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Abstract

Pulmonary edema (PE) involves an excess of extravascular lung water (EVLW)

due to an imbalance in fluid filtration which results in hypoxia and respiratory

distress. Cardiogenic pulmonary edema is a primary clinical feature and thera-

peutic target in acute heart failure. Current methods in measuring EVLW are

lacking, so this study aimed to provide quantitative imaging of water density

in the lung parenchyma through MRI.

This thesis illustrates a novel Yarn-Ball (YB) ultrashort TE (UTE) k-space

trajectory along side an automated image processing approach. Efficiency-

optimized UTE-YB k-space trajectories were designed for breath-hold and free-

breathing acquisitions. These provide full torso spatial coverage with minimal

T1 and T2* weighting at 3T. A composite of all solid tissues surrounding the

lungs (muscle, liver, heart, blood-pool) was used for the lung water density

signal referencing and B1-inhomogeneity correction which results in relative

water density based images. Automated region-growing based lung segmen-

tation isolates relevant lung parenchyma voxels for final relative lung water

density (rLWD) values. Acquisition-time matched 3D radial acquisitions were

compared to YB. Sponge phantom experiments were used to validate absolute

water density quantification.
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Phantom experiments showed excellent agreement between sponge wet weight

and imaging-derived water density. Breath-hold (13 seconds) and free-breathing

(∼2 minutes) YB acquisitions in volunteers (2.5 mm isotropic resolution) had

negligible artifacts and good lung parenchyma SNR (>10:1). Whole lung av-

erage rLWD values were 28.6±3% (automated analysis) with good test/re-test

reproducibility (ICC=0.87-0.99). Radial acquisitions with matched durations

had significantly reduced fully sampled fields of view resulting in prominent

undersampling artifacts.

Quantitative lung water density imaging with an optimized YB acquisi-

tion is possible in breath-hold or short free-breathing studies and may prove

invaluable in the measurement and tracking of PE.
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Chapter 1

Introduction

1.1 Pulmonary Edema

1.1.1 Lung Anatomy

The lungs contain a complex system of air channels and compartments to enable

gas exchange. Air enters the lungs through the trachea then splits into the two

bronchi, branches further into the bronchioles and terminates at the alveoli.

The network of alveoli forms the sponge like lung parenchyma and maximizes

available surface area for gas exchange. An average 30 year old male has 130

m2 of alveolar surface area [1]. Wrapping around individual alveolus are a set of

pulmonary capillaries, each of which has a thick and thin edge (a cross section

is displayed in Fig. 1.1). The thin edge allows for gas exchange through the

air-blood barrier, while the thicker edge contains an interstitial space in which

liquid and solute exchange occurs from the capillary lumen [1]. This interstitial

space of the interalveolar septum is directly connected to the interstitial tissue

surrounding arterioles, venules, and bronchioles, where the terminal branches

of the pulmonary lympatics are located, forming a continuous path to the

lymphatic system [2].

Fluid filtration between the capillaries and interalveolar interstitial space
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Figure 1.1: Electron micrograph showing the cross-section of a pulmonary capil-
lary. Labels represent the alveoar space (AS), interstitial space (IS), epithelium
(EP), endothelium (EN), basement membrane (BM) and red blood cell (RBC).
Figure from Murray [1].
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is governed by the starling equation [3]:

Jv/A = Lp([Pc − Pi])− σ[πp − πi] (1.1)

where Jv is the rate of filtration, A is the endothelial surface area Lp is

the hydraulic conductivity of the membrane, Pc and Pi are the capillary and

interstitial hydrostatic pressures respectively, σ is the reflection coefficient, and

finally πp and πi are the plasma protein and subglycocalyx oncotic pressures

respectively. Fluid is constantly filtering from the capillaries into the interalve-

olar interstitial space at a rate described by equation 1.1. Physical exertion

causes filtration to increase greatly, but the lymphatics swell to compensate.

Filtrate exits the lungs by flowing towards the hila (lung roots - a complex

collection of bronchi, arteries and veins) if nearer the center of the body, or

towards the pleura (sac surrounding the lungs) if near the outside edge of the

lung [4]. All together, fluid is constantly leaking from the pulmonary capil-

laries into interstitial spaces but then reabsorbed into the bloodstream via the

lymphatics.

1.1.2 Disease Characteristics

Pulmonary edema (PE) is the result of fluid filtration exceeding a threshold

capacity of lymphatic drainage, leading to increased extravascular lung wa-

ter (EVLW). Generally, the intersitial spaces fill first and in severe cases the

aleveolar spaces follow. Normal lung function and gas exchange are impeded,

hence people suffering from PE will have symptoms of hypoxia and respiratory

distress. Instances of PE are traditionally categorized into two types, cardio-

genic and non-cardiogenic [2]. In the case of cardiogenic PE, the hydrostatic

capillary pressure (Pc) increases greatly from left sided heart-failure (HF). Non-

cardiogenic PE occurs when endothelial permeability (equivalent to hydraulic

conductivity Lp) increases, which allows water and protein to leak into the in-
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teralveolar interstitial space. Acute respiratory distress syndrom (ARDS) is a

prominent example of non-cardiogenic PE. Further subdivisions of PE origins

have been proposed by Ketai et al. who also consider the state of the alveolar

epithelium [5]. It may be damaged by “stress-failure” due to extreme pressure

or the presence of diffuse alveolar damage as found in ARDS. PE limited to

the interstitial spaces causes less distress and clears more quickly, while fluid

leaking through the alveolar epithelium and filling the alveoli is difficult to clear

and leads to severe symptoms.

In general, outcomes are poor. Mortality is 12% in-hospital and 40% after

one year for patients hospitalized with acute PE [6]. Cardiogenic PE is a major

symptom of HF, which appears in at least 50% of heart failure patients [7]. In

fact, acute HF patients are often hospitalized because of congestion due to PE

as opposed to reduced cardiac output [8]. Cardiogenic PE cases are common

considering heart failure prevalence is 23 million worldwide [9], these cases

provide the main motivation for this study. ARDS is a less common but severe

manifestation of PE. It has many potential sources including pneumonia, sepsis,

and pancreatitis. ARDS patients comprise 10.4% of ICU admissions and leads

to a 40% mortality rate [10].

1.1.3 Current Measurement Methods

Accurate measurement of EVLW in vivo is challenging and not routinely per-

formed. In vitro, EVLW measurement is straight forward through gravimetry,

which involves the comparison of dry and wet weights of an excised lung. It

is often used to validate animal studies and serves as a gold standard when

available [11].

The most readily available tool to diagnose PE in vivo is the stethoscope.

The presence of “fine crackles” during auscultation indicates the presence of

insterstial edema. While useful, auscultation has no way to distinguish mild

from severe PE and suffers from interobserver variability [12].
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In clinical practice, chest X-ray is often used to diagnose PE due to its

wide availability and rapid examination of the lungs. However, diagnosis of PE

relies on user-recognition of specific image features (example in Fig. 1.2), also

suffers from high interobserver variability, and lacks quantitative ability [12].

Computed tomography (CT) provides a high resolution picture of the lungs

and is the gold standard for the diagnosis of numerous lung diseases, including

PE [13](Fig. 1.3). However, the required large dose of ionizing radiation is clear

downside, especially when tracking disease progress through repeated measure-

ments. Also, CT (X-rays) does not distinguish the presence of increased solid

tissues, such as fibrosis, and increased water.

Figure 1.2: A case of cardiogenic PE in a 33-year-old man observed by chest
x-ray. The arrowheads point out key “bilateral Kerley line” features in PE
diagnosis. Figure from Gluecker et al. [14].

A newer technique, lung ultrasound, provides a safe and non-invasive bed-

side method to assess PE, based on counting characteristic comets or streaks

on the images associated with edema (Fig. 1.4). However, the technique is still

in devlopement without any large-scale randomized trials and is limited by the

“semi-quantitative” nature of counting image streaks as a measure of water

density [16].

Finally, transpulmonary thermodilution (TPTD) is the most established
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Figure 1.3: (A) A normal CT of the chest in a healthy adult (Case courtesy
of Dr Andrew Dixon, Radiopaedia.org, rID: 36676 [15]. (B) A CT of the chest
in a 53-year-old man with cardiogenic PE (figure from Gluecker et al. [14]).
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Figure 1.4: The appearance of cardiogenic pulmonary edema in lung ultra-
sound. A region with moderate edema (A) and substantial edema (B). Figure
from Cortellaro et al. [17].
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method in providing quantitative PE evaluation, specifically the targeted EVLW

volume [18]. It has also been verified with gravimetric examinations [19]. De-

spite the accuracy of the technique, catheter insertion is required and EVLW

volume can only apply to the entire lungs, with no sensitivity to regional vari-

ations in water density.

1.2 Study Motivation

Pulmonary edema is a common condition with many potential causes and is

often a sign of underlying health problems. Despite its clinical significance,

accurate quantification and tracking of the condition is lacking. An array of

measurement methods exists, but each has significant drawbacks, as summa-

rized in the previous section. This study introduces a new MRI based method

to track the disease. Our goal is to use the inherent advantages of MRI, being

non-invasive, having no ionizing radiation and intrinsically measuring water

content. We apply the novel Yarn-Ball (YB) k-space acquisition scheme, which

allows for ultrashort TE (UTE), full-sampling of k-space, high SNR, and mo-

tion correction in a patient-friendly total scan duration. On top of this, new

methods for signal referencing (to provide quantitative water density), back-

ground field correction, and lung masking techniques were developed to analyze

the images. All together, we aimed to provide a complete lung water quantifi-

cation package with clinical viability.

1.3 Magnetic Resonance Imaging Methods

1.3.1 Lung MR Basics

Magnetic Resonance Imaging (MRI) directly measures water content and can

provide full 3D images of the lungs without being invasive or requiring ionizing

radiation. However, the lungs present unique challenges to MRI.
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First, the sparse structure of lung parenchyma leads to low proton density

and correspondingly low signal yield. Because of this, signal to noise ratio

(SNR) will always be relatively low when compared to the majority of other

tissues, regardless of MRI protocol.

Second, cardiac and respiratory motion must be accounted for. The natural

expansion and contraction of the lungs over breathing cycles of 2-4 seconds can

cause signal to be acquired at varying respiratory phases, leading to significant

blurring in the final image. Motion of the heart and pulsatility of the blood

can similarly give rise to image artifacts, depending on the acquisition method.

Limiting the total acquisition time to a single breath hold is the most straight

forward solution but greatly limits sequence parameters. Gating techniques

allow for free breathing acquisitions but add complexity and lengthen scan

times (section 1.3.6).

Third, the many air-tissue interfaces in lung parenchyma lead to extremely

fast transverse relaxation (short T2*) and potentially large signal losses. Mag-

netic susceptibility differences between air (0.36×10−6) and tissue (-11.0×10−6

to -7.0×10−6) [20] add magnetic field inhomogeneity, which de-phases the trans-

verse magnetization. Lung T2* is 2.11(±0.27) ms at 1.5T and 0.74(±0.1) ms at

3.0T [21]; these values are well below the values of the more commonly imaged

tissues, with T2* values of several tens of milliseconds.

1.3.2 MRI Methods

A wide variety of MRI pulse sequences have been used to image the lungs, in-

cluding spoiled gradient echo, balanced steady state free precession, spin-echo,

and ultra-short echo time (UTE) approaches. While spin-echo acquisitions

(which are T2 weighted) largely eliminate the signal loss from T2* effects, they

remain sensitive to T2 (∼ 40ms in the lungs at 1.5 T [22]) and are relatively

slow and sensitive to motion(cardiac and respiratory). With quantification of

EVLW as the goal, the sequences which can provide proton density weighting
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and minimal motion artifacts are desired. In particular, pulmonary edema has

been shown to increase T1 and T2 in lung parenchyma [23] and this lack of

knowledge of the T1 and T2 values further highlights the need for minimal

signal weighting.

The spoiled gradient echo (SPGR) sequence is efficient for imaging the

entire lung volume (i.e. 3D SPGR is relatively fast) but generally results in

low SNR with the required short repitition times (TR). Transverse signal decay

from excitation to signal acquisition is described by:

Mxy(TE) = Mxy(0)e−TE/T2
∗

(1.2)

Mxy(0) is the maximum available transverse magnetization, which is a func-

tion of the pulse sequence parameters. In order to avoid unwanted signal loss

when using gradient-echo acquisitions, one must ensure TE � T2*. Also, the

relatively long lung T1 (1397±214 ms at 3.0 T [24]) can lead to significant T1-

weighting with the short TR values desired for fast imaging. In addition, the

T1 values of other tissues near the lungs may also need to be accounted for, in-

cluding the liver (812±64 ms), skeletal muscle (1412±13 ms), blood (1932±85

ms) [25], myocardium (∼1160 ms) [26], and fat (∼400 ms) [27]. Signal in-

tensity in a partial saturation based acquisition, which includes T1 weighting

depending on the applied flip angle, is described by equation 1.3 [28].

S =
S0sin(α)(1− e−TR/T1)e−TE/T2

1− e−TR/T1cos(α)
(1.3)

Careful consideration of TR values, T1 values and flip angles are necessary

with this approach of lung water imaging.

Lastly, unwanted signal loss from the short lung T2* values is limited by

the use of ultrashort echo time (UTE) methods, which typically use center

out k-space acquisitions (section 1.3.4) to achieve sub-millisecond TEs. For

comparison, applying equation 1.2 to the lung T2* of 0.74 ms (3T) results in
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approximate signal yields of 25% at TE = 1 ms and 87% at TE = 0.1 ms.

While UTE approaches (which can offer TE� T2*) do address the T2* signal

losses, there are several challenges that must be overcome for their practical

application, which is detailed in section 1.3.4 below.

1.3.3 Quantifying Lung Water

Considering the proportional relation between water, spin density and MR

signal, measuring EVLW with MRI appears to be the optimal imaging modality.

However, MRI signal is typically expressed in arbitrary units (au), given the

many factors that affect the intensity of the acquired signal. Direct absolute

signal quantification usually isn’t practical due to radio-frequency (B1) transmit

and receive inhomogeneities, the requirement for a signal reference, unwanted

T1, T2 or T2* weighting and other factors such as off-resonance dependence.

Multiple early MR studies attempted to quantify lung water with animal

studies. Such studies employed excised lungs from an array of animals, includ-

ing rats [29](Fig. 1.5), dogs [30](Fig. 1.6), and pigs [31]. They used external,

pure water phantoms as reference signal. These studies succeeded in correlat-

ing lung SNR/proton density with gravimetric results, but were impractical

with long scans and generally poor image quality. The applied MRI pulse se-

quences all led to significant image weighting, either being T2* weighted with

SPGR sequences and TEs of several milliseconds, or T1 and T2 weighted when

spin echoes were applied. A more modern study, which used excised pig lungs,

showed a strong correlation between MRI derived lung water and gravimetric

results using a gradient echo sequence [32]. This study attained 8s acquisition

times with TE values of 1.03 ms and 1.40 ms, but this still leads to significant

signal decay in lung parenchyma. In addition, T1 was not taken into consid-

eration for this study, which would be of concern with a TR of 10 ms and 10◦

flip angle.

As described earlier, UTE methods limit T2* decay and have potential for

11



Figure 1.5: NMR image of isolated rat lungs obtained with a line-scan technique
for quantitation of lung water in 1982. Figure from Hayes et al [29].

Figure 1.6: MRI of dogs lungs (A) before and (B) after injury to induce
pulmonary edema. Figure from Caruthers et al [30].
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more accurate lung parenchyma signal measurement. Molinari et al. demon-

strated the advantage of quantifying water content with UTE over a gradient

echo sequence in a “sponge phantom”, which mimics the lung parenchyma [33].

These studies presented the ability to quantify lung water in ideal scenar-

ios, but many more challenges are present in vivo. First, the effects of cardiac

and respiratory motion must be considered and the influence of the degree of

lung inflation should be accounted for. With lung inflation varying by several

litres in adults, water density will also vary greatly at different stages of the

respiratory cycle. T2* has also been found to be affected by inflation, which

adds uncertainty in T2* weighting [34]. Second, pure water reference phantoms

are impractical due to large B1 field excite and receive inhomogeneities. For

example, when using a chest coil, signal in the chest muscle lies much closer

to the receive array and returns much higher signal; therefore, water phan-

toms placed outside the body would also return inflated values, experiencing

very different B1 fields than the lungs. Finally, when not excised and isolated,

defining the lung parenchyma regions is more difficult. A “mask” is required

to describe where the lung parenchyma lies, while excluding major vascula-

ture, skeletal muscle, and the liver (section 1.4.3). Better definition of lung

vasculature to improve the masking process is an important benefit of higher

resolution images.

Similar to measuring lung water, some studies have examined “lung den-

sity”, being analagous to CT. These have used muscle tissue to calibrate lung

signal. Lederlin and Crémillieux used stack-of-stars UTE MRI to examine lung

density [35]. They drew ROIs in lung parenchyma and muscle regions close in

proximity to compare signals (Fig. 1.7), assuming each area experienced sim-

ilar MRI pulse sequences (e.g. B1 values). They found 34% and 58% water

content (relative to muscle) in gravitationally non-dependent and dependent

regions respectively. Several studies examined the density of neonatal lungs,

which suffer less from B1 inhomogeneity and motion artifacts due to their small
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size. In a gradient echo study, Walkup et al. used mean chest soft tissue sig-

nal to normalize entire lung areas [36]. Here two different lung masks were

defined with empirically chosen thresholds. A 45% signal cut off (relative to

mean chest soft tissue signal signal, Fig. 1.8) was used to define high signal

areas (potential edema, fibrosis etc.) and another with 4% signal to define low

signal (alveolar simplification). 3D radial UTE MRI was used in the Hahn [37]

and Higano [38] in neonate studies, which also used mean muscle tissue signal

but differing masking methods. Hahn segment each lung into 3 compartments,

upper lower and middle, to provide 6 regions between the two lungs. Higano

used a manually guided region growing algorithm to mask each lung and avoid

major pulmonary vessels.

Figure 1.7: Healthy control lung MRI. ROIs drawn to determine lung density
based on muscle signal yield. Figure from Lederlin and Crémillieux [35].

Each of the above methods for quantifying lung signal have limitations.

Any user input, which could be an arbitrary threshold or manually drawn

ROI, add inter observer variability. B1 field effects must still be considered, as

muscle tissue from different parts of the body will provide varying signal yield

depending on MRI set up (coil location, body position etc.). Last, assumptions

on either muscle water content or density were made to report quantitative

14



Figure 1.8: MRI of parenchyma density in neonates. Includes a full-term con-
trol subject (Term 2), a premature patient (Premature3) and two bronchopul-
monary dysplasia patients (BPD1 and BPD2) . Figure from Walkup et al. [36].
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results. The accuracy and consistency of muscle composition between different

people is undetermined and a potential source of error.

1.3.4 UTE K-space Acquisition

In order achieve ultra short echo times (UTE), k-space acquisition must begin

immediately after excitation (i.e. to put the the center of k-space within∼100µs

of excitation or less). This sampling approach is not compatible with Cartesian

trajectories, which require pre-phasing gradients (i.e. requiring time) to start

k-space readouts at the edges of k-space and the subsequent sampling of k-

space from the edge to the center. The most commonly used 2D UTE method

is radial sampling of k-space, which acquires arms in a center out fashion and

looks like a “star” when complete (Fig. 1.9A). Full sampling (fulfilling the

Nyquist criterion) is determined by the distance between k-space samples at

the edge of k-space, where the distance between the radial arms is largest.

This is determined from the desired image parameters, where resolution relates

to k-space maximum (RES = 1/(2kmax)) and field of view (FOV) relates to

distance between k-space samples (∆k = 1/FOV ). Therefore, sampled data

covers a circle of radius kmax and points on this surface must be separated by

∆k. The number of k-space points per readout (if spaced equally on a line) R

is then:

R = kmax/∆k = FOV/(2 ∗RES) (1.4)

Equation 1.5 determines the necessary number of trajectories (or arms) for

the Nyquist criterion to be reached, which is generally a much larger number

than with Cartesian acquisition.

Ntraj = 2πR (1.5)

Another commonly used 2D UTE method, spiral imaging [39], also begins

center out to enable UTE, but requires less trajectories to fill k-space at the
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cost of longer readout times and potential image blurring. Both 2D radial and

2D spiral imaging methods can be adapted to 3D with slab excitation and slice

encoding, being called stack-of-stars and stack-of-spirals respectively, however

the required slice-oriented phase-encoding gradients will increase the minimum

echo.

To obtain isotropic 3D resolutions and avoid slice encoding altogether, 3D

k-space acquisitions can be applied. 3D radial is the standard version of this,

sometimes being called “koosh-ball” (Fig. 1.9B). This however, is even less

efficient than 2D radial, and follows equation 1.6 [40].

Ntraj = 4πR2 (1.6)

For full Nyquist sampling, A 3D image with an FOV of 300 mm and 2.5

mm (R = 60) isotropic resolution requires 14,400 trajectories with Cartesian

k-space sampling, while requiring 45,238 with 3D radial filling.

Another 3D UTE k-space sampling method is the 3D cones trajectory [41].

First, the number of cone surfaces is determined to adequately cover a sphere

of k-space as in Figure 1.9C. Then the number of trajectories per cone is deter-

mined based on the necessary interleaved spirals. Calculation of total trajec-

tories and efficiency depends on desired imaging parameters, but a significant

reduction of trajectories is seen when readout times exceed 2.0 ms. Finally,

FLORET [42] is a 3D spiral UTE sequence designed specifically for the short

T2* of the lungs.

Modified slice selections must be applied to minimize or eliminate the need

for slice select refocusing lobes. These include “split sinc” pulses for 2D images,

non-selective hard pulse sequences for 3D imaging and selective RF pulses with

slab-select gradients. An overview of these is given by Quian Y and Boada

FE [45].
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Figure 1.9: A) 2D radial k-space sampling figure modified from Ferreira PF et
al. [43]. B) 3D radial k-space sampling figure from Herrmann KH et al. [44].
C) Layout of cone surfaces in the 3D cones trajectory (figure from Gurney PT
et al. [41]).
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1.3.5 Yarn-Ball k-space Sampling

An alternate 3D UTE sampling approach, called Yarn-Ball (YB) [46] was de-

signed to sample k-space along non-linear paths that are optimized for acqui-

sition efficiency. Also beginning center out, a straight radial path is followed

until a threshold distance is reached. This threshold is equal to ρ ∗R, where ρ

is the “radial fraction” (between 0 and 1). Past this threshold, the trajectory

begins to “wind” around the center, analogous to winding a ball of yarn. The

winding phase is governed by the following equations:

ṙ = ρ2/r2 (1.7)

θ̇ = πRṙ (1.8)

φ̇ = 2πRrθ̇ (1.9)

Here, r is the “relative radial distance” (normalized to R), θ is the polar

angle, and φ is the azimuthal angle. Essentially, for every radial k-space step,

the trajectory must sweep from 0 to π radians in the polar angle. Then for each

step in the polar angle, the azimuthal angle must rotate through 2π radians

enough times for full sampling at that radius. This “winding” is segmented

into “discs” and “spokes”. There are Nspokes for each of the Ndiscs and Nspokes ∗

Ndiscs = Ntraj. This results in the following equations:

θ̇ = πRṙ/Ndiscs (1.10)

φ̇ = 2πRrθ̇/Nspokes (1.11)

The most efficient and evenly spaced sampling occurs when 2Ndiscs =
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Nspokes. With radial like acquisition occurring within ρ ∗R, equation 1.5 holds

when the discs or spokes are considered on a 2D plane. This means the value

of ρ is constrained by the number of trajectories:

ρ = min(Ndiscs/πR,Nspokes/2πR) (1.12)

That is, ρ ∗ R is equivalent to the maximum radius where Nyquist sam-

pling can be achieved with normal radial trajectories. Everything beyond that

radius is filled with yarn ball winding. An example trajectory is displayed in

Figure 1.10.

Figure 1.10: An example trajectory displaying the center out and winding
nature of Yarn-Ball acquisition.

The speed and coverage of the winding portion of each trajectory is limited

by a few key aspects including gradient strength, nerve stimulation and readout

duration. As compared to the pure radial trajectories, YB trajectories benefit

greatly from longer readouts, being able to “wind” further in a single trajectory
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and cover k-space with few trajectories, reducing scan time. However, depend-

ing on factors such as T2* times and off-resonance frequencies, this can lead to

significant blurring and more complex image artifacts.

In conclusion, based on a selected resolution, FOV, and readout duration,

optimal scan time is achieved by minimizing the number of trajectories (con-

strained by hardware (gradient slew rates) and nerve stimulation). Yarn ball

trajectories generally cannot be implemented based on the above equations

alone, so trajectories are “stretched” near the center and “contracted” near

the peripheries to avoid excessive gradient switching. In comparison to the

45,238 trajectories necessary for 3D radial in the previous example, yarn ball

required only 6,555 trajectories to achieve the same image parameters (detailed

in Chapter 2).

In addition, both radial and YB methods can be used in a “dual echo”

fashion to obtain a second image immediately after the first with a longer TE.

In the case of radial, the gradients simply reverse to trace back along the same

path to the center of k-space. In yarn ball, the trajectory continues in the

direction it finished after the first echo and winds back into the center. These

dual echo image sets can be useful for generating T2* contrast, for either T2*

estimation (which may be increased in the presence of edema) or to generate

black-lung images (to enhance lung parenchyma segmentation). Dual echo

radial acquisition has been applied to map T1 and T2* in the lungs [47].

Finally, YB can also be implemented in a “golden ratio” fashion. Yarn-

Ball is generally implemented such that the initial trajectory projections away

from the center of k-space are first rotated about a disk and then rotated

about subsequently rotated disks. Thus, these initial trajectory projections

follow a progressive evolution pattern about a sphere. In the ‘golden ratio’

approach, trajectories are not ‘played-out’ sequentially, but are played out over

steps of size S, where S ≈ N/φg. Here, N is equivalent to the total number

of trajectories required to fully sample a sphere and φg is the golden ratio
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(φg ≈ 1.618). For example, when N = 10, the order is 1,7,3,9,5,2,8,4,10,6 (here

S is rounded to 6, except for the step from 5 to 2 where S = 7). The value of

golden ratio indexed YB is that any data subset will contain an approximately

‘uniform collection’ (or uniform density) of trajectories from across the full YB

set, which is useful for retrospective gating as described in section 1.3.6 below.

1.3.6 Respiratory Motion Correction

Both cardiac and respiratory motion must be accounted for in order to avoid

motion blurring. Cardiac motion is not a concern when the center of k-space

is sampled repeatedly, as in center out UTE trajectories. What results in such

cases is an averaging of the heart motion leading to a blurred or averaged heart

image, but no artifacts in surrounding areas. Therefore, Yarn-Ball k-space

acquisition is relatively unaffected by cardiac motion.

On the other hand, respiratory motion affects the entire torso and requires

special attention. To avoid image blurring or artifacts due to this, the simplest

solution is to have patients hold their breath for the duration of the scan. Of

course, this severely limits scan time and thus k-space coverage (spatial res-

olution, signal to noise, etc.). Free breathing acquisitions are feasible when

information on respiratory position is available. The respiratory signal, often

called a navigator signal, can be used to trigger data acquisition at targeted

respiratory phases or positions. A direct way to obtain a navigator signal is

through a physical device, such as a thoracic belt to measure torso expan-

sion [48].

Alternatively, navigator echoes use additional RF pulses to determine di-

aphragm position during the scan [49]. Conventional navigator echoes use a

“pencil beam” excitation, which is reconstructed into a single line scan. Align-

ing multiple line scans side by side will show time-varying motion along the

axis of the pencil-beam, providing diaphragm position information over time.

Navigator echoes are quite common and useful, but the necessity for additional
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RF pulses complicates the sequence.

Self-navigators can be obtained from the k-space data itself if the center is

repeatedly sampled throughout a sequence, as is the case with most UTE ac-

quisitions. This source of navigator signal is the most convenient to implement

because no modifications to the scanning procedure are necessary (no interrup-

tion of continuous data acquisition). The k-space center represents a DC signal

which is the total signal from the entire volume obtained without any spatial

frequency encoding. This varies slightly with chest and diaphragm position,

meaning respiratory information can be extracted from this signal. Coils in

different positions will be affected differently by this position, so individual coil

locations should be considered when extracting data. A coil resting on the

chest will be affected much greater than one close to a shoulder. One way to

combine information from multiple coils is through principle component analy-

sis (PCA) [50]. PCA combines variables in such a way to maximizes variation,

so coils are combined optimally to highlight respiratory motion. This approach

is applied for all free-breathing studies in Chapter 2. However, this method can

only provide a relative as opposed to an absolute diaphragm position; physical

motion distances are unknown.

Self gating signals can also be derived from low resolution images recon-

structed with a “sliding window” approach as described by Tibiletti et al. [50].

From this series of images, the diaphragm position can be tracked in a similar

fashion to a pencil beam navigator, without the additional RF pulses.

With a navigator signal in hand, the MRI data needs to be organized

in such a way to avoid motion artifacts. “Gating” involves only using MRI

data corresponding to a certain respiratory position in making an image. The

criteria for gating can be chosen freely, for example, being based on absolute

diaphragm position or a percentage of respiratory phase. Generally, narrower

criteria results in images with less motion artifacts but a longer acquisition time.

Gating can be done “retrospectively” or “prospectively”. Retrospective gating
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includes continuously acquiring data and “binning” the data in post-processing.

Prospective gating involves determining respiratory position in real time and

only acquiring data at certain times. This is more complex to implement but

has much more efficient data acquisition.

1.3.7 Coil Combination

When imaging the lungs, chest and back coils arrays provide much higher SNR

than the full body coil. When a coil array is used, the data from each coil

is reconstructed into individual images. From these images we see excellent

SNR in a local region near the coil, and low SNR in distant areas of the FOV.

Combination of these images is necessary to generate an image which covers

the entire FOV adequately. Although easy to implement, simply averaging the

images results in noise amplification. A given pixel will receive equal contribu-

tion from all coils, regardless of proximity and SNR, which means coils distant

from said pixel will mostly contribute noise. Considering this, coil sensitivity

profiles are useful since they can weigh the contribution of each coil on a pixel

by pixel basis. Coils closest to a given pixel will be weighed highest, while those

further (and mostly contributing noise) will be suppressed. Since obtaining full

coil sensitivity profiles (B1 receive maps) in-vivo is impractical, we applied the

SUPER (summation using profiles estimated from ratios) method described by

Bydder et al. [51]. This method involves estimating coil profiles by applying

heavy low pass filters to the image it produced. The brightest pixels in a coil

image are generally the closest, so this serves as a useful approximation despite

disregarding signal variations from the subject itself. The challenges of correc-

tion for non-uniform signal intensity when using coil arrays, which is necessary

to estimate lung water content, is described below (section 1.4).
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1.3.8 SNR Reconstruction

In order to obtain true SNR values on a voxel by voxel basis, the approach

described by Kellman and McVeigh was applied [52]. This method involves

generating a noise covariance matrix between all coil elements with pure noise

data (obtaining signal without any RF gradients or excitation). Noise acquired

at a different bandwidth from image data must also be scaled accordingly. All

aspects of the reconstruction process (windowing, inverse fourier transform,

sampling density compensation) must be normalized to avoid signal biasing.

The noise covariance matrix is factored into the final reconstruction during

array combining. No magnitude image correction was necessary as B1-weighted

combining [51] was also applied.

1.4 Image Processing

1.4.1 Image Normalization and Surface Fitting through

Tikhonov Regularization

Surface coil signal reception is optimal for SNR considerations, but results

in non-uniform signal intensities over space. Also, the transmit (B1+) field

form the body coil cannot be assumed to be uniform over larger fields of view,

resulting in spatially varying flip angles and thus signal yield. An image nor-

malization method was developed to address these challenges, based on the

use of all solid tissues surrounding the lungs (reference tissues: muscle, liver,

heart, blood pool) as a global signal reference. This approach assumed that

all tissues have a similar water density, which is well documented with values

ranging from 70% to 80% [53, 54, 55].

The image normalization process applied relied on generating a best-fit

surface from the reference tissues only, with large regions of missing data (e.g.

from the lungs, bones). Surfaces were generated by a method derived from John
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D’Errico’s “gridfit” MATLAB function [56]. This allows for the generation of

a smoothly varying surface over a sparse image with a high level of control of

the properties of the best-fit surface. Each pixel in an image can be thought of

as a linear equation of the form:

anxn = bn (1.13)

where an is an independent variable representing a pixel index (n total

pixels, n = i ∗ j, i pixels tall and j pixels wide), xn is a parameter setting

the pixel brightness, and bn is the resulting pixel. Therefore, each individual

pixel of the image is represented by a simple linear equation. The set of these

equations is best represented in matrix form:

Ax = b (1.14)

In this form, it can be seen as a multiple linear regression problem where matrix

A has m rows and n columns and b is a vector of length m (m = n when all

pixels are included). A surface could be generated with ordinary least squares

regression, which seeks to minimize the sum of residuals:

minx{‖Ax− b‖2} (1.15)

However, in an image with missing pixels, we only have m equations for each

available pixel and n columns for the total pixels(m < n). Hence, the linear

algebra problem becomes underdetermined and ill-posed. This means simple

linear algebra methods cannot be applied. Tikhonov regularization [57] (aka

ridge regression) addresses this problem by adding factors to the equation that

bias the solution towards a certain goal (can also be applied to a well-posed

problem). The form of the Tikhonov matrix will determine this bias. A sec-

ond order central difference approximation may be applied within one of these
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matrices, and appears as follows:

f ′′(x) ≈ f(x+ h)− 2f(x) + f(x− h)

h2
(1.16)

Which simplifies if h is set to 1 as the index difference between neighbouring

pixels. Final pixel value bn is equivalent to f(x)

b′′n ≈ bn+1 − 2bn + bn−1 (1.17)

A Tikhonov matrix (L) is formed from a set of these equations, applied in both

the i and j directions. For the surface fitting problem with missing data, setting

these values to zero will minimize variation in slope and enforce smoothness in

the generated surface.

Lx = 0 (1.18)

Adding these constraints to the least squares problem:

minx{‖Ax− b‖2 + λ‖Lx‖2} (1.19)

Generally, the tikhonov matrix is multiplied by a constant known as a regular-

ization parameter (λ). Solving for the minimum of equation 1.19 results in the

final equation for the approximated x parameters:

xλ = (ATA+ λ2LTL)−1AT b (1.20)

Thus, solving the above equation will provide an approximate surface spanning

the dimensions of an image with missing data. Higher values result in more

bias in the final solution, while smaller values reduce the bias. In the case of

the generated surface, high values equate to more smoothing. Selection of this

value is key to the characteristics of the desired solution.
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1.4.2 L-curve Regularization Parameter Selection

Methods for selecting a regularization parameter generally fall into one of three

categories, a-priori, a-posteriori and heuristic (error-free) methods [58]. The

first two require a measure or estimation of error in the data, which is not

easily attainable with the many factors affecting MRI signal. The L-curve pro-

posed by Hansen [59] is a widely used error free method, requiring no predeter-

mined error values. It relies on two values which vary with the regularization

parameter λ. The semi-norm of the regularized solution (xλ) is defined:

η = ‖Lxλ‖ (1.21)

This represents the error between the final solution and smoothing condition.

The residual norm is defined:

ρ = ‖Axλ − b‖ (1.22)

This represents the error between the original pixel values and obtained solu-

tion. When these two errors are plotted on a log-log plot, a L shaped curve is

formed. The optimal lambda value is defined as the corner of this curve which

is the point of maximum curvature [60]. Curvature is defined as:

κ(λ) =
ρ′η′′ − ρ′′η′

(ρ′)2 + (η′)2)3/2
(1.23)

Essentially, this results in a solution which serves as a balance between error

in the original data and over-smoothing from regularization errors.

1.4.3 Lung Masking

As mentioned in section 1.3.3, if quantification of lung water is desired then so to

is a defined lung region (which excludes major vasculature, skeletal muscle, and
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the liver). Examining an image and manually drawing an ROI to define a lung

region is very straightforward but tedious. In the case of full 3D scans, manual

segmentation of the entire lung is unpractical. This also introduces unwanted

error from inter observer variability. Automated lung masking is necessary for

practicality and quantitative consistency, but segmentation methods for lung

MRI have not been established.

Threshold based methods are a common approach to any segmentation

task, being fast and easy to implement. The lungs present the opportunity to

use a threshold based method due to the contrast between the low signal, lung

parenchyma regions and comparitevely bright surrounding tissues. However, a

simple threshold does not account for the physical location of pixels, potentially

including unwanted low signal regions such as bones. They are also sensitive

to irregular “bright” lung regions or abnormalities and cannot account for the

large water density gradient from the chest to the back.

A region growing method was developed to identify pixels within the lung

parenchyma (Section 2.2.8). The growing is based on comparison of neighbour-

ing pixels to the original seed point. This will includes pixels in direct contact

to the original seeds, which can avoid unwanted areas. In addition, the pro-

cedure was made iterative to provide a gradually adapting inclusion criterion,

as opposed to a completely fixed one, which adds flexibility to the growing

process.
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Chapter 2

Quantification of Lung Water

Density with UTE Yarn Ball

MRI

2.1 Introduction

Pulmonary edema (PE) is the accumulation of extravascular water in the lungs

due to an imbalance in fluid filtration, leading to hypoxia and respiratory dis-

tress [2]. Cardiogenic pulmonary edema is a primary clinical feature and ther-

apeutic target in acute heart failure [7] and is associated with the defining

feature of reduced exercise capacity in heart failure [61]. Current tests used

for the evaluation of pulmonary edema are qualitative (auscultation and lung

x-ray), invasive (thermodilution) or require ionizing radiation (CT) [18, 12].

MRI has been shown to have the potential to quantify lung water content,

with good agreement to gravimetric tests in animal studies [29, 30, 31, 32].

However, practical MRI evaluation of lung water content (lung water density,

LWD) must address the constraints of low proton density (low signal to noise

ratios), large magnetic susceptibility gradients that result in short T2* values

(<1 ms at 3T [21]), cardio-respiratory motion [62], a large required field of
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view, and the need for a signal reference. Additionally, pulse sequence design

should ensure minimal T1-weighting, where elevated T1 values with increased

water content [23, 63] will lead to a paradoxical signal reduction in the pres-

ence of T1-weighting. Finally, the targeted patient groups have difficulty with

breath-holding and extended supine positioning due to pulmonary congestion

or compliance (children) necessitating fast patient-friendly exams.

Pulse sequences with sub-millisecond ultra-short echo times (UTE) have

been shown to address the effects of short lung T2* [64, 65] with applica-

tions in emphysema [66], COPD [67], perfusion [68] and imaging of lung water

density [35, 38, 42]. Despite the considerable SNR improvement in the lung

parenchyma with UTE acquisitions, the required center-out k-space trajec-

tories, most commonly 2D or 3D radial, suffer from poor k-space sampling

efficiency leading to exceedingly long scan times or the use of k-space under-

sampling, which can give rise to unwanted artifacts [50, 69]. Designer k-space

trajectories have been shown to offer improved efficiency as compared to ra-

dial trajectories for lung imaging, but with relatively low reported signal to

noise ratios in the lung and with significant T1-weighting [42]. Alternatively,

spin-echo approaches address the limitations of short T2* values in the lung

parenchyma [70], but with unwanted T2-weighting and potential sensitivity to

motion and flow artifacts.

The goals of the current study were to illustrate the application of a novel

efficient Yarn-Ball (YB) UTE k-space trajectory in combination with an opti-

mized pulse sequence design and an automated image processing procedure for

fast and quantitative imaging of water density in the lung parenchyma.

2.2 Methods

This study was approved by the University of Alberta Health Research Ethics

Board and written informed consent was given by all study participants. Imag-
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ing studies were performed on sponge phantoms for validation and illustrated

in-vivo in ten healthy volunteers (age 21–50, 6 men, and 4 women).

2.2.1 Yarn-Ball (YB) k-Space Acquisition

Yarn-Ball (YB), as described in section 1.3.5, is a 3D UTE k-space sampling

approach designed for acquisition efficiency [46]. Beginning center out, trajec-

tories “wind” around the center of k-space, as opposed to projecting straight

outward. This serves to improve the k-space coverage of an individual trajec-

tory in the outer regions of k-space, where normal 3D radial sampling becomes

most sparse. A YB sequence was optimized for adult lung imaging.

Trajectory design criteria included specification of field of view (FOV),

spatial resolution, readout duration and maximum gradient slew rate. All

YB trajectories were designed for an isotropic spatial resolution of 2.5 mm to

enable both identification and removal of the larger conduit blood vessels and

to provide sufficient signal to noise ratios in the lung parenchyma (<10:1 in

all regions was targeted). The non-linear YB trajectories have a non-uniform

point-spread-function (PSF) that offers an expanded FOV in one preferred

direction (Fig. 2.2). For all studies, the expanded FOV was employed in the

right-left direction, to minimize potential aliasing from the arms, which may

extend to the full 60 cm inner bore width in larger subjects. The YB trajectory

arms (Fig. 2.1A) were employed in a spoiled gradient-echo acquisition scheme.

An asymmetric excitation pulse enabled slab-selective excitation (Fig. 2.1B) to

restrict the required imaging field of view in the head-foot direction, to minimize

aliasing, while maintaining a minimum echo-time of 70µs. The final targeted

FOV of 300 mm used in trajectory design was determined empirically based on

the calculated patterns of aliasing for a synthetic torso with realistic dimensions

(Fig. 2.2), where the goal was to minimize the appearance of undersampling

artifacts within the lungs.

Optimal design also balanced the advantages of longer YB readout dura-
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tions, which improve acquisition efficiency by reduction of the number of arms

required for full sampling and reduced T1-weighting by increased repetitions

times, versus the cost of off-resonance artifacts and broadening of the PSF from

T2* decay over the readout [71, 42]. Readout durations of 1.0 ms, 1.3 ms, 2.0

ms and 3.0 ms were compared in terms of scan time and image quality (sample

1.3 ms readout trajectories are shown in Fig. 2.1). The maximum gradient slew

rate used for all designs was 175 T/m/s. Finally, design criteria also addressed

the need for a clinically relevant short scan time, either a breath-hold or a short

free-breathing acquisition (∼2 minutes or less was targeted).

Additionally, a dual-echo YB trajectory (Fig. 2.1 C and D), with the same

design criteria as the single echo acquisition, was generated to evaluate the

feasibility of simultaneous UTE and dark lung (longer TE) imaging. The k-

space trajectory for the second echo was a designed to mirror the first but

beginning at the edge of k-space and winding back in (Fig. 2.1 C). The dual-

echo feature was intended to enhance automated selection of lung parenchyma

via increased contrast to all other tissues, and to enable the potential detection

of increased T2* of lung tissue associated with increased water content [33].

2.2.2 Image Acquisition

All scans were performed on a 3T MR system (Prisma, Siemens Healthineers,

Erlangen, Germany). Signal reception was by spine and body arrays (30 to-

tal coils) to provide full torso coverage. Breath-hold (single-echo) and free-

breathing (dual echo) YB sequences as well as a matched breath-hold 3D ra-

dial acquisition (conventional UTE), with identical acquisition duration as the

breath-hold YB, were designed and implemented.
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2.2.3 Breath Hold - Yarn Ball (YB-BH)

The acquisition parameters for the breath hold (BH) YB sequence were: TE

= 0.07 ms, TR = 1.97 ms, readout duration = 1.3 ms, flip angle = 2◦ (slab-

selective excitation of 525 mm in the head-foot direction), 6555 trajectories

(sample trajectory in Fig. 2.1A), 2.5 mm isotropic resolution (1.25 mm re-

constructed), scan time = 13 seconds. Gradient spoiling provided 2π phase

accumulation per pixel (2.5 mm) and an increment of 50 degrees for radiofre-

quency phase spoiling. Experiments for the determination of optimal flip angles

are described below in section 2.2.9.

2.2.4 Breath Hold - Three Dimensional Radial

Breath-held 3D radial scans were completed for all in-vivo studies to enable

comparison of signal to noise ratio and image quality (artifact level) to acquisition-

time matched YB-BH acquisitions. The parameters were: TE = 0.07 ms, TR

= 1.62 ms, readout duration = 0.5 ms with a 5 µs dwell time, FA = 2◦, 8000

trajectories, 2.5 mm isotropic resolution (1.25 mm reconstructed), scan time

= 13 seconds. Gradient spoilers provided 2π phase accumulation per pixel

(2.5 mm) and an increment of 50 degrees for radiofrequency phase spoiling.

In order to match the 13 second YB-BH acquisition duration, there was time

for 8000 projections with TR = 1.62 ms, which yielded a fully sampled field

of view of 126 mm. The shorter readout duration of 0.5 ms with the radial

acquisitions, as compared to the 1.3 ms used for the YB acquisition, enabled

an increased number of projections within the 13 second window, to minimize

undersampling artifacts.

2.2.5 Free-Breathing - Yarn Ball (YB-FB)

The free-breathing (FB) version of the YB sequence included a dual-echo ac-

quisition (Fig. 2.1 C and D) and retrospective gating for image reconstruction.
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The parameters were TE1 = 0.07 ms, TE2 = 2.79 ms; TR = 3.54 ms; readout

duration = 1.3 ms per echo, FA = 2◦, 7381 number trajectories (sample tra-

jectory in Fig. 2.1C), 2.5 mm isotropic resolution (1.25 mm reconstructed) and

5 repetitions, for a 130 second scan time. All 7381 trajectories were acquired

sequentially in each of the 5 repetitions. Gradient spoilers provided 2π phase

accumulation per pixel (2.5 mm) and an increment of 50 degrees for radiofre-

quency phase spoiling. The slightly larger number of required projections for

the dual-echo YB sequence, as compared to the single-echo YB, are a result of

the requirement for reduced gradient slew rates and thus reduced acquisition

efficiency in the transition between the first and second echo. Additional tra-

jectories with different readout durations of 1.0 ms, 2.0 ms and 3.0 ms were

designed to address the effects of readout duration on image quality. The num-

ber of trajectories for the 1.0 ms, 1.3 ms, 2.0 ms and 3.0 ms readouts were

11935, 7381, 4465 and 2628, with relative total acquisition times of 1.34, 1.0,

0.84 and 0.69, respectively, as compared to the 1.3 ms readout case.

For all free-breathing acquisitions, the trajectories were ordered in a golden

ratio pattern (section 1.3.5) to promote uniform coverage of k-space even with

retrospective selection of k-space data using a respiratory navigator, as detailed

in the following section.

2.2.6 Retrospective Respiratory Gating for Free-Breathing

Acquisitions

Free-breathing YB scans used 5 identical sequential repetitions of the fully-

sampled double-echo YB sequence. Repeated acquisitions enabled retrospective

selection of a single best end-expiration acquisition for each YB arm, using a

method similar to Tibiletti et al. [50]. Specifically, the magnitude of the center

point of k-space acquired in each YB arm, which reflects the total image signal

intensity, was used to generate a gating signal based on the change in total
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Figure 2.1: Sample yarn ball k-space trajectories. (A) Single-echo yarn ball k-
space trajectory and (B) the corresponding gradient waveforms. (C) Dual-echo
yarn ball k-space trajectories and (D) the corresponding gradient waveforms.
The asymmetric excitation radiofrequency pulse is shown.
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Figure 2.2: Numerical simulations of aliasing artifacts for 3D radial (8000 pro-
jections) and yarnball k-space trajectories (6555 projections) using a synthetic
torso phantom. All trajectories are identical to those used for breath-hold in-
vivo studies. All images are window-leveled to 25% of the intensity of the torso
phantom signal level. Aliasing artifacts in the lung-region (central black space)
were significantly larger with radial trajectories, with an average value of 13.3%
of the solid tissues with a 100% signal intensity and versus 2.2% signal contam-
ination for the Yarn-Ball trajectory. The point spread function images (PSF)
are also displayed, where the 3D radial PSF shows a 125 mm FOV (spherical)
without aliasing. The YB sequence displays an approximately 300 mm FOV
in the top-bottom and in-out directions, but an expanded FOV of 450 mm in
the left-right orientation.
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image intensity as a function of the change in lung volume with respiration,

over the entire acquisition (Fig. 2.3A). A band pass chebyshev type II filter

centred around the range of potential respiratory frequencies was applied to

smooth the gating signal (Fig. 2.3B). Forward-backward filtering was applied

for zero phase-delay. To account for the distinct variation in the signal intensity

changes from respiratory motion at each receiver-coil location, waveforms from

all 30 receiver coils were combined by principle component analysis to reflect

respiratory position in a single waveform (Fig. 2.3C). For each of the 7381

YB acquisition arms, a single arm from the 5 repetitions falling nearest to

end-expiration was collected to form a single complete data set (Fig. 2.3).

2.2.7 Signal Reference and Spatial Normalization

The proposed method for lung water density (LWD) estimation is based on

measurement of the relative signal intensities of the lung parenchyma to all

surrounding solid tissues, including skeletal muscle, liver, myocardium and the

blood pool, yielding relative lung water density, rLWD. All reported values

from either multiple-pixel regions or the whole lung were the average of rLWD

values from the individual pixels in the considered regions. The water densities

for the reference tissues are assumed to be similar, with values ranging from

70%-80% [53, 54, 55]. Pulse sequence parameters were selected to minimize

T1- and T2*-weighting to avoid bias in rLWD based on lung or reference tissue

relaxation parameters.

The primary technical challenge for the calculation of rLWD was the mea-

surement and correction of the effects of the spatial inhomogeneity of the ra-

diofrequency (B1) transmit and receive fields, within both the reference tissues

and the lungs. The proposed solution was to generate a subject-specific normal-

ization map by fitting a low spatial frequency surface to the signal intensities

of the reference tissues, excluding the lung tissues. The references tissues were

assumed to have a single similar uniform proton spin density. The resulting
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Figure 2.3: Free breathing self-navigator processing. (A) The central k-space
value from all trajectories over free-breathing acquisition, from a single back
coil. (B) The waveform in (A) after band pass filtering. (C) The waveform
generated after combining the waveforms from all coils using principle compo-
nent analysis. Trajectories acquired at end-expiration, as identified from the
waveform in (C) are combined to form a single set complete set of k-space. (D)
Sample reconstructed YB images with and without application of the respira-
tory navigator.
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best-fit surface was extended over the entire torso including interpolation to

within the lung regions. Following the normalization process, the reference

tissues would ideally have uniform unity signal intensities and the resulting

lung signal intensities (rLWD) would thus be in units of a fraction of the signal

intensity in the reference tissues.

Fitting of the background signal intensity variations used regression analy-

sis and Tikhonov regularization (based on D’Errico’s Gridfit [56]). The applied

Tikhonov matrix was in the form of a second order finite difference approx-

imation, which limits slope changes and enforces smoothness, and allows the

surface to span large missing regions of data (lung tissue). The regularization

parameter determined the weight of this smoothing condition and was chosen

with the L-curve method [60].

The predominant signal variations were in the chest to back direction due

to the use of the spine and chest coil arrays for signal reception. Fitting of

the background signal variations on a two-dimensional slice by slice basis in

the coronal orientation was used to minimize signal variations over space and

enable limitation of the best-fit surface to relatively low spatial frequencies,

to mitigate overfitting. Raw images were manually cropped in the coronal

orientation prior to background fitting to exclude the arms.

2.2.8 Lung Parenchyma Segmentation

Segmentation of lung parenchyma, for calculation of rLWD, utilized a custom

iterative three-dimensional (3D) region growing algorithm. The goal was to

exclude larger conduit vessels, solid tissue surrounding the lungs and large

air spaces. The large expected gradient in lung parenchyma signal intensities

from chest to back preclude the use of simple thresholding to identify lung

parenchyma, even following signal normalization to correct for B1 related sig-

nal intensity variations. The iterative algorithm was initiated with a set of

user selected seed pixels from within the lung parenchyma (with values falling
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around 0.2 to 0.35 due to the spatial normalization process preceding mask-

ing). The growing region included new pixels based on a signal intensity ac-

ceptance window around each seed point. Specifically, the acceptance window

included connected pixels (three-dimensions) that fell within a user-specified

range (±((seed)/60+0.01)) around the seed pixel signal intensity. In subse-

quent iterations, a new set of seeds were randomly selected (one per coronal

slice) from the expanded pool of accepted pixels, with a subset of these (in-

cluding more near the front and back of the lungs) being supplied to the next

iteration to minimize redundancy. The process was repeated automatically

until an iteration adds fewer new pixels than a user-specified threshold.

2.2.9 T1 Phantom – Flip Angle Optimizations

A phantom containing 5 tubes with a wide range of T1 values (T1 = 1014, 1187,

1426, 1767 and 1992 ms) was imaged with the free breathing YB sequence, with

identical parameters to in-vivo studies, to determine the effective T1-weighting

at different flip angles varying from 0.5:0.5:5.0 degrees. The goal was to identify

an excitation flip angle that provide a balance between acceptable signal yield

and minimal T1-weighting. Images at each flip angle were normalized to the

0.5 degree flip angle image, which was assumed to have negligible T1-weighting

(<2% over the range of phantom T1 values), based on expected T1-dependence

of an ideal spoiled gradient echo acquisition [28]. T1-weighting with increas-

ing flip angle was then evaluated as the relative loss in signal intensities as a

function of T1 and flip angle. Relative signal yield and T1-weighting from the

phantom experiments were compared to the ideal steady-state spoiled gradient-

echo values, based on the assumption of perfect spoiling in each TR [28]. As an

illustrative example, the signal-loss from T1-weighting, as a function of increas-

ing flip angle, was also calculated for a specific case of a substantial increase in

T1, from 1200 ms to 1700 ms, to emulate the presence of severe edema [63, 23].
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2.2.10 Sponge Phantom – Validation of Water Density

Quantification

Similar to the process described in Molinari et al. [33], a sponge phantom was

used to verify the water quantification process using the optimized YB pulse

sequence. The small air spaces within sponge materials mimic the structure

and short T2* values of lung parenchyma. A 5 x 5 x 2 cm (50 ml) cellulose

sponge with water volumes (water densities) varying from ∼10% to ∼60% in

steps of 10% were tested. The dry weight and wet weights of the sponge for

each water density were measured to determine the true water volume and thus

average water density = water volume / sponge volume. For MRI experiments,

the sponge was placed in an air tight container, which was immersed in a water

bath. The external water bath was used as a signal intensity reference for

water density quantification, similar to the methods proposed for use in the

lungs. The water in the reference bath and sponge was doped with gadolinium

contrast agent (Gadovist; Bayer HealthCare Pharmaceuticals, Montville, NJ)

to achieve a T1 of ∼1250 ms. The breath-hold YB trajectory, with the same

pulse sequence parameters used for in-vivo studies, was used to image the

sponge phantom. In order to measure T2*, acquisitions were repeated over a

range of TE values, with TR fixed to accommodate the longest TE used (TE

= 0.07, 0.30, 0.50, 0.75, 1.0, 1.5, 2.0, and 3.0 ms; TR= 4.9 ms). Calculation of

relative water density in the sponges used the spatial-normalization approach

described in above, which for the sponge experiments included the water bath

region surrounding the sponge as the reference (100% water density). The

total calculated water volume (ml) for each sponge phantom was calculated

as the sum of the normalized signal intensities multiplied by the individual

voxel volumes. Mean sponge T2* was used to correct for signal decay at the

minimum 0.07 ms echo time.
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2.2.11 Volunteer Studies

All ten volunteers were scanned with the YB-BH, YB-FB and 3D radial se-

quences. For all subjects, volunteers exited the scanner after an initial image

acquisitions and were then repositioned and rescanned for test-retest repro-

ducibility. For the YB acquisitions, images were normalized to relative sig-

nal intensity units (rLWD) and the lung parenchyma was segmented as de-

scribe above. Total lung volume was determined from an expansion of the lung

parenchyma mask which includes the vasculature. rLWD was evaluated in all

subjects using the whole lung parenchyma average and regional rLWD was ex-

tracted by segmenting each lung into 10 slabs of equal volume, independently

for head to toe, right to left, and chest to back directions. The test-retest data

was evaluated by comparing whole lung values using the intraclass correlation

coefficient (ICC). Chest to back slab values were also evaluted with ICC to

evaluate any regional gradient changes in the test-retest data. SNR was eval-

uated on a pixel by pixel basis using the method described by Kellman and

McVeigh [52]. SNR, image quality and the presence of artifacts was compared

between the YB-BH, YB-FB and 3D radial sequences.

2.3 Results

2.3.1 Sponge Phantom

The sponge phantom experiments illustrated strong linear agreement between

the water density (%) measured by direct wet weights of the sponges and water

volume derived from YB experiments (y = 1.06x + 0.81, x = 9.3 to 55.4%,

p<0.001, R2 = 0.99, Fig. 2.4). A similar linear relationship exists without

T2* correction, but with minor systematic underestimation of water volume,

as expected. The median sponge T2* was 0.94 ms (interquartile range = 0.85

ms – 1.20 ms).

43



Figure 2.4: Sponge phantom results. (A) Sample YB images from the six
different sponge experiments. (B) Strong agreement was measured between
the MRI derived water content and gold standard wet weight (y = 1.06x+0.81,
x = 9.3 to 55.4%, p<0.001, R2 = 0.99).
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2.3.2 T1 Phantom

Significant T1-weighting was observed as a relative reduction in signal yield in

the longer T1 tubes with increasing flip angles, as expected (Fig. 2.5). Com-

pared to the minimum flip angle of 0.5◦, which yields negligible T1-weighting,

the selected optimal flip angle of 2◦ yielded 3.35 times more signal on average,

for the T1 values considered (∼1000 to 2000 ms). Larger flip angles offered only

moderate increase in signal yield over the 2◦ acquisitions, to a maximum of 4.1

times more than 0.5◦ (on average), but with significantly more T1-weighting.

Predicted signal yields using ideal spoiling and steady-state conditions were

similar to experimental values, with slightly less T1-weighting (Fig. 2.5B). Us-

ing these signal intensity relationships (Fig. 2.5B), the percent signal loss from

T1-weighting between T1 = 1200 ms vs. T1 = 1700 ms was 5.4% for a 2◦ flip

angle and 13.7% at 4◦ (Fig. 2.5C), with similar relationships for empirical and

predicted T1-weighting.

2.3.3 Signal Reference and Spatial Normalization - Healthy

Controls

An illustration of background signal normalization of a YB acquisition dis-

plays the typical signal intensity variations in the coronal slice orientation

(Fig. 2.6A), masking to identify tissue regions included in the normalization

process (Fig. 2.6B), the resulting best-fit normalization map (Fig. 2.6C) and

the final intensity corrected image (Fig. 2.6D). This process was repeated, in-

dependently, for all coronal slices. The corresponding pre-normalization and

post-normalization images from sagittal and axial views, for the same subject,

illustrate the uniform signal intensity, in three dimensions, following correc-

tion (Fig. 2.6 E-H). Signal intensity profiles through the lungs and surrounding

reference tissues highlight the uniform 100% signal intensity in all reference

tissues (Fig. 2.6 I-K). Similar results were observed for all 10 subjects.
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Figure 2.5: (A) YB-FB images of a T1 phantom for flip angles of 0.5◦ to 5◦.
5 outer tubes were examined, numbered by increasing T1 (1 = 1014 ms, 2 =
1187 ms, 3 = 1426 ms, 4 = 1767 ms, 5 = 1992 ms). (B) Relative signal yield,
normalized to the 0.5◦ acquisition, as a function flip angle for the 5 outer tubes
(phantom experiments - dashed lines, theory based – solid lines). (B) Using
the data in B), the percent difference in signal between subjects at T1 = 1200
ms and T1 = 1700 ms.
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Figure 2.6: Background signal intensity correction approach. (A) Uncorrected
coronal slice. (B) Masking to include reference tissues surrounding the lungs.
(C) Best-fit surface generated from image in B) with regression and tikhonov
regularizaiton. (D) Normalized image from A) after division by the best-fit
surface from C). Sample sagital and axial views of the same subject before and
after normalization are shown in (E) - (H). (I) - (K) Sample signal intensity
profiles from intensity-corrected images in coronal, sagittal and axial views,
respectively.
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Illustrative 3D radial (breath-hold) and YB-BH images are shown for four

subjects (Figure 2.7). All acquisitions were 13 seconds in duration and the same

signal normalization process was completed in all cases. From all ten subjects,

SNR values were similar for breath-hold radial and YB acquisition approaches,

and also for the free-breathing YB acquisition (Table 1), with SNR > 10 in all

regions. However, radial images showed significant streaking artifacts due to

undersampling while no artifacts were visible in the YB images, with similar

results in all ten volunteers.

Figure 2.7: Comparison of normalized 3D radial and YB-BH images from
matched 13 second acquisitions in four volunteers. The 3D radial images (top)
suffer from streaking artifacts due to undersampling.

2.3.4 Retrospective Respiratory Gating for Free-Breathing

Acquisitions – Healthy Controls

Sample free-breathing YB images, with and without the application of respira-

tory navigators, illustrate the clear improvement in image quality with selection

of data acquired at end-expiration (Fig. 2.3D). Similar results were observed in

all 10 subjects. Free-breathing images for both echo times (TE = 0.07 ms and

2.79 ms) from four representative subjects further illustrate the typical free-
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breathing image quality with the use of the respiratory navigators (Fig. 2.8).

The longer echo images highlight the short T2* of the lung parenchyma, with

similar breath-hold-like image quality. SNR in the free breathing scans were

similar to the breath hold acquisitions (Table 2.1). Lung parenchyma signal

intensity in the longer TE images was similar in intensity to the background

noise level in all volunteers in all slices and all locations.

SNR Front Center Back

3D Radial 11.5± 3.0 11.6± 2.6 19.5± 3.4
YB Breath Hold 11.9± 1.4 11.1± 1.7 20.2± 3.6

YB Free Breathing 13.2± 2.1 10.6± 2.0 19.1± 4.0

Table 2.1: SNR Results for All 10 Volunteers

2.3.5 Optimization of Acquisition Duration – Healthy

Controls

Increasing YB readout duration over a range of 1.0 ms to 3.0 ms increased

acquisition efficiency (reduced acquisition time) by a factor of 1.94, but at the

price of reduced image quality (Fig. 2.9). The 1.3 ms readout duration yielded

similar image quality as the 1.0 ms readout on visual inspection but with ∼30%

increase in acquisition efficiency. The longer 3.0 ms readout improved efficiency

an additional 30%, but with a more marked reduction in image quality. Also,

for the expected T2* = 0.7 ms for the lung parenchyma at 3.0T, the 3.0 ms

readout would be expected to yield significant blurring of the parenchyma.

Readout durations of up to 2·T2* has been shown to be acceptable for lung

tissue [42], supporting a readout duration of 1.3 ms.
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Figure 2.8: Normalized free breathing dual-echo YB images from four volun-
teers with retrospective gating at end-expiration. All images have identical
window levels.

Figure 2.9: First and second echo images from YB-FB acquisitions for increas-
ing readout durations in four volunteers. Blood vessel sharpness erodes and
image artifact levels increase with increasing readout duration, with similar
image quality in 1.0 ms and 1.3 ms readouts.
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2.3.6 Image Segmentation and Lung Water Density –

Healthy Controls

Three-dimensional lung masks were generated for each subject using the region

growing algorithm to identify pixels within the lung parenchyma (Fig. 2.10A).

Average relative lung water density (rLWD) and lung volumes from YB-BH

and YB-FB scans, from the repeated acquisitions, illustrate the similar values

with the two acquisition methods, and similar consistency between repeated

scans (Fig. 2.10 B and C). Reproducibility of whole lung rLWD yielded ICC3

= 0.93 for breath-hold (p < 0.001) and ICC3 = 0.87 for free-breathing studies

(p < 0.001). Total lung water signal had higher ICC values for both breath-hold

(ICC3 = 0.99) and free-breathing acquisitions (ICC3 = 0.99), likely because

total water content is less sensitive than water density to the extent of lung

inflation.

Regional variations in rLWD were evaluated by segmenting the lung into 10

equal volumes, independently, along each axis (Fig. 2.11). A significant chest

to back gradient in rLWD was observed in all volunteers (Fig. 2.11C), similar

to previous studies [72]. Lung water values did not vary considerably in the

head to foot direction (Fig. 2.11A), but with elevated values in the left lung,

towards the heart (Fig. 2.11B). Chest to back lung slab rLWD showed high

ICC values (breath hold ICC3 = 0.97, p < 0.001, free breathing ICC3 = 0.96,

p< 0.001), showing no changes in chest to back gradients between scans.

2.4 Discussion

An optimized UTE yarnball k-space trajectory yielded 3D lung images with

short patient-friendly acquisition times (13 second breath-hold or 2 minutes

of free breathing with a dual-echo acquisition). Both breath-hold and free-

breathing yarnball sequences provided good lung SNR (ranging from 10:1 to

20:1) with a low (2◦) flip angle designed to minimize T1-weighting, a short

51



Figure 2.10: (A) Sample relative lung water density (rLWD) images from a
volunteer from a YB-FB acquisition. 16 of 124 coronal slices covering the chest
are shown. (B) Individual volunteer rLWD values for the breath-hold (YB-
BH) and free-breathing (YB-FB) experiments, for the two repeated acquisitions
(connected lines). (C) Corresponding total lung volumes. Box plots summarize
average values for rLWD in (D) and lung volumes in (E) from all 10 volunteers.
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Figure 2.11: Regional rLWD values when segmented into 10 slabs of equal
volumes along different orientations: (A) Head to toe, (B) right to left, and
(C) chest to back. Data included from all 10 healthy volunteers (YB free
breathing).
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TE = 70 µs for minimal T2*-weighting, sufficient spatial resolution to exclude

larger conduit vessels and with minimal undersampling artifacts. In contrast,

a conventional radial image acquisition, matched to the YB scan time, had

significant undersampling artifacts as a result of the lower efficiency of the

radial trajectory, with a smaller 126 mm fully-sampled field of view.

Further scan time reductions are possible with the use of longer readouts,

however an optimal readout duration of 1.3 ms was identified based on the

expected lower-end of T2* values at 3.0T of 0.7 ms. The expected minor loss

of SNR and blurring of the lung parenchyma with readouts durations ∼2×T2*

were considered acceptable [42]. Longer readouts were associated with the

emergence of minor off-resonance artifacts.

Calibration of the absolute signal intensities into relative lung water density

by normalization to all surrounding solid tissues (heart and the blood pool

within, liver and other abdominal organs and skeletal muscle) yielded consistent

results in volunteers, with validation in sponge phantoms with in-vivo-like T2*

values (<1ms). While previous UTE studies designed to measure lung water

have used larger flip angles to maximize signal yield [42], a noted assumption

was similar lung and reference skeletal muscle T1 values. This assumption

precludes the use of other reference tissues with different T1 values (liver, blood,

myocardium) and does not address the expected increases in lung T1 in the

presence of edema [23, 63]. Other studies have incorporated a skeletal muscle

signal reference to estimate lung water density [35], but also did not account for

T1-weighting or the significant transmit and receive B1 field inhomogeneity. In

the current study, the use of all solid tissues as a signal reference also enabled

simultaneous correction of B1 transmit and receive inhomogeneity.

The process developed for selection of the background tissues, for the sig-

nal normalization and correction of B1-inhomogeneity was largely automated,

as was the region growing algorithm used to identify pixels within the lung

parenchyma, following normalization. Lung water density depends strongly on
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lung inflation due to the displacement of tissue by air. Breath-hold consistency

is thus a potential large source of bias in the measurement of rLWD, and even

short breath-hold maneuvers can be challenging for patients with pulmonary

congestion. A two minute free-breathing variation of the yarnball approach

yielded breath-hold image quality in all subjects with excellent reproducibility,

and would thus offer a more patient-friendly approach. The proposed free-

breathing acquisitions used a constant 5 image repetitions to ensure the ac-

quisition of end-expiration respiratory phases for all k-space data. Prospective

gating would likely increase efficiency considerably, however the current scan

time of two minutes is not prohibitive. Considerable time savings could also be

achieved by a modest reduction in spatial resolution (e.g. an increase from 2.5

mm to 3.2 mm resolution will reduce scan duration by a factor of 2), or with

the application of parallel imaging [73].

It was perhaps not surprising that total lung water content, as compared to

average rLWD, had superior test/re-test reproducibility, with higher ICC val-

ues. Specifically, small differences in breath-hold lung volume or lung inflation

with free-breathing acquisitions will have a direct effect on water density. In-

terpretation of rLWD, particularly in a given individual over time, would thus

ideally also include assessment of lung volume to correct for inflation effects on

water density.

2.4.1 Limitations

The echo time of 70 µs used in the current study will lead to an unaccounted

signal loss of ∼10% for a lung parenchyma T2* of 700 µs, which is the lower

end of values expected at 3T [21]. While shorter T2* value would lead to a

larger underestimation of rLWD, it is more likely that increased T2* values

associated with edema will be encountered in clinical studies, that will lead to

an increase in the acquired signal that will emphasize the presence of edema.

In clinical studies, the dual echo free-breathing YB acquisition will be sensitive
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to increased T2* values in the presence of edema using the longer second echo

time of 2.79 ms. Another limitation is the assumption of uniform and constant

tissue water density for signal referencing. While tissue water content has been

measured to fall in a relatively narrow range of 70%-80% [53, 54, 55], the con-

tent does vary between tissue types and likely with pathology. However, all

solid tissues have relatively high water content in health and thus have limited

potential for increases in water density. In contrast, the lungs have relatively

low water density in health and have an easily displaceable air component to

enable large changes with pathology. Lung water content can readily double

or more with heart failure [70], for example. Also, the use of a large composite

of reference tissues at all locations surrounding the lungs was designed to limit

the susceptibility of the normalization process to precise knowledge of water

content and the associated measured signal intensity in one tissue (or external

reference) at one location. External references are appealing as a known source

of 100% spin density, but the potentially extreme variations in signal yield for

samples outside of the body from the unavoidable B1 and B0 inhomogeneity,

particularly at higher field strengths, can lead to excessive variability and thus

were not used in the current study. Spatial resolution is also a potential limita-

tion. The acquired spatial resolution of 2.5 mm in each dimension was proposed

to be sufficient to identify and remove the larger conduit blood vessels from

the lung parenchyma, however, the effects of higher spatial resolution on vessel

removal and the rLWD values was not evaluated. While the automated pro-

cessing was successful in all volunteers, the larger body dimensions and higher

lung water content that will be present in some patients may require different

parameters for similar performance. Finally, while phantom studies showed

excellent agreement between gravimetic and MRI estimation of water content,

the measured rLWD values have not been validated in-vivo.
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Chapter 3

Discussion

UTE Yarn Ball MRI acquisitions and the accompanying image processing meth-

ods were developed to overcome the challenges of quantitative MRI of water

density in the lung parenchyma. Short echo-times (70 µs) largely eliminated

T2* weighting, low flip angles largely eliminated T1 weighting, and optimized

acquisition efficiency enabled fully sampled three-dimensional lung images in

patient-friendly scan durations (breath-hold or short free-breathing). A custom

designed post-processing approach both corrected for B1 transmit and receive

inhomogeneity and yielded lung images in units of normalized spin density, rel-

ative to all solid tissues surrounding the lungs. A final automated segmentation

approach enabled user-independent selection of lung parenchyma. Validation

was provided in a sponge phantom with similar T2* and T1 of the lung, and

consistency of lung water density values was illustrated in 10 healthy subjects.

3.1 Limitations and Future Directions

Longer readout durations improve acquisition efficiency, with faster coverage

of k-space, but short T2* regions may lose significant signal by the end of

the readout, which manifests as blurring in the final image. Additionally, the

magnitude of artifacts from off-resonance effects are directly related to the
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readout duration. A 1.3 ms readout was chosen as the maximum duration

before significant artifacts appear, but the potential blurring effect on short

T2* regions should still be noted.

The targeted 300 mm FOV was empirically chosen to avoid aliasing arti-

facts, which holds true in the majority of subjects. With traditional k-space

encoding methods, a 300 mm FOV would cause aliasing leading to “phase

wrap-around” artifacts, but in the case of YB sampling the aliasing results in

incoherent noise throughout the image. This is often negligible, but in larger

subjects this can be a significant detriment to image quality. Figure 3.1 shows

the noise increase which accompanies a patient with a large torso. If this proves

to be an issue in the larger healthy control scans, an increase in FOV at the

cost of time efficiency would be a simple solution. Unfortunately this is not a

simple linear increase, the 26 second 300 mm FOV double-echo YB scan would

increase to 46 seconds with a 400 mm FOV.

Figure 3.1: Unedited free breathing YB images showing the potential increase
in noise due to aliasing between a volunteer with a small torso in (A) and large
torso in (B).

The dual-echo YB variant currently aids in image processing, as the in-

creased T2* weighting adds contrast to facilitate tissue differentiation. Ideally,

future image processing algorithms could rely solely on the original UTE image,

providing the ability to remove the second echo when undesired, and shorten the
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scan times by 50%. Alternatively, another potential future direction includes

expanded application of the second echo image, for example the calculation of

T2*. This could be determined by signal intensity loss between the first and

second echo images. The readout duration would likely be shortened in this

case, as lung parenchyma signal has generally been lost by the currently im-

plemented 2.72 ms second echo time. T2* is a potential source of uncertainty,

having been found to change with inflation [34] and nature of PE [74]. Lack

of T2* knowledge is another limitation in the current technique. While UTE

methods go a long way to mitigate T2* weighting, direct calculation of T2*

would allow for more accurate proton density measurement.

Free breathing methods are essential moving forward with clinical studies.

Breath holds are not only difficult and uncomfortable for patients, but also

inconsistent. A specific level of lung inflation cannot be expected to be main-

tained across repeated scans. Free breathing techniques can remove this vari-

able by purposely selecting for a diaphragm position or lung inflation. However,

our current retrospective gating method leaves room for improvement. First,

the method is based only on respiratory phase so the unique respiratory cycles

of different patients, being irregular in position or period, can align poorly with

scan repetitions, which complicates acquisition of a complete data set. Second,

the duty cycle is quite low at 20% since only the trajectories nearest to end

expiration were taken scans over 5 averages. A more efficient binning method,

which extracts physical position would be beneficial. For example, a sliding

window method like the “img-SG” technique proposed by Tibiletti et al. [50].

Therefore, trajectories which line up in space could be combined, leading to a

more targeted and efficient retrospective gating. Lung volume variation under-

mines the accuracy of repeated measurements and the effectiveness in disease

tracking. Reproducible, patient friendly lung volume standardization will be

key to reliable lung water density calculations in longitudinal studies.

While the ideal scenario presented in the “sponge phantom” experiment
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showed excellent results for quantification of water content, there are many

potential pitfalls for water quantification in vivo. In addition to T2* incon-

sistency, some T1 weighting is still present. The low flip angle of 2 degrees

mitigates this, but T1 can still vary across the lungs and could be significantly

different between reference tissues which include blood, skeletal muscle and

the liver. In addition, reference tissue signal T1 weighting will corrupt the

normalization process. We chose to minimize flip angle but an increase to TR

would be another simple solution to avoid T1 weighting, however this would

necessitate time efficiency improvements elsewhere.

The current normalization process produces very consistent images, fully

eliminating the large signal gradient across an adult torso normally present with

chest and back coil arrays. However, this method is still only an approximation

of the inherent B1 inhomogeneities. The surface fitting method with Tikhonov

regularization functions using available reference tissue information, and the

L-curve method is based on balancing the error between the smoothed result

and original data. No information on B1 is directly measured or predicted.

Unfortunately, such analytical determinations are impractical in vivo, so the

current technique fulfils the purpose of generally correcting images with limited

information. The lack of B1 transmit and receive sensitivity information will

always be a limitation in quantifying lung images in vivo.

The extremely bright chest surface arising from B1 inhomogeneity with the

use of a chest coil can also lead to other artifacts. The comparatively lower

signal intensity in the more central regions causes them to be more susceptible

to artifacts originating from the chest surface, from off-resonance and motion

artifacts. A common manifestation of this is “ringing” or a series of streaks

running parallel to the chest wall (Fig. 3.2). These artifacts were reduced with

sufficiently strong gradient spoiling and were minor enough to not be of concern

in lung water quantification but do visually affect image quality.

Signal quantification relies on the reference tissues surrounding the lungs
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Figure 3.2: Uncorrected axial image with “chest ringing” artifacts radiating
from the bright chest wall.

to be relatively uniform in proton density. The limited literature on the sub-

ject does show consistent water density between these tissues (70%-80% water

density [53, 54, 55]), but more detailed information would be beneficial. This

is especially important when considering the potential for increase or decrease

with disease, such as the expected range of skeletal muscle water in heart fail-

ure or dialysis patients, for example, in whom edema is possible throughout

the body. Nonetheless, in cases of mild pulmonary edema an increase in water

content by up to 100% has been shown [70], and in severe cases of pulmonary

edema an increase on the order of 250% can be expected in gravimetric re-

sults [75], meaning changes to proton density in reference tissues, which have

limited potential for increase in water content, would likely be negligible in

comparison. Specifically, the lungs are predominantly air, which can be easily

displaced with expanding water compartments while solid tissues are already

∼75% water and have to displace solid materials to increase water content.

The lung masking procedure is a final key area to be improved. While good

results can be obtained with the current iterative region growing method, this

relies heavily on the nuanced selection of a threshold and can vary slightly due
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to the random seeding process. Because of this, it remains a challenge to define

consistent masking parameters that are appropriate for all subjects, which is

desired for proper comparisons of signal quantity. In patients suffering from

PE, this will likely be a greater issue since regions with elevated lung water

density will be much brighter than healthy lung tissue. Defining what consti-

tutes vasculature is another ambiguous factor in the masking procedure. While

large blood vessels are easily excluded, drawing the line between partial volume

or small blood vessels and bright lung regions is difficult. Other image process-

ing methods and segmentation techniques should be investigated in mitigating

these issues. This could include other threshold based approaches, those involv-

ing an atlas or statistical shapes, or machine learning methods [76]. Whatever

the solution, full automation is desired. Inter-observer variability should be

minimized for accurate quantification of lung water. For viability in clinic, a

robust and fast image processing tool-kit will be needed.

Another future direction would be examining the effects of lying prone for

long periods of time, an extension of the already observed gravitational effects

while lying prone. Blood is expected to come up from the legs and redistribute

throughout the body while lying prone, so this could lead to increased rLWD.

Finally, the increases in sampling efficiency were attained without accel-

eration techniques such as parallel imaging [73], compressed sensing [77] or

machine learning reconstruction [78]. Adding such techniques would be an

obvious first direction to take in improving YB k-space acquisitions. These

gains could be used to further shorten scan times, provide larger FOVs, or in-

creased spatial resolution. However, the achieved 2.5 mm isotropic resolution

was sufficient for identification and removal of of the larger while maintaining

sufficiently high SNR (>10:1) in the targeted lung parenchyma.
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3.2 Conclusions

Pulmonary edema is a common condition associated with heart failure, kidney

failure (hemodialysis) and several other pathologies. The defining feature is

increased water content. Commonly used tests to detect edema, such as chest

X-Ray, are qualitative and used primarily only to broadly categorize severity

but are not appropriate to measure changes with therapy or identify sub-clincial

pathology. CT imaging can be used to measure lung water content, but requires

ionizing radiation, and does not distinguish water and fibrotic tissue. Other

tests for lung water evaluation require injection of tracers. 3D UTE Yarn Ball

MRI provides quantitative lung water density information, while being non-

invasive and free of ionizing radiation. Full lung UTE images can be obtained

with short scan times, overcoming that key inherent challenge of lung MRI,

and automated image processing enables largely user-independent evaluation,

further increasing the practicality of the approach . Looking forward, the tech-

nique could be used for routine radiological evaluation of pulmonary edema,

provide a much needed quantitative endpoint for clinical trials targeting pul-

monary edema, guide treatment and shed new light on the condition itself.
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