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Abstract

Historically seismic data processing has relied on the acoustic approximation to process sin-

gle component data under the simplifying assumption that the recorded wavefield consists

mainly of compressional wave modes. With the advancement of multicomponent seismic

technology there is an increased need for purpose-built processing tools to improve the

quality of the data while considering its vector-elastic nature. Past research in this field

resulted in the extension of several key processing steps from the scalar-acoustic to the

vector-elastic case. These steps included elastic redatuming, noise attenuation, deconvolu-

tion, full waveform inversion and imaging. This thesis is focused on the extension of two

other important processing steps to the vector-elastic case: regularization, which compen-

sates for poor spatial sampling of receivers and sources at the earth’s surface, and least

squares imaging, which compensates for poor illumination of the earth’s subsurface. These

two topics approach the processing of multicomponent seismic data from two very different

approaches. In the extension of scalar reconstruction to the vector case a mathematical

representation of multicomponent data in the Fourier domain is achieved via hypercomplex

numbers; more specifically, the quaternions. Following the algebraic rules of quaternions it

is possible for Fourier regularization algorithms to be adapted to the vector case. A different

approach is necessary to extend acoustic least squares migration to the elastic case. In this

case the acoustic wave equation must be substituted for the elastic wave equation within the

single scattering approximation. This allows elastic wave equation modelling and migration

linear operators to be built, providing the necessary tools to approach elastic imaging as
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an inverse problem with the goal that the optimal image of the earth subsurface is one

that best explains the data. Both vector regularization and elastic least squares imaging

are found to be improvements over their scalar-acoustic counterparts. In the case of vector

regularization the quality of the result is found to be insensitive to the orientation of the

input measurements, while in elastic least squares imaging the minimization of wavefield

crosstalk is improved by minimizing the least squares error between observed and predicted

data components.
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Preface

A version of the work in chapter 3 of this thesis has been published in the journal pa-

per Stanton, A., and M. D. Sacchi, 2013, Vector reconstruction of multicomponent seismic

data: Geophysics, 78. Additionally, a version of the work in chapter 4 of this thesis has

been published in the journal paper Stanton, A., and M. D. Sacchi, 2017, Elastic least-

squares one-way wave equation migration: Geophysics, 82. In these publications, I was

responsible for designing the processing algorithms, generating the data examples and writ-

ing the manuscripts. Dr. Sacchi was the supervisory author and was involved in concept

formulation and manuscript editing.
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Far better an approximate answer to the right question, which is often vague, than an exact
answer to the wrong question, which can always be made precise.

John W. Tukey

vi



Acknowledgements

I cannot thank Professor Mauricio Sacchi enough for taking me on as a student and su-

pervising my studies. I’m often amazed by his remarkable ability to make short work of

complicated problems; a clear forward problem, a slice of Occam’s razor. I am also grateful

for the students of the Signal Analysis and Imaging Group (SAIG), past and present, for

sharing their ideas with me and for creating a lively research environment. I would also like

to thank the members of my committee for taking the time to consider my work.

Over the course of my studies, I came to rely heavily on many existing tools in scientific

computing. My introduction to C programming came from studying Seismic Unix (SU)

programs, mainly written by the past and present students/staff of the Centre for Wave

Phenomena (CWP) at the Colorado School of Mines. I am grateful to the creators of SU for

its usefulness and straightforward design. Another software package that I made great use

of was Madagascar; a package spearheaded by Sergey Fomel at the University of Texas at

Austin, which uses an open source development framework. All of the elastic finite-difference

wave simulations used in this thesis were created using this package. This package opened

my eyes to the exciting world of reproducible research. I am also indebted to the creators

of the Julia programming language, which I recently began using. This is a remarkable

language for scientific computing, with Matlab-like syntax and C-like performance. The

majority of the figures in this thesis were created in Julia, and many of the programs

(whenever I could get away with it) were written in Julia. We at SAIG have contributed an

open source seismic processing package written in the Julia language: Seismic.jl1. Thanks

to Juan Sabbione for all his efforts improving this package. I am also grateful for the staff

at Compute/Calcul Canada for providing the computational resources used in the more

compute-intensive portions of my research.

I owe great thanks to Kurt Wikel and Daniel Trad for a joint internship, splitting my time

between Petrobank and CGG in 2012; and Warren Ross, Craig Hyslop, Ramesh Neelamani,

1To install this package simply type Pkg.add(”Seismic”) on the Julia command line

vii

https://github.com/SeismicJulia/Seismic.jl


Bill Curry and the management at the ExxonMobil Upstream Research Company for an

internship in 2013. I would also like to thank Lee Bell and Richard Verm at Geokinetics

for providing a field dataset which was extremely useful to test my ideas. Thanks to my

colleagues at Key Seismic Solutions for supporting this research, for hiring me, and for

encouraging my research in these last several months. Special thanks to Richard Bale for

numerous discussions surrounding elastic wave propagation, his thesis often served as a

roadmap to navigate this difficult topic.

I am so grateful to my family for being supportive and encouraging of my academic pursuits

for all these years. I hope this thesis clarifies what I have been up to for so long!

Finally, I thank my wife Julie and my daughter Olive for holding my hands through all

of the topographical extremes of a Ph.D. Their patience, love, and encouragement carried

me through the hills and valleys, and their laughter and cheer have made the journey

worthwhile.

viii



Contents

1 Introduction 1

1.1 Vector Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Regularized Elastic Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Scope of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Elastic waves and vector measurements 13

2.1 The elastic wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Solving for polarizations and phase velocities . . . . . . . . . . . . . . . . . . 15

2.3 Example: a three layer model . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Vector interpolation 26

3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Separability of data components . . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Projection Onto Convex Sets (POCS) . . . . . . . . . . . . . . . . . . 35

3.2 Synthetic data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Real data example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Generalization of the approach . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



4 Regularized elastic imaging 61

4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Review of elastic wave propagation . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Elastic shot-profile modeling and migration . . . . . . . . . . . . . . . 66

4.1.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.4 Least-squares formulation . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 A note on imaging conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.1 Diffractor example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Flat layer example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3 BP 2.5D Model example . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Regularized imaging of OBC data 94

5.1 Receiver profile modeling and migration . . . . . . . . . . . . . . . . . . . . . 94

5.2 Velocity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Application of adjoint operator and least squares migration . . . . . . . . . . 101

5.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusions 108

Bibliography 111

A Elastic composition/ decomposition operators 121

B CG for multicomponent model and data vectors 123

C Angle gathers in wave equation migration 127

C.1 Poynting vector to angle formulation . . . . . . . . . . . . . . . . . . . . . . . 127

C.2 Subsurface offset to angle formulation . . . . . . . . . . . . . . . . . . . . . . 130

D Seismic.jl: seismic data analysis in Julia 136

x



List of Tables

3.1 Parameters for the three layer model shown in Figure 3.3. Two scenarios are
modelled. In the first scenario all three layers are isotropic and have constant
velocity with azimuth. In the second scenario, the P and S-wave velocities for
the second layer vary with azimuth and are computed using elastic coefficients
given by CHTI (specified in GPa) with a symmetry axis pointing to the east.
This model was generated following Bale (2002). . . . . . . . . . . . . . . . . 29

D.1 Benchmark times relative to C (smaller is better, C performance = 1.0).
Adapted from http://julialang.org. Please refer to the original for technical
specifics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xi



List of Figures

1.1 A scalar processing workflow for multicomponent data. Shear wave processes
are shown in red while compressional wave processes are shown in blue. Vector
processes are shown in red with a blue outline. It is important to note that
the inputs to this workflow, ux, uy, uz represent vector-valued data, while
the outputs, mH , and mV , represent models of subsurface reflectivity in the
horizontal and vertical directions respectively. . . . . . . . . . . . . . . . . . . 3

1.2 A vector processing workflow for multicomponent data. Red squares with a
blue outline indicate vector processes. The text on the right indicate publi-
cations corresponding to specific elements of the workflow, including the two
topics that are the focus of this thesis. Here, it is important to note that the
inputs to this workflow, ux, uy, uz represent vector-valued data, while the
output, M , represents a multi-parameter model of subsurface consisting of
(up to nine) distinct elastic reflection types. . . . . . . . . . . . . . . . . . . . 4

2.1 Polarizations in the kx − ky plane at kz = 0 for an isotropic medium with
vp=1500m/s, vs=700m/s, and ρ=1000kg/m3. . . . . . . . . . . . . . . . . . . 20

2.2 Schematic showing the reorientation from an east-south-downward coordinate
frame to a radial-transverse-downward coordinate frame. S and G represent
the source and receiver locations respectively. . . . . . . . . . . . . . . . . . . 21

2.3 P and S wave velocities for a model containing three interfaces. The lateral
source position is indicated above the model by a red star. . . . . . . . . . . . 22

2.4 Single shot gather at x=5km generated via elastic finite difference modeling
(the direct wave has been muted from both components). Notice the pro-
jection of earlier arriving PP waveforms mainly on the Z-component at near
(< 2km) offsets, while the later arriving PS waveforms are projected mainly
onto the X-component at near offsets. . . . . . . . . . . . . . . . . . . . . . . 23

2.5 FK amplitude spectra for X and Z components using only near (< 2km) offsets 24

2.6 FK amplitude spectra for X and Z components using all offsets . . . . . . . . 25

3.1 Single shot gather at x=5km generated via elastic finite difference modelling
after randomly decimating the receiver sampling by 50%. . . . . . . . . . . . 27

xii



3.2 FK amplitude spectra for the randomly subsampled shot gather shown in
figure 3.1. Notice the artefacts introduced by the decimated sampling. . . . . 27

3.3 Three layer model used for the generation of elastic finite-difference synthetic
data examples. Two scenarios are modelled. In the first scenario all three
layers are isotropic, while in the second scenario layer 2 has Horizontal Trans-
versely Isotropic (HTI) symmetry. The parameters for each layer are given
in table 3.1. The acquisition geometry consists of 18 receiver lines (blue)
oriented about a single shot (red). . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Elastic finite-difference synthetic shot gathers for Scenario 1 (azimuth 20◦)
(isotropy). Before reorientation: (a) east, (b) south, (c) downward, and after
reorientation: (d) radial, (e) transverse, (f) downward. Notice that the energy
in the horizontal plane can be placed into a single component by rotation. . . 38

3.5 Elastic finite-difference synthetic shot gathers for Scenario 2 (azimuth 20◦)
(Horizontal Transverse Isotropy). Before reorientation: (a) east, (b) south,
(c) downward, and after reorientation: (d) radial, (e) transverse, (f) down-
ward. Notice that the energy in the horizontal plane cannot be placed into a
single component by rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 FK spectra of the horizontal components shown in Figure 3.5. (a) East com-
ponent, (b) south component, (c) radial component, (d) transverse compo-
nent, (e) quaternion FK spectrum for east and south components, (f) quater-
nion FK spectrum for radial and transverse components. Notice that the
quaternion FK spectrum does not depend on orientation ((e) and (f) are
identical). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Comparison of component by-component reconstruction to vector reconstruc-
tion for a synthetic 3D-2C common shot gather: Common-offset display
(560m). The input has 60% missing traces and SNR = 5. (a) Component 1
input, (c) component 1 after single component reconstruction, (e) component
1 after vector reconstruction. (b), (d), and (f) show the same for component
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Comparison of component by-component reconstruction to vector reconstruc-
tion for a synthetic 3D two component common shot gather: Common-
azimuth display (20◦). The input has 60% missing traces and SNR = 5.
(a) Component 1 input, (c) component 1 after single component reconstruc-
tion, (e) component 1 after vector reconstruction. (b), (d), and (f) show the
same for component 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 Quality for the reconstructions shown in Figures 3.7 & 3.8 when the percent-
age of missing traces is varied (a), and the QFT axis orientation is randomly
oriented. The input data have an SNR of 5. . . . . . . . . . . . . . . . . . . . 42

3.10 Shot (red) and receiver (blue) coordinates for a converted wave survey over
a heavy oil reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 total fold calculated over the offset interval 0-550m using γ = 1 and γ = 3 to
calculate the bin location (Common Mid-Point). Notice the relatively even
distribution of fold around source and receiver lines when γ = 1, compared
to the clustering of high fold bin locations around receiver lines when γ = 3. . 44

xiii



3.12 Azimuth vs. Offset plotted for all traces in one 26x26 patch of ACP bins
centered at ACP (150,150). The offset has been limited to the interval 0-
550m. Azimuth is calculated as the angle from source to receiver counter-
clockwise from east. The two missing lobes centered at azimuths 38◦ and
218◦ correspond to the crossline directions which limit the far offset due to the
limited size of the recording patch. The maximum offset for the reconstruction
was limited to 550m to mitigate the effect of missing azimuths at far offsets. . 44

3.13 Shot (red) and receiver (blue) coordinates for ACP bin (150,150) before 5D
regularization (a), and after regularization (b). Black lines connect shot-
receiver pairs. For 5D regularization the data are binned into 5x5m ACP
bins, 50m offset bins, and 20◦ azimuth bins. For the ACP binning a value
of γ = 3 was used. This positions the bin 3/4 the distance from source to
receiver, giving an asymmetric pattern of sources and receivers for each ACP
location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.14 5D reconstruction results shown for one ACP gather (150,150) sorted by
offset, azimuth. (a) Radial component before reconstruction, (b) radial com-
ponent after component-by-component reconstruction, (c) radial component
after vector reconstruction. (d), (e), and (f) respectively show the same re-
sults for the transverse component. The area highlighted in red is shown in
Figure 3.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.15 5D reconstruction results shown for one ACP gather (150,150) sorted by
offset, azimuth, shown after shear wave splitting correction. (a) Radial
component before reconstruction, (b) radial component after component-by-
component reconstruction, (c) radial component after vector reconstruction.
(d), (e), and (f) respectively show the same results for the transverse compo-
nent. The area highlighted in red is shown in Figure 3.17 . . . . . . . . . . . 48

3.16 5D reconstruction results shown for offset 375m of ACP gather (150,150)
sorted by azimuth. (a) Radial component before reconstruction, (b) radial
component after component-by-component reconstruction, (c) radial compo-
nent after vector reconstruction. (d), (e), and (f) respectively show the same
results for the transverse component. . . . . . . . . . . . . . . . . . . . . . . . 49

3.17 5D reconstruction results shown for offset 375m of ACP gather (150,150)
sorted by azimuth, shown after shear wave splitting correction. (a) Radial
component before reconstruction, (b) radial component after component-by-
component reconstruction, (c) radial component after vector reconstruction.
(d), (e), and (f) respectively show the same results for the transverse component. 50

3.18 5D reconstruction results shown for one stacked crossline (150) of the radial
component sorted by inline. Shear wave splitting corrections have been ap-
plied. (a) Radial component before reconstruction, (b) radial component after
component-by-component reconstruction, (c) radial component after vector
reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xiv



3.19 5D reconstruction results shown for one stacked crossline (150) of the trans-
verse component sorted by inline. Shear wave splitting corrections have been
applied. The complex envelope for each trace is input to the stacking process
to avoid the effect of polarity reversals across azimuth. (a) Transverse com-
ponent before reconstruction, (b) transverse component after component-by-
component reconstruction, (c) transverse component after vector reconstruc-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.20 decimated data (as shown in figure 3.1) interpolated using scalar POCS. The
qualities of the reconstructions are 23.07 and 29.73 dB respectively. . . . . . . 56

3.21 FK amplitude spectra for the decimated data interpolated using scalar POCS. 57

3.22 decimated data (as shown in figure 3.1) interpolated using scalar MWNI. The
qualities of the reconstructions are 27.49 and 32.72 dB respectively. . . . . . . 57

3.23 FK amplitude spectra for the data interpolated using scalar MWNI. The
qualities of the reconstructions are and dB respectively. . . . . . . . . . . . . 58

3.24 decimated data (as shown in figure 3.1) interpolated using vector POCS. The
qualities of the reconstructions are 23.76 and 30.81 dB respectively. . . . . . . 58

3.25 FK amplitude spectra for the data interpolated using vector POCS. . . . . . 59

3.26 decimated data (as shown in figure 3.1) interpolated using vector MWNI.
The qualities of the reconstructions are 27.53 and 33.41 dB respectively. . . . 59

3.27 FK amplitude spectra for the data interpolated using vector MWNI. . . . . . 60

4.1 X and Z input data components for an elastic wave propagating in a homo-
geneous isotropic medium. The records were generated using elastic finite
difference modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Decomposed P and S components after applying the wavefield decomposition
operator Q−1 to the data components Ux and Uy. . . . . . . . . . . . . . . . 65

4.3 Recomposed X and Y components after applying the wavefield recomposition
operator Q to the wavefield components Up and Us. . . . . . . . . . . . . . 66

4.4 Born scattering of acoustic wavefields. . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Migration of acoustic wavefields. . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Born scattering of elastic wavefields. . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Migration of elastic wavefields. . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 P wave velocity model used to create finite difference synthetic data. The
background P-wave velocity is 2200 m/s, while the seven diffractors have a
velocity of 2500 m/s. The S wave velocity model corresponds to this model
by a scale factor of 1/

√
3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 X and Z components for a synthetic shot gather at X = 2500m generated using
elastic finite difference modeling. The data have been randomly decimated
by 30% to simulate missing receivers. . . . . . . . . . . . . . . . . . . . . . . . 78

xv



4.10 PP image obtained by elastic migration (the adjoint operator) for a single
shot at X = 2500m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 PS image obtained by elastic migration (the adjoint operator) for a single
shot at X = 2500m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 PP image obtained by 20 iterations of ELSM for a single shot at X = 2500m. 80

4.13 PS image obtained by 20 iterations of ELSM for a single shot at X = 2500m. 81

4.14 Predicted X and Z components of the interpolated and wavefield separated PP
wavefield for a shot gather at X = 2500m generated by the forward operator
following 20 iterations of ELSM. . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.15 Predicted X and Z components of the interpolated and wavefield separated PS
wavefield for a shot gather at X = 2500m generated by the forward operator
following 20 iterations of ELSM. . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.16 Normalized misfit versus iteration number for 20 iterations of ELSM. . . . . . 84

4.17 Velocity models used to create finite difference synthetic data. . . . . . . . . . 84

4.18 X and Z components for a synthetic shot gather at X = 1250m generated
using elastic finite difference modeling with random noise added. . . . . . . . 85

4.19 Images obtained by elastic migration (the adjoint operator) for a single shot
at X = 1250m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.20 Images obtained by by 10 iterations of ELSM for a single shot at X = 1250m 86

4.21 Normalized misfit versus iteration number for 10 iterations of ELSM. The
solid black line shows convergence when added random noise is present on
the input data. The gray curves display trials of the algorithm using different
combinations of velocity error. The solid gray line shows convergence using
the true velocity, while the dashed lines show convergence when using dif-
ferent combinations of incorrect velocities. For a single shot experiment the
convergence is relatively insensitive to small velocity errors. . . . . . . . . . . 87

4.22 A portion of the BP 2.5D P-wave velocity model. The S-wave velocity corre-
sponds to this model by a scale factor of 1/

√
3. . . . . . . . . . . . . . . . . . 88

4.23 X and Z components for a synthetic shot gather at x = 2880m generated
using elastic finite difference modeling. . . . . . . . . . . . . . . . . . . . . . . 89

4.24 PP image and an angle gather from x=4600m obtained by elastic migration
(the adjoint operator). Arrows indicate regions of the model that have been
poorly imaged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.25 PS image and an angle gather from x=4600m obtained by elastic migration
(the adjoint operator). Arrows indicate regions of the model that have been
poorly imaged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.26 PP image and an angle gather from x=4600m obtained by elastic migration
(the adjoint operator). A smoothing filter has been applied across angles to
attenuate dipping cross talk energy. Notice that this filter has little effect on
the overall stack. Arrows indicate regions of the model that have been poorly
imaged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xvi



4.27 PS image and an angle gather from x=4600m obtained by elastic migration
(the adjoint operator). A smoothing filter has been applied across angles to
attenuate dipping cross talk energy. Notice that this filter has little effect on
the overall stack. Arrows indicate regions of the model that have been poorly
imaged. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.28 PP image and an angle gather from x=4600m obtained by 10 iterations of
ELSM. Arrows indicate regions of the model where the image has been im-
proved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.29 PS image and an angle gather from x=4600m obtained by 10 iterations of
ELSM. Arrows indicate regions of the model where the image has been im-
proved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.30 Normalized misfit versus iteration number for 10 iterations of ELSM. . . . . . 93

5.1 coordinates of sources (blue stars) and receivers (red triangles) for an ocean
bottom dataset. Note sparse distribution of receivers compared to the dense
distribution of shots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 X and Z components for a common source gather at X=6000m. The sampling
in this domain is very sparse with a 500m receiver spacing. . . . . . . . . . . 95

5.3 X and Z component FK Amplitude spectra for a common source gather at
X=6000m. Clearly, the data are highly aliased in this axis. . . . . . . . . . . 96

5.4 X and Z components for a common receiver gather at X=5521m. . . . . . . . 97

5.5 X and Z component FK Amplitude spectra for a common receiver gather at
X=5521m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Schematic for P-wave source in a water layer converting to an S-wave reflec-
tion which is recorded by an ocean bottom receiver. . . . . . . . . . . . . . . 99

5.7 Correct use of the Maxwell-Betti reciprocal work theorem. An S-wave source
embedded in the ocean bottom converting to a P-wave reflection which is
recorded by a receiver in the water layer. . . . . . . . . . . . . . . . . . . . . . 99

5.8 Incorrect use of the Maxwell-Betti reciprocal work theorem (the source and
receiver impulses/responses were not interchanged). A P-wave source embed-
ded in the ocean bottom converting to an S-wave reflection which is recorded
by a receiver in the water layer. Clearly, the response will not be equiva-
lent to that in figure 5.6. This differences will be kinematic (the ray-path is
different), and dynamic (the S-wave cannot propagate in the water column). 100

5.9 Estimated source wavelet used for imaging. . . . . . . . . . . . . . . . . . . . 101

5.10 PP angle gathers for X=4000m after elastic migration with -10% velocity
perturbation (left), 0% velocity perturbation (middle), and +10% velocity
perturbation (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.11 PS angle gathers for X=4000m after elastic migration with -10% velocity
perturbation (left), 0% velocity perturbation (middle), and +10% velocity
perturbation (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xvii



5.12 P-wave velocity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.13 S-wave velocity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.14 PP image after elastic receiver gather migration. . . . . . . . . . . . . . . . . 104

5.15 PS image after elastic receiver gather migration. . . . . . . . . . . . . . . . . 105

5.16 PP image after 5 iterations of preconditioned elastic least squares receiver
gather migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.17 PS image after 5 iterations of preconditioned elastic least squares receiver
gather migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.18 Normalized cost as a function of iteration number. . . . . . . . . . . . . . . . 106

C.1 Source and receiver wavefield Poynting vector conventions used when compute
opening angle, θ, with resect to reflector normal, ~n. . . . . . . . . . . . . . . . 129

C.2 Propagation angles for a source at X=5000m, computed using the Poynting
vector method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

C.3 Near angle stack from the Poynting vector method using source side incidence
angles between -10.0 and 10.0 degrees from vertical. . . . . . . . . . . . . . . 131

C.4 Angle gather at X = 5000m generated for a single shot via the subsurface
offset method. While the resolution of the angles and depths is slightly lower
than for the equivalent Poynting vector angle gather (figure), the artefacts
are fewer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.5 Image for a subsurface offsets of -250m (top), 0m (middle), and +250m (bot-
tom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.6 Near angle stack from the subsurface offset method using half-opening angles
from γ = -10.0 to 10.0 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.7 Angle gather at X = 5000m generated for a single shot via the subsurface
offset method. While the resolution of the angles and depths is slightly lower
than for the equivalent Poynting vector angle gather (figure), the artefacts
are of lower amplitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

D.1 decimated seismic data used as input to the SeisPOCS program. The data
have 50% missing traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

D.2 Seismic data interpolated using the SeisPOCS program. . . . . . . . . . . . . 138

D.3 A velocity model used to demonstrate the program SeisPWD. Computed
normal vectors are plotted as purple arrows. . . . . . . . . . . . . . . . . . . . 139

D.4 Shot and receiver coordinates extracted from the Teapot Dome dataset. . . . 140

D.5 Fold map computed from the Teapot Dome dataset. . . . . . . . . . . . . . . 141

xviii



CHAPTER 1

Introduction

A central problem in geophysics the estimation of the interior structure of the earth by

attempting to fit observations with data synthesized from a physical theory. Mathematical

approximations play an important role in solving these problems. They make solutions to

intractable problems possible and often provide a reasonable starting point to begin making

sense of observed data. For many years reflection seismology relied heavily on the acoustic

approximation– the assumption that the earth behaves as a liquid supporting only stretching

and squeezing wave motion. The acoustic approximation greatly simplifies seismic imaging,

but ignores the fact that the earth is more accurately described as an elastic solid that

supports both shear and compressional wave modes1. Over the past several decades the

focus of exploration seismology has transitioned from structural mapping to the inversion of

elastic properties for identifying rock types and the fluids that reside in their pore space. This

is especially true in the analysis of resource plays where ideal drilling targets depend less on

the structure of a rock than its permeability and ability to fracture. We now demand more

from our data, including improved structural imaging, rock type, petrophysical properties,

information about faults, fractures, stress regimes, fluid content, as well as rock and fluid

changes with production (Stewart, 2009). Attempts to meet these demands have spurred

the development of multicomponent seismic acquisition and processing technology (Stewart

et al., 2003). A particular development that has increased the popularity of converted wave

acquisition is the advent of Microelectromechanical Systems (MEMS) based receivers. The

benefits of these receivers include direct digital output, improved vector fidelity, broadband

linear phase and amplitude response, low harmonic distortion, measurement of sensor tilt,

and reduced power consumption (Kendall, 2006). Importantly, these receivers triggered the

movement away from receiver groups (used to attenuate surface waves via stacking), to the

1Or even more accurately as an anisotropic, poroelastic solid, supporting quasi-compressional and shear
modes; or more accurately still, as an effective medium.

1
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use of point receivers. Indeed, Hoffe et al. (2002) demonstrate that geophone groups are

unnecessary for PP data2 acquisition and are in fact detrimental to PS data3 quality.

Industrial multicomponent seismic processing workflows have been slow to adapt to the

times. Workflows typically consist of scalar algorithms applied to individual components of

data. Figure 1.1 outlines a basic multicomponent processing flow aimed at taking multi-

component data recorded in the field to produce images that can assist in the exploration

and production of hydrocarbons. This is by no means an exhaustive list and individual pro-

cesses may be revisited several times over the course of a processing sequence. Nevertheless,

scalar seismic processing flows typically include static corrections, aimed at compensat-

ing for time delays between adjacent measurements caused by rapid variations in the near

surface (also called the weathering layer); noise attenuation, to remove energy that appears

spatially uncorrelated (or correlated but undesirable, such as surface waves or multiply scat-

tered reflections4); deconvolution, to compensate for the individual coupling and responses

of sources and receivers; regularization, to compensate for the irregular spatial sampling

of sources and receivers; and velocity analysis and imaging to map reflected energy from

source-receiver-time coordinates to form an image of the earth’s reflective layers.

Multicomponent processing flows typically begin by rotating survey oriented components

into shot specific components of radial, transverse, and vertical as proxies for compressional

and converted wavefields (Garotta, 1984). This is a vector process because it treats all data

components simultaneously, although the assumption that the resulting components repre-

sent distinct wavefields assumes the incident wave arrives with a vertical angle of incidence;

a requirement that is often violated in practice. Following rotation to a shot oriented frame

of reference, the converted and compressional wave components are processed individually

using scalar processing algorithms. An exception to this is shear wave splitting analysis

and compensation, aimed at compensating for the effects of Horizontal Transverse Isotropy

(HTI), which treats horizontal components as a vector quantity by rotating, shifting, and

finally merging shear wave energy onto a common component before continuing with a

scalar processing flow (Crampin, 1981; Silver and Chan, 1991). This is also a true vector

process, but like the rotation of data components, it assumes vertical transmission through

an anisotropic layer (Bale, 2006). Because of the simplicity of the assumptions used in a

traditional multicomponent processing flow, it is highly likely that unwanted shear wave

energy is will remain in the final vertical component image, as well as unwanted compres-

sional wave energy in the horizontal component image. This cross-talk energy is improperly

2the abbreviation ”PP” is commonly used to indicate compressional-wave to compressional-wave mode
reflections.

3the abbreviation ”PS” is commonly used to indicate compressional-wave to shear-wave mode reflections.
4Noise is often characterized as ”whatever is undesirable.” Consider single component processing where

shear waves are treated as unwanted noise, compared with multicomponent processing, where every effort
is made to preserve and enhance this energy.
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[
ux uy uz

]
rotation

H1 H2 V

static corrections static corrections static corrections

noise attenuation noise attenuation noise attenuation

deconvolution deconvolution deconvolution

shear wave
splitting analysis

regularization

regularization velocity analysis

velocity analysis imaging

imaging mV

mH

Figure 1.1: A scalar processing workflow for multicomponent data. Shear wave
processes are shown in red while compressional wave processes are shown in blue.
Vector processes are shown in red with a blue outline. It is important to note
that the inputs to this workflow, ux, uy, uz represent vector-valued data, while the
outputs, mH , and mV , represent models of subsurface reflectivity in the horizontal
and vertical directions respectively.
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[
ux uy uz

]
static corrections Wapenaar et al. (1992)

noise attenuation Naghizadeh and Sacchi (2012)

deconvolution Li et al. (2011); Menanno and Mazzotti (2012)

regularization Chapter 3

velocity analysis Grandi et al. (2007); Tarantola (1986)

regularized
elastic imaging

Chapters 4 & 5

M

Figure 1.2: A vector processing workflow for multicomponent data. Red squares
with a blue outline indicate vector processes. The text on the right indicate publi-
cations corresponding to specific elements of the workflow, including the two topics
that are the focus of this thesis. Here, it is important to note that the inputs to this
workflow, ux, uy, uz represent vector-valued data, while the output, M , represents
a multi-parameter model of subsurface consisting of (up to nine) distinct elastic
reflection types.

positioned and can interfere with the interpretation of correctly positioned reflections.

An alternative to an acoustic-scalar processing flow is a vector-elastic flow as shown in

figure 1.2, with publications concerning individual steps listed on the right. In this flow,

data samples are mathematically treated as a vector, and the mixture of wavefield potentials

in data components is embraced as a consequence of the elastic wave equation. No doubt

this adds some complexity to individual processing steps, but as this thesis will demonstrate,

this increase in complexity can improve the accuracy of the final result.

To date, there has been limited research into individual items in the vector-elastic processing

workflow. Wapenaar et al. (1992) provide a method that can compensate for the effects of

the near surface via elastic redatuming5. In this approach, individual wavefield potentials are

5while conventional approaches to static corrections correct for spurious arrival times using ”static” time
delays of individual traces, elastic redatuming must account for the distinct time delays of individual elastic
wave modes which are mixed between data components.
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extrapolated into the earth below the weathering layer before subsequent processing. While

unseparated wavefield potentials can be extrapolated, the authors suggest performing a

separation prior to this step. This could also present a problem as wavefield separation itself

requires knowledge of near surface properties (chapter 2 will outline the physics of wavefield

separation using the Christoffel equation). There are also mathematical approaches to

wavefield separation using Independent Component Analysis (ICA) (van Der Baan, 2006),

or via plane wave decomposition (Cary, 1998). These methods are attractive because they

require less knowledge of near surface material properties. The second step in the workflow is

vector noise attenuation. Recently Naghizadeh and Sacchi (2012) investigated the extension

of FX autoregression noise attenuation to the vector case. They show an improvement

over component-by-component noise attenuation using their approach. There has also been

work on vector deconvolution of elastic data. Li et al. (2011) extended single component

deconvolution to the two horizontal components of multicomponent seismic data. They

find their method is insensitive to the orientation of input measurements, and that the

resulting data are better conditioned for the vector process of shear wave splitting analysis

and compensation. In a later publication Menanno and Mazzotti (2012) extended Wiener

deconvolution to the multicomponent case by means of the quaternions. They found their

approach to have superior performance to single component deconvolution, particularly

when the input components were contaminated with different levels of noise (chapter 3 will

make use of the quaternions in the extension of Fourier regularization to the multicomponent

case). There have been many studies investigating the estimation of seismic velocities with

multicomponent seismic data. Grandi et al. (2007) extend the attribute of semblance,

commonly used in single component Root Mean Squared (RMS) velocity analysis, also

making use of the quaternions. In a groundbreaking contribution Tarantola (1986) outlines

the nonlinear elastic inversion of seismic data, more commonly referred to as Full Waveform

Inversion (FWI). FWI could be considered as a means to obtain velocity information for

a subsequent imaging step, or as an imaging algorithm in its own right. There are two

notable gaps in the vector-elastic processing flow shown in figure 1.2, namely regularization

and regularized imaging, which are the focus of this thesis.

It should be noted that while figure 1.2 leaves vector regularization and regularized imaging

as items outstanding, there have been related studies in these fields to date. In the case of

regularization Vassallo et al. (2010) made use of wavefield gradient measurements to better

constrain the interpolation of marine streamer data in the sparsely sampled crossline direc-

tion via matching pursuit. This method processes multiple data types, as opposed to data

components, in its formulation. It should also be noted that there has been a great deal of

work done on elastic imaging. Sun and McMechan (1986) and Chang and McMechan (1987)

performed elastic imaging where the target images represented correlations of wavefield dis-

placements, while Sun and McMechan (2001) separated data components to wavefield po-
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tentials at a datum using Helmholtz decomposition, subsequently propagating and imaging

the resulting scalar wavefield potentials. A more accurate approach was used by Yan and

Sava (2008a). In this work elastic finite differences were used to propagate wavefield dis-

placements in depth, leaving the separation to scalar potentials to immediate precede the

imaging condition. In this thesis I draw a distinction between elastic imaging, which approx-

imates the inverse of Born scattering by its adjoint; with regularized imaging, which better

approximates the inverse of Born scattering via regularized least squares inversion. Ap-

proaching elastic imaging as an inverse problem offers the ability to improve the bandwidth

of migrated images, compensate for the poor spatial sampling of sources and receivers at the

earth’s surface, as well as for poor illumination of the subsurface, and finally to minimize

elastic wavefield crosstalk artefacts within individual images. There is considerable motiva-

tion to have a complete vector-elastic workflow. The extensive research into elastic imaging

and FWI are not yet widely used in industry and will require extensive preconditioning of

datasets to make them suitable for these processes. deviating from the vector-elastic work-

flow for an early processing step could destroy the vector nature of the data, thus preventing

a return to the workflow for a later step.

1.1 Vector Interpolation

The goal of early seismic data processing steps is to prepare the data for prestack migration,

a process which maps reflected energy from source-receiver acquisition coordinates and time

to reflector positions in space. Migration consists of numerical approximations to integral

equations. These approximations perform best when data are free of noise and have regular,

densely sampled source-receiver acquisition coordinates. Regularization algorithms aim to

provide a fully sampled noise free estimate of the data and often exploit the multidimen-

sional nature of seismic data. They rely on a variety of signal processing strategies with

the underlying assumption that there is sufficient simplicity in the observed wavefield for

it to be represented using a finite number of basis functions. There are various strategies

to tackle the reconstruction problem. Algorithms broadly fall under the following two cat-

egories: those based on wave equation principles (for example Ronen (1987)), and those

based on signal processing principles. Methods based on signal processing are by far the

most commonly used for interpolation and denoising of seismic data because they do not

require velocity information to reconstruct the data. Such methods include prediction er-

ror filter techniques (Spitz, 1991; Naghizadeh and Sacchi, 2007a), transform based methods

(Abma and Kabir, 2006; Liu and Sacchi, 2004), and rank reduction based methods (Trickett

et al., 2010; Kreimer and Sacchi, 2011).

All methods for seismic data reconstruction assume a high level of parsimony in the wavefield
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that one desires to reconstruct. In other words, the observations must be represented via

a simple regression in terms of known basis functions. The latter is the foundation of

methods based on Fourier synthesis where one assumes that the observed seismic data can

be represented in terms of a superposition of complex exponentials (Hindriks and Duijndam,

1999). The representation itself is not sufficient to properly honor the data and produce an

accurate synthesis of unobserved data. This is why the decomposition must be in terms of a

limited number of complex exponentials. Methods based on an assumption of sparsity have

been successfully adopted to retrieve Fourier coefficients (Sacchi et al., 1998; Zwartjes and

Gisolf, 2007) that permit the proper reconstruction of wavefields within multi-dimensional

windows. Minimum weighted norm interpolation (MWNI), applies a less stringent constraint

to the data and leads to solutions that are quite similar to those that one can estimate via

sparse inversion (Liu and Sacchi, 2004; Trad, 2009; Cary, 2011b; Chiu, 2014)). However, an

advantage of MWNI is that because the concept of sparsity is not invoked, it resorts to a

simple algorithm based on quadratic regularization with pre-conditioning. In fact, MWNI

should be the optimal regularization technique if one were to know the power spectral

density of the data to be reconstructed. However, because the power spectral density is

unknown, MWNI uses different strategies to bootstrap it from the data. The latter leads

to an algorithm that is extremely similar to sparse inversion solutions via Iteratively Re-

Weighted Least-squares (IRLS). Sparse Fourier inversion and MWNI, therefore, can be

considered as similar ways to fit data via the superposition of a finite number of complex

exponentials. They both can be generalized to multidimensional problems, and clearly, they

both have problems with regular grids since they are affected by aliasing. However, patches

of seismic prestack data often have enough irregularities to attenuate aliasing making MWNI

a robust method for interpolating data on irregular grids (Trad, 2009).

Methods based on algorithms utilized in radio astronomy (the Clean Method of Schwarz

(1978)) have also been proposed to regularize seismic data. Examples of the latter are

the Antileakage Fourier Transform (ALFT) (Xu et al., 2005; Schonewille et al., 2009)) and

Matching Pursuit Fourier reconstruction (MPFR) (Øzbek et al., 2009). These techniques

find and retrieve one wavenumber at a time to synthesize a spatial plane wave. The latter

is removed from the original data and the process is continued until no significant energy is

observed in the residual signal.

In essence, the assumption of simplicity (sparsity) is also invoked by ALFT and MPFR

methods as they also try to construct a synthesis by the superposition of a limited number of

wave-numbers. Both methods have the ability to cope with data at irregular grid positions.

When the data are on a regular grid, dip scanning methods can be applied to identify true

wavenumbers from their associated alias components (Naghizadeh, 2012). At this point, it is

important to mention that both Sparse Fourier inversion methods and MWNI can operate

both with regular grids and irregular spatial positions. In the first case, the algorithms
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can be implemented via the FFT engine, whereas in the latter, it is necessary to utilize fast

implementations of non-uniform DFTs (Jin, 2010). Finally, we would like to mention POCS,

another Fourier method that synthesizes data in terms of, again, a parsimonious distribution

of spectral coefficients (Abma and Kabir, 2006; Wang et al., 2010b; Stein et al., 2010;

Stanton et al., 2013, 2015). POCS uses a Fourier domain amplitude threshold to represent

the data also in terms of a simple distribution of spectral amplitudes. In general, POCS,

ALFT, MPFR, and MWNI should produce results that are similar because, after, all they

are developed under similar assumptions: simplicity (sparsity) of the data representation

in terms of spatial plane waves (Stanton et al., 2012). Most differences between these

techniques are probably attributed to implementation and developers ways to cope with

geometries, input/output, and data preconditioning. A range of tricks are used to stabilize

and bring these algorithms to the realm of industrial applications. For instance aliasing and

its solutions for MWNI and POCS have discussed by Cary and Perz (2012) and Gao et al.

(2013).

A superposition of complex exponentials (the assumption made by Fourier reconstruction

methods) leads to the linear prediction model. In other words, the superposition of complex

exponentials immersed in noise can be represented via autoregressive (AR) models. These

models are the basis of linear prediction theory, where one states that observations at one

channel are a linear combination of observations of adjacent channels. This is also the

principle behind FX noise attenuation via prediction filters. The superposition of complex

sinusoids in FX (linear events in TX) leads to predictability via AR models in X for a given

frequency F. This model is astutely exploited for denoising and for reconstruction (Spitz,

1991; Gülünay, 2003; Naghizadeh and Sacchi, 2007b). The advantage of FX prediction

filter methods is that they can cope with aliasing. In addition, they can be generalized

to N-D cases (Naghizadeh and Sacchi, 2010). Again, the assumption is that the data can

be represented via a superposition of plane waves that admits representation in terms of

an autoregressive model. For this to be true, one needs to segment the data in small

spatiotemporal windows to guarantee the validity of the plane wave assumption. This is also

a problem we encountered when reconstructing data with Fourier reconstruction methods.

In general, all reconstruction methods are based on the assumption of simplicity of the

representation of the waveform. For instance, a superposition of linear events has a sparse

representation in the frequency-wavenumber domain, similarly, a superposition of linear

events is predictable in the frequency-space domain. In this regard, one can claim the linear

event model is behind all reconstruction methods for multidimensional signals. In practice,

a linear superposition of events can be safely assumed by windowing the data or by using

localized transforms (Hennenfent and Herrmann, 2006, 2008; Wang et al., 2010a).

A difficulty in applying these methods to multicomponent data is that they are inherently
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nonlinear, that is, the coefficients necessary to predict missing data are derived from the data

themselves. As such, applying scalar interpolation algorithms to components independently

is highly likely to destroy the vector relationship between these components. A solution

of this problem is to make the interpolation itself a vector process, by adapting the linear

operators within Fourier interpolation methods (the FK transform and its adjoint) to the

vector case. This thesis extends two popular Fourier regularization techniques, POCS and

MWNI, to the multicomponent case by utilizing the quaternions to represent vector data in

the Fourier domain.

1.2 Regularized Elastic Imaging

While seismic data interpolation compensates for irregular surface sampling, least squares

imaging compensates for irregular subsurface illumination of the data. Least-squares mi-

gration seeks a reflectivity model that fits the observed data. It is used to compensate

for acquisition noise, the poor sampling of sources and receivers on the surface, as well as

poor illumination of the subsurface. To date, least-squares migration has been restricted

to the imaging of acoustic wavefields. This thesis presents an extension of wave equation

least-squares migration for elastic wavefields in isotropic media. For P-wave seismology, it

is common to simulate wave propagation using the scalar wave equation. This approxi-

mation is often sufficient to produce reasonable P-wave structural images. Extending this

approximation to converted wave imaging disregards the polarization of wave modes within

data components. Migration algorithms based on the elastic wave equation more accurately

model wave propagation and allow multiple wavefields to be imaged simultaneously. There

are a variety of approaches to elastic migration. Kuo and Dai (1984) developed an elas-

tic implementation of Kirchhoff migration. Chang and McMechan (1987) applied Reverse

Time Migration (RTM) to multicomponent data using an elastic finite-difference algorithm,

resulting in horizontal and vertical component images. Dellinger and Etgen (1990) pro-

posed the application of Helmholtz decomposition to elastic data using a Fourier domain

operator. Later implementations of elastic RTM use this idea to provide distinct PP and

PS images (see for example Yan and Sava (2008b)). Recently, Cheng et al. (2016) use a

low-rank approximation to simulate decoupled elastic waves in anisotropic media, and Guo

and Alkhalifah (2016) perform reflection waveform inversion using elastic data. Extensive

work has also been done on one-way wave equation based methods to migrate elastic data.

Xie and Wu (2005) used an elastic version of split step migration to downward continue

elastic data, while Bale (2006) modified phase shift migration to handle anisotropic elastic

wavefields. One-way wave equation based methods are an attractive option because they

perform more accurately than ray-based methods, and are much less computationally ex-

pensive than methods that employ finite differences. For example, in time domain RTM
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many wavefield snapshots for all time samples must be generated and saved prior to imag-

ing, while in one-way wave equation migration frequency slices are treated independently

and the wavefield is recursively updated with depth. One-way wave equation migration

operators are also computationally efficient in both memory and operation count, perform

accurately in moderately complex geological settings, and result in relatively few numerical

artefacts. There are also many promising methods to improve on traditional one-way wave

equation migration that can make its results competitive with RTM (for example Shan and

Biondi (2008)).

While in acoustic migration the image represents the partitioning of energy between incident

and reflected waves that share a common mode, in elastic migration a multi-parameter image

is created that represents the partitioning of energy between all combinations of incident

and reflected wave modes. The relative strength of these images as a function of angle of

incidence are related to the physical properties of the interface by the Zoeppritz equations

(Aki and Richards, 2002). Because P waves propagate by compression and dilation, their

corresponding reflection strengths are greatly influenced by pore fluids. S-wave reflection

strengths, on the other hand, are less influenced by the presence of pore fluids and instead

depend more heavily on changes in the rock matrix. As an example, MacLeod et al. (1999)

delineate a sandstone reservoir surrounded in shale by comparing PP and PS reflection

strengths. A counteraction of impedance associated with a change in lithology and an oil-

water contact made the reservoir difficult to identify in PP images, while the PS image was

able to isolate the change in lithology necessary to identify the reservoir.

The migration of converted waves comes with some additional complications compared to

P-wave migration. Typically PS data have a lower signal to noise ratio than PP data, and

the lower propagation velocity of the receiver side wavefield moves the point of reflection

away from the midpoint and toward the receiver. While lower propagation velocity implies

more restrictive aliasing criteria, it also presents an opportunity: given the same acquisition

geometry, converted waves can image the subsurface with a wider source side aperture

than P-wave data. Furthermore, ignoring the effects of attenuation, a given frequency of

converted wave data images the earth with a higher resolution than P-wave data (Stewart

et al., 2002). Realistically attenuation is always a factor (especially in the near surface),

which challenges the resolution of both PP and PS depth images (Bale and Stewart, 2002).

Some of these challenges can be dealt with before migration. For example, regularization can

be applied to reduce the effects of acquisition footprint on the migrated image (Cary, 2011a).

In this thesis, I aim to address some of the challenges facing converted wave migration via

least-squares inversion.

Least-squares migration, in its various forms, has been an active field of research for many

years. Lambaré et al. (1992) used an iterative data fitting approach to solve for reflec-
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tivity. Nemeth et al. (1999) applied least-squares migration with a Kirchhoff operator to

image in the presence of poor spatial sampling, while Kühl and Sacchi (2003) used regu-

larized least-squares one-way wave equation migration to generate angle gathers that are

unaffected by acquisition footprint. Wang et al. (2005) and Wang (2005) explore the ap-

plication of 3D one-way wave equation least-squares migration with constraints to a real

data set of the Western Canadian Sedimentary Basin. In a subsequent contribution, Wang

and Sacchi (2007) also explore the incorporation of a sparsity constraint to least-squares

migration to the ubiquitous problem of vertical resolution enhancement. Least-squares mi-

gration of structurally complex data has been also being investigated via the utilization

of preconditioning operators synthesized using prediction error filters (Wang and Sacchi,

2009). More recently, there has been a great deal of research incorporating two-way wave

equation migration operators into least-squares migration (Dai and Schuster, 2013; Zhang

et al., 2015; Dutta and Schuster, 2014a; Ji, 2009; Wong et al., 2015). A common theme of

all least-squares migration algorithms is data fitting which depends greatly on the ability of

the migration operator to accurately propagate energy from source to receiver. Extending

least-squares migration from the acoustic to the elastic case is a natural progression in data

fitting.

Least-squares migration is an iterative method that requires a forward and an adjoint oper-

ator. In elastic least-squares wave equation migration, the forward operator generates data

components from multiparameter images by recursive wavefield decomposition, extrapola-

tion, and recomposition. Conversely, the adjoint operator generates multiparameter images

from data components by recursively applying the adjoint of the wavefield recomposition,

extrapolation, and wavefield decomposition operators. An extended imaging condition is

used, defining the image as a function of reflection angle, and the inversion is regularized

by applying a smoothing filter on the depth-angle axes of each common image point gather

to reduce the effect of source/receiver sampling, noise, and crosstalk artefacts. Numerical

examples show that elastic least-squares migration can be used for interpolation, wavefield

separation, and illumination compensation of multicomponent seismic data.

1.3 Scope of this thesis

1.3.1 Main contributions

This thesis adds two new processes to the growing list of vector-elastic processing tools,

namely vector interpolation and elastic least squares migration. The main contributions of

this thesis are to



CHAPTER 1. INTRODUCTION 12

1. provide a new method to represent multicomponent seismic data in the Fourier do-

main using the quaternion Fourier transform, where all components share a common

amplitude spectrum and three phase terms

2. make use of the quaternion Fourier transform to extend Fourier interpolation to the

multicomponent case to improve the interpolation of multicomponent seismic data

3. provide a new method to model elastic data via shot profile one-way elastic wave

equation modeling using an extended model domain

4. demonstrate that the adjoint of elastic modeling is elastic migration, and use these two

operators to improve the imaging of elastic data via regularized least squares inversion

1.3.2 Organization

This thesis is organized as follows. Chapter two reviews the physics of elastic wave propa-

gation, including a discussion on the relationship between wavefield potentials and particle

motion in three components as governed by the Christoffel equation, and the projection of

particle motion onto a three-component receiver. Chapter three outlines Fourier regulariza-

tion, a class of methods used to improve the spatial sampling of scalar datasets, describes a

vector representation of multicomponent seismic data in the Fourier domain via the quater-

nions, and extends Fourier regularization to the multicomponent case. Synthetic examples

demonstrate that vector regularization consistently improves the quality of the regularization

independent of the orientation of the input components. A field data example demonstrates

that the approach better prepares the data for shear wave splitting analysis and compensa-

tion. Chapter four develops extended shot profile one-way elastic wave equation modeling.

Taking the adjoint of this linear operator, a cost function for elastic least squares imaging

is defined and minimized via conjugate gradients. A variety of synthetic data examples

demonstrate that elastic least squares migration minimizes crosstalk artefacts, mitigates

the effects of poor spatial sampling, and compensate for non-uniform illumination of the

subsurface.



CHAPTER 2

Elastic waves and vector measurements

Elastic wave propagation introduces additional complexity into recorded seismic data, namely

the orientation of particle motion in the subsurface as a function of the direction of propaga-

tion for individual wave modes, the material parameters in which the waves are propagating,

and the subsequent projection of these waves onto an array of vector receivers at the earth’s

surface. Considering these complexities, multicomponent recordings must be treated as vec-

tor quantities (as detailed in chapter 3), or as a superposition of elastic wave modes (as

detailed in chapters 4 and 5). This chapter will outline the physics of elastic wave propaga-

tion, the separation of elastic wavefields via the Christoffel equation, and the projection of

wave modes onto vector receivers at the earth’s surface.

2.1 The elastic wave equation

A force acting on a small region of a solid will result in three mutually orthogonal wave

modes known as elastic waves. To understand why this is the case we begin with Newton’s

second law of motion relating force and acceleration

Fi = müi, (2.1)

where

m = ρdx1dx2dx3, (2.2)

and

13
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Fi = ∂jτijdx1dx2dx3 + fi. (2.3)

where τij indicates the force acting in the direction î on the face of an infinitesimal cube

with normal vector ĵ, leading to the equation of motion:

ρüi = ∂jτij + fi. (2.4)

Next, we relate stress and strain using Hooke’s law

τij = Cijklekl, (2.5)

where Cijkl is the 81 term tensor of elastic moduli 1, where the strain is given by

ekl =
1

2
(∂kul + ∂luk). (2.6)

Combining equations 2.4, 2.5, and 2.6 while ignoring external forces fi we obtain the wave

equation

ρüi = Cijkl∂j∂luk (2.7)

This equation already makes the assumption that elastic parameters vary gradually at the

scale of elastic wave propagation, suggesting the measured data would be insensitive to this

variability.

Displacement can be represented as a complex harmonic (plane wave), uk = Uke
iω(t−sjxj),

where sj is the slowness vector that is the inverse of the phase velocity. The phase velocity is

related to the slowness via sj = nj/V , where nj indicates the direction of wave propagation.

The direction of wave propagation is just the normalized wavenumber vector, nj = kj/k,

where k =
√
kx + ky + kz. Substituting a plane wave into the wave equation we obtain the

Christoffel equation

ρUi = CijklsjslUk, (2.8)

More commonly written in the form

1Actually, symmetries of the elastic moduli tensor allows for it to be written using Voigt notation as a
symmetric 6x6 matrix following the rules Cijkl = CIJ , where 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 → 5,
and 12 → 6. Further symmetries of the material parameters can reduce the number of free parameters from
21 (triclinic) to as little as 2 (isotropy).
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G11 − ρV 2 G12 G13

G12 G22 − ρV 2 G23

G13 G23 G33 − ρV 2


U1

U2

U3

 =

0

0

0

 (2.9)

where the 3x3 Christoffel matrix is defined by

Gij = Cijklnjni (2.10)

2.2 Solving for polarizations and phase velocities

The Christoffel equation is a 3 x 3 eigenvalue - eigenvector problem. Given a tensor of elastic

moduli the eigenvalues correspond to the phase velocities of three distinct wave modes, and

the eigenvectors correspond to the polarizations of these modes. In the context of elastic

migration, the eigenvectors provide the polarization information necessary for wavefield

separation, and the eigenvalues provide the phase velocity necessary for extrapolation.

The first step in solving the Christoffel equation is to determine the elements of the Christof-

fel matrix given a tensor of elastic moduli of some assumed symmetry. The elements of the

Christoffel matrix (equation 4.4) for arbitrary symmetry expand to

G11 = C11n1n1 + C16n1n2 + C15n1n3

+ C61n2n1 + C66n2n2 + C65n2n3

+ C51n3n1 + C56n3n2 + C55n3n3

(2.11)

G22 = C66n1n1 + C62n1n2 + C64n1n3

+ C26n2n1 + C22n2n2 + C24n2n3

+ C46n3n1 + C42n3n2 + C44n3n3

(2.12)

G33 = C55n1n1 + C54n1n2 + C53n1n3

+ C45n2n1 + C44n2n2 + C43n2n3

+ C35n3n1 + C34n3n2 + C33n3n3

(2.13)
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G12 = C16n1n1 + C12n1n2 + C14n1n3

+ C66n2n1 + C62n2n2 + C54n2n3

+ C56n3n1 + C52n3n2 + C54n3n3

(2.14)

G13 = C15n1n1 + C14n1n2 + C13n1n3

+ C65n2n1 + C64n2n2 + C63n2n3

+ C55n3n1 + C54n3n2 + C53n3n3

(2.15)

G23 = C65n1n1 + C64n1n2 + C63n1n3

+ C25n2n1 + C24n2n2 + C23n2n3

+ C45n3n1 + C44n3n2 + C43n3n3

(2.16)

Applying the ”cookie-cutter” of transverse isotropy to the matrix of elastic moduli, many

terms disappear leading to

G11 = C11n1n1 + C66n2n2 + C55n3n3 (2.17)

G22 = C66n1n1 + C22n2n2 + C44n3n3 (2.18)

G33 = C55n1n1 + C44n2n2 + C33n3n3 (2.19)

G12 = C12n1n2 + C66n2n1 (2.20)

G13 = C13n1n3 + C55n3n1 (2.21)

G23 = C23n2n3 + C44n3n2 (2.22)

Simplifying further still by assuming isotropy:
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CIJ =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


, (2.23)

and substituting into equation 4.3 considering propagation in the [x1, x3] plane we obtain

the following Christoffel equation

(λ+ 2µ)n2
1 + µn2

3 − ρV 2 0 (λ+ µ)n1n3

0 µ(n2
1 + n2

3)− ρV 2 0

(λ+ µ)n1n3 0 µn2
1 + (λ+ 2µ)n2

3 − ρV 2


U1

U2

U3

 =

0

0

0


(2.24)

To find the eigenvalues corresponding to the three wave modes we set the determinant equal

to zero

∣∣∣∣∣∣∣
(λ+ 2µ)n2

1 + µn2
3 − ρV 2 0 (λ+ µ)n1n3

0 µ(n2
1 + n2

3)− ρV 2 0

(λ+ µ)n1n3 0 µn2
1 + (λ+ 2µ)n2

3 − ρV 2

∣∣∣∣∣∣∣ = 0 (2.25)

Substituting n =
[
0 0 1

]
(i.e. assuming a plane wave traveling vertically downward), we

obtain the cubic equation

0 = (µ− ρV 2)(µ− ρV 2)(λ+ 2µ− ρV 2) (2.26)

with solutions V1 =
√

(λ+ 2µ)/ρ, V2 =
√
µ/ρ, and V3 =

√
µ/ρ which are the familiar

relations for P, SV, and SH phase velocities respectively. Substituting the largest eigenvalue
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into the Christoffel equation and assuming isotropy we obtainG11 − (λ+ 2µ) G12 G13

G12 G22 − (λ+ 2µ) G23

G13 G23 G33 − (λ+ 2µ)


U

P
1

UP2

UP3

 =

0

0

0



⇒

n̂1
2 − 1 n̂1n̂2 n̂1n̂3

n̂1n̂2 n̂2
2 − 1 n̂2n̂3

n̂1n̂3 n̂2n̂3 n̂3
2 − 1


U

P
1

UP2

UP3

 =

0

0

0



⇒

n̂3 0 −n̂1

0 n̂3 −n̂2

0 0 0


U

P
1

UP2

UP3

 =

0

0

0



(2.27)

Which has the solution U
P
1

UP2

UP3

 =

n̂1

n̂2

n̂3

 . (2.28)

Repeating the process for the second largest eigenvalue we obtain

G11 − µ G12 G13

G12 G22 − µ G23

G13 G23 G33 − µ


U

S1
1

US1
2

US1
3

 =

0

0

0



⇒

 n̂1
2 n̂1n̂2 n̂1n̂3

n̂1n̂2 n̂2
2 n̂2n̂3

n̂1n̂3 n̂2n̂3 n̂3
2


U

S1
1

US1
2

US1
3

 =

0

0

0



⇒

n̂1 n̂2 n̂3

0 0 0

0 0 0


U

S1
1

US1
2

US1
3

 =

0

0

0



(2.29)

which is further constrained by n̂2
1 + n̂2

2 + n̂2
3 = 1 giving

n̂1 n̂2

√
1− n̂1

2 − n̂2
2

0 0 0

0 0 0


U

S1
1

US1
2

US1
3

 =

0

0

0

 . (2.30)

Letting a2 = n̂1
2 + n̂2

2 we get the solution
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U
S1
1

US1
2

US1
3

 =

−n̂2/a

n̂1/a

0

 . (2.31)

Because the eigenvectors of a 3x3 symmetric matrix form a orthonormal basis in <3 we can

use the relation US2 = UP ×US1 to get

U
S2
1

US2
2

US2
3

 =

n̂1n̂3/a

n̂2n̂3/a

−a

 . (2.32)

For more general symmetries of the stiffness tensor the eigensolutions are found numerically.

Figure 2.1 demonstrates a numerical solution to the Christoffel equation for an isotropic

medium with vp=1500m/s, vs=700m/s, and ρ=1000kg/m3.

The importance of these relations become apparent in chapter 4 where they are used for the

extrapolation of elastic wavefields.

From the above discussion, it is apparent that elastic waves have an amplitude and polar-

ization that depends on the velocity of the wave and the elastic properties of the medium.

To measure these waves we place many 3-component 2 sensors at the surface of the earth

and the incident wavefields are projected onto the X, Y, and Z components of each receiver.

Because vector measurements are sensitive to the orientation of the receivers the orientation

of multicomponent geophones within a survey are ideally kept constant across the survey

area, or alternatively, the orientation of the geophone must be measured precisely. Three

angles are required to describe the orientation of an axis in three dimensions: its roll (γ,

rotation about the X-axis), pitch (β, rotation about the Y-axis), and yaw (α, rotation

about the Z-axis). From these angles, a multicomponent recording can be re-oriented to

a common reference frame such as an east, south, and downward. The choice of reference

frame is arbitrary, although a right-handed system is desirable if applying rotation matrices.

To reorient a multicomponent sample by counter-clockwise angles (γ, β, α) three consecutive

matrix-vector multiplications are applied:

2Four component measurements are also common in ocean bottom surveying, where the fourth ”com-
ponent” is pressure. Other measurements are also possible including curls and spatial gradients
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(a) Phase 1

(b) Phase 2

(c) Phase 3

Figure 2.1: Polarizations in the kx − ky plane at kz = 0 for an isotropic medium
with vp=1500m/s, vs=700m/s, and ρ=1000kg/m3.
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South

T

S

Figure 2.2: Schematic showing the reorientation from an east-south-downward coor-
dinate frame to a radial-transverse-downward coordinate frame. S and G represent
the source and receiver locations respectively.

x
′

y′

z′

 = Rx(γ)Ry(β)Rz(α)

xy
z

 (2.33)

=

1 0 0

0 cosγ −sinγ
0 sinγ cosγ


 cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ


cosα −sinα 0

sinα cosα 0

0 0 1


xy
z

(2.34)

To reverse a rotation the inverse (≡ transpose) of the rotation matrix is used. Typically a

multicomponent processing sequence will involve rotating from a survey-wide orientation to

a shot-specific orientation of radial (pointing from source to receiver), transverse (normal to

the radial component in the horizontal plane), and downward (otherwise called the Vertical

component). The conventions for orientation of multicomponent seismic data are described

in Brown et al. (2002). Figure 2.2 shows a schematic of this reorientation for a source-receiver

pair.

In converted wave recording a P-wave source is used to generate both P-P and P-S mode-

converted wavefields which are then recorded using 3C (geophone) or 4C (geophone +

hydrophone) receivers. For deep reflections, nearly vertical arrival angles are observed at

the receiver. As a result, P-wave or quasi-P-wave oscillation (in the case of anisotropy)

is mainly recorded by the vertical component, while S-wave or quasi-S-wave oscillation is

mainly recorded by the horizontal components.
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Figure 2.3: P and S wave velocities for a model containing three interfaces. The
lateral source position is indicated above the model by a red star.

2.3 Example: a three layer model

To demonstrate the projection of a wavefield onto data components consider the velocity

model pictured in figure 2.3. Elastic finite difference modeling for a single source with this

model results in the data shown in figure 2.4 (the direct wave has been muted from both

components). Because these reflections were generated relatively deep in the model (≥ 1km)

and the shallow velocity is slow, near offset reflections arrive at the receiver approximately

vertically, resulting in mainly PP reflections on the vertical component and mainly PS

reflections on the horizontal component. Nevertheless, we see a non-negligible amount of

PP energy in the horizontal component and a complete violation of this assumption at far

offsets.

Another way to visualize the projection of wavefields onto data components is via FK

amplitude spectra. Figure 2.5 shows FK amplitude spectra for the near offsets (< 2km) for

the shot gather shown in figure 2.4. For this range of offsets very little PS energy is visible

in the vertical amplitude spectrum, making it approximately valid to process limited offset

data via scalar acoustic methods. For the horizontal component, a noticeable amount of PP

reflections are visible, even for such a limited range of offsets, making the assumption that

only PS reflections are recorded by the horizontal component a less valid approximation

than the PP reflection for the vertical component.

Calculating the FK amplitude spectrum including all offsets (figure 2.6), we see that PP

and PS reflections are clearly mixed between the two components. It is for this reason that
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Figure 2.4: Single shot gather at x=5km generated via elastic finite difference mod-
eling (the direct wave has been muted from both components). Notice the pro-
jection of earlier arriving PP waveforms mainly on the Z-component at near (<
2km) offsets, while the later arriving PS waveforms are projected mainly onto the
X-component at near offsets.
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Figure 2.5: FK amplitude spectra for X and Z components using only near (< 2km)
offsets

vector processing of multicomponent seismic data is an important consideration for signal

preservation and vector fidelity.

The next chapter discusses the effect of subsampling the spatial axes of these data, and how

a vector processing strategy is useful in preserving the vector fidelity of multicomponent

seismic data.
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Figure 2.6: FK amplitude spectra for X and Z components using all offsets



CHAPTER 3

Fourier interpolation and its extension to the

multicomponent case1

The spatial sampling of seismic data is rarely as dense or as regular as is required to gen-

erate a reliable image of the subsurface. Seismic data regularization is often applied within

a processing workflow to estimate a regular spatial grid of data using either surface (source

and receiver), or subsurface (midpoint, offset and azimuth or vector offset) coordinates.

A popular family of algorithms to regularize seismic data rely on the Fourier transform.

Fourier regularization methods attempt to regularize the data by extracting high amplitude

coefficients, or ”signal,” from the Fourier spectrum while removing Fourier artefacts gener-

ated by irregular spatial sampling, or ”noise”. As an example, consider the multicomponent

common shot gather from the previous chapter and its ”clean” FK amplitude spectrum. By

randomly subsampling the receiver grid, we obtain the data shown in figure 3.1, with FK

amplitude spectra shown in figure 3.2.

The decimation of random traces gives the FK spectra shown in figure 3.2 a noisy appearance

compared with the spectrum in figure 2.6. Fourier interpolation algorithms exploit this

difference via a sparsity constraint on the FK spectrum of the data to predict missing

traces.

Reconstruction is typically not applied to the horizontal components of multicomponent

seismic data. If the process is done at all, it is typically applied only to the radial compo-

nent which neglects the vector relationship between the horizontal components. This paper

introduces a method to reconstruct two components simultaneously using the quaternion

Fourier transform and Projection Onto Convex Sets (POCS). Quaternions have been used

1Parts of this chapter have been published in Stanton and Sacchi (2013), Stanton and Sacchi (2012),
and Stanton and Sacchi (2011).

26
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Figure 3.1: Single shot gather at x=5km generated via elastic finite difference mod-
elling after randomly decimating the receiver sampling by 50%.

−0.02 −0.01 0.00 0.01 0.02
Wavenumber (1/m)

0

5

10

15

20

25

Fr
e
q
u
e
n
cy

 (
H

z)

X-Component

−0.02 −0.01 0.00 0.01 0.02
Wavenumber (1/m)

0

5

10

15

20

25

Fr
e
q
u
e
n
cy

 (
H

z)

Z-Component

Figure 3.2: FK amplitude spectra for the randomly subsampled shot gather shown
in figure 3.1. Notice the artefacts introduced by the decimated sampling.
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for other applications in seismic data processing such as the computation of spectral at-

tributes (Bihan and Mars, 2001), time-lapse analysis and boundary detection (Witten and

Shragge, 2006), multicomponent velocity analysis (Grandi et al., 2007), and multicompo-

nent deconvolution (Menanno and Mazzotti, 2012). Quaternions were first introduced by

Sir William Rowan Hamilton while investigating how to extend the complex numbers into

three dimensions. He knew how to add and multiply three-dimensional numbers, but was

struggling to find a way to divide them. In 1843 Hamilton discovered that to allow division

a fourth dimension is necessary (Hamilton, 1866)2. A vector representation of two com-

ponent data in the frequency domain can be achieved by putting the real and imaginary

elements of each component into the arguments of a quaternion. This allows for operations

on both components to be carried out simultaneously. The quaternions are transformed

to the frequency-wavenumber domain using the quaternion Fourier transform and a single

amplitude spectrum for both components is defined using a polar representation of quater-

nions (Sangwine and Ell, 1999). Reconstruction of missing or noisy traces is carried out

using Projection Onto Convex Sets (Abma and Kabir, 2006). The method has the distinct

advantages that the orthogonality of the input components is maintained (the signals are

not mixed), and the similarities between the components serve to improve the quality of the

reconstruction.

3.1 Theory

Multicomponent seismic data suffer from the same spatial sampling and SNR problems as

single component data as well as some other complications. Shear waves are slower than

compressional wave velocities requiring higher spatial sampling to overcome aliasing. In the

case of converted wave acquisition, the conversion point of the ray-path lies nearer to the

receiver, giving an irregular pattern of fold.

In the presence of Horizontal Transverse Isotropy (HTI), shear wave splitting occurs (Crampin,

1981). Pre-stack analysis of shear wave splitting has been shown to benefit from a good

distribution of azimuths at every bin location (Gaiser, 2000; Bale et al., 2005). For pre-stack

analyses superbinning strategies are typically used to borrow missing azimuths from neigh-

boring bin locations (Cary, 2006), but this has the effect of smearing parameter estimates

over the area of the superbinning. 5D reconstruction methods can be used to fully populate

missing spatial samples in the subsurface geometry (binx, biny, offset, azimuth), but recon-

struction of the components individually could be damaging to their vector relationship.

If a linear dependence exists between components then attempts should be made to ensure

2While the discovery of quaternions is typically attributed to Hamilton, unpublished works of Gauss
indicate his discovery of the quaternions as early as 1819.
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Parameter ρ ( kg/m3) Vp (m/s) Vs (m/s)

Layer 1 2000 2000 1000

Layer 2 2100 2500* 1250*

Layer 3 2500 2800 1500

CHTI =


11.1 3.3 3.3 0 0 0
3.3 11.7 4.3 0 0 0
3.3 4.3 11.7 0 0 0
0 0 0 3.7 0 0
0 0 0 0 2.9 0
0 0 0 0 0 2.9



Table 3.1: Parameters for the three layer model shown in Figure 3.3. Two scenarios
are modelled. In the first scenario all three layers are isotropic and have constant
velocity with azimuth. In the second scenario, the P and S-wave velocities for the
second layer vary with azimuth and are computed using elastic coefficients given by
CHTI (specified in GPa) with a symmetry axis pointing to the east. This model
was generated following Bale (2002).

they are preserved. Traditionally this is done by rotating components to a reference frame

in which the components are linearly independent (Li and Yuan, 1999). At this point, each

component can be processed separately with no loss of fidelity. Unfortunately, it is not

always possible to separate wavefields in this way as the next section demonstrates. In these

cases, a vector processing strategy must be used, which is the focus of this paper.

3.1.1 Separability of data components

We consider two scenarios in which the recorded wavefields in converted wave exploration

have different degrees of separability with regard to the reference frame.

The two scenarios consider elastic wave propagation over a model consisting of three homo-

geneous layers as shown in Figure 3.3. In the first scenario, all three layers are isotropic.

The densities (ρ), P, and S-wave velocities (Vp, Vs) are provided in Table 3.1.

In the second scenario, the middle layer is replaced with a Horizontal Transversely Isotropic

layer, and the P and S-wave velocities are replaced by using elastic coefficients given by the

stiffness tensor CHTI in Table 3.1. This model is generated following Bale (2002). A second-

order elastic finite-difference simulation (Boyd, 2006) is used to generate one synthetic 3C

shot gather for each scenario. For each simulation, the receivers lie along a constant azimuth

with 120 offsets (8-meter increments) with a 1ms sample rate. The source is represented by

a vertical displacement with a Ricker wavelet of 15Hz peak frequency. A 3D shot gather is

generated by repeating 2D simulations for each azimuth in 10-degree increments to produce

a 3D shot gather with azimuths ranging from 0 to 350 degrees.

The first scenario we consider is the case of 3C acquisition over an isotropic medium (shown

in Figure 3.4). Here we record P-P, P-S, and S-S wavefields (neglecting multiples and higher
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order mode conversions). A rotation to a radial, transverse, and downward reference frame

places the majority of the P-S wavefield in the radial component, zero in the transverse

component, and the majority of the P-P wavefield in the downward component. In this

case, the transverse component can be neglected as it contains no signal.

In the second scenario, we consider 3C acquisition over an HTI medium (shown in Figure

3.5). Here we again record P-P, P-S, and S-S wavefields, but the HTI anisotropy leads to a

secondary P-S wavefield that is orthogonal to the first (Crampin, 1981). Two P-S wavefields

exist on the horizontal components: P-S1, and P-S2 (this could be compounded with HTI

effects from multiple layers), where P-S1 and P-S2 indicate converted waves polarized in

the fast and slow directions respectively. A rotation to a radial, transverse, and downward

reference frame places the P-S1 and P-S2 wavefields in the two horizontal components, and

the P-P wavefield in the downward component. Neglecting the interaction between the

radial and Vertical components, the two horizontal components can be represented by a

two-component vector, while the Vertical component can be approximated by a scalar.

Our synthetic example demonstrates that all three components share common wavefields,

but the majority of the P-S energy is contained in the horizontal components. This is in

agreement with real data examples that we have studied. In this paper, we mainly focus on

the mixing of P-S wavefields between the two horizontal components, but the algorithm we

present could also be easily extended to 3C or 4C seismic data.

3.1.2 Quaternions

Hamilton clearly recognized the connection between quaternions and the four dimensions

of space-time, famously stating ”and how the one of time, of space the three, might in the

chain of symbols girdled be.” A quaternion is defined as

q = a+ bi+ cj + dk (3.1)

where, i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i , and ki = ik = j. A

quaternion is defined as pure when a = 0.

Two component data in the frequency domain have the form

D1(ω, ~x) = D1real(ω, ~x) +D1imag(ω, ~x)i (3.2)

D2(ω, ~x) = D2real(ω, ~x) +D2imag(ω, ~x)i (3.3)
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The quaternions can represent both components as

Q(ω, ~x) = D1real(ω, ~x) +D1imag(ω, ~x)i+D2real(ω, ~x)j +D2imag(ω, ~x)k. (3.4)

It is often useful in the Fourier domain to use a polar representation of data in terms of

amplitude and phase. The polar representation of quaternions is given by

q = |q|eµφ (3.5)

where,

|q| =
√
a2 + b2 + c2 + d2, (3.6)

µ =
bi+ cj + dk√
b2 + c2 + d2

, (3.7)

φ = cos−1 a

|q|
, (3.8)

and µ is a pure unit quaternion (|µ| = 1) which is referred to as the quaternion’s eigenaxis.

Another representation of equation 3.5 is (Ell and Sangwine, 2007)

q = |q|eµφ = |q|(cosφ+ µsinφ). (3.9)

This equation is important because it allows for the amplitude of all elements of the quater-

nion to be expressed as a single term, |q|. Care has to be taken when carrying out algebra

with quaternions. Multiplication is not commutative, and as a result, multiplication by

an inverse function, or division, has distinct left and right sided representations. This also

implies that eib+jc 6= eibejc (Sangwine, 1998). The two-dimensional forward and inverse

continuous quaternion Fourier transforms given by Ell (1992, 1993) can be adapted to four

dimensions giving

Q(ω, ν1, ν2, ν3, ν4) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

[ e−2πjν3x3e−2πjν1x1q(ω, x1, x2, x3, x4)

·e−2πkν2x2e−2πkν4x4 ]dx1dx2dx3dx4 (3.10)
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q(ω, x1, x2, x3, x4) =
1

4π2

∞∫
−∞

∞∫
−∞

∞∫
−∞

∞∫
−∞

[ e2πjν3x3e2πjν1x1Q(ω, ν1, ν2, ν3, ν4)

·e2πkν2x2e2πkν4x4 ]dν1dν2dν3dν4 (3.11)

where ω is temporal frequency and νn, n ∈ (1, 4), are the spatial wavenumbers. It should

be noted that the selection of the imaginary terms i, j, k in the exponentials is not uniquely

defined. Also, because multiplication of quaternions is non-commutative, the placement

of the exponential terms on the left or right side of the function being transformed is not

uniquely defined. In the above notation, we follow the definition of the QFT used by Ell

(1992, 1993). It should also be noted that the expansions of equations 3.10 and 3.11 to a

summation over each of the four elements of the quaternions can be shown using equation

3.9 and following the multiplication rules of quaternions provided in this section.

The formulation for the forward discrete transform (Sangwine and Ell, 2000) can be extended

to four dimensions in a similar manner giving

Q(ω, ν1, ν2, ν3, ν4) =

N4−1∑
x4=0

N3−1∑
x3=0

N2−1∑
x2=0

N1−1∑
x1=0

[ e−j2π(
x3ν3
N3

)e−j2π(
x1ν1
N1

)q(ω, x1, x2, x3, x4)

·e−k2π(
x2ν2
N2

)e−k2π(
x4ν4
N4

)]. (3.12)

In this formulation the basis of the QFT are formed by the imaginary axes (i, j, k). Sangwine

and Ell (2000) show that the basis of the QFT can be written more generally:

Q(ω, ν1, ν2, ν3, ν4) =

N4−1∑
x4=0

N3−1∑
x3=0

N2−1∑
x2=0

N1−1∑
x1=0

e−µ12π(
x1ν1
N1

+
x2ν2
N2

+
x3ν3
N3

+
x4ν4
N4

)q(ω, x1, x2, x3, x4)

(3.13)

where µ1 is any unit pure quaternion and defines the axis of the transform. The standard

complex Fourier transform is a special case of this transform and occurs when µ1 = i and

the function being transformed is complex (Ell and Sangwine, 2007).

In the above formulation, µ1 can also be thought of as a versor (a quaternion of norm one)

which can be used to represent a rotation around an arbitrary axis, equivalent to a change

of basis in <3. Writing the quaternion µ1 as the first row in the change of basis operator
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µ =

... µ1 ...

... µ2 ...

... µ3 ...

 =

µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 (3.14)

a quaternion q = a+ bi+ cj + dk can be decomposed into its symplectic form (as a pair of

complex numbers)

q′ = (a′ + b′µ1) + (c′ + d′µ1)µ2 (3.15)

where the first and second terms of q′ are called its simplex and perplex parts respectively,

and a′, b′, c′, and d′ are found using the change of basis

a′ = a

b′ = bµ11 + cµ12 + dµ13

c′ = bµ21 + cµ22 + dµ23

d′ = bµ31 + cµ32 + dµ33 (3.16)

(Ell and Sangwine, 2007). Given a choice of the first axis of the basis, µ1, the initial choice

of µ2 is arbitrary, but must not be parallel to µ1. µ3 can be calculated by taking the cross

product of µ1 and µ2 and setting its modulus to one. Finally, the cross product of µ1 and

µ3 is taken to provide an updated value of µ2 that completes an orthonormal basis. This

allows for the quaternion Fourier transform of equation 3.15 to be written as

Q′(ω, ~ν) = F [a′(ω, ~x) + b′(ω, ~x)i] + F [c′(ω, ~x) + d′(ω, ~x)i]j

= A′(ω, ~ν) +B′(ω, ~ν)i+ C ′(ω, ~ν)j +D′(ω, ~ν)k (3.17)

where F is the standard Fourier transform. The change of basis is then reversed to give

A = A′

B = B′µ11 + C ′µ21 +D′µ31

C = B′µ12 + C ′µ22 +D′µ32

D = B′µ13 + C ′µ23 +D′µ33. (3.18)
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This allows for existing FFT codes to be used in calculating the QFT (Ell and Sangwine,

2007).

The following are the steps to carry out the N-dimensional quaternion Fourier transform:

1. Begin with quaternion q = a+ bi+ cj + dk

2. Apply a change of basis to the quaternion using equation 3.16 to get q′ = a′ + b′i +

c′j + d′k.

3. Write q′1 = a′ + b′i and q′2 = c′ + d′i

4. Apply two N-dimensional complex FFTs of q′1 and q′2 giving Q′1 = A′ + B′i and

Q′2 = C ′ +D′i.

5. Construct the quaternion in the Fourier domain: Q′ = A′ +B′i+ C ′j +D′k

6. Reverse the change of basis using equation 3.18 to give Q = A+Bi+ Cj +Dk. The

inverse QFT is done in a similar manner.

The Fourier transform of a quaternion is itself a quaternion which can be written in the

polar representation (equation 3.5).

Next we show the importance of the selection of the QFT axis, µ1. Choosing µ1 = i gives a

new basis of (i, j, k), equivalent to performing a change of basis using the identity matrix:

µ =

... i ...

... j ...

... k ...

 =

1 0 0

0 1 0

0 0 1

 = I (3.19)

Which maintains a quaternion in the basis (i, j, k). Returning to our vector representation

of two component data in the frequency domain (equation 3.4), the choice of QFT axis

should be considered. In the Fourier analysis of color images Ell and Sangwine (2007)

choose µ1 = (i, j, k)/
√

3 (a unit vector pointing with equal length along each axis in <3).

This choice of axis comes naturally in the analysis of (R,G,B) images as this comprises one

axis of a basis in which the simplex part represents intensity (luminance), while the perplex

part represents the color information (chrominance). The choice of the axis can also be

seen to represent the amount of mixing between elements of the quaternions in the Fourier

domain. We do not see an analogy to luminance and chrominance in the representation

of multicomponent seismic data. A synthetic data reconstruction example shown later in

this paper demonstrates that the choice of QFT axis has little impact on the quality of

reconstruction results. For these reasons, we make our selection of QFT axis based on the
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computational advantage of choosing µ1 = i, which leads to a change of basis using the

identity matrix as shown in equation 3.19.

This greatly simplifies the workflow for the N-dimensional quaternion Fourier transform to:

1. Begin with quaternion q = a+ bi+ cj + dk

2. Write q1 = a+ bi and q2 = c+ di

3. Apply two N-dimensional complex FFTs of q1 and q2 giving Q1 = A + Bi and Q2 =

C +Di.

4. Construct the quaternion in the Fourier domain: Q = A+Bi+ Cj +Dk

In our reconstruction algorithm, this effectively eliminates the need for considering quater-

nion algebra, except in the computation of amplitude (equation 3.6).

To demonstrate the use of our vector representation of data we show FK spectra for the

horizontal components of a common shot gather over an HTI medium in Figure 3.6. The

east (a) and south (b) components appear nearly identical, but after rotation to radial

(c) and transverse (d) components we uncover the weak signal of shear wave splitting in

the transverse component. For this reason, the reconstruction of components individually

clearly depends on the orientation of the input data. The quaternion FK spectrum for the

east-south (e), and radial-transverse (f) configurations, on the other hand, do not depend

on the orientation of the receivers, giving identical FK spectra in both cases. For this

reason, the reconstruction of components together by a vector representation in the FK

domain is invariant to the orientation of the receivers. Invariance to receiver orientation is

an important distinction between scalar and vector processing strategies. This distinction

was first identified by Cary (1995) to perform deconvolution prior to shear wave splitting

analysis.

The main contribution of this paper is to modify the computation of the FK amplitude

spectrum needed by our reconstruction algorithm to include more than one component of

seismic data. The next section shows how the quaternion FK amplitude spectrum (equation

3.6) can be used to reconstruct more than one component of data simultaneously.

3.1.3 Projection Onto Convex Sets (POCS)

Projection Onto Convex Sets (POCS) can be used to reconstruct seismic data by iteratively

thresholding the amplitude spectrum while using a reinsertion operator to control which

traces are reconstructed. It is shown to be an effective method for seismic data reconstruction
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(Abma and Kabir, 2006; Gao et al., 2012; Wang et al., 2010c; Stein et al., 2010), but typically

requires many iterations to achieve good results. A data-driven thresholding schedule has

been shown to give a significant improvement in the number of iterations required while still

achieving good results (Gao et al., 2012). A modification to the reinsertion operator allows

for the algorithm to also be used for denoising of seismic data (Gao et al., 2012).

For a given temporal frequency, ω, a quaternion of data in the (ω,mx,my, h, az) domain at

the nth iteration of POCS is given by

Qn = αQobs + (1− αS)F−1
Q TFQQn−1, n = 1, ..., N, (3.20)

where Qobs is the quaternion representation of the original data with missing traces, and

FQ and F−1
Q are the forward and inverse 4D quaternion Fourier transforms respectively.

In this notation Qn(ω, kmx , kmy , kh, kaz) = FQQn(ω,mx,my, h, az), and T is an iteration

dependent quaternion threshold operator. The sampling operator is given by S and is equal

to one for points with existing traces and zero for points with unrecorded observations. The

scaling factor α ≤ 1 can be used to simultaneously denoise the data. A choice of α = 1

reinserts the noisy original data at each iteration, whereas a lower value of α will denoise

the volume by taking an average of the original and reconstructed data. The threshold

operator, T , is designed using an amplitude distribution derived from the input data. The

details for deriving the threshold operator are found in Gao et al. (2012).

3.2 Synthetic data example

The synthetic data we consider for our reconstruction tests is the elastic finite-difference

synthetic generated using an HTI model (Scenario 2), in the radial-transverse coordinate

frame. Figure 3.7 shows an example of the reconstruction of a synthetic 3D-2C common

shot gather with SNR = 5 shown for a constant offset of 560m, which has been decimated

to 40% of the original number of traces (left column). The data are reconstructed using both

component-by-component reconstruction (middle column), and vector reconstruction (right

column). The quality of the reconstruction is improved with the use of vector reconstruction.

Figure 3.8 shows the same plots for a constant azimuth of 20◦. Figure 3.9 (a) displays a plot

of the quality of the reconstruction versus the percentage of traces decimated. The quality

of the reconstruction is measured using

R− SNR = 10 log
||do||22
||d− do||22

, (dB) (3.21)
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Figure 3.3: Three layer model used for the generation of elastic finite-difference
synthetic data examples. Two scenarios are modelled. In the first scenario all three
layers are isotropic, while in the second scenario layer 2 has Horizontal Transversely
Isotropic (HTI) symmetry. The parameters for each layer are given in table 3.1.
The acquisition geometry consists of 18 receiver lines (blue) oriented about a single
shot (red).

where do and d are the true and reconstructed data respectively. The results are plotted for

both traditional component by component POCS reconstruction (dashed lines), and vector

POCS reconstruction (solid lines). The quality of the reconstructions for both components

is noticeably improved through the use of vector reconstruction, although the transverse

component sees the greatest improvement. This is likely due to the fact that the transverse

component has a lower SNR compared to the radial component. During the course of

our tests, we have found that traditional component-by-component reconstruction provides

slightly better results in the east-south coordinate frame than in the radial-transverse co-

ordinate frame. This is because the east-south coordinate frame mixes the weak transverse

wavefield with the much stronger radial wavefield between two components. The overlap

of the two components provides a higher amplitude value in the FK domain (in contrast

to the artifacts in this domain related to noise or missing traces), leading to an improved

reconstruction (this effect could be termed ”spectral overlap”). Vector reconstruction shows

an improved reconstruction for a similar reason, spectral overlap, but in this case, the

quaternion FK spectrum is invariant to the orientation of the input data.
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Figure 3.4: Elastic finite-difference synthetic shot gathers for Scenario 1 (azimuth
20◦) (isotropy). Before reorientation: (a) east, (b) south, (c) downward, and after
reorientation: (d) radial, (e) transverse, (f) downward. Notice that the energy in
the horizontal plane can be placed into a single component by rotation.
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Figure 3.5: Elastic finite-difference synthetic shot gathers for Scenario 2 (azimuth
20◦) (Horizontal Transverse Isotropy). Before reorientation: (a) east, (b) south, (c)
downward, and after reorientation: (d) radial, (e) transverse, (f) downward. Notice
that the energy in the horizontal plane cannot be placed into a single component
by rotation.
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Figure 3.6: FK spectra of the horizontal components shown in Figure 3.5. (a) East
component, (b) south component, (c) radial component, (d) transverse component,
(e) quaternion FK spectrum for east and south components, (f) quaternion FK
spectrum for radial and transverse components. Notice that the quaternion FK
spectrum does not depend on orientation ((e) and (f) are identical).
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Figure 3.7: Comparison of component by-component reconstruction to vector re-
construction for a synthetic 3D-2C common shot gather: Common-offset display
(560m). The input has 60% missing traces and SNR = 5. (a) Component 1 in-
put, (c) component 1 after single component reconstruction, (e) component 1 after
vector reconstruction. (b), (d), and (f) show the same for component 2.
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Figure 3.8: Comparison of component by-component reconstruction to vector recon-
struction for a synthetic 3D two component common shot gather: Common-azimuth
display (20◦). The input has 60% missing traces and SNR = 5. (a) Component
1 input, (c) component 1 after single component reconstruction, (e) component 1
after vector reconstruction. (b), (d), and (f) show the same for component 2.
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Figure 3.9: Quality for the reconstructions shown in Figures 3.7 & 3.8 when the
percentage of missing traces is varied (a), and the QFT axis orientation is randomly
oriented. The input data have an SNR of 5.

Next, we demonstrate that the choice of QFT axis, µ1, has little effect on the quality of the

reconstruction result. We repeat the reconstruction of the data shown in Figures 3.7 and 3.8

with twenty different randomly oriented choices of QFT axis. Figure 3.9 (b) shows that for

each choice of µ1 the reconstruction quality is relatively constant. This gives us confidence

that we can choose µ1 = i, giving an important computational improvement by eliminating

the change of basis operation for every forward and inverse quaternion Fourier transform.

3.3 Real data example

For a real data example we consider the 5D reconstruction of a converted wave land dataset

acquired over a heavy oil reservoir. The reservoir is being produced by a fluid injection

technique, and time-lapse analyses demonstrate changes in shear wave splitting effects as

a result of production. While shear wave splitting is commonly associated with thickness

and intensity of fractured zones, in this case the changes in shear wave splitting are thought

to be associated with changes in horizontal stresses as a result of fluid injection (Wikel

et al., 2012). The shot and receiver locations for the acquisition are shown in Figure 3.10.

There are significant surface obstructions leading to patches of low fold in the compressional

wave (P-P) data as shown in Figure 3.11a. The converted wave (P-S) data suffer from the

additional problem of asymmetric binning. Asymptotic Conversion Point (ACP) binning



CHAPTER 3. VECTOR INTERPOLATION 43

4.84 4.85 4.86
x105x-coordinate (m)

6.167

6.168

x106

y
-c

o
o
rd

in
a
te

 (
m

)

Figure 3.10: Shot (red) and receiver (blue) coordinates for a converted wave survey
over a heavy oil reservoir.

(Fromm et al., 1985) with γ = 3 (where γ is defined as an average P and S-wave RMS

velocity ratio) gives a fold map with high fold clustered around receiver lines as shown in

Figure 3.11b. In addition to constraints on acquisition, 5D reconstruction is also beneficial in

this case due to the need for dense sampling of azimuths for shear wave splitting analysis and

compensation. In the absence of HTI media, the radial component is expected to contain

all of the P-S energy, while the transverse component should appear free from signal. In the

presence of HTI media the P-S wavefield is split into fast and slow components which appear

as characteristic patterns in the radial and transverse components (Li, 1998; Cary, 2002).

Generally speaking, the travel-times of the radial component display an apparent sinusoidal

variation across azimuths, while the transverse component displays polarity reversals across

azimuths. Without sharing traces from neighboring bins (superbinning) it is difficult to

identify these patterns.

Figure 3.12 displays offset vs. azimuth for all traces in the survey in the offset range

of 0-550m. This figure demonstrates that over the entire survey nearly all offsets and

azimuths are represented, while Figure 3.13 (a) demonstrates that for a given bin location

(150,150) many offsets and azimuths are missing. The basis of 5D regularization is that these

data can be used to predict traces at individual bin locations. Figure 3.13 (b) shows bin

(150,150) after 5D regularization. The data are binned into 5x5m Asymptotic Conversion

Point (ACP) bins, 50m offset bins, and 20◦ azimuth bins. Unlike standard P-P wavefield

regularization, source-receiver reciprocity cannot be used in the case of PS acquisition,

requiring azimuths to be defined on the interval 0-359◦ and leading to a higher degree of

sparsity. In this example, the offset is limited to 550m to mitigate the effects of the limited
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Figure 3.11: total fold calculated over the offset interval 0-550m using γ = 1 and
γ = 3 to calculate the bin location (Common Mid-Point). Notice the relatively even
distribution of fold around source and receiver lines when γ = 1, compared to the
clustering of high fold bin locations around receiver lines when γ = 3.
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Figure 3.12: Azimuth vs. Offset plotted for all traces in one 26x26 patch of ACP
bins centered at ACP (150,150). The offset has been limited to the interval 0-550m.
Azimuth is calculated as the angle from source to receiver counter-clockwise from
east. The two missing lobes centered at azimuths 38◦ and 218◦ correspond to the
crossline directions which limit the far offset due to the limited size of the recording
patch. The maximum offset for the reconstruction was limited to 550m to mitigate
the effect of missing azimuths at far offsets.
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size of the recording patch in the crossline direction. The reconstructions are carried out on

a 26-crossline-wide region of data in patches of 26x26 ACPs with an overlap of 13 ACPs.

Each patch of data has approximately 92% of traces missing, but of the 8% ”alive” traces

within each patch, approximately 35% are redundant. This redundancy can be reduced by

decreasing bin increments, but at the expense of decreasing the percentage of ”alive” traces,

and increasing the need for computational memory (Trad, 2009). Due to the low SNR of

the input data we find best results when using the denoising parameter α = 0.1 with a

relatively high number (500) of iterations. Both the standard and vector reconstructions

are parameterized identically for comparison purposes.

The results of component-by-component reconstruction and vector reconstruction are shown

in Figure 3.14. Radial and transverse components sorted by offset and azimuth are shown

for ACP gather (150,150). The radial and transverse input gathers (a) and (d) have many

missing offsets and azimuths, making it difficult to identify the effects of shear wave splitting.

The data after component-by-component reconstruction (b) and (e) make it easier to identify

these effects. The radial component shows a sinusoidal-like pattern of travel-times across

azimuths at approximately 800ms, while the transverse component shows characteristic

polarity reversals across azimuths at this same event. The vector reconstructions (c) and

(f) show a slightly improved reconstruction of the radial component. For the transverse

component, the improvement is more noticeable, making the effects of shear wave splitting

easier to identify. Figure 3.16 shows a zoomed-in display of these data at an offset of

275m. The shear wave splitting effect at approximately 800ms is more easily identified in

the transverse component after vector reconstruction (f) compared with the result after

component-by-component reconstruction (e).

To better evaluate the reconstruction results shear wave splitting corrections are applied to

the data. The inversion of the splitting parameters is done via a grid search with a cost

function aimed at minimizing the energy on the transverse component. This cost function

is given by equation (8) of Simmons (2009). The goal of shear wave splitting analysis is

to find two parameters. The first parameter, ∆t, is the travel time difference between a

shear wave traveling in the fast direction and the slow direction. The second parameter,

φS1, is the azimuth of the fast direction of the anisotropy. A layer stripping approach is

applied for layers at times of 400, 600, and 800ms. The inversion of the splitting parameters

was carried out for each of the inputs individually, resulting in the following parameter

estimates for ACP gather (150,150). The input data before reconstruction provide the

splitting parameters φ1
S1 = 103◦, ∆t1 = 0ms, φ2

S1 = 107◦, ∆t2 = 1ms, φ3
S1 = 100◦, and

∆t3 = 1ms, where φ1
S1 and ∆t1 indicate the azimuth of the fast direction and time lag for

layer 1 respectively. The data after component-by-component reconstruction provide the

parameters φ1
S1 = 104◦, ∆t1 = 1ms, φ2

S1 = 105◦, ∆t2 = 1ms, φ3
S1 = 103◦, and ∆t3 = 1ms,

while the data after vector reconstruction provide the parameters φ1
S1 = 103◦, ∆t1 = 1ms,
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Figure 3.13: Shot (red) and receiver (blue) coordinates for ACP bin (150,150) before
5D regularization (a), and after regularization (b). Black lines connect shot-receiver
pairs. For 5D regularization the data are binned into 5x5m ACP bins, 50m offset
bins, and 20◦ azimuth bins. For the ACP binning a value of γ = 3 was used. This
positions the bin 3/4 the distance from source to receiver, giving an asymmetric
pattern of sources and receivers for each ACP location.
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Figure 3.14: 5D reconstruction results shown for one ACP gather (150,150) sorted
by offset, azimuth. (a) Radial component before reconstruction, (b) radial com-
ponent after component-by-component reconstruction, (c) radial component after
vector reconstruction. (d), (e), and (f) respectively show the same results for the
transverse component. The area highlighted in red is shown in Figure 3.16
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Figure 3.15: 5D reconstruction results shown for one ACP gather (150,150) sorted
by offset, azimuth, shown after shear wave splitting correction. (a) Radial com-
ponent before reconstruction, (b) radial component after component-by-component
reconstruction, (c) radial component after vector reconstruction. (d), (e), and (f)
respectively show the same results for the transverse component. The area high-
lighted in red is shown in Figure 3.17
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Figure 3.16: 5D reconstruction results shown for offset 375m of ACP gather
(150,150) sorted by azimuth. (a) Radial component before reconstruction, (b) radial
component after component-by-component reconstruction, (c) radial component af-
ter vector reconstruction. (d), (e), and (f) respectively show the same results for
the transverse component.
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Figure 3.17: 5D reconstruction results shown for offset 375m of ACP gather
(150,150) sorted by azimuth, shown after shear wave splitting correction. (a) Ra-
dial component before reconstruction, (b) radial component after component-by-
component reconstruction, (c) radial component after vector reconstruction. (d),
(e), and (f) respectively show the same results for the transverse component.
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Figure 3.18: 5D reconstruction results shown for one stacked crossline (150) of
the radial component sorted by inline. Shear wave splitting corrections have been
applied. (a) Radial component before reconstruction, (b) radial component after
component-by-component reconstruction, (c) radial component after vector recon-
struction.
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Figure 3.19: 5D reconstruction results shown for one stacked crossline (150) of the
transverse component sorted by inline. Shear wave splitting corrections have been
applied. The complex envelope for each trace is input to the stacking process to
avoid the effect of polarity reversals across azimuth. (a) Transverse component
before reconstruction, (b) transverse component after component-by-component re-
construction, (c) transverse component after vector reconstruction.
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φ2
S1 = 106◦, ∆t2 = 1ms, φ3

S1 = 105◦, and ∆t3 = 1ms. All three inputs provide similar

values for this particular gather. Figure 3.15 shows the results of shear wave splitting

analysis and compensation for ACP gather (150,150). On the input gathers it is difficult to

see any improvement by the process, while on the component-by-component reconstruction

and vector reconstruction results it is apparent that the radial component is more flat, and

the transverse component has a more dramatic reduction in energy. In the zoomed displays

of Figure 3.17 at an offset of 275m the apparent sinusoid pattern on the radial component

appears flatter and the energy of the transverse component appears to be lessened by the

process. For the transverse component, the vector reconstruction results show a lower level

of amplitude compared with the component-by-component reconstruction result.

Stack sections of the radial component after shear wave splitting correction for crossline 150

are shown in Figure 3.18. The input stack (Figure 3.18a) suffers from irregular low fold.

Component-by-component reconstruction (Figure 3.18b) provides an improvement to the

quality of the stack, while vector reconstruction (Figure 3.18c) offers a very minor improve-

ment to the quality of the radial stack. Notice the improved flatness and amplitude of the

horizon at 800ms and inline number 270. A greater improvement is seen in the transverse

stack (Figure 3.19). A reduction in amplitude in the transverse component after application

of shear wave splitting corrections is commonly used as a measure of the quality of the cho-

sen parameters. This stack was generated following Simmons (2009), where the envelope of

complex traces are stacked to demonstrate the level of energy in the data by avoiding the

amplitude canceling effect of the polarity reversals on the transverse component. Notice the

improved reduction in amplitude of the horizon at 800ms after vector reconstruction (Fig-

ure 3.19c) compared with the result after component-by-component reconstruction (Figure

3.19b).

3.4 Discussion

We find an improvement in the reconstruction of two component 5D data when using a

vector reconstruction method that considers both components simultaneously compared

to component-by-component reconstruction. The improvement is due to overlap of the

components in the frequency-wavenumber domain which is advantageous in vector POCS

reconstruction. We have also shown that our vector representation of multicomponent seis-

mic data in the frequency-wavenumber domain is invariant to the orientation of the input

data. A drawback of the method is that if the components do not overlap in the frequency-

wavenumber domain there is little benefit in considering the components simultaneously.

During the course of our research, we first attempted to represent three component data

by forming the quaternion of data in the time domain (Stanton and Sacchi, 2011). In the
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reconstruction of real data, we find that three component representations produce slightly

worse results than component-by-component reconstructions. This is likely due to the fact

that the Vertical component contains mainly the P-P wavefield while the horizontal com-

ponents mainly contain the P-S wavefields. This results in a decrease in spectral overlap

which is a disadvantage in vector POCS reconstruction. Reconstruction of three compo-

nent seismic data also adds a further complication in the context of binning geometry. In

our real data example, we reconstruct 5D data to a regular subsurface grid (Asymptotic

Conversion Point, offset, azimuth). Including the Vertical component in this type of re-

construction would require binning the Vertical component onto a different subsurface grid

(Common Mid-Point, offset, azimuth), giving a multi-valued sampling operator. An alter-

native would be to perform 5D reconstruction in surface geometry (source, receiver), which

is common for all components. Since the analysis of shear wave splitting is typically done

considering subsurface binning this type of reconstruction does not fit our objective. Despite

these complications, our proposed algorithm can be easily extended to a higher number of

components by modifying equation 3.4 to give a time domain representation of multiple

components D(t, ~x) = H(t, ~x)+X(t, ~x)i+Y (t, ~x)j+Z(t, ~x)k, where H(t, ~x) is a scalar com-

ponent such as a hydrophone in the time domain that is invariant to rotation, and X(t, ~x),

Y (t, ~x), Z(t, ~x) are the three vector components with an arbitrary orientation. The proposed

algorithm for vector reconstruction should then be modified to include a quaternion Fourier

transform along the time axis to bring the data into the (ω, ~x) domain before reconstruction.

This transform does not have the conjugate symmetry along the frequency axis that our

current 2C implementation has (leading to an increase in the memory and computational

time required), but the rest of the algorithm remains unchanged. An implementation of our

algorithm for a higher number of components is a subject of future research.

An alternative to a quaternion formulation is to use the complex numbers to provide a two

component representation of data in the time domain. A drawback of this approach is that

it destroys the conjugate symmetry along the frequency axis, requiring reconstruction on

both halves of the axis3. We prefer a two component representation in the frequency domain

using the quaternions as this preserves the conjugate symmetry along the frequency axis.

The number of computational operations required when using complex numbers and quater-

nions is equivalent, but the quaternion approach offers a reduced computational memory

requirement due to conjugate symmetry. Another advantage is that the sampling operator,

T, in the case of a complex representation can not handle different sampling for each com-

ponent, while the quaternion representation in the frequency domain can handle different

sampling for each component. In the course of this study, we also find a connection of the

quaternion formulation to that of group sparsity (Rodriguez et al., 2012), which points to

3Loading two real-valued traces into the real and imaginary part of a complex trace is an often used
trick in digital signal processing to speed up the computation of the Fourier transform for two real valued
traces by a factor of two (M. van der Baan, personal communication, April 7, 2017).
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another strategy to handle a higher number of components.

3.5 Generalization of the approach

While the above formulation of vector regularization makes use of the POCS method, the

core concept of vector regularization is readily extended to a wider class of Fourier regulariza-

tion techniques. An often used Fourier regularization technique in the industry is Minimum

Weighted Norm Interpolation (MWNI) (Liu and Sacchi, 2004). The method begins with

the objective

J = ||T (Fqm− d)||22 + ||µTm||22 (3.22)

where Fq is the forward quaternion Fourier transform over the spatial axes, T is a diagonal

sampling operator with 1’s in place of observations and 0’s in place of missing traces, µ is

a multicomponent trade-off parameter to control the level to fit the data versus the level to

minimize the l− 2 norm of the model, m are vector-valued Fourier coefficients for the fully

sampled noise free data components (the unknown model we seek), and d is the frequency

slice of recorded vector data binned onto a regular spatial grid. The minimum norm solution

to this problem is

m = (F Tq TFq + Υ)−1F Tq Td (3.23)

where Υ =

µ1 0 0

0 µ2 0

0 0 µ3

. Because Fq is an orthogonal operator (F Tq = F−1
q ), this solution

reduces to

m = Fqd, (3.24)

which implies that

dinterp = d, (3.25)

which is not a helpful result to say the least. A solution is to impose a sparsity constraint

on the spectrum of the interpolated data:

J = ||T (Fqm− d)||22 + ||µTWmm||22 (3.26)
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Figure 3.20: decimated data (as shown in figure 3.1) interpolated using scalar POCS.
The qualities of the reconstructions are 23.07 and 29.73 dB respectively.

The weighting in equation 3.26 is designed to promote high amplitudes, corresponding to

spectral coefficients of the true undecimated data, while weighting down low amplitude

sampling artefacts. This equation can be solved via Iteratively Reweighted Least Squares

(IRLS), with an inner loop minimized via conjugate gradients. Because equation 3.26 in-

volves the use of vector valued model, data, and regularization parameters, a scalar version

of conjugate gradients will not suffice. Appendix B discusses the application of the Conju-

gate Gradients algorithm to multicomponent-valued model and data vectors. This solver is

re-used in chapters 4 and 5 to extend acoustic least squares migration to the elastic case.

These algorithms were implemented using the multiple dispatch feature of the Julia pro-

gramming language, and publicly released as part of an official Julia package: Seismic.jl.

An overview of this package is provided in Appendix D.

To validate the extension of MWNI to the vector case I next the algorithm to the decimated

elastic finite difference synthetic shot gather shown in figure 3.1. Figures 3.20 and 3.21

show the result of applying scalar POCS interpolation, while figures 3.22 and 3.23 show

the result of applying scalar MWNI interpolation. For such a simple case we expect both

algorithms to perform similarly well. Figures 3.24 and 3.25 show the result of applying vector

POCS interpolation, while figures 3.26 and 3.27 show the result of applying vector MWNI

interpolation. Again, both approached provide moderately better results with virtually

identical computational cost.
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Figure 3.21: FK amplitude spectra for the decimated data interpolated using scalar
POCS.
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Figure 3.22: decimated data (as shown in figure 3.1) interpolated using scalar
MWNI. The qualities of the reconstructions are 27.49 and 32.72 dB respectively.



CHAPTER 3. VECTOR INTERPOLATION 58

−0.02 −0.01 0.00 0.01 0.02
Wavenumber (1/m)

0

5

10

15

20

25

Fr
e
q
u
e
n
cy

 (
H

z)
X-Component

−0.02 −0.01 0.00 0.01 0.02
Wavenumber (1/m)

0

5

10

15

20

25

Fr
e
q
u
e
n
cy

 (
H

z)

Z-Component

Figure 3.23: FK amplitude spectra for the data interpolated using scalar MWNI.
The qualities of the reconstructions are and dB respectively.
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Figure 3.24: decimated data (as shown in figure 3.1) interpolated using vector
POCS. The qualities of the reconstructions are 23.76 and 30.81 dB respectively.
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Figure 3.25: FK amplitude spectra for the data interpolated using vector POCS.
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Figure 3.26: decimated data (as shown in figure 3.1) interpolated using vector
MWNI. The qualities of the reconstructions are 27.53 and 33.41 dB respectively.
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Figure 3.27: FK amplitude spectra for the data interpolated using vector MWNI.

3.6 Conclusions

This chapter introduced a method to reconstruct two components of a multicomponent

seismic volume simultaneously using the quaternion Fourier transform and POCS. The al-

gorithm improves the quality of the reconstruction while preserving the orthogonality of the

input components. The algorithm can also be used for noise attenuation of seismic volumes.

The improvement is due to the fact that one amplitude spectrum is calculated for the two

components which is beneficial when the components have significant spectral overlap. A

drawback of the method is that if the components do not share significant overlap in the

frequency-wavenumber domain the benefit will not be as great. For this reason, we choose

to represent the two horizontal components using a vector representation in the frequency

domain while treating the Vertical component as a scalar quantity. In the 5D reconstruction

of a land dataset displaying the effects of shear wave splitting, we find an improvement in

reconstruction quality when treating the radial and transverse components as a vector quan-

tity. By using a symplectic representation of quaternions and choosing an appropriate axis

for the Quaternion Fourier Transform (QFT) the formulation for the QFT can be greatly

simplified and existing FFT algorithms can be used.



CHAPTER 4

Regularized elastic imaging of multicomponent data1

While the previous chapter dealt with the sampling of multicomponent seismic data in

surface coordinates, the ultimate goal of reflection seismology is to transform the data into

subsurface coordinates, that is, to map reflected energy to its scattering point.

This chapter is organized as follows. First we review the theory of elastic wave propagation

and derive the necessary elements for elastic one-way wave propagation as eigensolutions to

the Christoffel equation. Next, we integrate these elements into the first order Born approx-

imation, setting up the forward problem; to simulate elastic wavefields from multiparameter

images. We then pose elastic imaging as an inverse problem where the ideal model best fits

the observed data in a least-squares sense. Finally, we demonstrate the ability of Elastic

Least-Squares Migration (ELSM) to improve wavefield separation, mitigate the effects of

poor spatial sampling, and compensate for non-uniform illumination.

4.1 Theory

4.1.1 Review of elastic wave propagation

The mechanics necessary for wavefield separation and extrapolation of vector data are pro-

vided by the elastic wave equation

ρüi = Cijkl∂j∂luk, (4.1)

1Parts of this chapter have been published in Stanton and Sacchi (2017), and Stanton and Sacchi (2015).
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where ui is displacement in the direction i, ρ is density and Cijkl is the tensor of elastic

moduli (Bale, 2006). In this section Einstein notation is used, implying summation over

repeated indices. Displacement can be represented as a complex harmonic (plane wave),

uk = Uke
iω(t−sjxj), where sj is the slowness vector that is the inverse of the phase velocity.

The phase velocity is related to the slowness via sj = nj/V , where nj indicates the direction

of wave propagation. The direction of wave propagation is just the normalized wavenumber

vector, nj = kj/k, where k =
√
k2

1 + k2
2 + k2

3. Substituting a plane wave into the wave

equation we obtain the Christoffel equation

ρUi = CijklsjslUk, (4.2)

more commonly written in the form

G11 − ρV 2 G12 G13

G12 G22 − ρV 2 G23

G13 G23 G33 − ρV 2


U1

U2

U3

 =

0

0

0

 (4.3)

where the 3x3 Christoffel matrix is defined by

Gij = Cijklnjni (4.4)

The Christoffel equation is a 3 x 3 eigenvalue - eigenvector problem. Given a tensor of elastic

moduli the eigenvalues correspond to the phase velocities of three distinct wave modes, and

the eigenvectors correspond to the polarizations of these modes (Tsvankin, 2012). In the

context of elastic migration, the eigenvectors provide the polarization information necessary

for wavefield separation, and the eigenvalues provide the phase velocity necessary for ex-

trapolation. Assuming isotropy and substituting into equation 4.3 considering propagation

in the [x1, x3] plane we obtain the following Christoffel equation

(λ+ 2µ)n2
1 + µn2

3 − ρV 2 0 (λ+ µ)n1n3

0 µ(n2
1 + n2

3)− ρV 2 0

(λ+ µ)n1n3 0 µn2
1 + (λ+ 2µ)n2

3 − ρV 2


U1

U2

U3

 =

0

0

0

 ,
(4.5)

where λ and µ are Lamé’s first and second parameters respectively. To find the eigenvalues

corresponding to the three wave modes we set the determinant equal to zero and substitute

n =
[
0 0 1

]
(i.e. assuming a plane wave traveling vertically downward) leading to the

cubic equation
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0 = (µ− ρV 2)(µ− ρV 2)(λ+ 2µ− ρV 2) (4.6)

with solutions V1 =
√

(λ+ 2µ)/ρ, V2 =
√
µ/ρ, and V3 =

√
µ/ρ which are the familiar

relations for P, SV, and SH phase velocities respectively. Solving for the corresponding

eigenvectors we obtain

UP =

n̂1

n̂2

n̂3

 , US1 =

−n̂2/a

n̂1/a

0

 , and US2 =

−n̂1n̂3/a

−n̂2n̂3/a

a

 , (4.7)

where a2 = n̂1
2 + n̂2

2.

While we simplify our calculations greatly by assuming isotropy, lower symmetry material

parameters can also be incorporated into the Christoffel equation. For example, Bale (2006)

solves the Christoffel equation assuming transverse isotropy.

Considering one-way wave propagation in laterally homogeneous media, we can propagate

elastic wavefields vertically by wavefield decomposition, a vertical phase shift, and wavefield

composition. This is represented by

~u(ω, x, y, z + ∆z) = P ~u(ω, x, y, z), (4.8)

where

P = QRQ−1. (4.9)

In laterally homogeneous media the operatorR corresponds to a vertical phase shift (Gazdag,

1978) applied to each wavefield potential

R =

F
−1
x 0 0

0 F−1
x 0

0 0 F−1
x


e

iωkz(vp)∆z 0 0

0 eiωkz(vs)∆z 0

0 0 eiωkz(vs)∆z


Fx 0 0

0 Fx 0

0 0 Fx

 ,
(4.10)

and the wavefield composition operator is given by

Q =

F
−1
x 0 0

0 F−1
x 0

0 0 F−1
x

[UP US1 US2
]Fx 0 0

0 Fx 0

0 0 Fx

 , (4.11)
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where Fx and F−1
x represent forward and inverse Fourier transforms over spatial axes. For

isotropic media the composition operator becomes

Q =

F
−1
x 0 0

0 F−1
x 0

0 0 F−1
x


n̂1 −n̂2/a −n̂1n̂3/a

n̂2 n̂1/a −n̂2n̂3/a

n̂3 0 a


Fx 0 0

0 Fx 0

0 0 Fx

 (4.12)

with wavefield decomposition given by

Q−1 =

F
−1
x 0 0

0 F−1
x 0

0 0 F−1
x


 n̂1 n̂2 n̂3

−n̂2/a n̂1/a 0

−n̂1n̂3/a −n̂2n̂3/a a


Fx 0 0

0 Fx 0

0 0 Fx

 , (4.13)

where n̂1, n̂1, and n̂1 can be replaced by the normalized wavenumbers k̂1, k̂2, and k̂3.

While theoretically, the wavefield combination operator is orthonormal, numerically the

computation is complicated by the fact that the vertical wavenumber must be computed from

the material parameters corresponding to each wave mode and the horizontal wavenumbers

via the dispersion relation. This issue is further discussed in appendix A.

To demonstrate the action of the composition (Q) and decomposition (Q−1) operators we

consider the decomposition and recomposition of an elastic wavefield in a homogeneous,

isotropic 2D medium as shown in figure 4.1. The model consists of a P-wave velocity of

1700m/s and an S-wave velocity of 981m/s. Here X and Z components are shown for a time

slice at 0.35s after a displacement source was fired in the center of the model. In figure 4.2

the separated P and S wavefields are shown after application of the decomposition operator,

while the recomposed wavefields are shown in figure 4.3.

It is interesting to compare the operator Q−1 with the Helmholtz decomposition operator

which separates an elastic wavefield into curl free ( ∂u1

∂x1
+ ∂u2

∂x2
+ ∂u3

∂x3
) and divergence free

components ((∂u3

∂x2
− ∂u2

∂x3
)i+ (∂u1

∂x3
− ∂u3

∂x1
)j+ (∂u2

∂x1
− ∂u1

∂x2
)k). Writing this as a linear operator

we have

H−1 = F−1
x


ik1 ik2 ik3

0 −ik3 ik2

ik3 0 −ik1

−ik2 ik1 0

Fx, (4.14)

which (aside from being a rectangular matrix) is somewhat similar to an unnormalized ver-

sion of the decomposition operator derived from the Christoffel equation. This normalization
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Figure 4.1: X and Z input data components for an elastic wave propagating in
a homogeneous isotropic medium. The records were generated using elastic finite
difference modeling.
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Figure 4.2: Decomposed P and S components after applying the wavefield decom-
position operator Q−1 to the data components Ux and Uy.



CHAPTER 4. REGULARIZED ELASTIC IMAGING 66

0 1000 2000 3000 4000
X (m)

0

1000

2000

3000

4000

Z
 (
m
)

X-Component

0 1000 2000 3000 4000
X (m)

0

1000

2000

3000

4000

Z
 (
m
)

Y-Component

Figure 4.3: Recomposed X and Y components after applying the wavefield recom-
position operator Q to the wavefield components Up and Us.

is important for stability when we consider the recursive application of the operator and its

inverse during propagation. Sun et al. (2011) examine the changes in amplitude introduced

by separating elastic wavefields via Helmholtz decomposition. This amplitude change is a

significant problem because it alters the amplitude ratio between PP and PS images which

can greatly affect any subsequent interpretation. The fact that the Christoffel formula-

tion results in a separation operator with columns that form an orthonormal basis means

that the decomposition and recomposition steps are unitary operations that leave the rela-

tive amplitudes between wave modes unaltered. Another important distinction is that for

three component data in three spatial dimensions Helmholtz decomposition provides a single

component curl free wavefield and a three component divergence free wavefield, whereas the

Christoffel based formulation provides three mutually orthogonal scalar wavefields, even for

anisotropic media. This property makes the imaging condition straightforward to design–

we can correlate every combination of source and receiver side wave-mode to form a 9 com-

ponent image or, as is done in this study, choose to only correlate the source side P-wavefield

with the receiver side P and S-wavefields to form a 2 component image.

4.1.2 Elastic shot-profile modeling and migration

We incorporate the wavefield decomposition, extrapolation and recomposition operators

derived in the previous section to model elastic wavefields. Our approach closely follows

the derivation of forward and adjoint one-way wave equation operators for acoustic least-

squares migration given by Rickett (2003) and Kaplan et al. (2010). Here we extend shot-

profile modeling and migration to the elastic case. We begin with the first order Born

approximation
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~u(xg, ω) ∼ ω2

∫ ∞
−∞

G0(xg|x)M(x)G0(x|xs)dx, (4.15)

where x indicates all subsurface positions, xg indicates all receiver positions, and xs indi-

cates the position of a source. Here G0(x|xs) is the 3x1 Green’s function response at all

subsurface positions due to an impulse at the position of the source (representing all modes

of incident wavefield), M(x) is a 3x3 matrix of scattering potentials, and G0(xg|x) is the

3x3 Green’s function response at the receiver positions due to an impulse generated at all

subsurface positions (scattering all combinations of incident and scattered wave modes).

The recorded data components at all receiver locations for a given frequency, ω, are denoted

by ~u(xg, ω). A complete description of the perturbations in physical properties that com-

prise the 3x3 scattering potential M(x) is provided by Stolt and Weglein (2012). Practically

equation 4.15 implies downward continuation of the source wavefield, multiplication with

the reflectivity, followed by upward continuation of the scattered wavefield to the receiver

datum.

It is perhaps more helpful to represent equation 4.15 in terms of a series of discrete linear

operations that can be readily programmed in a computer. To derive the forward opera-

tor for a single source and single frequency we begin by downward continuing the source

wavefield by



~ψ1

~ψ2

~ψ3

...
~ψNz

 =


Q−1

1 0 0 ... 0

0 Q−1
2 P1 0 ... 0

0 0 Q−1
3 P2P1 ... 0

... ... ... ... ...

0 0 0 ... Q−1
Nz
PNz−1...P1




~us1
~us1
~us1

...

~us1

 , (4.16)

where Pi = QiRiQ
−1
i represents elastic propagation using the medium properties of layer i,

~us1 represents one frequency of the vector-valued source wavelet at the surface of the earth,

and ~ψi = [ψpi ψ
s1
i ψs2i ]T are the source-side wavefield potentials for a single frequency at

depth interval i of the model. To obtain data at the surface of the earth we propagate the

scattered wavefield upward by

~ug1 =
[
Q1 P−1

1 Q2 ... P−1
1 ...P−1

Nz−1QNz

]

M1

~ψ1

M2
~ψ2

...

MNz
~ψNz

 (4.17)
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where

Mi =

m
pp
i ms1p

i ms2p
i

mps1
i ms1s1

i ms2s1
i

mps2
i ms1s2

i ms2s2
i

 (4.18)

are the multi-parameter image amplitudes at depth interval i of the model. For the adjoint

operator, we begin by propagating the receiver wavefield (data) into the earth by


~φ1

~φ2

...
~φNz

 =


Q†1 0 0 0

0 Q†2(P−1
1 )† 0 0

... ... ... ...

0 0 0 Q†Nz (P−1
Nz−1)†...(P−1

1 )†



~ug1
~ug1
~ug1
~ug1

 , (4.19)

where ~φi = [φpi φ
s1
i φs2i ]T are the receiver-side wavefield potentials for a single frequency at

depth interval i of the model. We then correlate using the outer product of the source and

receiver wavefields


M̃1

M̃2

...

M̃Nz

 =


~ψ∗1 0 0 0

0 ~ψ∗2 0 0

... ... ... ...

0 0 0 ~ψ∗Nz



~φT1
~φT2

...
~φTNz

 (4.20)

to obtain a multiparameter image m̃.

Figures 4.4 and 4.5 outline the workflow for acoustic modeling and migration, while figures

4.6 and 4.7 show the extension to the elastic case outlined above.

To avoid confusing notation equations 4.16 to 4.20 only consider vertical propagation in a

1D earth. Extending these equations in the X and Y dimensions is achieved by extending

each sub-vector by a factor of Nxy, and block diagonalizing each sub-matrix increasing their

rank by a factor of Nxy. Furthermore, to extend the equations to the case of multiple

frequencies and multiple shots the forward operator begins by spraying the reflectivities to

Nω frequencies and Nshot shots, while the adjoint ends by summing over all frequencies and

shots (Rickett, 2003).

To extend the extrapolation operator, R, to the case of laterally inhomogeneous velocity we

incorporate the Phase Shift Plus Interpolation (PSPI) and Split Step corrections (Gazdag

and Sguazzero, 1984; Stoffa et al., 1990; Xie and Wu, 2005). An important consideration

for one-way extrapolation is the accuracy of the operator versus propagation angle. Biondi

(2002) provides an analysis of the phase error for several pseudo-differential operators as a

function of propagation angle. Notably, the Split Step correction is accurate (< 0.2 radians
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Figure 4.4: Born scattering of acoustic wavefields.
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Figure 4.5: Migration of acoustic wavefields.
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Figure 4.6: Born scattering of elastic wavefields.
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Figure 4.7: Migration of elastic wavefields.
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phase error) to approximately 45 degrees for a reference velocity with an error of 200m/s. By

combining the Split Step and PSPI corrections we are able to narrow the range of reference

velocity error significantly. The examples in this chapter use 5 reference velocities. A

detailed derivation of forward and adjoint acoustic shot profile split-step migration operators

is provided in Kaplan et al. (2010).

To apply the separation operator, Q−1, in laterally inhomogeneous media we use the average

P and S-wave velocity for a given layer. The accuracy of the separation could be further

improved via a spatial windowing approach following Bale and Margrave (2004).

It is important to note that in this work we do not consider the effect of the free surface.

In our numerical examples, we use data generated using elastic finite differences with an

absorbing boundary condition above the recording surface. Effectively, this assumes that

the recorded wavefield consists only of upgoing energy. To compensate for the effects of

upgoing and downgoing energy at the recording surface a projection onto the downgoing

wavefield must be made as an initial step (Bale, 2006). A further complication in least-

squares migration is the estimation of the source wavelet. In our numerical examples, we

consider the case of a known source wavelet. A method to estimate an unknown source

wavelet from the data can be found in Zhang et al. (2016).

In the following discussion of the least-squares formulation we refer to the forward and ad-

joint operations more simply as u = Lm and m̃ = L†u, respectively, where it is understood

that vector m consists of sub-matrices, and vector u consists of sub-vectors.

Finally, to model the complex amplitude behavior of elastic data, including polarity reversal

of PS images at an incidence angle of zero, we use an extended imaging condition. Of the

numerous methods to compute extended images we selected a mapping from subsurface offset

image gathers to opening angle image gathers via the radial trace transform as outlined in

Rickett and Sava (2002) as we find it provides smooth, artefact free angle gathers. Appendix

C details the method used to calculate propagation angles. The subsurface offset method

parameterizes the images as a function of the half opening angle between the source and

receiver wavefields. For PP reflections the equivalence of source and receiver side velocity

means the opening angle is bisected by the reflector normal vector, making the half opening

angle equivalent to the source side incidence angle with respect to reflector normal. For

PS reflections there is no such equivalence, and the half opening angle does not adequately

describe the zero incidence angle where polarity reversal is expected (except for the special

case of a flat-lying reflector). While a post-processing step can be used to correctly position

the polarity reversal for PS reflections prior to stacking (Rosales et al., 2007), we observe

that simply using the half opening angle provides an adequate extended imaging condition

for elastic least-squares migration.
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4.1.3 Implementation

While our derivation of forward and adjoint operators are written in such a way to accom-

modate 3D, anisotropic wave propagation, we make some simplifying assumptions in our

implementation. These simplifications are to avoid unnecessary complications that deserve

more detailed and focused explanation in future research, and to make our numerical ex-

amples efficient and clear. First, we assume isotropic symmetry of material parameters and

only consider wave propagation in a 2D plane. These simplifications imply that only X and Z

data components are required, and only the P and S2 elastic wave modes need be considered.

Isotropy also implies that within the propagator the vertical phase shift is independent of

the propagation angle and azimuth. Finally, we assume a purely compressional source-side

wavefield, which implies that we record only PP and PS reflections in the recorded wavefield.

This is achieved using an acoustic propagation code to simulate the source side wavefield.

Taking these simplifying assumptions into consideration our multiparameter image given in

equation 4.18 simplifies to:

Mi =

m
pp
i 0 0

0 0 0

mps2
i 0 0

 . (4.21)

While this final assumption effectively makes the code focused on converted wave explo-

ration, there could be some benefit to including additional wave modes, even in the case

of converted wave acquisition, where the source side wavefield is generally assumed to be

largely free of useful shear wave energy. In fact, research suggests that vertical vibrator

generated land seismic data contains a large amount of useful shear wave energy2 that could

be used to generate SS, or SP images (R. Stewart, personal communication, April 7, 2017).

An additional simplification is that we do not take attenuation into consideration. Incorpo-

rating attenuation into acoustic least squares migration was studied by Dutta and Schuster

(2014b); making use of the visco-acoustic wave equation. A valuable future contribution

would be to extend this formulation to make use of the visco-elastic wave equation.

4.1.4 Least-squares formulation

We pose elastic imaging as an inverse problem with the objective function

J = ||T (Lm− u)||22 + ||µTm||22 (4.22)

2In fact Miller and Pursey (1955) suggest that the majority of elastic wave energy propagating away
from a vertical point force should be in the form of shear waves.
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where T is a diagonal sampling operator with 1’s in place of observations and 0’s in place of

missing traces, m represents the multicomponent image, u represents the multicomponent

data, and µ is a multicomponent trade-off parameter to control the level to fit the data

versus the level to minimize the l− 2 norm of the model. The components of µ can be fixed

for all components of the image (effectively treating µ as a scalar), or can be tailored to

individually constrain components.

Since wavefield cross-talk artefacts are migrated at an incorrect velocity, they will appear

as dipping energy in angle gathers. For this reason, we can regularize the inversion with an

operator that weights up this energy in each angle gather

J = ||T (Lm− u)||22 + ||µTDm||22, (4.23)

or, by a change of variables z = Dm we write

J = ||T (LSz − u)||22 + ||µTz||22 (4.24)

such that S (≈D−1) is a lateral smoother that removes strongly dipping energy in the angle

gathers (equation 4.24 is an approximate form of equation 4.23). We minimize equation 4.24

using CG with forward operator TLS and adjoint operator S†L†T . After the final iteration

we substitute m = Sz.

To solve equation 4.24 it is necessary to use a vectorized modified form of Conjugate Gra-

dients that uses vectorized inner products. This requirement for a specialized solver is due

to the fact that the linear operator L in equation 4.24 mixes model space vectors to form

data space vectors. If L were to map independent images to independent data components

then equation 4.24 could be solved equivalently via

J = ||T(LSz− u)||22 + ||µT z||22 (4.25)

=

∥∥∥∥∥∥∥
||T(LSzpp − u1)||22 + µ1||zpp||22
||T(LSzps1 − u2)||22 + µ2||zps1 ||22
||T(LSzps2 − u3)||22 + µ3||zps2 ||22

∥∥∥∥∥∥∥
2

2

, (4.26)

which would be equivalent to solving three independent sub-problems. Since this is not

the case we must use a vectorized form of Conjugate Gradients. Appendix B discusses

the application of the Conjugate Gradients algorithm to multicomponent-valued model and

data vectors.

Equation 4.24 poses imaging as an inverse problem from the perspective of data-fitting.

While this is an intuitive approach, there are other ways to set up the problem. Considering
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the fact that the migrated image is generated by applying the adjoint operator to the data,

LTd, equation 4.22 may be rewritten as

J = ||(LTTLm−LTu)||22 + ||µTm||22 (4.27)

or as

J = ||(Hm−LTu)||22 + ||µTm||22 (4.28)

where H = LTTL is the Hessian, or blurring kernel. Viewed this way, least-squares migra-

tion aims to deconvolve the Hessian from the migrated image to recover the true, unblurred

image. Hu and Schuster (1998) call this process migration deconvolution, while Fletcher

et al. (2015) refers to model domain vs. data domain least-squares migration. Equation

4.28 is solved using Conjugate Gradients, where the migrated image, LTm, is substituted

for the input data, and the Hessian, H = LTTL and its adjoint, HT = LTLT , are substi-

tuted for the modeling and migration operators respectively. While this increases the cost

of a single iteration of Conjugate Gradients, the number of iterations necessary to converge

to a good solution can often be reduced by this formulation (Fletcher et al., 2015). This

approach opens the possibility of different approximate methods to least-squares migration.

Rickett (2003) approximate smoothed illumination compensation scalars by taking the ratio

of RMS amplitudes of windows of an initial model and the same model after application of

the Hessian. This ratio is then multiplied against the migrated image to boost amplitudes in

poorly illuminated regions of the model. Sacchi et al. (2007) approximate the diagonal of the

blurring kernel via a stochastic process in which random realizations of models are passed

through the blurring filter, are multiplied against the input model, and then are summed

with previous realizations. Their approach will eventually converge to the true diagonal

after many iterations, but practically a few iterations provide a reasonable scaling. Fletcher

et al. (2016) make use of point spread functions to approximate the inverse diagonal of the

Hessian. Recently Wang et al. (2016) incorporate nonstationarity of the compensation filter

by calculating and applying the filter in the curvelet domain (Starck et al., 2002).

4.2 A note on imaging conditions

It is interesting to note that unlike traditional imaging methods that begin with the definition

of an imaging condition, least-squares migration begins with the definition of a modeling

operator, in this case first order Born scattering. Beginning with Claerbout (1971), imaging

algorithms have incorporated a mechanism to quantify the magnitude of the interaction of
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source and receiver wavefields, and the position where this interaction takes place. There

are a variety of ways this could be achieved. A popular and often used method is the zero

lag cross-correlation imaging condition, which is based on the idea that source and receiver

wavefields should be maximally correlated at their reflection point. Interestingly, for the

case of least-squares migration, the adjoint of first order Born modeling is identical to this

imaging condition, although in least-squares migration it is a consequence rather than a

condition.

An alternative imaging condition can be parameterized as the ratio between upgoing and

downgoing wavefields at a given location: m(x, y, z) = φU (x, y, z)/φD(x, y, z). When no

interface is present no energy is backscattered and the ratio is approximately zero, while

an impedance contrast will result in a perturbation to the ratio. Treating the downward

continued data φU (x, y, z, t) as a known quantity, we can write this as a linear inverse

problem

J = ||φDm− φU ||+ µ||m||22. (4.29)

This is a localized inversion for a migrated image which has the solution

m =
φD∗φU

µ+ φD∗φD
(4.30)

where µ controls the level of damping. A high value of µ lends itself to the so-called cross-

correlation imaging condition, while a low value of damping has the effect of deconvolving

the source illumination giving the so-called deconvolution imaging condition. Again, this

imaging condition can also be found in the formulation of least-squares migration. Since the

source side wavefield propagation is equivalent for the forward and adjoint Born scattering

operator (as indicated in the left-hand columns of figures 4.6 and 4.7), the magnitude of the

source wavefield can be taken outside of the propagation operator and written as a diagonal

weighting operator Ws, recasting the original cost function for least-squares migration (4.23)

as

J = ||T(Lm− u)||22 + µ||Wsm||22, (4.31)

Which incorporates the source illumination into the penalty of the model parameter. Re-

writing via the change of variables, ζ = Wsm, as

J = ||T(LW−1
s ζ − u)||22 + µ||ζ||22, (4.32)
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Figure 4.8: P wave velocity model used to create finite difference synthetic data.
The background P-wave velocity is 2200 m/s, while the seven diffractors have a
velocity of 2500 m/s. The S wave velocity model corresponds to this model by a
scale factor of 1/

√
3.

substituting m = W−1
s ζ after the final iteration. In this way, the deconvolution imaging

condition can work its way into least-squares migration in the form of a preconditioner.

4.3 Examples

4.3.1 Diffractor example

As a first example, we demonstrate the ability of ELSM to interpolate and separate wavefield

components using the velocity model shown in figure 4.8.

A single shot gather, shown in figure 4.9, was generated using finite difference modeling and

30% of the traces were zeroed to simulate an irregular receiver geometry. In all examples, a

compressional source wavelet was used for both numerical modeling and imaging.

Next, we applied the adjoint operator to obtain the migrated images shown in figures 4.10

and 4.11. The adjoint operator is not able to perfectly separate elastic wavefields, leaving

some wavefield cross-talk artefacts in both images as well as artefacts related to the irregular

receiver grid. In the PP image the PS cross-talk artefacts are propagated with too high of
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Figure 4.9: X and Z components for a synthetic shot gather at X = 2500m generated
using elastic finite difference modeling. The data have been randomly decimated
by 30% to simulate missing receivers.
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Figure 4.10: PP image obtained by elastic migration (the adjoint operator) for a
single shot at X = 2500m.

a velocity, sending them too deep into the earth. Conversely, in the PS image the PP cross-

talk artefacts are propagated with too low of a velocity, giving them an imaging depth that

is too shallow.

For the next step we performed 20 iterations of ELSM for one shot with a purely data fitting

objective function (µ = 0 in equation 4.24). The results are shown in figures 4.12 and 4.13.

Even without any regularization, the data fitting is able to reduce cross-talk artefacts in

the images, especially in the PS image. The ELSM algorithm presents an opportunity to

simultaneously interpolate and separate elastic wave modes. As an example, after first fitting

the data in the exercise above we can then forward model a pure reflected P wavefield by

L[mpp 0 0]T as shown in figure 4.14, or similarly forward model a pure reflected S wavefield

by L[0 0 mps]
T as shown in figure 4.15. Interestingly, a purely data-fitting based approach

such as this is not able to perfectly separate the wavefields. Additional constraints that

penalize cross-talk energy might benefit the solution.

Finally, figure 4.16 shows the normalized misfit versus iteration number.

4.3.2 Flat layer example

Next, we consider a model consisting of flat layers with a depth variable vp/vs ratio. Figure

4.17 shows the P and S wave velocity models.
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Figure 4.11: PS image obtained by elastic migration (the adjoint operator) for a
single shot at X = 2500m.
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Figure 4.12: PP image obtained by 20 iterations of ELSM for a single shot at X =
2500m.
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Figure 4.13: PS image obtained by 20 iterations of ELSM for a single shot at X =
2500m.

A shot gather, shown in figure 4.18, was generated using finite difference modeling and

random noise was added to the data.

Next, the adjoint operator was applied to obtain the PP and PS images shown in figure

4.19.

Cross-talk artefacts are clearly visible in the adjoint images. In the PP image, the PS

energy has been extrapolated using too high of a velocity (placing it too deep), while in the

PS image the PP energy has been extrapolated using too low of a velocity (placing it too

shallow). The results of 10 iterations of ELSM using µ = [0.001 0.001 0.001]T are shown in

figure 4.20.

In both images, the resolution has been improved and the cross talk artefacts have been

largely attenuated. The PP cross-talk artefact at approximately Z = 1000m in the adjoint PS

image (figure 4.19) could be mistakenly interpreted as a true PS reflection corresponding to

the event at a similar depth in the PP adjoint image. This example demonstrates the ability

of ELSM to mitigate cross-talk artefacts that could potentially harm an interpretation.

Figure 4.21 shows the misfit as a function of iteration number for the case of added random

noise (the solid black line), as well as for four trials considering velocity perturbations from

the true models using noise-free input data. In the first trial (the solid gray line), the correct

velocity was used, while in the other trials the velocities were varied by ±10% from the true

models. It is interesting to note that for a single shot experiment the convergence is largely
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Figure 4.14: Predicted X and Z components of the interpolated and wavefield sep-
arated PP wavefield for a shot gather at X = 2500m generated by the forward
operator following 20 iterations of ELSM.
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Figure 4.15: Predicted X and Z components of the interpolated and wavefield sep-
arated PS wavefield for a shot gather at X = 2500m generated by the forward
operator following 20 iterations of ELSM.
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Figure 4.16: Normalized misfit versus iteration number for 20 iterations of ELSM.
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Figure 4.17: Velocity models used to create finite difference synthetic data.
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Figure 4.18: X and Z components for a synthetic shot gather at X = 1250m gener-
ated using elastic finite difference modeling with random noise added.
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Figure 4.19: Images obtained by elastic migration (the adjoint operator) for a single
shot at X = 1250m
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Figure 4.20: Images obtained by by 10 iterations of ELSM for a single shot at X =
1250m

insensitive to these perturbations in the velocity models. When multiple sources are used in

shot-profile LSM the convergence is more sensitive to the accuracy of the velocity model as

a consequence of stacking/spraying multiple improperly migrated/demigrated shot gathers.

This dependence is relaxed through the use of an extended image.

4.3.3 BP 2.5D Model example

For a more complicated example we next consider a modified version of the BP 2.5D Model

(Etgen and Regone, 1998) (the model increments were changed from dx=12.5m, dz=12.5m

to dx=8m, dz=8m prior to modeling and an S-wave velocity model was created as 1/
√

3

times the P-wave velocity).

The P-wave velocity model is shown in figure 4.22. This model contains high-velocity

contrasts that challenge the accuracy of our wavefield separation and propagation opera-

tors, and contains highly variable illumination patterns that make least-squares migration

an ill-posed inverse problem. We generated 130 shot gathers using elastic finite-difference

modeling. The horizontal and vertical components for a common shot gather at x = 2880m

are shown in figure 4.23.

The results of applying the adjoint operator and stacking are shown in figures 4.24 and 4.25.
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Figure 4.21: Normalized misfit versus iteration number for 10 iterations of ELSM.
The solid black line shows convergence when added random noise is present on
the input data. The gray curves display trials of the algorithm using different
combinations of velocity error. The solid gray line shows convergence using the true
velocity, while the dashed lines show convergence when using different combinations
of incorrect velocities. For a single shot experiment the convergence is relatively
insensitive to small velocity errors.
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Figure 4.22: A portion of the BP 2.5D P-wave velocity model. The S-wave velocity
corresponds to this model by a scale factor of 1/

√
3.

To demonstrate the effect of the preconditioning operator written in equation 4.24 we applied

it to the adjoint image volumes. The result of this filter are shown in figures 4.26 and 4.27.

It is interesting to note that while the smoothing filter was able to attenuate much of the

dipping energy within each angle gather, it produced little effect on the overall stack. This

implies that lateral smoothing across reflection angle attenuates little coherent, properly

migrated (i.e. flat), reflection energy. The results of applying 10 iterations of preconditioned

ELSM with µ = [0.1 0.1 0.1]T are shown in figures 4.28 and 4.29, with the cost function

shown in figure 4.30.

Ideally, the amplitude of the bottom-most reflector should be constant, but variations in

illumination cause the amplitude to fluctuate. Comparing the adjoint and ELSM PP images

(figures 4.24 and 4.28), we see that the larger amplitude variations of this bottom reflec-

tor have been partially corrected, and improvements to the spatial resolution can be seen

throughout the image. Comparing the adjoint and ELSM PS images (figures 4.25 and 4.29),

we see a similar improvement to the illumination of the base reflector, especially the continu-

ity of the bottom-most reflector at x=1200m. Other improvements include the attenuation

of wavefield cross-talk artefacts within the high-velocity body, as well as improvements to the

spatial resolution of the surrounding structure. Rickett (2003) apply a purely data-fitting

based least-squares migration to the BP 2.5D Model, showing an increase in the noise level

with least-squares migration and instead advocate using an approximation to the diagonal
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Figure 4.23: X and Z components for a synthetic shot gather at x = 2880m generated
using elastic finite difference modeling.
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Figure 4.24: PP image and an angle gather from x=4600m obtained by elastic
migration (the adjoint operator). Arrows indicate regions of the model that have
been poorly imaged.
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Figure 4.25: PS image and an angle gather from x=4600m obtained by elastic
migration (the adjoint operator). Arrows indicate regions of the model that have
been poorly imaged.



CHAPTER 4. REGULARIZED ELASTIC IMAGING 91

0 1000 2000 3000 4000 5000 6000

X (m )

1 0 0 5 0 0 0 5 1 0

0

500

1000

1500

2000

2500

Z
 (

m
)

Figure 4.26: PP image and an angle gather from x=4600m obtained by elastic
migration (the adjoint operator). A smoothing filter has been applied across angles
to attenuate dipping cross talk energy. Notice that this filter has little effect on the
overall stack. Arrows indicate regions of the model that have been poorly imaged.
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Figure 4.27: PS image and an angle gather from x=4600m obtained by elastic
migration (the adjoint operator). A smoothing filter has been applied across angles
to attenuate dipping cross talk energy. Notice that this filter has little effect on the
overall stack. Arrows indicate regions of the model that have been poorly imaged.
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Figure 4.28: PP image and an angle gather from x=4600m obtained by 10 iterations
of ELSM. Arrows indicate regions of the model where the image has been improved.
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Figure 4.29: PS image and an angle gather from x=4600m obtained by 10 iterations
of ELSM. Arrows indicate regions of the model where the image has been improved.
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Figure 4.30: Normalized misfit versus iteration number for 10 iterations of ELSM.

of the Hessian using the forward and adjoint operators common to least-squares migration.

Illumination compensation such as this could also be applied using the elastic forward and

adjoint operators described in this paper.

4.4 Conclusions

Least-squares migration algorithms attempt to fit recorded data with predictions generated

from a migrated image. By improving the accuracy of the migration operator to include

elastic wave propagation we expect to improve the ability of least-squares migration to fit

reflection amplitudes. Our examples demonstrate that least-squares migration can improve

the imaging of multicomponent seismic data and that it can also be used for missing trace

interpolation and wavefield decomposition. A significant challenge in the migration of elas-

tic wavefields is the mitigation of cross-talk artefacts. While pure data fitting is able to

partially resolve the problem, incorporating additional constraints could further improve

the performance of the method.



CHAPTER 5

Regularized imaging of OBC data

5.1 Receiver profile modeling and migration

The theoretical foundation for least squareS-wave equation migration is first order Born

scattering. This consists of propagation of a wavefield away from a source, interaction

of the source wavefield with reflectors, followed by propagation of the scattered wavefield

toward an array of receivers. In other words, the forward operator is set up to generate

common source gathers. In many situations this is a convenient formulation; for example

in land seismic acquisition receivers are inexpensive to place while sources require either

expensive planning and drilling in the case of dynamite, or time-consuming sweeps in the

case of vibrators. In other situations, receivers are far more costly than sources. Such is the

case in ocean bottom acquisition where receivers must be deployed and recovered from the

sea floor. Figure 5.1 shows the source and receiver sampling for a 2D line taken from an

Ocean Bottom Cable (OBC) survey acquired offshore Northwest Australia in the Dampier

sub-basin. The acquisition target in this region are deep (∼3700m in depth) Triassic gas

bearing sands. The imaging in the area is complicated by the presence of shallow carbonates

and clastic intervals which provide rapid velocity variations. Note the sparse distribution of

receivers (500m spacing) compared to the dense distribution of shots (25m spacing). This

11, 975m 2D line is a subset of a larger 3D dataset.

Clearly, in this case, we have well sampled common receivers gathers rather than well sam-

pled common source gathers. A look at a common source gather (figure 5.2) reveals just

how poorly sampled data are in this domain; distinct reflection events are barely identifi-

able. Looking at the F-K spectrum for these data (figure 5.3) we see the sparse sampling

has aliased the events severely.

94
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Figure 5.1: coordinates of sources (blue stars) and receivers (red triangles) for an
ocean bottom dataset. Note sparse distribution of receivers compared to the dense
distribution of shots.
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Figure 5.2: X and Z components for a common source gather at X=6000m. The
sampling in this domain is very sparse with a 500m receiver spacing.
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Figure 5.3: X and Z component FK Amplitude spectra for a common source gather
at X=6000m. Clearly, the data are highly aliased in this axis.

A solution to this problem is to invoke source-receiver reciprocity. Organizing the data into

common receiver gathers (figure 5.4), we see the trace spacing is improved from 500m to

25m. The FK spectrum of these data is shown in figure 5.5. Compared with the common

source gather FK spectrum in figure 5.3, it is clear that the aliasing of the data has been

greatly reduced.

Source-receiver reciprocity is a consequence of Newton’s third law of motion: ”for every

action, there is an equal and opposite reaction1.” In the case of acoustic wave propagation,

it is obvious that a wave traveling from a source to a receiver will trace the same path as a

wave traveling from a receiver to a source (see Fenati and Rocca (1984) for a demonstration

on field data). The wave will arrive with the same travel time and with the same amplitude,

making reciprocal waveforms both kinematically and dynamically identical. This principle

is often invoked to perform acoustic common receiver gather migration of ocean bottom

data. Less obvious is the application of source-receiver reciprocity to the case of elastic

wave propagation.

The Maxwell-Betti reciprocal work theorem provides a way to extend source-receiver reci-

procity to the elastic case. Considering displacement fields u1 and u2 that are the result of

body forces f1, and f2 plus tractions t1, and t2, the Maxwell-Betti reciprocal work theorem

states that

∫
S

t2 · u1dS +

∫
V

f2 · u1dV =

∫
S

t1 · u2dS +

∫
V

f1 · u2dV. (5.1)

1Consider the reciprocal statement: ”For every reaction, there is an equal and opposite action,” which
has the same basic meaning.
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Figure 5.4: X and Z components for a common receiver gather at X=5521m.

−0.02 −0.01 0.00 0.01 0.02
Wavenumber (1/m)

0

5

10

15

20

25

30

35

40

Fr
e
q
u
e
n
cy

 (
H
 )

X-Component

−0.02 −0.01 0.00 0.01 0.02
Wavenumber (1/m)

0

5

10

15

20

25

30

35

40

Fr
e
q
u
e
n
cy

 (
H
 )

Z-Component

Figure 5.5: X and Z component FK Amplitude spectra for a common receiver gather
at X=5521m.
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Taking positions 1 and 2 to mean the position of a source or receiver, this equation relates

the displacement fields that result from to a force applied at these positions. Knopoff and

Gangi (1959) demonstrate the Maxwell-Betti reciprocal work theorem for wave propagation

an inhomogeneous, anisotropic viscoelastic medium using transducers located on a large

aluminum sheet with a brass object acting as a scatterer. A useful property of equation 5.1

is that it implies the reciprocity of Green’s functions

Gij(x1|x2) = Gji(x2|x1) (5.2)

(Tarantola, 1987), implying the response at position x1 in direction i due to a source at

position x2 in direction j, is equal to the response at position x2 in direction j due to a

source at position x1 in direction i. Put more simply, if you invoke reciprocity you must also

switch the source/receiver impulses/responses2. Figure 5.6 illustrates this concept with wave

modes. Consider an explosive source in a water layer converting to an S-wave reflection which

is recorded by an ocean bottom receiver. A correct use of the Maxwell-Betti reciprocal work

theorem is shown in figure 5.7. Switching the source/receiver impulses/responses will provide

an identical response as indicated by equation 5.2. An incorrect use of the Maxwell-Betti

reciprocal work theorem is shown in figure 5.8. Here the source/receiver impulses/responses

were not interchanged. Clearly, the response will not be equivalent to that in figure 5.6. This

differences will be both kinematic (the ray-path is different, and hence the travel-time will

likely be different), as well as dynamic (the S-wave cannot propagate in the water column).

Returning to the case of elastic wave propagation in OBC acquisition, with an acoustic

(water-contained) source wavelet, and elastic (ocean bottom-contained) response at the

receivers, after invoking source-receiver reciprocity the first order Born approximation (see

4.15) is written

~u(xs, ω) ∼ ω2

∫ ∞
−∞

G0(xs|x)M(x)G0(x|xg)dx, (5.3)

where x indicates all subsurface positions, xs indicates all source positions, and xg indicates

the position of a receiver, G0(x|xg) is the 3x1 Green’s function response at all subsurface

positions due to an impulse at the position of the receiver (representing all modes of re-

ceived wavefield), M(x) is a 3x3 matrix of scattering potentials, and G0(xs|x) is the 3x3

Green’s function response at the source positions due to an impulse generated at all sub-

surface positions (scattering all combinations of incident and scattered wave modes). The

2practically speaking equation 5.2 considers only displacements, not potentials. As an example consider
a downward impulse at the location of a source resulting in a sideways impulse at the location of a receiver.
Equation 5.2 implies that a sideways impulse at the location of a source will result in a downward impulse
at the location of a receiver. To apply this useful relationship in practice it is necessary to translate from
wavefield potentials to displacements using equation 4.12.
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Figure 5.6: Schematic for P-wave source in a water layer converting to an S-wave
reflection which is recorded by an ocean bottom receiver.

Figure 5.7: Correct use of the Maxwell-Betti reciprocal work theorem. An S-wave
source embedded in the ocean bottom converting to a P-wave reflection which is
recorded by a receiver in the water layer.
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Figure 5.8: Incorrect use of the Maxwell-Betti reciprocal work theorem (the source
and receiver impulses/responses were not interchanged). A P-wave source embedded
in the ocean bottom converting to an S-wave reflection which is recorded by a
receiver in the water layer. Clearly, the response will not be equivalent to that
in figure 5.6. This differences will be kinematic (the ray-path is different), and
dynamic (the S-wave cannot propagate in the water column).

propagated data components at all source locations for a given frequency, ω, are denoted

by ~u(xs, ω). In this chapter, I use this relation to formulate elastic least squares receiver

profile wave equation migration and apply the algorithm to image multicomponent ocean

bottom receiver gathers.

5.2 Velocity analysis

A first step in the migration of elastic data is the estimation of a source wavelet. Figure

5.9 shows the wavelet estimated for these data and its associated amplitude spectrum. The

wavelet was estimated by considering an average water depth in the survey area of 80m

(as evidenced by the approximately 50ms (one-way) onset time of near-offset traces), and

adding a 50ms delay to both the wavelet and the data to ensure the wavelet is causal. The

wavelet type is an Ormsby wavelet with corner frequencies of 2,10,30, and 40Hz respectively.

Next P and S-wave velocity models needed to be estimated. A straightforward manual

approach to estimate a 1D velocity model was used, making use of angle super-gathers.

Groups of 100 neighboring angle gathers were stacked to form ”super-gathers” and elastic

migration and manual velocity model updates were made to improve the flatness of the

gathers. PP and PS supergathers gathers for X = 4000m after iterating this procedure

several times are shown in figures 5.10 and 5.11, with 10% velocity perturbations to show the
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Figure 5.9: Estimated source wavelet used for imaging.

deviation from the estimated velocity. This procedure has flattened most events reasonably

well. For both the PP and PS angle gathers the −10% velocity perturbation tends to under-

migrate events (not pushing events deep enough at far angles and making them point upward

in a ”∪-shape” within angle gathers), while the +10% velocity perturbation tends to over-

migrate events (pushing events too deep at far angles and making them point downward in

a ”∩-shape” within angle gathers). This provides a reasonable confidence interval for the

chosen 1D velocity model.

Unlike traditional velocity analysis, velocity analysis in elastic wave propagation influences

not only the kinematics of the angle gathers, but also the decomposition and composition of

wave-modes at a given depth interval. The velocity models resulting from migration velocity

analysis are shown in figures 5.12 and 5.13.

5.3 Application of adjoint operator and least squares

migration

After velocity analysis the adjoint (migration) operator was applied to the data, resulting

in the stacked images shown in figures 5.14 and 5.15. Because of the coarse spatial sampling

of receivers, there are significant gaps in the shallow imaging. The contributions of each of

the 16 common receiver gathers are easily identified in the shallow region of the images. In

the PP common image gather (figure 5.14) there is significant over-migrated PS cross-talk
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Figure 5.10: PP angle gathers for X=4000m after elastic migration with -10% ve-
locity perturbation (left), 0% velocity perturbation (middle), and +10% velocity
perturbation (right).

−1.0−0.50.0 0.5 1.0
tan γ

0

500

1000

1500

2000

2500

3000

3500

4000

Z
 (

m
)

−1.0−0.50.0 0.5 1.0
tan γ

0

500

1000

1500

2000

2500

3000

3500

4000

Z
 (

m
)

−1.0−0.50.0 0.5 1.0
tan γ

0

500

1000

1500

2000

2500

3000

3500

4000

Z
 (

m
)

Figure 5.11: PS angle gathers for X=4000m after elastic migration with -10% ve-
locity perturbation (left), 0% velocity perturbation (middle), and +10% velocity
perturbation (right).
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Figure 5.12: P-wave velocity model.

Figure 5.13: S-wave velocity model.
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Figure 5.14: PP image after elastic receiver gather migration.

energy. Looking at the PS image (figure 5.15) there is significant PP crosstalk energy in the

common image gather that appears under-migrated. Since this energy is dipping, much of

it stacks out in the adjoint images, but the images are still degraded by the mispositioned

energy.

Performing 5 iterations of elastic receiver-profile least squares imaging results in the stack

sections shown in figures 5.16 and 5.17.

In the PP image, it is clear that elastic least squares migration has improved the shallow

portion of the image considerably. A reduction of dipping energy in the common image

gathers is also apparent, suggesting the approach has reduced the effects of wavefield cross-

talk artefacts on the final images. The cost function is shown in figure 5.18.

5.4 Remarks

While elastic least squares migration was partially able to compensate for the poor spatial

sampling of receivers, these data might have benefitted from the Fourier interpolation meth-

ods described in chapter 3 of this thesis. An often encountered problem with interpolation

algorithms is that the axes that could benefit the most from interpolation are typically the

same axes that are the most difficult to interpolate. The receiver spacing of 500m makes this

axis severely undersampled and prone to spatial aliasing (as indicated by the FK amplitude

spectrum in figure 5.3). Efforts to interpolate this axis are challenged by severe aliasing
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Figure 5.15: PS image after elastic receiver gather migration.
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Figure 5.16: PP image after 5 iterations of preconditioned elastic least squares
receiver gather migration.



CHAPTER 5. REGULARIZED IMAGING OF OBC DATA 106

0 2000 4000 6000 8000 10000
X (m)

−1.0−0.50.0 0.5 1.0
tan γ

0

500

1000

1500

2000

2500

3000

3500

4000

Z
 (

m
)

Figure 5.17: PS image after 5 iterations of preconditioned elastic least squares
receiver gather migration.
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Figure 5.18: Normalized cost as a function of iteration number.
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and the regularity of the receiver spacing (making the amplitude of spectral coefficients

associated with aliasing equal in amplitude to spectral coefficients associated with signal).

An approach that could potentially work well is to use least-squares receiver-gather migra-

tion as an interpolation engine (as described in chapter 4 of this thesis). A more robust

approach would be to design ocean bottom acquisition parameters with these goals in mind.

While it is often not practical to use high enough channel counts to avoid spectral aliasing

along receiver axes, other measures could be put in place to satisfy sampling criteria. For

example, 5D interpolation technology allows ”swapping” of sources and receivers to achieve

sampling patterns that are well sampled in 4 spatial dimensions. Practically this means that

up to 50% of source expenditure could perhaps be better used to improve receiver sampling.

Additionally, money spent placing sources and receivers on an almost perfectly regular grid

would be better spent on using slightly more sources and receivers, while allowing their

positions to fall on a random or semi-randomized grid (Hennenfent and Herrmann, 2008;

Naghizadeh, 2015a,b).

5.5 Conclusions

This chapter introduced the concept of applying the reciprocity of Green’s functions to

apply least squares migration to common receiver gathers, with application to an ocean

bottom seismic dataset. Least squares imaging was able to improve the shallow portion

of the imaging, primarily for the PP section. While the objective of this acquisition were

deeper targets (∼3700m in depth), the improved imaging of the shallow structure could

provide uplift in the identification of potential drilling hazards.
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Conclusions

Vector-elastic processing strategies can improve the performance of multicomponent seismic

data processing tools over their scalar-acoustic counterparts. Research into vector-elastic

processing has thus far lacked the necessary tools for two important steps, namely interpo-

lation and regularized imaging. This thesis aimed to address these gaps in the workflow by

introducing two new algorithms; vector interpolation, to compensate for irregular surface

sampling of multicomponent seismic sources and receivers; and regularized elastic least-

squares imaging, to compensate for irregular subsurface illumination of elastic wavefields in

the imaging process.

Vector interpolation begins by treating multicomponent seismic data as a vector quantity

in the Fourier domain using the quaternion Fourier transform. This approach makes it

possible to extend a popular Fourier regularization algorithm, Projection Onto Convex Sets

(POCS), to the vector case. Vector regularization improves the quality of an interpolation

while preserving the orthogonality of the input components. The improvement stems from

the fact that one amplitude spectrum is calculated for multiple components of data. This

overlap is beneficial when the components have significant spectral overlap because it in-

creases the overall sparsity of the spectrum, but can be a drawback if the components do

not share significant overlap in the frequency-wavenumber domain. By using a symplectic

representation of quaternions and choosing an appropriate axis for the Quaternion Fourier

Transform (QFT) the formulation for the QFT can be greatly simplified and existing FFT

algorithms can be used, allowing this approach to be applied to an arbitrary number of

components. In chapter 3 this method was applied to the horizontal components of a land

dataset displaying the effects of shear wave splitting. Interpolating the data in four spa-

tial dimensions using a vector approach better preserved the azimuthal signature of shear

wave splitting and allowed for an improved correction of the horizontal components. As a

108
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generalization of the approach another popular Fourier regularization algorithm, Minimum

Weighted Norm Interpolation (MWNI), was extended to the vector case. Applying the two

algorithms to a synthetic dataset it is clear that both the POCS and MWNI algorithms

enjoy a similar improvement in reconstruction quality when they are extended to the vec-

tor case. While POCS tackles the interpolation problem from the perspective of convex

optimization by alternating between a vector-valued sparsity-promoting projection and an

imputation of known vector-valued data samples, MWNI takes an iteratively re-weighted

least-squares (IRLS) approach to the problem, requiring Conjugate Gradients (CG) to be

adapted to the case of vector-valued data, model, and gradient values. Generalizing CG in

this way allows for it to be reused for a wide variety of vector processing problems. Indeed,

the solver developed in chapter 3 to extend MWNI to the vector case was later repurposed

in chapter 4 to extend acoustic least-squares migration to the elastic case. While this thesis

made use of the quaternion Fourier transform to extend Fourier regularization to the vector

case, I expect the same approach could be used to similarly extend other processing steps,

for example, the linear and parabolic radon transforms.

Regularized least-squares migration has been of great benefit to the imaging of acoustic

wavefields, mainly in compensating for irregular illumination of the subsurface, incomplete

sampling of sources and receivers, and extending the bandwidth of migrated images. Great

motivation to extend least-squares imaging to the elastic case was provided by the fact

that multicomponent data suffer from many of these same issues. Similar to acoustic least-

squares migration, elastic least-squares migration begins with a single scattering approxi-

mation. Small perturbations from the background elastic parameters scatter an incident

elastic source wavefield. Of the numerous possible strategies for the propagation of elastic

wavefields, this thesis made use of a one-way wave equation propagation for its practicality

and efficiency. In this framework, elastic wavefields are propagated recursively, one depth

level at a time. Extrapolating from one depth level to the next is achieved by decomposing

from displacements into scalar potentials associated with individual elastic wave modes, a

vertical phase shift of each mode, followed by the reversal of the decomposition (or recom-

position) from scalar potentials to displacements. In chapter 2 these elements are shown to

come from eigensolutions of the Christoffel equation. With these linear operators at hand,

elastic migration is found to be equivalent to the adjoint of first order shot-profile elastic

scattering. Furthermore, making use of the vector-CG algorithm used in chapter 3, the sys-

tem of equations for elastic modeling can be solved to find a migrated image that best fits

the observed data in a least-squares sense. Numerical examples in chapter 4 demonstrate

that this approach can improve wavefield separation, mitigate the effects of poor spatial

sampling, and compensate for non-uniform illumination for elastic wavefields.

In chapter 5 regularized elastic imaging was applied to an ocean bottom dataset comprised

of coarsely sampled receivers with finely sampled sources, contrary to the typical shot-
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based approach used for elastic imaging. The reciprocity of elastic Green’s functions was

employed to adapt elastic shot-profile least-squares imaging to elastic receiver-profile least-

squares imaging. An important distinction from reciprocity in the acoustic case is the

requirement that the source and receiver impulses and responses must also be interchanged.

This approach results in a clear improvement over conventional elastic imaging, particularly

in the continuity of shallow reflectors and the reduction of wavefield cross-talk artefacts.

This thesis offers two additions to a vector-elastic processing workflow for multicomponent

seismic data. First, a vector representation of multicomponent seismic data in the Fourier

domain using the quaternion Fourier transform which enabled Fourier regularization to be

extended to the multicomponent case. Second, a new method to model elastic data via

shot-profile one-way elastic wave equation modeling using an extended model domain. This

allows for elastic imaging to be approached as an inverse problem, where the best image

is chosen to be the one that minimizes the misfit between observed and predicted data.

These two approaches are connected by their use of data-fitting constraints that honor the

vector-elastic nature of the data, with secondary constraints that enforce simplicity in the

model estimate. In the case of vector interpolation, the optimal solution is one that shares a

common level of sparsity for all components, while in the case of regularized elastic imaging

the optimal images have uniform illumination.

A robust vector-elastic processing workflow that is suitable for industrial application will

likely soon become a reality. Some topics that require future research include the robust

estimation and removal of near-surface effects in elastic data, further research into vector

noise attenuation strategies, extending multiple attenuation to the multicomponent case

(for example Radon demultiple and Surface Related Multiple Attenuation (SRME)), robust

wavefield separation for offline processing of elastic data (to derive attributes which can aid

in the main vector-elastic processing workflow), and making more use of elastic wave modes

that reflection seismology typically treats as noise (for example Raleigh waves). These

changes will direct our efforts away from simplifying assumptions and toward treating the

full recorded wavefield as useful signal in the prediction of subsurface properties.
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APPENDIX A

The non-orthonormality of the composition/

decomposition operators

The composition operator for elastic wave propagation gets its 3 columns from the eigen-

vectors of the Christoffel equation. As such, we expect this matrix to be orthonormal, with

the inverse (decomposition operator) being simply the adjoint of the composition operator.

Numerically this computation is complicated by the fact that the vertical wavenumber must

be computed from the material parameters corresponding to each wave mode and the hori-

zontal wavenumbers via the dispersion relation (Bale, 2006). This requires the columns of

the decomposition operator to be individually normalized, making the composition operator

non-orthogonal, and requiring the inverse (decomposition operator) to be computed1.

Here I derive the normalized decomposition operator taking into account the non-orthogonality

of the columns of the composition matrix. Starting with the normalized composition oper-

ator

Γ =
[
γ1 γ2 γ3

]
=


kx
a

−ky
b

−kxkz(s)
c

ky
a

kx
b

−kykz(s)
c

kz(p)
a 0 b2

c

 , (A.1)

where a2 = k2
x + k2

y + kz(p)
2, b2 = k2

x + k2
y, and c2 = k2

xkz(s)
2 + k2

ykz(s)
2 + b4. The

inner product < γ1,γ3 >= kz(p)b2

ac − kz(s)b2

ac = 0 ⇐⇒ vp = vs. Clearly the columns of

Γ are linearly dependent making the matrix non-orthonormal. Indeed, the determinant

1This is not an issue when decomposing wavefields during time extrapolation (such as in anisotropic
elastic Reverse Time Migration). In this case, within each time step, the spatial wavenumbers are computed
independently and the orthonormality of the composition/decomposition operators remains valid. This is
perhaps another argument in favor of extrapolation stepping in time rather than in depth.
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|Γ| = bd2

ac 6= 1, where d2 = k2
x + k2

y + kz(p)kz(s). Rather than using the adjoint, the

decomposition operator is found by

Γ−1 =
1

|Γ|
adj(Γ) (A.2)

which is found to be

Γ−1 =
1

d2

 kxa kya kz(s)a
−kyd2
b

kxd
2

b 0
−kxkz(p)c

b2
−kykz(p)c

b2 c

 . (A.3)

The adjoint of the elastic scattering operator requires the adjoints of Γ and Γ−1. The adjoint

of the composition operator (used to decompose the receiver side wavefield for a given depth

step in elastic migration) is given by

Γ† =


kx
a

ky
a

kz(p)
a

−ky
a

kx
b 0

−kxkz(s)
c

−kykz(s)
c

b2

c

 , (A.4)

while the adjoint of the decomposition operator (used to compose the receiver side wavefield

for a given depth step in elastic migration) is given by

(Γ−1)† =
1

d2

 kxa
−kyd2
b

−kxkz(p)c
b2

kya
kxd

2

b
−kykz(p)c

b2

kz(s)a 0 c

 . (A.5)



APPENDIX B

CG for multicomponent model and data vectors

Conjugate Gradients (CG) is a numerical method to estimate a solution vector, x from the

forward problem Ax + noise = b. Supposing A is a mxn positive-definite matrix, x is a

model vector of length n, and b is a data vector of length m, we seek the minimum norm

solution via the following cost function:

J = ||Ax− b||22 + µ||x||22, (B.1)

Where µ is a tradeoff parameter controlling the level of data fitting versus the influence of

the norm of the model. Algebraically the solution to this problem is determined by taking

the derivative of the cost function and setting it to zero giving

x = (ATA+ µI)−1AT b. (B.2)

Rather than solving the problem algebraically, it is often more practical to solve the problem

using an iterative method such as CG outlined in algorithm 1 (Hestenes and Stiefel, 1952;

Scales, 1987).

It should be noted that the linear operator, A, and its adjointAT , are generally not matrices,

although it is theoretically possible for them to be. In the many cases it is ill advised to

express a linear operator as a matrix because it is either A) enormous in size or B) filled

with redundant entries or zeros. Typically we take a linear operator A, and its adjoint AT

to mean an efficient pair of computer programs that have been carefully designed to pass

an adjointness, or dot-product, test that passes within machine precision.
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Algorithm 1 Conjugate Gradients

d← observed data vector
µ← tradeoff parameter
Niter ← number of iterations
tol← tolerance to exit program early
r = d
s = g = ATr
x = 0
γ = gTg
γ0 = γ
cost0 = rTr
for j = 1 : Niter do
t = As
∆ = tT t+ µsTs
if ∆ <= tol then

BREAK
end if
α = γ/∆
x = x+ αs
r = r − αt
g = ATr
g = g − µx
γ0 = γ
γ = gTg
cost = rTr + µxTx
β = γ/γ0

s = βs+ g
if
√
γ <=

√
γ0tol then

BREAK
end if

end for
return x
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Notice the inner products in algorithm 1 are collapsing vectors into scalar quantities (effec-

tively a measure of length). To extend this algorithm to the case of multicomponent model

and data vectors we require the linear operators A and AT to act on multicomponent-

valued model and data vectors respectively. We also need the inner product calculations to

collapse over individual components. Finally, to control the influence of individual vector

norms it is useful to incorporate a multicomponent-valued trade-off parameter. Algorithm

2 outlines the changes necessary for CG to operate on multicomponent-valued model and

data vectors. This multicomponent conjugate gradients algorithm could find many useful

applications in multicomponent seismic data processing. In chapter 3 of this thesis I use

it to interpolate multicomponent seismic records. In chapters 4 and 5 of this thesis I use

it to perform elastic least squares migration. More generally, this algorithm could be used

in any linear inversion in which the input data and output models are multicomponent or

multiparameter in nature.
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Algorithm 2 Conjugate Gradients for multicomponent model and data vectors

~d← observed multicomponent-valued data vector
µ1, µ2, µ3 ← tradeoff parameters for components 1, 2 and 3
Niter ← number of iterations
tol← tolerance to exit program early
~r = ~d
~s = ~g = AT ~r
~x = ~0
γ = gT1 g1 + gT2 g2 + gT3 g3

γ0 = γ
cost0 = rT1 r1 + rT2 r2 + rT3 r3

for j = 1 : Niter do
~t = A~s
∆ = tT1 t1 + tT2 t2 + tT3 t3 + µ1s

T
1 s1 + µ2s

T
2 s2 + µ3s

T
3 s3

if ∆ <= tol then
BREAK

end if
α = γ/∆
~x = ~x+ α~s
~r = ~r − α~t
~g = AT ~r
~g = ~g − ~µ · ~x
γ0 = γ
γ = gT1 g1 + gT2 g2 + gT3 g3

cost = rT1 r1 + rT2 r2 + rT3 r3 + µ1x
T
1 x1 + µ2x

T
2 x2 + µ3x

T
3 x3

β = γ/γ0

~s = β~s+ ~g
if
√
γ <=

√
γ0tol then

BREAK
end if

end for
return ~x



APPENDIX C

Angle gathers in wave equation migration

Angle gathers find many useful applications in seismic imaging. Migration velocity analysis

is often carried out in an iterative layer-stripping where angle gathers are progressively flat-

tened starting from shallow events and working downward. After final migration, gathers

can be muted to mitigate the effects of imaging artifacts or to produce angle stacks for inter-

pretation. In least-squares migration angle gathers provide an extended axis to regularize

the inversion and improve convergence.

A popular technique to calculate angle gathers is to measure the direction of energy flow for

the propagating source and receiver-side wavefields, followed by a calculation of the opening

angle between these vectors (Yoon and Marfurt, 2006). This is known as the Poynting vector

approach. While this approach is efficient and provides high-resolution angle estimates, it

often suffers from artefacts that can interfere with convergence in least-squares migration.

An alternative approach employs an extended imaging condition (in time, subsurface offset,

depth, or a combination of axes) followed by slant stack to convert to angle (Rickett and

Sava, 2002). This technique is expensive because it requires an additional ”for loop” over

spatial lags in the very inner loop of the imaging algorithm, but provides a smooth artefact-

free extended that is effective for use in least-squares migration.

This appendix outlines the implementation of these two strategies.

C.1 Poynting vector to angle formulation

Poynting vectors are calculated via

Si = −τij u̇j (C.1)
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where u is the particle displacement and τij is the stress tensor (Dickens and Winbow,

2011), which can be approximated by

S ≈ 5P ∂P
∂t
P (C.2)

where P is the pressure (Yoon and Marfurt, 2006). The steps to evaluate the derivatives

in equation 2 for shot profile wave equation migration are as follows (Higginbotham et al.,

2010):

1. calculate gradient components for the source side wavefield: Usx(w, kx, kz) = kxU
s(w, kx, kz)

2. inverse Fourier transform over the spatial axes (x and z)

3. obtain Usx(x, z) that corresponds to the time of reflection by calculating the zero-lag

cross correlation with the receiver wavefield: Usx(x, z) =
∫
Usx(w, x, z)Ug

∗
(w, x, z)dω.

4. normalize the elements of Ug(x, z) = Ugx (x, z)x̂+ Ugz (x, z)ẑ

5. repeat steps 1-4 for the z-component of the source side wavefield to obtain Ugz (x, z)

These steps are repeated for the x and z components of the receiver side wavefield to obtain

the unit vectors: Û s(x, z), and Ûg(x, z). In practice we find that we must multiply Usx(x, z)

by −1 to obtain unit vectors following the convention shown in figure C.1.

Using these vectors we may calculate the angle of incidence with respect to the vertical:

α(x, z) = tan−1

(
Ûsx(x, z)

Ûsz (x, z)

)
(C.3)

or with respect to the reflector normal:

θ(x, z) =
1

2
cos−1

(
Û s(x, z) · Ûg(x, z)

)
. (C.4)

For 2D imaging the signed incidence angle can be found by multiplying by the sign of the

cross product:

θ(x, z) = sgn
(
Û s(x, z)× Ûg(x, z)

) 1

2
cos−1

(
Û s(x, z) · Ûg(x, z)

)
(C.5)

while for 3D imaging, we can compute the reflection azimuth (Dickens and Winbow, 2011).
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n̂Ûs

Ûg

θ

Figure C.1: Source and receiver wavefield Poynting vector conventions used when
compute opening angle, θ, with resect to reflector normal, ~n.

These calculations often lead to noisy angles because of the normalization to unit vectors

and the complicated receiver side wavefield. Yan and Ross (2013) propose a smooth solution

by calculating an angle that minimizes a cost function for a small window. A straightforward

alternative is to avoid the use of opening angle, and to define the angle solely using source

wavefield gradients. This provides smooth source side incidence angles defined with respect

to vertical.

After angles have been computed for a migrated shot gather, the shot is linearly interpolated

onto a regular grid of angle bins in the final image

m(x)(bθ(x)− θo
∆θ

c])+ = (1− α(x))m1shot(x) (C.6)

m(x)(bθ(x)− θo
∆θ

c+ 1)+ = α(x)m1shot(x) (C.7)

where α(x) = (θ(x) − b θ(x)−θo
∆θ c∆θ − θo)/∆θ. Conversely, for the forward operator the

migrated image is sprayed to each migrated shot (prior to demigration) using

m1shot(x) = (1− α(x))m(x)(bθ(x)− θo
∆θ

c]) + α(x)m(x)(bθ(x)− θo
∆θ

c+ 1) (C.8)

Equations 10 and 11 form an adjoint/forward operator pair that allows for least-squares

migration using Poynting vectors.
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Figure C.2: Propagation angles for a source at X=5000m, computed using the
Poynting vector method.

Using the velocity model from figure 2.3, and data shown in figure 2.4 as input, the Poynting

vector method of computing angle gathers begins with the computation of propagation

angles by downward continuing the source wavelet and computing its spatial gradients. The

result of this process is shown in figure C.2.

Next, the angles are used to bin individually migrated shot gathers into angle bins via the

linear interpolation given in equation C.7. The results of this process are shown in figure

C.3, where source side incidence angles between -10.0 and 10.0 degrees from vertical have

been stacked to generate a near angle image.

An angle gather at X = 5000m, directly underlying the source position, is shown in figure

C.4

From this figure it is apparent that while the Poynting vector method creates high-resolution

angle gathers, there is a tradeoff with numerical instability, creating high amplitude arte-

facts. The next section outlines an alternative method to compute angle gathers that pro-

duces fewer artefacts.

C.2 Subsurface offset to angle formulation

The subsurface offset to angle method uses the Fourier transform to map from subsurface

offset to the half opening angle, γ, via



APPENDIX C. ANGLE GATHERS IN WAVE EQUATION MIGRATION 131

0 2000 4000 6000 8000
X (m)

0

1000

2000

3000

4000

Z
 (
m
)

Figure C.3: Near angle stack from the Poynting vector method using source side
incidence angles between -10.0 and 10.0 degrees from vertical.
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Figure C.4: Angle gather at X = 5000m generated for a single shot via the sub-
surface offset method. While the resolution of the angles and depths is slightly
lower than for the equivalent Poynting vector angle gather (figure), the artefacts
are fewer.
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tan γ =
kh
kz

(C.9)

where kh, and kz are the subsurface offset and depth wavenumbers respectively.

Incorporating angle dependent reflectivity into the adjoint operator, L†, involves

1. computing the imaging condition for discrete spatial lags between the source and

receiver wavefields

2. taking the Fourier transform of the subsurface offset image along the depth and offset

axes

3. performing the mapping from subsurface offset wavenumber to angle via equation C.9

4. taking the inverse Fourier transform along the depth axis

while the forward operator, L, involves

1. taking the Fourier transform of the image along the depth axis

2. performing the adjoint mapping from angle to subsurface offset wavenumber via equa-

tion C.9

3. taking the inverse Fourier transform of the subsurface offset image along the depth

and offset axes

4. computing the receiver wavefields at depth for discrete spatial lags between the source

and the image point

The above method parameterizes the images as a function of the half opening angle between

the source and receiver wavefields. For PP reflections the equivalence of source and receiver

side velocity means the opening angle is bisected by the reflector normal vector, making

the half opening angle equivalent to the source side incidence angle with respect to reflector

normal. For PS reflections there is no such equivalence, and the half opening angle does

not adequately describe the zero incidence angle where polarity reversal is expected (except

for the special case of a flat-lying reflector). While a post-processing step can be used to

correctly position the polarity reversal for PS reflections prior to stacking (Rosales et al.,

2007), we observe that simply using the half opening angle provides an adequate extended

imaging condition for elastic least-squares migration. A positive feature of this method

is that it provides a smooth artefact free extended axis. Considering that angle gathers
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should be flat if an accurate migration velocity is used, this axis is effective to precondition

least-squares migration by removing dipping energy and noise.

Using the velocity model from figure 2.3, and data shown in figure 2.4 as input, the subsur-

face offset method generates laterally lagged images. Three such images are shown in figure

C.5. These lagged images are then transformed to angle via equation C.9.

A near angle stack generated via the subsurface offset method is shown in figure C.6, while

an angle gather at X = 5000m is shown in figure C.7.

Comparing the near angles section created using the Poynting vector method (figure C.3)

with the section created using the subsurface offset method (figure C.6), the subsurface

method results in a section with fewer artefacts. The half opening angle and the source

side propagation angle with respect to vertical are equivalent for flat reflectors. Because of

this, the events in figures C.3 and C.6 align for the first (flat) event, however, later dipping

events do not align due to the difference in the angle definitions.
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Figure C.5: Image for a subsurface offsets of -250m (top), 0m (middle), and +250m
(bottom).
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Figure C.6: Near angle stack from the subsurface offset method using half-opening
angles from γ = -10.0 to 10.0 degrees.
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Figure C.7: Angle gather at X = 5000m generated for a single shot via the subsur-
face offset method. While the resolution of the angles and depths is slightly lower
than for the equivalent Poynting vector angle gather (figure), the artefacts are of
lower amplitude.
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Seismic.jl: seismic data analysis in Julia1.

Geophysical programming typically falls into one of two categories: small-scale prototyping

for teaching or research using high-level languages (e.g. Python, Matlab, or Mathematica)

or large-scale implementations for production applications or large numerical experiments

using statically compiled languages (e.g. C, C++, Fortran, or Java). Julia offers a bridge

between these two categories. In Julia we have the ability to quickly create prototypes that

can also solve larger problems efficiently. It does this by using a sophisticated type system

and multiple dispatch (specified function behavior for various combinations of argument

types). The language design allows Julia’s just-in-time (JIT) compiler to execute programs

at impressive speeds. Below is a table provided by the creators of Julia that benchmarks

the performance of several popular languages for various algorithms.

Fortran Julia Python R Matlab Octave Mathematica JavaScript Go LuaJIT Java

fib 0.70 2.11 77.76 533.52 26.89 9324.35 118.53 3.36 1.86 1.71 1.21

parse int 5.05 1.45 17.02 45.73 802.52 9581.44 15.02 6.06 1.20 5.77 3.35

quicksort 1.31 1.15 32.89 264.54 4.92 1866.01 43.23 2.70 1.29 2.03 2.60

mandel 0.81 0.79 15.32 53.16 7.58 451.81 5.13 0.66 1.11 0.67 1.35

pi sum 1.00 1.00 21.99 9.56 1.00 299.31 1.69 1.01 1.00 1.00 1.00

rand mat stat 1.45 1.66 17.93 14.56 14.52 30.93 5.95 2.30 2.96 3.27 3.92

rand mat mul 3.48 1.02 1.14 1.57 1.12 1.12 1.30 15.07 1.42 1.16 2.36

Table D.1: Benchmark times relative to C (smaller is better, C performance =
1.0). Adapted from http://julialang.org. Please refer to the original for technical
specifics.

Some features of the language that we find particularly useful for geophysical applications

are its ability to execute multi-level for loops without the performance penalty of other

high-level languages (eg. Python, and Matlab). The language also allows for C and Python

libraries to be called directly with no overhead, and has functionality for large-scale parallel

computing.

1Parts of this appendix have been published in Stanton et al. (2016)
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Method

The Signal Analysis and Imaging Group have created a module named Seismic.jl that can be

installed from the Julia command line by typing Pkg.add(”Seismic”). The package contains

utilities for reading and writing SEG-Y, SU (Seismic Unix), and RSF (Madagascar) data

formats, and uses a simple internal format that emulates Madagascar’s RSF format to store

data where headers and data are kept in separate binary files. By storing data and headers

separately we can efficiently compute header statistics and manipulate data based on header

values. The type system in Julia allowed us to create a custom Header type that contains

many useful indices for 5D processing and imaging.

Seismic.jl contains modules for many conventional data manipulations including windowing,

sorting, 5D geometry calculation, 5D binning, as well as wrapper modules for processing

groups or patches of data in parallel. The processing functionality of the package is a

work in progress, but already includes semblance, NMO, band-pass and FK filtering, FX-

deconvolution, Radon demultiple, 5D interpolation, stacking, and 3D shot-profile acoustic

and elastic wave equation migration, de-migration and least-squares migration.

Examples

To try these examples yourself we ask the interested reader to visit http://juliabox.org

where a Linux virtual machine can be accessed in the browser for no cost. Below we

show a simple seismic data interpolation exercise using the Projection Onto Convex Sets

(POCS) algorithm (Abma and Kabir, 2006). The example can be reproduced by following

https://goo.gl/gYtWZs. To create a simple synthetic dataset to test the algorithm we

use the SeisLinearEvents program and decimate 50% of the traces randomly. Figure D.1

shows the decimated input data and its FK-spectrum. The data are reconstructed using

100 iterations of POCS with results shown in figure D.2.

As a second example, we compute reflector dip for a velocity model using Plane Wave

Destruction (PWD) (Claerbout, 1992). In figure D.3 the velocity model was used as an

input to the program SeisPWD, with computed reflector normal directions plotted with

arrows throughout the model. This example can be reproduced by following https://goo.

gl/zu40wg.

For our last example, we use the Teapot Dome dataset available on the SEG’s open data

website. In this simple example, we convert from SEGY to SEIS format and calculate geom-

etry information including binned midpoint X and Y coordinates. Extracting coordinates

from the header file, we map shot and receiver coordinates and an image of the fold in

figures D.4 and D.5 respectively. To follow this example visit https://goo.gl/kwvFqQ.

http://juliabox.org
https://goo.gl/gYtWZs
https://goo.gl/zu40wg
https://goo.gl/zu40wg
https://goo.gl/kwvFqQ
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Figure D.1: decimated seismic data used as input to the SeisPOCS program. The
data have 50% missing traces.

Figure D.2: Seismic data interpolated using the SeisPOCS program.

Conclusions

Julia offers the unique ability to write simple prototypes for geophysical research and teach-

ing that can also scale to solve large problems efficiently. We have introduced a set of

utilities for writing and manipulating seismic data in the Julia language.
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Figure D.3: A velocity model used to demonstrate the program SeisPWD. Com-
puted normal vectors are plotted as purple arrows.
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Figure D.4: Shot and receiver coordinates extracted from the Teapot Dome dataset.
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Figure D.5: Fold map computed from the Teapot Dome dataset.
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