. Examples will be given to illustrate the general theory.
Finally in Section 1.5, the subdivision schemes associated with any general dilation
matrix are discussed. All the results in this chapter are joint work with my supervisor

Professor Rong-Qing Jia.

1.2 {,-Norm Joint Spectral Radius

This section is devoted to a study of joint spectral radii of a finite collection of linear

operators associated to a refinement equation.

Let A be a finite collection of linear operators on a finite dimensional vector
space V. A vector norm [|-|| on V induces a norm on the linear operators on V as

follows. For a linear operator A on V, define

IAll := max{ [ Av] }.

llell=1

For a positive integer n we denote by A™ the Cartesian power of A:
At = {(Al,... ,An) : Al,... ,An GA}

When n = 0, we interpret A° as the set {I}, where I is the identity mapping on V.
Let

M loo := max{|[As -+ Au]| : (As,... , Aq) € A™}.



Then the uniform joint spectral radius of A is defined to be

peolil) = lim [LA7"

For 1 < p < oo, we define

1/p
IIA"II,,:=< > IlAl"'Anll”> :
(41 .-

-An)EA"

For 1 < p < 0, the {,-norm joint spectral radius of A is defined to be
—_ 13 niil/n
po(A) = lim [l
It is easily seen that this limit indeed exists, and

lim [lA™,"" = inf A"/

n—oo P p

Clearly, p,(A) is independent of the choice of the vector norm on V.

The uniform joint spectral radius was first introduced by Rota and Strang in [93]
and the mean spectral radius was studied by Wang in [101]. The general £,-norm
joint spectral radius of a finite collection of linear operators was introduced by Jia in

[59].
By some basic properties of ¢, spaces we have that, for 1 < p < r < oo,

(#‘A)I/r-llppp("q) < pr(A) < pp(A),

where #A denotes the number of elements in A. Furthermore, it is easily seen from
the definition of the joint spectral radius that p(A) < poo(A) for any element A in A,
where p(A) is the spectral radius of A.

The subdivision operator is important in the study of convergence of a subdivision
scheme. Let a be a sequence on Z*. The subdivision operator associated with a is
defined by

Sad(@) =Y a(a—20)A(B), aE€Z’ (1.2.1)

Bez+



where A € lo(Z*) and £o(Z*) denotes the linear space of sequences on Z* with finite
support. Note that o(Z®) is a subspace of £,(Z*). The ¢, norm of an element
A € £,(Z%) is denoted by [|A]|,-

In order to study convergence of the subdivision scheme, we need to analyze the
sequences S;d, n = 1,2,.... For this purpose, we introduce the biinfinite matrices

A, (€ € Z*) as follows:

A(a,B) = a(e + 2a - B), a,Be€Z. (1.2.2)

Lemma 1.1 Suppose @ = €; + 22 +---+ 2" g, + 2%y, where €1,€2,... ,6n,v € Z°.
Then for any B € Z°,
Szé(a—-B)=A., -+ A, (7,0).

Proof: The proof proceeds by induction on n. For n =1 and a = &, + 27, we have

545(0 - :B) = 0(61 + 27 _:8) = Aﬂ(’)’:ﬂ)'
Suppose n > 1 and the lemma has been verified for n — 1. For a = €1 + 2a;, where
a;,€ € Z*, we have

Seb(a=p)= a(a—B—20)SF'8(n) = Y a(es + 27 — B)SP~'6(cr — 7).

ne€Z’ nez:*
(1.2.3)

Suppose that e; = €2 + - -+ + 2"~2¢, + 2"~1y. Then by the induction hypothesis we

have

Si7l(ar —n) = Ae, -+ Agy(7, 7).

This in connection with (1.2.3) gives

S:‘;(a - ,3) = Z: Aen tee A¢2(71 17)A¢1 (77,:3) = Ae, - 'A¢2A€1(71 ﬂ)v
neZ*

thereby completing the induction procedure. |
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The biinfinite matrices A, (¢ € Z*) defined in (1.2.2) may be viewed as the linear
operators given by

Aw(a) = ale+2a—PB(B), vE€bl(Z), acZ (1.2.4)
BeZs

Now let A be a finite collection of linear operators on a vector space V, which is not
necessarily finite dimensional. A subspace W of V is said to be A-invariant, if it is
invariant under every operator A in A. Let U be a subset of V. The intersection of
all A-invariant subspaces of V containing U is A-invariant, and we call it the mini-
mal A-invariant subspace generated by U, or the minimal commeon invariant
subspace of the operators A in A generated by U. This subspace is spanned by the
set
{Ai--Aju : vuel, (A,...,A;) €A, j=0,1,...}.
If, in addition, V is finite dimensional, then there exists a positive integer k such that
the set
{A1---Aju : veU, (Ay,... , A;)) €A, j=0,1,...,k}

already spans the minimal A-invariant subspace generated by U.

We define, for 1 < p < oo,

t/p
llﬂ“vllp:( >, IlAl---Anvll”> ;

(Ary... An)eA™

and for p = oo,

A |l := max{[|A1--- Anv| : (A1,...,4s) € At}

The s-torus T is defined by
T :={(21,...,2) €EC" : |z =--- =z = 1}.
The symbol of a sequence a € £5(Z°) is the Laurent polynomial é(z) given by

a(z) := Z a(a)z®, z € T, (1.2.5)
agZs



where 2% := z{" --- 2 for 2 = (2y,...,2,) € T and @ = (ay, ... ,a,) € Z°.

For any a € Z*, by J, we denote the sequence on Z* such that §,(a) = 1 and
3.(8) =0 for B8 € Z*\{a}. In particular, we use § to denote &;.

For 8 € Z* we denote by 77 the shift operator on 2y(Z*) given by

A=A =8), Ae(Z).

Let v be an element of ¢5(Z*). Then its symbol 7(z) is a Laurent polynomial, which

induces the difference operator #(7) := }_ ;.. v(8)7". Note that Z(r)d = v.

Let ) be the set of vertices of the unit cube [0,1]*. Thus, each element « € Z*

can be uniquely represented as € + 27, where € € Q and vy € Z*.

As usual, for 1 < p < o0, €,(Z°) denotes the Banach space of all sequences on Z*

such that [lafl, < oo, where

1/p
lally = (3, . leBF) ¥ for1<p<oo,

and ||a|| is the supremum of a on Z°. In the following lemma, the underlying vector

norm on ¢(Z°) is chosen to be the £,-norm.

Lemma 1.2 Let S, be the subdivision operator associated with a refinement mask a.
Let A := {A. : € € Q}, where A. are the linear operators on £o(Z*) given by (1.2.4).
Then for 1 < p < oo and v € £(Z?),

19(T)S2éllp = A v, n=1,2,.... (1.2.6)

Proof: Suppose that a =¢&; +2e,+ -+ + 2" ¢, + 2%y, where €y, €,... ,&, € Q and
v € Z*. Then by Lemma 1.1 we have
o(7)S38(e) = D v(B)Szé(a — B)
BeZ:*

> Acwoe A (1,8)0(B) = Acy - Aey (7).

BEZ*



Hence, (1.2.6) is true for p = co. When 1 < p < co we have
DM@ = D D [Ae - A
acZ? (21 1e-0 En)EQ™ YEZ*

This verifies (1.2.6) for 1 < p < oo. =

Let A := {A, : € € Q}. We shall demonstrate that, for each v in £(Z?), the
minimal A-invariant subspace generated by v is finite dimensional. To establish this
result, we shall introduce the concept of admissible sets. For a finite subset K of R?,
by ¢(K') we denote the linear subspace of £(Z°) consisting of all sequences supported
on K NZ°. Let A be a linear operator on £y(Z*). A finite subset K of Z° is said to
be admissible for A if £(K) is invariant under A. See [44] for the related notion of
good sets. The following lemma shows that there exists a finite subset K of Z? such
that K contains the support of v and is admissible for all A., € € Q.

Lemma 1.3 Suppose that a is a sequence on Z* with its support E := suppa where
suppa := {a € Z* : a(a) # 0} being finite. Let A, (¢ € Q) be the linear operators on
€(Z?) given by (1.2.4). Then a finite subset K of Z° is admissible for A := Ag if and
only if

2HE+K)NZ*CK. (1.2.7)

Consequently, for any finite subset G of Z°, there ezists a finite subset K of Z* such
that K contains G and K is admissible for all A., € € .

Proof: Suppose that K is admissible for A. Let o € 2°Y(E + K)N Z*. Then
2a = v+ forsomey € Eand B € K. It follows that Ads(ea) = a(2a—03) = a(y) # 0.
Since K is admissible for A, we have Adg € ¢(K), and therefore « € K. This shows
that (1.2.7) is true. -

Conversely, suppose that (1.2.7) is true. Let v € £(K) and a € Z°. Then

Av(a) = ) a(2a — B)v(B) #0

Bez*



implies that 2a — 3 € E for some 8 € K. It follows that 2o € E + K. Therefore
a € 27YE + K)NZ* and so a € K by (1.2.7). This shows that A maps £(K) to
¢(K). In other words, K is admissible for A.

From the above proof we see that a finite subset K of Z°® is admissible for A, if
and only if
2YE—-e+K)NZ*'CK. (1.2.8)
The set £ — ) consists of all the points £ — ¢, where z € E and € € Q.

Now suppose that G is a finite subset of Z°. Let H := 2G U (E — Q) U {0}, and
let

K := (anl 2- H) Nz
In other words, an element o € Z* belongs to K if and only if & = Y oo | 27 ™A, for
some sequence of elements A, € H. Since 0 € H and 27'H D G, we have

K2Z'Nn2'HDOZ°nG=G.

Moreover,
2 E-e+K)NZ°C2YH+K)NZ*
=2 'H+2'K)nZ* (1.2.9)
C@'H+2%H+---)NZ° =K.
Thus, K satisfies (1.2.8). Hence K is admissible for all A., € € Q. ]

Lemma 1.4 Let A be a finite collection of linear operators on a vector space V. Let
v be a vector in V, and let V() be the minimal A-invariant subspace generated by v.
If V(v) is finite dimensional, then there ezist two positive constants C; and C, such

that

Cill A lvwlls < A, < Coll Ay, VreEN (1.2.10)



and therefore,

Tim A" = pp(Alv(). (1.2.11)
Proof: Let ||-|| be a vector norm on V(v). Since V(v) is finite dimensional, there

exists a positive integer k such that V/(v) is spanned by the set
Yi={A-Ayw:(A,...,4) €A, j=0,1,... ,k}.

Thus, there exists a positive constant C) such that A"y, < C1||A™||, forally € Y

and all » =1,2,.... Moreover, there exists a positive constant C, such that
A vyl < Ca max 1Ayl 5 n=1,2,....

Therefore, there exists a positive constant C such that foralln = 1,2,...,
A v ll, < CllA™l, .

Hence, (1.2.10) holds true. But |[A™v|l, < [lA™v()llpllvll- This proves the desired
relation (1.2.11). |

Theorem 1.5 Let S, be the subdivision operator associated with a refinement mask
a. Let A := {A. : € € O}, where Q is the set of vertices of the unit cube [0,1], and
A. are the linear operators on £o(Z°) given by (1.2.4). Then for any v € 4(Z°), there

ezist two positive constants Cy and C; such that for all n € N,
Cull {Adlv) € € O} llp < [r)S261l, < Coll {Adlvny e € Q[ (12.12)
and therefore,
Tim [[5(r)S281Y" = oo ({Aclvi : € € 9}), (1.2.13)

where V(v) is the minimal A-invariant subspace generated by v. Moreover, ifWis
the minimal A-invariant subspace generated by a finite set Y, then there ezist two

positive constants Cy and Cy such that for all n € N,

Cill{Aclw : € € O}l < max {||7(r)57dll,} < Cal| {Aclw : e € Q}*[l, (1.2.14)

10



and therefore,

po({Aclw : & € Q}) = max { lim ||i(r)S78]Y"). (1.2.15)

Proof: By Lemma 1.3, the linear space V() is finite dimensional, and so the relevant

Joint spectral radius in (1.2.13) is well defined. By Lemma 1.2 we have
17(T)536ll = 1AMy 1<p<oo,n=12,....

Applying Lemma 1.4 to the present situation, we obtain (1.2.12) and (1.2.13).

For the second part of the theorem, we let W be the minimal A-invariant subspace
generated by a finite set Y, and observe that W is a finite sum of the linear subspaces
V(v), v €Y. Hence

po({Aclw : e € 0}) = %ayx{pp({AelV(U) ‘€€ Q})}

This together with (1.2.12) and (1.2.13) verifies (1.2.14) and (1.2.15). |

1.3 L, Convergence of Subdivision Schemes

In this section, we characterize the L,-convergence (1 < p < oo) of a subdivision

scheme in terms of the corresponding refinement mask.

Let f be the normalized solution of the refinement equation (1.1.1) with a mask
a. Taking the Fourier transform of the functions on both sides of (1.1.1), we obtain

f(&) =27"a(e™*/%) f(/2), €eR" (1.3.1)

It is evident that @(e~">"F) = 2° for all B € Z* since (1) = 2 sz a(B) = 2°. Thus,
for all positive integers k and all 8 € Z°, it follows from (1.3.1) that

f@r2%p) = f(2xp).
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If, in addition, f lies in L,(R"), then by the Riemann-Lebesgue lemma we have
f(@rp) = lim f(2r2"p)=0 VB ez*\{0}

A function f is said to satisfy the moment conditions of order 1, if f(O) =1and

f(27B) = 0 for all 8 € Z*\ {0}. Thus, if the normalized solution f of the refinement

equation (1.1.1) lies in L;(R*), then f satisfies the moment conditions of order 1. If

Q% f converges to the normalized solution of the refinement equation (1.1.1), then f

must satisfy the moment conditions of order 1.

In our study of convergence, the concept of stability plays an important role.
The shifts of a function ¢ in L,(R®) are said to be stable if there are two positive
constants C; and C, such that

> AM@)e(- — a)

acZ*
It was proved by Jia and Micchelli in [68] that a compactly supported function ¢ in

Lp(R*) satisfies the L,-stability condition in (1.3.2) if and only if, for any £ € R?,

CillAll, <

<SClM, Ve (zZ) (1.3.2)
P

there exists an element 8 € Z* such that

H(€ +2mB) # 0.

Note that the shifts of the hat function A given in (1.1.4) are stable. It is easily seen
that the shifts of the function ¢q given in (1.1.3) are stable.

For any vector y € Z*, the difference operator V, on ¢(Z*) is defined to be
VU’\ =A- ’\( - y)a AE Z(Z’)a

where £(Z*) denotes the linear space of all sequences on Z°. In particular, V; denotes

the difference operator V.; where e; is the ith coordinate unit vector.

First, we give a necessary condition for the subdivision scheme to converge.
Theorem 1.6 Let a be an element in £(Z°) with daczea(a) = 2°, and S, be the
subdivision operator associated with a given in (1.2.1). If the subdivision scheme

12



associated with the mask a converges in the Ly-norm (1 < p < o0), then for any

vector y € Z?,

lim 2-"*/7[|V,S™6][, = 0. (1.3.3)

n—+co

Consequently, if the subdivision scheme associated with the mask a converges in the
Ly-norm, then

Y ala+28)=1 Vaez (1.3.4)

BeZ*
Proof: Suppose that ¢ is a compactly supported function in L,(R*®), ¢ satisfies the
moment conditions of order 1, and the shifts of ¢ are stable. For n = 0,1,2,..., let
an := 536 and f, := @24, where Q, is the operator given in (1.1.5). Then by (1.1.5)

we have

fa=)" an(a)(2* — a).

aEZ?

Hence, for y € Z* we have

fn - fn( - 2-ny) = Z [a'n(a) - an(a - y)]é(zn - a)

a€Zs

= ) Vyaa(a)g(2* - a).

acZ*

Since the shifts of ¢ are stable, there exists a constant C > 0 such that
27|V yanllp < Cllfa = fal = 279)lp- (1.3.5)

In particular, the above estimate is valid for f, = Q"do, where ¢ is the function given
in (1.1.3). If the subdivision scheme converges in the L,-norm, then there exists a
compactly supported function f in L,(R®) (f € C(R®) in the case p = co) such that

| fa — fll, = 0 as » — oo. Moreover, by the triangle inequality, we have
1fa = faC = 27")llp < If = £ = 27"0)llp + 2II.f = fall,-
Hence, || fo = fa(-—27"y)||, = 0 as n — co. This together with (1.3.5) verifies (1.3.3).

13



For the second part of the theorem, we observe that if the subdivision scheme

converges in the L,-norm for some p with 1 < p < oo, then it also converges in the

Li-norm. Thus, we only have to deal with the case p = 1.

Let (2 be the set of vertices of [0, 1]*. Then # = 2°, and Z* is the disjoint union

of a +2Z° o € Q. Since ), 5. a(a) = 2°, we have
Y afa—28)=2".
a€EN feZ*
Thus, (1.3.4) will be proved if we can show
Y a(a—-28)=) a(-28) VaeQ
BeZs* BeZ*
To this end, we deduce from a, = S,a,_; that
Yoan(@) =D Y a(a=28)a.1(B)=2" an_i(B).
a€Zs «€Z* BEL* BeZs
An induction argument gives ) ;. a.(a) = 2™*. Moreover,

D an(@~26)= ) > a(e—28-2y)ans(7)

pgezs BEZ* v€Z*

=) _a(@=28))  anu(y—B) =20 3" a(a—2).

BeZ* ~€Z? BeZ*
Thus, we have
> la(a—28) —a(=28)] =271 3™ [an(a — 26) — ax(~28)].
el Ad BeZs

It follows that

> [o(e~26) = a(~26)]| £ 2| Tatnls

BeZ*

(1.3.6)

(1.3.7)

If the subdivision scheme is L;-convergent, then by the first part of the theorem we
have 2=("~1¢||V q,|l; = 0 as » — co. This together with (1.3.7) implies (1.3.6), as

desired.
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It was proved by Cavaretta, Dahmen, and Micchelli [6] that the condition in

(1.3.4) is necessary if the subdivision scheme converges in the L.-norm.

The next theorem gives us a characterization of convergence of a multivariate

subdivision scheme.

Theorem 1.7 Let a be an element in {(Z*) such that ), cq.a(a) =2°, and S, the
corresponding subdivision operator. Then the subdivision scheme associated with the

mask a converges in the Ly-norm (1 < p < o0) if and only if

1Lm IV;Seélli/m < 22/p for j=1,...,s. (1.3.8)

Proof: Let A. be the linear operators on ¢,(Z*) given by (1.2.4), and let V be the
minimal common invariant subspace of A, (¢ € ) generated by V4, 7 =1,...,s.

Then V is finite dimensional and by Theorem 1.5 we have

oo = po({Aclv : € € Q}) = max{ lim |V;S76];"}.
Thus, (1.3.8) is equivalent to p, ({A.|v : € € Q}) < 2¢/7.
Let A :={Ac|v : € € Q}. If p,({Ac|v : € € Q}) > 2°/7, then we have
. n|l/n _ 1: n||i/n s/p
It follows that

27 P|AM, >1 VreN.
By Lemma 1.4, there exists a constant C' >0 such that || A*||, < C max,¢;<, |[A"V;d]|,
for all n. By Lemma 1.2, we have [[A"V;d||, = ||V;S2§||,. Hence

pp 227" =  max{2/P||V;5768],} > 1/C.
IS8

Thus, the subdivision scheme associated with a is not L,-convergent, by Theorem
1.6. This shows that (1.3.8) is necessary for the subdivision scheme to converge in

the Ly-norm.



In the following we prove the sufficiency part of the theorem. By (1.3.8), there

exist positive constants r and C such that 0 < r < 1 and
2—ns/p”vj SZJHP < cr® Vne Naj = 17 Tty 8. (1’3’9)
By induction, we observe that
Farr = ) SiL8(a)go(2H - —a), (1.3.10)
acZs
where ¢ is defined in (1.1.3). Note that ¢, satisfies the following refinement equation

$o = b(a)po(2- ~a),

a€ls
where 3(z) := 2-° [Tioi(z7t + 2+ 2;),z = (21, , 2,) € T*. Therefore,
fa= ) S28(a)e(2" - —a) = D S5,S7(a)de(2H - —a). (1.3.11)
a€Z? acZs
From (1.3.10) and (1.3.11), we deduce
fatr = fa= D (Sa — Sp)ST8(a)do(2 - —a) = D" SacsSié(a)do(2™ - —a).
a€Zs a€Zs

Since ¢q is compactly supported, there exists a positive constant C; such that
| fasr — fallp < C127™/7)|S, 524, (1.3.12)
By Theorem 1.6, we have
> (a(e+28)—ba+28)=0 VaeZ.

BeZs

Thus, by Lemma 2.5 in Chapter 2, it follows that there exist sequences ¢;,j = 1,---,s
in ¢o(Z°) such that

8

A=) —bz) =Y (1-2D5(z), z=(a,--,2)€T"

i=1
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Hence, S.-s578(2) = Y., &(2)V;826(2%), z = (21, --- ,z.) € T°. From (1.3.12) and

=1

(1.3.9), we deduce that

[ fatr = fallp < C27™7% Y " ics 12 V55261, < (C'Cx > IIlelx) r*  VneN

i=1 =1

Therefore, the subdivision scheme associated with a converges in the L, norm. n

Suppose that K is an admissible set for every A., € € , and ¢(K) contains V;§
forj=1,...,s. Let

V= {v €UK) : Zaez'v(a) = 0}. (1.3.13)
If } pezoa(a —28) =1 for all @ € Z*, then V is invariant under every A, ¢ € Q.

Thus, we may restate Theorem 1.7 as follows.

Theorem 1.8 Under the conditions of Theorem 1.7, the subdivision scheme associ-
ated with a converges in the L,-norm (1 < p < o0) if and only if the following two

conditions are satisfied:

(a) Ygezsa(a—28) =1 for all « € Z*%;
(8) po({Aclv : € € Q}) < 2°/7 where the linear space V is defined in (1.3.13).

Proof: Forj=1,...,s V;6 € V. Conversely, V is spanned by vectors of the form
TV, where € Z°, j =1,... ,s. Let A := {A.|v : ¢ € Q}. By Lemma 1.2 we have
ATV 6]l = 177V ;1S3 61|, = |V ;526]],.

This shows that

po({Aclv:c€Q}) = l%agc{ lim ||V;Sz5]L/"}.

<j<s *n—oco

Thus, Theorem 1.8 follows from Theorem 1.7 at once. [ ]

After a closer examination of the proof of Theorems 1.6 and 1.7, we obtain the

following result.
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Theorem 1.9 Let a be a finitely supported sequence on Z* with Y, 4. a(a) = 2°,
and let @), be the linear operator given by (1.1.5). Suppose u is a compactly supported
function in L,(R*) (1 < p < o), u satisfies the moment conditions of order 1, and
the shifts of u are stable. If there ezists a function f € L,(R®) (a continuous function
f in the case p = o0) such that

lim [|Qzu — fll, =0, (1.3.14)

then for any compactly supported function v € L,(R®) satisfying the moment condi-

tions of order 1 we also have
lim [[Q3v — fll, = 0. (1.3.15)

Consequently, if the normalized solution f of (1.1.1) lies in L,(R®) (f is a continuous
function in the case p = o), and if the shifts of f are stable, then the subdivision

scheme associated with mask a converges to f in the L,-norm.

Proof: Suppose that (1.3.14) is true for a function u that satisfies the moment
conditions of order 1 and has stable shifts. Then the proof of Theorem 1.6 tells us
that (1.3.3) is valid for every vector y € Z*. Therefore, from the proof of Theorem
1.7 we see that (1.3.8) holds true. Since both u and v are compactly supported and
satisfy the moment conditions of order 1, we have u —v = 3°7_ (g: — gi(- — &)) for
some compactly supported functions g; € L,(R?). Hence,
s
Qu—Qrv=>)_ Y V.5(a)g:(2" - —a).
i=1 a€Z’
Since g; € L,(R®) are compactly supported, there exists a positive constant C such
that
1Qz u — Q2 vlly < C2» max{ [ViS24l, : i=1,-- ).

By (1.3.9) and (1.3.14), we have (1.3.15). In particular, if f itself has stable shifts,
then we may choose u to be f in (1.3.14). Thus, in such a case, the subdivision

scheme converges in the L,-norm. |
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Theorem 1.9 implies that for any function u in L,(R*®) such that u satisfies the
moment conditions of order 1 and the shifts of u are stable, then the function u can
serve as an initial function in any subdivision scheme. It is evident that the particular

choice ¢q in (1.1.3) has such properties.

Example 1.10 Consider the following refinement equation
=73 a(@f@ -a), (1.3.16)
a€Z?

where the mask a is given by its symbol
a(z) =1/42{ ' +1+3/4z +3/4z7 20 + 20 + 1 /4 2120, z =(z1,2) € T

We claim that the subdivision scheme associated with a is convergent in the L,-norm

for 1 < p < oo, but it is not Lo,-convergent.

For € € Q := {(0,0),(1,0),(0,1),(1,1)}, let A. be the operator on ¢y(Z?) given
by

Av(a) =D a(e+2a—BY(B), a€Z? vel(ZY)
Bez?

Let K be the set consisting of the points (—1,0),(0,0),(1,0),(-1,1),(0,1),(1,1).
Then K is admissible for A, for all e € Q. Let V := {v € {(K) : T 22 v(a) = 0}.
Then V is the minimal common invariant space of A, (¢ € Q) generated by V9,

J = 1,2. The dimension of V is 5. We choose a basis for V as follows:

vy=04— 5(1,0)1 v =4 — 5(—1.0), U3z = 5(0,1) - 5(1.1)1

Vg = 6(0,1) - 5(_1'1), and vs = 7'(5 - 6(0'1)),

where 7 is a number such that 0 < r < (3/2)"? —1for1 <p< oo and r =1 for

p = o0.

By computation, the matrix representations of A.|v (¢ € Q) under this basis are
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given by

34 0 0 0 o 0 —1/4 0 o0 o0
0 1/4 0 0 0 0 3/4 0 0 0
Aoolv=10 0 1/4 0 0|, Agoglv=]0 0 0 —3/4 of,
0 0 0 3/40 0 0 0 1/4 0
0 0 0 0 1 0 —r/4 0 3r/4 1]
and ]
[1/4 0 0 0 0] [0 —3/4 0 0 0
0 3/4 000 0 1/4 0 0 0
Apylv=13/4 0 0 0 0f, Agplv=10 -1/4 0 0 0
0 1/4 0 0 0 0 3/4 000
0 0 000 0 —r/2 0 0 0]

Since A(o0)|v has an eigenvalue 1, we have
poo({Aclv 1€ €Q}) > L.
Therefore, the subdivision scheme is not L.,-convergent.

For the case 1 < p < oo, we choose the maximum row sum norm as the matrix

norm. Since 0 < r < (3/2)/? — 1, we have

§ AP < 14 (14 r)P + (3/4) + (3/4)F < 4.
€N
This shows that

pr({Aclv : e € Q}) < 47,

By Theorem 1.8, the subdivision scheme is L,-convergent for 1 < p < oo.

1.4 Ly Convergence of Subdivision Schemes

In general, the £,-norm joint spectral radius is difficult to compute. However, in this

section we demonstrate that the £;-norm joint spectral radius can be easily computed
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by calculating the spectral radius of a certain finite matrix.

Given a € {y(Z°), the symbol @(z) is well defined on the s-torus
T :={(z1,...,2:) €EC :|zy| = --- =|z,| = 1}.
For a,b € {y(Z?), the discrete convolution of a and b, denoted axb, is given by

axb(a) := Z a(a — B)b(8), a€Z.

BeZs

It is easily seen that
axb(z) = a(z)b(2), z € T

For z € C, we use Z to denote the complex conjugate of z. Note that for z € T* and
a € Z°, we have z% = z7%. For a € {y(Z*), we denote by a* the sequence given by

a*(a) := a(—a), @ € Z°. Then for z € T* we have

a*(z) = Z a(—a)z® = Z a(—a)z== = a(z2).

a€Z* a€Z*

If b = a*xa”, then we have

b(z) = @(2)a*(z) = |a(z)[?>, for z € T".

Theorem 1.11 Fora € €y(Z°), let b := axa* and denote by S, and Sy the subdivision
operators associated with a and b, respectively. Then for any v € £y(Z?),

lim (|(7)S26ll:"™ = /o(Telw)

and

Tim [1&()SPAIL" = p(Tylw)
where p := v*v*, T, is the transition operator associated with b on 4(Z?) given by
TyA(a) = Zﬂez, b(2a — B)NB), a€Z, )€ 4(Z), (1.4.1)
and W is the minimal Ty-invariant subspace generated by .
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Proof: Forn =1,2,..., write a, for S2§ and b, for Sé. Note that the symbol of
U(7)an is 5(2)@x(2), and the symbol of ji(1)b, is fi(z)ba(2). By the Parseval identity
we have
- - 2
I7(r)aall; = Y |#(r)an(e)]

acZs

1 ) i s 1 L oeew -
N m/[;z )slu(ete)a"(ete)lzdg = @n)y /[02 e A(e)on(e") d.

Since ji(e%)b,(e%) > 0 for all £ € R?, it follows that

(e%)bu(e) | de

1
- T bn 0 S 7 T bn o0 S /
A(7)ba(0) < [|2(7)bnl| (2m)* Jio,2x)
_ 1
(27)s [0,27)s

On the other hand, by induction, we observe that

Ar)ba(0) = D u(B)S;8(=B) =Y 3 u(B)b(~B +29)S;718(—7)

A(e%)ba(e) d€ = 3(7)ba(0).

BeZs BEZs~eZ*
=Y Tu(7)Sp~ 8(~7) = Tpu(0).
YEZ?*

Hence,

17(7)S28l12 = NA(T)S3 6]l = T ux(0).
It follows that
lim IA(r)SPEIL" < lim T7(0)[" < o(Tiw).
Moreover, since W is the minimal T;-invariant subspace generated by p, we have
p(Tlw) < lim ||a(7)Spsl|im.
This completes the proof. [

We remark that Goodmar, Micchelli, and Ward in [44] established a result similar

to Theorem 1.11 for the special case v = §.

The following theorem discusses the relationship among the spectra of 7, when

it is restricted to different invariant subspaces.
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Theorem 1.12 For an element a € 4y(Z*), let T, be the linear operator on £y(Z°)

given by
TMe) = ) a2a—BMB), a€Z’ e l(Z°).
BeZs
Suppose that E is the support of a. Then the set Ko given by
Ko = (Zm 2-"E) nzs (1.4.2)

is admissible for T,. Moreover, if W is a finite dimensional T,-invariant subspace,
then the eigenvalues of T.|wnyk,) are also eigenvalues of T,|lw, and all the other

eigenvalues of T,|lw are 0.

Proof: Let K, be the set given in (1.4.2). Then
—~1 *® -n
2~Y(E + K,) C Zmz E.

This shows that Kj satisfies (1.2.7). Hence Kj is an admissible set for T, by Lemma
1.3. Since ¢(Ky) is an invariant subspace of Ty, the eigenvalues of T |wnex,) are also

eigenvalues of T, |w .

Let K be an admissible set for T, such that {(K) O W. In order to prove that
all the other eigenvalues of T,|w are 0, it suffices to show that there exists a positive

integer N such that
TN) € {(Ky) Ve {K). (1.4.3)

Indeed, if (1.4.3) is true, and if o is an eigenvalue of T,|w with an eigenvector )\ in
W \ {(Ko), then by (1.4.3) we have oV X = TN\ € ¢(Ky). But A ¢ {(K,). Hence this
happens only if o = 0. Thus, it remains to prove (1.4.3). For this purpose, it suffices
to prove that, for each 8 € K \ Ko, there exists a positive integer N such that TV 84
lies in £(Kp).

Let j be a positive integer. For A € ¢(K), we have

TiXa) = ) b2a - 7)TiA(4).
v€Z*
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Hence T7)\ (@) # 0 only if 2a — v € E for some v € Z* with Ti~'A(y) # 0. Let n be
a positive integer, and let a,8 € Z°. Then T*ég(a) # 0 holds true only if there exist

o, a, ... ,an € Z* such that ag = 8, an = @, and
20; —aj—; € E, forj=1,...,n.
Hence T'ég(a) # 0 implies

a€2'E+2E+...4+2"E +2"K =: T,..

Let [':=3 7 2™"E. Then Ko =Z°NT, and (Z°\ Ko)NT = 0. We shall show
that [ is a compact set. Let H be an infinite subset of I'. Note that E is a finite set.
By induction on n we can find a sequence of elements w, € E (n =1,2,...) such
that

Q7w+ + 27w, + 27BN H
is an infinite set. Then the element v := Y>> ' 2-"w,, is a limit point of H.

Since Z°\ Ko is closed and T is compact, hence 7 := dist (Z*\ Ko, I'), the distance
between two sets Z*\ Ko and T, is positive. Note that 2=® — 0 as n — oco. Thus,

there exists a positive integer NV such that
TNég() #0 = dist (e,T) <.

From dist (o, ') < 7 and @ € Z* we deduce that a € K,. This shows that TNdj lies

in 4(Ky), as desired. ]

The L,-convergence of a subdivision scheme can be determined by using Theo-
rems 1.7 and 1.11. The following theorem gives another form of characterization for

the L,-convergence.

Theorem 1.13 For a € £(Z°), let b := axa™ and let T} be the transition operator
associated with b on £4(Z*) given by

TiM(a) = Zﬂez_ b(2a — B)A(B), a€Z® \e€ 4(Z).
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Denote by Ko the set Z° N Y oo | 27™E, where E is the support of b. Let V be the
linear space

{reexs) - > @) =0},
Then the subdivision scheme associated with a converges in the Ly-norm if and only

if the following two conditions are satisfied:

(a) Ygezsa(a—28) =1 for alla € Z%

(b) p(Telv) < 2°.

Proof: First, assuming that conditions (a) and (b) are satisfied, we shall prove
that the subdivision scheme associated with a converges in the Ly-norm. Let W be
the minimal Tj-invariant subspace generated by —0_e; +20 —4.,j=1,...,s. By
Theorem 1.12,
A(Telw) = p(Tilwrexa))-

It follows from condition (a) that 3 ,.,,b(a —28) = 2¢ for all @ € Z*. Consequently,
if w is an element in £(Z*) such that 3, w(a) =0, then 3", Tsw(e) = 0. This
shows W N{(Ko) C V. Hence p(Ty|w) < p(Th|v). By Theorem 1.11 we have that, for

j=17-"733

Lim (V5268112 < v/o(Tolw) < V/o(Talv) < 22

By Theorem 1.7 we conclude that the subdivision scheme associated with a converges

in the L-norm.

Next, suppose the subdivision scheme associated with g converges in the L,-norm.

By Theorem 1.6, condition (a) is satisfied. It remains to prove p(Tily) < 22.

Let ¢ be the function given in (1.1.3), and let f, := Q™¢g, where Q, is given in
(1.1.5). Then there exists a function f € Ly(R®) such that ||f, — fllz > 0asn — oo.

For a function f defined on R? let f* be the function given by f(z) = f(-=z) for
z € R*. Let ¢ := ¢o*¢; be the convolution of ¢¢ and @5. Similarly, let g, := fo*f
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and g = f*f". It is easily seen that g, = Q}_,,¢, where Q,—; is the operator given
by Qa-6¢ = 3 7. 27°b(a)$(2 - —a). Then we have

lgn — gllo = | fa*fr = F*f oo
S Mfax(f7 = F Moo + 1(fa = F)*FNleo
< (Ifallz + W FllH fa = fll2-

Note that ¢ is a continuous function, ¢ satisfies the moment conditions of order
1, and the shifts of ¢ are stable. Thus, by Theorem 1.9, the subdivision scheme
associated with 27°b converges in the Lo,-norm. By Theorem 1.8, we conclude that

p(Ty-slv) < 1. Therefore, p(Ts|v) < 2* which completes the proof of the theorem. m

In the case s = 1 and M = (2), Theorem 1.13 was established by Jia [59]. In
the multivariate case, Theorem 1.13 was also obtained independently by W. Lawton,
S. L. Lee, and Z. W. Shen [80]. More recently, it was demonstrated by Zhou in [104]
that for any p such that p is an even integer, the £,-norm joint spectral radius can be
obtained by calculating the spectral radius of a finite matrix though when p > 2 the

size of such matrix is too large to apply the method of [104] in practice.

Example 1.14 Consider the refinement equation (1.3.16) with the mask a given by
its symbol

@(z) = 1+(1/2+t)(z1+ 22+ z122) + (1 /2~ ) (27 4 25 L+ 27125 ), z = (z,2,) € T?

with ¢ being a real number. The normalized solution of the refinement equation is the
standard linear element if ¢ = 0, and is the characteristic function of the unit square
[0,1)2 if t = 1/2. Let b:= a*a*. By computation we find that
b(z) = |a(z)]* =(5/2 + 6t%) + (3/2 + 2t%)(z1 4+ 2, + 271 + z7!)
+ (3/2 = 2t*)(zz2 + 27 23 ) + (1/2 + 2t%) (21251 + 27 20)
+(1/4 =) (2] + 2] + 23 + 27 + 27225 + 277

+(1/2 = 28%) (22, + 2123 + 272251 + 271272,
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The transition operator T} associated with b is given by

TiMa) = ) b2a—BA(B), A €l(Z?), acZ?
gez?

For 7=12 let vi = 6 — 6e,- and Ui = I/j*l/; = —-5,1- + 2§ — J_ej. Then
Topj = To(—0e; +20 —0_¢;) = (1 + 48%) (=4, + 26 — 6_.,) = (1 + 4t%) ;.

Thus, the minimal Tj-invariant subspace W; generated by y; is the one-dimensional

subspace spanned by p;. By Theorem 1.11 we conclude that

lim |V;S26]L,"™ = | [p(Tolw,) = VI+4E.
By Theorem 1.7, the subdivision scheme associated with a converges in the L,-norm
if and only if V1 + 42 < v/4, that is, [t| < V/3/2.

In order to apply Theorem 1.13 to the present example, we first find the support
E of b as follows:

E={(a1,a2) € Z%: |oy| < 2, laz| <2, |y — apf < 2}.

The set E consists of 19 points. Evidently, Ko := 27'E +272E + ... equals E. Let
V be the linear space

{reuw): > @ =0}
We shall find all the eigenvalues of Bly.

Let K :=2Z%N(Ko/2). We observe that ¢(K) NV is Tj-invariant, and the vectors
Oey =8, 0, — 8, bey4ey — 8, 8¢, — 8, 8_o; — 6, and §_,, ., — & form a basis for {K)NV.
Let W = W) + W, where the linear spaces W; are defined in the first part of this

example. Then W is a B-invariant subspace of ¢(K) N V. Moreover,

B(—6—61—¢2 +26 - 6=1+62) = —5—61—62 +20 — 6el+e: + w,
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where w is a vector in W. Hence 1 is an eigenvalue of B lqxyav. Let U be the
linear space spanned by W and —é_.,_., + 26 — 8., ¢e,- Then U is a 3-dimensional
B-invariant subspace of Blyx)nv. Furthermore, with v, := & —§,,, v, = § — &,, and

v3 = § — 8¢, 4e,, We have

m 3/2+2t2 —1/2+2t2 1/2—2t2 (1 Uy
Ly |vo| = [=1/2+2t2 3/2+22 1/2—2t%| |vo| + |ua],
U3 1/2+2t2 1/2+2t2 3/2—2t2 U3 U3

where u,, ug, uz are some vectors in U. By computation we find that the above matrix
has an eigenvalue 2 of multiplicity 2 and an eigenvalue 1/2 + 2t2 of multiplicity 1.
The remaining eigenvalues of Bly can be easily found. To summarize, the linear
operator T3|v has an eigenvalue 2 of multiplicity 2, an eigenvalue 1 of multiplicity 1,
an eigenvalue 1 + 4¢? of multiplicity 2, an eigenvalue 1/2 + 2t? of multiplicity 3, an
eigenvalue 1/4 — t? of multiplicity 6, and an eigenvalue 1/2 — 2¢2 of multiplicity 4.
Thus,
p(Tolv) = max{l + 4¢2,2}.

By Theorem 1.13, the subdivision scheme associated with a converges in the Ly-norm

if and only if p(Th|v) < 4, that is, |¢| < v/3/2.

This example demonstrates that, in order to check the L,-convergence, it is often

more involved to use Theorem 1.13 than to use Theorem 1.11.

1.5 L, Convergence in the General Case

In this section, we state shortly the results on L, convergence of subdivision schemes
associated with general dilation matrices. The reader is referred to [51] for proofs and

detail.
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A general refinable function satisfies the following general refinement equation:

F=Y a(@)f(M- - a). (1.5.1)

aEZ’
where f is the unknown function defined on the s-dimensional Euclidean space R?,
a is a finitely supported sequence on Z°, and M is an s X s integer matrix such that

limpyeo M™™ = 0. Such matrix M is called a dilation matrix.
If the mask a satisfies

) a(e) =m = |det M|,
acZ*

then it is known that there exists a unique compactly supported distribution f sat-
isfying the refinement equation (1.5.1) subject to the condition f(0) = 1. This dis-
tribution is said to be the normalized solution to the refinement equation with
mask a. This fact was essentially proved by Cavaretta, Dahmen, and Micchelli in [6]
for the case in which the dilation matrix is 2 times the s x s identity matrix I. The

same proof applies to the general refinement equation (1.5.1).

Similarly, to solve the refinement equation (1.5.1), we start with the initial func-
tion ¢o defined in (1.1.3), and use the iteration scheme f, := @Qr¢o, n =0,1,2,...,

where @), is the bounded linear operator on L,(R®) given by

Qup =D a(@)p(M-—ca), ¢ € Ly(R?).

ac€l*

We say that the subdivision scheme associated with mask a converges in the

Ly-norm, if there is a function f € L,(R?) such that

lim [|Q2¢o — fll = 0.

To describe our results, we introduce the linear operators A, (¢ € Z*) on ¢(Z*)

as follows:

Av(a) =3 a(c+Ma—pBl(B), velb(Z), ac
Bezs
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We observe that the set Z® is an abelian group under addition, and MZ? is a
subgroup of Z°. Let 2 be a complete set of representatives of the distinct cosets of
the quotient group Z*/MZ*. For a finite subset K of Z*, we denote by {(K) the linear
subspace of ¢4(Z°) consisting of all sequences supported on K. Then there exists a
finite subset K of Z® such that {(K) contains V;§ for j = 1,...,s and is invariant
under every A, (¢ € 2). Let

V= {,\ €UK):Y  Ma)= o}.
It is easily seen that V' is a common invariant subspace of A, (¢ € Q) if and only if

> gezsa(a— MB) =1 for all a € Z°.

Theorem 1.15 (see (51}, Theorems 3.2 and 3.3) Let M be a dilation matriz with
m := |det M|, a an element in &(Z°®) such that 3 z.a(a) = m. The subdivision
scheme associated with mask a and the dilation matriz M converges in the L,-norm
(1 £ p < ) if and only if the following two conditions are satisfied:

(a) 2opez-a(la— MB) =1 for all a € Z°;

(b) po({Aclv : € € Q}) < m!?, where p,({A.|v : € € Q}) denotes the £,-norm joint

spectral radius of the linear operators A.|v, € € Q.

Or equivalently, the subdivision scheme associated with the mask a and the dilation

matriz M converges in the Ly,-norm if and only if
. 1 1 -
nliy% IIVJ-S:JHP/" < ml/? for 7=1,...,s,
where S, is the general subdivision operator associated with the mask a given by

Sad(@) := ) a(a— MB)N(B), a € 2%\ € 6(Z7).
BEZL*

In particular, when p = 2, we have the following result:
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Theorem 1.16 (see [51], Theorem 4.3) Let M be an s x s dilation matriz and let
m := |det M|. For a € €(Z?), let b := axa™ and let T} be the transition operator on
¢(Z*) given by

TiMa) =), 0(Ma—BNB),  a€Z’, e b2

Denote by Ko the set Z°N 3 .. M™™E, where E is the support of b. Let V be the

linear space
{,\ €lK) 1 Y Ma)= o}.

Then the subdivision scheme associated with a converges in the Lo-norm if and only

if the following two conditions are satisfied:

(a) Ygezsa(a— MB) =1 for all « € Z*;

(b) p(Tslv) < m.
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Chapter 2

Error Estimate of Subdivision

Schemes

2.1 Introduction

In general, for any compactly supported function in L,(R*) (when p = oo it is a
continuous function with compact support), if it satisfies the moment conditions
of order 1 and its shifts are stable, then it can serve as an initial function in any
subdivision scheme. For simplicity, throughout this chapter, we shall use ¢q, defined
in (1.1.3), as our initial function in any subdivision scheme. The proofs in this chapter

are the same for any general initial function.

Subdivision schemes play an important role in computer graphics and wavelet
analysis. See [38, 39, 40, 85] for their applications to computer aided geometric
design, and see [15, 27, 28, 102] for their applications to wavelet decompositions.

Before proceeding further, we recall some notation. By £(Z*) we denote the linear
space of all sequences on Z°, and by £,(Z*) the linear space of all finitely supported
sequences on Z*. By § we denote the element in ¢y(Z°) given by §(0) = 1 and § B)=0
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for all 3 € Z°\{0}. For j = 1,---,s, let e; be the jth coordinate unit vector. The
difference operator V; is defined by V;\ := XA — A(- —¢;), A € {(Z?).

The subdivision operator is important in the study of convergence of a subdivision
scheme. Let a be a sequence on Z*. Recall that the subdivision operator associated
with a is defined by

SaMe) =Y ala—20)A(8), «€Z’ (2.1.1)

pez*
where A € {o(Z°). Note that £5(Z°) is a subspace of £,(Z°). The £, norm of an element
A € £,(Z°) is denoted by ||A|l,- It was proved in Chapter 1 that for any finitely
supported refinement mask a, the subdivision scheme associated with a converges in

the L, norm if and only if

lim max{ IIVjSIJII;,/" s j=1,---,8} < 2%
n—o0

Moreover, it was also proved in Chapter 1 that if the subdivision scheme associ-
ated with a converges in the L, norm to the normalized solution @, of (1.1.1) with

the refinement mask a, then for any
9e/P lim max{ |V;S28|lX™ = j=1,---,8}<r <1,

there exists a positive constant C such that ||Q" ¢y — @[, < Cr™ for all n € N where
the operator @, is defined in (1.1.5).

Let 2 be the set of vertices of the unit cube [0,1]*. If the subdivision scheme
associated with a converges in the L, norm, then by Theorem 1.6, it is necessary that
a should satisfy the sum rules of order 1, i.e.,

Y a@a+e)=1 Veel. : (2.1.2)
a€Z*
Hence, if we truncate a refinement mask, then it is necessary for the truncated mask
to satisfy the sum rules of order 1 so that the subdivision scheme associated with the

truncated mask may still converge in the L, norm.
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Refinable functions are encountered in computer graphics where interpolatory
subdivision schemes are used to construct smooth curves and surfaces. The reader is
referred to [6, 31, 38, 39, 40, 52, 84, 85, 89] for detailed discussion on interpolatory
subdivision schemes and their applications to generate curves and surfaces. They are
also known as scaling functions in the wavelet theory, for example, see [13, 15, 18,
26, 27, 79, 102]. Here we are concerned with the behaviour of a refinable function
when there is a small perturbation of its refinement mask. In applications, under
many situations, we need to truncate the refinement masks even though they have
finite support. For example, the coefficients in the refinement masks of Daubechies’
orthonormal scaling functions given in [26] are often irrational. Although in most
cases the coefficients in biorthogonal wavelets are rational, the biorthogonal wavelets
given in [1], with one refinement mask of tap 7 and the other of tap 9, have irrational
coefficients in their masks. This biorthogonal wavelets are known to have an overall

good performance on image compression [1, 76, 94, 95].

Given N € N, let {([- N, N]°) denote the linear space of sequences on Z* which
are supported on [, N]*NZ°*. For a finitely supported sequence b on Z?, throughout
this chapter, its £, norm is defined to be [[b][, := (3 2. [6(2)|P) /* The main result

in this chapter is as follows:

Theorem 2.1 Let a be a refinement mask supported on [—N,NJ* N Z° for some
N € N. Suppose the subdivision scheme with mask a converges in the L, norm. Then
there ezist n > 0 and C > 0 such that for any sequence b € £([—N, N|*) satisfying
Y acze 0(2a+€) =1 foralle € Q and |la—b||; < 1, the subdivision scheme associated

with b converges in the L, norm and

1@z b0 — QF doll, < Clla—bll; Vne€N, (2.1.3)

where the initial function ¢q is defined in (1.1.3) and the linear operator Q, is defined

in (1.1.5). Moreover, let ¢, and ¢, be the normalized solutions of the refinement
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equations (1.1.1) with the refinement masks a and b respectively, then

[¢a — &sll, < Clla — 1. (2-1.4)

The above estimate is sharp in the sense that under the conditions as in Theorem
2.1, we shall give examples to demonstrate that for such examples, there exists a
positive constant C such that for any n > 0, there exists b € {([— N, N|°) satisfying
S acz-b(2a+e) = 1for all € € Q and [la—bll; < 7, but [|QF do~QF dolls > Clla—b]ls
foralln € N.

There are few papers in the literature discussing about the effect of truncation
of a refinement mask. As we know, for s = 1, Bonami, Durand and Weiss in [3]
considered the connectivity of the set of orthonormal scaling functions in the L, norm.
Daubechies and Huang in [29] first investigated the problem how the truncation of
a refinement mask will affect its subdivision scheme and its normalized solution. In
this chapter, we shall extend and improve their result. Daubechies and Huang [29]
considered a special case of Theorem 2.1 for s = 1 and p = co. In Theorem 3.2
[29], they demonstrated that if the subdivision schemes associated with a and b are
convergent in the L, norm, then for any 0 < A < 1, there exists a positive constant

C\ depending on A, a and b such that

1Qz o — @F b0l < Cilla — b]j3-

But their method does not work for A = 1. It is not clear in [29] whether the
subdivision scheme associated with b converges in the L, norm if the subdivision
scheme associated with a converges in the L, norm and the mask b is close enough
to a. Hence, even in this special case, our result here is stronger than theirs. In
this chapter, we discuss the case when the refinement mask has finite support. In
passing, we mention that the results in this chapter can be easily generalized to vector

subdivision schemes.
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Our approach here is different from the approach taken by Daubechies and Huang
in [29]. We deal with this problem from the time domain by using the subdivision

operator, while they did it from the frequency domain by using Fourier transform.

2.2 Auxiliary Results

The proof of Theorem 2.1 is based on our results in Chapter 1 on convergence of
subdivision schemes. The reader is referred to Chapter 1 for detailed discussion on
convergence of subdivision schemes and the relation between the subdivision operator

and the £,-norm joint spectral radius.

The concept of £,-norm joint spectral radius which was introduced in Chapter 1
will be used in our study of the effect of a refinable function caused by truncation of
a refinement mask. The reader if referred to Section 1.2 for definition and results of

¢,-norm joint spectral radius.

Recall that S, is the subdivision operator given in (2.1.1). To relate the subdi-
vision operator to the ¢,-norm joint spectral radius, we introduce the linear operator

A, (e € Q) on £H(Z*) as follows:

AMa) =) a(2a—B+e)AB), a€Z’ )eb(Z). (2.2.1)
BeZ’*

Before proceeding further, we will need some results in Chapter 1. For the reader’s

convenience, we cite some results here. The reader is referred to Lemma 1.5 and

Theorem 1.7 in Chapter 1 for proofs of such results.

Theorem 2.2 Let a be a sequence supported on [—N, N)*NZ* for some N € N. Then
the subdivision scheme associated with a converges in the L, norm (1 < p < o0) if

and only if

nl_l_’nc:,lo max{ [|[V; SPS[IM/™ : 1<j<s} < 2P (2.2.2)
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Moreover, if a satisfies the sum rules of order 1, then
lim max{[|V; S28[[;/* : 1 <j <s}=py(A),
and there ezists a positive constant C depending only on N and p such that
max{||V; 538l : 1<j<s}<CA%, VneN,

where A :={Ac [v: e € Q} and V:={A € {([-N,NJ*) : 3 7. M) =0}, and A.
is given in (2.2.1).

Based on the above result, we can prove that if the subdivision scheme associated
with a converges in the L, norm and a mask & is close enough to the mask a, then

the subdivision scheme associated with b also converges in the L, norm.

Lemma 2.3 Let a be a sequence supported on [—N, N|* N Z* for some N € N. Sup-
pose that the subdivision scheme associated with the mask a converges in the L,
norm (1 < p < o). Then there exist n > 0,v > 0 and C > 0 such that for any
be l([-N,NJ*), if ) oez:b2a+€) =1 for alle € Q and |la — b||; < 7, then

IV; Spdlly < C2el=l  YneN, j=1,--,s,

and therefore, the subdivision scheme associated with b converges in the L, norm.

Proof: Since the subdivision scheme associated with a converges in the L, norm,

by (2.2.2), there exists a positive real number v such that
. .Qngil/n . . s/p—2v
lim max{ [V SO 1<5 <0} <2,
Note that by Theorem 2.2,

H .ongit/m . 21 L., = T njl/n _ - nyl/n
Jim max{ [V S261/" ¢ = 1,0+ s} = lim [A7Y™ = inf A7,
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where A is given in Theorem 2.2. Hence, there exists a positive integer m such that
||.A"‘||;/ ™ < 28/P~2_ Therefore, there exists a positive number 5 such that for any

b€ ([-N,NJ*),if Y cz.0(2a +€) =1forall € € Q and [|la — b|}; < 7, then

BRI/ ™ < 27, (2.2.3)

where By := {B;. |v : € € 0}, and

ByeM(a) = ) b(2a — B +£)A(B)
BeZ®
and V is given in Theorem 2.2. Since }__5.b(2a+¢) =1 for all € € Q, it is easy
to verify that V is also invariant under B;., € € Q. The above argument in proving
(2.2.3) lies in that we can fix a basis of V' which is independent of b, then we view

each B;. as a matrix under this basis.

Since for any ,n € N, [ B[}, < [[B}ll, - [Bl,- Thus for any n = km +r and

0 < r < m, we have
k
IB3 1> = IB5™ " Il» < 1B3lls - 1Bl < CLlIBTIE,

where C) is a positive constant depending only on a,n,m and p. Hence, for n = km+r

and 0 < r < m, it follows from (2.2.3) that
IB5l> < CUIBFIE < Cr2l/r=me < Gyglfrmvimgele=in < Gy,

where C; = C,2l*/P=¥Im  Therefore, by Theorem 2.2, there exists a positive constant

C3 depending only on N and p such that
max{ [V; 534l : j=1,---,5} < Gl Bpll, < C2Ca2¢/2~"  VneN.

Thus we complete the proof. [

Recall that for any sequence ¢ on Z*, the symbol of ¢ is defined to be

Hz) =) ele)z®, z€T,

agZ*
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where z = (z1,---,2,) and 2* = z{*...z2* for @ = (q;,---,a,). For simplicity,

throughout this chapter, we shall use the following notation:

l[&(2)llp == llell,- (2:2.4)

To facilitate our discussion, we establish the following inequality which is crucial

in our proof of Theorem 2.1.

Lemma 2.4 Let a be a sequence supported on [~N, NI*NZ* for some N € N. Then
for any sequence b € €,(Z*), we have the following inequality

I1528(2)B(=>") I, = 1|58, < (2N + 1)*/9|S26]|, - b,  ¥r €N,

where 1/p+1/q=1.

Proof: Note that Snb(z) = 57 58(2)b(22") and Snd(z) = H;:ol d(z%). Since a is
supported on [—N, NJ*, it is easy to verify that the sequence S?4 is supported on
[—(2® = 1)N, (2" —1)N]°. Observe that
[-(@"-1)N,(2" - 1)N)* C U (2"7 + [0, 2")’) .
YE[—-N,NNZs

Therefore, the sequence S7 § can be uniquely decomposed as

Spo= Z Qry

~€[-N,N]*nZ*

with each sequence a, given by a,(8) = a(B) for 8 € (2*v + [0, 2")°) N Z°, and

a,(8) = 0 otherwise. Hence,

15580 < >0 @208,

v€[-N,N]*nZ*

= > @@ 1B, (2.2.5)
¥€[-N,N}*nZ+

= D llaylly- [l

v€[-N,NJ*nZ+
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Note that |[Sg §|p = 3_. e~ njenzs la4|[2. By Holder inequality, we have

1/p
> dedsev (S i)

~€E[-N,N]*nZ* ~E[—-N,N]*nZ+ (2.2.6)
= (2N +1)*/9|S7 515,
where 1/p+1/q = 1. Hence
152 5(2)6(="")l> < (2N + 1)*/2[S26]], - [1Bll-
This completes the proof. =

A direct consequence of the above result is that for any refinement mask a sup-

ported on [—N, N]* for some positive integer N,

1/n

lim [[S76]l5"™ = inf (2N + 1)*/2|1S76]l,) ",
where 1/p+ 1/q = 1. In particular, for any sequence a € ¢;(Z*), we have

. n 1/n o n I/n
lim (1578137 = inf 57813/
To prove Theorem 2.1, the following two lemmas will be needed.

Lemma 2.5 Let ¢ € {([—-N, N]*) for some N € N and Q be the set of vertices of
the unit cube [0,1]°. Suppose ), cz.c(2a +¢€) = 0 for all ¢ € Q. Then there ezist
sequences ¢; in {([—N,N1°), j=1,---,s such that

A=) =D (1=2G(2),  z=(a,--,z)€(@{0),  (22.7)
and
> lleill: < Cwvllells, (2.2.8)

where Cy is a positive constant depending only on N.
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Proof: Define a subspace W of £([0,2N]*) as follows:

W:={be{([0,2N]*) : Y b(2a+e)=0 VeeQ}.
aEZs

We first prove that for any b6 € W, there exist sequences b; € £([0,2N]*) for all
j=1,---,s such that

b(z) =Y (1-2b;(2), zeC. (2.2.9)

i=1
We will use the idea of the division algorithm on maultivariate polynomials to prove
(2.2.9). For discussion on the division algorithm, the reader is referred to page 63 in
[23]. For any monomial z* such that a = (ay,--- ,a,) € 0,2N]°NZ°, if a; > 2 for
some 1 < j < s, then we observe that 2% = 272 — (1 — z2)2°2%, where ¢; is the
Jth coordinate unit vector. Note that a — 2¢; € [0,2N]* N Z* and the total degree of
le| ;== ay+:--+a, > |a—2¢;|. Thus by induction and the division algorithm, it is not
difficult to see that for any b € W, we can find sequences b; € {([0,2N]*),j=1,---,s

and a remainder sequence r € £([0, 1]°) such that

L 4

bz) =Y (1~ 22)bi(z) +7(z), zeC.

=1

Let a denote the sequence in £([0,2N]°) such that @(z) = i (1= zf)?)}(z) Note
that a € W is equivalent to that a € £([0,2N]*) and

a(z2)=0 Vz=(2,-+,2) with z€{-1,1} VI<j<s.

Thus it is easy to see that a € W which impliesr = b —a € W. By r € ¢([0,1]*)
and 3 7, 7(2a +¢) =0 for all € € 0, it is easily seen that r(a) =0 for all @ € Z°.
Hence (2.2.9) is verified.

Next we define a norm on W as follows. For any b € W, define

loflw = inf { D liblly : B(z) = D (1~22)bi(2) withall b; € £(]0,2N]°) } .

i=1 j=1
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By the preceding discussion, || - ||w is well-defined and it is not difficult to verify that
|| - [lw is a norm on W. Since W is finite dimensional and || - ||, is also a norm on W,

there exists a constant Cx depending only on NV such that
1
ltllw < 5CnllBll:  YbeW.

By the definition of || - |lw, it follows that there exist sequences b; € £([0,2N]*) for
any j=1,---,s such that
Bz) =Y (1—6i(z) and 3 [l < 2blw < Cnllble. (2:2.10)
Jj=1 i=1
To complete the proof of this lemma, we note that ¢ € ¢([—N, N]*) and
Zc(2a+e)=0 Veeq.
a€Z*
Let b(a) = (@ — (N, N,--- ,N)), @ € Z°. Then it is easy to see that b € W. The
claim of this lemma follows directly from (2.2.10). |

Lemma 2.6 Let a be a sequence supported on Z*. Suppose the subdivision scheme
associated with a converges in the L, norm (1 < p < o0). Then there exists a positive

constant C such that

IS2Sll, < C2™?  VneN. (2.2.11)

Proof: Let f, := Q"¢o. By induction, we deduce that
fa='S S2E(k)go(2" - —k).
keZ

Since the shifts of ¢y are stable, by (1.3.2), from the above equation, there exists a
positive constant Cy such that ||S248]l, < C12/?||f,||, for all n € N. Note that the
series (fa,n € N) converges in the L, norm. Thus there exists a constant C, such

that [|fall, < C: for all n € N thereby completing the proof. |
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It is easily seen that inequality (2.2.11) is equivalent to the fact that the series
(Qz¢0,n € N) is bounded in the L, norm. Therefore, for the case p = 2, the inequality
(2.2.11) is equivalent to that (Q7¢o,n € N) weakly converges to ¢, in the L, norm
since it is well known that @,(E) converges to qZ)T,(E) as n goes to oo for all £ € R*.

2.3 Proof of Theorem 2.1

Proof: Note that by induction

Qido(z) = D SF8(a)do(2z — a).

acZs
Take 1 as in Lemma 2.3. Let b € ¢([—N, N}*) satisfy Yacz: (20 +€) = 1 for all
€ € Q and |la - b|[; < 7. To estimate Q¢y — QP o, we use the following equality
Qibo(z) — Qido(2) = ) (57 8(a) - 5} () ¢o(2"z ~ a).
acZ’
Since the shifts of @ are stable, from (1.3.2), there exist two positive constants C;

and C; depending only on ¢q such that
C127/7|S3 6 ~ 57 61|, < |Q2do — QFdoll, < Co2™™/?||S2 6 — SP4ll,.  (2.3.1)

Hence, to estimate ||Q7do — Q7 dolp, it suffices to deal with 1Sz & — Sitd|l,. Write
S$7 6 — Sp 4 in the following form:
Sed-Spé=) SKYS. - S)Sp*6 = Y Sk, 5Pk (2.3.2)
k=1 k=1
Since both @ and b satisfy the sum rules of order 1, we have
> (a(2a+s) -b(2a+s)) =0 -VeeQ.
acZ*
Hence, by Lemma 2.5, there exist sequences ¢; € £([—N, NJ*), j=1,---,s such that
A=) - b(z) =3 (1= )&(x) and > flesll < Cwlla— bl

i=1 Jj=1
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for some constant Cy depending only on N.

Let G(2) denote the symbol of S¥-15,_;S7%8. Note that 5,A(z) = @(z)A(2?) for
any A € {5(Z°). This gives us

G(2) =a(z")a(z") - -a(z*") (a(=*") - §(* )) BB - BT,

It follows that

G(z) = 3 G(=*Na(="")a(z") - a2 7)1 — 2B - B
Jj=1
From the fact that V/;E';"/J(z) = (1 —z;) H;:Bl '[,'( 22‘)’ we have

G(z) = Z &(22 )55 18(2)V, 574 6(22). (2.3.3)

=1

Note that for any sequence A € 4,(Z°), HX(z)”p := [[All,- By Young’s inequality and

Lemma 2.4, from (2.3.3), we have

1557 Sa-s57 81l = 1G(2)ll5

< NG - 15518(2)V,577% 8(z ),
=1
< (; Ilc,-lll) max [|SE-16(2) v, 57~ (=), (2.3.4)

< Cwlla — bllx max ||S5-16(=)V; S5~ 8(=) |,
< Cn(2N +1)/%[la - b||, max (1527 8]l5[1 ViS5 ~* 4l
where 1/p + 1/qg = 1. By Lemma 2.3 and Lemma 2.6, it follows from the above

inequality that there exists a positive constant C depending only on a, N and p such
that .

153" SacsSy~*8llp < Clla — bl|, 221/ pale/ =0k

2.3.5
= Clla — bl|,22n~1)/pg-s(n=8) (2.3.5)
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where v > 0 is given in Lemma 2.3. Therefore, by (2.3.2), for all n € N,

153 6 — S 8ll, < D 11Sa™ SamsSp*6]l,

k=1
n

< Czs(n——l)/p”a _ b”l Z 2—-u(n—k)
k=1

(2.3.6)

< C32°/P|la — b3,

where C3 = C27/P 322 27k Thus, by (2.3.1), we infer
1Q% 6o — @5 dollo < C227?||S76 — Spéll, < CoCslla— by ¥neN.

Hence, (2.1.3) is verified. Note that by Lemma 2.3 and Theorem 2.2 the subdivision
scheme associated with b converges in the L, norm. Now (2.1.4) comes directly from
(2.1.3) by limg 00 [|Q2 00 — ¢ll, = 0 and limuye0 || QP b0 — #s[l, = 0 which completes
the proof. [ |

2.4 Sharpness of Theorem 2.1

In this section, we will give examples to illustrate that the estimate in Theorem 2.1 is
optimal. More precisely, we will give examples to demonstrate that the conditions in
Theorem 2.1 are satisfied for a sequence a € ¢([—N, N}*), but there exists a positive
constant C' such that for any sufficiently small n > 0, we can find b € £([—N, NJ%)
satisfying [la — bfly <7, and 3} ,c7.6(2a +€) =1 for all e € Q and

1Q2¢0 — Qi dull, > Clla—blly VYneN. (2.4.1)

Although all the following examples are given in the univariate case, it is easy to
obtain such examples in the multivariate case by using the tensor product. To avoid

complicated calculation, here we only consider the following simple examples.

Example 2.7 Let a be a sequence given by its symbol a(z) = (1 +2)%/2. It is

evident that the subdivision scheme associated with a converges in the L., norm
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since litn oo [|V S7 61168 = 1/2. Take §(z) = (1 + 2)((1 — 1) + (1 + n)z)/2 for
sufficiently small n > 0. Then an easy calculation gives us le — b|l; = n. Note that

for any n € N,
_ n—1 271 2
Spé(z) =2 [J(1+2%) =2 (Z zk) ’
k=0 k=0
and

n—1 n—-1

S8 =2 TJa+2) ] (1 -+ @ +m:*)
k=0 k=0

=2"" (22-:1 zk) ﬁ (1 -n+(1+ n)zzk) (2.4.2)

k=0 k=0
1— 1 o 2"-1 n—-2
-(F ) (B He-rren).
- k=0 k=0

Note that deg [Trca(l — 7+ (L +7)z%) = 2" — 1. It is not difficult to see that
556(2"' —1) = 1/2 and 576(2"! — 1) = (1 —5)/2. Hence, for all n € N,

1526 = S§dllee = [S76(2"" —1) = Sp6(2" — 1)| > /2 = [|a — b]1/2.

Therefore, by (2.3.1), there exists a positive constant C depending only on ¢y such
that for any sufficiently small > 0,

@30 — Qi dbolleo = 2C||S36 — S78lle > Clla —bll;,  VYneN.

Thus the estimate in Theorem 2.1 is optimal for P = oo.

To show that the estimate in Theorem 2.1 is optimal for 1 < p < o0, it suffices

to give an example such that (4.1) holds true for p = 1.
Example 2.8 Let a be a sequence given by its symbol @(z) =1+ 2. It is easy to see

that the subdivision scheme associated with a converges in the L, norm for 1 < p < oo

since limnyo [|VS24]l3"™ = 1. Take 5(2) = (1 + 2)(1 — 5 + pz) for sufficiently small
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T’ > 0. It iS eVident that "a -_— b”l = 277. By Calculatioll’ we have :S-'a:g(z) — i;;l zk
and 578(z) = (Tieg' 25) [T222(1 — 0 + n2?). Let

g(z) := ( "’"Z'l zk) nz2""" ﬁ (1 -n+ 1722") .

k=2n—1 k=0

Since 7 is small and positive, if we expand 574(z) = (a5t 24 [Tk = p + 922,
then each term has a nonnegative coefficient. Note that deg S;‘J(z) = 2" — 1. Hence,

it is straightforward to see that

1S26 — SPsl|, > Z St(k) > g(1) =271y

k=2n
Hence, by (2.3.1), there exists a positive constant C' depending only on ¢q such that
for any sufficiently small n > 0,

Q260 — @Edolly = C27"||S76 ~ SPélli > 2Cn =Clla—b]l,  ¥YneN.

Thus, the estimate in Theorem 2.1 is optimal for p = 1. Note that both Q7 ¢o and
QF do are supported on [—1,3]. It is easy to see that for any 1 < p < oo,

Q200 — Q5 doll, > 47%||Q2d0 — QFdolls > 4™ /9Clla— b, VYneN,

where 1/p+1/q = 1. Therefore, the estimate in Theorem 2.1 is also optimal for any
1<p<co.
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Chapter 3

Interpolatory Subdivision Schemes

3.1 Introduction

In this chapter we are interested in a special kind of refinable functions — fundamental

and refinable functions with compact support.

A function ¢ is said to be fundamental if ¢ is continuous, #(0) =1,and ¢(a) =0
for all @ € Z°\{0}. A fundamental refinable function is a fundamental function
satisfying the following refinement equation

¢ = Z a(a)é(2- — a), (3.1.1)
a€Z*

where a is a refinement mask on Z°.

As in Chapter 1, throughout this thesis, we assume that a mask a satisfies

> a(e) =2 (3.1.2)

acZs
The normalized solution of the refinement equation (3.1.1) with a mask a will be

denoted by ¢,.
If a compactly supported function ¢ is fundamental and satisfies the refinement
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equation (3.1.1) with a finitely supported refinement mask a, then it is necessary that
a(0)=1 and a(22¢)=0 VaeZ\{0}. (3.1.3)

A finitely supported sequence a on Z* is called an interpolatory refinement mask

if it satisfies the above condition (3.1.3).

Before proceeding further, we recall some notation. By £(Z*) we denote the linear
space of all sequences on Z*, and by £o(Z*) the linear space of all finitely supported
sequences on Z°. The support of a sequence a € {(Z*) is denoted by supp a, which
is the finite set {a € Z° : a(a) # 0}. For a € Z*, we denote by &, the element in
€o(Z°) given by 8a(a) =1 and 84(B) = 0 for all 8 € Z*\{a}. In particular, we write
¢ for &. For j =1,---,s, let ¢; be the jth coordinate unit vector. The difference
operator V; is defined by V;A := A — A(- — ¢;), A € ¢(Z*).

If ¢ is a fundamental and refinable function with a mask a, then for any given
sequence b € {(Z*), we can construct a function
fi(z) =) b(B)p(z—B), z€ER’,
BeZ’
which interpolates the sequence b with f;(8) = b(8) for all 8 € Z°. Evidently, the
smoother the function ¢ is, the smoother f; is. Moreover, the value of fo at any
dyadic rational number can be easily computed by the following iterative subdivision

scheme formula:
fs(27"B) = S7b6(B)  VneN,BeZ,

where S, is the subdivision operator on ¢(Z*) associated with the mask a and is
defined by
SaM(@) := )" ala~20)A(8), @ €ZAcU(Z9). (3.1.4)
BeZ:
Subdivision schemes are very useful in computer graphics and wavelet analysis. See
[38, 39] and [85] for their applications to computer aided geometric design, and see

[15] and [102] for their applications to wavelet decompositions.
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Let a be an interpolatory refinement mask. Then the normalized solution of
(3.1.1) with the mask a is fundamental if and only if the subdivision scheme associated
with a converges in the Lo, norm. The reason is the following. If ¢, is a fundamental
refinable function with a refinement mask a, then the shifts of ¢, are stable for
p = oo. Thus by Theorem 1.9 in Chapter 1, the subdivision scheme associated with
a converges in the L, norm. Conversely, if the subdivision scheme associated with a

converges in the L, norm, then @, is a continuous function and
lim [|Q7d0 — Fello =0,
n—+oo

where the operator @, is defined in (1.1.5) and the initial function ¢ is given in
(1.1.3). Since the mask a is an interpolatory mask and the initial function ¢ is a
fundamental function, it is easily seen that each function Q7 @y is also a fundamental
function which implies ¢, is also a fundamental function. A subdivision scheme is said

to be a C* interpolatory subdivision scheme if it converges to a function in C k(R®).

The first C! interpolatory subdivision scheme on R was constructed by Dubuc in

[33]. His mask is given by
a(0) =1, a(l) =a(-1)=9/16, a(3)=a(-3)=—1/16,

and a(a) =0 for « € Z\ {-3,-1,0,1,3}. See Figure 3.1 for the graph of its funda-
mental refinable function. In [30], Deslauriers and Dubuc proposed a general method
to construct symmetric interpolatory subdivision schemes. The L, smoothness anal-
ysis of their schemes was conducted by Eirola in [42]. In [84] Micchelli discussed

connections of their schemes with the Daubechies orthogonal wavelets (see [26]).

For the multivariate case, Dyn, Gregory and Levin [39] constructed the so-called
butterfly écheme which is a C' bivariate interpolatory subdivision scheme, while
Deslauriers, Dubois and Dubuc [31] obtained several continuous bivariate refinable
and fundamental functions. Mongeau and Deslauriers [87] obtained several C! bivari-

ate refinable and fundamental functions. Recently, using convolutions of box splines
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with distributions, Riemenschneider and Shen [89] constructed a family of bivari-
ate interpolatory subdivision schemes with symmetry. More recently, Han and Jia
[52] constructed a family of bivariate optimal interpolatory subdivision schemes with

many desired properties.

The purpose of this chapter is to give a general construction of interpolatory
refinement masks such that the corresponding refinable functions possess the optimal
approximation and L, smoothness properties. Let us discuss these two properties in

detail.

For a compactly supported function ¢ in L,(R?), 1 < p < oo, we define

S(e) : {Z (- —a)Ma) : A€ Z(Z’)}
acd’
and call it the shift-invariant space generated by ¢. For A > 0, the scaled space S*
is defined by S* := {g(-/h) : g € S(#)}. For a positive integer k, we say that
S(¢) provides approximation order & if, for each sufficiently smooth function f in

L,(R?), there exists a positive constant C such that

of |f—gll, <CR* Vh>O.

gesh
Under the assumption $(0) # 0, it was proved by Jia in [58] that S(¢#) provides
approximation order k if and only if S(¢) contains II4—;, where II;_; denotes the set

of all polynomials of (total) degree at most & — 1.

The concept of stability plays an important role in wavelet analysis. Let us recall
the definition of stability from Chapter 1. Let ¢ be a compactly supported function in
L,(R*) (1 < p < o0). We say that the shifts of @ are stable if there are two positive
constants C; and C, such that

3 Aal- — o)

acZ*

CillAll, < SClAll, YA€) (3.1.5)

It was proved by Jia and Micchelli in [68] that a compactly supported function
¢ € L,(R?) satisfies the above L,-stability condition if and only if, for any £ € RS,
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there exists an element 8 € Z* such that

é(f +2m8) #0.
Note that a fundamental function has stable shifts.

Now suppose ¢ is the normalized solution of the refinement equation (3.1.1) with
a mask a which satisfies (3.1.2). By Q we denote the set of the vertices of the unit
cube [0,1]*. For a positive integer k, we say that a satisfies the sum rules of order
kif
D ole+20)p(c +26) = ) a(28)p(28) Vee€Q, peli,.  (3.L6)
Bezs Bez®
It was proved by Jia in [61] and [62] that a satisfies the sum rules of order k implies
S(¢) contains II;_;. If, in addition, the shifts of ¢ are stable, then the converse holds
true. Thus, in particular, if ¢ is a fundamental and refinable function with mask a,
then S(¢) provides approximation order k if and only if a satisfies the sum rules of

order k.

Here is an outline of this chapter. Section 3.2 is devoted to a study of interpolatory
refinement masks which satisfy the optimal order of sum rules. For a positive integer
r, let a be an interpolatory mask supported on the cube [1 — 2r,2r — 1]°. We will
demonstrate that 2r is the optimal order of sum rules that @ satisfies. In the univariate
case (s = 1), there is a unique interpolatory mask supported on 1 -2r,2r —1] and
satisfying the sum rules of order 2r. This is the same interpolatory mask as given by
Deslauriers and Dubuc in [30], and will be denoted by b,. In the multivariate case
(s > 1), such interpolatory masks are not unique. Let ¢, be the sequence on Z* given

by
tr(ay. .., as) i=b (1) - be(a,), (ar,...,as) €Z°. (3.1.7)

Then ¢, is an interpolatory refinement mask supported on [1 — 2r,2r — 1J* and it

satisfies the sum rules of order 2r. We denote by ¢, the normalized solution of
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the refinement equation (3.1.1) with the mask ¢,. In Section 3.3, we shall provide a
general characterization of L, (1 < p < co) smoothness order of a refinable function.
In Section 3.4 we will give an analysis of smoothness of fundamental functions arising
from interpolatory subdivision schemes. It will be demonstrated that ¢:, achieves the
optimal smoothness in the following sense. If a is an interpolatory mask supported on
[1 —2r,2r —1]° and satisfying the sum rules of order 2r, and if ¢, is the corresponding
refinable function, then v,(da) < vp(¢,) for any 1 < p < co where the L, critical
exponent v,(4) will be defined in Section 3.3. Thus, an interpolatory mask supported
on [1 —2r,2r — 1]° is said to be optimal in the L, norm sense if it satisfies the sum

rules of order 2r and the corresponding refinable function ¢ satisfies va(@) = va( ey, )-

Now it is clear that an optimal refinement mask should be chosen in such a way
that the size of its support and the number of nonzero coefficients are minimal. The
size of a mask a is defined to be the volume of the convex hull of supp a. In Section 3.5,
we will give a general construction of two-dimensional optimal interpolatory masks
g- (r € N). The size of g, is 8% + O(r) and the number of nonzero coefficients of 9r
is 2r? + O(r). In comparison, the size of #, is 16r2 + O(r) and the number of nonzero
coefficients of ¢, is 4r® +- O(r). Let RS, denote the interpolatory mask supported
on [1 — 2r,2r — 1] constructed by Riemenschneider and Shen in [89]. The size of
RS, is 12r? 4+ O(r), but the number of its nonzero coefficients is 9r2 + O(r), which is
about twice the number of nonzero coefficients of ¢,. The masks RS, (r=2,3,...)
are symmetric about the origin and the line z; = z,. Qur masks gr enjoy better
symmetric properties. They are symmetric about the origin, the z;-axis, the Zo-axis,

and the lines z; = z, and z;, = —z,.

Finally, in Section 3.6, we will give several examples, including a 16-point bivari-
ate C! interpolatory subdivision scheme and a 30-point bivariate C? scheme. Fur-
thermore, we will demonstrate that the refinable functions associated with our masks
gr (r=1,2,...,12) attain the optimal L, smoothness order. Comparison results and
graphs of several fundamental refinable functions with the masks gr are provided at
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the end of this chapter. Finally, comparison results by applying such interpolatory

refinement masks to generate surfaces are illustrated.

3.2 Optimal Sum Rules

In this section, we shall investigate the approximation properties of fundamental
and refinable functions. Let ¢ be a fundamental and refinable function. Then the
corresponding refinement mask a is interpolatory. In this case, the shift-invariant
space generated by ¢ provides approximation order k if and only if a satisfies the sum

rules of order k. Thus, the problem reduces to a study of sum rules.

The following theorem gives an upper bound for the order of sum rules that an

interpolatory mask satisfies in terms of the support of the mask.

Theorem 3.1 Let a in ¢y(Z) be an interpolatory refinement mask satisfying the sum
rules of order k. If a is supported on an interval [—L, H] with L and H being nonneg-
ative integers, then k < [L_gi |+ [%ﬂj, where |-| denotes the floor function. More-
over, there ezists a unique interpolatory refinement mask such that it is supported on

[—L, H] and satisfies the sum rules of order 5L + (2.

Proof: Since a is an interpolatory refinement mask, we have a(0) =1 and a(25) =0
for all j € Z\ {0}. Set [ := |L52] and & := [Z£L|. Then q satisfies the sum rules of
order k if and only if

h h
D a(2j-1)=1 and Y a(i-1)2-1)"=0, 0<m<k-Ll

J=-I j=-=l
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The above equations can be rewritten in the following matrix form:

[ 1 1 1 | fa=2a=1)] [1]
(=20 -1) (-20+1) --- (2h-=1) | |a(-=20+1) _ ? G2
(=20 = 1) (=204 1) .o (2R —=1)%'| | a(2h—1) | 0]

Note that the matrix ((25 — l)m)_, <j<ho<m<ish 1S 2 Vandermonde matrix; hence the

matrix ((27 —1)™) is nonsingular. If

~I<j<h1<m<I+ht1

L+1 H+1

E>| 3 1+ 3 J=l4+h+1,
then it follows from (3.2.1) that a(—2/—1) =--- = a(2h — 1) = 0, which contradicts
the condition ng:_, a(2j — 1) = 1. This shows & <!+ h + 1, as desired.

Suppose k = [+ h+1. Since ((2j —1)™) _icj<ho<m<in 1S @ Vandermonde matrix,
the equation (3.2.1) has a unique solution for [a(—2/ —1),a(—-2[+1),... ,a(2h —1)],

which can be easily found as follows:

h -_—
oz -1) = (-t Ao cich G2

The proof of the theorem is complete. n

Recall that for a sequence a € 4o(Z*), the symbol of a is defined to be

a(z) := Z a(a)z?, ze T

acZ?

As an example, we consider the case where L = 3 and H = 5. In this case the

interpolatory refinement mask a obtained from (3.2.2) in Theorem 3.1 is given by its

symbol
o 5 g 15 45 5, 3
a(z)— 11282 +322 +1+a2—-§z +’1—2—8'Z
=-]38—(1 + z)s(-—5 2-3 + 25 2-2 —-15 Z'-1 + 3).

55



It satisfies the sum rules of order 5 and gives rise to a C? interpolatory subdivision

scheme.

When L = H =2r—1, r € N, the interpolatory refinement mask given in (3.2.2)
is exactly the symmetric interpolatory refinement mask constructed by Deslauriers
and Dubuc in [30]. Recall that this mask is denoted by b,. Correspondingly, ¢, will
be used to denote the normalized solution of (3.1.1) with the refinement mask b,..

For the reader’s convenience, we list some b, (r = 2,3,4,5) in the following.

9 9 1

T 1 -3 -1 3
ble)=—qgz  tg tlt g g5

=E(l +z) 27 (-2t 44— 2),
T el s 2B 5 T 75 25 5, 3
ba(2) —2562 256° T1° TltimiTamg tae

256(1 +2)°273(3272 18271 + 38 — 18z + 3 2%),

34(2) 2048 —=—(1+2z)Pz%4~52"3+402"2 — 131271 + 208 — 1312 + 40 2% — 5 23),
bs(2) =zmmee (1 +2)0275(35 27 — 350 23 + 1520 2% — 3650 z=" + 5018

"36
— 3650 z + 1520 22 — 350 23 + 35 2*%).

See Figure 3.1 for the graphs of the functions ¢,,r = 2, 3,4, 5.

Next we extend the results of Theorem 3.1 to the multidimensional case.

Theorem 3.2 Suppose a is an interpolatory refinement mask supported on the closed
cell I1¢

j=1{—Lj, Hj] for some nonnegative integers L; and H;. If a satisfies the sum

rules of order k, then

k< min (LL +1J+LH +1J)

Proof: For a fixed integer j between 1 and s, let 4 be the sequence on Z defined by
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1 1f

05} : 05}

0 0

0 2 a4 0 1 2 ~03 0 5
1 r 1}

0.5} ; 05}

0 0

05— ; g 0

Figure 3.1: The graphs of the Deslauriers and Dubuc’s fundamental functions D, T =
2,3,4,5.

57



5(0) = 1, 5(268) = 0 for B € Z\{0}, and

1
b(2ﬂ+1) = '2?1 Z a(al',"' )aj—112ﬂ+11aj+l1'°' 1a3)7 ﬁ € Z.

QY X ] 1 X1y X4 EZL

It is evident that & is an interpolatory refinement mask. Suppose a satisfies the
sum rules of order k. We show that b satisfies the sum rules of order at least k. Recall
that Q is the set of all vertices of the cube [0,1]°. Let

Qj = {(61,-" ,6,) €N : E; = 1}.

For a nonnegative integer m, by the definition of b, we obtain

S 28+ 1)mb(28 +1) = 2,1_1 S enlens.. e,

BeZ (e1,e--1240)EQ,
where
enlen €)= Y (26 +€)"a(2B +e1, 0,26, + ).
(ﬁl [aad .ﬁ-)EZ’

Since a satisfies the sum rules of order k&, we have
em(€1y--- 1€s) = 6mo Ve, - ,6)€Q;, 0<m <k,
where dgo = 1 and &0 = 0 for m # 0. It follows that
D @B+1)™B(2B+1) =bme, 0<m<k
BeZ

That is, b satisfies the sum rules of order k. But b is supported on (—L;, H;]. By

Theorem 3.1, we conclude that k£ < l_é’;—lj + [51;'—1], thereby completing the proof. =

By using tensor product and Theorem 3.1, it is easy to see that there exists
an interpolatory refinement mask which is supported on. IT?_,[—Lj;, Hj] and satisfies
the sum rules of the optimal order min; ¢;<, ( I_-I-"#J + [gl.;—l-J) In general, when
s > 1, such interpolatory refinement masks are not unique. If @ is an interpolatory

refinement mask supported on [1 — 2r,2r — 1J*, r € N, and satisfies the sum rules
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of order k, then Theorem 3.2 tells us that £ < 2r. Let ¢. be the mask given by
(3.1.7). Then ¢, satisfies the sum rules of order 2r. In Section 3.5, we will give a
general construction of interpolatory refinement masks g, (r € N) on Z2 Each g, is
supported on the square [1 — 2r,2r — 1] and satisfies the sum rules of order 2r. But

the size of the support of g, is much smaller than that of ¢,.

3.3 L, Smoothness of Multivariate Refinable Func-

tions

In this section, we will study the smoothness of a refinable function in the multivariate
setting. Many results on the analysis of L, smoothness of a refinable function both in
the univariate case and multivariate case have already been obtained; see, for example
[20, 28, 42, 60, 89, 92, 102] and references therein. For s = 1, the characterization of
L, smoothness was given by Villemoes in [102]. In [60], Jia gave a complete charac-
terization of L, smoothness of a refinable function with any general isotropic dilation
matrix. The results in this section were essentially known to Jia. In this section,
based on a result of Ditzian [34, 35], we present a simple proof to characterize the L,
smoothness of a multivariate refinable function. Jia will discuss the L, smoothness

of a refinable function with an arbitrary dilation matrix in a forthcoming paper [63].

We shall use the generalized Lipschitz space to measure smoothness of a given
function. For any vector y in R?, the difference operator Vy on Ly(R?) is defined
to be

vyf=f_f('—y)a fe Lp(R’)

Let k£ be a bositive integer. The k-th modulus of smoothness of a function fin
L,(R?) is defined by

wk(f, h)p := sup || VEfll,, R >0.
lvl<h
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For v > 0, let k be an integer greater than v. The generalized Lipschitz space
Lip~(v, L,(R*)) consists of those functions f in L,(R?*) for which

we(f,ih), <CR®  Vh>0, (3.3.1)

where C is a constant independent of A, or in other words, w(f, h), = O(h”). The

reader is referred to the books [32, 36, 98] for more detail.

The L, smoothness of a function f € L,(R*®) in the L, norm sense is described
by its L, critical exponent v,(f) defined by

vo(f) :=sup {v : f € Lip" (v, Ly(R?)) }. (3.3.2)
For any v > 0, the Sobolev space W} (R*®) contains all the functions f € L,(R?)
for which
LR+ 1677 de < oo.
It is well known that, for v > n > 0, the inclusion relations
W3 (R?) C Lip™ (v, Ly(R?)) C Wy "(R?)
hold true (see [98]). Therefore,

vi(f)y=sup{v : fe Lip*(v,L2(R%) } =sup{v : f e W¥(R")}.

In the following, we will characterize the L, (1 < p < oo) smoothness of a
refinable function in multidimensional spaces. To do this, we need the following
result on moduli of smoothness, which is based on a result of Ditzian in (34, 35].

Theorem 3.3 Let f be a function in L,(R*) and v be a positive real number. Then
f belongs to the space Lip* (v, L,(R*)) if and only if for an integer k greater than v,

there exists a positive constant C such that
max{ ||Vi-n, fll, : i=1,---,s} <C2™ V¥neN, (3.3.3)
where e; is the i-th coordinate unit vector.
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Proof: Necessity: If f belongs to Lip*(v, L,(R®)), then by the definition of the
Lipschitz space Lip*(v, L,(R?®)), there exists a positive constant C such that

IV5ne, fllo Swr(£,2") <CT™  Vi<i<sneN
Hence, inequality (3.3.3) holds true.

Sufficiency: If inequality (3.3.3) holds true, then we can demonstrate that there

exists a positive constant C; such that
IVE. fll, <SCih*  V1<i<s,h>0. (3.3.4)
Let g be a simple function such that ||g||, = 1 where 1/p + 1/¢q = 1. Define
F(z):= fxg(z) = /RJ flz —t)g(t) dt, z € R”

Then the function F is continuous and bounded. Note that the inequality (3.3.3,

implies that forany i =1,---,s,
IV3-ne; Fllco = [(V3=ne; f) * glloo < [|Vhn, fllsllglly <C27™  VneN.
Therefore, in particular, we have
IVz_ne F(te))] < C27™ VieR,neN.

By a result of Boman (see Theorem 1 in [2]) and Ditzian [35], there exists a positive

constant C; depending only on & and C (independent of g) such that
|VE,. F(te)] S Cih*  YieR,h>0. (3.3.5)

Note that VE, F(0) = (V%,, f) * g(0). It follows from the above inequality (3.3.5)
that for any simple function g with ||g||; = 1, we have that for any i = 1,- - ) S,

[ (75 h) (~2)o(a) de

This yields

= [(Vhe; ) x9(0)] = [V, F(0)| < C1h* VR > 0.

”vhe. f”P - sup

Helle=t

/ (V. f) (—2)g(z)de| < C1h* V1<i<s,h>0.
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Therefore, inequality (3.3.4) is verified. By inequality (3.3.4) and a result of Ditzian
(see Corollary 5.2 and also cf. Theorem 5.1 in [34]), it is straightforward to see that
the function f belongs to the function space Lip*(v, L,(R?)). |

Remark 3.4 In fact, the result in Corollary 5.2 of Ditzian [34] is a Marchaud-type in-
equality which says that to characterize the k-th modulus of smoothness of a function
in L,(R®) in the L, norm sense, the information of the k-th modulus of smoothness
in s independent directions is enough. More precisely, for any vector y in R, we
denote wi(f, h, y)p := supycs IVE, fllp, A > 0. Let y; (i = 1,--- ,s) be s independent
vectors in R*. Then for any v > 0 and an integer £ > v, wi(f, k), = O(h*) if and
only if wi(f,h,yi)p = O(R*) for all i = 1,---,s. Therefore, in Theorem 3.3, the
vectors ¢; (¢ = 1,---,s) can be replaced by vectors y; (i = 1,--- , s) provided that y;
(t =1,---,s) are linearly independent vectors in R*. For more detail of the above
result, the reader is referred to the work of Boman (2], Ditzian [34, 35], and Ditzian
and Totik [36].

Based on the above result, the following theorem gives us a characterization of
the critical exponent v,(¢) of a refinable function ¢ in L,(R?) in terms of its mask
provided that the shifts of the refinable function ¢ are stable.

Theorem 3.5 Let a function ¢ in Ly(R*) (1 < p < o0) be the normalized solution
of the refinement equation (3.1.1) with a finitely supported refinement mask a on Z*
such that Eaez- a(B) = 2°. For any nonnegative integer k, let

Okp(a) = lim max{ [[VESPSIY™ : i=1,---,s}.
Then

min{ k, ,(4) } > s/p — log, o4 5(a). (3.3.6)
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In addition, if the shifts of ¢ are stable, then
min{ k, v,(¢) } = s/p — log; 7p(a). (3:3.7)

More generally, let Y :={y; €Z* : i=1,---,s} be a set of s independent vectors.
Define

Okpy(a) == lim max{|[VESH|/™ : i=1,--- s}

Then the above results still hold true if o ,(a) is replaced with ox,y(a).

Proof: By the definition of oy ,(a), for any real number r such that r > oy ,(a),

there exists a positive constant C, such that
max{ |[VESPS), : 1<i<s}<Cr" VneN. (3.3.8)

By induction and the definition of the subdivision operator defined in (3.1.4), we

observe

Vined =D VESI(B)G(2*- ), i=1,---,s. (3-3.9)

BeZ:
Since the function ¢ in L,(R°®) is compactly supported, from Equation (3.3.9), there

exists a positive constant C; depending only on ¢ such that
[Vimne, Bl < CL27™/P|VESPS|, V1<i<s,neN.
Therefore, it follows from inequality (3.3.8) that
([Vi-ne Blls < C1C.27™/Pr» ¥ eN. (3.3.10)

On the other hand, by induction, we observe oy ,(a) > 2*/7~ since > seze ¢(B) = 2°.
Therefore, the inequality k > s/p—log, o4 ,(a) holds true for any nonnegative integer
k. Since r > oy,(a), we deduce that k > s/p — log, or(a) > s/p — log,r. By
Theorem 3.3, it follows from inequality (3.3.10) that ¢ € Lip® (s/p —logy 7, Ly(R?))

for any r such that r > 0% ,(a). So in conclusion, we have

min{ &, v5(¢) } > s/p — log, o 5(a).
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If the shifts of the function ¢ are stable, to prove Equation (3.3.7), it suffices to
prove that min{k, v,(¢)} < s/p — log, o1 ,(a), equivalently, it suffices to prove that

ok p(a) < 2%/P—v forall 0 < v < min{k, v,(¢)}.

Since the shifts of the function ¢ are stable and ¢ lies in L,(R?), from (3.3.9), there
exists a positive constant C; depending only on the function ¢ such that

Vi S2dlls < Ca2™/?||Vione 6ll, VYV1<i<s,meN.
Since ¢ € Lip®(v, L,(R?)) and k > v, by Theorem 3.1, we have

max{ [[VE S24]|, } < C2™/P max{||[V3.., ¢llp} < C,02%/)  yneN.

1<i<s
Therefore, the inequality o ,(a) < 2°/7~* holds true, as desired. The last assertion of

this theorem comes directly from Remark 3.4. [ |

Remark 3.6 If the shifts of the function ¢ are stable and its mask a satisfies the
sum rules of order k but not k + 1, then ,(¢) < k (see [61, 62]) and therefore, by
Theorem 3.5, v,(¢) = s/p — log, ok p(a). Another remark about the above theorem is
that by carefully choosing the set Y, the equality in (3.3.6) may hold true even when

the shifts of the function are not stable. For example, let
¢(z) = max{1l — |z|/2, 0}, z €R.

Then the function ¢ is a refinable function with its mask a given by its symbol
a(z) == 1+ (272 + 2%)/2. It is a known fact that the shifts of ¢ are not stable and
vp(#) = 14 1/p for any p such that 1 < p < 0o. On the other hand, choose y = 2.
It is not difficult to verify that o2 ,4(a) := lim,— e vz SrE||m =1 /2. Therefore, we
still have vp(@) = 1/p — log; 0254(a) = 1/p + 1 for any p such that 1 <p<oo.

In Chapter 1, we demonstrated that oy 2(a) can be easily computed by calculating

the spectral radius of a certain finite matrix. Let b be the sequence given by

5a) =Y ala+pB)a(f), «cZ’

Bezs
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Recall that the transition operator T} associated with b is defined by

TiMa) = ) b2a—B)MB), a€Z’ A€ bo(Z).
BeZs

From Theorem 1.11 in Chapter 1, we have

lim (V4524115 = /a(T; w),

where p(T; |w) is the spectral radius of the operator T} restricted to W, and W is

the minimal invariant subspace of T} generated by Af& , where

AjA(e) := —Ma —ej) + 2M(a) — AMa + &), a€Z’ X € b(Z).

When the symbol of the mask is reducible, the following result often simplifies

the computation of the smoothness order of a refinable function in terms of its mask.

Theorem 3.7 Let a be a finitely supported sequence on Z°. Suppose for some positive
integer [, a(z) = (1 + z;)lz(z), z=(z1,"++,2,), where 1 <i < s and b is a finitely

supported sequence on Z°. Then the following relation is valid fork>1:

S IV S8l = lim 1V 57 611

Proof: We observe that

e n—1 . n—1 R n—1~ R
VES8(z) = (1 - 2)* [Ja(=") = (1 — 2 [J @ + ') [T 8(=%)
j=0 j=0 =0
n—1 A~
= (1= (1 -z [T3G) = (1 - 2"y v 574(2).
=0
Therefore,
IVESesll, < 2| VE' SR8,  VYneN. (3.3.11)

On the other hand, without loss of generality, we may assume that [ = 1 and b
is supported on [0, N]* with N > k — 1. It follows that V#1985 is supported on
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[0,2"N]°. By what has been proved we see that the following relation is valid for =

near 0:
i 1 T N . P n
VT Sp8(z) =t VE Sp8(z) = Y 2V VESpa(z) + OV,
i —o

Since V¥~! Spé is supported on [0,2°N]?, it follows that
IVELSpéll, < (N +1)[|VESPE), VrneN (3.3.12)

Combining (3.3.11) and (3.3.12) together, we obtain the desired result. ]

Combining Theorem 1.5 in Chapter 1 and Theorem 3.5, we have the following
result.

Theorem 3.8 Let a function ¢ be the normalized solution of the refinement equation
(3.1.1) with a mask a. Suppose the shifts of ¢ are stable and Voo(®) = T is a positive
integer. Then ¢ & C™(R?).
Proof: Let k=r+ 1. By Theorem 3.5 and v.(¢) = r, we have

lim max{||VE ST : 1<i<s}=2".

Let W be the minimal A. (¢ € Q) invariant space generated by {V*§ : 1 < i < s}
where the operators A. are defined in (1.2.4). By Theorem 1.5, there exist two positive

constants ¢; and c; such that
c1flA%leo € max{[VES3 oo : 1<i< s} < A™w VREN, (3.3.13)

where A := {A.lw : € € Q}.

From the above inequalities, it follows that

inf A™Y" = lim lA™12" = lim max{| V¥ 264" : 1<i< s} =27,
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Thus, we have 2| A"||,, > 1 for all n € N. Hence (3.3.13) yields that
max{2™"||VESH S|l : 1<i<s}>e; >0 VneN.

Combining the above inequality with (3.1.5), we have
Crmax{2™||VESPH]le : 1 <i<s}< max{2™(| V5., dllec : 1 <i< s}
< 2"wp(¢,2 ") VR EN.

Hence 2™wi(¢,2™™) o > ¢,C; > 0 for all n € N which implies that ¢ g C™(R?) since
if ¢ € C™(R?), then limp_,0 A~"wr (g, h)ew =0 for any k > r. ]

Finally, in this section, we prove the following result.

Theorem 3.9 Suppose a function ¢ is a fundamental real-valued function on the real
line and ¢ satisfies the refinement equation (3.1.1) with an interpolatory refinement

mask a supported on [—3,3]. Then veo(¢) < 2 and therefore, ¢ & C*R).

Proof: Suppose vyo(p) > 2. Then a must satisfy the sum rules of order at least 3
(see [6, 61]). By a simple calculation, it is not difficult to see that the symbol a(z)

can be written as
a(z) =2z%(1+2)°8(2) with &z):=t—3tz+ (3/8 +3t) 22 — (1/8 + t) 2%,

for some t € R.

By Theorem 3.7 and Theorem 1.5 in Chapter 1, we observe that
03,00(@) = 0g,00(C) = nlingo max{|[31 - Bu|lY™ : By,--- B, € {Ao, A1}},

where Ag and A; are matrices given by

t 3/8+3t 0
Ao:= 10 -3t -1/8-—t%{,
0 ¢ 3/8+3t
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-3t —1/8—t 0
Avi=| ¢t 3/8+3¢ 0
0 -3t —-1/8—¢

Therefore, it is evident that

7300(2) = G0en(€) 2 lim [l A" =2 p(40),

where p(Ao) is the spectral radius of Ag. Note that A = 3/16+ V/(3/8)% + 4(t + 8t2)/2
is an eigenvalue of Ag and

A=3/16 +/1/64 +32(t +1/8)2/2>1/4 VteR.

This yields
3,00(@) = 00,c0(¢) > p(Ao) > 1/4.

Since the function ¢ is a fundamental function, the shifts of ¢ are stable. By Theorem

3.5, we have
min{ 3, V(@) } = —log, 03,00(a) < —log,(1/4) = 2.

This is a contradiction to our assumption v, (¢) > 2. Hence, the inequality v (¢) < 2

holds true. We are done. ]

3.4 Optimal Fundamental Refinable Functions

Before proceeding further, we need the following two lemmas.

Lemma 3.10 Let a be an interpolatory mask on Z° supported on [1-2r,2r—1)° for

some positive integer r. Define a new sequence a; on Z as follows:

a(k) =23 Y a(kan,-,0,), keZ. (3.4.1)

azEZ a;EZ
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If the mask a satisfies the sum rules of order at least 2r — 1, then a; is a univariate
interpolatory refinement mask satisfying the sum rules of order 2r — 1. Moreover, if
the mask a satisfies the sum rules of order 2r, then the mask a; must be the mask b,
the unique interpolatory refinement mask supported on [1 —2r,2r — 1] and satisfying

the sum rules of order 2r.

Proof: By the definition of sum rules given in (3.1.6), it is easily seen that the
sequence a, satisfies the same order of sum rules as the sequence a does. Hence, to
complete the proof, it suffices to prove that a, is a univariate interpolatory refinement
mask. Namely, we have to prove that a;(2k) = 0 for all k¥ € Z\{0}. To this end, it
suffices to prove that for any ¢ in Q such that e = (0,e2,--- ,€4),

DY a(2k,200 + 62,0+ 20, 4+6,) =0 Yk e Z\{0}. (3.4.2)

®@€L  a.€Z
Let b be a sequence on Z given by

bk):=) -+ > a(2k,20: + 3, ,20, +5,), keZ.
@€Z  a,EZ
It is evident that b is supported on [1 —r,r—1] since a is supported on 1-2r2r—1J°.
Note that the mask a is an interpolatory refinement mask which satisfies the sum rules
of order 2r — 1. By the definition of sum rules given in (3.1.6), for any integer j such
that 0 < j < 2r — 1, we deduce that
dobk) 2k =SS D a(2k,20; + €3, - ,2a, +£,)(2k) = §(5).
keZ k€Z x2€Z  a,€Z
This gives us
r-1
D bkE =6(5), 0<j<2r—1. (3.4.3)
k=1—r

This linear system has 2r — 1 unknowns b(1 —r), ... , b(r — 1) and 2r — 1 equations,
and its coefficient matrix is a Vandermonde matrix. Hence, it has a unique solution.
It is easily seen that b(j) = d(j), j =1 —r,...,r —1 is a solution to the above linear

system. This verifies (3.4.2), thereby completing the proof. [ ]
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Lemma 3.11 Let a function ¢ in L,(R*) (1 < p < o) be the normalized solution of
the refinement equation (3.1.1) with a finitely supported refinement mask a on Z°. Let
the sequence a, be given by Equation (3.4.1) and @,, be the normalized solution of the
refinement equation (3.1.1) with the refinement mask a,. If the subdivision scheme
associated with a converges in the L, norm, then the subdivision scheme associated
with the mask a; also converges in the L, norm. In addition, if the shifts of ¢ are

stable, then v,(¢) < vp(da,)-

Proof: In the following, we shall prove that for any nonnegative integer k, there

exists a positive constant C such that
IViSidll, < C2"O—V?||VESHG), VneN. (3.4.4)

From the definition of the subdivision operator given in (3.1.4), we observe that
578(z) = [1325 @(z%) for any z in T*. Therefore, S"E;?(z) = 20-nGng(z 1,.-. 1)
for any z in T since a;(z) = 2!7*G(z,1,---,1) and .S‘:}z;f(z) = H;‘;& @1(2%) for any 2
in T. That is,

Sa8(7) =20 N " .. N 5r6(4, B2, ,Bs)  Vi€Z,mEN. (3.4.5)

B€Z  P,€2
Since ViA(B) = A(B) — A(B — e1), A € &(Z*) where e, is the first coordinate unit
vector, we have
ViSab() =207 " N " VESRS(S, By -+, Bs)-
/€2  B.€Z

Since the mask a is finitely supported, there exists a positive integer r such that
suppa C [~r,7]°. It is easily seen that suppS™§ C [—2"r, 2"r|. Therefore, the above

equality can be rewritten as

2%y 2"y
ViSad@) =20 X" ... N VESHG e 1B, jELZ.

fa==2"r Le=—2"r
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Applying the Holder inequality to the above sum, we obtain

Ivllcsz.l J(J)lp < 2n(1—$)?(2'n+1r + 1)(3-1)P/<1 Z ... Z Iv’f 5’: 6‘(]’ ,521 . ”3’)[?
B2€Z  B,€Z

SO Y o 3 IVESTEG,Bay - L B,

b€z B.€2

where 1/p+1/q =1 and C; = (2r + 1)(~V?/9_ It follows from the above inequality

that
IVES2 8], < CL/Peni=9)r|vksms5|,  ¥neN.

Therefore, the inequality (3.4.4) holds true. Since the subdivision scheme associated

with a converges in the L, norm, by Theorem 1.7 in Chapter 1, we have
lim max{ ”V;S:JII;/" ri=1,---,5} < 2%P
n—oo
Taking k=1 in (3.4.4), we get
lim, V17,87 < 2077 lim max{ | ViSTAY" ¢ i =1, s} <2V,

Hence, the subdivision scheme associated with the mask a; converges in the L, norm.
In particular, we have ¢,, € L,(R).

Note that oy p(a1) := limpeo ”V’fSZ 5”11’/1; and

1
Thole) i= lim max{ [VASTOIY™ : i =1, 5} > lim [VESTSE™
Hence, the inequality (3.4.4) gives rise to
okp(ar) < 20-9?2g, (a) Vk e Nu{0}.

Take k to be a positive integer greater than v,(4). Since the shifts of ¢ are stable, it
follows from Theorem 3.5 that

Vp(®ay) = 1/p — log, okpl(a1) > s/p — log, o%,p(a) = vo(9),
as desired. .

Combining the above results and Theorem 3.9, we have the following result:
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Corollary 3.12 Suppose a function ¢ is a fundamental real-valued function and sat-
isfies the refinement equation (3.1.1) with an interpolatory refinement mask a sup-

ported on [-3,3]*. Then veo($) < 2 and therefore, ¢ does not belong to C?*(R*).

Proof: Let the sequence a; on Z be given in (3.4.1). Suppose ve(¢) > 2. Then
the mask a must satisfy the sum rules of order at least 3. Therefore, it follows from
Lemma 3.10 that a; is an interpolatory mask. Let ¢q, be the normalized solution of
(3.1.1) with the mask a;. Then by Lemma 3.11, the subdivision scheme associated
with a; converges in the L, norm which implies that the function @a, 1s a fundamental
function. From Lemma 3.11, we also have v ($) < Veo(¢a,). It follows from Theorem
3.9 that v (@) < Veo(®q,) < 2. This is a contradiction to our assumption Ve, (@) > 2.
Therefore, the inequality v, (¢) < 2 holds true. ]

Corollary 3.12 says that there is no C? fundamental refinable function supported
on [-3,3]°. This result also implies that if a function ¢ is an orthogonal scaling
function supported on [0, 3]°, then v2(¢) < 1 and therefore, ¢ & CY(R?).

Theorem 3.13 Let ¢ be a fundamental refinable function with a finitely supported
interpolatory mask a. Suppose a is supported on [1 — 2r,2r — 1]* for some positive
integer v and the mask a satisfies the sum rules of order 2r — 1. Let a sequence a; on
Z be given by Equation (3.4.1) and let ¢,, be the normalized solution of the refinement
equation (3.1.1) with the mask a;. Then the function ®a, s a fundamental function

and

VP(¢) < Up(‘bal) V1 <p<Lco.
Moreover, if the mask a satisfies the sum rules of order 2r, then

vo(4) < vp(.) Vi<p<Loo

In other words, the inequality v,(¢) < vp(dr,) holds true where t, is the tensor product
interpolatory mask given in (3.1.7).
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Proof: By Lemma 3.10, we see that the mask q; is an interpolatory refinement mask.
Since the function ¢ is fundamental, the shifts of ¢ are stable. By Lemma 3.11, the
subdivision scheme associated with the mask a, converges in the L, norm for any p
such that 1 < p < co. Hence ¢,,, the normalized solution of the refinement equa-
tion (3.1.1) with the interpolatory refinement mask a,, is continuous and therefore

fundamental. It follows from Lemma 3.11 that v,(¢) < Vp(@g,) for any 1 < p < oco.

If the mask a satisfies the sum rules of order 2r, by Lemma 3.10, then the sequence
a; must be the mask b.. Hence, by Lemma 3.11, v,(¢) < v,(¢s,) for any p such that
1<p<oo. [ |

3.5 Construction of Bivariate Optimal Interpola-

tory Masks

Our construction of optimal interpolatory masks relies on solvability of certain linear
systems of equations. To facilitate our discussion, we establish two auxiliary lemmas
first. In what follows, the set of nonnegative integers is denoted by Z,, and the
cardinality of a set E is denoted by #E.

Lemma 3.14 Let ly,... ,l. be distinct parallel lines in R?, and let T be a subset
of i U---Ul. such that #(T N1I;) = 7 for each j = 1,...,r. Suppose p is a
polynomial in two variables of (total) degree at most r — 1. If p vanishes on T, then
p vanishes everywhere. Consequently, the square matriz (t‘flt?)(tx.tz)eT.0$u1+szr—1 is

nonsingular.

Proof: The proof proceeds by induction on r. The statements are obviously true

for r = 1. Let r > 1 and assume that the lemma has been verified for r — 1.
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After a suitable coordinate transform, we may assume without loss of generality

that the equations of the lines /y,... ,l, are given by
21—/\]‘:0, j=l,...,7‘,

where Aj,..., . are pairwise distinct real numbers. We observe that o(A-, z2) is
a polynomial in z, of degree at most » — 1. But it has at least r zeros. Hence

P(Ar,z2) = 0 for all z; € R. This shows that p(z;, T3) is divisible by z; — \.. Suppose

p(z1, z2) = (21 — A )g(zy, z2)-

Then g is a polynomial of degree at most r —2. Let T” := T \ /,. Then g vanishes on
T". By the induction hypothesis we obtain ¢ = 0. It follows that p = 0, as desired.

In order to prove that the matrix (81'%3%)(¢1,t2)€T.0<m +m<r—1 1S nonsingular, it
suffices to show that the linear system of homogeneous equations

Z c”h"zt‘{lt? =0, (tla t2) €T,

01+ <r—1

only has the trivial solution for ¢, ., (0 <13 + v, < r — 1). For this purpose, let

[ Vi 2
p(z1, z2) = E Corin Ty Ty
0<r +1a<r—-1

Then p(z1,z;) is a polynomial of total degree at most r — 1 and it vanishes on 7. By
what has been proved, p = 0. This completes the proof. ]

Lemma 3.15 For a positive integer r, let
Tri={(u1,p2) €Z3 : py + g <2r—1}\{(0,2j-1) : j=1,...,r},

and let p be a linear combination of the monomials =¥z, (p1,42) € Tr. Let
li,...,lor be the lines z; — A\; =0, j = 1,...,2r, where ALy ...y Ao are mutually
distinct nonzero real numbers. Suppose T is a subset of the union of these lines such
that (T Nlyj1) = #(T Nly;) =2 ~1 foreach j = 1,... ,r. If p vanishes on T,
then p vanishes everywhere. Consequently, the square matriz (t{“t;")(,h,z)eT’(m,m)ep,

is nonsingular.
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Proof: The proof proceeds by induction on r. The statements are obviously true

for r =1. Let r > 1 and assume that the lemma has been verified for r — 1.

Since p does not contain a term associated to z2"~1, the degree of the univariate
polynomial p(As,, z2) is at most 2r—2. But it has at least 2r—1 zeros. So P(A2r,22) =0
for all z, € R. This shows that p(zi,z,) is divisible by z; — Ay, Suppose

p(z1,72) = (21 — Ao Ju(zy, 72).

Then u is a polynomial of (total) degree at most 2r —2. But P(A2r—1,Z2) has at least
2r — 1 zeros; hence so does %(Ag2r—1,Z2). This shows that u(zy, z2) is divisible by
€1 — Az2r—1. Suppose u(z;,z3) = (z; — A2r—1)q(z1, z,). It follows that

p(z1,22) = (1 — Aor)(z1 — A2r—1)q(z1, T2).
Since A2rAgr-; # 0, we see that g is a linear combination of the monomials zitzh?,
(K1, 2) € T'r_;. Moreover, g vanishes on 7’ := TN ({yU---Uls.~3). By the induction
hypothesis we obtain g = 0. It follows that p = 0, as desired. The proof for the last

statement is analogous to that for Lemma 3.14. =

We are in a position to describe a general method for the construction of bidi-

mensional optimal interpolatory masks.

Theorem 3.16 For each positive integer r, there exists a unique interpolatory mask

gr with the following properties:

() gr is supported on the square {(ey, ;) € Z2 : 1] + |ag] < 2r};
(b) g- is symmetric about the two coordinate azes;

(c) g satisfies the sum rules of order 2r.
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Proof: Let 1 denote the set {(0,0),(1,0),(0,1),(1,1)}. An interpolatory mask a
satisfies the sum rules of order 2r if and only if
D" a(er + 281,62+ 26:) (€1 + 281)" (€2 + 262)* = b0 (3.5.1)
Br.B2€2
for all (€1,¢2) € Q and all (u1,u2) € Z2 with p; + pp <2r — 1. If @ is symmetric
about the two coordinate axes, then (3.5.1) is valid whenever one of p; and y, is an
odd number. Thus, in such a case, we only have to verify (3.5.1) when both y; and

H2 are even.

Let us construct the desired mask. Set g.(0) := 1 and g,(28) := 0 for 8 € Z2\{0}.
Then g, is an interpolatory mask and satisfies (3.5.1) for (g1,e2) = (0,0) and all
¢ € Z%. Set gr(a1,a2) := 0 for |ay| + |az| > 2r. Then g, satisfies condition (a).
Furthermore, set

b-(26: +1), B.=0,
01 .32 € Z \ {0}1

where b, is the unique interpolatory mask supported on 1 — 2, 2r — 1] and satisfying

9:-(2.31 + 11 2ﬂ2) =

the sum rules of order 2r. Since b, satisfies the sum rules of order 2r, we deduce that
gr satisfies (3.5.1) for (e1,€2) = (1,0) and gy + pz < 2r — 1. Similarly, set

b"(2ﬁ2 + 1)1 ,81 =0,

07 ﬂl € Z \ {0}'
Then g, satisfies (3.5.1) for (e1,€2) = (0,1) and p; + pp < 2r — 1.

9-(261,20, + 1) =

We assume that g, is symmetric about the two coordinate axes. Thus, it remains
to determine g-(1 + 26;,1 +208;) for 0 < 8, + 53, < r —1. Suppose p; = 2v; and
p2 = 2u, where vy, v, are nonnegative integers. For (g,¢,) = (1,1), (3.5.1) reduces
to the following system of equations for a(l + 26,1 + 26;) 0<B1+B,<r—1):

D (14261, 1426:)(1 +26)* (1 + 28,)* = 1/46,0, (3.5.2)
0SB +62<r—-1
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where v = (v1,1%). In this case, (3.5.1) is valid for 0 < y; + pz < 2r — 1 if and only
if (3.5.2) is true for 0 < v +v2 < r — 1. Let T be the set

{(1+28)%,(1+282)%) : (Br.B) €22, B+ B> <7 —1}.

Then T intersects the line £; — (25 — 1)® = 0 at exactly r + 1 — j points for each
j=1,...,r. Thus, the conditions of Lemma 3.14 are satisfied. By Lemma 3.14 the

square matrix

((]_ + 2,31)2"1 (1+ 2.32)2D2)05ﬁ1+,625r—1.05u1+vz5"—1

is nonsingular. Therefore, the linear system of equations in (3.5.2) with (v1,1,) € z?

and vy 4+ v2 < r —1 is uniquely solvable. Let

(gr(L +261,1+ 252))05ﬂ1+ﬁ25r—1

be the solution. This completes our construction of g,. Obviously, g, satisfies condi-

tions (a), (b), and (c).

Finally, let us show the uniqueness of such a mask. Let a be an interpolatory

mask satisfying conditions (2), (b), and (c). We wish to verify that for (g,&;) €

a(er + 261,62 + 262) = g (€1 + 251,62 + 26,) Y (61,5:) € Z2. (3.5.3)

From the preceding analysis, this is certainly true for (e;,€2) = (0,0) or (1,1). Con-
sider the case (e1,¢2) = (1,0). By symmetry, (3.5.1) reduces to the following system
of equations for cg, 5, (0 < By + B2 <r —1):
D wam(1+280™(2) =60, wmtwm<r—1,  (354)
0<B1+B2<r—1
where

2a(26, +1,0), B2=0,
4a(26: +1,26,), B2 > 0.

cﬂl B2 =
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Since the matrix

1% 2
((1 +28,)%1(26,) ‘Q)0$51+32$"—1'05"1+"25"1

is nonsingular, the linear system of equations in (3.5.4) is uniquely solvable. On the

other hand, if we choose

2br(2ﬂ1 + 11 0)7 ﬂZ = 0:
07 ﬂ2 > 07

cﬂl vB? =

then (cg,,5)o<p+<r—1 is a solution of (3.5.4). By the uniqueness of the solution,
this shows that (3.5.3) is true for (e1,e2) = (1,0). For the case (&1,&;) = (0, 1), the

proof is similar. ]

From the above proof we see that g, is minimally supported among all the optimal
interpolatory masks having the indicated symmetry and supported on the square
(1 —2r,2r — 1]%. However, if we relax the requirement on symmetry, then there exists

a family of optimal interpolatory masks with smaller support.

Theorem 38.17 For each positive integer r, there ezists a unique interpolatory mask

h. with the following properties:

(a) k. is supported on the rectangle {(a1,@2) : |y + 2| <27, g — @] < 2r —1};
(b) h, satisfies the sum rules of order 2r.
Proof: Suppose a is an interpolatory mask satisfying conditions (a) and (b). In par-

ticular, a(0) =1 and ¢(2a) = 0 for @ € Z \ {0}. Let Q := {(0,0),(1,0),(0,1),(1,1)}.
For (g1,¢;) € , let

Ty = ((61,62) + 222) N {(a1, @2) @ |og + a2 < 2r, la; — aa| < 2r — 1}
Let
Ci={(b,p2) €Z% : pr+p2 <2r =13\ {(0,2 = 1) : j=1,...,r}.
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Since a satisfies the sum rules of order 2r, the following relations are valid for

(61, Ez) € :

Z a(alaa2)a‘l‘la‘2‘2 = 5“0 V(l‘h [12) er. (355)

(a1,02)€Te; ey
We observe that Tj g intersects the lines z; (25 —1) = 0 at exactly 2r—(25—1) points
for each j = 1,...,r. Thus, the conditions of Lemma 3.15 are satisfied. Hence the
square matrix (@} @5 )(ay,a2)€Ty 0, (u1.u2)er 1S nonsingular. Therefore, the values of a(a)
for a € T} are uniquely determined by (3.5.5). On the other hand, a solution for the
values of a on T} g can be easily found as follows: a(a;,0) = b,.(;) for oy € 14+2Z and
a(a1,@z) =0 for @y € 1+ 2Z and o, € 2Z\ {0}. In the same way we can show that
a(0,a2) = b.(x2) for a; € 142Z and a(e, a3) = 0 for o; € 2Z \ {0} and o, € 1+2Z.
It remains to determine the values of a on T};. We observe that T, also intersects
the lines z; £ (25 — 1) = 0 at exactly 2r — (27 — 1) points for each j = 1,... ,r. Thus,
Lemma 3.15 is applicable and a(a) (a € T},;) are uniquely determined by (3.5.5) with

(€1,€2) = (1,1). This completes the proof for uniqueness.

Let A, denote the unique solution determined in the preceding process. We claim
that A, is symmetric about the origin, i.e., h.(a) = h.(—a) for all & € Z. This
is certainly true for a € Too U Tio U Tp;. To verify h.(a) = h(—a) for @ € Ty,
we set a(a) := h.(—a) for & € T;,;. Then (a(c))aer,, satisfies the linear system
of equations in (3.5.5) with (e;,€2) = (1,1). By the uniqueness of the solution, we
obtain a(e) = h.(a) for all @ € Ty, as desired. (A similar reasoning shows that A,

is symmetric about the line z; — z; = 0.)

It remains to verify that A, satisfies the sum rules of order 2r. Obviously, A,
satisfies (3.5.1) for all (e1,€2) € Q\ {(1,1)} and (u1,u2) € Z2 with py + pp < 2r — 1.
Let us show that this is also true for (;,&;) = (1,1). Note that II5._; is the linear

span of the set

{2t - (B1,p2) €ETU{(0,25 1) : j=1,... T} }
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Thus, it suffices to show that
Z h,(al, ag)a‘l“a;" =0
(a1,22)€T1 1
whenever (u1,p2) = (0,25 — 1) for j = 1,...,r. This is indeed true, since A, is

symmetric about the origin. The proof of the theorem is complete. [

The above proof tells us that k. is minimally supported among all the masks
which are supported on [1 — 2r,2r — 1]* and satisfy the sum rules of the optimal
order 2r. If we set a(ay,az) := (hr(a1, @2) + he(—01, @2))/2 for (a;, ;) € Z2, then
a satisfies all the conditions in Theorem 3.16. By the uniqueness of the solution,
we obtain a = g,. This shows that g.(a1, ;) = (hr(on, a2) + A (—a1,2)) /2 for all
(a1, a2) € Z2 A similar argument shows that g, is symmetric about the two lines

zy -z =0and z; +z, =0.

From our construction, we see that the numbers of nonzero coefficients of g- and

h. are 2r® + 6r + 1 and 2r? + 4r + 1, respectively.

3.6 Examples, Figures and Applications

The masks g, and A, are well known. The mask g; induces the bivariate hat function
which is defined in (1.1.3) with s = 2 and the the mask h, induces the well known
three direction box spline function, see [5].

In this section we provide details for the interpolatory masks ks, g, ks, and gs.
In what follows, the refinable function corresponding to a given mask a is denoted by
®a. We shall use the results in Section 3.3 to compute the L, smoothness order of dq.
and qS;,,.: It turns out that ¢, (r = 1,2,...,12) attain the optimal L, smoothness
order. Note that v2(¢) > k + 1 implies ¢ € C*¥(R?). In passing, we mention that
given any multivariate interpolatory mask a, for any positive integer r, it is easy to

obtain a new interpolatory mask b such that Z(z) = (@(z))"&(2), z € T* where &(z)
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can be explicitly expressed by using @(z). See Proposition 3.7 in Han [48] and [50] for
detailed discussion. Such method of constructing interpolatory masks from known

ones was further discussed by Ji, Riemenschneider and Shen in [57].

Example 3.18 The refinement mask h, is given by
(0 0 0 -1 -1 o

0 0 0 0 o0 o0 O

¢ 0 0 o0 o0 0 O

0 0 - - 0 0 o0

Then h, satisfies the sum rules of order 4 and vy(és,) = 2.44077. Therefore, h,

induces a C'! interpolatory subdivision scheme.

Example 3.19 The refinement mask g, is given by

[0 0 -1 —L _1 g o

0 0 0o 0 0 0 O

0 0 -4 - -L 0 o

Then g, satisfies the sum rules of order 4 and v3(¢,,) &~ 2.44077.
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Example 3.20 The refinement mask kj is given by

0

o O ©

[~
lo 8o o
[

[+
[
=]

[~ R v}

o

Then hj3 satisfies the sum rules of order 6, vo(¢n,) =~ 3.04845

Example 3.21 The refinement mask gs is given by

-

0
0

[ [
[+ (]

o
(== T
X1

o

0

0

0
0

o O O o o ©o o o

© O O O © O o ©o o o o

o o o o

_.3
256

~25
256

32

0

0

I.-

N
o
=]

o

N
~

w
o o o o (=} (=] (=] o o

[*]
[¥] N
I g 2

[~
=3 Oml'— o o
o <

0

©c O O o o o ©o o o o

bt
(%)
00|

256

3 3
256 256
0 0
25 _3
256 32
0 0
I5 63
128 128

75
1 128
3
128 16
0 0
25 _3
256 256
0 0
3
256 0

3 3
256 512
0 0
_25  _21

56 512
0 0
75 8T
128 256
s
1 128
I 87
128 256
0 0
-2 _27
256 512
0 0
3 3
258 512

o o o o O o o o

o O o

o

0
0
0
0

[ R - |

=

128

Jea

N W
(VO ¥ ]

o &

(]
o
[

(=R = B oo ]

0

0 0
¢ 0
0 o
c 0
0
0 &
0 o0
0 0
0 o0
0 0
0 0 |
and ¢, € C2.
0 0 |
0 0
0 0
0 0
0 %
0 %
0 &
0 0
0 0
0 0
0 0 |

Then g3 satisfies the sum rules of order 6, va(dgs) = 3.17513 and ¢,, € C2.
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Comparison Results
r | ) | vy | ) |n@S) | M) [ NG | N [ (RS
1 [1.50000 | 1.50000 | 1.50000 | 1.50000 9 7 9 7
2 | 2.44077 | 2.44077 | 2.44077 | 2.44077 25 17 21 31
3 |3.17513 | 3.04845 | 3.17513 | 3.17513 | 49 31 37 49
4 |3.79313 | 3.43242 | 3.79313 | 3.79313 81 49 a7 133
5 | 4.34408 | 3.79464 | 4.34408 | 4.34408 | 121 71 81 175
6 | 4.86202 | 4.15622 | 4.86202 | 4.86202 | 169 97 109 307
7 15.36283 | 4.52217 | 5.36283 | 5.36283 | 225 127 141 373
8 |5.85293 | 4.89133 | 5.85293 | 5.85293 | 289 161 177 553
9 | 6.33524 | 5.26021 | 6.33524 | 5.89529 | 361 199 217 643
10 | 6.81144 | 5.62339 | 6.81144 | 6.42641 | 441 241 261 871
11| 7.28260 | 5.97253 | 7.28260 | 6.17848 | 529 287 309 985
12 1 7.74953 | 6.29948 | 7.74953 | 6.68093 | 625 337 361 1261

Table 3.1: Comparison results among interpolatory subdivision schemes by tensor

product, Riemenschneider and Shen [89] and Han and Jia [52].

Recall that b, denotes the interpolatory mask supported on [1 — 2r,2r — 1] as
constructed by Deslauriers and Dubuc in [30]. Let ¢, be the tensor product of b,, i.e.,
tr(a1, a2) = br(a1)br(az) for (o, a;) € Z2. Let RS, denote the interpolatory mask
supported on [1 — 2r,2r — 1]? as constructed by Riemenschneider and Shen in [89].
The following table gives a comparison of our masks 4. and gr with ¢, and RS,. All
these masks are supported on the square [I — 2r,2r — 1]%. For convenience, we use
v2(a) to denote v5(¢,). Also we use N(a) to denote the number of nonzero coefficients
in the r-eﬁnement mask a. The values of vo(t,) = v,(b,) are taken from (42] and the
values of ,(RS,) for r = 2,..- ,8 are taken from (89]. The values of v,(RS,) for
r=9,---,12 are taken from [74].
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From the above table we conclude that ¢, (r =1,...,12) attain the optimal L,
smoothness order. In passing, we mention that without solving any system of linear
equations an explicit formula of the interpolatory masks g, can be easily found by

using a similar idea as in [88].

In the following, we shall apply the above various interpolatory subdivision

schemes to generate bidimensional surfaces.

By RS; we denote the interpolatory mask supported on [—3,3]? and given by
Riemenschneider and Shen [89]. By Butter fly we denote the butterfly interpolatory
mask given by Dyn, Gregory and Levin in [39)].

Given any interpolatory refinement mask «, for any given sequence b € £(Z?), we
construct a function
folz) =) b(B)a(z — B) = D SI6(B)a(2’z — B),  z€ER’,
fez BEZs
which interpolates the sequence b with f,(8) = b(8) for all 8 € Z°. Then we calculate
the value of f; at any dyadic rational number by the following iterative subdivision

scheme formula:
f(27"8)=57b6(B) VneN,BeZ,

In our experiment, the initial data is given by
b(i,j) =25 -4i*+ ;2 for %+ ;2 <25,
and otherwise b(z, j) = 0.

The comparison results are given in Tables 3.2 and 3.3.

In Table 3.2, the first row of numbers refers to the nonzero elements in each
mask. The first column of numbers refers to the iteration step in the subdivision
schemes and other numbers refer to the actual CPU time in second when applying

the subdivision scheme with a mask a to the iteration step ¢.
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step || RS2 | Butterfly ta g h,
Elm 31 25 25 21 17
11.67 10.00 10.00 | 8.33 6.67
45.00 38.33 33.33 | 33.33 | 28.33
188.33 156.67 156.67 | 135.00 | 113.33
765.00 635.00 631.67 | 548.33 | 458.33

(=20 B4 B I N L)

Table 3.2: Comparison results on CPU time in second when using the subdivision

schemes with the masks RS2, Butterfly, t,, g, and h,.

step RS, | Butterfly ta g2 ho
Ratio | 1.8235 | 1.4705 | 1.4705 | 1.235
3 1.7500 | 1.5000 | 1.5000 | 1.2500
4 1.5882 | 1.3529 | 1.3529 | 1.1765
5 1.6618 1.3824 1.3824 | 1.1912
6 1.6691 1.3855 1.3782 | 1.1964

== =] —= ] =

Table 3.3: Ratio comparison between the masks RS,, Butter fly, t,, g, and h,.

In Table 3.3, the first row of numbers refers to N(a)/N(h;). The first column
refers to the iteration step. For example, if the step is 3, we calculate the value of i3
at all the points 27%(8y, B2) with max{|6,[, |82/} < 5-23. The number determined by
the mask a and the iteration number ¢ means the ratio between the CPU time when
applying the subdivision scheme with the mask a to the iteration step i and the CPU
time when applying the subdivision scheme with the mask 4, to the iteration step
2. It is convincing that this ratio is very close to the ratio N(a)/N(k;). Thus, with
less nonzero numbers in the mask, we use less CPU time to generate a surface. See
Figure 3.2 for the surfaces generated by using different masks.

Finally the fundamental functions in our examples are given in Figures 3.3 - 3.6.
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RS2 Butterfly

O N M~ o

Figure 3.2: The graphs and contours of the generated surfaces by using different

interpolatory refinement masks.
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Figure 3.3: The graph and contour of the fundamental function Gn,- It is a C!
function with vy(¢s,) & 2.44077.
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Figure 3.4: The graph and contour of the fundamental function Ghy. It is a C?
function with v,(és,) & 3.04845.
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Figure 3.5: The graph and contour of the fundamental function ¢,,. It is a C'! function
with v,(¢,,) = 2.44077.

j
h

i A (
4 S0 i
p

@l

4 5

&

&
&8
Lt
&b
&
o
~

Figure 3.6: The graph and contour of the fundamental function @gs- It isa C? function
with v(d,,) ~ 3.17513.
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Chapter 4

Multivariate Biorthogonal

Wavelets

4.1 Introduction

Based on the results in Chapters 1 and 3, in this chapter we deal with the analysis
and construction of multivariate biorthogonal wavelets with some desired properties.
It is well known that in various applications high smoothness, small support and
high vanishing moments are the three most important properties of a (bi)orthogonal
wavelet. On the other hand, there is no C® (bi)orthogonal wavelet with compact
support. In this chapter, we shall investigate the mutual relations among these three

properties.

Compactly supported (bi)orthogonal wavelets on the real line have been found
to be very useful in applications such as signal processing and image compression, for
example, see [1, 27, 76, 77]. In [18], Cohen, Daubechies and Feauveau proposed a gen-
eral way of constructing univariate biorthogonal wavelets. Though the tensor product

(bi)orthogonal wavelets provide a family of multivariate (bi)orthogonal wavelets to
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deal with problems in high dimensions in applications, it has its own advantages
and disadvantages. Therefore, as noted in many papers [10, 16, 21, 57, 77, 90] and
references cited there, it is of interest in its own right to construct non-tensor prod-
uct (bi)orthogonal wavelets in high dimensions. In the current literature, there are
many papers on constructing multivariate biorthogonal wavelets, especially bivariate
biorthogonal wavelets. To only mention a few, see {16, 21, 57, 77, 90] and references
therein. Bivariate compactly supported quincunx biorthogonal wavelets were con-
structed by Cohen and Daubechies in [16]. In [90], a family of bivariate biorthogonal
wavelets with the scaling function being a box spline was given by Riemenschneider

and Shen.

Usually, a biorthogonal wavelet is derived from a multiresolution analysis gener-
ated by a pair of a scaling function and its dual scaling function. The construction
of wavelets in multivariate setting is more challenging than its univariate counter-
part, see [4, 18, 27, 57, 67, 72, 79, 90] and references therein on construction of
(bi)orthogonal wavelets from a multiresolution analysis. To obtain a biorthogonal
wavelet, we have to find two refinable functions with some desired properties. Re-
call that a function ¢ is said to be refinable if it satisfies the following refinement
equation

¢= a(B)g(2- - B), (4.1.1)

Bezs
where a is a finitely supported sequence on Z°, called the refinement mask.

As before, we assume that a satisfies 3_;.5,a(8) = 2° and we shall use @, to

denote the normalized solution of the refinement equation (4.1.1) with the mask a.

The concepts of linear independence and approximation order of a function play
an impérta.nt role in the study of biorthogonal wavelets. The shifts of a compactly
supported function ¢ : R* — C are said to be linearly independent if for any
z € C°, there exists a multi-integer 8 in Z* such that 3(2 + 278) # 0. If for any
£ € R?, there exists a multi-integer 8 in Z* such that $(£+270 ) # 0, then the shifts of
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¢ are said to be stable. See [68] for discussion on linear independence and stability.

A function is called a scaling function if it is refinable and has linearly inde-
pendent shifts. The general procedure of constructing a biorthogonal wavelet is the
following. First, find a scaling function ¢ in Ly(R°) which satisfies the refinement
equation (4.1.1) with a finitely supported refinement mask a. The next step is to find
a refinable function ¢? in L(R*®) such that ¢? satisfies

¢t =) a¥(B)¢'(2- - B), (4.1.2)
BeZs
where a is a finitely supported sequence on Z*, and ¢ satisfies the following biorthog-

onal relation
/ o(t — @) ¢%(t)dt = d(a) VaeZ’, (4.1.3)
Rl

where §(0) = 1 and é(a) = 0 for all @ € Z*\{0}. This function ¢ is called a dual
scaling function of ¢. If ¢ is the dual scaling function of itself, ¢ is called an
orthogonal scaling function. Finally, a biorthogonal wavelet is derived from the
above ¢, %, a and a®. The reader is referred to [10, 12, 13, 18, 27, 57, 67, 72, 79, 90] for
detail on the construction of a biorthogonal wavelet from a pair of a scaling function
and its dual scaling function. It is well known that the smoothness of the scaling
function and its dual scaling function will determine the smoothness of their derived
wavelets, and the approximation orders of the scaling function and its dual scaling
function will determine the vanishing moments of their derived wavelets. For more
detail on (bi)orthogonal wavelets, the reader is referred to [4, 10, 12, 13, 16, 18, 21,
22, 25, 27, 57, 67, 72, 77, 90, 99] and references cited there.

By (2 we denote the set of the vertices of the unit cube [0,1]*. For a positive
integer k, recall that we say that a sequence a on Z* satisfies the sum rules of order

kif

> a(2B+e)p2B+e) = a(20)p(28) Vee @ peli,  (414)

B8ez* Bez*
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where II;_; is the set of polynomials with total degree less than k. Let a function
¢ be a refinable function with a mask a. It was proved by Jia in [61, 62] that if the
shifts of ¢ are stable, then S(¢) provides approximation order k if and only if the
mask q satisfies the sum rules of order k. Therefore, it is evident that S (@) (or S(¢%))
provides approximation order k if and only if the mask a (or a?) satisfies the sum

rules of order k.

Now it is natural to ask the following question: given a scaling function with
compact support, does a dual scaling function with compact support exist? As noted
by Lemarié [82] and Jia [63], the answer is yes at least in the univariate case. More
precisely, given a scaling function with compact support, a dual scaling function
always exists with compact support and arbitrarily high smoothness. Therefore, it
is interesting to ask the following question: given any scaling function ¢, if we fix
the size of the support of a dual scaling function of ¢, then what is the highest
approximation order and the highest smoothness of such dual scaling function of
¢ that we can expect? Based on our previous results on interpolatory subdivision

schemes in [51, 52], we shall answer the above question in this chapter.

Here is an outline of this chapter. In Section 4.2, given a scaling function, we
shall study the relation between the approximation order of its dual scaling function
and the support of its dual scaling function. In Section 4.3, we shall prove that
for any orthogonal scaling function with its mask supported on 0,2r —1]* (r € N)
and satisfying the sum rules of optimal order r, then its L, smoothness does not
exceed that of the univariate Daubechies orthogonal scaling function with its mask
supported on [0,2r — 1]. An example will be provided to illustrate our result. In
Section 4.4, for any given scaling function, we shall study the optimal smoothness of
a dual scaling function if its support is fixed and it attains the optimal approximation
order. Finally, in Section 4.5, a general CBC (construction by cosets) algorithm is
presented to generate all the dual masks of a given interpolatory refinement mask.

This algorithm can be easily implemented. In particular, as an application of this
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general construction, for any bivariate interpolatory mask which is symmetric about
the two coordinate axes, we can comstruct a family of dual masks with arbitrary
order of sum rules and symmetry about the two coordinate axes. Finally in Section
4.6, a family of optimal bivariate biorthogonal wavelets is presented with the scaling
function being a spline function. In Section 4.7, several examples are provided and

comparison results are given.

4.2 Sum Rules

In this section, we shall first introduce some notations. For a given scaling function,
we shall study the relation between the approximation order of a dual scaling function
and the support of a dual scaling function.

It is well known that there is a close relation between biorthogonal wavelets and
fundamental refinable functions. Recall that a function ¢ is said to be fundamental
if ¢ is continuous, ¢(0) = 1, and ¢(a) =0 for all a € Z*\{0}. If ¢ is a fundamental
refinable function with a mask a, then it is necessary that

a(0)=1 and a(26)=0 v B8 € Z°\{0}.

Recall that a mask that satisfies the above condition is called an interpolatory

refinement mask.

The following fact is well known (see [15, 27, 84]) and reveals the relation between
a biorthogonal wavelet and a fundamental refinable function.

-Lemma 4.1 Let ¢ function ¢ be a scaling function with a mask a, and let ¢* be a

dual scaling function of ¢ with a mask a®. Define

O(z) := /R‘¢(t —z) ¢%(t) dt, z e R’ (4.2.1)
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and
ba):=2"" > a(f-a)a(B), acZ. (4.2.2)
BeZ:
Then the function ® is a fundamental refinable function satisfying the refinement
equation (4.1.1) with the interpolatory mask b. In other words, the mask a and a®
satisfy the following well-known discrete biorthogonal relation:

> a(B-2a)a*(B) =2°6(a) VaeZ' (4.2.3)
BEZs

Conversely, if the masks a and a® satisfy the above discrete biorthogonal relation
(4.2.3) and the subdivision schemes associated with a and a® converge in the L, norm
respectively, then the functions ¢ and ¢°% lie in Ly(R*®) and satisfy the biorthogonal
relation (4.1.3) where the functions ¢ and ¢? are the normalized solutions of the
refinement equations (4.1.1) with the masks a and a?, respectively. Therefore, the

function ¢ is a scaling function and ¢? is a dual scaling function of .

If two sequences a and a? on Z° satisfy the discrete biorthogonal relation (4.2.3),
then the mask a? is called a dual mask of the mask a. Throughout, we shall use the

following notation:
T*:={(z1,-++ ,2,) €EC* : |z =--- =]z, =1}
Recall that for any sequence A in 4,(Z?), its symbol Xis given by

Nz) =3 a(B)f, zeT-

BeZs
By Lemma 4.1, we have 6(6) = a(_é)q;}(f),f € R? and Z(z) = 2“"2—(2_)@(2),2 € T

By Theorem 3.1 in Chapter 3, in the univariate case (s = 1), there is a unique
interpolatory mask, which is denoted by b,, supported on [1—2r, 2r— 1] and satisfying

the sum rules of order 2r.
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In the multivariate case (s > 1), such interpolatory masks are not unique. Let %,

be the sequence on Z* given by
tr(ar,.-. ,as) :==b(a1) - b(as), (a1y...,04) € Z2. (4.2.4)

Then ¢, is a tensor product interpolatory refinement mask supported on [1—2r, 2r—1]°

and it satisfies the sum rules of the optimal order 2r.

Based on the above results, we have the following theorem:

Theorem 4.2 Let ¢ be a scaling function with its refinement mask a supported on
IT3_,[~!;, hj] for some nonnegative integers l; and h;, and ¢? be its dual scaling func-
tion with a mask a® supported on 2_1[—L;j, Hj] for some nonnegative integers L;
and H;. Suppose a satisfies the sum rules of order k, then a® can satisfy the sum

rules of order at most

min (|.h,-+L,-+1J + [l,-+H,-+1J) _k,
1<5<s 2 2

where || is the floor function.

Proof: Let b be the sequence defined in (4.2.2). Then by Lemma 4.1, b is an
interpolatory mask and b is supported on I%_,[—h; — Lj,l; + H;]. From Theo-
rem 3.2 in Chapter 3, we see that b can satisfy the sum rules of order at most

min;<j<s (l_'—‘ﬁg‘i“j + l_l"Hg" *2[). To complete the proof, it suffices to prove that if

the mask a? satisfies the sum rules of order 75:', then b will satisfy the sum rules of
order at least k + k. Denote

Z,:={(a1, " ,a,) €EZ* : ;20 Vj=1,---,s}

and [p| :=py + - + p, for p = (p1,++- ,4,) € Z3, and D* := D' ... D¥ where D;

denotes the partial derivative with respect to the jth coordinate.
By Lemma 3.3 in [62], the mask a satisfies the sum rules of order k if and only if
D*a(e )¢z =0 Vwe QO\{0}, || < k,u € Z,.
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If a? satisfies the sum rules of order E, then
D*GHe ™) emrw =0  Vw € Q\{0}, [u| <k, u € Z3.
Therefore, by using the Leibniz formula for differentiation, we obtain
D*B(e™)|ems = 27 D*[ @ ®)a%(e ™) Jlemm =0 Vw € Q\{O}, |u| <k +F.

By Lemma 3.3 in [62], b satisfies the sum rules of order & + k. m

From the proof of Theorem 4.2, we have the following result:

Corollary 4.3 If ¢ in L,(R®) is an orthogonal scaling function with its mask a sup-
ported on [0,7]° for some positive integer r, then the mask a can satisfy the sum rules

of order at most |=tL|. Therefore, S(b) can provide approzimation order at most
2 PD

L5

4.3 Optimal Orthogonal Wavelets

In [26], Daubechies first constructed a family of compactly supported orthogonal scal-
ing functions on the real line, namely, ¢p, (r € N) where ¢p. satisfies the refinement
equation (4.1.1) with s = 1 and the mask D, supported on [0,2r — 1]. It is observed
(see [84]) that D, satisfies the sum rules of order r and ﬁ(z)ﬁ.(z) = 2b,(z) for any z

in T where b, is the unique univariate interpolatory mask supported on [1 —2r, 2r —1]
and satisfies the sum rules of order 2r. Therefore, by Corollary 4.3, the mask D,
attains the sum rules of optimal order r. In the multivariate setting, due to the lack
of the Riesz Factorization Theorem, it is much more difficult to construct multivariate
orthogonal scaling functions than to construct univariate ones. In the current liter-
ature, there are few examples of non-tensor product multivariate orthogonal scaling

functions.
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From Chapter 3, we know that there is no C? fundamental refinable function
supported on [—3,3]*. This result also implies that if a function ¢ is an orthogonal
scaling function supported on [0, 3]°, the v2(¢) <1 and therefore, ¢ & C*(R?).

Let ¢ be an multivariate orthogonal scaling function with its mask supported
on [0,2r — 1]* for some positive integer r. From Corollary 4.3, we see that S(4) can
provide approximation order at most r. For this case, we shall study the upper bound
of the critical exponent v,(4) for any p such that 1 < p < co. Based on Lemmas 3.10,
3.11 and Theorem 3.5, we have the following result on orthogonal scaling functions.

Theorem 4.4 Suppose a function ¢ in Lo(R?) is an orthogonal scaling function with
its refinement mask a supported on [0,2r — 1]*NZ* for some positive integer r. Define

a new sequence a; on Z as follows:

ai(k) =2 - > alk,Boy-o- ,B), kEL

B2€Z Bs€Z

Let ¢a, be the normalized solution of the refinement equation (4.1.1) with the mask a;.
If the mask a satisfies the sum rules of order r, then the function ®a, is an orthogonal

scaling function with the mask a, satisfying
a(z)a@(:) =2.(z), z€eT.
If in addition, the function ¢ belongs to L,(R*) for some p such that 1 < p < oo, then

vp(4) < vp(a,)-

In particular,

va(@) S vao(ép,) and va(de,) = va(dp,) = Veo(5,) /2,

where ¢p, is the Daubechies orthogonal scaling function with its mask D, supported
on [0,2r — 1], and ¢s, is the Deslauriers and Dubuc fundamental refinable function

with its mask b, supported on [1 — 2r,2r — 1].
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Proof: Let a sequence b on Z* be given by its symbol
b(z) ;= 27%4(z) d(z), ze€T"

By Lemma 4.1, the sequence b is an interpolatory refinement mask since ¢ is an
orthogonal scaling function. Since the mask a satisfies the sum rules of order r, by
the proof of Theorem 4.2, we see that the sequence b must satisfy the sum rules of
order at least 2r. Define a new sequence c on Z as in Equation (3.4.1) by
(k) =27 - Y b(k, B2, ,B)), kEZ.
B2€Z  B.€Z
By Lemma 3.10, the sequence ¢ must be the mask b, since the sequence b is supported
on [1 —2r,2r — 1]° and satisfies the sum rules of order 2r. It is easily seen that

&z) = 2'*8(z,1,--- ,1) and @1(z) = 2'~*@(z, 1, --- , 1) for any z € T. Therefore,
ai(z)ai(z) = 22°8(z, 1,...,1) =28(z) = 2b,(2) VzeT.

Thus, the mask a; is the dual mask of itself for s = 1. Since the function ¢ is a
scaling function, by Lemma 3.11, the subdivision scheme associated with the mask a;
converges in the L, norm. Hence, the function ¢,, is an orthogonal scaling function
by Lemma 4.1. If ¢ lies in L,(R®) for some p such that 1 < p < oo, then by
Lemma 3.11, we have v,(¢) < vy(@a,). Note that @;(z)a(z) = 23,(2) implies that
v2(Pay) = Voo(®s,)/2. Since B:(z)ﬁ:(z) = 2b.(z) for any z in T,

v2(®) < va(Pay) = Veo(9s,)/2 = va(ép,)

which completes the proof. [

Note that by using dilation matrix 21I,, there is no orthogonal scaling function
which can be symmetric about the origin. In the univariate case, by using dilation

factor 4, several symmetric C' orthogonal scaling functions were reported in Han [46].

In the following, we give two examples to demonstrate that when s > 1, such

optimal orthogonal scaling functions are not unique.
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Example 4.5 The mask a is supported on [0, 3] and is given by

—34 £-1°+6: +¥3 L_ 3 §_M_3:-1°+6\/5 0 |
s T 8 3~ "a 8

Y SRSV A SR QR VAT SR,

st 8 2 8 1
 A_YIEE 8 1, VORE, i v
g8 8 8 272 8 8 g8 a4 4
3, V3, V-1046V3 1, V3 _ 1, /3_ V-1046V3
_§+8+ st sT % 8 0 i

Then the function ¢, is an orthogonal scaling function and the mask a satisfies the
sum rules of order 2. Moreover, by calculation, we have v5(¢,) = 1. Combining
Theorem 4.4 and Corollary 3.12, we see that for any orthogonal scaling ¢ with its
mask supported on [0, 3]°, the inequality v»(¢) < 1 holds true. Therefore, the function

@ is an optimal orthogonal scaling function in the L, norm sense.

A similar example is the following;:

Example 4.6 The mask a is supported on [0, 3]? and is given by

(_2_@4.)@ 1L__ V3 5/8_34@4.!—104'6\/5 0 i
8 8 8 17 1 8 8
+£+@ L 7_3/3_V/-1046V3 1 _ V3
2 8§ "8 8 e
3 —10+6V3 —10+6v3
B N =" R
~10+6v3 V-10+63
| §+ 8- R e 0 |

Then the function ¢, is an orthogonal scaling function and the mask a satisfies the

sum rules of order 2. Moreover, by calculation, we have va(ds) = 1.

The graphs and contours of the above examples are given in Figures 4.1 and 4.2.
By the results in Chapter 1, it is not difficult to prove that the orthogonal scaling

functions in the above two examples are continuous.
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Figure 4.1: The graph and contour of the orthogonal scaling function ¢, in Example
4.5.

Figure 4.2: The graph and contour of the orthogonal scaling function ¢, in Example
4.6.
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4.4 Optimal Biorthogonal Wavelets

In this section, we will demonstrate a result similar to Theorem 4.4 for biorthogonal

wavelets. A similar result to Theorem 4.4 for a biorthogonal wavelet is the following:

Theorem 4.7 Let a function ¢ in Lo(R®) be a scaling function with a refinement
mask a, and a function ¢? in Ly(R?) be a dual scaling function of ¢ with a refinement
mask a®. Define two new sequences a; and a$ on Z as follows:

a(k) =2 " a(k,Bo,--- ,Bs), kEZ

B€Z  B.€Z

and

af(k) =2 - > a¥(k,Br,--- ,Bs), k€L

B:€Z  B.€Z
By ¢s, and @a¢ we denote the normalized solutions of the refinement equation (4.1.1)

with s = 1 and the masks a, and a? respectively. Let a sequence b on Z* be given as
in (4.2.2) by

be):=2""> a(B-a)a’(B), acZ (4.4.1)

BeZ*

Suppose the sequence b is supported on [1 — 2k, 2k — 1]* N Z* for some positive integer
k and b satisfies the sum rules of order 2k — 1. Then the function @, is a univariate
scaling function with Pag being a dual scaling function of ¢,,. If ¢ belongs to L,(R?)
and ¢ belongs to L,(R®) for some p,q such that 1 < p,q < oo, then ®q, € Ly(R),
$ag € Ly(R) and

vp(8) S vp(da,) and y,(¢%) < Vq(¢ag’)' (4.4.2)
In particular, if the sequence b satisfies the sum rules of order 2k, then
G ai(z) = 2%e(x), €T and 1, (¢%) < w(dn) — w(8),

where 1/r = 1/p+1/q —1 and by is the unigue interpolatory mask which is supported
on [1 — 2k, 2k — 1] and satisfies the sum rules of order 2k.
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Proof: By Lemma 4.1, it is easily seen that the sequence b is an interpolatory
mask. Let c be a sequence on Z given by
(k) =2 "2 > bk, B, ,B,), kEZ.
B2€Z B,€Z
It follows from Lemma 3.10 that the sequence c is an interpolatory mask since the
sequence b is supported on [1 — 2k,2k — 1]* and satisfies the sum rules of order

2k — 1. We observe that &(z) = 2!=%8(z,1--- , 1), ai(z) = 2'"a(z,1,---,1) and

c;?(z) = 21";‘(2, 1,---,1) for any z in T. It is easy to see that
Ti(z) al(z) = 22%5(z, 1~ Dad(z,1,---,1) = 2(z), z€T. (4.4.3)

Therefore, the masks a; and af must satisfy the discrete biorthogonal relation (4.2.3)
with s = 1 since the sequence c is an interpolatory mask. Since both ¢ and ¢¢
belong to L2(R®) and their shifts are stable, by Lemma 3.11, the subdivision schemes
associated with the masks a; and af converge in the L, norm respectively. Thus,
by Lemma 4.1, the function ¢, is a scaling function with $,g being a dual scaling
function of ¢,,. The inequality (4.4.2) follows directly from Lemma 3.11.

If the sequence b satisfies the sum rules of order 2k, by Lemma 3.10, the mask c in
(4.4.3) must be the mask b¢. Note that V”‘:S'EJ(z) = (1—-z)"1I}55a1(2%). Therefore,
it follows from (4.4.3) that for any positive integers k; and k,, it is easy to verify that

VRS §(2) = VE.\S’EJ(z)V/":S'EJ(z), zeT.
Therefore, by applying Young’s inequality to the above equation, we have
[VEHRSE |, < VRS Al IVRSTSl, Ve,
where 1/r = 1/p+ 1/q — 1. This yields

2ak1+k2.r(bk) < Ok yP(al)UkzyQ(af) v kh k2 € N.

By Theorem 3.5 in Chapter 3, we have v,(¢s,) > vp(da,) + Vq(@q4)- Therefore, by
vp(9) < vp(da,) and 1,(¢%) < vq(@ag), we have v-(¢p,) > vp(da) + vg(@ga). |
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Corollary 4.8 Let ¢ be a scaling function with a refinement mask a supported on
[0, 1]° for some positive integer [, and ¢* be a dual scaling function of ¢ with a mask
a? supported on [L + [ — 2k, 2k — [ — 1]* for some positive integer k. Let the sequence
b be given in (4.4.1). Suppose the mask a satisfies the sum rules of order m. Then
the mask a can satisfy the sum rules of order at most 2k —m. Moreover, tf the mask
a? satisfies the sum rules of order 2k — m — 1 (or 2k — m), then the sequence b can
satisfy the sum rules of order at least 2k — 1 (or 2k) and the corresponding results in

Theorem 4.7 hold true.

Proof: This is a direct consequence of Theorem 4.2 and Theorem 4.6. ]

Let us consider an example. Let ¢ be a refinable box spline function with its

mask a given by its symbol
a(z) = 2"11;:1(2;'1 +24z;), zeT®

or

?z'(z) = 2-1(1 + 21-1 ce z;l)H;=1(1 + Zj), z e Te.

It is easy to verify that ¢ is a fundamental function with vi(¢) = 2, its mask a is
supported on [—1,1]° and a satisfies the sum rules of order 2. Thus, the function ¢
is a scaling function. Then Corollary 3.12 and Corollary 4.7 imply that if a function
¢? is a dual scaling function of the scaling function ¢ with its mask supported on
[—2,2]*, then the function ¢% can not be continuous. For any dual scaling function
¢? of the scaling function ¢ with its mask a? supported on [2 — 2r, 2r — 2]* for some
positive integer r, by Theorem 4.2, the mask a? can satisfy the sum rules of order at
most 2r — 2. If a? satisfies the sum rules of order 2r — 2, by Corollary 4.7, then we

have
va($°) < va(s,) — va(@) = va(dhs,) — 2.

When s = 2, in Section 4.6, we shall construct a family of dual scaling functions ¢s¢,
(r € N) of the bivariate hat function ¢ such that the dual mask ¥, is supported on
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[2 — 2r,2r — 2] and satisfies the sum rules of order 2r — 2. In addition, the equality
va(d3c,) = va(és,) — 2 holds true at least for » = 3,---,12 and each mask J, is

symmetric about the two coordinate axes, and the lines z; = z and z; = —z,.

4.5 Construction of Biorthogonal Wavelets

In this section, we shall present a general method to construct multivariate biorthog-
onal wavelets. More precisely, for any scaling function ¢ with an interpolatory refine-
ment mask a, a general CBC (Construction By Cosets) algorithm is given to produce
all the dual masks of the mask a. As an application of this general theory, for any
bivariate fundamental mask a which is symmetric about the two coordinate axes, we
construct a family of dual masks of a which satisfy any desired order of sum rules
and are also symmetric about the two coordinate axes. Based on this construction,
a family of optimal bivariate biorthogonal wavelets is presented in the next section.
Such biorthogonal wavelets have full symmetry (i.e., they are symmetric about the
z)-axis, ;-axis, and the lines z; = z, and z; = —z;), have the optimal order of
sum rules, the optimal L, smoothness order and relatively small support of the dual

masks.

Before proceeding further, we introduce some notation. Recall that
Z,:={(a1,"++,0,) €Z° : ;20 Vi=1,---,s}

For any p = (u1,--- ,4,) € Z*, we denote |u| := |u1| + -+ + |5 and g! :=py!-- - p,!
if p € Z3. Forany p = (1, 1 4a),v = (v1,°++ ,v5) € Z%, by v < ps we mean v; < ;
foralli=1,---,s, and by v < z we mean v < g and v # u.

Throughout this section, for any v € Z4, by p, we denote the monomial (-)* and

(o)=Y Map(a)= Y Ma)a®, A€ 4(Z°).

acZ* aEZ*
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Theorem 4.9 Let a sequence a on Z* satisfy 2 gezea(B) = 2°. Suppose a sequence

a? on Z° is a dual mask of a that satisfies the following relation
Y a(B-2a)a(B) =2'6(a) VaeZ. (4.5.1)
BeZ’

If the sequence a? satisfies the sum rules of order k for some positive integer k, then
for any p € Z3, such that |u| < k, the value h, :=2-%(a%,p,) is uniquely determined

by the sequence a. More precisely, h, is given by the following recursive relation:

hy =6(u)—2"° Z (—1)l—vl p! V)'( Du—s) by, lul < k,p€Zi. (4.5.2)

!
0<v<p v ('u

Proof:  Recall that { is the set of the vertices of the unit cube [0,1]°. By the
definition of the sum rules (4.1.4), we observe that the sequence a? satisfies the sum

rules of order & if and only if

Y a2 +e)2B+e) =2l p)=h, VeeQ v <k veZl (45.3)
Bez*

From Equation (4.5.1), we get for any u € Z3,
2°6(u) = > D a(B—2a)a’(8)(2a)"

a€Zs EL*
=Y 3 Y a(@B + e —2a)a%(28 + €)(2a)*.
€N acZ [Pl
On the other hand, we have

(2a)" = (2B +€) ~ (2B+€~2a))" = Y c,.(28 +¢& —2a)*™(26 +¢)*,

0<v<p

where ¢, , := (=1)¥#lu!/(v!(u — v)!) and recall that by v < u we mean v; < y; for
alli=1,-.-,s. Hence, for any u € Z:, we deduce that

2°0(p)
= Z Co Z Z Z a(28 + € —2a)(28 + & — 2a)*“a*(28 +€)(28 + €)*

0<v<y e€Q a€Z* fEZ*

= ) aCate)(2a+te) )" a¥(28 +€)(28 + ).

0<v<u €N a€Z? pez:
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Since ) scz.a(B) = 2°, we have (a, po) = 2°. Note that c,, =1 for any x4 € Z3.
From Equation (4.5.3), we conclude that

26u)= Y cud > aa+e)(2a+e)h,

0<v<n e€Q a€Z?

= Z Cvula, Pu—u) h, =2°h, + z cvula, Pu—V) h,

0<v<p 0<v<n

from which Equation (4.5.2) can be easily derived. =

By definition, the value (a?, p,) in Theorem 4.9 is totally determined by the
sequence a?. But Theorem 4.9 says that if the sequence a? is a dual mask of the mask
a and the sequence a satisfies the sum rules of order k, then for any p € Z3 such that
|zl < k, the value (a%, p,) is uniquely determined by the sequence a instead of the
sequence a®. Therefore, if a sequence a on Z* satisfies > sezs 4(8) = 2*, by Theorem
4.9, then we can define a sequence h* on Z3 as follows:

R (p) = 8(u) —27° Y (1

0<v<p

U'(,u v)! — (@ Pu-v) RP(v), peEZ. (4.54)

An important consequence of Theorem 4.9 is that it allows us to propose a general
method to construct a dual mask satisfying the sum rules of arbitrary order for a
given interpolatory refinement mask. Since in the following method, we obtain the
dual masks a? by constructing each coset a%(28 + ¢€), 8 € Z* separately, we call this
method CBC algorithm (Construction by Cosets Algorithm).

CBC Algorithm 4.10 (Construction by Cosets Algorithm)

1. Given a sequence a on Z° such that a satisfies the following conditions:

D a(B)=2", a(0)=1 and a(26)=0 VBeZ*\{0}; (4.5.5)

Bez*

2. Let k be any fized positive integer;
3. Calculate h*(p) as in Equation (4.5.4) for p € Z% such that [u| < k;
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4. Let Q be the set of vertices of [0,1)°. For each e € Q\{0}, choose an appropriate
subset E, of Z° such that the following linear system

> bes(2B+e) =hu), peZi|ul<k (4.5.6)
BEE,

has at least one solution for {b.ps : B € E.};
5. Construct the mask a* coset by coset as follows: for each € € Q\{0},
a’(2B +€) =bep, BEE. and a*(28+¢€) =0, fB€Z\E.

and

a?(28) = 2*6(8) — Z Z a(2a — 2B +¢€)a%(2a+¢€), BEZ*; (4.5.7)

ceQ\{0} a€Z*

6. Then the mask a* is a dual mask of the given interpolatory mask a and satisfies

the sum rules of order k.

Proof: It is easy to verify that if the sequence a is an interpolatory mask, then the

discrete biorthogonal relation (4.5.1) is equivalent to (4.5.7). Therefore, the mask a?

is a dual mask of the given mask a. On the other hand, (4.5.6) can be rewritten as
Y @B +e)2B+e)* =h(n), e Q\{0}, |u] <k, u € Z5. (4.5.8)
feZs

By the definition of sum rules, to verify that the sequence a? satisfies the sum rules

of order k, it suffices to demonstrate that

> at(2B)(2B) =h*(u) Y |ul <k, peZs. (4.5.9)
Bez:®
As in the proof of Theorem 4.9, from (4.5.7), we have
D> a(26)(28)
Bezs
=2'0(p) — Z Con Z z a(2a +¢€)(2a + )4 z a®(28 +€)(28 + €)*,
o<v<u €\ {0} a€Z?* gez’
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where ¢, := (=1)#=ly!/(v(u — v)!). Since the sequence q is an interpolatory mask,

it is easily seen that

Z Z a(2a +€)(2a +€)* =(a, p,-.) — 8(u —v).

e€Q\ {0} a€Z?

Therefore, it follows from Equation (4.5.8) that for any u € Z3 such that [u| <k,

> a*(@B)(2BY =25 = D, o ((@ pa) = 8(u 1)) A°(¥)

oLy Al o<v<u
= (-2 (W) +26(0) — Y cnla pase) A4()
0<v<p
= h*(n),
where in the last equality we used Equation (4.5.4) for h%(u). We are done. |

It is evident that the above CBC algorithm can produce all the dual masks for
any given interpolatory mask. In general, if the set E, is large enough, the equation
in Step (4) must have at least one solution. We point out that based on Theorem 4.9,
the CBC algorithm can be generalized to the general case. We mention that there is
a similar CBC algorithm such that for any given scaling function with a mask a, we
can construct a dual mask of the mask a which can satisfy the sum rules of arbitrary
order. Based on the Lemma 3.14 in Chapter 3, here we present a concrete way to

implement the above general CBC algorithm in the bivariate case.

Now for any bivariate interpolatory mask a which is symmetric about the two
coordinate axes, the following algorithm provides us a method to comstruct a dual

mask which satisfies the sum rules of arbitrary order.

TCBC Algorithm 4.11 (Triangle Construction by Cosets Algorithm)

1. Let a bivariate mask a satisfy 3 scz2a(B8) = 4,a(0) = 1 and a(28) = 0 for all
B € Z*\{0} with symmetry about the two coordinate azes, i.e.,

a(B1, B2) = a(—P1, B2) = a(B1,—P2) = a(—P1,~F2) Y (B1,B:) € Z% (4.5.10)

108



. Let k be any fized positive integer;
. Calculate h*(2u) as in Equation (4.5.4) for p € Z2 such that |u| < k;

. Let E = {(.617,32) S Z2 : ﬂl Z 01 B? Z 0 and ﬂl +,62 < k};

. Let Q' := {(1,0),(0,1),(1,1)}. For each € € ', there is a unique solution for
{8, 8 € E} to the following linear system:

> bep(28 +)* =k ()4, |ul < kop € B
BEE

. For each (e1,2) € QV, set a?(2B1 + €1,262 + &2) = 0 for all (B1,B:) € Z2\E,
and for any (B1,B2) € E,

a*(281 +€1,2B2 +€2) = (1 + 8(281 + €1)) (1 + 8(28 + €2) ) bey e2),(0.82);

. For each € € Q, complete each coset a(28 + ¢),B € Z? by symmetry as in
(4.5.10) and set

a’(28) :==45(8) - Y Y aa—2B +e)ad(2a +¢), BE€Z}

e€Q! aeZ?

. Then the mask a® is a dual mask of the given mask a, satisfies the sum rules of

order 2k and it is symmetric about the two coordinate azes.

The above algorithm is called TCBC (Triangle Construction by Cosets) algo-

rithm since we choose a special triangle subset E of Z? in the above algorithm. The

existence and uniqueness of the solutions in Step (5) of the above TCBC algorithm

are guaranteed by Lemma 3.14 in Chapter 3. The claim that the mask a2 satisfies

the sum rules of order 2k follows from the fact that if the sequence a is symmetric

about the two coordinate axes, then (a, p(y, ,)) = 0 for any (vy,1,) € Z2 with either

vy or v; being an odd integer. We mention that if in the TCBC algorithm, the mask

a is also symmetric about the lines z; = z, and z, = —z3, then the resulting dual

109



mask also has such properties. For this case, in Step (5) of the TCBC algorithm, we
only need to deal with the coset of a? at 26 +¢,8 € Z2 for € € {(1,0),(1,1)}. The
coset of the mask a* at 28 + (0,1),8 € Z? is obtained by symmetry. In passing, we
mention that the unique solution to the linear system in Step (5) of the above TCBC
algorithm can be explicitly obtained. Thus, the resulting dual mask can be obtained

without solving any equation.

Let us illustrate the above general theory by giving an example. Let 5 be the
bivariate hat function with its mask a, supported on [~1,1]2 N Z? and given by

1/4 1/2 1/4

1/2 1 1/2{. (4.5.11)

1/4 1/2 1/4
An easy calculation gives us

0, otherwise.

(@) Plur)) =
Let H, denote the dual mask of the mask as derived by the TCBC algorithm such
that H,. satisfies the sum rules of order 2r — 2.
From the TCBC algorithm, it is easily seen that
supp H, € {(B1,2) €Z* : || <2r -2, 18] S 2r -2, |8 + B < 2r },
and it is symmetric about the z,-axis, z;-axis, and the lines z, = z; and z; = —z,.

We shall give an example of the dual mask H, in the last section of this chapter.

4.6 A Family of Optimal Biorthogonal Wavelets

In this section, we shall modify the TCBC algorithm in the previous section to con-
struct a new family of optimal biorthogonal wavelets by shrinking the support of each
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H.. Since the mask a;, has full symmetry, we only need to deal with £ € {(1,0),(1,1)}
in Step (5) of the TCBC algorithm. The only part we need to modify in the TCBC
algorithm is Steps (5) and (6). All other steps are the same. Throughout the rest of
this section, the mask a in the TCBC algorithm is assumed to be a; given in (4.5.11).

Let E be the set given in Step (4) of the TCBC algorithm and let b5,8 € E be

the unique solution of the following linear system:

> bs(26+ (1, 1)) = h%(2u)/4,  |u| <k,pu € Z2.
BEE

Set a?(28 + (1,1)) = b3, 8 € E and a*(28 + (1,1)) = 0,8 € Z2\E. Take F to be the

following set:
F:={(B1,) €Z3 : 1+ PBa=k and B, >0}
Now we set a?(23 + (1,0)) = 0 for any 8 € Z2\(E U F) and
(26, +1,262) = (1 +6(B2))coupas  (Br,B2) EEUF

with yet-to-be-determined parameters c5,3 € EU F.

This extra freedom cg,8 € F given by F will be used to reduce the support of
the mask a? at the coset (0,0) constructed in Step (7) of the TCBC algorithm. More
precisely, we shall try to adjust the coefficients of the mask Hj_; to be zero on the set
{(B1,82) € Z* : By + B> = 2k — 2}. By using symmetry, after a simple calculation,

it is easily seen that this restriction is equivalent to the following linear system

C(61,82) + C(Ba-1.8+1) + b3 ,8,-1)/2 =0  forall (6;,B:) € F.

By simply setting c(s,,5,) = 0 for any (81, 82) € F such that k/2 < 8; < k, the above

linear system has a unique solution cg, 3 € F. Now the following linear system

D_ (284 (1L0)* =r*(2u)/4 = cs(26+(1,0)*,  |ul<kpeZl
BeE BEF
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has a unique solution for cg, 8 € E by Lemma 3.14 in Chapter 3.

Set a%(261,262 + 1) = (262 +1,26), (81, 82) € Z2%. By the TCBC algorithm,
we have a dual mask a? of the mask aj such that a? satisfies the sum rules of order

2k.

We shall use H, to denote the dual mask of the mask a; derived from the above
modified TCBC algorithm such that ¥, satisfies the sum rules of order 2r — 2. For

each positive integer r, by G, we denote the following set
G. = {(a1,02) € Z* : |ay| + 2| = 2r — 1 and either |a;| or [axy|
is an even number less than r — 1}.

To sum up and restate the above construction of the dual masks #, of the mask ay,

we have the following theorem.

Theorem 4.12 Let r be a positive integer greater than two. Then there erists a

unique refinement mask H, satisfying the following conditions:

1. H, is supported on

{(a1,02) € Z% : |eu| + |ag| < 2r — 1, max{|ay|,|a2| } < 2r —2}\G+;
2. K, is symmetric about the two coordinate azes, the lines t, = £2,z, = —Z2;
8. 3, satisfies the sum rules of order 2r — 2;

4. H, and ax (the mask ay, is given in (4.5.11)) satisfy the dual relation (4.5.1).

The set G, looks like a little bit strange here. The reason is that in our modified
TCBC algorithm, we set c(g,,5,) = 0 for any (8, 3;) € F with (r—1)/2 < a; <r—1.
Note that both H, and ¥, are symmetric about the z;-axis, z,-axis, and the lines
T1 = 3 and z; = —z2. In passing, we mention that an explicit formula for H, and

H. can be easily obtained by a similar idea as in [88].
We provide detail in the next section for the masks H(3 and H,.
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4.7 Examples, Figures and Tables

In this section, we shall provide several examples of the masks H, and 3. The graphs
of the related dual scaling functions and associated wavelets are presented at the end

of this section. Let us give some examples of the dual masks H,. and ¥, as follows:

Example 4.13 The mask Hj is supported on [—4,4]? and is given by

[ 3 9 3
0 0 256 0 128 0 256 0 0
3 _3 _3
0 0 —&1 33 7 0 0 0
3 0 -1l 1 _5 _1 _ 1 0 3
256 37 32 128 3z 32 256
0 -3 L1 11 21 a4 _ 1L _3 9
64 32 32 32 32 32 64
S _3 _51 21 B 21 SL _3 9
128 32 128 32 32 32 128 32 128
0 -2 L u 2L a4 1L 3 9
64 32 32 32 32 32 64
3 0 - _1 _51 _1 1 0 32
256 32 32 128 32 32 256
3 3 _3
0 0 0 ~ 64 32 64 0 0 0
3 S <
_ 0 0 256 0 128 0 256 0 0 J

The mask Hj satisfies the sum rules of order 4 and 5 (g, ) ~ 0.42927.

Example 4.14 The mask J{; is supported on [—4,4]? and is given by

1

3 3 3
0 0 0 128 64 128 O 0 0
3 _3 _3
0 0 o0 -& -2 -% 0 0 o
i _1 _3 _1 1
0 0 16 8 8 8 16 0 0
3 _3 _1 1 s n _1 _3 3
128 64 8 32 64 32 8 64 128
3 _3 _3 5. 3 5 _3 _3 3
64 32 8 64 16 684 8 32 64
3 _3 _1 u s& u _1 _3 .3
128 64 8 32 64 32 8 64 128
L _1 _3 _1 1
0 0 16 8 8 8 16 0 0
3 _3 _3
3 3 3
L0 0 0 5 & 1™ 0 0 0

—
—
w



Then 33 satisfies the sum rules of order 4 with vp(¢gg,) & 1.17513. Thus, by
Theorem 4.2 and Corollary 4.7, the function ¢4, is an optimal dual scaling function

of the function 4 in the L; norm since vo(dac,) = vo(ds,) — vi(n)-

Example 4.15 The mask H, is supported on [—6, 6|2 and the part of 3(; in the first
quadrant is supported on [0,6]? and is given by

- . -
T 512 1024 0 0 0 0 0
5 5
256 512 0 0 0 0 0
83 145 15 9
1024 4096 2048 ~ 4096 0 0 0
_363 _ 87 15 L. 9% 9 0
2048 1024 1024 1024 4096
_ 359 _ 69 1 15 ___15 0 0
1024 512 16 1024 2048
1723 401 _69 _ 87 145 5 __5
2048 1024 512 1024 4096 512 1024
493 1723  _ 359 _ 363 83 5 5
| 256 2048 1024 2048 1022 256 512

with the number 232 at the bottom-left as H4(0,0). Since ¥, is symmetric about
the coordinate axes, other part of J}, is obtained by symmetry as in (4.5.10). By
calculation, we have va(ds,) =~ 1.79313 and the mask H, satisfies the sum rules of
order 6. Thus, the function s, is an optimal dual scaling function of ¢ in the L,

norm sense since vq(¢sc,) = va(Ps, ) — vi(on).

The graphs and contours of all the refinable functions and biorthogonal wavelets
of the above mentioned examples are given in Figures 4.3-4.8. From the figures, it is

easily seen that all the wavelets are symmetric and they have good time localization.

Recall that by b. we denote the interpolatory refinement mask supported on
(1 — 2r,2r — 1] as constructed by Deslauriers and Dubuc in [30]. By $,2 We denote
the tensor product dual scaling function of ¢, with its mask al satisfying

—

an(z1, Zz)a‘f,(zh 2) = 5:-(21)6:(22% (z1,22) € T
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Comparison Results
va(¢s.) | va(@ag ) | v2(9m,) | va(dsc) | N(af) | N(H,) | N(3K,)
3.17513 | 1.17513 | 0.42927 | 1.17513 81 49 49
3.79313 | 1.79313 | 0.98084 | 1.79313 | 169 97 101
4.34408 | 2.34408 | 1.46708 | 2.34408 289 161 161
4.86202 | 2.86202 | 1.90387 | 2.86202 | 441 241 245
5.36283 | 3.36283 | 2.30033 | 3.36283 | 625 337 337
5.85293 | 3.85293 | 2.66264 | 3.85293 | 841 449 453
6.33524 | 4.33524 | 2.99578 | 4.33524 | 1089 557 577
10 | 6.81144 | 4.81144 | 3.30381 | 4.81144 | 1369 721 725
11 | 7.28260 | 5.28260 | 3.58991 | 5.28260 | 1681 881 881
12 | 7.74953 | 5.74953 | 3.85672 | 5.74953 | 2025 1057 1061

-

O |0 | | ou | s

Table 4.1: Comparison Results between different dual scaling functions of ¢y,

Let the masks H, and H, be the dual masks constructed by the TCBC algorithm
and the modified TCBC algorithm respectively such that both H, and ¥, satisfy the
sum rules of order 2r — 2. In the following, we use N(a) to denote the number of
nonzero coefficients in the refinement mask a. The values of v,(¢,) are taken from
[42]. The following table shows that for r = 3,--- , 12, the function ¢g, is an optimal

dual scaling function of ¢ in the L, norm sense.

In passing, we mention that there is a very close relation between biorthog-
onal wavelets and dual wavelet frames. A complete characterization of dual wavelet
frames associated with any dilation matrix was given by myself in [48]. Such charac-
terization appeared in my master degree thesis [50] in 1994, and in Long’s book [83]
published in 1995. In addition, given any multivariate mask a with its dual mask a?,
a new pair of biorthogonal masks can be easily derived. See Proposition 3.7 in Han

(48] and [50] for detailed discussion.



Figure 4.3: The scaling function ¢ and the associated three wavelets Y1, Y2 and Y3
in Example 4.14.

116



Figure 4.4: The dual scaling function ¢s¢, and the associated three dual wavelets 1,
¥, and 93 in Example 4.14.
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Figure 4.5: The contours of the scaling function 4,its dual scaling functions ¢¢¢, and

the associated wavelets and dual wavelets in Example 4.14.
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Figure 4.6: The scaling function ¢ and the associated three wavelets ¥;, ¥ and 3
in Example 4.15.
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Figure 4.7: The dual scaling function ¢s;, and the associated three dual wavelets ¥,
12 and 93 in Example 4.15.
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Figure 4.8: The contours of the scaling function (4,its dual scaling functions ¢s, and

the associated wavelets and dual wavelets in Example 4.15.
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Chapter 5

Image Compression By Using 2-D
Wavelet Filters

5.1 Introduction

In this chapter, we shall implement a wavelet transform algorithm by directly using
bivariate (2-D) wavelet filters. Then we shall use this algorithm to test some examples

of 2-D wavelet filters given in Chapter 4 on lossy image compression.

A fundamental goal of lossy image compression is to reduce the bit rate (i.e., the
number of bits used to store each pixel) to save time in transmission and save storage
of digital images while maintaining an acceptable fidelity or image quality. One of the
methods to achieve this goal is to employ transform such as the well known discrete
cosine transform (DCT) and more recently the wavelet transform. Transform-based
image compression can be achieved by transforming the data, projecting it onto a basis
of functions, and encoding this transform. Because of the nature of human vision, the
transform used must be well localized in both time and frequency domains. A wavelet

transform is well localized in both space and frequency domains and is very similar
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to the mechanisms of human vision system. Thus the wavelet transform matches well
with human visual system characteristics. From an image-coding point of view, this
tends to contribute to good image quality. Results reported in the literature have
already demonstrated that wavelet-based image compression techniques have many
advantages and match or outperform many other well known lossy image compression

methods, see [94, 95].

Currently, many excellent wavelet based image compression algorithms are pro-
posed in the literature. For example, the EZW algorithm proposed by Shapiro in [95]
and the SPIHT algorithm provided by Said and Pearlman in [94] are two well-known
examples. Other good quantization schemes are the CB algorithm proposed in [§]
and the algorithm given in [103].

In almost all the wavelet-based image compression algorithms proposed in the
literature, the tensor product 2-D wavelet transform is employed. That is, performing
the 1-D wavelet transform on columns and rows of an image separately. But as
noted by many experts, the tensor product wavelet transform gives preference to
the horizontal and vertical directions (see [77]). Based on our study of analysis and
construction of multivariate biorthogonal wavelets in the previous chapters, we shall
try to use 2-D wavelet filters directly to do wavelet transform. Since an image actually
consists of 2-D data and has redundancy in a 2-D neighborhood, it is natural to use 2-
D wavelet transform on images by using 2-D wavelet filters directly. We acknowledge
that our 2-D wavelet transform algorithm is based on the C++ source code from

SPIHT in[94] where the tensor product wavelet transform is used.

Here is the outline of this chapter. In Section 5.2, we shall describe the 2-D
wavelet transform. In Section 5.3, we illustrate our experimental results on image

compression.
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5.2 2-D Wavelet Transform

An obvious way of building wavelets in higher dimensions is through tensor products
of 1-D wavelets. This gives us separable 2-D wavelet filters. However, this approach
gives preferent‘ia.l treatment to the coordinate axes and only allows for rectangular
division of the frequency spectrum. Often, symmetric axes and certain nonrectangular
division of the frequency spectrum correspond better to the human visual system (see
[77]). Thus, it is interesting in its own right to construct 2-D wavelet filters and apply

them in image compression.

To perform a 2-D wavelet transform, we need a pair of wavelet filters, one is the
primal/synthesis filter £ and the other is the dual/analysis filter A¢. In other words,

both h and h? are sequences on Z? and satisfy the following conditions:

> h(j)=2 and > RiG) =2 (5.2.1)
Jjez? jez?
and
S h(j — 20)R3G) = b ifi=(0,0) (5.2.2)
jez? 0, ifieZ?\{(0,0)}.

From these two wavelet filters, six more high pass filters including three high pass
primal wavelet filters g, 92,93 and three high pass dual wavelet filters g%, g%, g% are
derived. For example, see [10, 12, 13, 18, 27, 57, 67, 72, 79, 90] on how to derive these
six high pass wavelet filters from the primal filter A and the dual filter A°.

Now for any given 2-D data c, we can decompose it into four subbands as follows:

one low frequency subband

i) =Y A% —j)e(s), icZ? (5.2.3)
JjezZ?
and three high frequency subbands
G(@) =D gt~ j+e)eli), k=1,23,i€Z? (5.2.4)
Jjez?
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where €; = (0,1),&; = (1,0),e3 = (1,1).

Now from these data ¢! and di, d}, d}, we can recover the original data c as follows:

3
DRI =D + DY a2 — i+ e)di(G) = <(G), i€ Z
JjEZ2 k=1 jeZ?

To the best of our knowledge, there is no program available in the current liter-
ature to do 2-D wavelet transform by directly using 2-D wavelet filters. Usually it is
harder to design 2-D filters k, k%, g’s and g%’s than to design 1-D wavelet filters and
the code to perform 2-D wavelet transform will be more complicated than that in the

corresponding 1-D case.

5.3 Preliminary Tests

As we demonstrated in Chapter 4, in the 2-D case, we can construct a dual filter
h? provided that a primal filter A is given. Though we know how to derive the
six associated high pass wavelet filters from k and A9, it is still not clear in the
literature that how we should design the high pass primal wavelet filters gi, go, g3
and the three high pass dual wavelet filters g¢, g4, g4 such that they are desirable in
image compression. In the 1-D case, given a primal filter 4 and a dual filter A%, the
associated high pass wavelet filters are in some sense uniquely determined. In the two
dimensional case, such uniqueness is not known and there is no existing algorithm
to derive best possible wavelet filters g’s and g?’s from & and A? such that they have
some desirable properties. In this chapter, we shall use the method described in [90]
to derive the associated six high pass wavelet filters. It is still an open problem about
how to design three high pass primal wavelet filters g;, g2, gs and the three high pass
dual wavelet filters gf, g%, g¢ from the primal filter & and the dual filter A% such that

they are efficient in image compression.
In the following, we shall try the following trick on tensor product wavelet filters
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to illustrate why it is very important to design the associated high pass wavelet filters

with some desired properties.

Let H,H?,G,G? denote the standard D9-7 1-D wavelet filters given in [1] where
H is the primal filter, H? is the dual wavelet filter, G is the associated 1-D high pass
primal wavelet filter and G* is the associated 1-D high pass dual wavelet filter. When
we apply these 1-D wavelet filters on images, we actually use the tensor product

method to apply the following 2-D wavelet filters:
h(i,j) = H@)H(j) and  h%(i,5) = H'G)HY()
a(i,7) = H@)G()  and  g¢i(i,j) = H()G'())
92(i,5) = GG)H(j)  and  g3(i,5) = G*(Q) H*(j)
03(i,7) = GEG()  and  g35(4,5) = GU()G(J).
Thus h is a 2-D primal filter and 4% is a dual filter of A. The filters g1, g2, gs, g2, 62, 63

are the associated high pass wavelet filters.

Now we play a trivial trick here. Let us first choose a parameter c¢. Then it is easily
seen that cg, cgs,cgs, c~1g%, c 1g%, c g% are still the associated high pass wavelet fil-
ters (see [27]). We apply the set of wavelet filters h, k%, cgy, cga, cgs, ¢ 1 g%, c g%, c g5
to image compression and use our modified 2-D SPIHT algorithm. It is evident that
when ¢ = 1, this is exactly the D9-7 tensor product wavelet filters. Experiment shows
the results in Table 5.1 where bpp means bit per pixel (the number of bits used to store

each pixel) and all the comparison results are in PSNR. For a definition of PSNR, see
[94].

Given a primal filter k, we can design a dual filter h? easily as we demonstrated in
Chapter 4. The following tests also demonstrate that the design of the associated high
pass wavelet filters are important in imagé compression. Let A be our primal filter
given in (4.5.11) in Chapter 4. Then both H3 and af, defined in Chapter 4 are dual
filters of h and both of them are supported on [—4,4]2. Since 4 is an interpolatory
filter, we employ the method described by Riemenschneider and Shen in [90] to derive
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256 x 256 lena image
bpp 1 0.5 0.25 | 0.125 | 0.0625 | 0.03125
c=1 |36.49 [ 31.99 | 28.54 | 25.96 | 23.99 | 22.12
c¢=0.75 | 36.54 | 32.06 | 28.63 | 26.09 | 23.93 | 22.22

256 x 256 monalisa image
bpp 1 0.5 | 0.25 | 0.125 | 0.0625 | 0.03125
c=1 | 34.37 | 31.86 | 30.33 | 28.96 | 27.69 | 26.13

c=0.75 | 34.56 | 31.91 { 30.26 | 29.05 | 27.71 | 26.14

Table 5.1: Experimental results on choosing different wavelet filters on lena and

monalisa images of size 256 by 256.

their associated high pass wavelet and dual wavelet filters. For simplicity, we still use
33 and af, to denote the derived wavelet filter sets. By computation, up to a shift, the
three wavelet filters derived from both 33 and af, are supported on [—5, 5] x [—4, 4],
[—4, 4] x [-5,5] and [—4, 4] x [—4, 4] respectively, and their three dual wavelet filters
are supported on 0 x [—-1,1], [-1,1] x 0 and [-1,1] x [-1,1].

In fact, the three high pass dual wavelet filters derived from both ¥z and a2, are
the same if we derive them by using the method in [90]. We shall use Tensor; to
denote the tensor product wavelet filter set such that all the primal filter, the dual
filter and the six associated high pass wavelet filters are derived by tensor product as
we did before for D9-7. The only difference between this set of wavelet filters T'ensors
and the set of wavelet filters af is that their derived high pass wavelet filters are
different. In fact, the three associated high pass primal wavelet filters with Tensors
are supported on [—4,4] x [—1,1], [~1,1] x [—4,4] and [—4, 4] x [—4, 4] respectively,
and the three high pass dual wavelet filters associated with T'ensors are supported on
[-1,1] x [~4,4], [-4,4] x [-1,1] and [~1,1] x [-1,1]. In the following D9-7 means
the tensor product D9-7 wavelet filter set.
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256 x 256 lena image
bpp 1 0.5 | 0.25 | 0.125 | 0.0625 | 0.03125
Hs 35.07 | 30.59 | 27.48 | 25.17 | 23.24 | 21.39
af, 35.05 | 30.60 | 27.46 | 25.15 | 23.23 | 21.38
Tensorz | 35.76 | 31.40 | 28.18 | 25.71 | 23.71 22.02
D97 | 36.49 [ 31.99 | 28.54 | 25.96 | 23.99 | 22.12

256 x 256 monalisa image
bpp 1 0.5 | 0.25 | 0.125 | 0.0625 | 0.03125
Hs 33.73 | 31.35 [ 29.82 | 28.55 | 27.29 | 25.71
ad, 33.72 | 31.34 | 29.82 | 28.55 | 27.31 | 25.73

Tensorz | 34.04 | 31.74 | 30.20 | 28.91 | 27.60 | 25.98
D97 | 34.37 [ 31.86 | 30.33 | 28.96 | 27.69 | 26.13

Table 5.2: Experimental results by using different wavelet filter sets on lena and

monalisa images of size 256 by 256.

The test results are presented in Table 5.2 where we use the dual filter and its

associated three high pass dual wavelet filters to do wavelet decomposition.

From Table 5.2, we see that the performance of H3 and af, is very similar. The
reason is that their associated high pass dual wavelet filters are the same. The
difference between afa and Tensor; demonstrates that even we have the same set
of a primal filter and a dual filter, how to design their associated high pass wavelet
filters is very important in image compression. Due to the complicity of the design of
good wavelet filters from given pair of scaling and dual scaling filters, we just test the
above four sets of biorthogonal wavelet filters in our wavelet library. To get some 2-D
wavelet filter sets which have better performance than the well known D9-7 wavelet
filter set, more effort and analysis are needed to build a reasonable large 2-D wavelet

library.
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