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Abstract

The realistic description of reservoirs for the purpose of flow simulation is a longstanding 

problem. The true reservoir description will never be known. The integration of dynamic 

production data reduces uncertainty; the reduction in uncertainty is proportional to the 

amount of historical data and the interference between the wells. This thesis develops 

methods to incorporate historical production data into numerical reservoir models.

The first problem tackled is the simultaneous inversion of porosity and permeability us­

ing a geostatistics-based integration algorithm. The algorithm is developed and a numerical 

code is implemented. Some illustrative examples are presented and sensitivity issues are 

analysed.

Production data informs the nature of heterogeneity in the reservoir. The inversion 

algorithm is modified to permit inversion of variograms. The predictive capability of the 

reservoir models is improved with the updating of the variogram through inversion. The 

algorithm was also extended to invert for fault zone properties. The fault locations are as­

sumed known through seismic and the properties are inferred with the available production 

data. The advantages and the limitations are identified.
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Chapter 1

Introduction

An essential element for successful reservoir management is the ability to reliably forecast 
the reservoir performance with as little uncertainty as possible. Predicting reservoir perfor­
mance depends mainly on two aspects among myriad of factors. First, one must be able to 
identify the physics of the subsurface flow and adequately engineer a mathematical model 
to simulate such phenomena. Second, one must have ‘appropriate’ characterization of the 
reservoir through some discretized numerical reservoir models. This thesis focuses primarily 
on the latter aspect. Incomplete data and inability to model the physics of fluid flow at a 
suitably small scale lead to uncertainty. Subsurface reservoir models tha t “by construction” 
honor the historical production data should yield significantly more accurate predictions of 
reservoir performance with reduced uncertainty than those tha t do not. This research aims 
to develop new techniques tha t link available production data and static information on the 
distribution of permeability and porosity in reservoir models.

The motivation for this research was the recognition tha t there is strong need for im­
provement in the available techniques of dynamic data integration to construct realistic 
reservoir models. Current modeling techniques suffer from the lim itation of not accommo­
dating realistically complex heterogeneities of the subsurface reservoir system. Incorpora­
tion of simplistic physics and homogenization of critical reservoir features are still the only 
way to resolve this reservoir characterization problem. The reason for adapting such naive 
approaches is not the lack of motivation, but the problem is an inverse problem and highly 
nnd er determined.

This research does not search for a panacea of this long-standing issue in reservoir char­
acterization; this attem pts to incrementally improve upon the current techniques. Under­
taking of this research evolved through a “roller-coaster” learning experience corroborating 
the presence of enormous difficulties associated with the inverse problem. Ideas had to be 
modified at different stages and the scope of the work had to be narrowed to accomodate 
practical problems.

Problem  Description

Reservoir development plan using detailed 3D reservoir models requires models of structure, 
stratigraphy, and properties. Interpretive, deterministic and geostatistical techniques for 
constructing models of lithofacies and properties are used tha t constrain the models to 
static data from core, logs, seismic, and geologic interpretation. However, honoring all 
data including the dynamic pressure or historical production data is quite difficult. In

1
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practice, trial-and-error history matching is still the most common approach at the final 
stage of modeling. The problem of fully integrating production and pressure data  in the 
construction of reservoir models lends itself to a variety of approaches. Property models 
within the volume of influence of a well are generated through a one-step m athem atical 
inversion of the pressure response. The problems with these techniques are the intense 
computations needed to generate a solution tha t is not unique and may be inconsistent with 
some of the static data. In other approaches, the property models are generated in several 
steps with a first-step coding of the well-derived data into a spatial property representation. 
A detailed classification of the techniques available for dynamic data integration is discussed 
in Chapter 2.

1.1 D ata Used in Reservoir Characterization

In the broader sense, available data [179] for reservoir characterization can be classified into 
geological data, geophysical data, and engineering data. Geological data arises from a vari­
ety of sources including core description, th in  sections, microscopes, image analysis, X-ray 
tomography, stable isotope analysis, sedimentological models, diagenetic models, markers, 
interval definitions, maps, cross-sections, and remote sensing. Geophysical data available 
for reservoir characterization can be from 2D and 3D seismic profile, cross-hole tomogra­
phy, multi-component seismic, vertical seismic profile, shear wave logging, and isochrons for 
structure tops. Sources of engineering data include well log analysis, conventional and spe­
cial core analysis, pressure transient tests, production history, tracer test, CT scan, NMR 
data, and drilling and completion information.

The primary objective of this research is integration of dynamic data in reservoir mod­
elling. The subsequent section describes dynamic data available for reservoir description.

1.2 Dynam ic D ata and Spatial Information

Different sources of data  have varying type and amount of information about the reservoir 
heterogeneity. Each data type has the potential to inform us about some subset of spatial 
characteristics. Scale and the support volume of the different data sources also vary. The 
spatial representations from some im portant data types and some issues concerning our 
ability to extract these spatial data are listed below. Table 1.1 gives the information content 
of some im portant data sources.

M athematical inversion methods for single well test pressure data and interpretive tools 
are largely in place [70, 101, 163, 177]. This is perhaps the subject of most well test analyses 
research. Well test interpretation is a standard reservoir engineering practice. Some of 
the typical single-well test data are RFT data, drawdown/buildup test data, variable rate 
test data, production logs and permanent pressure gauges. For instance, interpretation of 
R FT data is quite useful particularly for decisions like production strategy, change in well 
configurations, well workovers or perforation jobs.

Compared to single-well test data, multiple-wells test data are more extensive in terms 
of areal coverage and provide specific connectivity information between wells. D ata suffi­
ciency, i.e., whether sufficient data are available to establish significant contributions, is an 
im portant issue. Suitable method to quantify connectivity between two locations is imper­
ative. The approach of geo-objects, collections of locations/blocks connected to each other,

2
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D ata Available Information Content
Pressure as function of depth 
(e.g., Repeat Formation Tester )

- Communication between strata
- Communication across faults
- Location of fluid contacts

Buildup/ drawdown test 
P(t)

- Distance to boundaries
- Effective kh
- Flow regime (e.g., fractures)
- Aquifer influx/fluid extent

M ultirate test data - More details
Production logging (q(depth)) - Permeability of different layers/strata 

(ratio or “relative” k  between layers)
Permanent pressure gauges 
(p(t), t from 0 to present)

- kh  for coarse grid or information between wells
- “Map” interwell region
- Boundaries and interwell communication

Interference tests 
p(u, t), q(u:t) and 
P (u ',t) , q (u ',t)

- Presence of sealing faults
- Fault transmissibility
- Qualitative measure of connectivity
- Effective k
- Flow/pressure pathways

Tracer data - More unique model
- Tell how a well is isolated or connected with 
other wells

P , q0, qg as functions of 
dimensionless time at each well

- kh  at each well (relatively larger areas)
- Drainage volume for each well
- Local facies information indirectly through 
kro/krg ratios
- kcoarse scale effective permeability
- Interwell communication from fractional 
flow/pressure data

Table 1.1: Typical dynamic data and their information content.

3
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is used for this purpose.
According to existing dominant production mechanisms, historical production data  may 

also be classified into different categories. The classification can be with respect to reservoir 
depletion with or without water drive, with gas-cap drive, water injection or gas injection. 
Dynamic data integration technique in each of these reservoir cases has unique implemen­
tation issues.

Expansion drive and gravity segregation drive are the main sources of reservoir potential 
for many reservoirs. Estimation procedure of drainage volume for each well should be 
properly devised. Relative permeability ratios (gas to oil), j^2-, may also explain something 
about the lithofacies proportions within drainage area, since different facies usually have 
different ^  ratios. One can have GOR data tha t provide useful information on reservoirrZrg
heterogeneities.

Before breakthrough of water, no new information on the spatial distribution of het­
erogeneities than that from single- or multiple-well test data is available. The data  reveal 
almost the same information as in the case of depletion without water drive. After water 
breakthrough fractional recovery data (qw, q0) are available. Original water contact data 
(e.g. surface-point connectivity), k coar s e  sca le  effective permeability distribution may be ob­
tained from the available data. Also, =ee= may indicate facies proportions in the “contactedrZrw
region” .

These data  are similar to those available from water-drive depletion, except between 
production wells and original gas-cap, instead of aquifer. Interwell connectivity data and 
the stratigraphic surface correlation can be established. Fractional recovery data ( |^ -) may 
indicate facies proportion.

More definitive determination of k e  between wells, particularly after breakthrough, is 
possible. Flow capacity ( k h )  around injection wells, connected volume between injec­
tor/producer pairs can be estimated. Breakthrough times may explain anisotropic vari- 
ogram, interwell facies connectivity, and permeability distribution. Measurement of hetero­
geneities, calibration and calculation of connected volume from the 3D reservoir model are 
crucial issues.

1.3 Outline of the Thesis

In this thesis, the topics are presented in the following sequence. Chapter 1 introduces the 
problem and describes various sources of information. Chapter 2 discusses the available 
literature. Chapter 3 briefly relates the inverse problem formulation, the mathematics of 
the inverse problem, some elements of production data integration. The material covered in 
this chapter is generic in nature, and not an original contribution of this research. Chapter 4 
relates the algorithm developed for the simultaneous inversion of porosity and permeability. 
Some illustrative examples as well as sensitivity issues are discussed. Chapter 5 describes 
the inversion of a reservoir with unique features. Discussion on some influential parameters 
on inversion is also given. Chapter 6 discusses the implementation of the data integration 
algorithm with variogram updating. Variogram uncertainty analysis with this piece of code 
is discussed here. Chapter 7 relates the inversion algorithm for fault properties. Finally, 
Chapter 8 gives an overall discussion on the scope of this research. Future recommendations 
are also laid out in this chapter. There are also three appendices. Appendix A briefly 
describes the param eter files for codes implemented. Appendix B is an independent study
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on the information tha t can be obtained from sensitivity coefficients. Appendix C describes 
the mathematics of incorporating pressure derivative mismatch in the inversion algorithm.
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Chapter 2

Literature R eview

Production data integration is an inverse problem, tha t is, a param eter estimation problem. 
The dynamic production data contain im portant information about petrophysical properties 
such as permeability, porosity. Any reliable reservoir characterization study should account 
for these dynamic data. The objective here is to generate reservoir models tha t reproduce 
these dynamic together with static data  and measures of spatial continuity.

The classification of the techniques presented in this review is subjective. The chronology 
of the methods, their distinctness and salient aspects were the criteria for the classification. 
The methods overlap, which would be true of any classification scheme. A common aspect 
of almost all the approaches is the formulation of a misfit or mismatch function and the 
application of a minimization algorithm. Furthermore, in many formulations, the problem 
is ill-posed. The solution space (model space) is not unique. There are many solutions, an 
infinite number for most inverse problems of interest, within the solution space. A natural 
consequence in many of these techniques is an effort to make the problem well-posed, or in 
mathematical parlance, regularized.

A thorough review of the subject of parameter identification in reservoir simulations is 
also given by, for instance, Jacquard and Jain [108], Gavalas et al. [78], Watson et al. [200], 
Feitosa et al. [75, 76], or Oliver [149]; and by Yeh [216] and Carrera and Neuman [27] in 
groundwater hydrology.

2.1 Classical Inversion Techniques

Early approaches to the integration of pressure transient data used inverse techniques for 
param eter identification or history matching. The most elementary approach to tackle this 
kind of problem is the trial and error method. Because of its simplicity in formulation, 
trial and error methods are still widely used for history matching. Such methods require 
significant professional and computation time.

Automatic history matching addresses this inverse problem. The objective of history 
matching is to estimate reservoir petrophysical parameters from pressure and / or flow rate 
data [45, 72, 84, 109, 157, 186]. Most methods are based on the premise tha t the best 
spatial distribution of reservoir parameters minimizes the difference between observed and 
calculated pressure data at well locations. These techniques seek direct spatial distributions 
of reservoir parameters tha t honor the pressure measurements through pressure response 
simulation.
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Most automatic history matching techniques are based on gradient method or streamline 
based methods [71]. One of the im portant aspects of gradient based history matching tech­
niques is computation of the gradients or sensitivity coefficients. Schemes like perturbation 
methods, rigorous finite differencing of the physical flow equations [5, 18, 19], convolution 
integral method [30, 108], optimal control theory [33, 34, 199, 200], have been utilized. The 
method of Anterion et al. [5] is now commonly referred to as the gradient simulator method. 
Up to 1972, most of the work done was based on perturbation methods. In perturbation- 
based methods, the gradients are calculated by first making an initial simulator base run 
and then repeating the simulator run after perturbing each param eter to be estimated. In 
the finite difference based approaches, the sensitivity coefficients are derived by setting up 
new equations from the original partial differential equations describing the physical flow 
system; the new set of equations are then finite differenced. A close alternative approach 
to this is to derive the gradients directly from the finite-difference form of the physical flow 
equations. The convolution integral method is applicable only for linear problems, in which 
case, it is actually equivalent to the adjoint (optimal control) method. Optimal control the­
ory based methods use the system of equations as equality constraints for the minimization 
problem of the misfit function with the unknown parameters serving as control variables.

2.2 Regularization Based Techniques

The inverse problem is often ill-posed partly due to the lack of continuous dependence, that 
is, small variation in data may result in unbounded changes in the model estimates, and 
also to the non-uniqueness of the solution space, which means more than  one estimate can 
satisfy the same set of observed data [181, 214, 216]. To tackle the stability and efficiency 
problem, a versatile technique was devised by Tsien and Chen [194]. Since its inception in 
1974, the technique has been subsequently modified and improved further by Chen and his 
colleagues [37, 38, 39, 89, 132, 133]. Essentially the Generalized Pulse-Spectrum Technique 
(GPST) is a combination of a Newton-like iterative algorithm and the Tikhonov regular­
ization method. The capability of GPST has been dem onstrated in performing history 
matching for one-dimensional single-phase reservoir simulators in [36], for two-dimensional 
single-phase simulators in [131] and for two-dimensional two-phase models in [187]. Hi­
erarchical multigrid approach, in which the estimation is performed on successively finer 
grids until convergence is reached, is applied to improve the efficiency of GPST further 
[35, 40]. Landa et al. [123] used a similar technique to integrate well test, production, 
shut-in pressure, log, core, and geological data.

Another promising numerical method based on regularization techniques proposed by 
Kravaris and Seinfeld [117, 118, 119] appears particularly suitable for two-dimensional 
single-phase simulator models [126] and for two-phase models [127], These methods ap­
ply Tikhonov regularization method first and then the well-posed problem is solved by the 
partial conjugate gradient method of Nazareth [143]. Cubic spline function is used in these 
methods to approximate the unknown parameters. Makhlouf et al. [135] extended this nu­
merical algorithm to estimate absolute permeability in multiphase, multi-layered petroleum 
reservoirs based on noisy observed data, such as pressure, water cut, gas-oil ratio and rates 
of liquid and gas production from individual layers.

Both these groups of techniques do not require any a priori information on the param­
eters to be estimated.
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2.3 Bayesian Estim ation

A Bayesian estimation framework was proposed by Gavalas et al. in 1976 [78] for reservoir 
modeling using dynamic production data. The underlying theory behind this technique 
is to reduce the statistical uncertainty by using additional prior information, for instance 
autocorrelation and mean values of permeability and porosity. Shah et al. [181] showed 
tha t if reliable prior information about permeability or porosity is available, Bayesian esti­
mation will improve the variance of the estimation error. Similar Bayesian approach was 
used much later by the workers at the Norwegian University of Science and Technology to 
integrate historical production data [95, 193]. The problem of integrating production data 
is formulated in a lower dimensional param eter space where, for the sake of mathematical 
tractability, the parameters are often assumed multivariate Gaussian.

Neuman and Yakowitz [145] used an extended Bayesian approach to estimate actual 
values of transmissivity in two dimensional study and covariance functions. Clifton and 
Neuman [44] demonstrated the importance of jointly inverting permeability and pressure 
data through conditional simulation. They found that the conditioning effect of the pressure 
data in a full inversion is much greater than  tha t of kriging.

Cooley proposed a method to incorporate prior information having unknown reliability 
into the nonlinear regression model by adding a penalty function [46]. The resulting com­
posite objective function consists of two terms: the weighted sum of squared errors in the 
pressure and the sum of weighted errors in the parameters. Dagan [49] used an a priori 
selected analytical technique and Gaussian conditional mean for the inverse problem.

Maximum likelihood methods [26, 27, 28, 29, 74] have long been used for param eter es­
tim ation with dynamic data. This is a general non-linear technique tha t estimates reservoir 
parameters using prior estimates along with transient or steady state pressure data. Early 
development of this method is presented in Carrera and Neuman [27, 28] and Feinerman 
et al. [74], Param eter estimation is performed using the maximum likelihood theory, in­
corporating the prior information into the likelihood function. The nonlinear flow equation 
is solved by a numerical method. Both steady-state and transient pressure data can be 
integrated into the model; however, this method is computationally intensive.

Oliver [149] used Gauss-Newton method to obtain the maximum a posteriori estimate 
(mean and covariance) tha t minimizes the objective function derived directly from the a 
posteriori probability density function. Multi-well pressure data and prior information are 
honored in this technique, however, at each iteration of Gauss-Newton method, the for­
ward problem is solved using a reservoir simulator. Chu et al. [42] presented an efficient 
method of computing sensitivity coefficients required in the approach. This method yields 
a smoothed version of the true distribution. Conditional realizations with given variabil­
ity are constructed using Cholesky decomposition of the covariance matrix estimated by 
assuming tha t permeability distribution is Gaussian and pressure data is a linear function 
of permeability. Reparameterization based on spectral decomposition reduces the number 
of the parameters to be estimated by the Gauss-Newton procedure [149]. More recently, a 
reparameterization technique based on subspace method was presented to further improve 
the computational efficiency in the Gauss-Newton procedure by Reynolds et al. [170]. He et 
al. [93] extended this method for a three dimensional reservoir model. In another effort, the 
same authors [92] developed a multistep procedure to generate reservoir models conditioned 
to well test data. The ensemble realizations by this method provides a good empirical ap­
proximation to the posteriori probability density function for the reservoir model, which
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can be used for Monte Carlo inference. Oliver et al. [152] presented a procedure to ap­
proximately sample the pdf of a model conditional to production data. They pointed out 
tha t it is im portant to generate a suite of realizations which reflect a proper sampling in 
order to characterize uncertainty in reservoir description and reservoir performance predic­
tions. Abacioglu et al. [1] applied a similar technique to a field example in estimation of 
heterogeneous anisotropic permeability fields from multiwell interference.

He and Chambers [91] implemented a method based on Bayesian estimation technique 
with restricted-step Gauss-Newton method and an extension of C arter’s method for sensi­
tivity coefficients. The approach updates permeability, porosity and skin factor based on 
individual simulation cells, geological features, or on constant multipliers applied in well-test 
radius of investigation.

Wu et al. [208, 209] developed a discrete adjoint method for generating sensitivity co­
efficients related to two-phase flow production data. The method directly generates the 
sensitivity of the calculated data to the model parameters. Using these sensitivity coeffi­
cients, an efficient Gauss-Newton algorithm is applied to generate maximum a posteriori 
estimates and realizations of the rock property fields. Wu [206] presented another new it­
erative algorithm for building reservoir models conditioned to multiphase production data 
and geostatistical data. This approach avoids computation of sensitivities relying on solving 
the inversion equations through functional extremum.

Oliver et al. [151] presented Markov Chain Monte-Carlo methods to condition a perme­
ability field to pressure data. Cunha et al. [47, 48] used a hybrid Markov Chain Monte-Carlo 
algorithm to generate realizations of permeability conditioned to prior mean, variance and 
multiwell pressure data. These realizations represent samples from the correct a posteriori 
probability distribution.

Srinivasan and Caers [182] implemented a Markov Chain Monte-Carlo algorithm to 
integrate permeability connectivity information caontained in the flow response data. Prior 
to integrating the response data, a neural-network based procedure is used on these data 
to filter out the connectivity information.

Rogerro [171] used a Bayesian inversion technique and an efficient optimization algo­
rithm  to integrate multiple well historical data  and prior geostatistical information. The 
procedure permits direct selection of constrained realization.

2.4 Zonation M ethods

All numerical reservoir characterization models, irrespective of static or dynamic nature, 
should fall into this category inasmuch as the original problem is infinite-dimensional but 
is modeled by a finite number of parameters. Notwithstanding this fact, the subsequent 
methods have been grouped in this category because of emphasis of the zonation approach.

Some of the early methods [27, 44, 71, 108, 145] have already been grouped as the 
classical techniques for a historical perspective. While the zonation method is effective in 
reducing the number of unknowns, sufficient a priori information is not usually available to 
enable specification of the zones on any physical basis. Zonation methods are active research 
area. Amongst the newer methods are pilot point method, sequential self-calibrated method, 
and others.

Pilot point method [55, 125, 168] is a zonation method that starts by simulating a con­
ditional transmissivity field. The generated field is then modified by adding additional or 
fictional transmissivity data at some selected locations, termed pilot points, to improve
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the calibration of the pressure data. Adjoint sensitivity analysis is used to determine the 
locations where additional transmissivity data should be included [124]. The additional 
transmissivity data at the pilot points are treated as local data, a new conditional realiza­
tion of transmissivity is then generated, and, the flow model is run again. The iteration of 
adding pilot points is continued until least-squared error criterion is met or the addition of 
more pilot points does not improve the calibration. This method is, however, com putation­
ally expensive and cannot efficiently handle pressure data from multiple hydraulic tests at 
different times. Fasanino et al. [73] applied this model in inverse modeling of a gas reservoir. 
Bissell et al. [17] evaluated pilot point method to an alternative gradzone method, where 
groups of grid cells in the model are modified.

Sequential self-calibrated method [25, 81] combines geostatistical and optimization tech­
niques. A geostatistical technique is used to generate a reservoir param eter model condi­
tioned to local measurements of parameters. The initial model is modified to minimize the 
misfit function through an optimization procedure. In order to reduce the param eter dimen­
sion, the optimization is parameterized as a function of the perturbations of permeability 
at a few selected locations, called master points. The perturbation values at the master 
locations are determined from the optimization procedure by minimizing the squared differ­
ence of the simulated and observed pressures. The resulting perturbations are propagated 
throughout the entire reservoir domain by kriging to obtain the perturbation field th a t is 
subsequently added to the initial field. The flow equation is linearized to obtain fast solu­
tion in the optimization process. An iterative process is used in order to avoid the errors 
in the linear approximation of the flow equation, that is, the modified reservoir model is 
input again into the reservoir simulator and new perturbation values calculated until the 
actual solution of pressure from the numerical reservoir simulator is close to the observed 
data. This approach accounts for measurement errors in the data and the uncertainty in 
flow boundary conditions. It is computationally efficient. Promising results were obtained 
by using this approach in groundwater hydrology [201, 203, 204, 219].

Blanc et al. [20] presented a solution to the problem of constraining geostatistical models 
by well test pressure data similar to the pilot point method or sequential self-calibrated 
method. In this method, a well test simulator is coupled with a nonlinear constrained 
optimization program for an inversion loop so that a set of optimal facies or rock-type 
properties and well-skin tha t give best fit between the simulated and measured pressure 
data are obtained. Sensitivity coefficients are computed numerically, and in each iteration, 
full numerical solution of well test pressures are computed by a well test simulator. The 
method is thus computationally inefficient.

Xue and D atta-G upta [211] developed a two stage approach similar to pilot-point tech­
nique but incorporated the prior information in a different way. The covariance m atrix is 
embedded in the parameterization of the permeability field.

2.5 Cokriging Based M ethods

Kitanidis and his colleagues [99, 116] applied cokriging to simulate transmissivity and 
pressure fields using covariance or cross-covariance models based on field measurements 
of transmissivity and pressure. The cross-covariance between transmissivity and pressure 
is developed through linearization of the single phase steady state flow equation. Param ­
eters in the covariance and cross-variance are estimated from the measured data and the 
linearized flow equation using a maximum likelihood method. Realizations are then con-
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structed using Cholesky decomposition of the covariance matrix. Cholesky decomposition is 
computationally efficient only for small problems. However, the steady-state pressure data 
are reproduced only under the assumptions tha t the relationship between transmissivity and 
pressure is linear which is valid only for small variance of transmissivity, the permeability 
distribution is Gaussian, and flow is uniform.

In linearized semi-analytical cokriging method [175, 176], a linearized form of the sin­
gle phase steady-state flow equation is used to develop analytical expressions of cross­
covariances of permeability and pressure assuming uniform flow and infinite domain. Tran­
sient pressure is accounted for with the linearity assumption between change of pressure 
and time.

Harvey and Gorelick [88] presented a cokriging method, combining numerical simulation 
of flow and tracer transport with a linear estimation, to construct permeability field tha t 
sequentially accounts for permeability, pressure and tracer arrival times. Integrating tracer 
arrival time data improves the accuracy of the permeability estimation. Tracer arrival time 
quantiles are found to be robust indicators of flow paths and flow barriers.

Yeh et al. [215] applied a similar but iterative technique to account for the nonlinear 
relationship between permeability and pressure in the estimation through successive lin­
ear approximation. It first estimates a permeability field by cokriging from the available 
permeability and steady-state pressure data. The flow equation is then solved numerically 
to obtain a pressure field, which is computationally intensive. The covariance and cross­
covariance of permeability and pressure are then updated and a new permeability field can 
be obtained by again cokriging using the updated covariance and cross-covariance. This 
process is continued until the variance of estimated permeability stabilizes.

In  another cokriging based method, fast Fourier transform method [85, 86] is applied 
to the linearized steady-state flow equation. Transmissivity and pressure perturbations are 
represented in the spectral domain as Fourier integrals in two dimension. The covariance 
and cross-covariance are represented as functions of the spectral and cross-spectral density. 
Transmissivity realizations conditioned to the pressure data are constructed by adding the 
difference between the unconditional simulation and kriged values of the unconditional 
simulation to the kriged values using the field data [56,113]. This method is computationally 
fast when there are a large number of pressure data.

Huang et al. [106, 107] integrated time-lapse seismic and production data in reservoir 
characterization. The uncertainty was quantified by the statistics on reservoir-scale 3D 
acoustic impedance blocks. Using collocated cokriging the impedances were transformed 
into reservoir param eter through a petrophysical relationship while respecting the well in­
formation. The results are finally transferred from the time domain to a spatial one for flow 
simulation.

Hu et al. [102] proposed a new kriging algorithm to estimate lithofacies proportions in 
well test areas of investigation. Method consists in kriging jointly the proportions of all 
lithofacies in the area through a weighted power averaging of lithofacies permeabilities. For 
multiple well tests, an iterative process is used to account for their interaction.

Srinivasan and Journel [183] interpreted well test derived effective permeability as linear 
average of small scale permeability values indexed with a power. A kriging on the power 
transformed permeability fields followed by an inverse power transform allows generating 
estimated permeability fields over the drainage area.
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2.6 Simulated Annealing Based Techniques

Deutsch [59, 60, 64] was among the first to present an approach, based on simulated anneal­
ing, tha t integrates well test-derived effective permeabilities in stochastic reservoir models. 
Some practical considerations are discussed by him and his colleagues [61, 62]. Ouenes and 
his colleagues [155, 156,184] employed simulating annealing for automatic history matching. 
Petrophysical and reservoir engineering parameters are estimated through an autom atic and 
multiwell history matching using simulated annealing method. A least-square error objec­
tive function defined by the oil, gas, and water productions at each well is minimized by 
the simulated annealing method. At each iteration in the simulated annealing method, a 
limited number of reservoir parameters are adjusted. The impact of these new param e­
ters on the objective function is evaluated by forward reservoir simulation, which is too 
costly for routine application for large number of parameters and iteration steps used in 
this approach.

In another simulated annealing approach proposed by Tauzin [189], the objective func­
tion is evaluated analytically which improves the computational time. An analytical in­
fluence function is defined to approximate the perturbation on the pressure transient due 
to a local heterogeneity. This influence function is derived from the analytical solution of 
transient pressure in an infinite homogeneous reservoir containing a single circular discon­
tinuity from Rosa and Horne [174]. This approximation is usually sufficiently accurate to 
predict the direction and the order of magnitude of the pressure perturbation caused by the 
permeability perturbation.

Tracer data reveal important information on the interwell connectivity. D atta-G upta et 
al. [53, 54] sequentially applied the simulated annealing method to account for both  pres­
sure and tracer data in the construction of reservoir permeability model. A semi-analytical 
transient time algorithm was used for fast calculation of tracer travel time in the simulated 
annealing [51]. Vasco et al. [196] attem pted to integrate multiphase production history 
data using 3D multiphase semi-analytical streamline model based on simulated annealing 
technique. Kulkarni and Datta-G upta [120] employed a streamline based approach to es­
tim ate relative permeability information from production data. Application of streamline 
based production data  integrating approaches can be found in the literature [121, 195, 198]. 
Yoon et al. [217] developed a streamlined-based multiscale approach to data  integration 
accounting for varying resolution of different data types.

Maroongroge et al. [137] investigated the effectiveness of vertical tracer profiling for 
determining reservoir zonation. Tracer history is used to condition the permeability model 
using a simulating annealing method and a least square history matching method. Condi­
tioning to tracer history substantially constrains the model and it is particularly im portant 
when the horizontal variogram is unknown. The use of vertical tracer profiling can substan­
tially improve the results compared to the case when the integrated breakthrough curve is 
used. However, this would be quite difficult and costly to implement in the field.

2.7 Two-Step Approaches and Indirect M ethods

Production data can be used to estimate statistical parameters, such as the mean, covari­
ance, or the fractal dimension tha t describe the spatial distribution of reservoir properties. 
These parameters are subsequently used to characterize the reservoir.

These indirect techniques seek to  construct geological models tha t honor critical features
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interpreted from the production data. Some relationship is first established between the 
production data and some reservoir parameters or their spatial variation. This relationship 
then serves as a constraint in the construction of the geological model so tha t the production 
data are indirectly integrated into the reservoir model. The first step is to analyze transient 
production data and infer spatial heterogeneity features of the underlying reservoir model. 
These heterogeneity features may be in the forms of general information on the degree of 
heterogeneity, anisotropy and zonation of the reservoir properties; the presence of inter­
nal or external reservoir boundaries such as faults, lithofacies changes, water-oil contacts, 
stratigraphic pinchouts; the presence of high flow channels or low permeable zones in an 
area and the distance to these zones; in multiple well systems, water breakthrough tim e and 
recovery efficiencies inform connectivity between wells; effective transmissivity and facies 
proportions in the well bore vicinity, etc.

Chang et al. [32] give an example of the connection between different engineering data 
including well test data, production data, production performance data, hydrogeochemical 
data and the geological model. Lord and Collins [134] implemented an approach to detect 
compartmentalization in gas reservoirs using production data. Vashist et al. [197] and Bard 
et al [9] implemented integrated approaches for carbonate reservoir charcterization. Ban- 
diziol and Massonnat [8] integrated pressure transient test and geological data for horizontal 
permeability anisotropy characterization. Head et al. [94] used multiple probe pressure data 
for reservoir anisotropy determination. Other references on integrated approaches include 
[24, 90, 128].

Yadavalli et al [212, 213] used pressure transient data from single or multiple sets of well 
tests to estimate permeability variograms, and they were able to obtain reliable horizontal 
variogram models in cases where no information is available on the short scale structure of 
the variogram. Chang and Yortsos [31] and Beier [12, 158] showed tha t pressure transient 
field data could indicate fractal reservoir structure and the parameters of the fractal model. 
Grindrod and Impey [82, 83] also estimated fractal geometry param eters from permeability 
and pressure data using a maximum likelihood method.

Once the statistical parameters are estimated, they are used in geostatistical techniques 
to construct reservoir models. The contribution of production data lies in the improvement 
in the estimation of statistical parameters describing the reservoir heterogeneity. In some 
cases, such as when the reservoir parameters are Gaussian, and the relationship between 
the reservoir param eter and pressure data are linear, the constructed geostatistical reservoir 
model may also directly honor the pressure data.

Effective permeability within the drainage area of the well obtained from well test data 
[101, 177] does not resolve local details of the spatial distribution of permeability. However, 
welltest-derived effective permeability can be regarded as the average value of the heteroge­
neous permeability values in the vicinity of the test well [2, 146]. Deutsch [59, 64, 65, 66, 67] 
presented an approach, based on simulated annealing, tha t integrates well test-derived ef­
fective permeabilities in stochastic reservoir models. The volume and type of averaging 
formed by the well test are first calibrated by forward simulating the well test on a number 
of stochastic reservoir models tha t are consistent with the geological interpretation, core, 
well log, and seismic data. Ranking of the inverted models are considered in some studies 
[68]. Scale and precision of seismic data in the reservoir models are considered by Deutsch et 
al. [69]. The effective permeability from the well-test is assumed to be the power average of 
the heterogeneous permeability within the influence volume of the well test [2]. The optimal 
volume and power parameter for the averaging process are obtained from the calibration as

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



suggested by Alabert [2], Stochastic reservoir models are then constructed w ith simulated 
annealing to honor the well-derived average permeabilities. Results showed the improve­
ment in characterizing permeability heterogeneity and waterflooding predictions when the 
effective permeabilities are constrained in the model.

A similar approach was presented by Sagar et al. [178] but using a geometric average 
of permeability values within the influence region. The approach of Deutsch was extended 
by Tauzin [189] to directly integrate the pressure transient data using a simple analytical 
algorithm based on Rosa and Horne [173, 174] to quickly evaluate the objective function 
due to the single perturbation of permeability.

Hird et al. [97, 98] used reservoir connectivity parameters as indirect well-performance 
constraints in the conditional simulation of a stochastic reservoir model. Reservoir connec­
tivity parameter was defined by a functional relationship between fractional area connected 
and permeability percentile cutoffs. This connectivity param eter is found to be strongly 
correlated to the well performance, such as secondary recovery efficiency, drainable hydro­
carbon pore volume, floodable hydrocarbon pore volume and also water breakthrough time. 
Based on a strong correlation between the spatial reservoir properties and the reservoir per­
formance, they suggested use of the connectivity param eter to constrain the reservoir model 
using simulated annealing. Alabert and Modot [4] also defined connectivity of a permeabil­
ity field in terms of the connected pore volume.

Holden et al. [100] presented an approach to indirectly account for well test data  to 
improve the simulation of lithofacies and petrophysics under the framework of two-stage 
stochastic simulation as suggested by Haldorsen [50, 87]. Using an analytical tool, the pres­
sure data is used to estimate pressure support and then the shortest distance from the well 
to a possible channel boundary, connection between two wells by a high permeable zone and 
channel geometry. The channel structure is then simulated using these interpretations with 
a marked point process model. Average permeability in the part of the channel intersected 
by the well is estimated from the well test data. The permeability field was then generated 
together with the core/ log data using stochastic Gaussian model. Alabert and Massonnat 
[3] used well test data to infer information on channels and lobe dimensions in addition to 
average permeability.

Britto and Grader [23] applied transient pressure data to  identify local impermeable 
regions or high-flow channels. Vashist et al. [197] presented a technique for defining reservoir 
facies tha t incorporates the geological features of deposition and diagenesis with the dynamic 
flow capacity (kh) of the reservoir. The ranges of permeability for different reservoir facies 
are determined through multiple regression analysis based on their dynamic flow capacity 
(kh) data in tested wells.

Benkendorfer et al. [13] presented a different approach to indirectly integrate production 
data using a two-step approach. That is, the permeability values estimated from well-test 
data are regarded as the sum of a core-based permeability and a large-scale permeability due 
to fractures and leached zones. The core-based permeability and the large scale permeability 
are constructed separately. The final model is the sum of the two models. This two-step 
approach is applicable when a significant difference exists between core-based permeability 
and production-scale permeability.

Feitosa et al. [75, 76] presented a new inversion solution, called Inverse Solution Al­
gorithm (ISA) based on Oliver’s perturbation solution [146]. The algorithm generates a 
smoothed approximation to the true permeability field as a function of distance from the 
well. Based on the pressure data from draw down and buildup tests, the absolute perme-
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ability is estimated as a function of distance from the well [76, 147], or a function of both  
distance and angle from the well.

Huang and Kelkar [105] presented a procedure for integrating three dimensional seismic 
data and production data  to develop a detailed reservoir description. Impedance distribu­
tion is constructed by the inversion of the seismic data, then porosity field, consistent with 
the impedance data, is simulated, and finally permeability field, consistent with porosity 
and dynamic well test data, is constructed. The initial permeability field is then perturbed 
randomly until the simulated well test data match the measured data. Forward simulator 
is used to calculate the pressure or flow rate response after each perturbation of permeabil­
ity, thus it is computationally inefficient. To improve the efficiency, for a highly correlated 
porosity and permeability, the bounds of perturbations can be narrowed. The same authors, 
in another paper [104], discussed dynamic data integration in frequency domain. The spatial 
relationship-variogram is represented by power spectra and self-correlation in the frequency 
domain. Huang et al. [103] also explore the impact of dynamic data integration in the 
uncertainty of prediction of the multiphase systems.

Deng [57] and Deng and Horne [58] presented an analytical approach to interpret pres­
sure and tracer data from multiple wells simultaneously to characterize the two dimensional 
permeability distribution in heterogeneous reservoir. The correlation between permeability 
and dispersivity is sought, and the convection-dispersion equation and diffusion equation to 
a system of first-order equations in permeability are reformulated. The system of equations 
is then solved to yield the permeability distribution for appropriate boundary conditions.

Several other authors have examined the sensitivity of transient pressure response to 
the spatial distribution of permeabilities, such as McElwee [139] and Sykes et al. [185]. The 
pressure response for a multirate test was found more sensitive to reservoir heterogeneities 
than  a single flow rate test [173]. The effectiveness of the data in estimating local-scale per­
meability can be measured by its spatial resolution [51, 148, 150]. The higher the resolution 
of a data to a given parameter, the more information this data carries on the spatial vari­
ation of the parameter. D atta-G upta et al. [51] used the concept of a resolution m atrix to 
give information on the spatial averaging involved in the param eter estimation due to  lim­
ited sampling, as well as quantitatively evaluate the relative worth of additional data. The 
resolution of pressure data in constraining local permeability variations in heterogeneous 
media is limited. Oliver [150] showed that interference tests are generally more effective 
than  single-well tests at improving the resolution. On the other hand, interwell tracer data 
can be very sensitive to local heterogeneities [52, 58]. Also, both transient pressure data 
and tracer data appear to resolve flow barriers better than flow channels [51],

Wu and D atta-G upta [207] proposed a travel time inversion method for production 
data integration based on seismic waveform imaging. The method minimizes a ‘travel time 
shift’ at each well derived by maximizing the cross-correlation between the observed and 
calculated production response. An optimal control method via a Gauss-Newton method is 
employed to compute the sensitivity of the travel time with respect to reservoir parameters.

Rahon et al. [165, 166, 167] developed geological shape inversion technique with im­
proved gradient computation. The devised method is capable of identifying the limits of the 
reservoir, position of the faults, thickness and dimensions of channels. Geological shapes 
are modeled by triangulation as a 2D or 3D surface. A finite element structure is associated 
to each object and the Cartesian coordinates of the nodes in this triangulation are matched 
in the inversion process.

Jensen and Kelkar [111, 112] employed cross-correlation between pairs of production
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wells to determine the inter-well relationships, preferential flow directions and flow barriers. 
They incorporated Wavelet transformation tools in reservoir characterization technique in 
the form of a better search neighborhood definition. In an earlier paper [110] by the same 
authors, exploratory data  analysis of production data  was performed. A local and global 
analysis along both the temporal and spatial axis were considered.

Rogerro and Hu [172] used gradual deformation method to continuously modify a geo­
statistical realization while respecting its global mean and variogram. This m ethod was 
coupled with an efficient optimization algorithm. Efficiency is obtained by selecting the 
number of deformation parameters in the model and optimization sequences. Reis et al. 
[169] applied gradual deformation technique for history matching to a real oil field located 
in Offshore Brazil. Lepine et al. [129] demonstrated an uncertainty analysis technique in 
predictive reservoir simulation through gradient information.

Landa and Horne [122] devised a procedure to integrate well test data, reservoir perfor­
mance history and 4D seismic information into reservoir characterization. Both cell-based 
and object-based modeling were formulated. They used the gradient simulator method to 
compute sensitivities. 4D seismic information was considered to be in the form of maps of 
change of saturation in the reservoir. The value of data integration was evaluated w ith the 
variance analysis.

Gomez et al. [80] investigated an application of Tunneling Method, a global optimization 
technique in history matching of petroleum reservoir. This method could be used as an 
alternative to reformulation of the problem if the previously obtained reservoir param eters 
are not in the feasible region.

Phan and Horne [159] implemented a method to integrate dynamic data from multi­
ple sources to infer reservoir properties. They emphasized depth-averaged data  has poor 
resolution, and implemented a method to combine layer by layer seismic information and 
production data.

Bi et al. [16] developed a procedure to condition a stochastic channel to  well-test pressure 
data and well observations of the channel thickness and the depth of the top of the channel. 
Zhang et al. [218] implements a procedure to condition a stochastic channel to well-test 
pressure, as well as static observations of the channel thickness and depth of the channel 
top data.

Wen et al. [205] extended sequent ial self- calibr at ion method and another inverse tech­
nique named geo-morphing to invert for lithofacies distribution using multiphase production 
data. Both of these techniques attem pt to modify the field of Gaussian deviates while main­
taining fixed truncation threshold through an optimization procedure. Maintaining fixed 
threshold field, which has been previously computed on the basis of prior information of 
lithofacies production data, well data, and other static data, guarantees preservation of the 
initial geostatistical structure.

Chu et al. [41] implemented a two-loop iteration method based on inverse solution the­
ory to construct the objection function and the gradient method to generate the maximum 
a posteriori estimates. The technique uses a Krylov space-based method to solve the lin­
ear part involved in the minimization thus avoiding explicit construction of the sensitivity 
coefficient matrix.

Ates and Kelkar [6, 7] also developed a dual-loop procedure for optimizing both  relative 
permeability and heterogeneity characteristics. The method combines Gauss-Newton and 
conjugate gradient algorithms avoiding construction of the sensitivity coefficient matrix.

Indirect methods provide flexibility to account for production data in the construction
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of reservoir models with less computational effort than full inversion. However, the success 
of these techniques in constraining reservoir models essentially relies on the quality of the 
interpretation of production data to represent reservoir heterogeneities. Some more recent 
techniques not presented in the above classification scheme are described below.

2.8 Recent Developm ents

Mantica et al. [136] devised a hybrid optimization technique combining a gradient based 
technique with a chaotic sampling technique to integrate information from production and 
seismic data. Their technique is based on a non-linear dynamical system.

Li et al. [130] used adjoint equations for three-dimensional, three-phase flow to cal­
culate dimensionless sensitivity of production data to permeability fields as well as skin 
factors. This allows one to perform history-matching using the Levenbeg-Marquaxdt or 
Gauss-Newton method.

Raghavan et al. [164] integrated geological, geophysical and numerically simulated well 
test data  of a fluvial reservoir. They implemented a ‘porosity cube’ model using seismic 
and well-log data. Upscaling of the ‘porosity cube’ was done preserving pay thickness, 
pore-volume, and connectivity between high- and low-porosity materials.

Masumoto [138] devised a method for simultaneous matching of pressure and its deriva­
tives for two phase fluid flow in heterogeneous reservoirs. An adjoint method was used for 
gradient calculation of the objective function having two terms. One term  is the pressure 
mismatch and the other is the mismatch of pressure change rate.

Queipo et al. [162] proposes a “surrogate modeling” technique to generate porosity and 
permeability models. Their approach named NEGO involves numerical reservoir model 
based on neural networks, DACE modeling and adaptive sampling. The NEGO algorithm 
effectively identifies promising areas for reservoir characterization.
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Chapter 3

M athem atics o f Production D ata  
Integration

Characterization of detailed 3-D reservoir models entails working in a high dimensional 
space with a m ultitude of parameters to be estimated. There are various reservoir model 
properties for which inversion techniques, mentioned in the literature review (Chapter 2), 
are applied. In most cases, these reservoir parameters are transmissibility, distance to 
boundaries, effective flow capacities in the vicinity of wells, productivity of wells, mea­
sures of interwell communication (absolute/relative kh), coarse grid representation of kh, 
or (j>, facies connectivity between wells, drainage volumes around wells, facies proportions 
around/between wells, connectivity between wells and connected surfaces, local measures of 
heterogeneity (e.g., variogram, covariance, mean and variance of permeability and porosity).

Production data integration in reservoir characterization is an inverse problem. The 
intent is to build numerical reservoir models tha t by construction integrate all types of 
dynamic data along with all static information about the reservoirs. In order to implement 
techniques for production data integration, one needs to understand the difficulties and 
limitations of inverse problems. The characteristics of the inverse problem of production 
data integration and the basic framework and elements of most algorithms including the 
ones developed in later chapters are presented here. The description in this chapter is generic 
in nature and not a specific contribution of the present work; however, this mathematical 
background is essential to understand the developments in later chapters.

3.1 Inverse Problem

Consider a physical system defined by a set of model parameters. Observable performances 
of this system are its responses. The direct or forward problem is to predict the responses 
once the system and the model parameters are defined, inverse problem is to infer the values 
of the model parameters from some observed values of its responses. An identification 
problem is when the model parameters and the observed values are known but the system 
is not identified. Mathematically, one can consider the following problem: find a  such tha t

F(d ,a)  = 0 (3.1)

where both  a  and d are sets of data or variables on which the solution depends and F  is 
the functional relation among d and a. Typically, (3.1) is referred to as a direct or forward
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problem if F  and a  are given and d is the unknown, inverse problem if F  and d are known 
and a  is the unknown, identification problem when d and a  are known while the functional 
relation or the mathematical model F  is unknown.

The usual approach to the solution of the inverse problem (3.1) entails the following:

1. Construct the mathematical model or the functional relation F.

2. Solve the forward formulation of the problem with a guess of the data set a.

3. Define a discrepancy function or objective function between the solution in Step 2 and 
observed values.

4. Formulate and implement an optimization algorithm to minimize the objective func­
tion.

In production data integration, these steps are briefly explained here.

1. Construction of subsurface flow equation. Depending on the rigor of the study, 2-D 
or 3-D formulation of single or multiphase flow equations are modeled through some 
discretization technique.

2. D ata here are the numerical reservoir models of the petrophysical properties involved. 
Properties are permeability, porosity, and in some cases fluid saturations. Initial guess 
of the these properties is often made from static well data. Direct problem is solved 
through some numerical solution technique.

3. Objective function is determined from the mismatch of the simulated flow responses 
and the observed production data.

4. Minimization technique is adopted in order to update the numerical model of the 
reservoirs.

Solution of an inverse problem is difficult in most cases. Deferring the discussion on 
specific solution techniques or approaches, the next section briefly explains the difficulties 
associated with the solution of an inverse problem.

3.2 Ill-posedness of Inverse Problem s

In engineering, one often resorts to linearization (or quasilinearization) of a nonlinear prob­
lem. A linearized (or quasilinearized) form of Problem 3.1

F  a  = D  (3.2)

is said to be well-posed when

• for each D  € K”o6s, there exists a a  G R”por, called a solution, for which (3.2) holds;

•  the solution a  is unique; and

• the solution is stable with respect to perturbations in D. That means tha t if Fdo =  D q 
and F a  =  D, then do —t at whenever D  —► Do-
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A problem tha t is not well-posed is said to be ill-posed. Inverse problems are inherently 
ill-posed.

Essentially, solution of inverse problem means making inference of a physical system 
from real data. Issues regarding the solution algorithm of an inverse problems may be: 
dimensionality, non-uniqueness, consistency, robustness and so forth.

Characterizing any physical system such as a petroleum reservoir is an infinite dimen­
sional problem. Properties at an infinite number of points are to be identified. Solution of 
this infinite dimensional problem is out of the question. The problem is thus redefined in a 
finite-dimensional setup.

There are many models in the solution space (model space) th a t can match the system 
performance. Non-uniqueness may arise because of attem pting to derive a large number of 
essentially continuous parameters from a limited number of responses. Also, identifiability 
of the physics, mechanisms or even procedures may lead to a loss of uniqueness. For 
instance, one may often have to correlate some calculated or estimated param eters like 
acoustic impedance from seismics with other variables such as porosity, permeability, and 
fluid saturations affecting these measurements. The choice of variables may lead to non­
uniqueness.

Reservoir characterization, like most inverse problems, entails numerous data  of different 
types and information content. There is often some inconsistency due to  different levels of 
accuracy within the same data type or different types of data. Also, some data may be in 
the time domain while some in the space domain.

Moreover, the scales or volumetric supports of various data may lead to inconsistencies. 
For example, well logs have a different volumetric support than well test data  or core plug 
data. Inconsistency may also arise through application of different methods.

Many of these issues are still to be resolved to a satisfactory level in dynamic data 
integration. This is one reason tha t this field is an active area of research. Most methods 
attem pt to reduce the non-uniqueness. However, it is difficult to agree on a suitable measure 
of such reduction. Consistency is a difficult issue especially in the presence of sparse data  and 
many degrees of freedom. Due to its infinite dimensionality, it is not possible to  completely 
deal with the robustness issue. This motivates the need for exploration of more efficient 
reservoir characterization techniques with dynamic data.

The next sections describe in some detail the formulation of the forward problem and 
possible objective functions in production data integration.

3.3 Forward Problem  Formulation

This is basically the core subject of reservoir simulation and reservoir dynamics. To formu­
late the direct problem, one needs to consider the following:

• Conservation laws:

-  Mass conservation law

-  Momentum conservation law

-  Energy conservation law

• Macroscopic law of fluid flow through porous media: Darcy’s law.

• Constitutive relationships:
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-  Equation of state

-  Relative permeability and capillary pressure relationships.

Combining the above equations, we obtain 2- or 3-dimensional single or multiphase flow 
equations in the form of a system of partial differential equations. This system of equations 
are discretized into a set of non-linear algebraic equations. The discretized equations are 
solved with some nonlinear m atrix solution techniques. In most cases, these techniques are 
iterative methods.

3.4 Objective Function

Objective or discrepancy function is the mismatch between the data obtained by solving the 
forward problem using the current estimate of the model and the observed dynamic data. 
In the context of production data integration, the objective function, O, can be formulated 
as: nobs

0  = J 2 wi(di bS- d? mf  (3.3)
i = 1

where n 0is is the number of observations (production data), d°bs are the observed production 
data, dfm  are the simulated flow responses from the solution of the forward flow problem, 
while W i  are the weights given to individual observed data. Typically, the purpose of 
these weights is to make the objective function dimensionless. The matricial expression of 
Equation (3.3) is the following:

O = (D obs -  D sim)T W {D obs -  D sim) (3.4)

Determination of the weights can be very subjective. Modelers experience and associa­
tion with the data can provide ideas for ‘adhoc’ estimation of the weights. Performances of 
sensors used in obtaining the observed data may affect the choices of the weights. Regular 
calibration of the sensors or probes can provide one the signal-to-noise ratio curves of the 
devices. These curves can be used to dissociate noisy components in the data.

Numerical reservoir models are gridded values of the petrophysical properties. In this 
research, the properties of interest are absolute permeability and porosity. Consider a 
reservoir model size of n x x n y x n z, where nx, ny, and n z are number of grid blocks in x, y, 
and z  direction. W ith only two reservoir properties of interest (permeability and porosity), 
the number of parameters in the minimization algorithm will be 2 x n x x n y x n z . This can 
be an enormously large number of parameters. Thus, a smaller set of reservoir properties 
may be chosen as the parameters for the minimization algorithm. Let these parameters be 
denoted by a j , j  =  1, • • • , npar, where npar is the number of parameters.

The objective function can be formulated in a number of ways. The difference in these 
formulations stems from various considerations, namely, the minimization algorithms used, 
normalization of units, robustifying of the minimization algorithm, and so forth.

In Least Square Formulation, the matrix W  in 3.4 is an identity matrix. The major 
limitation of this formulation is tha t it gives rise to numerical problems when the orders of 
magnitude of the individual data vary significantly.

In Weighted Least Square Formulation, in order to avoid any problem with orders of 
magnitude, the matrix W  is a diagonal matrix that assigns individual weights to each 
observation. This normalizes individual observation and regularizes the numerical problem
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to some extent. The concept of assigning some data a higher weight compared to others 
based on some engineering heuristics is also possible with this formulation. The rationale 
of weighting can also be founded on the premise of degree of uncertainty or confidence of 
the individual data. Thus, Weighted Least Square Formulation gives a space of freedom or 
flexibility in the inversion algorithm.

Generalized Least Square Formulation is based on probabilistic theory, and includes 
the dispersion characteristics or covariance of the data in the objective formulation [140, 
188]. Regularization of the minimization problem can be actuated by incorporating prior 
information about the param eter involved. The objective function is expressed as:

Ogls  = \ ( D obs -  D sim)TC p l (Dobs -  D 8im)+

— {o. CZprior) Ca (cc CTprior) (3.5)

where Cp is the covariance m atrix of the observation. The main idea behind Cp is tha t 
this matrix relates the correlation among the observations. In a simplified case, it may be 
assumed that the observations are independent of each other, and thus the covariance m atrix 
reduces to a diagonal matrix. The diagonal elements are the variance of the observations 
{(t 2d ) .  Ca is the covariance m atrix of the parameters of the inversion problem. a p r i or  are 
the set of parameters obtained before the application of the inversion algorithm. It may 
be the set of parameters obtained from the previous inversion step. The covariance m atrix 
Ca may be obtained from geostatistical information. This formulation introduces both  a 
priori and statistical information about the parameter set a. Application of this approach 
in reservoir characterization was first studied by Oliver [149].

3.5 Parameter Estim ation Algorithm s

The minimization algorithm in the context of dynamic data integration is to estimate d  =  d* 
such that

a* = arg min 0(D ,  d) (3.6)
a

where objective function (O) is considered a function of observed data (D) and the reservoir 
parameters (d) to be inverted. Minimization algorithms in the context of inverse problems 
are often referred to as parameter estimation algorithms. Parameter estimation is only 
a subproblem of the vast domain of optimization problems. The intent of all param eter 
estimation algorithms is to minimize a discrepancy function. There is an extensive literature 
and many tools are devised in this area of optimization [14, 15, 77, 160].

We say d* is a global minimizer for problem 3.6 if

0 (D ,d * ) < 0 (D ,a ) ,  Vd G Rnpor

We say d* is a local minimizer for problem 3.6 if

0 { D ,a * ) < 0 ( D , a ) ,  V a6 fl(d * ,p * )

where
B(a*,p*) ±  {d € I T ^ I  || d  -  d* ||<  p*}.

The next section is devoted to optimality conditions for solving minimization problems 
of the form 3.6.
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O p tim ality  C on d ition s

It is impossible to tell whether a vector is a solution of an optimization problem without 
checking if it satisfies optimality conditions. Necessary conditions are those tha t must be 
satisfied by any local minimizer. Sufficient conditions are those implying tha t a point is 
local minimizer. Optimality conditions can be presented in some forms. The basic form 
expresses the fact tha t the objective function value must increase in the vicinity of a local 
minimizer.

Necessary conditions of optimality are those that must be satisfied by any solution to 
(3.6), under assumptions of differentiability. Suppose that, 0 (D , •) in (3.6) is continuously 
differentiable and a  is a local minimizer for (3.6). Then

oa

Sufficiency conditions of optimality is presented next. Suppose tha t 0 (D , a) is twice 
continuously differentiable. If a* E R is such tha t VO (D , a*) = 0, and the Hessian of the 
objective function at a*

H* = A2 nm i - i  92Q (g ,y )

rr d2Q (D ,a)  
daida-i

where

satisfies the condition
V H*y  >  0 V y^O , y €  H n

Then a* is a strict local minimizer.
Above equation implies the m atrix H* is positive- definite. It should be noted tha t H  

is symmetric matrix, i.e.
H ij  = H jti &  H = H t

The positive-definiteness of the Hessian matrix is central to many minimization algo­
rithm. Consider 0 (D , a) to be convex. Applying Taylor’s expansion in the neighborhood 
of a, the function 0 ( D ,a  + Ace) is approximated:

0{D , a  + A  a) = 0 (D ,  a) +  VO(T>, o f  A a  +  i  A dTH A d  +  0 ( A « 3)

where H is evaluated at a. At optimal point (i.e. a  —> a*), V O (D ,a )  -> VO (D , a*) and
H  —)• H*. Following section discusses the basic minimization algorithm tha t can be used in
the parameter estimation problems.

B asic  M in im ization  A lgorithm

Minimization problems as in (3.6) are usually “solved” by iterative methods, which construct 
infinite sequences, {d*}“ 0, of progressively better approximations to a “solution” , th a t is, 
to a point satisfying an optimality condition. These iterative methods are referred to as 
optmization algorithms.
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Literature of optimization algorithms is vast and rich. Taxonomy of optimization tech­
niques can be based on various premises. Problems can be formulated as constrained or 
unconstrained.

The unconstrained optimization problem is central to the development of optimization 
algorithms. Constrained optimization algorithms are often extensions of unconstrained algo­
rithms. The discussion below starts with unconstrained problems and moves to constrained 
problems. Only a few of algorithms that are applicable to reservoir parameter estimation 
are mentioned here.

3.6 Gradient B ased M ethods

Optimality conditions presented previously apply mainly to gradient based methods. Basic 
assumptions in most gradient based algorithms are:

• Objective function 0 (D ,  d) is continuous

• 0 (D ,a )  is at least twice differentiable

The basic concept in the gradient approach is tha t under the assumption of continuous 
differentiability and VO (D , d) /  0 for a given value d  =  do, it is always possible to reduce 
the value of 0 (D ,  •) from its current value. This reduction is brought about by introducing 
a change in the parameters, i.e.,

0 (D ,  do +  Ah) < 0 (D ,  do)

where h € Kripar is a descent direction and A >  0 is a scalar step size. Proof of the existence of 
a descent direction, h, in the neighborhood of do can be obtained Using Taylor’s Expansion.

0 (D ,  d 0 +  Ah) =  0(D ,  d 0) +  AVO(£>, d 0)T +  0 ( h 2) (3.7)

Examining Equation 3.7, it can be observed tha t it is always possible to find the scalar 
A >  0 provided h satisfies the condition

V O (D ,d0)T/i <  0.

The direction h satisfying the above condition is called direction of sufficient descent. This 
guarantees the existence of A and h, provided 0 (D , do) 0.

Thus, the gradient algorithms entails

• Finding a sufficient descent direction (h).

• Determining an adequate step size (A).

The practical stopping criterion of these algorithms is

|V 0(D ,d*)|. <  e.

where e > 0. This implies the necessary condition in a practical sense. The main limitations 
of the above criterion is that, in the absence of convexity, the solution may become stuck 
in a local minima.

Common gradient based methods include Steepest Descent Method, Armijo Gradient 
Method, Newton Method, Gauss-Newton Method, Conjugate Gradient Method, and Quasi- 
Newton Method. These are briefly described below. Brief discussion of Singular Value 
Decomposition Algorithms follows subsequently.
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Steepest Descent M ethod

An algorithm for solving problem (3.6) is called a descent method if it constructs sequences 
{d*}“ 0, such that

0 (D ,  d i+1) < 0 (D ,  d ‘) Vi G N (and d* € Vi G N).

It is the earliest gradient method invented by Cauchy more than  100 years ago. It corre­
sponds to an algorithm with a sufficient descent direction hi defined by hi =  —V O ( D ,a o). 
Algorithm for Steepest Descent Method is the following for do € Knpar:

Step 0. Set i =  0.

Step 1. Compute the search direction

h  =  —V O ( f i , d j ) .

Stop if VO(D, &i) = 0.

Step 2. Compute the step size

Ai G \{D,a>i) =  argm inO (D , H" Xhi).
A > 0

Step 3. Set
bi+i =  d, +  A ihi, 

replace i by i +  1, and go to Step 1.

Problems with this algorithm are tha t it is quite inefficient and it contains a nonimple- 
mentable step size rule. Moreover, it has only linear rate of convergence; however, it is the 
simplest approach.

A rm ijo  G radient M ethod

Armijo gradient method accommodates a step size rule th a t is implementable. This in­
creases the efficiency of the descent algorithm. The algorithm follows for do G Rnpar and 
parameters a, b G (0,1), k* G Z:

Step 0. Set i =  0.

Step 1. Compute the search direction

hi =  —VO(D, dj).

Stop if V O(D , dj) =  0.

Step 2. Compute the step size A* =  bki, where ki G Z is such tha t

0 (D ,a i  + bkihi) -  0{D,&i) < —bkia || V O (D ,di) ||2

and

0 (D , di +  bki- l hi) -  0 (D ,  di) >  - 6 ^ - ^  || VO(D, d*) ||2 .

Step 3. Set
dj+i — oti + Xihi, 

replace i by i +  1, and go to Step 1.
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N ew ton M ethod

Newton’s algorithm is one of the oldest and best methods for solving optimization problems. 
In its simplest form it converges only if the initial guess is sufficiently close to a solution.

The idea behind Newton’s algorithm consists of decomposing the nonlinear equation 
problem (3.6), for which one is unable to  obtain an explicit solution, into an infinite sequence 
of linear equations constituting successive approximations, for which one can obtain an 
explicit solution. Thus, given the current approximation dj E K ^ 01- to a solution of (3.6), 
one linearizes (3.6) about dj using Taylor expansion and constructs the approximating 
problem

0 (D ,  dj) +  VO (D , &i)T (a -  dj) =  0.

whose explicit solution
a i+i — aii -  VO(D, ai)~T0 (D ,  d j). (3.8)

is the next, and hopefully better, approximation to a solution of (3.6). This simplest version 
of Newton method is sometimes known as Local Newton Method.

The logical extension of Local Newton Method, defined by (3.8), to problem (3.6), is 
as follows. Given a current estimate dj of the local minimizer d* we expand 0 (D ,  •) to 
second-order terms about dj

0(D ,  d) «  0 (D ,  dj) +  V O (D ,  d j)T(d -  dj) +  ^ (d  — d j)r H (D , d j)(d  — dj). (3.9)

Assuming that H (D , dj) is positive-definite, we can compute the minimizer dj+i of the 
right-hand side of (3.9) explicitly, by setting its gradient equal to zero, i.e., by solving the 
equation

VO (D ,  dj) +  — dj) — 0. (3.10)

Since, H (D ,d j) must be non-singular for dj close enough to d*, (3.10) defines the iteration 
process

dj+i =  dj -  H (D , d j)-1 V O(D , dj) i =  0 ,1 ,2 , . . .

There are two problems with this method: first, it converges to a solution of (3.6) only 
when initialized with a sufficiently good initial guess do; second, it is basically a root- 
finding, not an optimization algorithm, and hence, when applied to a nonconvex function 
0 (D ,  d), it can converge to a local maximizer instead of a minimizer. This can be shown 
by premultiplying Equation (3.10) by (d*+i — dj) and transposing the resulting equation, 
i.e.,

VO(D, d j)T (di+i -  dj) =  —(dj+i -  d j)r  H(jD, dj) (dj+i -  dj). (3.11)

Equation (3.11) does not guarantee a direction of descent unless H(L>, dj) is positive-definite.
Note that using any positive-definite matrix H  instead of the actual H (D ,d )  it is possi­

ble to have a method that guarantees a descent direction. Another concern with Newton’s 
method is that it requires not only the first derivative of O but also the second derivatives. 
This may become computationally expensive.

G auss-N ew ton M eth od

Another variant of Newton method, known as Gauss-Newton method, is widely used in 
param eter estimation problem. Consider the least square problem discussed in Section 3.4.
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Let ip (a) =  D sim(a ) — D obs. The idea in this algorithm is to linearize the function around 
the current point &i

ip(a, &i) — ip(&i) +  Vip(ai)T (a — d*). 

and minimize the norm of the linearized function ip, i.e.,

1
a i+i = arg min -  || ip(a,&i)- 2i

2

=  < * -  ( V iP ia J V iP i& i f y 1 Vip(ai)tp(ai).

The direction (S7ip(ai)\7ip(ai)T) 1 Vip(&i)ip(oti) in the Gauss-Newton method is a descent 
direction since

ViP(ai)iP(ai) =  V ((1/2) || iP(a) f )

and
\/ip(o6i)’Vip{ai)T > 0

The derivation of the Gauss-Newton method for the case of weighted least square for­
mulation is developed here. In the case of weighted least square formulation, O is defined 
(Section 3.4) as

0 { D ,a )  = (Dobs -  D sim(a))T W (D obs -  D sim(a))

where a  £ Wlpar and D obs, D svm(a) £ R”o6s.
The derivative of simulated data with respect to the vector of parameters a  is the 

sensitivity matrix G given by

QjQsim
da  ~~ 92 ■> ■ ■ ■ > Sii ) ffwpor]

where

da.

ddfm
d&i

d&i

8ds,m 
. d&i .

Sensitivity coefficient, s y ,  the magnitude of which indicates how much d f m  is affected by 
a change in a j,  is defined as

_  d d f m
S%̂  d&j

Assuming m atrix W  to be symmetric with constant coefficients and using Equation 
(3.8), we have V O (D ,a )  and H (D,a):

V O (D ,a )  =  —2Gt W (Dobs ~  D sim)

and

H (D , a) = 2Gt W G  -  2— - W ( D obs -  D sim).
aa

The Hessian m atrix for the Gauss-Newton method H g n  is defined as the first term  of 
Equation 3.11, i.e.,

H gjv =  2G t W G .
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Imposing positive definiteness of W , we guarantee tha t H g n  will be at least semi­
positive definite. This is not far from the requirement of positive definiteness. Further 
modification of m atrix H gn  renders stabilization.

This formulation ensures the right descent direction. In the limiting condition, i.e., 
H Gn  H  tha t has quadratic rate of convergence. Moreover, in the computation of H g n , 
only the first derivatives are required. This makes the algorithm efficient.

Lack of positive definiteness in H g n  stems directly from the structure of G. Possible 
reasons are:

• Data insufficiency for param eter resolution.

-  =  0 for some i renders H g n  singular.

— || 3§r.m || || 9g&m || Vj ^  i for some i render ill-conitioning of H g n -

•  Linear combination of parameters.

Understanding the reasons of lack of positive definiteness can be very illuminating in the 
solution of an inverse problem.

In the case of generalized least square formulation discussed in Section 3.4, the compu­
tation of objective function, gradient and the Hessian is performed in the following manner:

0 ( D , a )  = l- { D obs -  D sim(a))T C-D\ D ohs -  D sim(a)) +  ± (d  -  c ^ f C ^ d  -  aprior) 

VO(D, d) = —G T C p 1(Dobs -  D sim) +  Q - l {a -  aprior)

and
f jC 'T

H (D , d) = Gt CL1G -  ^ —- C p 1(Dobs -  D sim) +  C " 1.
OOL

The Gauss-Newton Hessian H g n , in this case, is defined as:

H g n  = G T CJ)1G  + C - 1. (3.12)

Imposing positive definiteness of the matrices C o  and C a ensures How to be positive 
definite. Moreover, addition of C a introduces further stabilization in the Gauss-Newton 
Hessian matrix.

C o n ju g a te  G r a d ie n t  M e th o d s

Hestenes and Stiefel [96] first proposed methods of conjugate directions as a technique for 
solving large systems of linear equations. There are many variants available differing in 
line search, restarting, scaling, preconditioning, and so forth. An algorithm for one of the 
conjugate gradient variants for do £ Wlpar:

S te p  0. Set i = 0, g0 =  VO(D, do), and ho = —go-

S te p  1. Compute the step size

A i =  arg min 0(L>, dj +  A hi).
A > Q
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Step 2. Update: Set

{&*+1 — dj +  A ihi, 
9i+i = '\70(D, aj-fx), 
7* =11 9i+1 II2 /  II 9% II2, 
^*+1 =  — <7i+l +  l iK-

Step 3. Replace i by i +  1, and go to Step 1.

Conjugate gradient methods aim to improve the convergence rate of steepest descent 
method without incurring the computational overhead in Newton’s method. The algorithm 
is simple and easy to implement when VO(D, ■) is already computed. It requires very little 
storage; however, numerical error accumulation seriously affects the solution.

Q u asi-N ew ton  M eth o d

Quasi-Newton Methods for unconstrained optimization approximate the Newton search 
direction, usually without evaluating second order derivatives of the objective function. 
Variants of this method include secant methods and variable metric methods. Among the 
widely used algorithms are Davidon-Fletcher-Powell (DFP) and Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) algorithms and their variations. The basic BFGS algorithm is discussed 
below. For do G Mnpor, and Ho, a symmetric n x n, positive definite matrix,

Step 0. Set i =  0.

Step 1. If gi =  X70(D,di) =  0, stop. Else compute

Step 3. Replace i by i +  1, and go to Step 1.

The most popular Quasi-Newton Method is the clever way to compute Hi+i as one 
shown in Equation (3.13).

Singular V alue D eco m p o sitio n  A lgorith m

Singular Value Decomposition or Spectral Decomposition of a m atrix can be used to solve 
some parameter estimation problems. This technique is, in fact, used to analyze the exis­
tence of a solution. The idea is tha t any matrix A € Cmxn can be reduced to

Ai =  a rg m m O { D ,d i  -  AH i 1gi).

Step 2. Compute
dj-j-i — di AjFfj gi,

9i+1 = V O ( D , d i+1),

A dj =  dj-j-i d{, A gi =  gi-i-i gi,

H i+1 = Hi + ( H iA d i ^ H iA d i )
A gJ  A d i

A  = V S J V H (3.14)
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where U  £ C T*xm and V  € C7IX” are two unitary matrices (orthogonal matrices in case of 
real-valued), i.e.,

U F U  =  U U H =  Im 

V HV  =  V V H = In 

E  =  diag(eri, . . . ,  crp) £ Crnxn with p  =  min(m, n)

and cti > . . .  >  ov >  0. Here, the superscript H  denotes the operation of taking the 
conjugate transpose. Formula 3.14 is called Singular Value Decomposition (SVD) of A  and 
the numbers <7* (or orj(A)) are called singular values of A. If A  is real-valued matrix, U

U and V being orthogonal, A r A  =  V E 2V T and A A T =  U E 2U T . As far as the rank 
is concerned, if o\  >  . . .  >  ar >  crr+i =  • • • =  =  0, then the rank of A is r. An
interpretation of matrices U and V is that the kernel of A is the span of the column vectors 
of V, {ur+i, • • • ,vn} and the range of A is the span of the column vectors of U, { u i , . . . ,  ur}.

Suppose tha t A  £ Mmxn has rank equal to v ctnd thcit it adm its SVD of thG type 
U t AV =  E.  The m atrix A t =  V r t U T is called the Moore-Penrose pseudo-inverse or 
genearalized inverse m atrix of A, where

In nonlinear param eter estimation, Singular Value Decomposition can be used. Previ­
ously, we had from first order approximation of D sim{a) around a given do

and V  will be also be real-valued and in above equations superscript T  (Transpose) must 
be written instead of H  (Hermitian).

From (3.14) it follows that (considering real-valued matrices) A T — \ E \ J T so tha t

D sim(a0 +  A a) =  D sim(a0) +  ^ _ A a .
da

(3.15)

Now, =  G  and setting
D sim(a0 +  A a) =  D obs

and we obtain from (3.15)
G A a  =  D obs -  D sim{a0).

Equation 3.16 can be solved using Singular Value Decomposition,

G =  U E V

(3.16)

A a  =  G t ( D obs -  D sim(a 0))

=  \ E ^ V t  (.Dobs -  D sim(d0)) (3.17)

The algorithm stops when

U T (^jobs _  =  0

which implies the necessary condition VO(D, d) =  0.
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3.7 Nongradient Optim ization Techniques

Recent advances in information technology and soft computational techniques contribute to 
a vast literature in nongradient optimization techniques. Some of the prominent nongradient 
methods are namely:

• Evolutionary Computing, e.g. Genetic Algorithms, Memetic Algorithms, etc.

• Simulated Annealing

• Polytope Algorithms

• Response Surface Methods, others.

Brief explanation of these methods follows.
Evolutionary computing [43, 79, 142] exploits an entire population of potential solutions 

and evolves them  according to some genetically driven phenomena. Genetic algorithms are 
among the most representative examples of the principle of evolutionary computing. Genetic 
algorithms are capable of dealing with broad class of tasks in spite of their formulation and 
the nature of optimization. The genetic algorithm starts with an initial population of N  
elements in the search space, determines the suitability of survival of its individuals and 
evolves the population to retain the individuals with the highest values of the fitness function 
and eliminates the weakest ones. Individual solutions are allowed to recombine and m utate 
thus emulating the natural selection or adaptation.

Simulated annealing [63, 115, 141, 155] is a generalization of a Monte Carlo method for 
examining the equations of state and frozen states of Ar-body systems. The concept is based 
on the manner in which liquids freeze or metals recrystallize in the process of annealing. The 
original Metropolis scheme was that an initial state of a thermodynamic system was chosen 
at energy E  and temperature T, holding T  constant the initial configuration is perturbed 
thus changing the energy dE.  If the change in energy is negative the new configuration is 
accepted. If the change in energy is positive it is accepted with a  probability given by the 
Boltzmann factor exp{ —(dE/T)}.  This processes is then repeated sufficient times to give 
good sampling statistics for the current temperature, and then the temperature is decreased 
and the entire process repeated until a frozen state is achieved at T  = 0.

Polytope algorithms are also known as Downhill Simplex, Nonlinear Simplex, or sim­
ply Nelder-Mead Simplex methods [144]. Essentially, these methods start from a Polytope 
(Simplex), which is a geometrical figure of IV +  1 vertices (in dimension N )  and their in­
terconnecting lines. Geometrical operations (reflection, expansion, contraction) are then 
performed on some candidate vertices in order to move the Polytope in the descent direc­
tions.

3.8 Search M ethods

Overall efficiency of the optimization algorithms hinges on efficient ways to compute search 
directions and the steps sizes. There are various descent direction search algorithms.

Line-search methods generate the iterates by setting

A/c+l =  &k +  ^khk 
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where hk is a search direction and Afc >  0 is chosen so tha t

0 { D , a k+1) < 0 ( D , a k).

Most line-search versions of the basic Newton method generate the direction hk by modifying 
the Hessian m atrix A ,̂aO ( D , a k) to ensure tha t the quadratic model of the function has a 
unique minimizer. The modified Cholesky decomposition approach adds positive quantities 
to the diagonal of A ^ aO (D ,a k) during the Cholesky factorization. As a result, a diagonal 
matrix, E k, with nonnegative diagonal entries is generated such tha t

&aaO(D, a k) +  E k

is positive definite. Given this decomposition, the search direction hk is obtained by solving

(A2aaO ( D ,a k) + E k) hk =  - V O ( D , a k).

After hk is found, a line-search procedure is used to choose an Xk >  0 tha t approximately 
minimizes O along the ray

{dck +  Ahk : A >  0}.

The algorithms for determining \ k , in general, rely on quadratic or cubic interpolation 
of the univariate function

<fi( A) =  0 ( D , a k +  A hk)

in their search for a suitable Xk. An elegant and practical criterion for a suitable step size 
is to require Xk to satisfy the sufficient decrease condition: 0(D ,  a k +  Akhk) <  0 ( D ,  &k) +  
pXkA 0 ( D ,  a k)T hk and the curvature condition: \AO(D, a k + Xkhk)T \ <  i]\AO(D, a k)T hk |, 
where p and rj are two constants w ith 0 < p  <  rj <  1. The sufficient decrease condi­
tion guarantees, in particular, that 0 ( D , a k+1) < 0 ( D , a k), while the curvature condition 
requires tha t Xk be not too far from a minimizer of <f>.

A trust-region version of Newton’s method takes the view tha t the linear model

0 ( D , a k) + V 0 ( D , a k)Th

of 0 ( D , a k +  h) is valid only when h is not too large, and thus places a restriction on the 
size of the step. In a general trust-region method, the Jacobian m atrix is replaced by an 
approximation, and the step is obtained as an approximate solution of the subproblem

min{|| 0(D ,  a k) +  B kh || : || S kh ||2<  A fc},

where S k is a scaling m atrix and A k is the trust-region radius. The step is accepted if the 
ratio

= \Q{D,®k) \  -  \ Q{ D, a k  + hk) 1 
Pk \ 0 ( D , a k)\ -  \ 0 ( D , a k) + B khk\

of the actual-to-predicted decrease in || 0 (D ,  a) || is greater than some constant gq (typically 
.0001). If the step is not accepted, the trust region radius is decreased and the ratio is 
recomputed. The trust-region radius may also be updated between iterations according to 
how close the ratio pk is to its ideal value of 1.

Given an approximation B k to the Jacobian matrix, a line-search method obtains a 
search direction hk by solving the system of linear equations

B khk =  - 0 ( D , a k). 
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The next iterate is then defined as a k+i =  dfc +  ^khk, where the line search param eter 
Xk > 0 is chosen by the line-search procedure so that

II 0 ( D , a k+i) ||< || 0 ( D ,d fc) || .

When the “approximate” Jacobian is “exact” , as in Newton’s method, hk is a downhill 
direction in i^-norm , so there is certain to be an Xk > 0 such that

II 0 ( D , a k+1) ||2< || 0 ( D , a k) H2 .

This descent property does not necessarily hold for other choices of the approximate 
Jacobian, so line-search methods are used only when B k is either the exact Jacobian or a 
close approximation to it.

In an ideal line-search Newton method, we would compute the search direction by solving

V O ( D , a k)T hk -  - 0 ( D , a k)

and choose the line-search parameter Xk to minimize the scalar function

(f>(X) =  \0(D, a k +  Xhk)\.

However, since it is usually too time-consuming to find the A tha t exactly minimizes </>, 
we usually settle for an approximate solution Xk that satisfies the conditions

</>(Afc) <  HO) +  vXkV m ,  I V^(Afc) |<  r, | V # ) )  I,

where g and rj are two constants with 0 < (x < rj < 1. Typical values are ji = 0.001, and 
rj =  0.9.

The first of these conditions ensures tha t || Q(D, a)  ||2 decreases by a significant amount, 
while the second condition ensures tha t we move far enough along the search direction by 
insisting on a significant reduction in the size of the gradient.

Brief discussion on bound constrained optimization problem and its optimality criteria 
follows in the subsequent section.

3.9 Bound Constrained Optimization

Bound-constrained optimization problems play an im portant role in the development of 
techniques for dynamic data integration. Formulation of this type of optimization problem
is

min{ 0 ( D ,a )  : L  < a  < U} (3.18)

where U and L  represent the upper and lower constraint vectors constraining the param eter 
space. The importance of this formulation stems from the fact tha t parameters describing 
reservoir properties are not completely arbitrary. These param eters are often believed to lie 
in a given range, termed feasibility region. For example, porosity and permeability take only 
nonnegative values; high values of permeability are likely to exist in regions of high porosity; 
and so forth. This range may come from previous inversion or static data integration in 
reservoir characterization.

Algorithms for unconstrained optimization are much simpler and robust than con­
strained optimization. Algorithms for “exact” constrained optimization are complicated
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and often can only be implemented in an inefficient manner. One of the basic algorithms 
for bound constrained optimization is Gradient-Projection Method.

Algorithms for the solution of bound-constrained problems seek a  local minimizer a* of 
O in the feasible set Ob =  [L, U]. The second order necessary condition can then be defined 
by the projection of the gradient on the feasible set 0 # . This projection can be defined 
componentwise by

(min{0, (VO(D,a)) i}  if cq =  k
(VO(D <  a))i if li < an < ut (3.19)

max{0, (VO(D, cc))j} if on =  U{

where i — 1 , . . . ,  npar. The first-order necessary condition is fulfilled in a local minimizer
d* if

P(VO(D,a*))  = 0.

If the reduced Hessian (with respect to the free variables)

I  l | „ . )V ,0 (B ,O, )Ir | l ,.|

is positive semi-definite, then the second order necessary condition holds in a*. Here, the 
index set T  is the set of the free variables

(ft ) =  £ {1 ,. . . , Tlpar} ■ Ujjj .

The complementary set of F{ct*) is the active set

A(a*)  =  { i e { l , . . . ,  ripar} : an = k  or a , =  m }  .

G rad ien t-P ro jec tion  M ethods

The gradient-projection algorithm is the prototypical method tha t allows large changes in 
the working set at each iteration. Given dfc, this algorithm searches along the piecewise 
linear path

-  XVO(D,ak)],  A >  0, 

where Pqb is the projection onto the feasible set given by Equation 3.19. A new point

dfc+i =  p nB [&k ~  \ kV O ( D , a k)]

is obtained when a suitable A*, > 0 is found. The search for Xk has to be done carefully 
since the function

4>{A) =  O (D, Pqb [dfc -  AkVO (D ,  dfc)])

is only piecewise differentiable.
If properly implemented, the gradient-projection method is guaranteed to identify the 

active set at a solution in a finite number of iterations. After it has identified the correct 
active set, the gradient-projection algorithm reduces to the steepest-descent algorithm on 
the subspace of free variables.
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3.10 R egu lariza tion

Section 3.2 discusses the ill-posedness of inverse problems. A more mathematical discourse 
of ill-posedness and ways to resolve the problem is given below. If Equation (3.2) is well- 
posed, then the matrix F  has a well-defined, continuous inverse operator F _1. In partic­
ular, F -1 (F )(a ) =  a  for any a. € Hi,  where H i  € ®npor is the space of parameter; and 
Range(F) =  H 2 G Wl°bs, the space of observable data. If F  is a linear operator, then Equa­
tion (3.2) is well-posed if and only if Null(F) =  {0} and Range(F) =  % 2 - In other words, 
equation (3.2) is ill-posed when F  is singular or almost singular.

The idea of regularization is to approximate an ill-posed problem with one tha t is well- 
posed. It allows computation of one solution of the inverse problem, but, in general, there 
still is not a unique solution. A regularization operator for F  is a one param eter family 
of continuous operators : H 2 —> Hi,  such tha t 7 is bounded and H^(z)  —»• F^z  as 
C -> 0 V z £  X>(F), the domain of F. Here F t is the generalized inverse operator as defined 
in Section 3.6.

Regularization of the inverse problem can be achieved in number of ways. Tikhonov 
regularization is a widely used technique. Tikhonov regularization is given by the following

«C =  K d D ) =  a rg a ^ )  Q  \ \¥ & - D  111 II ® ||? j (3.20)

This method can be thought of as penalized least squares with the second term  in (3.20)
being the penalty term.

Apart from the one discussed above, there are numerous other forms of regularization, 
namely truncated singular value decomposition, Landweber regularization and so forth. 
Modified Cholesky decomposition discussed previously in Section 3.9 also achieves some 
form of regularization via stabilization of the Hessian matrix.

Stabilization of the Hessian matrix in the Gauss-Newton algorithm (Section 3.6) is 
illustrated next in some detail. From previous discourse, the Gauss-Newton algorithm for 
the solution of a linear system is given by

B.GNA a  =  - V O ( D ,  a).  (3.21)

It was indicated earlier in Section 3.6 tha t H gn  is usually ill-conditioned or singular. In 
order to determine the descent direction using (3.21), we need to introduce some changes 
to H gn  such tha t H gn  becomes invertible.

This stabilization is achieved in two stages. A diagonal m atrix P is used to scale the 
diagonal elements of H gn  by the following equation

Pi,i =  (HGNi . ) -h

rendering a modified Gauss-Newton algorithm

(PH cw P)P-1 A & =  —PVO(£>, a)

Now the scaled Hessian matrix H  =  P H gwP  has unity diagonal elements. Moreover, 
absolute values of the off-diagonal elements become less than unity because of the positive 
semidefiniteness of the original Hessian matrix. This renders the modified Hessian to be 
more stable.
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If the modified Hessian H is still ill-conditioned or near singular, a second stage stabi­
lization can be performed by M arquardt method. This stabilization renders

H gjv =  P H gtvP  +  CI (3.22)

where, £ is a small positive number. A check for singularity of the modified Hessian H gn  
is performed by Modified Cholesky decomposition. Ill-conditioning is detected by verifying 
whether the descent direction is sufficient descent direction or not. This means for a positive 
number n (0 <  k <  1),

V O {D ,a )TA a  
|| V O (D ,a )  || || A d || <

The value of (  in (3.22) is reduced in each successive iteration resulting in a downhill step. 
However, (  is increased whenever the direction appears to be an ascent direction.

Subsequent section describes the inversion technique, Sequential Self-Calibration (SSC) 
method, which is in the framework of this research. Streamline-based method is applied 
for fast calculation of such sensitivity coefficients. The method decomposes the multiple­
dimensional full flow problem into multiple ID problems along streamlines. The sensitiv­
ity of fractional flow rate at the production well is directly related to the sensitivity of 
time-of-flight along each individual streamline and the sensitivity of pressure at cells along 
the streamline. The time-of-flight sensitivity of streamline can be obtained analytically 
assuming unchanged streamline geometry due to the perturbation of reservoir property. 
The sensitivity of pressure is obtained as part of a computationally fast single phase flow 
simulation. The complete set of sensitivity coefficients are obtained simultaneously with 
one single phase flow simulation, and the perturbations at all master locations are jointly 
considered. The approach of simultaneous inversion of permeability and porosity builds 
upon the SSC technique for simple permeability inversion.

3.11 Sequential Self-Calibration Technique

SSC technique utilizes a weighted least square formulation. It requires a measure of a 
mismatch between the inverted model responses and observed data. This measure is termed 
as a mismatch or objective function for the optimization subproblem. The objective function 
for the minimization problem in SSC method is given by:

p f s ( t ) + E E ^ / ( ^ )  \ f t  CO -  / f 'W l  (3-23)

where p° (t) and (t) are the observed and simulated pressure at well i at time t. f ° bs (t) 
and f j al{t) are the observed and simulated fractional flow rate at well i at time t. Wp(i,t) 
and W f  (j, t) are weights assigned to pressure and fractional flow rate data at different wells 
and at different time. For the present problem of simultaneous porosity and permeability 
inversion, the objective function remains same.

In case of simple permeability inversion, for the optimal permeability perturbations at 
master locations minimizing the objective function (3.23), sensitivity coefficients of pressure 
and fractional flow rate at the wells with respect to the permeability perturbations are 
required for all master points at all time steps. These sensitivity coefficients are:

/ *\ _  dpi(t)
s k , p , m , t V ' }  —  » Vi, t, kfi
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and

with m  =  1 , . . . ,  nm being the index of master points.
In matrix notation, discretization of the flow equation with an implicit scheme leads to 

the following equation:
[ A u p y + ^ m p y  + i f y  (3 .2 4 )

where [A] is the transmissibility matrix which accounts for spatial and temporal discretiza­
tion, as well as boundary conditions, \B] =  [haft/  A  tt+i, and {/}* is the right hand side 
m atrix that accounts for the load vector (production and injection) and flow boundary con­
ditions. The solution of pressure at time t +  1 is obtained by inverting m atrix [A], tha t 
is,

{ p r + M ^ r ' i s i w + n r w

The sensitivity coefficients at time step t + 1 can be calculated right after the pressure at 
time t +  1 is obtained. The perturbation equation of param eter km can be written as:

r<nd { P }t+1 d[A] r _ t+1 d[B] r r i l , rr>1<9{P }*  d { f Y
=  - ^ { P }  + i B l - k r 1-  +  m  = 1, . . .  , n mdkm dkm dkfji 3 krn 3krfh

where n m is the to tal number of master points, thus,

[A]a i P p _  = m { P Y  + [B]? ^ l  + m l ^  f ^ { P } ,+1. m  =  (3.25)

Equation 3.25 has the same form as Equation 3.24 and the m atrix [A] is inverted when 
solving for the pressure {P } t+1. The sensitivity coefficients can be obtained at the same 
time step t  +  1 by simple m atrix operations, tha t is,

3{p }‘+1 *  u r i r a ®  . u i - i f f l m *  +  IA1- . W  _  
a k m  ~ l A i  m d h m + W  0 fc„ ! ) + l 1  d k m  ^  d k j n  '

m  = 1 , . . .  , n m

The elements of matrices, gj-j-, and can be directly computed from the expres­

sions of elements in matrices [A], [P] and { /}  with dQ$m =  0.
The objective function is updated by linearization (i.e., the perturbations of permeability 

at master locations, { A M }  =  {Afci, A&2 , . . . ,  A k nm, }T). Linearization of the objective
function is attained by approximating the pressure data by retaining its first order Taylor
expansion, i.e.,

{P “ ‘}‘ »  { P ^ } »  +  (3.26)

We define =  d { P } t /d { M }  = Sk,p,2 ,ti • • • > where =  {sk,p,m,t
(j), j  = 1 , . . . ,  n w}T is the sensitivity matrix at time t  w ith respect to the permeability 
perturbation at location m  computed. { p cal}® and {P cal}l  are pressure values at time t 
before and after introducing a perturbation m atrix { A M } .  Using this linear approximation 
and some manipulation, the objective function (3.23) can be rewritten as following:

fit nt
O ^ P ™ 1}1) =  0 ( { P cal}°) +  Y , { D } J { A M }  +  £ { A M } r [C]t{AM} (3.27)

t~x t-1
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where the matrices {D}t and {C}t  are expressed as follows:

{D}t =  2 ({.Pcal}t -  { P obs}tf  [W]t{S}t

{C}t = ({S}t )T [W]t{ S } t

The constraints used for minimizing the objective function (3.27) are simply the possible 
minimum and maximum values of perturbations, i.e.,

{ A & m i n }  <  { A M }  <  { A & m a x }

where {Afcmin} — min{ifc ,̂ kkrig &k&k,krig} 8>nd {AA;max)- =  max-f/s , kkrig +  (%k&k,krig}- 
{A;0} is the vector of permeability values at master points in the initial field, {kkrig} and 
{crk,krig} are kriging estimations and the corresponding kriging standard deviations at the 
master points based on available measured permeability data. If there is no prior k  mea­
surements, {kkrig} and {&k,krig} can be selected as the mean and standard deviation of the 
desired permeability histogram, ak is a constant value th a t specifies the interval size of the 
constraints.

This single-phase formulation is extended to  multiphase system by incorporating frac­
tional flow rate mismatch term in the objective function (Equation 3.23). The underlying 
bases of this inversion method are (1) the analytical ID solutions of fractional flow along 
each streamline [10, 11, 21, 190, 191], (2) the ability to compute sensitivity coefficients 
of pressure over the entire field from single phase flow solutions, and (3) the assumption 
tha t streamline geometry remains unchanged with perturbed permeabilities. The sensitiv­
ity coefficients of fractional flow are obtained extremely fast by simple book-keeping of the 
streamlines in space. The permeability perturbations are jointly considered rather than  
one a t a time as in the perturbation method. This method is implemented within the SSC 
algorithm for generating geostatistical permeability realizations that simultaneously honor 
transient pressure and fractional flow rate data. Streamlines are updated in each outer 
iteration of the SSC inversion (see Figure 3.1). The assumption of streamline geometry 
remaining unchanged during the perturbation is justified by comparing the SSC inverse 
results based on both  the perturbation method and the analytical method.

P ertu rb ation  M eth od

A series of measurements of reservoir response d o6s (u, t) (pressure or fractional flow rate at 
wells) is observed at location u  £ A  and time t. A  is the entire space. The reservoir data 
are nonlinear functions of the parameter vector a  (porosity or permeability): d  =  g(a). In 
this case, the function g represents the multiphase flow equations. The inverse problem 
consists of finding the optimal parameter a  so tha t the solution d cal (u, t) =  g(a) matches 
the observed data  d ohs(n,t).  Thus, the mismatch (dobs—d cal)2 is minimized. For a gradient- 
based method (e.g., steepest descent, Gauss-Newton or conjugate gradient method), to find 
the optimal parameter set a, the sensitivity coefficients of d  with respect to the parameters 
in a  are required.

The simplest way of computing such sensitivity coefficients is the so- called substitution 
or perturbation method. The first order approximation of the sensitivity coefficient is 
computed in this method using a finite difference procedure. The SSC method is adapted 
to  the perturbation method to find the optimal permeability fields tha t match the fractional
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Figure 3.1: Flowchart of the Sequential Self-Calibration method.

flow data fj{t).  An initial permeability field, ao =  ko =  {ko(ui), i  =  1, . . .  , N } ,  is selected. 
N  is the number of cells in the model. The flow equations are solved for fractional flow 
rate, f j  (0), at all wells and at all time steps using the initial permeability field.

For all master point locations m  =  1, . . .  , n m (<t; N  usually), a small perturbation 
A km is introduced individually to the initial permeability at master locations u m . The 
field A  km =  {Afe(u*),« — 1, . . .  , N }  due to the perturbation A km — Afc(um), at locations 
u m is calculated by kriging. This kriged perturbation field is then added to the initial 
permeability field to obtain the perturbed permeability field k ' =  ko +  A km. The flow 
equations are solved using this perturbed field k ' to obtain the new fractional flow rate 
solution, / j (f) induced by the perturbation at master point u m . The sensitivity coefficient 
of fractional flow rate with respect to the permeability change at master location m  can 
then be computed as:

m - m
A k r

Thus, for each outer-iteration of the SSC method (see Figure 3.1), a total of n m + 1 flow 
simulation runs are needed to obtain all sensitivity coefficients required, which is very com­
putationally intensive. In addition, the values of -Sfc,/,m,tO); computed with this substitution 
method, are sensitive to the perturbation magnitude, AfcTO, particularly when the function 
/  is nonlinear. More importantly, the substitution method computes sensitivity coefficients 
of each parameter independently. Thus, it does not account for joint perturbations at all 
n m master locations. The spatial relationship of different master locations is not accounted 
for. This is crucial for optimization, which will be elaborated later.

S tream lin e-B ased  A n a ly tica l M eth od

The sensitivity coefficients are calculated based on the streamline algorithm and the analyt­
ical relationship between fractional flow rate and the time-of-flight of streamline [10, 192],
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Figure 3.2: (a) Analytical ID solution of tracer flow and its approximation using a Gaussian cumu­
lative function (dashed line), and (b) analytical ID solution of immiscible two-phase displacement.

The key assumption is tha t the streamline geometry is insensitive to the relatively small 
perturbations of the permeability field. This assumption is appropriate if the perturbations 
are kept small and all streamlines are updated after each outer loop of the SSC inversion. 
The complete set of sensitivity coefficients at all master points are obtained simultaneously. 
The spatial correlation of perturbation at multiple master locations is accounted for by us­
ing kriging weights computed for all master locations to propagate the perturbations from 
the master locations to the entire field.

In the streamline-based method, the fractional flow for a given producing well j  at time 
t is expressed as [10]:

f i ( t )
y '  j a 
2^ 8= 1  y.

where q f  is the flow rate associated with streamline s, and is the fractional flow
of streamline s a t time t. n f  is the total number of streamlines arriving to well W j.  The 
derivative of f j ( t )  w ith respect to the permeability perturbation at master point m  is then:

i a \  _ d/iW _ 1 v -  *i ® f s  ( t )
sk,f R}c -  nsl 2Luq'

E sLi ?2
d k m  dkr.

Depending on the flow regime, the fractional flow rate f f ( t )  of streamline s can be 
expressed as a function of time-of-flight r s, tha t is, f f ( t )  - i n  Examples of the function 
f f ( t )  for tracer flow and immiscible two-phase displacement are shown in Figure 3.2. These 
functions can either be obtained analytically or numerically [10]. Thus, for ^ 1, it is only 
required to compute

For simplification, a non-diffusive tracer flow (unit mobility ratio and matched fluid
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density) is considered. In such case, the fractional flow rate is (see Figure 3.2a):

1, i f  ts < t  
0, i f  rs > t (3.28)

Since Equation (3.28) is not differentiable at rs/ t  =  1, a Gaussian cumulative function 
F(rs/ t)  with small variance is used to approximate the ID tracer solution (Figure 3.2a):

small so tha t the approximation is close. The influence of tha t variance on the sensitivity 
coefficients is investigated later.

In the case of two-phase immiscible displacement as shown in Figure 3.2b, the derivatives 
of fractional flow with respect to the time-of-flight can be directly computed from Buckley- 
Leverett solution.

The time-of-flight of streamline s is a function of total flow velocity itself is a function 
of permeability and total pressure along the streamline:

injector to producer is the sum of the time-of- flight in each cell that streamline s passes 
through, tha t is,

C = 1

n s,c being the number of cells crossed by streamline s from injector to producer, and A rgjC 
is the associated time-of-flight for streamline s to pass through cell c.

In Figure 3.3, for example, the total number of cells crossed by the streamline from 
injector to producer is 13 (= n SjC). Based on the semi-analytical solution [51, 161], tha t is, 
assuming linear variation of velocity in all directions within a numerical cell, the cell (or 
differential) time-of-flights are:

• if the streamline exits the cell c in the X-direction,

/ * ( * ) «  I - F ^ l)

hence,

where

is a Gaussian distribution function with mean 1 and variance a2. The variance a2 should be

In a discretized numerical model (see Figure 3.3), the time- of-flight of streamline s from

(3.29)

(3.30)

• if the streamline exits the cell c in the T-direction,

(3.31)
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Figure 3.3: Schematic illustration of tracking a streamline through a discretized numerical model.

where
j    v x , A x  v x,0
x ~  A s
T _  v y , A y  ~  Vyfi

J’ -  A „

„ . „  PO-Pl Toi — ■

m P 2-P 0  
v x , A x  — 02 A 1 1Axcpp T02 =

T, . rp P0-PZ  
»»•»- T03 =

rr, P i -  P0 
Vy, A y -  T04A y # > Tq4 =

2kok\ 
k0 +  ki 

2k0k2 
k0 +  k2 
2 k0k3 

k0 +  k% 
2k0h

(3.32)

ko +  &4
where A x  and A y  are the cell size in X  and Y  directions, <fi the porosity, Toi to T04 the 
transmissibilities for the four interfaces of the cell intersected by the streamline (cell 0  in 
Figure 3.3), po to and koto k$ the pressure and permeability values at the current (0) 
and the surrounding (1 to 4) cells, respectively (see Figure 3.3). (xj, yi) and (x e, ye) are the 
inlet and exit coordinates of the streamline in current cell 0 , and (xo, yo) is the coordinate 
of the lower-left corner of current cell 0 .

From Equations (3.29) to (3.32), the derivatives of time-of- flights with respect to per­
meabilities are derived to be:

n n s,c
OTs
dkj ~  ^

J c—l

y~>- d A t SjC dTog y ,  d A  rStC dpi
^  dTog dkj ^  dpi dkj
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and -9 g ^ ’c can be computed from Equations (3.30) and (3.31). are the sensitivity 
coefficients of pressure w ith respect to permeability change. Finally [81]

9Tpg _  Tq9 ( Qjfc,j,0 a k,j,g \
dkj  2 1 kl  k j  J

c*k,j,o and otk,j,g are the permeability kriging weights attributed to m aster point j ,  cells Oand 
g (g — 1, . . .  ,4). Since the kriging weights are computed accounting for all master points 
[114], the resulting sensitivity coefficients account for the spatial distribution of all master 
points. The permeability perturbations at all master locations are now considered jointly 
rather that one at a time. The complete set of sensitivity coefficients at all master points 
are obtained simultaneously. In addition, there is no need to choose a specific value of A kj 
before computing sensitivity coefficients.

D erivation  o f T im e-of-F ligh t and D erivatives

The derivations of the time-of-flights and their derivatives or the sensitivity coefficients are 
laid out in this section. Essentially, this calculation reduces to a simple book-keeping of the 
streamlines in the simulation model. This is both mathematically simple and com putation­
ally efficient. Extension of this method to other types of flow, such as immiscible two-phase 
flow and 3D flow, should be straightforward.

From Equations ( 3 . 3 0 )  to ( 3 . 3 2 ) ,  the cell time-of-flights, derived, are:

A ~ A x 2 4> f  AxToiipo -  P i )  +  Ax(xe -  x0) \
Ax 1 AxT01 {p0 -  Pl) +  Ax(Xi -  xo) J ( }

-  A  y20 f  AyToiipo  -  p 3) +  A y(ye -  yQ) \  0/A

c 'y  =  1111  a 9 t 01 (p0 -  n )  +  M v i  ~  V o )  J  (3'34)

where A x =  T0i(p i -  po) + T 02 (^2  - Po ) ,  and A y = T03(p3 - Po )  +  T04(p4 - p 0).
The derivatives, required in Equation ( 3 . 1 1 )  in the x- direction, are stated below (refer 

to Figure 3 . 3 ) .  Taking partial derivatives of Equation 3 . 3 3  with respect to Toi, T02, T03 ,
T q 4 , po, P i ,  P 2 , P3 and P 4 , respectively, Equations ( 3 . 3 5 )  to ( 3 . 4 1 )  are obtained.

d  A  ts>C:X _  — A  x 2(f>{po — pi) f. D x [Ax -  {xe - x o ) \ C x - [ A x  -  { x i - x o ) ] D x
dToi A l  { l U Cx + A x  CXD X

(3.35)

9 A  rs cx - A x 2cj){po - p 2) f. D x ~ ( x e -  x 0)Cx + (xi -  x 0)Dx .
=  A l  r c i  + A*------------- C M ---------------> (3-36)

9  A  t S)C,x  d A  r iiSjX _
~ d n T  -  ~ m T  ■ 0  (3-37)

A  [ ^ ^ 0 1  ~  (y oi +  To2)(xe -  gp)] Cx -  [AxTqi — (Tqi +  To2)(xi -  rp)] D x 1 ^  ^
x CXD X J
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d  A tSjCjX ^  A  x 2<p ( / Dx \
dpi ~  A l \  01 n U J  +

[ -  A  xToi +  T0i (x e -  x0)] Cx -  [AxTqi +  T0i(xi -  x0)] Dx } ^  ^
CXDX

d A  rs cx — A x 24> f „  . ( D x \  To2(xe -  x 0)Cx -  T02 (xi -  x 0)Dx .
~ - ^  = — i r ~ \ T a l n { c ; ) + A *----------------- c , a ; -------------------- j  <3-40)

(3.41)
dp3 dpA

where Cx =  AxT0i(po -  Pi) +  A x (xi -  x 0) and D x =  AxT0x(p0 -  pi)  +  A x (xe -  x 0).
Similarly, in the y-direction, taking partial derivatives of Equation 3.34 with respect to 

T03, T04 , Tqi, T02, po, ps, Pi, pi a ndp 2 , respectively, Equations (3.42) to (3.48) are obtained.

d  A  Ts^ y -  A  y24>(p0 -  p-j) f D y [Ay  -  (ye -  y0)] Cy -  [Ay  -  {y{ -  j/0)] D y '
dTm M  1 n a ,  y a , D v03 '-'y y )

(3.42)

d  A Ts^ y  _  -  A  y2<f>(po -  Pi)
dX04 A j

d  A  r S n y  d  A  t ,

I  In +  A x  iVe  (3.43)
I  C y  C y D y  J

-- 0 (3.44)
dToi dT02

d  A  Ts,c,y -  A  y2cj) /  > r  , , ( D| - ( T 03 +  To4 ) l n ^ )  +
dpo A y \  \ ° y

[AyT03 -  (T33 +  Tp4)(ye -  yo)\Cy — [AyTps -  (T03 +  Tpi)(yi — yp)] Dy
yyDy

A  ~  -*• U4y Vi/e ~  you ~  L“ y j U3 ~  1-̂ 03 -r -CQ4) \ y i  — y u j i  ^ y  1 ^  ^
y Ci, Du J

A A TStc,y _  — A y2<j) /  / Dy^
dP3 A l  l T°3 ln U J  +

^  [ -  A  yTQ3 +  Tq3 (ye -  y0)] Cy -  [A t/r03 +  TpsjPi -  Po)] Dy j  (3 46)
V CyDy J

5 A  t s c „ -  A  y2(f)
SPi ~  A* (3.47)

dAJ s^ y  = ? A T i £ >v =  o (3.48)
dpi dp2

where Cy =  AyT03(po - P 3) +  A y(yi -  y0) and D y =  AyT03Oo -£>3) +  A/(ye -  Po)-
This elegant account of the streamline derivatives is an essential feature of the streamline- 

based analytical technique. For increasingly large grid sizes, this method with simple book­
keeping of streamlines proves to be far more efficient than  the perturbation methods. The 
derivatives here have been derived for 2D grids, which can easily be extended to 3D grids.
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A simplification to the computation of the time-of-flights derivatives can be imple­
mented. One can assume th a t the contribution of the second term of the derivation shown 
in Equation 3.32 is negligible. So the derivatives of time-of-flights w ith respect to perm e­
abilities will now be:

with the notations having earlier implications. Further simplification, which precludes a few
computational steps, can be implemented if one considers f f j  instead of
where k c is the permeability at cell c. This reduces the necessary derivative equation to:

where <f>, p and k c are porosity, viscosity and permeability at cell c, and \ J\ is the absolute 
value of the pressure gradient. Assuming independence of the time-of- flights to the pressure 
gradient, the partial derivatives can be approximated to be:

d  A TStC _  A r s ,c 

d k c k c

Applying the above to Equation 3.49, the derivative equation will be reduced to:

where ctk.j,c is the permeability kriging weight of master point j  to cell c, which accounts 
for the correlation of permeability at the two locations. Studies indicate faster convergence 
using this simplified approach with little loss of accuracy.

(3.49)

The partial derivatives in Equation 3.49 can be derived from the basic equations. Combining 
Equations 3.11, 3.29 and Darcy’s law one can obtain:
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Chapter 4

Sim ultaneous Inversion o f (f ) / ln(k)  

U sing M ultiple W ell Production  
D ata

In this chapter, we present an inversion algorithm for simultaneous generation of porosity 
and permeability models using available production data and static information. Appli­
cations with synthetic and realistic examples are discussed. A number of implementation 
issues and sensitivity studies are also discussed.

4.1 Simultaneous Inversion Problem

It is a common practice to build geostatistical reservoir porosity models by kriging-based 
simulation techniques [67] and then generate permeability models by collocated cokriging- 
based simulation [210] using porosity values. The inversion algorithm described here is 
based on the same underlying geostatistical equations.

The approach uses simple kriging of porosity (4>) at all locations, then collocated cok- 
riging to estimate y =  ln(fc). The simple kriging equation for (j) at location i is:

T l m p

& = Z) (41)
3=1

where (f>j, j  = 1 , . . . ,  n mp are the porosity values at the master points, n mp is the number of 
master points, and r f j  are the kriging weights at a location i for porosity value at master 
point 4>j. While the collocated cokriging equations for yi at location i is given by

T l m p

V i ^ Y l  TiJyj  +  && (4’2)
j = 1

where y ^  j  = 1 , . . . ,  nmp are the log permeability values at the m aster points, r | j  are the 
kriging weights at location i for yj value at any master point, £* is the collocated kriging
weight at location i for the collocated secondary variable fa.

A Markov assumption is then used tha t entails a linear regression model between y  and
<t>:

y = p4> + r (4.3)
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where p is the global correlation coefficient between y and (p, and r a random component. 
Relationship (4.3) is used as a closure. Combining above relationships, we have:

p i = r ?  =  =  T ? j + i i T t ,  1 (4.4)
d y j  h3 d y j  %'3 d<pj d y j  %'3 hJ p

This equation describes the change of y  a t any location i due to the change of y  a t a given 
master point j .  The second term is set to zero if p =  0; then the collocated kriging equation 
becomes a simple kriging equation.

Based on this, we can build the correlation relationship into the flow equations to  get 
the sensitivity of pressure on y  and <f>. Details follow.

Discretization of flow equation with an implicit scheme leads to the following equation:

A p n + 1  =  B p ”  +  f n (4.5)

A, B, and f  have closed form functional relation. It is possible to obtain the derivatives of 
A, B, and f  with respect to y. Note tha t A and B are explicit functions of k =  exp(y), 
and only the diagonal terms of these matrices have terms depending on (p; however, since 
y  is correlated to cp (as shown in Equation 4.2), non-diagonal terms of both A and B are 
also dependent on (p. Thus, we need to consider <p as a variable as well.

Elements of A are the sum of transmissibilities. Using geometric averages of permeabil­
ities in the transmissibility calculation, we have the following for any two adjacent grid cells 
1 and 2

2 i ,2 =  \ A i &2 =  exp |  |  (4.6)

where y\ — log(fci) and y<i — log(fc2). Consequently, the derivatives are computed as

^  = i T i j p .  + p \  (47)
dyj 2  ’ \ d y j  dyj

The sensitivity coefficients in the above equation can be calculated using (4.4). 
For terms of A and B having <p variable, we need

d(pj _  d^i_d^j_ _  Ty 
dyj dcpj dyj p

(4.8)

Again, the right hand side of the above equation is set to 0 when p =  0. Using Equations 
4.7 and 4.8, we can compute derivatives of A, B, and f  with respect to y, and obtain the 
sensitivity of pressure on y, that is, dpi/dyj.

The sensitivity of pressure on porosity can be similarly calculated. In order to compute 
derivatives of A, B, and f  with respect to 4> at any master point j ,  we need the sensitivity 
coefficients of yi with respect to (pj. Applying Equation 4.4 and chain rule, we have

(4-9)

Introducing the above relationships into the derivative of Equation 4.5, we get

(4.10)
d(j)j dyj d<j>j dyj 
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The above relationship indicates th a t we do not need to solve separately for sensitivity 
coefficient of porosity. The linear regression relationship can be used to  get the sensitivity 
coefficients of the response variables with respect to <f> from those with respect to y. Again, 
when p =  0, Equation 4.10 can not be used, and we need to use 4.9 to compute the 
derivatives in Equation 4.5 to get the sensitivity coefficients with respect to porosity. Such 
calculation would be simple since there is no permeability term. It is now possible to 
perform the optimization to find the optimal A yj and A <pj, j  —  1, . . .  , n mp .

The optimal perturbations must then be propagated to the entire domain using collo­
cated cokriging (Equations 4.1 and 4.2). The algorithm for the simultaneous porosity and 
permeability inversion:

1. Select master point locations j  = 1 , . . .  , n mp.

2. Perform simple kriging of (j) to get kriging weights r f j  at location i for <̂>j, j  =
1 , . . . ,  nmp .

3. Perform collocated cokriging with Markov-type assumption and obtain cokriging weights
rh  and &•

4. Solve pressure equations.

5. Compute derivatives of matrices in Equation 4.5 with respect to yj for all master 
points.

6 . Compute sensitivity coefficients with respect to y.

7. Compute sensitivity coefficients w ith respect to <j> using Equation 4.9 or 4.10.

8 . Perform optimization to compute optimal change of A yj and A <f>j.

9. Propagate changes to entire domain.

10. Update <f> and y  fields.

11. Repeat Step (1) to (10) until convergence is achieved.

The algorithm for computing the sensitivity coefficients is based on the kriging equa­
tions for porosity and collocated cokriging equation for permeability modeling. We use 
the relationship between porosity and permeability in the kriging equations and perme­
ability sensitivity of the pressure equation. This drastically reduces the computation time 
compared to separate porosity and permeability sensitivity calculation.

A facility for histogram transformation of the inverted 4> and ln(fc) fields to some global 
distributions is imcorporated in the integration algorithm. This transformation may be 
perfomed after Step (10) in the above mentioned workflow. In order to honor hard data  at 
well locations, the constraints are set up using very low variance values. Thus, there is a 
flexibility of variation within narrow range to account for the error components in the hard 
data. The code allows one to input these variances at the hard data location explicitly. 
However, at other master points the constraints are given by the kriging variances.

Allocation of master points is performed in a random manner. However, to m aintain an 
areally unclustered distribution of the locations of the master points, they are allocated in 
a 2D random grid selection procedure. The locations of the master points can be changed
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Figure 4.1: Reference <j> and ln(fc) fields: Deterministic Example.

after a fixed number of outer iterations. This number is provided as a param eter at the 
start of the execution. It should be noted tha t at all well blocks with production data, 
master points are assigned automatically.

Subsequent sections discuss the application of the algorithm with some synthetic reser­
voir models. Some implementation issues and sensitivity analyses are also documented.

4.2 Example 1: A Determ inistic Example

A synthetic example is used here to evaluate the ability of the algorithm to generate models 
of porosity and permeability from multiple well production data. The reference 4> and ln(fc) 
models are constructed, and then, the dynamic pressure responses at a number of wells, 
caused by changing flow rates, are obtained by flow simulation. The dynamic flow rate  and 
pressure data and information on the variograms of <j> and ln(fc) are used to invert for both 
4> and In(k). Then, the inverted fields are compared with the reference field to evaluate the 
capability of the algorithm.

The 2D 4,000-ft square domain will be discretized into 25 x 25 grid cells of 160 x 160 
ft. There is a high porosity (0.25) and high permeability (500 mD) band connecting the 
lower-left corner and upper-right corner. The porosity and the permeability in other areas 
are 0.175 and 10 mD, respectively. Figure 4.1 shows the reference <f> and \n(k) fields. There 
are four wells: W1 at the center of the cell (5,21), W2 at (21,21),W3 at (5,5), and W4 
at (21,5). Wells are shown in Figure 4.1. The four boundaries are no-flow boundaries, 
reservoir thickness is 1 0 0  ft, viscosity is 0 .2  cp, formation compressibility is 1 0 ~ 6 psi-1 , and 
well radius is 0.3 ft. For global distribution of <fi and In(&), we used the reference bimodal 
distributions.

Figure 4.2 shows the imposed producing rates and the corresponding pressure responses 
at the different wells solved numerically. Different shut-in times for different wells create 
well interference so tha t more information on spatial variations of 4> and In(k) is contained 
in the production data.

There are many implementation options. Results obtained using various options are 
informative. Sensitivity of the inverted models to the selection of various anisotropy, initial 
fields, optimization parameters will be demonstrated later.
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Figure 4.2: Production data (pressure and flow rates) obtained from the reference field: Determin­
istic Example.
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V. No. T y p e Sill Range
X - Y (ft)

Angle
(°)

0 Nugget 0.05
1 Sph 0.95 8000 - 1 1 0 0 45

Table 4.1: Prior variogram information used for 4>: Example 1.

V. No. T y p e Sill Range
X - Y (ft)

Angle
(°)

0 Nugget 0.05
1 Sph 0.95 8100 - 1 0 0 0 45

Table 4.2: Prior variogram information used for ln(£:) in Example 1.

For all the runs below, we used constant initial 4> and \n(k) fields of <f> = 0.4 and 
ln(A;) =  3.15. Anisotropic variograms with very long correlation length (about 8 ,0 0 0  ft) in 
the 45° direction for both 4> and ln(fc) were employed. The prior variogram models used in 
the following runs (unless stated otherwise) for cj> and ln(fc) are given in Tables 4.1 and 4.2:

R u n  1: Inversion  w ith  p rod u ction  d ata , g lobal h istogram , prior in form a­
tio n  on variography, and loca l hard d ata

Local hard data  used are shown in Figure 4.3. The inverted models are obtained after 17 
outer iterations (75 seconds in 733 MHz dual processor workstation). The pressure responses 
in the updated porosity and permeability fields converge to the reference pressure data. 
These inverted models are shown in Figure 4.4. The connected high porosity/ permeability 
band connecting W2 and W3 is clearly evident. Figure 4.5 shows the pressure values at 
the four wells computed from the true (from reference), initial and final updated porosity 
and permeability fields. Pressure responses in the initial field deviate significantly from the 
true values because of the poor model; however, the updated fields accurately reproduce 
the pressure data from all wells. The objective function values of the inversion process is 
shown in Figure 4.6. Final average pressure mismatch (in L 2 norm sense) for 200 data  
was 4.1 psi, which is remarkably small as evident from the pressure match in Figure 4.5. 
Updated porosity and permeability fields after each outer iteration of the inversion method 
are shown in Figures 4.7 and 4.8.

It is interesting to see 4> and ln(A;) models and their pressure responses when only static 
information is used. Figure 4.9 shows conditionally simulated porosity and permeability 
fields using local hard data, prior global distribution and information on variography. Thus, 
no production data information is captured in these models. The models themselves appear 
to have the major features of the reference models. Nevertheless, the pressure responses 
(shown in Figure 4.10) computed from these models deviate from those in the reference 
field significantly.

If the global distribution is not used in static inversion (conditional simulation), the 
models and the pressure responses deviate drastically from those of the reference model. 
Figure 4.11 shows these conditionally simulated porosity and permeability fields. Figure 
4.12 shows the computed pressure responses of these models. Comparison with the models 
inverted using production data (Figure 4.5) gives us an idea of what information can be
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Figure 4.3: Static well data for 0 and ln(fc): Deterministic Example Run 1.

Updated Porosity Field Updated Ln(k) Field

Figure 4.4: Updated 4> and In (A;) fields: Deterministic Example Run 1.
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Figure 4.5: Pressure responses computed from initial (dashed lines) and updated (bullets) <f> and 
ln(fc) fields with the true data (solid lines): Deterministic Example Run 1.

Objective function values

0.001
12

O u t e r  I t e r a t i o n ,  #

Figure 4.6: Objective function values of the inversion process: Deterministic Example Run 1.
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Figure 4.7: Updated <f) fields at each iteration of the inversion process: Deterministic Example Run 
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Figure 4.8: Updated ln(fc) fields at each iteration of the inversion process: Deterministic Example 
Run 1.
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Figure 4.9: Conditional simulation of 4> and ln(fc) fields honoring only static information (local 
data, global distribution and prior variography).

3 ,oo. Pressure at Well 23100 Pressure at Well 1
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3100. Pressure at Well 43ioo. Pressure at Well 3
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1
(A(0

2700. J

2600.J

1
100.
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Figure 4.10: Pressure responses computed from conditionally simulated (bullets) <f> and ln(fc) fields 
with the true data (solid lines).
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Static Inversion Lnfkl FieldStatic Inversion Porosity Field

Figure 4.11: Conditional simulation of (f> and ln(fc) fields honoring only static local data, and prior 
variography information.

resolved using production data. Of course, more data leads to the better resolved model. 
Conflicting data will lead to a poor model and lack of convergence.

R u n  2: Inversion  w ith  p rod u ction  data, g lobal h istogram , prior in form a­
tio n  on variography, bu t no loca l hard data

The inverted models are obtained after 5 outer iterations (26 seconds in 733 MHz dual 
processor workstation). The pressure responses in the updated porosity and permeability 
fields converge to the reference pressure data. These inverted models are shown in Figure 
4.13. The connected high porosity/permeability band connecting W2 and W3 is clearly 
evident. Figure 4.14 shows the pressure values at the four wells computed from the true 
(from reference), initial and final updated porosity and permeability fields. Note tha t the 
pressure match in this case is even better than the previous case. The objective function 
values of the inversion process are shown in Figure 4.15. Final average pressure mismatch 
(in I?  norm sense) for 200 data was 1.7 psi (compared to 4.1 psi in Run 1). Near-wellbore 
featrues are captured in the inverted models. However, close inspection of the final models 
tells us that these models do not accurately capture the high porosity/perm eability streak 
in the boundary regions away from the wells. Perhaps it can be explained by the notion that 
static hard data play a greater role through kriged estimation in the regions tha t cannot 
be informed by production data. Updated porosity and permeability fields after each outer 
iteration of the inversion method are shown in Figures 4.16 and 4.17.

R u n  3: Inversion  w ith  p rod u ction  data, prior in form ation  on variography  
and local hard data , b u t no global d istr ib u tion

Local hard data used are shown in Figure 4.3 (same as in Run 1). The inverted models 
are obtained after 7 outer iterations (44 seconds in 733 MHz dual processor workstation). 
The pressure responses in the updated porosity and permeability fields converge to the 
reference pressure data. These inverted models are shown in Figure 4.18. The connected 
high porosity/ permeability band connecting W2 and W3 is clearly evident. Figure 4.19 
shows the pressure values at the four wells computed from the true (from reference), initial 
and final updated porosity and permeability fields. The objective function values of the
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Figure 4.12: Pressure responses computed from conditionally simulated (bullets) 4> and ln(fc) fields 
with the true data (solid lines).

Updated Ln(k) FieldUpdated Porosity Field

Figure 4.13: Updated <j> and ln(fc) fields: Deterministic Example Run 2.
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Figure 4.14: Pressure responses computed from initial (dashed lines) and updated (bullets) <f> and 
ln(fc) fields with the true data (solid lines): Deterministic Example Run 2.
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Figure 4.15: Objective function values of the inversion process: Deterministic Example Run 2.
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Figure 4.16: Updated </> fields at each iteration of the inversion process: Deterministic Example 
Run 2.
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Figure 4.17: Updated ln(fc) fields at each iteration of the inversion process: Deterministic Example 
Run 2.
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Figure 4.18: Updated (j) and ln(fc) fields: Deterministic Example Run 3.

inversion process is shown in Figure 4.20. Final average pressure mismatch (in L 2 norm 
sense) for 200 data  was 9.1 psi. Compared to the first two runs, this is a relatively high 
number. Updated porosity and permeability fields after each outer iteration of the inversion 
method are shown in Figures 4.21 and 4.22.

R u n  4: Inversion  w ith  p rod u ction  d ata  and prior in form ation  on variogra­
phy, but no lo ca l hard d ata  or global d istr ib u tion

The inverted models are obtained after 10 outer iterations (47 seconds in 733 MHz dual 
processor workstation). The pressure responses in the updated porosity and permeability 
fields converge to the reference pressure data. These inverted models are shown in Figure 
4.23. The connected high porosity/ permeability band connecting W2 and W3 is clearly 
evident. Figure 4.24 shows the pressure values at the four wells computed from the true 
(from reference), initial and final updated porosity and permeability fields. The objective 
function values of the inversion process is shown in Figure 4.25. Final average pressure 
mismatch (in L 2 norm sense) for 200 data was 33.3 psi, which is a relatively high value. 
This poor match is evident in the pressure match in Figure 4.24. Updated porosity and 
permeability fields after each outer iteration of the inversion method axe shown in Figures 
4.26 and 4.27.

4.3 Some Sensitivity Studies

We performed a number of sensitivity studies to establish the robustness of the approach 
to simultaneous inversion of <j) and In(k).

S en sitiv ity  to  in itia l <j> and In (k) fields

The dynamic data integration algorithm relies on a minimization subproblem. In a gradi­
ent based minimization technique,the initial model is an im portant factor for convergence. 
Thus, in our data  integration problem, <fi and ln(fc) could be vital in the convergence of the 
algorithm. In order to illustrate the sensitivity of the inversion response to initial fields, 
we performed a number of exercises starting from initial fields of different constant 4> and
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Figure 4.19: Pressure responses computed from initial (dashed lines) and updated (bullets) (j) and 
In(k) fields with the true data (solid lines): Deterministic Example Run 3.
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Figure 4.20: Objective function values of the inversion process: Deterministic Example Run 3.
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Figure 4.21: Updated cj> fields at each iteration of the inversion process: Deterministic Example 
Run 3.
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Figure 4.22: Updated In(k) fields at each iteration of the inversion process: Deterministic Example 
Run 3.
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Figure 4.23: Updated (f> and ln(fc) fields: Deterministic Example Run 4.
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Figure 4.24: Pressure responses computed from initial (dashed lines) and updated (bullets) <f> and 
ln(fc) fields with the true data (solid lines): Deterministic Example Run 4.
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Figure 4.25: Objective function values of the inversion process: Deterministic Example Run 4.
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Figure 4.26: Updated 4> fields at each iteration of the inversion process: Deterministic Example 
Run 4.
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Figure 4.27: Updated In(k) fields at each iteration of the inversion process: Deterministic Example 
Run 4.

S. No. Initial <f>
p .u .

Initial In(k) Avg M ismatch
psi (L 2 norm)

Outer Iter C PU  Time
sec

1 0.2 1.0 5.82 9 37
2 0.2 3.15 4.38 16 76
3 0.2 6.0 4.18 18 75

Run 1 0.4 3.15 4.1 17 75

Table 4.3: Summarized responses of sensitivity exercise to initial <j> and ln(fc) fields.

ln(&) values. The responses are tabulated in Table 4.3. The performance of Deterministic 
Example Run 1 is shown for comparison.

The inverted models from the three sensitivity runs are shown in Figures 4.28, 4.29, and 
4.30. The connected high <p and ln(fc) band connecting W2 and W3 is evident in all the 
inverted models except for the last one where the initial porosity and permeability fields 
were 0.2 and 6.0, respectively. Interestingly, we find that the last run has the best average 
pressure match (see Table 4.3). Possible reason for poor inversion in this case may be the 
solution is stuck within a local minimum.

The algorithm is reasonably robust with respect to the initial field. However, the fact 
tha t there is no optimality criteria for global minima makes it impossible to state definite 
conclusions. Some initial fields will fare better than  others. Also, this sensitivity study 
reveals tha t looking only at the pressure match may not be sufficient.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Updated Porosity Field
400f

■ I
X  (feet)

Updated Lnk Field

X (feet)

Figure 4.28: Updated <fi and ln(fc) fields: Initial Field <f> — 0.2 and ln(fc) = 1.0.
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Figure 4.29: Updated <f> and ln(fc) fields: Initial Field 4> =  0.2 and ln(fc) =  3.15.
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Figure 4.30: Updated (j> and ln(ifc) fields: Initial Field <f> = 0.2 and ln(fc) = 6.0. (Poor inversion)
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S. No. No. o f M aster Points
X  - Y

Avg M ismatch
psi (L2 norm)

Outer Iter C PU  Tim e
sec

1 2 - 2 3.01 15 15
2 3 - 3 2.24 12 20
3 4 - 4 4.52 12 35
4 6 - 6 3.22 18 92
5 7 - 7 4.65 10 112

Run 1 5 - 5 4.1 17 75

Table 4.4: Summarized responses of sensitivity exercise to number of master points.

Updated Lrt(k) FieldUpdated Porosity Field

Figure 4.31: Updated (f> and ln(fc) fields: 2 x 2  Master Points Case.

S en sitiv ity  to  num ber o f m aster po in ts

Master points axe the cells of the model where porosity and permeability values are itera­
tively updated in order to minimize the pressure mismatch. Convergence of the inversion 
problem depends on the relative amount of data and unknown parameters involved. Thus, 
the number of master points could be an im portant element in the solution of the data 
integration algorithm.

In order to illustrate the sensitivity to the number of master points, number of master 
points was varied from 2 x 2 to 7 x 7. The responses are tabulated in Table 4.4. Also 
shown is the performance of Deterministic Example Run 1 for comparison.

The inverted models from these sensitivity runs are shown in Figures 4.31, 4.32, 4.33, 
4.34, and 4.35, respectively. The spatially connected high <j> and ln(£;) band connecting W2 
and W3 is evident in all the inverted models. The objective function values of the inversion 
processes in Table 4.4 are all reasonably good.

Increasing the number of master points may not improve the inversion pressure match. 
Having too few or too many master points may make it more difficult to capture the major 
features. It should be noted that the CPU time goes up as the number of master points
increases.
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Figure 4.32: Updated <j> and In (A;) fields: 3 x 3  Master Points Case.
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Figure 4.33: Updated <p and ln(ft) fields: 4 x 4  Master Points Case.
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Figure 4.34: Updated <j> and ln(A;) fields: 6 x 6  Master Points Case.
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Updated Porosity Field
4000

Figure 4.35: Updated 4> and ln(fc) fields: 7 x 7  Master Points Case.

S. N o. U p d a tin g  F req A vg M ism a tch
psi (L2 norm)

O u te r  I t e r C P U  T im e
sec

1 1 6.30 8 46
2 2 6.26 13 64
3 3 1.62 15 70
4 4 7.35 16 72
5 8 8.27 16 74
6 10 4.45 9 40

Run 1 5 4.1 17 75

Table 4.5: Summarized responses of sensitivity exercise to master point locations.

S en sitiv ity  to  m aster  p o in t location s

The previous section dealt with the number of master points. It is conjectured tha t updating 
or changing the locations of the master points has a significant effect in the inversion process. 
The basis for this conjecture is tha t it may be possible to shift away from the local minima 
to elsewhere in the feasible space by changing the locations of the master points.

A number of exercises are performed with updating the master points after every few 
outer iterations. The frequency of updating the master point locations are varied from 1 
to 10. The responses of the sensitivity exercise are tabulated in Table 4.5. Also shown in 
the table is the performance of Deterministic Example Run 1 for comparison. It should be 
noted tha t 5 x 5  master points were used in Deterministic Example Run 1.

The inverted models from these sensitivity runs are shown in Figures 4.36, 4.37, 4.38, 
4.39, 4.40 and 4.41, respectively. The inverted models appear almost exactly the same. The 
objective function values of the inversion processes (Table 4.5) vary from 1.6 to 8.3 in L 2 
norm sense. Updating master point locations affects the number of outer iterations required 
to have the minimum mismatch; however, it appears tha t location updating does not have 
a large impact on convergence.
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Figure 4.36: Updated 4> and ln(fc) fields: Updating frequency - every 1 iteration.
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Figure 4.37: Updated <j> and ln(k) fields: Updating frequency - every 2 iterations.
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Figure 4.38: Updated <f> and ln(fc) fields: Updating frequency - every 3 iterations.
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Figure 4.39: Updated 4> and In(k) fields: Updating frequency - every 4 iterations.
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Figure 4.40: Updated <f> and ln(fc) fields: Updating frequency - every 8 iterations.
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Figure 4.41: Updated <f> and In(k) fields: Updating frequency - every 10 iterations.
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S. N o. ln(&) Range 
X - Y (ft)

ln(fc) Angle 
(°)

cj) Range
X - Y (ft)

<j> Angle
(°)

1 8100 - 1000 20 8000 - 1100 20
2 8100 - 1000 70 8000 - 1100 70
3 6100 - 1000 45 6000 - 1100 45
4 4100 - 1000 45 4000 - 1100 45

Run 1 8100 - 1000 45 8000 - 1100 45

Table 4.6: Prior variogram information used in sensitivity exercise.

S. N o. A vg  M ism a tch
psi (L2 norm)

O u te r  I te r C P U  T im e
sec

1 2.80 20 89
2 2.35 12 63
3 3.40 14 66
4 2.23 16 76

Run 1 4.1 17 75

Table 4.7: Summarized responses of sensitivity exercise to prior variography information. 

S en sitiv ity  to  prior variogram  inform ation

Prior variogram information is an im portant factor in a good reservoir characterization 
study. From the first exercise in the previous section, it was evident tha t variography has 
a significant impact on the inverted models; however, the right variogram is extremely 
difficult to infer from limited well data. A sensitivity study of the results with different 
variograms will help determine how well the algorithm resolve reservoir param eters with 
uncertain input parameters.

In order to illustrate the sensitivity of the inversion response to variography, consider 
the variograms tabulated in Table 4.6. Variogram anisotropy was changed from a ratio 
of about 8:1 to 4:1. Anisotropy angle was varied from 20° to 70°. The responses of the 
sensitivity exercise with different prior variography information are tabulated in Table 4.7. 
Also shown in the table is the performance of Deterministic Example Run 1 for comparison.

The inverted models from these sensitivity runs are shown in Figures 4.42, 4.43, 4.44, 
and 4.45, respectively. Inverted models appear almost exactly the same. The objective 
function values of the inversion processes in Table 4.7 varies from about 2.2 to 4.1 in L 2 
norm sense. These are all reasonably good pressure matches.

S en sitiv ity  to  inner op tim iza tio n  param eters

In the inner optimization module, the objective is to search for a primal local minima 
under bound constraints of the 4>, ln(&) correction values. An approximate subproblem of 
our original data integration problem is formulated for the minimization. The importance 
of this inner optimization and consequences of relaxing the stopping criteria are relevant 
sensitivities.

In order to demonstrate the sensitivity of the inversion response to inner optimization 
parameters, we vary the tolerance values for objective function convergence and norm of the
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Figure 4.42: Updated <j) and ln(fc) fields: Prior Variogram Set 1 in Table 4.6.
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Figure 4.43: Updated cfi and ln(fc) fields: Prior Variogram Set 2 in Table 4.6.
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Figure 4.44: Updated <f> and ln(fc) fields: Prior Variogram Set 3 in Table 4.6.
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Updated Ln(k) FieldUpdated Porosity Field

Figure 4.45: Updated <p and ln(fc) fields: Prior Variogram Set 4 in Table 4.6.

S. No. Gradient Norm  Tol Obj Func Tol Obi Func Conv 
No.

1 5.0 x l0 ~ 4 1.0 x K T 5 40
2 5.0 x l0 ~ 4 1.0 xl0~~5 10
3 5.0 x K T 5 1.0 xlO -5 10
4 5.0 x l0 ~ 4 1.0 x l0 ~ 4 40

Run 1 5.0 x l0 ~ 5 1.0 x l0 ~ 5 40

Table 4.8: Inner optimization parameters used in sensitivity exercise.

gradient. The inner optimization parameters used for the sensitivity studies are tabulated 
in Table 4.8. The responses of the sensitivity exercise with different inner optimization 
parameters are tabulated in Table 4.9. Also shown in the table is the performance of 
Deterministic Eexample Run 1 for comparison.

Inverted models (not shown here) capture major heterogeneity features of the reference 
field. However, the objective function values of the inversion processes in Table 4.9 varies 
significantly from about 2.5 to 6.9 in L 2 norm sense. W hen the tolerance for gradient 
comparison is 5 x 10~4, the number of function and gradient evaluation remains at the 
assigned minimum of 50 after first few outer iterations; however when this value is fixed at 
5 x 10~5 (more stringent tolerance), this termination criteria is not met and the number of 
function evaluation is much higher (over 1000).

S. No. Avg M ismatch
psi (L2 norm)

Outer Iteration C PU  Time
sec

1 2.51 18 79
2 6.93 14 50
3 3.72 7 32
4 3.35 10 36

Run 1 4.1 17 75

Table 4.9: Summarized responses of sensitivity exercise to inner optimization parameters.
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4.4 An Im plem entation Issue: Propagation of Optimal Cor­
rections

The optimal corrections from the inner optimization at master point locations are prop­
agated onto the entire field by kriging. We use kriging equation (Equation 4.1) for <f> 
corrections A fa , whereas we employ the collocated cokriging equation (Equation 4.2) for 
y  =  ln(fc) corrections Ay;. The correction propagation equations are given below:

The average corrections A will approach zero as convergence is attained; however, it 
may be non-zero in the initial iterations, especially when the initial model is not th a t good.

where Acfi and A y  are average A<f> and Ay, respectively.
It was found tha t this alternative using an experimental mean is more likely to get into 

degeneracy problems. In order to illustrate the difference between the two implementation, 
we performed the deterministic example Run 1 inversion and compared the performance.

W ith A 0, the inverted models are obtained after 16 outer iterations (77 seconds in 
733 MHz dual processor workstation). These inverted models are shown in Figure 4.46. 
The spatially connected high (f> and ln(fc) band connecting W2 and W3 is evident in the 
inverted models. However, the major features are not captured with as much detail as it 
was obtained using A =  0. Figure 4.47 shows the pressure values at the four wells computed 
from the true (from reference), initial and final updated porosity and permeability fields. 
The objective function values of the inversion process is shown in Figure 4.48. Comparing 
the objective functions curves for the cases (Figures 4.6 and 4.48), it can be seen that 
implementation with A =  0 is smoother than  the other. Final average pressure mismatch 
(in L2 norm sense) for 200 data in both the implementations is 4.13 psi.

4.5 Example 2: A Stochastic Example

A more realistic example is demonstrated here to evaluate the ability of the algorithm to 
generate models of porosity and permeability from multiple well production data. Reference 
porosity and permeability models are constructed first. Dynamic pressure responses at a

(4.11)

(4.12)
j= i

In the latter case, the above optimal correction equations could be modified to account for 
the non-zero overall mean correction:

(4.13)

(4.14)
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Figure 4.46: Updated <f> and ln(fc) fields: Base Case A = 0.
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Figure 4.47: Pressure responses computed from initial (dashed lines) and updated (bullets) (j> and 
ln(fc) fields with the true data (solid lines): Base Case.
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Figure 4.48: Objective function values of the inversion process: Base Case.

Reference Porosity Field,

Figure 4.49: Reference (ft and ln(fe) fields: Stochastic Example.

number of wells are obtained by flow simulation. The inverted fields are compared with the 
reference fields to evaluate the capability of the algorithm.

A 2D 4,000-ft square domain is discretized into 40 x 40 grid cells of 100 x 100 ft. 
Porosity and permeability fields are shown in Figure 4.49. There are four wells: W1 at 
the center of the cell (24,10), W2 at (37,17), W3 at (14,32), and W4 at (35,31), see Figure 
4.49. Reservoir parameters are similar to the deterministic example unless stated otherwise. 
Figure 4.50 shows the imposed production rates and the corresponding pressure responses. 
It should be noted that the production rates are not very high, however the pressure decline 
is significant. This type of situation would arise when the storativity of the reservoir is not 
high. The low permeability and good communication between the wells entails tha t any 
measurable change in one well would be reflected in the pressure responses of the other 
wells. The histograms the scatter-plot of (ft and In(k) are shown in Figures 4.51 and 4.52. 
Mean and standard deviation of reference distributions are 0.13 and 0.04 for (ft, and 3.37 and 
2.09 for ln(/c), respectively. We used the reference (ft and In(k) distributions in the inversion 
exercise for the global distributions. The correlation coefficient of (ft and ln(£:) is 0.82. The 
variogram parameters are shown in Table 4.10.
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Figure 4.50: Production data (pressure and flow rates) obtained from the reference field: Stochastic 
Example.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F
re

qu
en

cy

.16. Reference Phi Data

.12.

.08 .

.04 . - f -

.0Q

Number of Data 1600 
mean .13 

std. dev. .06 
maximum .31 
minimum .01

.01 ■ J i  i r
P h i

.25.

.20,

Reference Ln(k) Data

.15:

O'
£  . 1 0 4  u.

.05.

.oa x t r i ~j-rTn IT

Number of Data 1600 
mean 3.37 

std. dev. 2.09 
maximum 7.08 
minimum -.94

-U 1 1 311 5 1
L n ( k )

~H-|
7™

Figure 4.51: Histograms of reference (f> and ln(fc) fields: Stochastic Example.
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Figure 4.52: Scatterplot of reference <f> and ln(A;) distributions: Stochastic Example.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ngle
(°)

0 Nugget 0.0
1 Sph 0.6 2500 - 3600 0
2 Sph 0.4 4000 - 3250 0

Table 4.10: Variogram information used for both <f> and ln(A;): Stochastic Example Run 1.
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Figure 4.53: Static well data for <f> and ln(fc): Stochastic Example Run 1.
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Figure 4.54: Updated <f> and ln(fc) fields: Stochastic Example Run 1.

R u n  1: Inversion  w ith  p rod u ction  data , g lobal h istogram , reference vari­
ogram  inform ation , and reference loca l hard d ata

For this inversion exercise, we used homogeneous initial porosity and permeability fields of 
4> — 0.4 and In(k) =  3.15 ln(mD). Reference global distributions, the reference variograms, 
and the local hard data shown in Figure 4.53 are used.

The inverted models are obtained after 7 outer iterations (134 seconds in 733 MHz dual 
processor workstation). The pressure responses in the updated porosity and permeability 
fields converge to the reference pressure data. These inverted models are shown in Figure 
4.54. Figure 4.55 shows the pressure values at the four wells computed from the true (from 
reference), initial and final updated <fi and ln(fc) fields. Although the pressure match of 
the updated fields is not close particularly in the late time period, there is a significant 
reduction of the mismatch from the initial field responses. The objective function values of 
the inversion process is shown in Figure 4.56. Final average pressure mismatch (in L 2 norm 
sense) for 200 data was 10.4 psi. Updated 4> and ln(fc) fields after each outer iteration of 
the inversion method are shown in Figures 4.57 and 4.58.
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Figure 4.55: Pressure responses computed from initial (dashed lines) and updated (bullets) 4> and 
ln(fc) fields with the true data (solid lines): Stochastic Example Run 1.
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Figure 4.56: Objective function values of the inversion process: Stochastic Example Run 1.
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Figure 4.58: Updated ln(fc) fields at each iteration of the inversion process: Stochastic Example 
Run 1.
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Figure 4.59: Static well data for <f> and ln(fc): Stochastic Example Run 2.

Updated Ln(k) FieldUpdated Porosity Field

Figure 4.60: Updated $ and In(k) fields: Stochastic Example Run 2.

R u n  2: Inversion  w i t h  p rod u ction  data , g lobal h istogram , reference vari­
ogram  inform ation , but different local hard data

In this case, we used the same homogeneous initial porosity and permeability fields of <p — 0.4 
and ln(&) =  3.15 ln(mD). Reference global distributions are used along with reference 
variograms; however a different set of local hard data (extracted from the reference fields) 
are also used in the inversion run below (shown in Figure 4.59). The idea for the exercise 
is to determine how much information was incorporated into the final models.

The inverted models are obtained after 15 outer iterations (254 seconds in 733 MHz dual 
processor workstation). The pressure responses in the updated porosity and permeability 
fields converge to the reference pressure data. These inverted models are shown in Figure 
4.60. Figure 4.61 shows the pressure values at the four wells computed from the true (from 
reference), initial and final updated 4> and ln(fc) fields. Pressure match of the updated fields, 
in this case, is better than tha t of Run 1. The objective function values of the inversion 
process are much lower and smooth (shown in Figure 4.62). Final average pressure mismatch 
(in L2 norm sense) for 200 data was 6.9 psi. Updated (p and ln(fc) fields after each outer 
iteration of the inversion method are shown in Figures 4.63 and 4.64.
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Figure 4.61: Pressure responses computed from initial (dashed lines) and updated (bullets) 4> and 
ln(fc) fields with the true data (solid lines): Stochastic Example Run 2.
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Figure 4.62: Objective function values of the inversion process: Stochastic Example Run 2.
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Figure 4.63: Updated d> fields at each iteration of the inversion process: Stochastic Example Run 
2.
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4.6 Discussion

In this chapter, we presented a newly developed algorithm for simultaneous inversion of 
porosity and permeability via collocated cokriging. The implemented code has been demon­
strated with a synthetic and realistic reservoir example. Some sensitivity studies have been 
performed to investigate the robustness of the algorithm. Some implementation issues have 
been addressed. Inversion results are positive and informative. However, there are scopes 
of improvement in this area of research.

Some of the findings from the illustrated examples and sensitivity analyses in this chapter 
include:

•  inversion with only production data and prior variography information may not be 
sufficient to capture heterogeneity features

• global distribution information is im portant in inversion performance

•  minimum pressure mismatch criterion by itself may not lead to the best inverted 
model attainable

• unrealistic initial porosity and permeability fields may affect the inversion responses

•  constraints are im portant for the overall inversion process

•  number of master points affects the solution. Inversion with too few master points
may lead to poor inversion; on the contrary, inversion with too many master points 
increases the execution time and at the same time may not guarantee better inversion 
solution

• increasing the frequency of master point location updating may reduce the possibility
of getting stuck in local minima, but may not guarantee it

• prior variography information can be critical to inversion performance.
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Chapter 5

Sim ultaneous Inversion o f Unique 
</>/ln(k )  Features From Production  
D ata

We presented an algorithm for simultaneous inversion of 4> and K  in Chapter 4. The ability 
and the effectiveness of the algorithm was discussed in tha t chapter. In this chapter, we 
analyze the inversion experiment with reservoir models with unique <p/]n(k) features.

5.1 A Synthetic Reservoir M odel w ith Unique 4 > / \ n ( k )  Fea­
tures

Consider a 2D example of 4,000 ft by 4,000 ft domain tha t is discretized into 40 x 40 
grid cells of 100 x 100 ft. Porosity and permeability fields are shown in Figure 5.1. It is 
evident from the figure tha t reference porosity field has large continuity in the North-South 
direction. Porosity values gradually decrease in the Westward direction. Whereas, the 
permeability field has large continuity in Southwest-Northeast direction. In the Southeast 
portion of the reservoir the permeability values are high. Permeability decreases gradually 
in Northeastward direction. There are 8 wells: W1 at the center of the cell (34,33), W2 
at (33,8), W3 at (25,12), W4 (18,27), W5 (14,6), W6 (30,17), W7 (8,33), and W8 (35,12), 
respectively. Wells are shown in Figure 5.1. The four boundaries are no-flow boundaries, 
reservoir thickness is 100 ft, viscosity is 0.2 cp, formation compressibility is 10~6 psi-1 , and 
well radius is 0.3 ft. Figure 5.2 shows the imposed production rates and the corresponding 
numerically simulated pressure responses at the different wells. The global histograms of 
the reference distributions and the scatter-plot between porosity and In(k) are shown in 
Figures 5.3 and 5.4, respectively. Mean and standard deviation of reference distributions 
are 0.129 and 0.056 for <f>, and 1.33 and 1.608 for ln(&). The low average porosity confirms 
the low storativity of the reservoir. Correlation coefficient of the two distributions is 0.31. 
Variogram for both 4> and In(k) of the reference fields are shown in Figure 5.5.

We employ the reference distributions as the global distribution information. It is true 
that we do not have this information a priori, in tha t case we could use an approximate 
global distribution informed by some secondary data such as seismic data. Static well data 
used in the example are shown in Figure 5.6. We perform the inversion with a number of 
prior variogram models and analyze the inverted models in each of the runs.
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Figure 5.1: Reference <f> and ln(fc) fields.
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Figure 5.2: Production data (pressure and flow rates) obtained for 8 wells from the reference field.
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Figure 5.6: Static well data for 4> and ln(fc).

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.05
1 Sph 0.55 14000 - 4000 0
2 Sph 0.4 13000 - 10000 0

Table 5.1: Prior variogram information used for <p\ Run 1.

R un 1

The prior variogram model used in this run is shown in Tables 5.1 and 5.2 for <f> and ln(A;). 
The inversion was run for 16 outer iterations using 6 x 6  (=36) master points in each 
iteration. CPU time for the run was only 315 seconds in a 1.8 GHz Pentium 4 machine. 
The pressure responses in the updated porosity and permeability fields converge to the 
reference pressure data. These inverted models are shown in Figure 5.7. Figure 5.8 shows 
the pressure values at the eight wells computed from the true (from reference), initial and 
final updated porosity and permeability fields. The updated fields by the new method 
accurately reproduce the true pressure data at all wells except Well W4 which is located at 
(1750.0, 2650.0). The objective function values of the inversion process are shown in Figure 
5.9. Final average pressure mismatch in L 2 norm sense was 14.7 psi. Updated porosity and 
permeability fields after each outer iteration of the inversion method are shown in Figures 
5.10 and 5.11.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.05
1 Sph 0.5 14000 - 9000 0
2 Sph 0.45 13000 - 10000 0

Table 5.2: Prior variogram information used for both  ln(&): Run 1.
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Figure 5.8: Pressure responses computed from initial (dashed lines) and updated (bullets) <j> and 
ln(fc) fields with the true data (solid lines): Run 1.
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Figure 5.9: Objective function values of the inversion process: Run 1.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.05
1 Sph 0.55 4000 - 10000 0
2 Sph 0.4 10000 - 12000 0

Table 5.3: Prior variogram information used for 4>: Run 2.

R un  2

The prior variogram model used in this run is shown in Tables 5.3 and 5.4 for <j> and ln(fc). 
The inversion was run for 17 outer iterations using 6 x 6  (=36) master points in each 
iteration. CPU time for the run was only 331 seconds in a 1.8 GHz Pentium 4 machine. 
The pressure responses in the updated porosity and permeability fields converge to the 
reference pressure data. These inverted models are shown in Figure 5.12. Figure 5.13 shows 
the pressure values at the eight wells computed from the true (from reference), initial and 
final updated porosity and permeability fields. The updated fields by the new method 
accurately reproduce the true pressure data at all wells except the same Well W4 as in Run 
1. However, the mismatch in this case has reduced. The objective function values of the 
inversion process are shown in Figure 5.14. Final average pressure mismatch in L 2 norm 
sense was 12.5 psi. Updated porosity and permeability fields after each outer iteration of 
the inversion method are shown in Figures 5.15 and 5.16.

Having analyzed the inverted models from the two runs, it could be concluded tha t 
the algorithm provides reasonably good models. However, better models are obtained for

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.05
1 Sph 0.5 4000 - 9000 0
2 Sph 0.45 10000 - 10000 0

Table 5.4: Prior variogram information used for ln(fc): Run 2.
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Figure 5.10: Updated <fi fields at each iteration of the inversion process: Run 1
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Figure 5.11: Updated ln(fc) fields at each iteration of the inversion process: Run 1
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Figure 5.12: Updated 0 and ln(Jfe) fields: Run 2.
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Figure 5.13: Pressure responses computed from initial (dashed lines) and updated (bullets) 4> and 
ln(fc) fields with the true data (solid lines): Run 2.
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10 Objective function values
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Figure 5.14: Objective function values of the inversion process: Run 2.

permeability than  those for porosity. In the first run, we started with a prior variogram 
model with high continuity in the North-South direction for both  tj> and ln(fc), the inverted 
models had right heterogeneity structure for ln(A;). In the second run, we started with an 
almost isotropic model. In this case also we retrieve the right structure for In (A;). However, 
for <fi the nugget effect is exaggerated. Well W4 (1750.0, 2650.0) in both runs had the 
highest mismatch. In the reference models, <fi and ln(fc) values in this grid block are 0.131 
and 0.542; average values for both variables. Inspecting the inverted fields, we could see 
poor inverted values around this block.

Note tha t the term ination criteria for the outer loop of the inversion algorithm are 
m a x im u m  number of outer iterations or a tolerance value for the objective function. If the 
second criterion is not met, we first perform the inversion with a large value for the number 
of outer iterations. Then we examine the objective function curve and in the next run we 
set the number of outer iterations to this value. This could be autom ated in the code by 
storing the best model and the number of outer loops, and reporting the outputs up to this 
outer iteration.

5.2 Effect of Production Data

In this section, we investigate the effect of production data on the inversion outcome. We 
reduce the number of wells to 6 and 4, and perform the inversion. We employ similar 
parameters as in the previous section apart from the production data.

6 W ell C ase

The 6 wells are: W1 at the center of the cell (34,33), W2 at (33,8), W3 at (25,12), W4 
(18,27), W5 (14,6), and W6 (30,17), respectively. The wells are shown in Figure 5.1. Fig­
ure 5.17 shows the imposed production rates and the corresponding numerically simulated 
pressure responses at these wells. The anisotropic low nugget prior variogram model used 
in this run is shown in Tables 5.3 and 5.4 for <fi and ln(fc). The inversion was run for 7 outer 
iterations using 6 x 6  (=36) master points in each iteration. CPU time for the run was only 
143 seconds in a 1.8 GHz Pentium 4 machine. The pressure responses in the updated poros­
ity and permeability fields converge to the reference pressure data. These inverted models
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Figure 5.15: Updated <j> fields at each iteration of the inversion process: Run 2
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Figure 5.16: Updated ln(fc) fields at each iteration of the inversion process: Run 2.
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Figure 5.17: Production data (pressure and flow rates) obtained from the reference field: 6 Well 
Case.

are shown in Figure 5.18. Figure 5.19 shows the pressure values a t the six wells computed 
from the true (from reference), initial and final updated porosity and permeability fields. 
The updated fields by the new method accurately reproduce the true pressure data at all 
wells except Well W4 tha t is located at (1750.0, 2650.0). The objective function values of 
the inversion process is shown in Figure 5.20. Final average pressure mismatch in L 2 norm 
sense was 6.35 psi. Updated porosity and permeability fields after each outer iteration of 
the inversion method are shown in Figures 5.21 and 5.22.

4 W ell C ase

The 4 wells are: W1 at the center of the cell (34,33), W2 at (33,8), W3 at (25,12), and 
W4 (18,27). The wells are shown in Figure 5.1. Figure 5.23 shows the imposed production 
rates and the corresponding numerically simulated pressure responses at these wells. The 
prior variogram model used in this run is shown in Tables 5.3 and 5.4 for <f> and In(k). The 
inversion was run for 7 outer iterations using 6 x 6  (=36) master points in each iteration. 
CPU time for the run was only 143 seconds in a 1.8 GHz Pentium 4 machine. The pressure 
responses in the updated porosity and permeability fields converge to the reference pressure 
data. These inverted models are shown in Figure 5.24. Figure 5.25 shows the pressure values 
at the four wells computed from the true (from reference), initial and final updated porosity 
and permeability fields. The updated fields by the new method accurately reproduce the 
true pressure data at all wells except Well W4 tha t is located at (1750.0, 2650.0). The 
objective function values of the inversion process is shown in Figure 5.26. Final average
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Figure 5.18: Updated cj> and ln(fc) fields: 6 Well Case.
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Figure 5.19: Pressure responses computed from initial (dashed lines) and updated (bullets) <j> and 
ln(fc) fields with the true data (solid lines): 6 Well Case.
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Figure 5.20: Objective function values of the inversion process: 6 Well Case.
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Figure 5.21: Updated (j> fields at each iteration of the inversion process: 6 Well Case.
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Figure 5.22: Updated In(k) fields at each iteration of the inversion process: 6 Well Case.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Flowrate Pressure Flowrate Pressure

Well 2 Well 23500.

120.
Days Days

Well 4 Well 4

120.
Days Days

Well 1W eill 3500.

12700.

DaysDays

Well 3Well 3

2300.

Days Days

Figure 5.23: Production data (pressure and flow rates) obtained from the reference field: 4 Well 
Case.
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Figure 5.24: Updated rf> and ln(fc) fields: 4 Well Case.

pressure mismatch in L 2 norm sense was 7.69 psi. Updated porosity and permeability fields 
after each outer iteration of the inversion method are shown in Figures 5.27 and 5.28.

C onclusion

It could be concluded tha t using 4, 6 or 8 wells for porosity, permeability inversion leads to 
similar models for the present synthetic reservoir model with unique heterogeneity features. 
Originally, the intention was to investigate whether the developed algorithm can invert 
4>, ln(fc) models where in some portions of the reservoir the correlation between the two 
petrophysical variables is poor. The responses of the inversion runs and the sensitivities 
performed confirm tha t it is possible to invert for this kind of models. However, it ap­
pears ln(fc) models obtained through this algorithm retrieves heterogeneity features better 
than that of cj). A possible solution of this limitation may be to calculate the <j> gradients 
independently from the flow and constitutive equations involved.
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Figure 5.25: Pressure responses computed from initial (dashed lines) and updated (bullets) rj> and 
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Figure 5.26: Objective function values of the inversion process: 4 Well Case.
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Figure 5.27: Updated (j> fields at each iteration of the inversion process: 4 Well Case.
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Figure 5.28: Updated ln(fc) fields at each iteration of the inversion process: 4 Well Case.
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Figure 5.29: Static well data for <j> and ln(fc): 15 Local Data Case.

5.3 Influence of Local D ata

In all the previous inversion runs, we performed the inversion using “many” local data  (30 
precisely). It would be interesting to see how much incremental contribution of these local 
data is in the inverted models. In order to investigate this we perform the inversion by 
varying the number of local data  to 15 and 0. We use similar parameters as used in the 
previous section for 6 well case. The 6 wells are: W1 at the center of the cell (34,33), W2 at 
(33,8), W3 at (25,12), W4 (18,27), W5 (14,6), and W6 (30,17). Wells are shown in Figure 
5.1. Figure 5.17 shows the imposed production rates and the corresponding numerically 
simulated pressure responses at these wells. The prior variogram model used in this run is 
shown in Tables 5.3 and 5.4 for (j> and ln(fc).

15 Local D a ta  C ase

Local data used in this run are shown in Figure 5.29. The inversion was run for 6 outer 
iterations using 6 x 6  (=36) master points in each iteration. CPU time for the run was 
only 125 seconds in a 1.8 GHz Pentium 4 machine. The pressure responses in the updated 
porosity and permeability fields converge to the reference pressure data. These inverted 
models are shown in Figure 5.30. Figure 5.31 shows the pressure values at the six wells 
computed from the true (from reference), initial and final updated porosity and permeability 
fields. The updated fields by the new method accurately reproduce the true pressure data 
at all wells. Even Well W4 located at (1750.0, 2650.0) pressure match is good in this case. 
The objective function values of the inversion process is shown in Figure 5.32. Final average 
pressure mismatch in L 2 norm sense was 4.05 psi. This mismatch value compared to that 
(6.35) with 30 local data is even better. Updated porosity and permeability fields after each 
outer iteration of the inversion method are shown in Figures 5.33 and 5.34.
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Figure 5.30: Updated <j> and In(k) fields: 15 Local Data Case.
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Figure 5.31: Pressure responses computed from initial (dashed lines) and updated (bullets) 4> and 
ln(fc) fields with the true data (solid lines): 15 Local Data Case.
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Figure 5.32: Objective function values of the inversion process: 15 Local Data Case.
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Figure 5.33: Updated <j> fields at each iteration of the inversion process: 15 Local Data Case.
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Figure 5.34: Updated ln(fc) fields at each iteration of the inversion process: 15 Local Data Case.
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Figure 5.35: Updated 4> and ln(fc) fields: No Local Data Case. Poor Convergence.

N o  Local D a ta  C ase

This inversion run was performed without any local data. The inversion was run for 6 
outer iterations using 36 master points in each iteration. CPU time for the run was only 
115 seconds in a 1.8 GHz Pentium 4 machine. The pressure responses in the updated <j> 
and In(k) fields do not converge to the reference pressure data. These inverted models are 
shown in Figure 5.35. Figure 5.36 shows the pressure values at the six wells computed from 
the true (from reference), initial and final updated porosity and permeability fields. The 
updated fields by the new method accurately reproduce the true pressure data at Wells 
W2, W3 and W6 only. Well W1 pressure match curve reveals early and late time mismatch 
indicating improper heterogeneity capture in both the vicinity and the distant grid blocks. 
Well W4, located at (1750.0, 2650.0), has the greatest mismatch as was evident in most of 
the previous inversion exercises. The objective function values of the inversion process is 
shown in Figure 5.37. It is evident from the figure that realistically no improvement took 
place after the second outer iteration. It appears tha t the solution is stuck in some kind of 
local minimum tha t is far from the global minimum. Final average pressure mismatch in 
L 2 norm sense was 17.24 psi, a significantly high value. Updated porosity and permeability 
fields after each outer iteration of the inversion method are shown in Figures 5.38 and 5.39.

C onclusion

Prom the above sensitivity exercise, it could be concluded tha t integration of both  local 
data  and dynamic production is im portant for good inverted models. This confirms the 
hypothesis tha t different sources of data contain valuable information. One needs to appro­
priately combine all available information. The extremely poor inversion outcomes in case 
of no local data reveals tha t in order to constrain <fr and ln(fc) values properly, some local 
data  is essential. However, this does not imply tha t the more the local data being used, the 
better the inverted models. This is revealed by comparing the cases using 15 and 30 local 
data cases.

Local data helps regularize the nonlinear inverse problem. The inherent non-uniqueness 
of inverse problem causes the solution to be stuck in some local minimum unless some 
regularization scheme is used.
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Figure 5.36: Pressure responses computed from initial (dashed lines) and updated (bullets) <j> and 
ln(fc) fields with the true data (solid lines): No Local Data Case.
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Figure 5.37: Objective function values of the inversion process: No Local Data Case.
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Figure 5.38: Updated <j> fields at each iteration of the inversion process: No Local Data Case.
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Chapter 6

Sim ultaneouos Inversion w ith  
Variogram U pdating

There are rarely enough data to calculate reliable variograms. This is particularly true in 
petroleum reservoir characterization. It is hardly possible to model reasonably good hori­
zontal variograms with a few well data. Expert modeler would use experience or analogue 
information; however, each reservoir is unique and the reasonableness of analogue data  can 
always be questioned. In this chapter, we present a technique to  assist with variogram 
inference by using information available from production history or well test data. The 
new algorithm further improves upon the inversion solutions tha t are obtained using the 
algorithm presented in Chapter 4.

The algorithm will be explained. We demonstrate the results of the developed code with 
some synthetic realistic reservoir models. The outcome of this approach in addressing the 
problem is remarkable when sufficient production data exist.

6.1 Variogram Inversion Algorithm

The algorithm developed here builds upon the algorithm presented in Chapter 4. We extend 
this dynamic data integration algorithm for petrophysical property modeling to invert for 
spatial continuity parameters. In order to achieve this, we have implemented a module to 
determine updated experimental variograms of the property models, and another module 
to automatically fit these dynamically updated experimental variograms. The automatic 
variogram fitting module relies on an ‘almost’ exhaustive search algorithm in a L 2 norm 
basis. The L 2 norm is calculated using an inverse squared distance weighting approach 
where short distances are emphasized.

The inversion code requires additional parameters for variogram inversion. One needs 
the parameters required for experimental variogram calculation. Namely, the number of 
lags, lag distance, lag tolerance, azimuth angles, angle tolerance and bandwidths.

E xten sio n  for V ariogram  U p d atin g

The incorporation of experimental variogram calculation and automatic variogram modeling 
module is as follows:
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1. Perform Steps (1) to (10) discussed for simultaneous inversion algorithm in Chapter 
4 using a priori variogram information.

2. Calculate experimental variograms of updated (f> and ln(fc) fields.

3. Perform automatic variogram modeling with an ‘alm ost’ exhaustive search algorithm 
based on a weighted L2 norm.

4. Update the prior variogram parameters with the new ones.

5. Repeat Steps (1) to (4) until convergence is achieved in the inversion process.

In this modified algorithm the variogram models tha t are to be used for kriging at 
each outer iteration are updated. This updating is naturally informed to some extent by 
the production data  at each outer iteration. In the original version of the algorithm, the 
variogram models are kept unchanged. Thus, even if incremental information is captured 
from production data, the initial variogram information of is used at each outer iteration. 
The new algorithm removes some of these restictions by dynamically updating the variogram 
models. The parameters tha t are fitted in the updating module are the ranges of each 
variogram structure, sill contribution, angle of anistropy, and nugget effect.

6.2 A Synthetic Application

A synthetic example is presented here to evaluate the ability of the algorithm to invert 
for variogram parameters using multiple well production data. Reference porosity and 
permeability models are constructed first. Pressure responses at a number of wells are 
obtained through flow simulation.

The 2D 4,000-ft square domain is discretized into 40 x 40 grid cells of 100 x 100 ft. 
Porosity and permeability fields are shown in Figure 6.1. There are four wells: W1 at the 
center of the cell (24,10), W2 at (37,17), W3 at (14,32), and W4 at (35,31). Wells are shown 
in Figure 6.1. The four boundaries are constant pressure boundaries, reservoir thickness is 
100 ft, viscosity is 0.2 cp, formation compressibility is 10~6 psi-1 , and well radius is 0.3 ft. 
Figure 6.2 shows the imposed production rates and the corresponding numerically simulated 
pressure responses a t the different wells. The global histograms and the scatter-plot between 
porosity and ln(fc) are shown in Figures 6.3 and 6.4, respectively. Mean and standard 
deviation of reference distributions are 0.13 and 0.06 for 0, and 1.43 and 1.96 for ln(fc). The 
low average porosity confirms the low storativity of the reservoir. Correlation coefficient 
of the two distributions is 0.79. Variogram for both <j> and In(k) of the reference fields are 
shown in Figure 6.5. The well data is inadequate for variogram inference. Using only this 
m an y data, one can hardly model or infer horizontal variograms. Even with unusually large 
lag tolerance and bandwidth used in variogram estimation, realistic variograms could not 
be estimated (shown in Figure 6.6). We do not have much confidence in the variograms 
estimated from the well data. Our objective here is to account for production data and 
estimate a realistic variogram model for the reservoir.

The data integration algorithm devised here requires the well data, the production 
history (or well test data), global distribution information and a prior guess of the variogram 
model. We employ the reference distributions as the global distribution information. It is 
true tha t we do not have this information a priori; we could use an approximate global
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Figure 6.1: Reference <j> and ln(fc) fields: Example 1.

distribution informed by some secondary data (for instance, seismic da ta). Static well used 
in the example are shown in Figure 6.7.

In order to demonstrate the ability of the developed code for variogram estimation and 
uncertainty, we use a number of prior variogram models and analyze the updated variograms 
in each of the runs.

R u n  1

The prior variogram models used in this run for 4> and ln(£:) are given in Equations 6.1 and 
6.2:

7<p(h) =  0.05 +  0.5Sph(h) ^  _  7000 +  0A5Sph(h) ^  _  400Q (6.1)
CLy =  7000 ay =  4000

and

7y(h) =  0.05 +  0.55Sph(h) ^  =  35()() +  0ASph(h) ^  = 6000 . (6.2)
ay = 3500 ay = 6000

The data  integration code was run for 15 outer iterations using 6 x 6  (=36) master points 
in each iteration. CPU time for the run was only 320 seconds in a 1.8 GHz Pentium  4 
personal computer. The updated variograms for 4> and In(k) are shown in Figures 6.8, 
6.9, 6.10, and 6.11, for directions with azimuth 0 and 90. A close look at the variograms 
indicates improvement of the estimated variograms with the iterations. The dynamic data 
integration mismatch in L 2 norms for each iteration is shown in Figure 6.12. The final L 2
norm of the pressure march was 6.51. The prior initial variogram models were isotropic for
both  (j) and ln(fc), however the estimated variograms at each iteration reveals a reasonable 
anisotropy. It should be pointed tha t with inverse squared distance mismatch norm for 
variogram updating, it is difficult to good match at large lag distances in the updated model. 
The reason being the higher weights given to short lag distances. After 15 iterations, the 
final updated variogram models are given in Tables 6.1 and 6.2, respectively for cf> and ln(fc). 
It is evident tha t this approach can provide a more realistic variogram than what we get 
from the experimental variogram (Figure 6.6) using only static well data.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ST
BD

 
ST

BD
 

ST
BD

 
ST

BD
Flowrate Pressure

250

2 0 0 -

Well 1 Well 1

250

200

150

10C

50

10 2 0  30 4 0  50  60 70  80  90
Days

Well 2

250

200

15C

10 20  30  40  50 60 70  80  90
Days

W ellS

25C

200

15C

100

50

10 20  30 40  50 60 70  80  90
Days

Well 4

10 20  30  40  50 60 70  80
Days

0  10 20 30 40  50  60 70  80 90
Days

Well 2

5  348C 

0L

0  10 20 30 40  50 60 70  80 90
Days

W ellS

3400!
0  10 20 30 40  50  60 70

Days

Well 4

ig  348C 

ft.

0  10 20 30 40  50  60 70  80 90
Days

Figure 6.2: 
1.

Production data (pressure and flow rates) obtained from the reference field: Example
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Figure 6.6: Variograms estimated from well data for (f> and ln(fc): Example 1. (X direction - dark, 
Y direction - light)
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Figure 6.7: Static well data for (f> and In(k): Example 1.

V. No. T y p e Sill R an g e  
X - Y (ft)

Angle
(°)

0 Nugget 0.0
1 Sph 0.141 1000 - 9720 0
2 Sph 0.859 1475 - 1135 0

Table 6.1: Final variogram model obtained for <fi after 15 iterations: Example 1 Run 1.

V. No. T y p e Sill Range
X - Y (ft)

Angle
(°)

0 Nugget 0.008
1 Sph 0.482 1425 - 1062 0
2 Sph 0.51 1600 - 1184 0

Table 6.2: Final variogram model obtained for ln(&) after 15 iterations: Example 1 Run 1.
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Figure 6.8: Reference, prior and updated variograms (experimental - dotted line, model - solid line) 
for <j> at each outer iteration: Example 1 Run 1. (Direction with azimuth 0)
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Figure 6.9: Reference, prior and updated variograms (experimental - dotted line, model - solid line) 
for 4> at each outer iteration: Example 1 Run 1. (Direction with azimuth 90)
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Figure 6.10: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: Example 1 Run 1. (Direction with azimuth 0)

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Iteration 2
Rafareincf! Initial

6  500 1000 1500 2000 2500
Distance 

Iteration 3

'  I "l1 56b',"'idW)' 1500 2000 2500
Distance

Iteration 4
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Distance . „„ „  DistanceIteration 5 iteration 6

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
_  Distance ,, „  Distance -  Distance ___ ____  Distance} 7 Iteration 8 . Iteration 9 Iteration 10

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Distance „ _  Distance , ,  .D is ta n c e  . .  ..D is tan ceIteration ff Iteration 12 Jteration 13 _Iteration 14

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
Distance Distance Distance Distance

Iteration 15

Figure 6.11: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: Example 1 Run 1. (Direction with azimuth 90)
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10 Objective function values
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Figure 6.12: Mismatch norm of data integration at each outer iteration: Example 1 Run 1. 

R u n 2

The prior variogram models used in this run for (j> and ln(fc) are given in Equations 6.3 and 
6.4:

l<t>{h) =  0.25 +  0.5Sph(h) _  1Q00 +  0.25Sph(h) ^  _  4000 (6.3)
ay — 1 0 0 0  ay — 4 0 0 0

and
7y{h) =  0.25 +  0.55Sph{h) ^  = 15Q0 +  0.2Sph(h) ^  = 6000 . (6.4)

ay =  1 5 0 0  ay =  6 0 0 0

The nugget effect in the prior variograms is increased and the ranges are decreased for 
both 4> and ln(fc) compared to those used in Run 1. The data  integration code was run 
for 15 outer iterations using 6 x 6  (=36) master points in each iteration. CPU time for
the run was only 295 seconds in a 1.8 GHz Pentium 4 personal computer. The updated
variograms for <fi and ln(fc) are shown in Figures 6.13, 6.14, 6.15, and 6.16, for directions 
with azimuth 0 and 90. A close look at the variograms indicates improvement of the 
estimated variograms with the iterations. The dynamic data integration mismatch in L 2 
norms for each iteration is shown in Figure 6.17. The final L 2 norm of the pressure march 
was 6.04. The prior initial variogram models were isotropic for both  <p and In(k), however 
the estimated variograms at each iteration reveals a reasonable anisotropy. After 15 outer 
iterations, the final updated variogram models are given in Tables 6.3 and 6.4, respectively 
for 4> and ln(k). It is evident tha t this approach can provide a more realistic variogram than
what we get from the experimental variogram (Figure 6.6) obtained using only static well
data. The prior variogram models had a nugget effect of 0.25 tha t was updated to almost 
negligible nugget effect which is closer to the reference.

R u n  3

The prior variogram models used in this run for (p and In (A;) are given in Equations 6.5 and 
6.6:

7^ h )  =  0.75 +  0M Sph(h) ax = 1000 +  0.2Sph(h) ax = 7000 (6.5)
ay = 1 0 0 0  ay =  7 0 0 0
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Figure 6.13: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for 4> at each outer iteration: Example 1 Run 2. (Direction with azimuth 0)

V . N o. T y p e Sill R an g e
X - Y (ft)

A ngle
(°)

0 Nugget 0.047
1 Sph 0.176 1050 - 911 0
2 Sph 0.777 1062 - 861 0

Table 6.3: Final variogram model obtained for 4> after 15 iterations: Example 1 Run 2.
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Figure 6.14: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for <j> at each outer iteration: Example 1 Run 2. (Direction with azimuth 90)

V . N o. T y p e Sill R an g e
X - Y (ft)

A ngle
(°)

0 Nugget 0.001
1 Sph 0.058 800 - 420 0
2 Sph 0.941 1312 - 1100 0

Table 6.4: Final variogram model obtained for ln(fc) after 15 iterations: Example 1 Run 2.
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Figure 6.15: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: Example 1 Run 2. (Direction with azimuth 0)
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Figure 6.16: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(/r) at each outer iteration: Example 1 Run 2. (Direction with azimuth 90)
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10 Objective function values

U.VI --------------- ,----------------,----------------,--- ,--- ,--- ,
0 4 8 12

Outer Iteration #

Figure 6.17: Mismatch norm of data integration at each outer iteration: Example 1 Run 2.

V . N o. T y p e Sill R an g e  
X - Y (ft)

A ngle
n

0 Nugget 0.063
1 Sph 0.649 850 - 3404 0
2 Sph 0.288 5937 - 831 0

Table 6.5: Final variogram model obtained for <f> after 16 iterations: Example 1 Run 3. 

and
ly{h) = 0.75 +  0.05Sph(h) ^  =  1500 +  0.2Sph(h) ^  = 8000 . (6.6)

dy = 1500 CLy =  8000

The nugget effect in the prior variograms is increased to 75% for both  <p and In(k) in this 
case. The data integration code was run for 16 outer iterations using 6 x 6  (=36) master 
points in each iteration. CPU time for the run was only 312 seconds in a 1.8 GHz Pentium 
4 personal computer. The updated variograms for 4> and ln(k) are shown in Figures 6.18, 
6.19, 6.20, and 6.21, for directions with azimuth 0 and 90. A close look at the variograms 
indicates improvement of the estimated variograms with the iterations. The dynamic data 
integration mismatch in L 2 norms for each iteration is shown in Figure 6.22. The final L 2 
norm of the pressure march was 0.588, a remarkably low mismatch value. The prior initial 
variogram models were isotropic for both <j> and ln(fc), however the estimated variograms at 
each iteration reveals a reasonable anisotropy. After 16 outer iterations, the final updated 
variogram models are given in Tables 6.5 and 6.6 for <p and ln(k). It is evident th a t this 
approach can provide a more realistic variogram than what we get from the experimental 
variogram (Figure 6.6). The prior variogram model with high nugget effect of 0.75 led to 
final updated variogram model with a low nugget effect close to the reference value.

Som e C onclusions From  E xam ple O ne

Having analyzed the updated variograms in the first example, it could be concluded tha t the 
developed code provides reasonably good variogram models using multiple well production 
data. Some of the salient features of variogram information extraction from production 
data in this example are the following.
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Figure 6.18: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for 4> at each outer iteration: Example 1 Run 3. (Direction with azimuth 0)

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.072
1 Sph 0.053 1312 - 220 0
2 Sph 0.875 1400 - 2310 0

Table 6.6: Final variogram model obtained for ln(&) after 16 iterations: Example 1 Run 3.
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Figure 6.19: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for (f> at each outer iteration: Example 1 Run 3. (Direction with azimuth 90)
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Figure 6.20: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for In(k) at each outer iteration: Example 1 Run 3. (Direction with azimuth 0)
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Figure 6.21: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: Example 1 Run 3. (Direction with azimuth 90)
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Figure 6.22: Mismatch norm of data integration at each outer iteration: Example 1 Run 3.

• Irrespective of prior variogram models with high or low nugget effect, we get back the 
low nugget effect of the reference distribution. It should be noted tha t the experimen­
tal variograms are obtained from gridded distribution, thus the smallest lag distance 
depends on the smallest dimension of the grid blocks.

• Range convergence is good for both <f> and ln(&).

•  Anisotropy convergence is also captured reasonably well in the final updated variogram 
models.

In the subsequent section, we will investigate the response of the developed code in 
the event of high nugget effect in the reference distribution. Given the diffusive nature of 
flow data, it would be interesting to see if the inversion algorithm can retrieve high spatial 
randomness in the reference distribution.

6.3 High N ugget Effect Inversion Using Production D ata

It is expected that inverted variogram models using production data will have very low 
nugget effect. The reason for such a hypothesis is the fact tha t subsurface reservoir fluid 
flow is diffusive in nature. Nevertheless, it would be interesting to perform some study of 
nugget effect inversion.

As in the earlier example, reference porosity and permeability models are constructed 
first. Pressure responses at a number of wells are obtained through flow simulation.

This 2D example of 4,000-ft square domain is discretized into 40 x 40 grid cells of 100 
x 100 ft. Porosity and permeability fields are shown in Figure 6.23. There are 10 wells: 
Well W1 at the center of the cell (24,10), Wells W2, W3, W4, W5, W6, W7, W8, W9 and 
W10 at cells (37,17), (14,32), (35,31), (34,23), (28,13), (13,33), (16,29), (19,10), and (9,17), 
respectively. Wells are shown in Figure 6.23. Other reservoir properties are similar to the 
previous example. Figure 6.24 shows the imposed production rates and the corresponding 
numerically simulated pressure responses at the different wells. The histograms and the 
scatter-plot between <f> and ln(fc) are shown in Figures 6.25 and 6.26. Mean and standard 
deviation of reference distributions are 0.13 and 0.08 for </>, and 1.38 and 2.06 for ln(fc).
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Figure 6.23: Reference <j> and ln(fc) fields: High Nugget Effect Example.

Correlation coefficient of the two distributions is 0.658. Variogram for both <p and ln(&) of 
the reference fields are shown in Figure 6.27.

For the inversion, we employ the reference distributions as the global distribution infor­
mation. Static well data used in the example are shown in Figure 6.28. Realistic experi­
mental variograms could not be obtained using these static data.

The inversion was tried with a  number of prior variogram models. I t is not possible 
to capture high spatial randomness in the inverted distributions. We have employed prior 
variogram models with nugget effect from 0.05 to 0.75. In fact in the case of prior variogram 
models with low nugget effect, the mismatch function in the inversion increases instead of 
decreases. W ith a nugget effect of 0.75, inversion was possible however w ith a very poor 
mismatch of 47.3.

The prior variogram model used for the run with an initial nugget of 75% is shown in 
Tables 6.7 and 6.8 for (f> and ln(fc). The data integration code was run for 7 outer iterations 
using 6 x 6  (=36) master points in each iteration. CPU time for the run was only 157 
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for cj> and 
ln(A;) are shown in Figures 6.29, 6.30, 6.31, and 6.32, for directions with azimuth 0 and 90. 
The mismatch in L 2 norms for each iteration is shown in Figure 6.33. The final L 2 norm 
of the pressure march was 47.3, an extremely high mismatch value. After 7 iterations, the 
final updated variogram models are given in Tables 6.9 and 6.10 for <fi and ln(ft).

From the perspective of the geostatistical scaling laws in the context of small scale core 
data (perhaps with a nugget effect) and with block data (that is 104 times larger), one would 
expect the nugget effect to smeared at the coarser scale. The heterogeneities one expects 
from production data integration are large scale caused by facies/ stratigraphic boundaries 
or from faults. There really will be no nugget effect between “continuous” blocks. Moreover, 
even if we believed there was a nugget effect at the block scale, it would almost certainly 
be informed from densely spaced well log or core data. Our main task is to determine 
horizontal ranges and anisotropy (including perhaps, zonal anisotropy).
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Figure 6.24: Production data (pressure and flow rates) obtained from the reference field: High 
Nugget Effect Example.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ngle
(°)

0 Nugget 0.05
1 Sph 0.5 7000 - 7000 0
2 Sph 0.45 4000 - 4000 0

Table 6.7: Prior variogram information used for <fi: High Nugget Effect Example.
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Figure 6.25: Histograms of reference 4> and ln(fe) fields: High Nugget Effect Example.
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Figure 6.26: Scatterplot between reference cj> and ln(fc) values: High Nugget Effect Example.
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Figure 6.27: Variograms of reference <f> and ln(fc) distributions: High Nugget Effect Example. (X 
direction - dark, Y direction - light)
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Figure 6.28: Static well data for </> and In(k): High Nugget Effect Example.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
n

0 Nugget 0.05
1 Sph 0.55 3500 - 3500 0
2 Sph 0.4 6000 - 6000 0

Table 6.8: Prior variogram information used for ln(k): High Nugget Effect Example.
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Figure 6.29: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for 4> at each outer iteration: High Nugget Effect Example. (Direction with azimuth 0)
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Figure 6.30: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for <fi at each outer iteration: High Nugget Effect Example. (Direction with azimuth 90)
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Figure 6.31: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for In(k) at each outer iteration: High Nugget Effect Example. (Direction with azimuth 0)
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Figure 6.32: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: High Nugget Effect Example. (Direction with azimuth 90)
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Figure 6.33: Mismatch norm of data integration at each outer iteration: High Nugget Effect 
Example.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.0
1 Sph 0.95 1825 - 2049 0
2 Sph 0.05 1800 - 2016 0

Table 6.9: Final variogram model obtained for <f> after 7 iterations: High Nugget Effect 
Example.
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V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.044
1 Sph 0.593 1200 - 2268 0
2 Sph 0.363 1200 - 2232 0

Table 6.10: Final variogram model obtained for ln(&) after 7 iterations: High Nugget Effect 
Example.
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Figure 6.34: Reference <f> and ln(&) fields: Production Data Sensitivity Example.

6.4 Effect of Production Data

Variogram inversion requires production data having information about the reservoir het­
erogeneity. The amount of information captured in the inverted models depends on the 
quality and amount of production data. Here we investigate the effect of the quantity of 
dynamic data on updated variogram models.

We perform the inversion on a synthetic reservoir model with varying number of wells 
with production data. The updated variograms models are compared and analyzed to 
determine the effect of the amount of production data  on the resulting variogram.

Consider our familiar 2D 4,000-ft square domain discretized into 40 x 40 grid cells of 
100 x 100 ft. Porosity and permeability fields are shown in Figure 6.34. The boundaries on 
all four sides are no-flow boundaries. Reservoir properties are the same as those discussed 
in the previous sections unless stated otherwise. There is a high porosity-permeability band 
connecting the lower-left corner and upper-right corner. The histograms and the scatter- 
plot between <fi and ln(fc) are shown in Figures 6.35 and 6.36. The distribution is bimodal. 
The correlation coefficient of the two distributions is 1.0. Mean and standard deviation of 
reference distributions are 0.13 and 0.046 for cf>, and 0.683 and 2.108 for ln(fc). Variogram for 
both 4> and ln(&) of the reference fields are shown in Figure 6.37. We employ the reference 
distributions as the global distribution information. The prior variogram model used in this 
exercise is shown in Tables 6.11 and 6.12 for <f> and ln(fc).

We perform the inversion 3 times with production data from 4, 6 and 8 wells. The well 
locations for each case are shown in Figure 6.38. Figures 6.39, 6.40, and 6.41 show the 
imposed production rates and the corresponding numerically simulated pressure responses 
for the 3 cases. Only the well porosity and permeability values are used for the inversion.
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Figure 6.35: Histograms of reference (j> and ln(fc) fields: Production Data Sensitivity Example.
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Figure 6.36: Scatterplot between reference <j> and ln(fc) values: Production Data Sensitivity Exam­
ple.
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Figure 6.37: Variograms of reference <j) and ln(fc) distributions: Production Data Sensitivity Ex­
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V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.05
1 Sph 0.55 14000 - 2000 45.0
2 Sph 0.4 13000 - 10000 45.0

Table 6.11: Prior variogram information used for <fr'■ Production D ata Sensitivity Example.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.05
1 Sph 6.5 14000 - 2000 45.0
2 Sph 0.45 13000 - 10000 45.0

Table 6.12: Prior variogram information used for In(k): Production D ata Sensitivity Ex­
ample.
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Figure 6.38: Well locations for the 3 cases: 4, 6 and 8 well case.
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Figure 6.39: Production data (pressure and flow rates) obtained from the reference field: 4 well 
case.
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Figure 6.40: Production data (pressure and flow rates) obtained from the reference field: 6 well 
case.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.0
1 Sph 0.555 2787 - 983 45
2 Sph 0.445 925 - 194 45

Table 6.13: Final variogram model obtained for <f> after 11 iterations: 4 Well case.

4 Well Case

The inversion was performed for 11 outer iterations. CPU time for the run was only 213 
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for <f> and 
In(k) are shown in Figures 6.42, 6.43, 6.44, and 6.45, for directions with azimuth 45 and 
135. The mismatch in L 2 norms for each iteration is shown in Figure 6.46. The final L 2 
norm of the pressure march was 10.91. After 11 iterations, the final updated variogram 
models are given in Tables 6.13 and 6.14 for <f) and ln(fc).

6 Well Case

The inversion was performed for 13 outer iterations. CPU time for the run was only 252 
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for <f> and 
ln(fc) are shown in Figures 6.47, 6.48, 6.49, and 6.50, for directions with azimuth 45 and 
135. The mismatch in L 2 norms for each iteration is shown in Figure 6.51. The final L 2 
norm of the pressure march was 11.39. After 13 iterations, the final updated variogram 
models are given in Tables 6.15 and 6.16 for 4> and ln(fc).
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Figure 6.41: Production data (pressure and flow rates) obtained from the reference field: 8 well 
case.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.003
1 Sph 0.86 10900 - 903 45
2 Sph 0.137 2600 - 895 45

Table 6.14: Final variogram model obtained for ln(fc) after 11 iterations: 4 Well case.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.001
1 Sph 0.575 10650 - 669 45
2 Sph 0.424 500 - 31 45

Table 6.15: Final variogram model obtained for cf> after 13 iterations: 6 Well case.
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Figure 6.42: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for (f> at each outer iteration: 4 Well case. (Direction with azimuth 45)

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.001
1 Sph 0.933 13100 - 922 45
2 Sph 0.066 450 - 72 45

Table 6.16: Final variogram model obtained for ln(fc) after 13 iterations: 6 Well case.
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Figure 6.43: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for (f> at each outer iteration: 4  Well case. (Direction with azimuth 1 3 5 )
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Figure 6.44: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: 4 Well case. (Direction with azimuth 45)
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Figure 6.45: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: 4 Well case. (Direction with azimuth 135)
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Figure 6.46: Mismatch norm of data integration at each outer iteration: 4 Well case.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.0
1 Sph 0.339 575 - 220 45
2 Sph 0.661 10050 - 545 45

Table 6.17: Final variogram model obtained for <fi after 10 iterations: 8 Well case.

8 Well Case

The inversion was performed for 10 outer iterations. CPU time for the run was only 195 
seconds in a 1.8 GHz Pentium 4 personal computer. The updated variograms for 4> and 
In(k) are shown in Figures 6.52, 6.53, 6.54, and 6.55, for directions with azimuth 45 and 
135. The mismatch in L 2 norms for each iteration is shown in Figure 6.56. The final L 2 
norm of the pressure march was 27.34. After 10 iterations, the final updated variogram 
models are given in Tables 6.17 and 6.18 for <f> and ln(k).

Some Conclusions on Effect of Production Data

Production data contains information about reservoir heterogeneity. The question is how 
much information we can retrieve with our developed algorithm. Having analyzed the 
responses, we can definitely improve the variogram parameters using production data. Some 
of the observations are the following.

• Variogram inversion for ln(fc) is relatively better than  tha t for <j>.

V . N o. T y p e Sill R an g e
X - Y (ft)

A ng le
(°)

0 Nugget 0.003
1 Sph 0.903 12000 - 934 45
2 Sph 0.094 600 - 96 45

Table 6.18: Final variogram model obtained for ln(fc) after 10 iterations: 8 Well case.
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Figure 6.47: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for 4> at each outer iteration: 6 Well case. (Direction with azimuth 45)
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Figure 6.48: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for <p at each outer iteration: 6 Well case. (Direction with azimuth 135)
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Figure 6.50: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: 6 Well case. (Direction with azimuth 135)
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10 Objective function values
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Outer Iteration #

Figure 6.51: Mismatch norm of data integration at each outer iteration: 6 Well case.

• More production data will improve the inverted variogram models, provided the in­
formation is captured in the inversion. A low mismatch value is an index for such 
evaluation; however, more production data increases the complexity in the nonlinear 
inverse problem leading to a possible poor match.

•  In spite of our objective of getting back the right variogram from production data, we 
need to start with reasonable variogram models. Gradient-based algorithm requires 
an initial solution close to the optimal solution.

•  The quality of the inverted models depends on the in-built variogram modeling mod­
ule. It may be possible to further improve on this module by trying different variogram 
types.

• It might be a good idea to perform the inversion with a prior model having large 
variogram range values to retrieve the anisotropy information better.

•  It also seems tha t starting w ith high nugget effect of constant values (no prior struc­
ture) works best.

6.5 Some Remarks on Variogram M odeling M odule

The in-built automatic variogram modeling module is implemented with an inverse squared 
distance weighted scheme. Thus, short lag distances are given more weights than the larger 
distances. Consequently, the updated variogram models do not have good match at large 
distances.

The perturbation is done on variogram range first, then anisotropy and finally the sill 
contributions for each nested structure. This cycle is repeated until a convergence w ith a 
criterion of threshold number of changes performed. The variograms are modeled to the 
total sill equal to the variance. No perturbation is done on the variogram type.

Nugget effect is an important param eter for any variogram model. However in a gridded 
domain, the nugget effect information is limited by the smallest dimension of the grid 
blocks. A possible solution could be to devise an artificial nugget effect information in the 
experimental variograms through the use of slopes near the origin (zero lag distance).
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Figure 6.55: Reference, prior and updated variograms (experimental - dotted line, model - solid 
line) for ln(fc) at each outer iteration: 8 Well case. (Direction with azimuth 135)
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Chapter 7

Fault Property Inversion U sing  
Production D ata

Reservoir heterogeneity has a large effect on performance of a reservoir. Faults may act 
as barriers creating compartmentalized reservoirs or as high conductivity conduits in an 
otherwise tight reservoir system. Often, the location of such faults or fault zones are iden­
tified with seismic data; however, the conductive characteristics of the fault zones cannot 
be resolved with seismics. Faults may affect the dynamic flow responses of the reservoir 
system. We develop an inversion algorithm for fault zone permeability characterization 
using multiple well flow response data.

7.1 Algorithm  Description

An algorithm for simultaneous inversion of porosity and permeability was developed using 
a modified SSC method, see Chapter 4. Here, we extend the algorithm for fault zone 
permeability characterization.

The basic approach of sensitivity computation remains the same. Some master points 
are assigned for fault zone cells. The properties (porosity and permeability) in these cells are 
optimized in the same inner optimization loop with the other master points for unfaulted 
zones. The optimal corrections for regular grid cells are propagated as before; however, the 
fault zone properties are taken as averages for each fault and kept constant for every cell 
representing the fault.

Thus, a methodology has been developed for simultaneous inversion of porosity and 
permeability. The steps involved in this extended algorithm follow.

1. Select regular master points and fault zone master points.

2. Perform Steps (2) to (9) involved in simultaneous inversion algorithm discussed in 
Chapter 4.

3. Determine and assign the weighted averaged optimal corrections to fault blocks.

4. Update initial 4> and y fields.

5. Repeat Steps (1) to (4) till convergence is achieved.
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The salient idea of this algorithm is to isolate the domains - the faulted ones and the 
unfaulted reservoir domain. Separate collection of master points and the constraint sets 
are set up for the respective domains. Propagation of optimal master point corrections are 
performed within the faulted domains by some averaging scheme, whereas for the unfaulted 
reservoir domain through kriging weights.

In the following sections, we demonstrate the ability of the code to retrieve fault zone 
properties w ith some synthetic examples. First, we discuss a sealing fault example with 
only two wells. We investigate the dependence of the well locations with respect to the 
fault. In one case, the wells are in the opposite side of the fault, while in the other they are 
in the same side of the faults. Then, we perform the inversion of a faulted reservoir with 
high permeability fault with similar two-well cases. Finally, some sensitivity studies on the 
inversion process are performed.

7.2 Sealing Fault Example

A synthetic realistic example is demonstrated here to evaluate the ability of the algorithm to 
characterize fault zone permeabilities from multiple well production data. Faulted reference 
porosity and permeability fields are constructed first. Dynamic pressure responses at a 
number of wells are obtained by flow simulation.

Case A: 2 Wells on the Opposite Side of the Fault

A 2D 4000-ft square domain is discretized into 40 x 40 grid cells of 100 x 100 ft. Porosity 
and permeability fields are shown in Figure 7.1. There are 2 wells: Well W1 at the center of 
the cell (28,5), and Well W2 is at (30,34) (shown in Figure 7.1). The boundaries on all four 
sides are no-flow boundaries. Reservoir thickness is 100 ft, viscosity is 0.2 cp, formation 
compressibility 10~6 psi-1 , and well radius 0.3 ft. Figure 7.2 shows the imposed production 
rates and the corresponding numerically simulated pressure responses at the two wells. 
The histogram and the scatter-plot between cf> and ln(fe) are shown in Figures 7.3 and 7.4, 
respectively. Mean and standard deviation of reference distributions are 0.071 and 0.019 
for (j>, and 1.293 and 1.277 for ln(£). The low average porosity confirms the low storativity 
of the reservoir. The correlation coefficient between porosity and permeability is 0.541. 
A fault extends across the reservoir dividing the reservoir in two separate compartments 
with one having relatively higher porosity and permeability. The fault is acting as a flow 
barrier with poor fault zone petrophysical properties. The reference fault zone porosity and 
ln(fc) are 0.03 and -5.0. Despite the simplicity of this example, inversion of these fault zone 
properties can be extremely difficult using multiple well production data. The reason for 
difficulty is the fact tha t subsurface flow is diffusive in nature. The effect of fault zones or 
narrow streak of abnormal properties may be masked by an effective ensemble properties in 
the region. In other words, both the scenarios of the effective homogenized properties and 
the fault zones may give rise to similar pressure profile for given flow rates.

Static well data are shown in Figure 7.5. Inversion was performed using 5 x 5  (=25) 
master points for reservoir models and 8 master points for fault properties. The prior 
variogram models used in this run for (j) and ln(fc) are given in Equations 7.1 and 7.2:

7^ h )  = 0.0 +  0ASph(h) Qx = 1000 +  0.6Sph(h) ax = 9000 (7.1)
ay = 3000 ay = 4000
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and

7y(h) = 0.0 +  0.35Sph(h) ax = 1000 +  0.65Sph(h) ^  = 8000
av =  3000 ay = 4500

(7.2)

The inverted models are obtained after 70 outer iterations (18.5 minutes in a 1.8 GHz 
processor personal computer). The pressure responses in the updated porosity and perme­
ability fields converge to the reference pressure data. These inverted models are shown in 
Figure 7.6. Figure 7.7 shows the pressure values at the ten wells computed from the true 
(from reference), initial and final updated porosity and permeability fields. Final pressure 
m atch is remarkable. Final average pressure mismatch (in L 2 norm sense) was only 2.527 
psi. The objective function values of the inversion process are shown in Figure 7.8. The 
fault zone properties at all outer iterations are shown in Figures 7.9 and 7.10 for porosity 
and permeability values. Updated porosity and permeability fields at some outer iterations 
of the inversion method are shown in Figures 7.11 and 7.12.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3550 well 23550 Well 1

3450

33503350

32503250

i9- 3150

3050

2950

28502850.

DaysDays

Figure 7.7: Pressure responses computed from initial (dashed lines) and updated (bullets) <j> and 
In (A;) fields with the true data (solid lines): Sealing Fault Example (Case A).

Objective function values

0.1.

®  0.01 
' S '

0.001

Outer Iteration #
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Case B: 2 Wells in the Same Side of the Fault

The 2 wells are now on the same side of the faults: Well W1 at the center of the cell (28,5), 
and Well W2 is at (20,34). The wells are shown in Figure 7.13. Other information and 
parameters are kept unchanged. Figure 7.14 shows the imposed production rates and the 
corresponding numerically simulated pressure responses at the two wells.

The inverted models are obtained after 216 outer iterations (59.5 minutes in a 1.8 GHz 
processor personal computer). The pressure responses in the updated porosity and per­
meability fields converge to the reference pressure data. These inverted models, shown in 
Figure 7.15, have a similar heterogeneity distribution to the reference tru th . Figure 7.16 
shows the pressure values at the two wells computed from the true (from reference), initial 
and final updated porosity and permeability fields. The objective function values of the 
inversion process is shown in Figure 7.17. Final average pressure mismatch (in L 2 norm 
sense) was 4.091 psi. The fault zone properties at all outer iterations are shown in Figures 
7.18 and 7.19 for porosity and permeability values. Updated porosity and permeability 
fields after each outer iteration of the inversion method are shown in Figures 7.20 and 7.21.

Some Conclusions

Comparison of the two cases reveal tha t it is more likely tha t one can capture heterogeneity 
information from production data  when the wells are in the opposite sides of the fault and 
there exists interference information in the production data. Inversion in Case B takes 
a significantly higher number of iterations to achieve the same order of pressure match 
and consequently higher CPU time than that in Case A. In fact, fault permeability values 
(see Figure 7.19) are much higher than  the reference values. One can attribute the reason 
for poor resolution to the fact tha t there is less interference information available in the 
production data  in Case B. Another observation is tha t fault permeability values are better 
resolved with the production data than the porosity values.
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Figure 7.17: Objective function values of the inversion process: Sealing Fault Example (Case B).
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Figure 7.22: Reference faulted <j) and ln(fc) fields: High Permeability Fault Example (Case A).

7.3 High Perm eability Fault Example

In this section, we discuss the inversion of the properties of a high permeability fault. Similar 
two-well cases are analyzed in this exercise. All the information are kept unchanged as in 
the previous section unless stated otherwise.

Case A: 2 Wells on the Opposite Side of the Fault

The reference porosity and permeability fields are shown in Figure 7.22. Figure 7.23 shows 
the imposed production rates and the corresponding numerically simulated pressure re­
sponses at the two wells. The histogram and the scatter-plot between <fi and ln(/c) are 
shown in Figures 7.24 and 7.25, respectively. Mean and standard deviation of reference 
distributions are 0.073 and 0.018 for <p, and 1.661 and 1.131 for In(k). The low average 
porosity confirms the low storativity of the reservoir. The correlation coefficient between 
porosity and permeability is 0.462. The fault location is the same as in the previous section. 
The reference fault zone porosity and ln(&) are 0.1 and 7.0.

The inverted models are obtained after 95 outer iterations (23.2 minutes in a 1.8 GHz 
processor personal computer). The pressure responses in the updated porosity and perme­
ability fields converge to the reference pressure data. These inverted models are shown in 
Figure 7.26. Figure 7.27 shows the pressure values at the ten wells computed from the true 
(from reference), initial and final updated porosity and permeability fields. Final pressure 
match is remarkable. Final average pressure mismatch (in L 2 norm sense) was only 5.55 
psi. The objective function values of the inversion process are shown in Figure 7.28. The 
fault zone properties at all outer iterations are shown in Figures 7.29 and 7.30 for porosity 
and permeability values. Updated porosity and permeability fields at some outer iterations 
of the inversion method are shown in Figures 7.31 and 7.32.

Case B: 2 Wells in the Same Side of the Fault

The wells are shown in Figure 7.33. Figure 7.34 shows the imposed production rates and 
the corresponding numerically simulated pressure responses at the two wells. The inverted 
models are obtained after 100 outer iterations (25.2 minutes in a 1.8 GHz processor personal 
computer). The pressure responses in the updated porosity and permeability fields converge
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Figure 7.23: Production data (pressure and flow rates) obtained for 2 wells from the reference field: 
High Permeability Fault Example (Case A).
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Figure 7.28: Objective function values of the inversion process: High Permeability Fault Example 
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Figure 7.33: Reference faulted <f) and In(k) fields: High Permeability Fault Example (Case B).

to the reference pressure data. These inverted models, shown in Figure 7.35, have a  similar 
heterogeneity distribution to the reference tru th . Figure 7.36 shows the pressure values at 
the two wells computed from the true (from reference), initial and final updated porosity 
and permeability fields. The objective function values of the inversion process is shown in 
Figure 7.37. Final average pressure mismatch (in L 2 norm sense) was 3.002 psi. The fault 
zone properties at all outer iterations are shown in Figures 7.38 and 7.39 for porosity and 
permeability values. Updated porosity and permeability fields after each outer iteration of 
the inversion method are shown in Figures 7.40 and 7.41.

Some Conclusions

For the high permeability fault, the inversion outcomes with both the cases changing the 
well locations show tha t reservoir heterogeneity is not captured well as in the situation with 
sealing faults. However, the objective values do converge faster in this case. Analyzing the 
objective function values (Figures 7.28 and 7.37), it is evident that jum p in the values are 
drastic in this case. The reason for such jum ps may be attributed to the erratic nature 
of the fault porosity values. There is clearly no convergence in the fault porosity values 
(Figures 7.29 and 7.38).

The other observation is that both the well location cases show similar nature of inverted 
outcomes. It is intuitively expected because with high permeability fault the well locations 
will not m atter much. The wells will almost be in instantaneous communication w ith each 
other.

7.4 Sensitivity Studies

Sensitivity of the inversion solution to certain parameters in the inversion process was 
investigated. The sensitivity to prior fault zone In(k) values and the number of fault zone 
m aster points are discussed below. Some general inversion related sensitivity studies were 
performed in Chapters 4 and 5.
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ln(fc) fields with the true data (solid lines): High Permeability Fault Example (Case B).
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Figure 7.37: Objective function values of the inversion process: High Permeability Fault Example 
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Figure 7.39: Fault zone ln(fe) values for each outer iteration: High Permeability Fault Example 
(Case B). (Reference value: thicker horizontal line)

Sensitivity to Prior Information

For the inversion of the fault properties, the code requires inputs of a priori fault zone ln(fc) 
and <j>, which may affect on the inversion solution. For the base case, we have the result of 
sealing fault example Case A (that is, the wells are in the opposite side of the fault). For the 
base case, we used a priori fault zone ln(A;) of -1.0 and cf) of 0.01. In this sensitivity study, 
we employed in one run In(k) value of 1.0 and 4> of 0.01, while in another run these values 
were 1.0 and 0.1. Figures 7.42 and 7.43 show the updated porosity and permeability fields. 
These figures should be compared with Figure 7.6. Inverted fault zone ln(fc) and 4> values 
at each outer iteration of the inversion process are shown in Figures 7.45 and 7.46 for the 
three cases. The number of outer iterations for the convergence were 166, 124 and 70 for 
the three cases. Objective function values at each outer iteration are shown in Figure 7.44 
for the cases. Corresponding final objective function L 2 norm values are 2.573, 2.843 and 
2.527, respectively. It should be mentioned tha t the fault zone ln(fc) and </> in the reference 
field are -5.0 and 0.03. Analyzing Figures 7.45 and 7.46 and the final objective function 
values tha t the inversion outcomes are more or less robust to prior information.

Sensitivity to Number of Fault Zone Master Points

We performed a sensitivity study to number of fault zone master points. Most of the 
results shown in this work are done with 8 master points for the fault zone. We analyze the 
inversion solution with 6, 8 and 10 fault zone master points. For this sensitivity exercise, 
we again use the sealing fault exercise Case A (where we used 8 master points) as the base 
case.

Figures 7.47 and 7.48 show the updated porosity and permeability fields for the two 
cases with 6 and 10 master points. Inverted fault zone In(k) values at each outer iteration 
of the inversion process are shown in Figure 7.50 for the three cases. Corresponding inverted 
fault zone 4> values are shown in Figure 7.51. It is evident from this figure tha t fault zone 
porosity inversion is not very robust. The number of outer iterations for the convergence 
were 102, 128 and 70 for the three cases. Objective function values at each outer iteration 
are shown in Figure 7.49 for the cases. Corresponding final objective function L 2 norm 
values are 2.598, 2.087 and 2.527, respectively. It should be mentioned tha t the fault zone
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Figure 7.44: Objective function values at each outer iteration for different a priori values.
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Figure 7.45: Fault zone ln(fc) values at each outer iteration for different a priori values. (Reference 
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Figure 7.46: Fault zone <j) values at each outer iteration for different a priori values. (Reference 
value: thicker horizontal line)

In(k) and (f) in the reference field axe -5.0 and 0.03. Analyzing Figures 7.50 and 7.51 and 
the final objective function values that the inversion outcomes are more or less robust to 
number of master points.

7.5 Effect of Production Data

In this section, we investigate how production data affects the inversion of fault properties. 
We perform the inversion with production data from 3 and 4 wells. We employ similar 
parameters as in the sealing fault (Case A) exercise apart from the production data. The 
well locations for both the cases are shown in Figure 7.52.

3 Well Case

The 3 wells are: W1 at the center of the cell (28, 5), W2 at (30, 34), and W3 at (20, 
34). Figure 7.53 shows the imposed production rates and the corresponding numerically 
simulated pressure responses at these wells. The inversion was run for 293 outer iterations. 
CPU time for the run was only 80.1 minutes in a 1.8 GHz Pentium 4 machine. The pressure 
responses in the updated porosity and permeability fields converge to the reference pressure 
data. These inverted models are shown in Figure 7.54. Figure 7.55 shows the pressure 
values at the three wells computed from the true (from reference), initial and final updated 
porosity and permeability fields. The objective function values of the inversion process is 
shown in Figure 7.56. Final average pressure mismatch in L 2 norm sense was 2.054 psi. The 
fault zone properties at all outer iterations are shown in Figures 7.57 and 7.58 for porosity
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Figure 7.53: Production data (pressure and flow rates) obtained from the reference field: 3 Well 
Case.

and permeability values. Updated porosity and permeability fields at some outer iterations 
of the inversion method are shown in Figures 7.59 and 7.60.

4 Well Case

The 4 wells are: W1 at the center of the cell (28, 5), W2 at (30, 34), W3 at (20, 34), and 
W4 at (36, 20). Figure 7.61 shows the imposed production rates and the corresponding 
numerically simulated pressure responses at these wells. The inversion was run for 226 
outer iterations. CPU time for the run was only 62.5 minutes in a 1.8 GHz Pentium 4 
machine. The pressure responses in the updated porosity and permeability fields converge 
to the reference pressure data. These inverted models are shown in Figure 7.62. Figure 
7.63 shows the pressure values at the four wells computed from the true (from reference), 
initial and final updated porosity and permeability fields. The objective function values of 
the inversion process is shown in Figure 7.64. Final average pressure mismatch in L2 norm
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Figure 7*54: Updated <j> and ln(fc) fields: 3 Well Case.
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Figure 7.55: Pressure responses computed from initial (dashed lines) and updated (bullets) <j> and 
ln(fe) fields with the true data (solid lines): 3 Well Case.
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Figure 7.56: Objective function values of the inversion process: 3 Well Case.
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Figure 7.58: Fault zone ln(fc) values for each outer iteration: 3 Well Case. (Reference value: thicker 
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sense was 3.217 psi. The fault zone properties at all outer iterations are shown in Figures 
7.65 and 7.66 for porosity and permeability values. Updated porosity and permeability 
fields at some outer iterations of the inversion method are shown in Figures 7.67 and 7.68.

Conclusion

In this chapter, we discussed our algorithm for fault property inversion and its capability 
to capture reservoir heterogeneity as well as fault properties. The inversion outcomes using 
different exercises discussed are remarkable. It appears that in the initial outer iterations 
reservoir heterogeneity is resolved. Information for fault properties are captured at the later 
outer iterations. This is evident from the objective function value curves for all the above 
exercises. Inversion of reservoir properties are better resolved for sealing fault when the 
production data have interference information as in Case A. Inversion outcomes are robust 
to number of master points or a priori fault zone information. Amount of production data 
may not affect the inversion results as long as the interference information is available.
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Chapter 8

Discussion and Future 
D evelopm ents

Realistic reservoir description for the purpose of subsurface fluid flow simulation is a long­
standing problem. Reality can only be attained with a correct fluid flow model and a 
reservoir description obtained through exhaustive measurement and sampling technique. 
This is prohibitive. Since the eighties, the industry has recognized the need for reservoir 
characterization with dynamic data. Dynamic data integration, in the name of history 
matching, has been applied since the beginning of the flow simulation. Of course, there 
are certain basic differences between the two. In dynamic data integration, the primary 
objective is to construct geologically realistic high resolution reservoir models. The uncer­
tainty due to insufficient data should be reduced by a reasonable extent. There has been a 
tremendous amount of effort and research dollars spent on this problem. To date, none of 
the methods or techniques can claim to be suitable for any generalized reservoir scenario.

8.1 Discussion

This research involved the development of some methods for dynamic data integration in 
reservoir characterization. The developed algorithms appear to be quite promising with 
their efficiency and ability to integrate a variety of data. Uncertainty analysis by construct­
ing equally likely multiple realizations has not been the focus of this work; however, this 
could be performed using the methods discussed here.

Chapter 4 describes an algorithm for simultaneous inversion of 4> and ln(fc). The algo­
rithm extends the SSC technique [202]. The algorithm involves

• 2D, single phase flow simulation through finite differencing,

• inner optimization through gradient projection method,

• constraint determination using initial model, and a priori mean and variance, and

• optimal correction propagation of 4> by simple kriging, and of In(k) by collocated 
kriging

The spatial porosity and permeability variation can be identified with less uncertainty by 
integrating available static and dynamic information from different sources including pro­
duction data. A number of sensitivity studies have been performed. Some controls in the
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inversion process have been identified. Some of the findings from the illustrated examples 
and sensitivity analyses in Chapters 4 and 5 include:

• inversion with only production data and prior variography information may not be 
sufficient to capture heterogeneity features

• global distribution information is important in inversion performance

• minimum pressure mismatch criterion by itself may not lead to the best inverted 
model attainable

• unrealistic initial porosity and permeability fields may affect the inversion responses

• constraints are important for the overall inversion process

• number of master points affects the solution. Inversion with too few master points 
may lead to poor inversion; on the contrary, inversion with too many master points 
increases the execution time and at the same time may not guarantee better inversion 
solution

• increasing the frequency of master point location updating may reduce the possibility
of getting stuck in local minima, but may not guarantee it

• prior variography information can be critical to inversion performance.

It was found that prior variogram information is critical in inversion performance. This 
is clearly a limitation because there are only well data to infer good prior variogram models. 
In order to eliminate this problem a variogram updating module is incorporated within the 
inversion algorithm. Chapter 6 extends the algorithm developed in Chapter 4 with a module 
facilitating variogram calculation and modeling. Better inversion outcomes were obtained 
using this code.

A spin-off of the modified algorithm is the ability to perform modeling and uncertainty 
analysis in variography using this algorithm. It is not possible to model reasonably good 
horizontal variograms in the common situation of a few wells. Expert modeler would use 
experience or analogue information to get around this very important aspect of reservoir 
modeling. This is a technique to address the problem by using information available from 
production history or well test data. Results proved encouraging.

Chapter 7 describes a developed algorithm for the inversion of fault property as well 
as the reservoir porosity and permeability. Equivalent petrophysical properties in the fault 
blocks were the focus of the algorithm. The inversion results were found to be interesting. 
It appears that during the initial outer iterations reservoir heterogeneity is resolved. Infor­
mation for fault properties are captured at a later stage. Inversion of reservoir properties 
are better resolved for sealing fault when the production data have interference information. 
Amount of production data may not affect the inversion results as long as the interference 
information is available. Inversion outcomes are robust to number of master points or a 
priori fault zone information.
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8.2 Lim itations

Review of any work cannot be complete unless one upholds the limitations of the approaches 
employed. Certainly, there are number of limitations in the algorithms developed and the 
philosophy of the research. Some of these are discussed below.

• Working only with synthetic models cannot be a good way to evaluate the capability 
of the algorithms developed. One has to address the issues with ‘real’ data. In all the 
illustrated examples, the production data used for inversion runs are obtained using 
the similar forward simulator that is built into the inversion code. This naturally 
makes the problem well-posed to some extent.

• Good production data with interference information are rarely available. Also, in 
some of the examples quite a few blocks with hard data are considered. This may not 
happen in reality.

• Determination of the porosity gradients from the permeability gradients and the cor­
relation coefficient leads to a more or less deterministic approach of obtaining the 
gradients. Although correlation coefficients are measures of scatter in the bi-variate 
distribution, their values are fixed. This cannot bring in the stochasticity in the esti­
mation of the gradients. Some of the illustrations used in this research confirm this 
problem.

• Simultaneous optimization of parameters (here porosity and permeability) of different 
order of magnitudes can lead to artifacts in the inversion.

• Selection of master points is not implemented in a manner that will lead to efficient 
inversion.

• Variogram fitting module does not assign the number or the type of variogram struc­
tures. This is certainly a limitation of the algorithm.

• Within a fault system, the petrophysical properties are considered constant that may 
not be true. Also, fault locations are considered known. No uncertainty study was 
performed addressing this issue.

• Reservoir flow simulation approaches, gridding issues, scalings issues are not addressed 
in the research adequately.

• Uncertainty analysis for future reservoir performance prediction has not been per­
formed. Although this is not a limitation of the implementation, but the content of 
the work.

8.3 Recom m ended Future Developm ents

Notwithstanding the progress made in this work, there is still a lot to achieve in this area of 
research. Complex reservoir scenarios with changing conditions are yet to be characterized 
properly or efficiently. Moreover, no practical case study is shown. Even the available 
techniques are devoid of the level of sophistication and versatility required for realistic 
application.
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Envisaging the limitations and the range of applicability of the methods, the future 
course could consider the following avenues:

• A logical extension of the developed algorithms presented in this research would be 
to explore more rigorous ways to propagate the master point corrections to the entire 
domain. Multiple-point normal equations could be a viable option.

• Inversion with production data where few actual pressure measurements are available, 
or where only flow rate information is available should be investigated in greater detail.

• Object-based modeling, surface-based modeling techniques could be integrated into 
inversion algorithms using dynamic data.

• Incorporation of unstructured grids, local grid refinement in the inversion algorithms 
can be a logical extension in future research undertakings.

• Extensive 3 D  reservoir characterization with dynamic data has not yet found its place 
in practice. It is necessary for more practical use of this method to model separated- 
layer geology when production data such as production rate profiles along the bore 
holes are available.

• Extension of the techniques to true multiphase flow that can handle mobility changes 
during the course of production. Inversion using streamline methods are being devel­
oped. Finite-difference, finite-element or finite-volume formulation for the multiphase 
inversion could be a more rigorous approach. However, the balance between compu­
tational cost and realistic simulation features needs to be resolved.

• Incorporation of hydraulic anisotropy with kx, k y  and kz has not been properly im­
plemented in the inversion algorithm. It must be remarked that incorporation of the 
diagonal permeability tensor will be sufficient in most cases.

• Provision for changing well conditions through time, e.g. new drilling, recompletions, 
workovers, infills, etc should be studied in a greater detail with more rigor. Inversion 
of production data from complex wells, e.g. deviated, horizontal, multiply completed, 
partially penetrated, gas-lift, etc. needs to be investigated.

• The inversion techniques should be able to handle process-specific reservoir situations 
and drive mechanisms, e.g. reservoirs with gravity segregation drive, bottom-water 
drive, edge-water drive, steam assisted gravity drainage mechanism, and waterflood- 
ing.
With the decline of onshore petroleum reserves, exploitation of the off-shore reserves 
is increasing. It is typical, in these situations, to have sparse information about a 
large extent of the reservoirs. In the presence of such sparse data, the major issues 
are boundary delineations, aquifer influx, and major heterogeneities. Complex stratig­
raphy and structures including partially transmissible faults exist in many reservoir 
environment. Characterization of these reservoirs with dynamic data is challenging 
as the space of uncertainty is enormous. Future research in the field should address 
these issues.
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• With a few exceptions, almost all the inversion techniques available to date suppress 
the time variation in the phase relative permeabilities and other fluid properties. A 
more realistic algorithm will account for such variations.

• Extension of the inversion to compositional production data is in the foreseeable 
future. The reason for this is that there exists a growing tendency in the industry to 
use compositional flow simulation in more and more practical cases. However, ideas 
are yet to be carved in a concrete manner.

•. Techniques for proper quantification of the uncertainty space should be investigated 
with more rigor and application.

• Most importantly, extensive field application and testing is required, which will stim­
ulate research into problems not yet investigated.
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Appendix A

Param eter Files in Com puter 
Codes

This appendix briefly explains the parameters required for all the programs developed. 
The programs are arranged in order of chapters in the thesis. All the codes developed are 
presently for multiple-well single-phase inversion. These codes are for simultaneous inversion 
of (ft and ln(fc): ssckphi; for simultaneous inversion with variogram updating: ssckphiv; 
and finally, for fault property inversion: ssckphif. The source code, and parameter files 
may be supplied by the author on request.

A .l  Program: ssckphi
A FORTRAN program, ssckphi, implements the methodology for simultaneous inversion 
of (ft and ln(fc). This ssckphi code allows to generate porosity and permeability realizations 
that honor a specified spatial variation structure defined by histogram and variogram, yet 
match dynamic multiple well production data.

The reservoir model is assumed 2-D rectangular discretized into N x by N y square cells 
with the size of each cell being dx = dy . The grid cells are numbered as shown in Figure 
A.I. Parameters required for ssckphi are given below:

• datafl: the file with local well conditioning (ft and ln(A;) data.
• ixl, iyl, ivrlph, ivrrlph, ivrlk, ivrrlk: the column numbers for x , y  coordinates, 

(ft, error in (ft, ln(A;) and error in ln(fc).
• ntmedph, ntmedk, nwell: the number of (ft, ln(fc) data and the number of wells 

with flow data.
• itrans: the index for identifying desired histogram.
• transfl: the file with ln(fc) histogram. Should be of the same scale as the SSCKPHI 

model.
• ihvph,ihwtph,ihvk,ihwtk: the column numbers for (ft, weight of (ft, ln(ft) and weight 

of ln(A;) in the desired histogram.
® parltph,parutph,parltk,parutk: lower and upper tail parameters for <ft and ln(A) 

used in histogram transformation.
• tmskO, vtmskO: the apriori mean and variance of ln(£;).
• tmsphO, vtmsphO: the apriori mean and variance of (ft.
• wellpmfl: the data file with reservoir and well parameters.
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Figure A.l: Discretization and numbering of numerical reservoir model used in the ssckphi code.

• flowrtfl: the data file with input flow rate (STB/DAYS) and time step data.

• wellprfl: the data file with input pressure data (psia).

• boundfl: the data file boundary data.

• initprfl: the data file with initial pressure (psia) for the entire reservoir in GEOEAS 
format.

• seedfl: the data file with initial <f> and In(k) field in GEOEAS format.

• icolph, icolk: the column numbers for (j) and In(k) in seedfl.

• nsim, nsim l, nsim2: the number of total, start and end realizations.
• tminph,tmaxph,tmink,tmaxk: trimming limits for <f> and ln(ft).

• idbg: an integer debugging level between 0 and 3. The larger the debugging level, 
the more information written out.

• dbgfl: the file for the debugging output.

• outfl: the output file for In(k) distribution in GEOEAS format.

• objfl: the output file for normalized objective function after each iteration . The 
first two records and the last records are total number iteration, initial normalized 
objective function, final objective function value.

• prmtchfl: the output file for pressure match responses. This gives the observed, the 
initial and the updated pressures at each time step in GEOEAS format.

• nx, xmn, xsiz: the definition of the grid system (x  axis).
• ny, ymn, ysiz: the definition of the grid system (y axis).
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• iseed: the random number seed.

• nmpx, nmpy: the number of master points in x  and y  directions.

• it_gmp: the number of iterations to update master points.

• arm y: the factor for defining the constraint interval for optimization.

• nitera, re la x , dconve: the maximum number of outer iterations, dumping param ­
eter and minimum tolerance.

• it_min, eps3, eps4, eps5, ifob j: the optimization parameters.

• radius: the search radius (ft) in kriging.

• ndmin, ndmax: the minimum and the maximum number of samples for kriging.

• k ty p e : the type of kriging. (ktype=0 ordinary kriging, k ty p e= l: simple kriging).

•  colcorr: corelation coefficient between (f> and ln(fc).

• nstph and cOph: the number of variogram structures and the isotropic nugget effect 
for <fi.

• itph(i), ccph(i), angph(i), aalph , aa2ph: For each of the n s t nested structures 
one must define the type of structure, the c parameter, the angle defining the geometric 
anisotropy, the maximum horizontal range, the minimum horizontal range for 4>.

•  nstk and cOk: the number of variogram structures and the isotropic nugget effect for 
In (k).

•  itk(i), cck(i), au g k (i) , aalk , aa2k: For each of the nst nested structures one 
must define the type of structure, the c parameter, the angle defining the geometric 
anisotropy, the maximum horizontal range, the minimum horizontal range for In(k).

A .2 Program: ssckphiv
A FORTRAN program, ssckphiv, implements the methodology for simultaneous inversion 
of 4> and In(k) with variogram updating. This ssckphiv code allows to generate porosity 
and permeability realizations tha t honor a specified spatial variation structure defined by 
histogram and variogram, yet match dynamic multiple well production data. This code also 
updates and model variograms.

The reservoir model is assumed 2-D rectangular discretized into N x by N y square cells 
with the size of each cell being dx = dy. The grid cells are numbered as shown in Figure
A.I. Parameters required for ssckphiv are given below:

•  datafl: the file with local well conditioning <f> and ln(£) data.

•  ixl, iyl, ivrlph, ivrrlph, ivrlk, ivrrlk: the column numbers for x, y  coordinates, 
4>-, error in (j), In(k) and error in ln(fc).

•  ntm edph, ntmedk, nwell: the number of </>, ln(fc) data and the number of wells 
with flow data.

• itra n s : the index for identifying desired histogram.

• transfl: the file with ln(fc) histogram. Should be of the same scale as the SSCKPHIV 
model.

•  ihvph,ihwtph,ihvk,ihwtk: the column numbers for <f>, weight of 4>, ln(k) and weight 
of ln(fc) in the desired histogram.
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•  parltph,parutph,parltk,parutk: lower and upper tail param eters for <p and ln(A;) 
used in histogram transformation.

• tmskO, vtmskO: the apriori mean and variance of ln(fc).

•  tmsphO, vtmsphO: the apriori mean and variance of <f>.

• apriorminph,apriormaxph: the apriori minimum and maximum for <p values.

• ap rio rm in y ,ap rio rm a x y : the apriori minimum and maximum for ln(fc) values.

•  wellpmfl: the data file with reservoir and well parameters.

• flow rtfl: the data file with input flow rate (STB/DAYS) and time step data.

• wellprfl: the data file with input pressure data  (psia).

• boundfl: the data file boundary data.

•  initprfl: the data file with initial pressure (psia) for the entire reservoir in GEOEAS 
format.

•  seedfl: the data file with initial <fi and ln(fc) field in GEOEAS format.

•  icolph, icolk: the column numbers for <f> and In(k) in seedfl.

•  nsim, n sim l, nsim2: the number of total, start and end realizations.

•  tm inph,tm axph,tm ink,tm axk: trimming limits for <p and ln(k).

• idbg: an integer debugging level between 0 and 3. The larger the debugging level, 
the more information written out.

•  dbgfl: the file for the debugging output.

• outfl: the output file for In(k) distribution in GEOEAS format.

•  objfl: the output file for normalized objective function after each iteration . The 
first two records and the last records are to tal number iteration, initial normalized 
objective function, final objective function value.

•  prmtchfl: the output file for pressure match responses. This gives the observed, the 
initial and the updated pressures at each time step in GEOEAS format.

•  nx, xm n, xsiz: the definition of the grid system (x axis).

•  ny, ym n, ysiz: the definition of the grid system (y axis).

• iseed: the random number seed.

• nmpx, nmpy: the number of master points in x  and y directions.

• it_gmp: the number of iterations to update master points.

•  am_y: the factor for defining the constraint interval for optimization.

• nitera, relax, dconve: the maximum number of outer iterations, dumping param­
eter and minimum tolerance.

• it_min, eps3, eps4, eps5, ifobj: the optimization parameters.

• radius: the search radius (ft) in kriging.

• ndmin, ndmax: the m i n im u m  and the maximum number of samples for kriging.
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• ktype: the type of kriging. (k type=0 ordinary kriging, k ty p e = l:  simple kriging).

• colcorr: corelation coefficient between <p and In(k).

• nstph and cOph: the number of variogram structures and the isotropic nugget effect 
for (p.

• itph(i), ccph(i), angph(i), aa lp h , aa2ph: For each of the n s t nested structures 
one must define the type of structure, the c parameter, the angle defining the geometric 
anisotropy, the maximum horizontal range, the minimum horizontal range for <p.

• nstk and cOk: the number of variogram structures and the isotropic nugget effect for 
ln(fc).

• itk(i), cck(i), angk(i), aa lk , aa2k: For each of the nst nested structures one 
must define the type of structure, the c parameter, the angle defining the geometric 
anisotropy, the maximum horizontal range, the minimum horizontal range for ln(fc).

• nlagph,nlagy: the number of lags used in variogram calculation for <p and ln(fc).

•  xlagph,xlagy: lag separation distance used in variogram calculation for cp and ln(&).

• xltolph,xltoly: lag tolerance used in variogram calculation for <p and ln(fc).

• n d irp h ,n d iry : the number of directions used in vaxiogram calculation for cp and 
ln(fc).

•  azm ph(i), atolph(i), bandwhph(i): For each of the ndirph directions one must 
define the azimuth angle, the the angle of azimuth tolerance, the bandwidth for (p.

•  azm y(i), atoly(i), bandwhy(i): For each of the ndiry directions one must define 
the azimuth angle, the the angle of azimuth tolerance, the bandwidth for ln(fc).

A .3 Program: ssckphif
A FORTRAN program, ssckphif, implements the methodology for inversion of fault prop­
erty as well as <p and ln(fc). This ssckphif code generates fault block permeability and 
porosity values and allows to generate porosity and permeability realizations tha t honor a 
specified spatial variation structure defined by histogram and variogram, yet match dynamic 
multiple well production data.

The reservoir model is assumed 2-D rectangular discretized into N x by N y square cells 
with the size of each cell being dx = dy. The grid cells are numbered as shown in Figure
A.I. Parameters required for ssckphif are given below:

• da tafl: the file with local well conditioning tp and In(k) data.

• ixl, iyl, ivrlph, ivrrlph, ivrlk, ivrrlk: the column numbers for x, y coordinates, 
(p, error in <p, ln(fc) and error in ln(fc).

• ntmedph, ntmedk, nwell: the number of <p, ln(fc) data  and the number of wells 
with flow data.

• itrans: the index for identifying desired histogram.

•  transfl: the file with ln(A;) histogram. Should be of the same scale as the SSCKPHIV 
model.

• ihvph,ihwtph,ihvk,ihwtk: the column numbers for <p, weight of cp, In(k) and weight 
of ln(/c) in the desired histogram.
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• parltph,parutph,parltk,parutk: lower and upper tail param eters for 4> and In(k) 
used in histogram transformation.

•  tmskO, vtmskO: the apriori mean and variance of ln(fc),

• tmsphO, vtmsphO: the apriori mean and variance of <j>.

•  apriorminph,apriormaxph: the apriori minimum and maximum for 4> values.

• apriorminy,apriormaxy: the apriori minimum and maximum for ln(fc) values.

• wellpmfl: the data file with reservoir and well parameters.

• flow rtfl: the data file with input flow rate (STB/DAYS) and time step data.

•  w ellprfi: the data  file with input pressure data  (psia).

• boundfl: the data file boundary data.

• initprfl: the data file with initial pressure (psia) for the entire reservoir in GEOEAS 
format.

• seedfl: the data file with initial </> and In(k) field in GEOEAS format.

• icolph, icolk: the column numbers for <fi and ln(A;) in seedfl.

• nsim, n sim l, nsim2: the number of total, start and end realizations.

•  tm inph,tm axph,tm ink,tm axk: trimming limits for <fi and \n(k).

® idbg: an integer debugging level between 0 and 3. The larger the debugging level, 
the more information written out.

•  dbgfl: the file for the debugging output.

• outfl: the output file for In(k) distribution in GEOEAS format.

• objfl: the output file for normalized objective function after each iteration . The 
first two records and the last records are total number iteration, initial normalized 
objective function, final objective function value.

•  prmtchfl: the output file for pressure match responses. This gives the observed, the 
initial and the updated pressures at each time step in GEOEAS format.

• nx, xm n, xsiz: the definition of the grid system (x  axis).

• ny, ym n, ysiz: the definition of the grid system (y axis).

•  iseed: the random number seed.

•  nmpx, nmpy: the number of master points in x  and y  directions.

• it_gmp: the number of iterations to update master points.

• am_y: the factor for defining the constraint interval for optimization.

• nitera, relax, dconve: the maximum number of outer iterations, dumping param ­
eter and minimum tolerance.

• it_min, eps3 , eps4, eps5, ifobj: the optimization parameters.

• radius: the search radius (ft) in kriging.

• ndmin, ndmax: the minimum and the maximum number of samples for kriging.
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• k ty p e : the type of kriging. (k type=0 ordinary kriging, k ty p e= l: simple kriging).

•  colcorr: corelation coefficient between 4> and ln(fc).

• nstph and cOph: the number of variogram structures and the isotropic nugget effect 
for 4>.

• itph(i), ccph(i), angph(i), aa lph , aa2ph: For each of the n s t nested structures 
one must define the type of structure, the c param eter, the angle defining the geometric 
anisotropy, the maximum horizontal range, the minimum horizontal range for 4>.

•  nstk and cOk: the number of variogram structures and the isotropic nugget effect for 
ln(A:).

•  itk(i), cck(i), angk(i), aa lk , aa2k: For each of the nst nested structures one 
must define the type of structure, the c param eter, the angle defining the geometric 
anisotropy, the maximum horizontal range, the minimum horizontal range for In(k).

• nfault: the number of faults present.

• ndatf(i),facm ultph(i),facm ultk(i),facm ultphv(i),facm ultkv(i): For each of the 
nfault faults one must define the number of data specified, apriori </>, (f> variance, 
ln(fc), ln(A;) variance values.

• faultdatfl: the input file with fault specifications in GEOEAS format.

• nmpflt: the number of master point used for each fault.

• fau ltm u ltfl: the output file for fault multipliers.
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Appendix B

Sensitivity Analysis and Derived 
Information

This chapter describes an independent study on the sensitivity coefficients of the simulation 
responses with respect to reservoir parameters. However, it should be noted that no conclu­
sive work or message is brought forth in this appendix. However, the appendix reveals some 
interesting informstion on the behavior of the sensitivity coefficients that may be exploited 
in some future work.

B .l  Introduction
An im portant constituent of a research on dynamic data integration is the com putation and 
investigation of the sensitivities of reservoir parameters to the simulation responses. Under­
standing the behavior of these sensitivity coefficients is critical to dynamic data integration 
in reservoir characterization.

The reservoir simulator, E c lip se , is widely used [180]. It has been used, verified and 
validated for numerous reservoir scenarios, and many research and reservoir management 
studies have been based on the responses of this reservoir simulator. E c lip se  has the 
feature of reporting certain sensitivity coefficients.

B .2 Sensitivity Com putation
The finite-difference formulation of the governing flow equations for 3D 3-phase reservoir 
simulation can be represented as:

F(Un+1, Un ,6) = 0 (B.l)

where Un+1 — [P0 Sw Sg . . .  ]T at time step (n +  1), tha t is, the response variables to 
be simulated. Let [0] = [6i 02 ■ ■■ 6m ] = [k <f> . . .  ]T be the set of reservoir simulation 
parameters, which may be the permeability vectors, porosity at all grid location. These 
algebraic equations are strongly coupled nonlinear ones. Gradient based iterative techniques 
used for the solution of the above equations involves:

_  p « )  =  - f ( U W , U n, 0 ) (B.2)

where the superscript k is the iteration index, while n  refers to the time step.
The sensitivity coefficients of the response variables w ith respect to any parameter, 6, 

can be written as
dun+l

d6
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Variable Variogram
Porosity 7 0(/i) =  0.1 + 0.9SphaxZ=ay=5m0ft(h)

az-15ft
Permeability 7 k(h) = 0.3 +  0.7 Sphax - av - 5000/ t  (h)

ar.=15ft

Table B .l: Porosity and permeability variograms for the ‘base case’ reservoir model.

which can be computed indirectly from Equation B .l or B.2. Differentiation with respect 
to param eter 9 of the flow equation (Equation B .l) leads to:

Of 0Un+1 Of 0Un Of 
0Un+l 09 +  0Un 09 + 09 ~

which can be rearranged to obtain

0Un+l
09

Of
oun+1

-1 Of 0Un Of
[0Un 09 0 9 1

(B.3)

(B.4)

At each time step, discretized flow equations are solved once. In other words, the Jacobian 
of the flow equations, df

dUn+l is inverted only once. The sensitivity coefficient with respect
to any reservoir param eter 9 is obtained using Equation B.4. This is an efficient approach 
as flow equations are solved only once regardless of the number of reservoir parameters. 
However, the computation time increases by a factor of (0.1-0.2) times the usual run  for 
each sensitivity param eter depending on the complexity of the problem.

B.3 Base Case Reservoir Description
In order to investigate the behavior of computed sensitivities, a ‘base case’ reservoir scenario 
is studied. A regular grid of 64x64x16 is considered w ith dimensions 500 ft x 500 ft x 
7.5 ft for the reservoir overlying an aquifer (grid: 64x 64 x 2; dimensions: 500 ft x 500 ft 
x 15 ft). A single structure variogram is used to generate a porosity model. Permeability 
is generated using collocated cokriging using the porosity model and correlation coefficient 
of 0.7. Variogram models used for porosity and permeability are shown in Table B .l. To 
simplify the problem, anisotropy is considered only for the vertical direction by a multiplier 
of 0.1. Porosity is considered to have truncated normal distribution with a mean of 10% 
and variance 25%, while permeability a log-normal distribution with a mean 100 mD and 
variance 1000 mD2. Aquifer properties are homogeneous with a porosity of 0.1 and a 
permeability of 100 mD. The idea is to model a reservoir with a moderate bottom-water 
drive. This emulates a realistic reservoir fluid flow situation. Figure B .l shows the isometric 
view of the porosity model.

A simplified two-phase oil-water system is employed for the simulation. The capillary 
pressure and the relative permeability curves for the “base case” are shown in Figure B.2. 
There is only one transition zone (layer 16) over the aquifer. Four producing wells are 
considered at (X,Y) grid locations (16, 17), (45, 15), (14, 40) and (39, 47). Top 12 grids of 
each are completed. For the limits of well controls, maximum oil production rate, maximum 
water production rate, maximum reservoir fluid volume flow rate and minimum bottom- 
hole pressure are set at 5000 STBD, 1500 STBD, 5000 RBD and 1000 PSI, respectively. 
It should be noted tha t no artificial well control change (e.g. well recompletions, plugging, 
etc.) has been activated for the base case simulation.

For the base case simulation run, the flow responses are obtained with ECLIPSE 100. 
Bottom-hole pressure, oil production rate and water-cut are shown here only for well 1 and 
well 2 in Figures B.3. The history of well control changes are shown in Table B.2.
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Porosity Model (DZ*40 Reservoir Blocks; DZ*20 Aquifer Blocks)

Figure B .l: Porosity model for the ‘base case’.
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F ig u r e :  U n s e a l e d  S a t u r a t i o n  F u n c t i o n s  ( B a s e  C a s e )

Figure B.2: Relative permeability and capillary pressure curves used for the ‘base case’.

231

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Well 1 Well 2
5500J

5000.

.2 4500.

4000.

3500.

3000.
1000 

Time (days)
1500 2000500

5500J

5000J

.2 4500.

4000.

3500 1

3000.
1000 

Time (days)
1500 2000500

5000

4000J

Q 3000.

2000

1000 .

1000 

Time (days)
1500 2000500

5000

4500.

9  4000.

3500.

3000.

2500.
1000 

Time (days)
1500 2000500

0.3.

3O© 0.2.
13
5

0.1

20001000 

Time (days)
1500500

0.3J

0.1 J

20001000 
Time (days)

1500500

Figure B.3: Flow responses for the ‘base case’. (BHP - Bottom-hole flowing pressure, OPR - Oil 
production rate
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B.4 Region Specification for Sensitivity Com putation
In order to compute the sensitivities, reservoir param eters must be identified and their 
regions defined. The focus here is only on the permeabilities and porosities. Originally, 
the objective of the present study is to acquire as much information as possible from the 
computed gradients. Their pattern, behavioral changes in time, particularly due to some 
‘event’ during the simulation period, may capture the influence of reservoir heterogeneity. 
Regions definition can be ‘ad hoc’, suitable to specific goals of the study. Regions can be 
chosen to be oriented along some geological features th a t are hypothesized to be present 
in the reservoir. Sensitivity of the response variables w ith respect to  the param eters are 
computed for the defined regions and investigated. For the base case sensitivity calculation, 
five regions are defined for each parameter: transmissibility in the x —direction and pore 
volume. Figure B.4 shows the region definition for the gradient parameters.

B.5 Typical Sensitivity Coefficient Behavior
For the ‘base case’ reservoir study, the sensitivity coefficients are computed. Parameters 
considered are transmissivity in x —direction and pore volume. Well variables for the sen­
sitivities are analyzed are well bottom-hole pressure, well oil production rate, and well 
water-cut. The general behavior of the sensitivity coefficients can be quite complex de­
pending on the flow and reservoir complexity. Signatures of various events are often present 
in the sensitivity coefficients. However, this depends on numerous factors and can be often 
masked by the interferences of different concurrent phenomena.

Figure B.5 shows the sensitivity coefficients computed for the ‘base case’ for Well 1 which 
is located at (16,17) in Region 1. These coefficients are for well bottom-hole pressure, well 
oil production rate, and well water cut with respect to direction transmissivity of Region 
1. Events A  after 50 days and G  after 450 days have more pronounced effect on the trends 
as these events involve Well 1. There may be communication between the wells. The 
sensitivity coefficients here are reported only a t the specified reporting intervals. A detailed 
investigation is required in order to fully understand these sensitivity curves.

R esu lts  w ith  O nly O ne W ell

A logical next approach is to decouple the problem by retaining only one well instead of 
four wells for the same reservoir description. Thus, there will be no well interference. W ith 
only Well 1 in Region 1 active, the sensitivity coefficients are computed. Figure B.6 shows 
the gradient for Well 1 bottom-hole pressure with respect to x —direction transmissivity of 
Region 1 at specified reporting intervals.

Comparing Figure B.6 with Figure B.5 (top one - for bottom-hole pressure), it can be 
seen tha t early time and late time trends are quite similar. However, there are significant 
dissimilarities between the two curves. This suggests tha t interwell communication affects

E v e n t ID D ays E v en t
A 50 Well 1 and Well 4 change from oil rate control to 

reservoir fluid rate control
B 74.5 Well 3 changes to reservoir fluid rate control
C 100 Well 2 changes to reservoir fluid rate control
D 450 Well 1 changes to water rate control
E 550 Well 4 changes to water rate control
F 600 Well 3 changes to water rate control
G 1150 Well 2 changes to water rate control

Table B.2: Well control history for the ‘base case’ simulation with four wells.
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View: iJ P lan e : t P a ra m e te r  Type: PoreV  C urren t R egion: Region)

Printed on 4 /0 7 /2 0 0 0  a t 10:48.02 m  by user zreze from machine boret.mineml.ualberta.ca

Figure B.4: Parameter regions definition for the ‘base case’. (Region 1: red, Region 2: green, 
Region 3: blue, Region 4: light blue; Region 5: purple)
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Figure B.5: Sensitivity coefficients for the ‘base case’ Well 1 bottom-hole pressure, oil production 
rate, and watercut with respect to Region 1 transmissibility. Events labeled (vertical lines) A to G 
are those in Table B.2.
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Figure B.6: Sensitivity coefficients for the ‘base case’ (1 Well Case) Well 1 bottom-hole pressure 
with respect to Region 1 transmissibility. Events labeled (vertical lines) are those in Table B.3.

E v e n t ID D ays E ven t
A 50 Well 1 changes from oil rate control to 

reservoir fluid rate control
B 450 Well 1 changes to water rate control

Table B.3: Well control history for the ‘base case’ simulation with only Well 1.

the sensitivity coefficient behavior as early as about 200 days. Well events have pronounced 
effect on the coefficients.

R e s u l t s  for Different Regions

Not all wells are equally sensitive to all the regions. Sensitivity coefficients for regions in 
which wells are located are orders of magnitude higher than  other regions. Figure B.7 shows 
the sensitivity coefficients of well bottom-hole pressure for Region 1, 2 and 5 for both cases: 
‘base case’ with all four wells, and ‘base case’ with only Well 1. Well 1 is in Region 1. 
Thus, sensitivities with respect to parameters in Region 1 are quite large. Whereas, for the 
parameters in Region 2, which is the narrow strip of region along a presumed fault plane, 
well variables are almost totally insensitive. While, the variables are only slightly sensitive 
to parameters in region 5. A close look at the figure says tha t Well 1 bottom-hole pressure 
is slightly sensitive to Region 5 transmissivity when well interferences are active. It should 
be noted tha t these results apply to this case only.

Effect of Reporting Specification

The sensitivity coefficients calculated above have been computed at the specified reporting 
interval only. For a better interpretation, the coefficients may be computed at all time steps 
(chopped and regular). It is observed that t his can be a significant factor particularly when 
there are many events/ phenomena happening in the subsurface flow process or there are 
some occurrences of non-convergence in the solution process. Figure B.8 illustrates this 
point. Gradients are computed with the same reservoir description but at all time steps. 
The figure reveals at early time when there are a few instances of chopped time steps due to 
some event or problem with solution process, the trends in the gradient curves are dissimilar. 
Gradients will be computed at all time steps for future investigation and analysis.
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Figure B.7: Sensitivity coefficients Weil 1 bottom-hole pressure with respect to Region 1, 2 and 5 
transmissibiiity (Multiple Well Case and 1 Well Case).
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Figure B.8: Effect of reporting specification on bottomhole pressure sensitivity coefficients.

B.6 Factors Affecting Sensitivity Coefficients
Several investigations were done to determine the changes in the sensitivity coefficient 
curves. How do these curves change when aquifer strength changes, or artificial well con­
trols are activated? Does heterogeneity have a significant effect on the gradients? Are 
volumes or shapes of param eter regions im portant in this analysis? Does well location or 
grid configuration play a role?

S tren gth  o f  A quifer
The flow process in a reservoir with a bottom-water drive can be quite complicated with 
water-coning and other flow phenomena. The volume of an aquifer can be considered as 
a measure of the strength of the underlying aquifer. To determine the effect of aquifer 
strength on the sensitivity coefficients, the aquifer thickness is changed.

To simplify the analysis, the reservoir description with only one well is investigated. 
The ‘base case’ has an aquifer thickness of 30 feet. Keeping the reservoir description same 
as in ‘base case’, the aquifer thickness is varied from 5 feet to 100 feet. Figure B.9 shows 
the sensitivity coefficients for Well 1 bottom-hole pressure with respect to x —direction 
transmissivity of Region 1 for these 3 cases. The figure reveals a significant change in the 
sensitivity coefficients as the aquifer strength changes.

In case of weak aquifer, well control changes only once (at 175 days) from oil rate 
control mode to reservoir fluid rate control mode. In fact, Well 1 does not a tta in  water rate 
control during the simulation period. This makes a significant difference in the late time 
behavior from the other two cases. Strong aquifer case has similar trends as in the ‘base 
case’. However, the well bottom-hole pressure is less sensitive to the region transmissibiiity 
(Region 1) when the aquifer is stronger. This is expected as pressure support will be higher 
for a reservoir with a stronger aquifer support or water-drive.

E ffect o f W ell C ontrol
Due to  numerous management decisions, well configurations or modes of operations are 
changed often within the life of a well. For example, a well connection may be artificially 
shut off at some depth when water coning occurs or is about to occur. These well control 
changes drastically affect the sensitivity coefficients.

To illustrate the effect of well controls, reservoir description with a strong underlying 
aquifer is chosen. The rationale for investigating the strong aquifer is tha t there are more 
occurrences of well control changes because of escalated water coning. Figure B.10 reveals 
significant differences in the sensitivity coefficients with and without artificial well controls. 
Event history for the case with artificial well control is tabulated in Table B.4. Figure B.10
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Figure B.9: Bottom-hole pressure sensitivity coefficients with respect to Region 1 transmissibiiity 
for cases: weak aquifer, ‘base case’ aquifer and strong aquifer. Events A (red): well control changes 
from oil rate control mode to reservoir fluid rate control mode; Events B (blue): well control changes 
to water rate control mode.
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Figure B.10: Bottom-hole pressure sensitivity coefficients with respect to Region 1 transmissibiiity 
for cases: one with artificial well controls and the other without artificial well control. Events A to 
X are described in Table B.4.

reveals tha t before artificial well controls are activated (i.e. before 150 days) the trends are 
exactly same. Once a ‘worst-offending connection’ is shut off, subsequent gradient behavior 
changes significantly.

It is observed tha t the effect of any particular event, as water rate control mode, is 
not always the same. It depends on phase saturations, pressure level etc. An event like 
connection shut-off may cause higher oil production rate if oil phase in the vicinity has 
sufficient mobility and well bottom-hole pressure will decrease; however, when this is not 
the situation, flow of both oil and water is hindered and well bottom-hole pressure increases. 
The gradients show corresponding changes. Similarly, the effect of bottom-hole pressure 
control mode can be determined. In this case, there will not be any pressure sensitivity, 
but gradients of oil production rate or water-cut may change significantly.

E ffect o f  T em poral D iscretiza tion

A study was conducted whether temporal discretization in the flow simulation affects the 
sensitivity coefficients. Time steps are varied from 5 days to 200 days. In Figure B .l l  
sensitivity of time steps on the gradients (well bottom-hole pressure) are shown for variation 
of step sizes from 50 days to 200 days. Table B.5 gives the description of the color codes 
shown in Figure B .ll .  It is apparent from the figure tha t step increments have significant 
effect on the gradients. The events are shifted forward or backward in time as time steps 
are varied. One reason for this variation in the trend can be attributed to ‘chain effect’ tha t 
is a shift in any event may trigger different states of fluid saturation or pressure level for 
the subsequent duration of the flow.

It is also evident from the figure tha t coarser increments may mask some information. 
However, it is found that for the reservoir heterogeneity used in these models time steps 
of 50 days to 100 days will be ideal for future analysis. Less than 50 days step sizes show 
erratic behavior. In terms of computational efficiency, smaller steps will be quite expensive 
as opposed to larger time steps.

E ffect o f  h eterogen eity

One objective of investigating the sensitivity coefficients is to determine a set of a priori con­
straints to be used in the optimization process. In an optimization loop, reservoir properties 
such as grid permeability and porosity values are modified, thus changing the heterogene­
ity of the reservoir. This optimization process is computationally intensive. To make the
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E v en t ID D ays E v en t
A 0 Changes from oil rate control to

reservoir fluid volume rate control mode (RFVRC)
B 150 Changes to water rate control mode (WRC)
C 175 Worst offending connection 12 shut-off (W0C 12) 

RFVRC
D 200 WRC
E 225 W0C 11 and RFVRC
F 250 WRC
G 280.98 W0C 10
H 314.75 W0C 9
I 350 W0C 8
J 392.45 W0C 7
K 421.23 WOC 6
L 450 woe 5
M 489.24 WOC 4 and well changes to

bottom-hole pressure control mode (WBHPC)
N 519.62 WOC 3
O 550 WOC 2
P 600 WOC 1; Well 1 completely shut-off;

Well 1 immediately reopened;
Secondary water cut limit (0.5) activated; WRC

Q 650 WOC 12; WOC 11; WOC 10
R 1050 WOC 9
S 1400 WOC 8
T 1550 WOC 7
U 1700 WOC 6
V 1850 WOC 5
w 2000 WOC 4; WBHPC; Non-linear equation convergence failure
X 2090 WOC 3

Table B.4: Well control and event history for simulations for aquifer strength study with 
artificial well control.

C o lo r C ode E v en t
Red Change from oil rate control to 

reservoir fluid volume rate control mode
L ight Blue Change to water rate control mode

Black Worst offending connection shut-off and 
change to reservoir fluid volume rate control mode

Blue Worst offending connection shut-off
Green Worst offending connection shut-off and 

change to well bottom-hole pressure control mode

Table B.5: Event history in study of temporal discretization on sensitivity used in Figure
B .ll .
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Figure B .ll: Bottom-hole pressure sensitivity coefficients with respect to Region 1 transmissibiiity 
for cases with time steps of 50, 80, 100, and 200 days. Events color coded are described in Table
B.5.
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Figure B.12: Effect of heterogeneity on sensitivity coefficients with respect to Region 1 transmis­
sibiiity: homogeneous and heterogeneous. Events are color coded in the same manner as in Table 
B.5.

algorithm efficient the gradients are frozen or kept unchanged for several iterations, which 
one could call an inner optimization loop. To ascertain the validity of such approximate 
technique one should investigate the effect of heterogeneity on the sensitivity coefficients of 
the flow responses with respect to relevant reservoir properties.

Figure B.12 shows the sensitivity coefficients of well bottom-hole pressure with respect 
to Region 1 transmissivity for a reservoir description w ith homogeneous properties and 
heterogeneous properties. It is apparent from the figure tha t heterogeneity plays a significant 
role in determining the gradient trends. Although not much can be explained about the 
effect of heterogeneity, Figure B.12 reveals homogeneous properties lead to less frequent 
changes in well control. However, this does not imply the variability in the gradients will 
be less for homogeneous reservoirs. Further investigation is needed to quantify the effect of 
heterogeneity on the sensitivity coefficients.

To quantify the effect of heterogeneity changes in reservoir property models in any opti­
mization procedure, a random permeability (x—direction) model is generated with a mean 
of zero. This model multiplied with a scalar coefficient is added to a ‘base case’ permeability 
model. The sensitivity coefficients are computed for the new model. The random model 
can be considered as a gradient direction in a gradient based optimization technique, and 
the coefficient can be considered as the distance in this gradient direction. The coefficient 
is varied from 0.25 to 20. Figure B.13 illustrates the effect of such heterogeneity changes. It 
is evident from the figure that overall trend is quite similar with the exception of some local 
variation up to a coefficient as high as 10. This affirms the validity of keeping sensitivity 
coefficients frozen in an inner optimization loop.

Effect of Region Volume, Well Location a n d  Grid Configuration
Intuitively, a param eter region with a larger volume representation has greater effect than  
a smaller one. In order to investigate this a reservoir model similar to the ‘base case’ one is 
considered with only one well at the central location. Model has 64x64x16 reservoir grids 
with an underlying aquifer. Entire reservoir model is divided into two concentric regions. 
Volume of the region containing the central well is varied by including l x l  to 33x33 grid 
blocks in x — and y —direction. Figure B.14 shows the effect of region volume on sensitivity 
coefficients. There is a significant jum p in the gradient absolute values when region volume 
increased from l x l  to 3x3. However, any volume increase after that does not have any 
practical effect on the sensitivity coefficients.

In order to study the effect of the volume location relative to the well, 9 concentric 
param eter regions are specified around one central well. Regions are numbered in the
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Figure B.13: Effect of degree of heterogeneity on sensitivity coefficients. Changes in permeability 
model obtained with a scalar coefficient multiplied random model added to a ‘base case’ model. The 
scalar coefficient is varied from 0.25 to 20.
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Figure B.14: Effect of region volume on the well borehole pressure sensitivity coefficients with 
respect to transmissibiiity of region containing the central well.
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ascending order of proximity from the well. Figure B.15 shows the borehole pressure sen­
sitivity coefficients for the concentric regions. It is evident from the figure th a t gradient 
absolute values diminish with the regions further away from the well.

Grid orientation affects the sensitivity coefficients. To mimic two different grid orienta­
tions, the same reservoir model is used but with two different param eter region orientations 
using square and triangular regions, respectively. There are four regions in each case. The 
parameter regions for the two cases are shown in Figure B.16. There are four regions in each 
case. The central well is located in Region 1 in both  cases. Figure B.17 shows borehole 
pressure sensitivity with respect to transmissibilities of all four regions. Due to 7-point 
finite-differencing scheme of the flow equation, the sensitivity coefficients with respect to 
Region 4 transmissibiiity are insignificant in this case. For regions with no neighboring cell 
of well block, sensitivities to this region is insignificant compared to other regions.

Sensitivity Coefficients for Regular Parameter Regions
Implementing a multilevel technique in case of regular param eter regions will be more 
systematic than  for irregular regions. These techniques can be implemented at different 
levels of data integration with minor conforming a t each level. It is worth investigating the 
sensitivity coefficients with regular regions.

Reservoir domain of grids 64x64x16 is subdivided by regular regions of size 8x8x8 . 
Figure B.18 shows the sensitivity coefficients of Well 1 borehole pressure with respect to 
regular regions at different times (50, 74.5, 87.23, 100, 500, 1000, 1500 and 2000 days). 
Only the top regions are shown in the figure. A close inspection of Figure B.18 reveals 
the magnitudes of the sensitivity coefficients are much less than those observed earlier with 
only 5 regions. This reaffirms that region volumes have significant effect on the sensitivity 
coefficients.

E f f e c t  of Grid Coarsening
Dynamic data integration is an inverse problem. By nature, any inverse problem suffers 
from ill-posedness. Forms of regularization are applied in solving these problems. Solution 
of the inverse problem in a fine grid setup is virtually impossible. One form of regulariza­
tion is effected through an hierarchical multilevel strategy. Investigating the effect of grid 
coarsening on the sensitivity coefficients is im portant to implement this technique.

We started with a ’base case’ reservoir description having 128x128x32 grids, resem­
bling a numerical geological model of the reservoir. Dynamic data integration at this fine 
resolution model is prohibitive because of the extensive CPU requirement. Five levels of 
grid coarsening are applied with model sizes 64x64x16, 32x32x16, 32x32x8, 16x16x8 
and 16x16x4. Porosity values for these different grids are arithmetically averaged from the 
finest resolution model. Power averaging with an index -1 (i.e. harmonic average) is applied 
to obtain the permeability models. Sensitivity coefficients are computed with respect to 5 
regions as used in the earlier studies. Figure B.19 shows the sensitivity coefficients of Well 
1 borehole pressure with respect to Region 1 transmissibiiity. It is evident from the figure 
tha t with very coarse grid models (as the last one, here) some information is lost. However, 
a close inspection reveals the overall trend remains same.

B.T Discussion
Although nothing conclusive can be said of the study related in this appendix, it shows 
some insights into the behavior of the sensitivity coefficients. This can be used be as 
a premise for future work on dynamic data integration. Better understanding of these 
coefficients will provide additional means of control in the param eter estimation problem 
in dynamic data integration. One might exploit and develop some stochastic gradient 
approximation technique for future inverse problem solution technique. Hierarchical data 
integration approach may possibly benefit from the this type of study.

Some of the derived informations from this study are discussed below.
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Figure B.15: Effect of region volume location relative to the the well on borehole pressure gradients 
with respect to transmissibility of concentric regions around a central well. Regions are numbered 
in the ascending order of proximity from the well.
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Figure B.16: Parameter regions specified to study the effect of grid orientation. Left: squares 
Right: triangles. Regions are color coded as: red - Region 1; green - Region 2; blue - Region 3; light 
blue - Region 4. Central Well in Region 1.

• Well bottomhole pressure, production rate are hardly influenced by the properties of 
another region.

• Well events have pronounced effect on the sensitivity coefficients. Interwell commu­
nication or well interference may affect these coefficients.

• Aquifer strength seriously affect the magnitude of the sensitivity coefficients.

•  Temporal discretization has serious impact on the nature of the coefficients.

•  Well controls can have serious impact on the gradients.

•  Degree of spatial heterogeinty of petrophysical properties may not affect the gradients 
much. This gives rise to the possibility of using stochastic gradient scheme in the 
inversion process when spatial heterogeneity is varying.

• Sensitivity coefficients are mostly informed by the regions in the vicinity of the well- 
bore.

• Inversion of complex reservoirs will encounter significant level of difficulty because of 
the highly nonlinear and non-convex nature of the sensitivity coefficients.
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Figure B.17: Effect of grid orientation on pressure sensitivity coefficient with respect to transmis- 
sibility of Region 1. Region specifications are shown in Figure B.16
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Figure B.18: Map of sensitivity coefficients of the Well 1 bottom-hole pressure with respect to 
transmissibility of regular regions at time steps of 50, 74.5, 87.23, 100, 500, 1000, 1500 and 2000 
days. Top 8x8 regions of 8x8x2 are shown in the figure.
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Figure B.19: Effect of grid coarsening on sensitivity coefficients of the Well 1 borehole pressure 
gradients with respect to transmissibility of Region 1.
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Appendix C

Inversion w ith Pressure D erivative  
M ism atch

This appendix offers the mathematics related to incorporating pressure derivative mismatch 
in the inversion algorithm. An implementation of inversion algorithm with backward differ­
ence technique for derivative computation was coded.

C .l M athem atics of Inversion w ith Pressure Derivative M is­
match

In order to include the pressure derivative mismatch in the objective function for the mini­
mization problem is given by:

0  =  E E ^ ( m )  + E E ^ , (i -f) K s( * ) - p f  ooj (c-i)
i t  i t

where p'°bs (t ) and p f a‘ (t) are the observed and simulated pressure derivatives at well i at 
time t. Wpi (i, t) are weight assigned to pressure derivatives at different wells and at different 
time. Other notations remain the same as defined previously in the main text of the thesis.

Now, linearization of the objective function is attained by approximating the pressure 
data by retaining its first order Taylor expansion as shown in Equation 3.26. Using this 
linearization, the updating of the objective function (C.l) follows:

nt nt
0 ({pca Z}1) =  0 ({pca*}°) +  J 2 { D } J  { A M }  +  J { A M f [ ( J ] t {AM}. (C.2)

t =  1 i=l

which appears the same as that shown in Section 3.11. However, the matrices {D }t  and 
{C}t  are redefined as follows:

{D }t =  2  [ { P cal}t -  {P obs} t ) T

+  2 ( { .Pcal}t -  { P caV  i -  {P°bsh  +  { P ^ h - i f  [W}t, ({5 }*  -

{C7}t =  ({S} t f  [W]t{S}t + {{S}t -  M *  ({S}t -  W t - i )
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We employ the same definition of {S}t as given in Section 3.11. This implementation is 
based on the backward discretization method for derivative computation, tha t is,

P < ( t ) = r ( t )  T { t ) _ T i t _ i y

where r(t) is time lapsed at interval t. The m atrix \W]t is computed from [W]t and the 
coefficients involved in the derivative computation.

Many different schemes for derivative computation [153] will give rise to different im­
plementations of the gradients of the objective function. Another common scheme for 
derivative computation (Bourdet et al. [22]) is given by

where

p'i(t) = di(t)pi(t -  1) +  bi(t)pi(t) +  Ci(t)pi(t +  1), (C.4)

i n  T(t + 1 )

a,i(t) =  T{t
I n  T (4 + 1 ) I n  T^  ’

bi(t) = T{t)
In r (t+1) In .TM1. 
m  r ( i )  m  r ( t- 1)

and
ln r(t)

* ( t ) =  r(- 1)
in r(t+l) i r(t+l) ' 
ln T ^ T ) ln r(t)

This scheme leads to the pressure derivative vector given by the following relation

IP') =  [B][P],

where [B\ is a tridiagonal m atrix with diagonals components comprising of terms aj(t), 
bi(t) and Cj(t). For this scheme, the matrices {D}t and {C}t in Equation C.2 are defined 
as follows:

{.D}t =  2 -  {P obs} t ) T [W]t{S } t

+  2 ({ P c“'} t -  {P obs} t)T [B]T [W)t [B]{S}t

{C}t  =  ({S}t)T [W]t{S}t +  ({S>t)r  [B]T [W]t [B}{S}t .
Similar implementation of incorporating pressure derivative data is discussed by Onur and 
Reynolds [154].
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