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ABSTRACT 

 Local surface force density and total surface force induced by a single point charge 

embedded in a three-layered homogeneous dielectric system with infinite planar interfaces are 

calculated using the Maxwell Stress Tensor formulation. The tensor is expressed in terms of the 

electric field which is first derived from solving the electric potential in all domains. The electric 

potentials are obtained in closed form using the Hankel transformation. Nondimensionalization of 

the solutions for electric potential, local surface force density and total surface force reduces the 

governing parameters into three scalars: a normalized charge location and two dielectric constant 

ratios. These dimensionless parameters are varied to analyze their influences. The numerical 

parametric study reveals interesting, coupled influences of theses parameters on the distribution of 

electric potential. It was also found that the two ratios between the dielectric constants of the three 

layers play a primary role in the forces: they determine the direction of the surface force density 

and total surface force, as well as the distribution of the surface force density, which can vary 

monotonically or non-monotonically with the radial position. The position of the point charge, on 

the other hand, only affects the magnitude of the surface forces. Due to the linear nature of the 

electrostatic problem, the formulations presented here can be extended to establish a theoretical 

framework for modeling contact adhesion, where interfacial adhesive forces arise from a 

distribution of charges. An example to solve this type of problem is presented where a pair of equal 

and opposite charges are considered in the same model. Comparison between these two systems 

show that the addition of an extra charge introduces significant changes in the magnitude of surface 

force density while their directions are found the same in both systems. The results also reveal that 

the total surface force can be altered both qualitatively and quantitatively by the extra charge. This 
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additional charge can increase or decrease the net surface forces depending on the charge location 

and the dielectric constant ratios of the three layers. 
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Chapter 1 

INTRODUCTION 

The applications of layered dielectric systems are common in energy storage and electrical 

insulation devices [1]–[5]. Most of these devices consist of multiple layers of dielectrics between 

grounded conducting plates or charged conductors. Microwave technologies such as antennas, 

transmission lines, computers, filters, power dividers etc. are also made of several conductor-

dielectric combinations [6]–[8]. The studies on the performance of these electrical devices involve 

the calculation of electric potential, electric field as well as electrostatic force at the interfaces due 

to the charge distribution in the system [9]–[12]. As one example, in order to determine the wave-

propagation properties of microstrip transmission lines, one must first obtain the electric field for 

a pair of charged conductors separated by a dielectric sheet [11]. Understanding the electrostatic 

force induced by a distribution of charges in layered dielectric medium is also important to many 

problems, especially in electromechanical devices for the semiconductor industry [13]–[16]. 

Proper handling of dielectrics in these devices is crucial to manufacture contamination free 

products. Electrostatic chucks are now widely used to replace mechanical holding systems for 

semiconducting wafers [17], [18]. These chucks normally consist of a planar array of parallel bar 

electrodes. An attractive electrostatic force is induced with a thinner layer of dielectric between 

the chuck and the product. For holding purposes, the performance of the electrostatic chucks 

depends on the magnitude of the generated electrostatic force, which in turn depends on proper 

selection of the dielectric. Another interesting application is found in the development of wall 

climbing robot technologies [19], [20]. Many methods have been proposed to introduce adhesive 
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forces between the wall and the robot, for example, negative air pressure, directional adhesive 

structures, magnetic force, and electrostatic force [21]–[25]. Liu et al. [26] discussed the 

electrostatic adhesion force while designing a wall climbing robot prototype. Their theoretical 

model considered a planar array of parallel electrodes, insulation film around the electrode panel 

and a thin layer of air gap between the electrode panel and the climbing wall. The electrodes acted 

as the source of the electrostatic field and the air gap corresponded to the wall surface roughness. 

Maxwell Stress Tensor was used to calculate the electrostatic adhesion force on the wall induced 

by the potentials applied to the electrodes. A similar work was done by Mao et al. [27] where the 

electrostatic force at the interfaces of a multilayered structure involving concentric ring electrodes 

was derived and compared with Finite Element simulation data. 

Another very common physical phenomenon in layered dielectrics is adhesion (attractive 

force) between surfaces caused by contact charging [28], [29]. When two surfaces come into 

contact and then separate, charge transfer can occur between them [30] and this phenomenon is 

known as contact charging or contact electrification. Contact charging is a very common 

phenomenon and is important to many long-practiced technologies such as photocopying, 

electrostatic separation, and laser printing. Due to contact charging, a charge distribution is 

developed on each surface and this distribution is typically considered as a mosaic with oppositely 

charged regions on the two surfaces [31]. As a result, the charged surfaces show a tendency to 

cling to each other, a phenomenon known as contact adhesion. The study on contact charging has 

a long history, with many theoretical and experimental results including full atomic simulations 

developed to study the electrostatics of laminated dielectric systems [32], [33]. However, some 

fundamental issues such as the methods of charge transfer [34], polarity of charged surfaces [35], 

pattern of charge distribution on the surfaces [31] etc. are still being debated. 
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Compared with contact charging, the evaluation of adhesion force due to contact charging 

is much less done. Wan and co-workers [28] calculated the electrostatic attraction between two 

charged surfaces each having a square checkerboard pattern with domains of linear dimension and 

finite charge density. The two surfaces were placed in vacuum, and the electrostatic adhesion was 

calculated for aligned or misorientated boards. Brormann et al. [29] performed experiments to 

evaluate the electrostatic contributions to the work of separation during detachment of micro-

structured PDMS samples from glass surface. Theoretical calculation for the adhesion force was 

also conducted by assuming correlated charge mosaics on the two surfaces and adopting the results 

of Wan et al. [28]. A small adjustment was introduced to account for the difference in the studied 

systems: in Wan et al., the two surfaces have zero thickness, whereas in Brormann et al. the 

adhesion is between two half-spaces separated by an air gap. This adjustment, however, was 

empirical and did not result from a rigorous solution of the electrostatic problem. In addition, the 

different polarizability of the three media (PDMS, glass and air gap) was not taken into 

consideration in the force evaluation. This class of problems has motivated to conduct the study 

on electrostatic forces in multi-layered systems, and in this particular thesis, focus has been given 

on evaluating the forces on dielectric interfaces induced by a nearby point charge. It is evidenced 

by many other types of research that the calculation of the forces first requires the knowledge of 

the electric potential in the space induced by the point charge, which is solved in details in the 

present thesis. 

Electrostatic problems for solving the electric potential in multilayered dielectrics have 

been studied in a number of previous works. Green’s function-moment method based on image 

theory is commonly found in literature to solve such problems [36]–[38]. Pumplin [39] considered 

the problem of a parallel plate capacitor that consisted of two grounded plates and a point charge 
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in between. The electric potential was solved using image charge method and presented in terms 

of Green’s function. Specifically, a distribution of point charges was introduced in the upper and 

lower spaces, with each charge having the same magnitude as the original point charge. The 

location of the image charges was solved to ensure that the electric potential on the two interfaces 

(grounded conducting plates) was zero. Pronic et al. [40] studied a multilayered dielectric system 

enclosed by a cylindrical conductor. An analogy was drawn to multistep electrical transmission 

line which had a current source with its two ends short terminated. Based on the analogy, Green’s 

function satisfying the Poisson’s differential equation was obtained for a point charge in the 

structure and the solution for the electric potential was presented as a double infinite sum. Image 

charge method was also used in a number of other works to study the potential in a layered 

dielectric sphere [41], multiconductor transmission lines [9] etc. 

Heubrandtner et al. [42] presented expressions for the electric field of a point charge in an 

infinite plane condenser. They mentioned its application in particle detection process through 

Parallel Plate Chambers (PPC) and Resistive Plate Chambers (RPC), which respectively consisted 

of one and three homogeneous layers of dielectrics. The condenser was modeled as a single or 

multilayered dielectrics packed between two grounded conducting plates. Solution for the electric 

potential in the condenser was given, without detailed derivations, both in terms of infinite series 

and using an integral representation. The focus of Heubrandtner et al.’s study was to examine the 

convergence performance of the two forms of the solutions. Near the point of divergence, where 

the point charge is located, the integral representation of the solution gives overall better result 

than the series solution, due to the faster decay of the integrand and better performance in 

numerically evaluating the electric field when the electric potential needs to be differentiated. 
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In another previous work, a simple electrostatic problem was tackled with a three-layered 

dielectric system to determine the electric potential along with the induced surface density and the 

total induced charge at the interfaces [43]. The work was done by Barrera et al. where they 

considered a point charge embedded in one of the three homogeneous dielectric layers. They first 

solved the electric potential using the method of images, a series solution corresponding to an 

infinite array of image charges, and then converted it into integral form using two-dimensional 

Fourier transform. The original work contained mistakes, which was pointed out by an erratum 

published later [44], but without further examination. 

It is clear that the method of image charges is the most widely used approach to solve 

electrostatic problems in layered dielectrics. Even though some works attempted to improve 

convergence performance using solutions in integral form, series solution obtained from image 

charges still served as a starting point. Given the apparent axisymmetry in many of those problems, 

it is surprising that there has been no attempt to tackle them using the Hankel transformation, a 

technique very useful for axisymmetric problems. In this thesis, a general problem is considered 

to solve for the electric potential using the Hankel transformation. 

In addition, there has not been any work found, after an exhaustive literature search, that 

tackles the general problem relevant to contact adhesion, that is: what is the force between two 

dielectric half-spaces with surface charges separated by a dielectric gap? As a step towards solving 

such a problem, in this work, a simpler problem is tackled, namely the force between two dielectric 

half-spaces induced by a point charge located in the dielectric gap separating them. The detail 

description of the specific problem is provided in Chapter 2. At first, the electric potential induced 

by the single point charge is calculated (Chapter 3). Using the electric potential, distribution of the 

surface force density along the interfaces is determined and then this result is used to calculate the 
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total surface force acting on each of the interfaces (formulation in Chapter 4 and results and 

discussions in Chapter 5). Due to linear nature of the equations governing the electric potential, 

the methodology and results can be extended easily into broad applications to calculate the 

electrostatic forces induced by a distribution of charges in layered dielectrics, and hence is useful 

for quantifying electrostatic-driven interfacial forces in general. An example to solve this type of 

problem is presented where a pair of equal and opposite charges are considered in the same model 

(Chapter 6). Conclusion and future work are presented in Chapter 7.  
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Chapter 2 

PROBLEM DESCRIPTION AND FORMULATION 

2.1 Physical description of the problem 

The schematic of the specific problem with a single point charge being studied in this work 

is shown in Fig. 2.1. Here, the space is divided into three homogeneous dielectric domains, which 

are all assumed to be infinitely large in the horizontal direction and can differ in dielectric 

properties. The middle dielectric (denoted as domain I) has a thickness of H  and dielectric 

constant 1 . The lower space (II) extends downward to infinity and has dielectric constant 2 . The 

upper space (III) extends upwards to infinity and has dielectric constant 3 . These three domains 

are separated by hypothetical planar interface. A point charge of magnitude q  is located at a 

distance d  above the lower interface ( 0 d H  ). For each interface (between I and II, or between 

I and III), the polarization caused by the point charge will be different in its two sides due to the 

difference in dielectric properties. If a small volume is considered at an arbitrary location on the 

interface, the difference in polarization on the two sides will lead to a net polarization charge within 

that volume. The interaction between this net polarization charge and the original point charge 

results in interfacial forces which can be attractive or repulsive depending on the induced electric 

field and polarization charge. In reality, these forces can cause deformation of the materials on the 

interface, but solving the deformation field is out of the scope of this work. In addition, the total 

surface force on each interface is assumed to be balanced by an external force so that the system 

is in global force balance.  
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FIGURE 2.1: Schematic of the electrostatic problem with a single point charge considered in this 

work. 

 

2.2 Methodology 

It is clear from Fig. 2.1 that the problem possesses axisymmetry; therefore, it is most 

appropriate to use the cylindrical coordinate r ,   and z  as shown. Without the loss of generality, 

the z -axis is placed so that the point charge is located directly on it. Due to axisymmetry, the 

electric potential   is expected to be a function of r  and z  only. To obtain the axially symmetric 

( , )r z , the following procedure is applied. First, a boundary value problem (BVP) is developed 

for the electric potential considering the Laplace equation of electrostatics as the governing 

equation with proper boundary conditions. Then the technique of Hankel transformation is used, 
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Chapter 3 

ELECTRIC POTENTIAL SOLVED WITH HANKEL 

TRANSFORMATION 

3.1 Hankel Transformation 

 There are different methods exist to solve the BVPs in electrostatics. In this work. The 

governing equation is solved by using the Hankel transforms which are integral transformations 

that consist of Bessel functions as kernels. While dealing with the problem that shows cylindrical 

symmetry like the current one, the Hankel transformations are found very useful. Specifically, the 

Laplace’s partial differential equation in cylindrical coordinates can be transformed into an 

ordinary differential equation by using the Hankel transformation which motivates applying this 

method to solve the present problem. 

For a function  r ; 0r   to  , its Hankel transformation of the 0th order is defined by [47] 

        0 0

0

;H r r r J r dr    


       (3.1) 

where, 0H  is the Hankel transform of 0th order and  0J x  is the 0th order Bessel function of the 

first kind. The inverse Hankel transform of order zero is defined by [47] 

        1

0 0

0

;r H r J r d     


       .  (3.2) 
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Among the few elementary properties of the Hankel transforms, the following property is 

considered the principal one for its applications to solving differential equations [47]: 

 
2

0 0

1
( ); [ ( ); ]H r H r

r r r

           
. (3.3) 

The Laplacian operator under cylindrical coordinates is in the following form: 

 
2 2 2 2 2

2

2 2 2 2 2 2 2

1 1 1 1
r

r r r r z r r r r z 
                        

.  (3.4) 

For a problem with cylindrical symmetry, Eqn. (3.4) reduces to: 

 
2

2

2

1
r

r r r z

         
.  (3.5) 

Using the property of the Hankel transform (Eqn. (3.3)), it is clear from Eqn. (3.5) that a partial 

differential equation involving the Laplacian operator can be transformed into an ordinary 

differential equation, which can simplify the solution of the BVP. 

 There are some functions whose 0th order Hankel transformation can be evaluated in closed 

form. The following transformed entities are presented as examples which are applied while 

solving for the electric potential in this work [48] 

    
1

2 2 2
0

0

ae
r a r J r dr






 
  , (3.6) 

    
3

2 2 2
0

0

ae
a a r J r dr

a




 

  , (3.7) 

    
1

2 2 2
0

0

ae J r d a r  


   . (3.8) 
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where, these equations are valid for 0a  . 

 

3.2 Transformation of boundary value problem (BVP) 

 To solve Eqs. (2.6) to (2.11) for the problem model (Fig. 2.1), first the electric potentials 

on the interfaces 0z   and z H  are denoted by two unknown functions  0 r  and  H r  

respectively. This is warranted by the continuity conditions (2.8) and (2.10) and facilitates the 

construction of separate Dirichlet BVPs in all three domains. Let the electric potential of the 

middle, lower and upper regions satisfy the following Dirichlet BVP: 

Region I  0 z H  : 

  2 ,0 0I r z H    , (3.9) 

    ,I Hr H r  , (3.10) 

    0,0I r r  . (3.11) 

Region II  0z  : 

  2 , 0 0II r z   , (3.12) 

  , 0II r z   , (3.13) 

    0,0II r r  . (3.14) 
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Region III  z H : 

   2 , 0III r z H   , (3.15) 

  , 0III r z   , (3.16) 

    ,III Hr H r  . (3.17) 

Taking the Hankel transform of order zero according to Eqn. (3.1) and making the use of its 

property from Eqn. (3.3), the BVPs in regions II and III for the transformed electric potential 

 , z  now read 

Region II  0z  : 

 
   

2

2

2

, 0
, 0 0

II

II

z
z

z


 

  
   


, (3.18) 

  , 0II z   , (3.19) 

    0,0II    . (3.20) 

Region III  z H : 

 
   

2

2

2

,
, 0

III

III

z H
z H

z


 

  
   


, (3.21) 

  , 0III z   , (3.22) 

    ,III HH   . (3.23) 
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where  0   and  H   are the Hankel transformation of the functions  0 r  and  H r  

respectively. Eqs. (3.19) and (3.20) are the corresponding Hankel transformed BCs to Eqn. (3.18) 

while Eqs. (3.22) and (3.23) correspond to Eqn. (3.21) as the transformed BCs. 

For region I (0 )z H  , since it contains a singularity (point charge q ), the singular part 

of the electric potential is first separated out which is denoted by A  and is expressed as 

  
 22

0 1

,0
4

A

q
r z H

r z d


 
  

 
. (3.24) 

Here, A  is the potential due to q  in absence of the interfaces, i.e., if the upper and lower regions 

had the same dielectric property as the middle region. This gives the correct singularity at the 

location of the point charge and allows the BC (2.7) to be satisfied. It can be easily seen that A  is 

a function of the distance  22r z d   from the point charge and its values on the interfaces are 

obtained by setting 0z   and z H  in Eqn. (3.24). A  on the lower interface is denoted by 0A  

and is 

    0 0
2 2

0 1

,0
4

A A

q
r r

r d
 

 
 


. (3.25) 

Similarly, AH  is the electric potential on the upper interface which reads 

    
 22

0 1

,
4

AH AH

q
r r H

r H d
 

 
 

 
. (3.26) 
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The second part of the electric potential in region I, denoted as B , is non-singular everywhere, 

and is the difference between A  and the total electric potential in the middle region. B  satisfies 

the following BVP: 

  2 ,0 0B r z H    , (3.27) 

      0 0, 0B Ar z r r     , (3.28) 

      ,B H AHr z H r r     . (3.29) 

Applying the Hankel transformation to B  and using its property gives the following transformed 

BVP: 

 
   

2

2

2

,0
,0 0

B

B

z H
z H

z


 

   
    


, (3.30) 

      0 0,0B A     , (3.31) 

      ,B H AHH     . (3.32) 

Here,  0A   is the Hankel transform of 0 ( )A r , which can be analytically evaluated from Eqn. 

(3.25) following Eqn. (3.6): 

    0 0
2 2

0 10 0 1
44

d

A

q qe
r J r dr

r d



 
   

 

  


 , 0d  . (3.33) 

Similarly,  0A   is the Hankel transform of ( )AH r  where applying the property of Eqn. (3.6) 

again yields: 
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  
 

 
 

0
22

0 10
0 1

44

H d

AH

q qe
r J r dr

r H d



 
   

  

  
 

 , d H . (3.34) 

 

3.3 Solution of the transformed BVP 

So far, we have constructed separate Dirichlet BVP for each domain, and each BVP can be 

solved individually to obtain  , z  in terms of the unknown functions  H   and  0  . 

All the BCs have been used except Eqs. (2.9) and (2.11), which will be used later to determine 

these two unknown functions. 

 It is straightforward to solve Eqs. (3.18)-(3.20) and (3.21)-(3.23) to obtain the transformed 

electric potential in regions II and III. First, solving the differential equation in Eqn. (3.18) gives: 

   1 2, 0 z z

II z C e C e       (3.35) 

where,  1 0C    and 2 0C   are unknown constants which are determined by using the BCs 

(3.19) and (3.20). Substituting the values of 1C  and 2C  in Eqn. (3.35): 

    0, 0 z

II z e    . (3.36) 

Similarly, the transformed electric potential in region III is found: 

      
,

H z

III Hz H e
      . (3.37) 

The same method is applied to solve Eqn. (3.30) by using the BCs (3.31) and (3.32) that yields 
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        
 

      
 

0 0

sinh
,0

sinh

sinh
.

sinh
                            

H AH

B

A

z
z H

H

H z

H

  




  


 
   

    

 (3.38) 

 

3.4 Electric potential obtained from inverse Hankel Transform 

According to Eqn. (3.2) the inverse Hankel transformation of Eqs. (3.36) and (3.37) 

immediately transforms back the original electric potential in region II and III respectively in 

following forms: 

      0 0

0

, 0 z

II r z e J r d    


     (3.39) 

and, 

        0

0

,
H z

III Hr z H e J r d
    


   . (3.40) 

The inverse Hankel transformation is also applied to Eqn. (3.38) which corresponds to 

 

       
 

     
 

0

0

0

0

0 1 0

sinh sinh
( ,0 ) ( )

sinh

sinh sinh
( ) .

4 sinh

H

B

H d d

z H z
r z H J r d

H

e z e H zq
J r d

H

 

   
   



 
 

  



  

      

   



                           

 (3.41) 

Thus, the total electric potential in the region I is the sum of ( ,0 )A r z H    and ( ,0 ) :B r z H    

 
2 2

0 1

( ,0 ) ( ,0 )
4 ( )

B

q
r z H r z H

r z d
 

 
     

 
. (3.42) 
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3.5 Solution for the unknowns  H   and  0   

It can be seen from Eqs. (3.39), (3.40) and (3.42) that the solutions for all three regions are 

in terms of  H   and  0  . To determine these two functions, the BCs (2.9) and (2.11) are 

applied, using the expressions for the potentials. Eqs. (3.39) and (3.42) are used in Eqn. (2.9)  

where the terms of the Left Hand Side (LHS) of Eqn. (2.9) can be presented as follows: 

 

   
1 320 2

2 2 2
0 1

0

lim
4 4

z

q qd

z r z d r d


  



    
     

, 

 
 

       
2

1
1 0 0

0
0 0

sinh
lim

sinh sinh

H H

z

z
J r d J r d

z H H

       
 

 



  
   

  , 

 
 

     
   

2
0 1 0

1 0 0
0

0 0

sinh cosh
lim

sinh sinhz

H z H
J r d J r d

z H H

    
    

 

 



         
   
  , 

 

   
   

 

   1 0 0
0

0 1 00 0

sinh
lim

4 sinh 4 sinh

H d H d

z

e zq q e
J r d J r d

z H H

      
    

    



 
 

   
  , 

 
 

     
   1 0 0

0
0 1 00 0

sinh cosh
lim

4 sinh 4 sinh

d d

z

e H z e Hq q
J r d J r d

z H H

   
    

    

  



       
   

  . 

The Right Hand Side (RHS) of Eqn. (2.9) can be expressed as 

        2

2 0 0 2 0 0
0

0 0

lim z

z
e J r d J r d

z

         


 



 
     

  . 

Finally, Eqn. (2.9) stands in following form: 
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 
     

   

   
       

2

1 0

03
2 2 02

0

2

0 2 0 0

0 0 0

cosh

sinh
4

cosh
.

4 sinh
                     

H

H d d

Hqd
J r d

H
r d

e e Hq
J r d J r d

H

 

    
 



 
      

 



   

   


    



 

(3.43) 

Similarly, substituting Eqs. (3.40) and (3.42) in BC (2.11) gives another expression that includes 

both the unknowns  H   and  0   where the LHS of Eqn. (2.11) corresponds to 

          2

3 0 3 0

0 0

lim
H z

H H
z H

e J r d J r d
z

         


 




 
      

   

and the RHS terms are evaluated as 

 

 
 

 
1 322

22 2
0 1

0

lim
4 4

z H

q H dq

z r z d r H d


  



      
         

, 

 
 

       
   

2

1

1 0 0

0 0

sinh cosh
lim

sinh sinh

H H

z H

z H
J r d J r d

z H H

     
    

 

 



  
   

  , 

 
 

     
   

2
0 1 0

1 0 0

0 0

sinh
lim

sinh sinhz H

H z
J r d J r d

z H H

    
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 

 



         
   
  , 

 

   
   

   
   1 0 0

0 1 00 0

sinh cosh
lim

4 sinh 4 sinh

H d H d

z H

e z e Hq q
J r d J r d

z H H

   
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    

    



 
 

   
  , 
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d d
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Finally, the new form of Eqn. (2.11) yields 

     

 

     
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  


   

   
   

  





 0

0

.r d 




 (3.44) 

After applying the Hankel transformation on both sides of Eqs. (3.43) and (3.44) and considering 

the transformed quantities of Eqn. (3.7), the following equations are formed: 

 
     

 

   
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
 
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  
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 
 


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 
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 (3.45) 
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 (3.46) 

Solving Eqs. (3.45) and (3.46) as well as after some algebra,  H   and  0   are found to be 
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,
4

sinh coth

d

H

H d d H H e
q

H H

   



       




  

      
                

 (3.47) 
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  
       

     

3

1

0

0 2 2 3
2 3 1

1
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4
sinh coth

d H d H H
q

H H

   



       



  
      

                

. (3.48) 

The solutions for ( )H   and 
0 ( )   are used in Eqs. (3.39), (3.40) and (3.42) which give 

Region I: 

 
 

       

     

   

 
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4
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q
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q
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d

q


 

   


     


  







  
 

  
      

  
             






                   

                   

     

     

   
     

   

3

1
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1

0

0

0 1 0

h cosh sinh

sinh coth

sinh

sinh sinh
,

4 sinh

H d d

H d H H

H H

H z J r d

e z e H zq
J r d

H

 

  


     


  

 
 

  



  

  
     

  
            
   

   



                   
  (3.49) 

Region II: 

 

       

     
 

0

3

1

0

0 2 2 3
2 3 1

1

, 0
4

2sinh 2sinh cosh sinh

,

sinh coth

             

II

z

q
r z

d H d H H

e J r d

H H






   


 
     




 

  
      

               


 (3.50) 
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Region III: 

 

       

     

   

0

2

1

0

0 2 2 3
2 3 1

1

,
4

2sinh 2sinh cosh sinh

.

sinh coth

III

H z

q
r z H

H d d H H

e J r d

H H






   


 
     





 

  
      

               


 (3.51) 

Eqs. (3.49)-(3.51) are the complete solutions to the electric potential in all three domains, as these 

satisfy the governing equation and all BCs in the system. 

 

3.6 Normalization of electric potential 

To reduce the number of independent variables and allow broader application of the results, 

the following normalization is introduced: 

 0 1 32
21 31

1 1

4
, , , , , ,

H r z d
r z H d

q H H H

       
 

           . (3.52) 

The normalized electric potential for upper, lower and middle regions are respectively given by 

Region I  0 1z  : 
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 
 

       
           

       
         
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2
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21 31 21 310
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3

21 31 21 31

1
,0 1

sinh 1 cosh sinh sinh
2 sinh

sinh coth 1

sinh cosh sinh sinh 1
2 sinh 1

sinh coth 1

          

         

I r z

r z d

d d
z J r d

d d
z



    
  

     

    


     



  
 

      
    

        
    



 

     
   

0

0

1

0

0

sinh sinh 1
,

sinh
         

d d

J r d

e z e z
J r d

 

 

 
 





  

  

   





 (3.53) 

Region II  0z  : 

 
       

         31

02

21 31 21 310

sinh cosh sinh sinh 1
, 0 2

sinh coth 1

z

II

d d
r z e J r d

    
  

     

         
    

 , (3.54) 

Region III  1z  : 

 
       
       

   21 1

02

21 31 21 310

sinh 1 cosh sinh sinh
, 1 2

sinh coth 1

z

III

d d
r z e J r d


    

  
     




       
    

 . (3.55) 

where 21  and 31 , the ratios between dielectric constants that describe the relative permittivity of 

the three regions, and d , the normalized location of the point charge, are the only three 

independent parameters. 

 

3.7 Validation of the electric potential solution 

The normalized results for the electric potential of a single point charge can be validated 

by considering following two special cases where the general solutions given by Eqs. (3.53)-(3.55) 

can be reduced into analytical form. 



26 

 

3.7.1 Case I  21 31
1    

In the first special case, two dielectric constant ratios 21  and 31  are considered same, i.e., 

the three regions contain exactly the same dielectric material. It is expected that the electric 

potential in this case should simply be that of a point charge in a uniform dielectric, i.e., 

 
2 2

1
( , )

( )
r z

r z d
 

 
. (3.56) 

Now, substituting 21 31 1    into Eqn. (3.53) and expanding the hyperbolic functions into 

exponentials gives 

 
( )

0

0

( , 1) ( )z dr z e J r d  


      (3.57) 

with 0z d  . Similarly, for the  lower region, the electric potential from Eqn. (3.54) is simplified 

to: 

 
( )

0

0

( , 0) ( )d zr z e J r d  


      (3.58) 

with 0d z  . Both integrals above in Eqs. (3.57) and (3.58) can be analytically evaluated (Eqn. 

(3.8)) to 

 
( )

0
2 2

0

1
( , ) ( )

( )

z d
r z e J r d

r z d

  


  
 

 . (3.59) 

For the middle region, considering the same expansion of the hyperbolic functions, all the terms 

in Eqn. (3.55) cancel each other except the first one which is 2 21/ ( )r z d  . Clearly, these 

results are the same as Eqn. (3.56), the potential of a point charge in a uniform dielectric. 
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3.7.2 Case II  21 31
1; 1    

 The second special case to be considered is where the dielectric constant ratios 
21  and 31  

are different and one of the ratios 31  has a value of unity. This corresponds to a system where the 

space is separated by one interface into two dielectric domains with the point charge located in the 

upper domain. Analytical solution for the electric potential in this case is also available using the 

method of image charges [49], which in the normalized form is 

 21

2 2 2 2
21

11 1
( , 0)

1( ) ( )
r z

r z d r z d




 
       

 (3.60) 

applicable to regions I and III, and 

 
2 2

21

2 1
( , 0)

1 ( )
r z

r z d



 

      
 (3.61) 

applicable to region II. Considering 
31 1   and simplifying Eqs. (3.53) and (3.54) results in the 

following two expressions for regions III and I respectively: 

 
   21

0 0

210 0

1
( , 1) ( ) ( )

1

z d z d
r z e J r d e J r d

     


 
    

    
  , (3.62) 

 
 21

0
2 2

21 0

11
( ,0 1) ( )

1( )

z d
r z e J r d

r z d

  



  

       
 . (3.63) 

Similar to Eqn. (3.59), the integrals in Eqs. (3.62) and (3.63) can be analytically evaluated to [48] 

(Eqn. (3.8)) 
  1/2

2 2

0

0

( ) ( )
z d

e J r d r z d
  


        and 

  1/2
2 2

0

0

( ) ( )
z d

e J r d r z d
  


        

which reduce both Eqs. (3.62) and (3.63) to 
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 21

2 2 2 2
21

11 1
( , 1) ( ,0 1)

1( ) ( )
r z r z

r z d r z d

 


 
          

. (3.64) 

Eqn. (3.64) is exactly the same as Eqn. (3.60). Thus our solutions for region I and III comply with 

the established results under the condition of 21 1   and 31 1  . Now, the simplified form of Eqn. 

(3.54) yields, for the normalized potential in region II: 

 ( )

0

21 0

2
( , 0) ( ) .

1

d zr z e J r d  



  

    
  (3.65) 

Evaluating the integral analytically as Eqn. (3.59), Eqn. (3.65) instantly reduces to Eqn. (3.61)

(3.61). Thus the solution in region II is also verified by comparing it to the established solution. 
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Chapter 4 

INDUCED SURFACE FORCE DENSITY AND 

TOTAL SURFACE FORCE 

 In this section, the detail formulation of the induced surface force density and the total 

surface force is described. The main interest is to determine the forces acting on the upper and 

lower interfaces caused by the point charge, in terms of the physical parameters q , d , H , 1 , 2  

and 3 . 

 

4.1 Calculation of electric field 

 To determine the surface forces, first the electric field E  in all three regions is evaluated 

from the electric potential  ,r z  which is calculated in Chapter 3. Knowing the electric potential 

throughout the space, the electric field E  can be calculated from the relation in Eqn. (2.5) which 

reads, 

 
     , , ,1

E r z

r z r z r z

r r z


  


  
   

  
e e e   (4.1) 

where er , e  and ez  are the unit vectors in r ,   and z  directions respectively. Due to cylindrical 

symmetry as shown in Fig. 2.1, the electric field along the angular coordinate   is zero and hence 

Eqn. (4.1) yields 



30 

 

 
   , ,

r z

r z r z

r z

  
  

 
e eE . (4.2) 

For convenience, the electric field components are denoted as /rE r    and /zE z   . 

To calculate these components in each region, the corresponding electric potentials are used. 

Differentiating Eqn. (3.49) with respect to r  and z  gives the electric field components in region 

I: 
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   
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  



  

  
      

  
            
   
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

  (4.3) 

and 
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where, 1J  is the 1st order Bessel function of the first kind. 

Similarly, rE  and zE  in region II are calculated by differentiating Eqn. (3.50): 
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and 
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In region III, the electric field components are found from Eqn. (3.51) which read 
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and 
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4.2 Maxwell Stress Tensor (MST) 

Following the calculation of E  in all regions, the MST T  is computed. MST was 

introduced as a consequence of linear momentum balance, where the total force acting on a volume 

in a body can be expressed as the sum of tractions (MST) applied to the surface enclosing that 

volume [46]. MST in absence of magnetic field is given by [50] 
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FIGURE 4.1: Gaussian pillbox used to calculate surface force density on the upper interface from 

the Maxwell Stress Tensor. 

The electric field components on the interfaces in Eqs. (4.14) and (4.15) can be easily 

obtained from the solutions of E  that is calculated for all regions in the system. Using z H  in 

Eqs. (4.3), (4.4), (4.7) and (4.8), r - and z -components of the electric field on the upper interface 

yield 
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It can be shown that 
 I,IIIrf  vanishes everywhere on the upper interface. Briefly, the electric 

potential must be continuous across the interface for all r :    lim limIII I
z H z H

r r 
  

 , which leads to 

lim limIII I
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 
, i.e., 
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 . (4.20) 

Meanwhile, the normal component of the electric displacement is also continuous across the 

interface: 
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 . (4.21) 

Applying Eqs. (4.20) and (4.21) in Eqn. (4.14) yields 
 I,III 0rf  . Therefore, only the z -component, 

z I,IIIf  contributes to the surface force density in Eqn. (4.13). Using the same equations, Eqn. (4.15) 

can be expressed in terms of the electric field components of the upper region as 
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Having determined the surface force density, the total force acting on the upper interface is 

therefore 
2

I,III I,III

0 0

I,IIIF f zrdrd F






   e , the last step due to the fact that I,IIIf  only has z-component. 

The magnitude of the force, 
I,IIIF , is given by 

 I,III z I,III

0

2F f rdr


  . (4.23) 
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The procedure above can also be applied to obtain the surface force density and the total 

force on the lower interface. Specifically, the surface force density on the lower interface is given 

by 

  I,II I,II,0 z zr f e f  (4.24) 

where the r -component of the surface force density is again zero everywhere similar to what was 

shown earlier for the upper interface. Following the similar methods of calculating 
 I,IIIzf , Eqs. 

(4.2) and (4.12) are again used to determine 
 I,IIzf  as: 

    2 2 2 20
 I,II z I r I 1 z II r II 2

02
z

z
f E E E E

  


      . (4.25) 

Similar to Eqn. (4.22), 
 I,IIzf  can be also expressed in terms of the electric field components of the 

lower region as 
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The quantities r IIE  and z IIE  in Eqn. (4.26) can be found by using 0z   in Eqs. (4.5) and (4.6) 

respectively. Thus, 
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and 
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Finally, the total force on the lower interface is only in the z -direction, 
I,II I,II zF eF , and its 

magnitude is calculated by 
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2F f rdr
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  . (4.29) 

 

4.4 Normalization of electric field 

 Before implementing the numerical calculation, the electric field components in the upper 

and lower interfaces are normalized using following non-dimensionalized parameters: 
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The normalized -r  and -z  components which involve in calculation of the electric field for the 

upper and lower interfaces respectively are given by 
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and  
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4.5 Normalization of total surface force 

To reduce the number of parameters and widen the applicability of the results presented 

here for the total surface force, the following normalized quantities will be used: 
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Subscripts I, II  and I, III  will be added to
zf  and F  to indicate the quantities on the lower and 

upper interfaces, respectively. Because r -component of the surface force density is zero, in the 

discussions below 
zf  will be referred to simply as the normalized surface force density. With the 

introduced normalization, it can be easily shown that 
zf  depends on the normalized radial position 

r  as well as the following parameters: d , 21  and 31 , whereas F  only depends on d , 21  and 

31.  
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Chapter 5 

RESULTS AND DISCUSSIONS 

5.1 Parametric analysis for the electric potential 

The electric potential of the point charge depends on three parameters that include the 

location of the charge and two dielectric constant ratios ( d , 
21  and 

31 ). In this section, these 

important factors, which influence the electric potential tremendously, will be fully analyzed from 

the numerical results to examine more general situations in detail. 

 

5.1.1 Variation of the electric potential with dielectric constant ratios 

Fig. 5.1 shows the contour plots of electric potential due to a charge located at 0.5d  . 

For Fig. 5.1(a), the dielectric constants of the materials in the upper and lower regions are 

considered equal and much higher than that of the middle layer (
21 31 1   ). It can be seen that 

the electric potential retains spherical symmetry near the point charge while it becomes distorted 

gradually at larger distance from the point charge where the effect of the different dielectrics 

becomes significant. For the configuration of the system considered in this figure, the electric 

potential is symmetric in both vertical and horizontal directions. The potential also decays at equal 

rate in upward and downward directions. But the decay is faster in the vertical direction than in 

the horizontal direction, which is due to the higher dielectric constant in the upper and lower 

regions. The electric field of the point charge induces polarization in all dielectric regions where 

the dipoles are rearranged in such a way that the induced field opposes and reduces the magnitude 
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of the external field. The higher dielectric constants of the isotropic dielectric materials in the upper 

and lower regions cause higher magnitude of polarization which leads to higher reduction of the 

external field. When the dielectric constant of a medium approaches infinity, the external field of 

the point charge is exactly cancelled by the induced field of the dipoles and the medium behaves 

like a conductor where the total electric field is constrained to zero. Therefore, if 
21  and 

31  are 

further increased for the configuration considered in Fig. 5.1(a), it can be expected that the system 

will approach the case where a uniform dielectric is sandwiched between two identical conductors. 

The electric field of charges in dielectric between capacitors and other semiconductors has been 

commonly studied in literatures. In the work of Pumplin [39], the results of induced potential were 

presented for a system with two grounded parallel plates and a point charge located midway 

between the plates. The equipotential surfaces were shown for this configuration, which resemble 

the shape of the contours in Fig. 5.1(a) although they did not extend into the upper and lower 

regions due to the presence of conducting materials. 

Fig. 5.1(b) represents a system with a very high dielectric constant in the upper region 

 31 1   and a much lower dielectric constant in the lower region (
21 1  ) compared to that of 

the middle layer. Similar to Fig. 5.1(a), the spherical symmetry of the electric potential only retains 

very close to the point charge. Though the electric potential is symmetric about a vertical plane, 

unlike in Fig. 5.1(a) its rate of decay is different in the upward and downward directions, with 

much faster decay towards the upper interface due to the higher value of 
31 . It is interesting to 

observe that, though the value of 
31  is the same in both figures, the values of   near the upper 

interface in Fig. 5.1(b) is drastically different from those in Fig. 5.1(a). The smaller dielectric 

constant in the lower region has caused slower decay in both upward and downward directions in 
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Fig. 5.1(b) compared to Fig. 5.1(a), which demonstrates the strong interactions among the 

dielectric materials in the three regions. 

 

 

(a) 

 

(b) 

FIGURE 5.1: Normalized electric potential of a single point charge in the middle layer of a three-

layered dielectric system. The upper and lower interfaces are at the positions of / 1z H   and 

/ 0z H  , and marked by orange and blue lines respectively. (a) 21 10   and 31 10  , (b) 

21 0.1   and 31 10  . For all cases, 0.5d  . 
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To more systematically study the effect of dielectric constant ratios, the normalized 

potential is plotted as a function of 
21  in Fig. 5.2 while fixing the other dielectric constant ratio 

31 , as well as the charge location d . Due to the symmetry, varying 
31  with fixed 

21  would 

corresponds to the same result if regions II and III were swapped. The electric potential is evaluated 

at three spatial points: P1(1,0.5), P2(0,−0.5) and P3(0,0.5) in the middle, lower and upper regions 

respectively. All three points are at equal distance from the point charge. It is clear that the electric 

potentials at all three points decrease with the increase of 
21 , indicating that the increase of 

dielectric constant of a single region reduces the potential in all three regions, consistent with what 

was found in Fig. 5.1. But the rate of decay is quite different at the three points. As the dielectric 

is being varied in the region where P2 is located, the change of 
21  has more direct impact on the 

potential at this point than at P1 and P3, leading to the highest rate of decay at P2. The slowest decay 

is found at P3 as this point is located at the furthest distance from the region in which the dielectric 

constant is being changed. The curves for P2 and P3 intersect at 
21 10  , where the materials in 

the upper and lower regions become identical. Although the materials in the middle and lower 

regions become identical at 
21 1  , the potential at P1 is still lower than that at P2 when 

21 1  , 

because P1 is closer to the upper region with a higher dielectric constant. These two curves intersect 

at a 
21  value greater than one. 
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FIGURE 5.2: Normalized electric potential, plotted against the dielectric constant ratio between 

the lower and middle regions, at three points P1(1,0.5), P2(0,−0.5) and P3(0,1.5), located in the 

middle, lower and upper layers respectively. For all cases, 0.5d   and 31 10  . 

 

5.1.2 Variation of the electric potential with charge location 

The distance of the point charge from the interfaces also affects the potential distribution 

in the system. In Fig. 5.3, plots of   are shown as a function of d  where the location of point 

charge varies from 0.1 to 0.9 along the z-axis. At 0.1d  , the point charge is just above the lower 

interface and at 0.9d   it is close to the upper interface. The same three locations P1, P2 and P3 

are chosen as before and the electric potential is presented for these points. Fig. 5.3(a) represents 

the system that has two identical materials in the upper and lower regions with higher dielectric 

constant (
21 31 10   ) than the middle one. The potential at P3 monotonically increases as the 
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point charge approaches from the lower to the upper interface, because the distance between the 

point charge and P3 decreases. Similarly, at P2, the potential decreases monotonically as the point 

charge moves away from it. The magnitudes for the rate of change of potential at P2 and P3 are 

equal, and the two curves intersect at 0.5d  , in which case the dielectrics are identical in the 

upper and lower regions and these two points are located at equal distance from the point charge. 

The potential at P1 first increases as its distance from the point charge decreases, reaches maximum 

when the point charge is located midway between the two interfaces ( 0.5d  ), and then starts 

decreasing due to the increase in distance from the point charge. 

In Fig. 5.3(b), different dielectric is considered in each layer: the highest dielectric constant 

material is in the upper region and the lowest one is in the lower region. As the point charge 

approaches the upper interface, it comes closer to P3 and hence the potential increases at this point. 

For the same reason, the potential at P2 decreases as the point charge moves away from it. The 

most interesting phenomena are found at P1. As the charge moves from the lower to the upper 

interface, the distance between the point charge and P1 first decreases and as it passes the midpoint 

( 0.5d  ), the distance increases. However, the potential at P1 is found to monotonically decrease 

for the entire range of d . To explain, as the charge moves towards the midway between the two 

interfaces, without considering the influence of the dielectrics in the upper and lower regions, the 

potential at P1 should increase as the distance between the point charge and P1 decreases. But at 

the same time, the charge is approaching a region with higher dielectric constant, which tends to 

decrease the potential at P1. These two competing effects can cause a complex relation between 

the location of the point charge and the potential at P1. For 21 0.1   and 31 10  , the influence 

from the high dielectric constant in the upper region appears to be dominant, which results in net 

decrease in the potential at P1. However, the rate of decay is quite small, as a consequence of the 
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two competing factors. After 0.5d  , the distance between the point charge and P1 starts to 

increase and the point charge continues to approach the higher dielectric constant region. Both 

tend to introduce decay in the potential at P1, hence a faster decrease is observed from Fig. 5.3(b). 
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(a) 

 
(b) 

FIGURE 5.3: Normalized electric potential, plotted against the normalized location d , at three 

points P1(1,0.5), P2(0,-0.5) and P3(0,1.5) located in the upper, lower and middle layers respectively 

(see inset in Fig. 5.2). (a) 21 10   and 31 10  , (b) 21 0.1   and 31 10  . 
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To further investigate this interesting phenomenon, normalized potential   at P1 is plotted 

as a function of d  in Fig. 5.4 for several different 21 . The other dielectric constant ratio 31  

remains at 10. The maximum for each curve, either as a local maximum in the interior of the 

domain or as a global maximum at the boundaries, is marked with *. As the charge approaches the 

upper interface, the change of   at P1 is found to be quite different for different values of 21 . For 

small 21 (<0.4),   monotonically decreases for the entire range of d  although the distance 

between the point charge and P1 decreases till 0.5d  . As discussed earlier, the effect of the high 

dielectric constant in the upper region is dominant in this case, which reduces the net potential at 

P1 as the point charge moves upwards. For 21 > 0.4,   shows non-monotonic behavior with the 

change in charge location and the maximum for each curve is found at a distance from the 

boundaries. In addition, as 21  increases, the local maximum shifts towards the upper interface due 

to the increased screening from the lower region. Finally, for large values of 21  (>10), the curves 

exhibit the trend of converging together as the lower region approaches a conductor-like material. 

 
FIGURE 5.4: Normalized electric potential at P1(1,0.5), located in the middle layer, as a function 

of the normalized location d  of the point charge. For all cases, 31 10  . 
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5.2 Implications of the electric potential 

The results above have demonstrated that the electric potential due to the point charge is 

strongly influenced by the dielectric materials used in the different layers, which can provide 

means of modulating the electric potential in the multi-layered system by adjusting the properties 

of materials. Due to the linear nature of the electrostatic problem, the current work can be extended 

to study the electric potential due to a line of charges, for example, present in multilayered 

microstrips (used in microwave technologies) [51]. The expression for the electric potential can 

also be used directly to calculate other physical quantities such as the polarization surface charge 

density in Barrera et al. [43] or the surface force on the interfaces evaluated in Chapter 4 of this 

thesis. 

 

5.3 Parametric analysis of the surface force density 

 The distribution of the surface force density along the radial direction is affected by several 

factors. The surface force density derived in Chapter 4 will be evaluated numerically in this part 

to study its dependence on three dimensionless physical parameters ( d , 21  and 31 ). 

5.3.1 Variation of the surface force density with dielectric constant ratios 

 In Fig. 5.5, 
zf  is plotted as a function of r  for a number of different combinations of 21  

and 31 , while fixing the charge location at 0.5d  . The red and blue lines correspond to the 

surface force density on the upper and lower interfaces respectively. Positive values of 
zf  indicate 

upward direction and negative values indicate downward direction. 
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Fig. 5.5(a) shows the results for 21 0.1  , i.e., the lower region has a much smaller 

dielectric constant than the middle layer. Let us first look at the situation where 31  0.1 21 . In 

this case, the upper and lower regions have identical materials, and the distributions of the surface 

force density, as expected, exhibit symmetric patterns where 
zf  on the two interfaces are equal 

and opposite at any given r . In addition, 
zf  on the upper interface is positive while it is negative 

on the lower interface. This corresponds to repulsive interactions between the two interfaces, 

induced by the presence of the charge. On both interfaces, the magnitude of 
zf  decays to zero at 

large r . This is expected, and is observed for all the other parameter values since the surface force 

density is a local quantity and the influence of the point charge should effectively vanish at 

locations sufficiently far from it. 
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(a) 

 
(b) 

FIGURE 5.5: Normalized surface force density on the interfaces, with red and blue lines 

corresponding to the upper and lower interfaces respectively. (a) 21 0.1  , (b) 21 5  . For each 

subfigure, 0.5d   and 31  varies from 0.1 to 5 (see legend for different line styles used for 

different 31 ). 
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As 31  is increased from 0.1 to larger values (0.5, 1 and 5) in Fig. 5.5(a), it only introduces 

minor reduction in the magnitude of  I,IIzf , while the sign and overall trend of 
 I,IIzf  remain the 

same. This is because although 31  affects the electric potential in all three regions, its direct impact 

is on the upper region, and the impact on the lower and middle regions is more indirect (see Sec. 

5.1 for details). For the same reason, 
  I,IIIzf  undergoes significant changes as 31  is increased. At 

31 0.5  , 
  I,IIIzf  has already differed substantially from the curve at 31 0.1  . When 31 1  , 

  I,IIIzf  

is zero everywhere. This is because the upper and middle regions are identical, and there is no real 

physical interface between them. What is most interesting is that when 31  is increased to 5, 
  I,IIIzf  

becomes negative with a large magnitude. Physically, the point charge in this case has induced 

downward forces on both interfaces. The change of sign in   I,IIIzf  can be understood from the 

expression in Eqn. (4.22) where it is clear that the factor (
1 3  ) determines the sign of 

  I,IIIzf . 

When the dielectric constant in the upper region is lower than that in the middle region (
3 1  ), 

  I,III 0zf   (upward), and when the dielectric constant in the upper region is higher (
3 1  ), 

  I,III 0zf   (downward). That is, 
zf  always points from the region with higher dielectric constant 

towards the region with lower dielectric constant. This also explains why 
  I,IIzf  in Fig. 5.5(a) is 

always negative, pointing from the middle region towards the lower region which has a smaller 

dielectric constant ( 21 0.1  ). 

Another interesting observation from Fig. 5.5(a) is how the surface force density varies 

with location. For all combinations of 21  and 31 , 
  I,IIzf  is found to be non-monotonic along r , 

its magnitude first increasing with r , reaching a maximum and then decreasing to zero far away 
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from the center of the interface. The trend in 
  I,IIIzf  is more complex: its magnitude decreases 

monotonically with r  for 31 = 0.5 and 5 but is non-monotonic for 31 = 0.1. To explain this 

phenomenon, we examine Eqn. (4.22) again: while the factor (
1 3  ) governs the sign of 

  I,IIIzf , 

its variation with r  is controlled by the two terms   2

3 1 z III/ E   and 2

r IIIE . As r  increases (moving 

away from the charge), z IIIE  and hence 2

z IIIE  monotonically decrease. On the other hand, due to 

the symmetry, r IIIE  is zero at 0r  . With r  increasing, 2

r IIIE  first increases to non-zero values, 

and then decays at sufficiently large distance from the point charge. That is, the change of 2

r IIIE  

with r  is non-monotonic. In addition, 2

z IIIE  is accompanied by a factor 3 1 31/   . Since 2

z IIIE  and 

2

r IIIE  vary differently with r , depending on the magnitude of 31 , the overall trend of 
  I,IIIzf  can be 

governed by the r - or z -component of the electric field. When 3 1/   is sufficiently small (e.g. 

31 = 0.1), the trend of 
  I,IIIzf  is governed by 2

r IIIE  and hence is non-monotonic with .r As 31  is 

increased to 0.5 and 5, 2

31 z IIIE  dominates in the evaluation of 
  I,IIIzf , which leads to the monotonic 

changes of 
  I,IIIzf  with r . Similarly, the non-monotonic changes of 

  I,IIzf  seen in Fig. 5.5(a) can be 

also explained from Eqn. (4.26). Since 2 1/  =0.1 is small in all cases, the trend of 
  I,IIzf  is 

determined by 2

r IIE , which is non-monotonic. 

In Fig. 5.5(b), we consider a system with a very high dielectric constant in the lower region 

( 21 5  ) compared to that of the middle layer while 31  takes the same values as in Fig. 5.5(a). 

Since 
zf  always points from the region with higher dielectric constant towards the region with 

lower dielectric constant, 
 I,IIzf  is positive (upwards) for all combination of 21  and 31 , while the 

sign and trend of 
  I,IIIzf  is exactly the same as in Fig. 5.5(a). The trend of 

 I,IIzf  is completely 
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different from Fig. 5.5(a) as it decreases monotonically with r  in this case, due to the dominance 

of the 2

21 z IIE  term in Eqn. (4.26).  As 31  is increased from 0.1 to 5, it causes only minor 

quantitative changes in 
 I,IIzf  while the change is significant for 

  I,IIIzf , which manifests more direct 

impact of 31  on 
  I,IIIzf  similar to what is seen in Fig. 5.5(a). While comparing the magnitude of 

  I,IIIzf  with that in Fig. 5.5(a), slightly reduced values are observed in Fig. 5.5(b). Although 21  

does not explicitly appear in the evaluation of 
  I,IIIzf  in Eqn. (4.22), it does influence the electric 

fields in all regions. Specifically, higher value of 21  causes larger screening of the induced electric 

field in the upper region, hence 2

z IIIE  and 2

r IIIE  are reduced, resulting in smaller 
  I,IIIzf   in Fig. 5.5(b) 

than in Fig. 5.5(a). 

 

5.3.2 Variation of the surface force density with charge location 

The location of the point charge also affects the surface force density. Fig. 5.6 plots 
zf  vs. 

r  on both interfaces for different charge locations ( d  varying from 0.3 to 0.7). The materials 

considered in this figure ( 21 315,  0.1   ) are identical to those of a system studied earlier, 

represented by the solid curves in Fig. 5.5(b). Fig. 5.6(a) shows  I,IIIzf , on the upper interface. Due 

to the non-monotonic change of  I,IIIzf  in Fig. 5.5(b), a local maximum is found for each d  which 

is marked with *. As the point charge approaches the upper interface ( d  increases), the location 

of the maximum shifts towards the center of the upper interface; as well, the maximum value of 

 I,IIIzf  increases, corresponding to a more non-uniform distribution of the surface force density. 

Unlike in Fig. 5.6(a), for each d ,  I,IIzf  on the lower interface decreases monotonically along r  in 
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Fig. 5.6(b) with the maximum attained at the center ( 0r  ), which is consistent with the 

observation found in Fig. 5.5(b). As the point charge approaches the upper interface ( d  increases), 

its influence on the lower interface becomes smaller and  I,IIzf  decreases. 

The above results have demonstrated the essential role of the two ratios between dielectric 

constants of the three layers. They determine not only the direction of 
zf  (always from the region 

with higher dielectric constant to the region with lower dielectric constant) but also its distribution 

(monotonic or non-monotonic with the radial position). The position of the point charge, on the 

other hand, only affects the magnitude of the surface force, hence having a secondary influence. 
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(a) 

 
(b) 

FIGURE 5.6: Normalized surface force density on the interfaces for different normalized charge 

location. (a) Upper interface (b) Lower interface. For all cases, 21 5  , 31 0.1   and d  varies 

from 0.3 to 0.7 (see legend). 

 



59 

 

5.4 Parametric analysis of the total surface force 

The normalized total surface force F  is calculated by performing surface integration of 

zf  (Eqs. (4.22) and (4.26)). Due to the fast decay of 
zf  with r  (see for example Figs. 5.5 and 

5.6), the integration was found to converge quickly and a cut-off distance of 4r   was sufficient 

for the evaluation of F  (with a small numerical tolerance). Similar to 
zf , F  is affected by the 

material properties (dielectric constants) of the three regions and the location of the point charge. 

Fig. 5.7 plots F  against 31  for two different 21  (0.1 in Fig. 5.7(a) and 5 in Fig. 5.7(b)) and four 

different d  (from 0.3 to 0.7, different line styles in each figure). The red and blue lines in each 

figure correspond to the total surface force on the upper ( I,IIIF ) and lower ( I,IIF ) interfaces 

respectively. Similar to 
zf , positive values of F  correspond to upward direction while negative 

F  is downward. 

In Fig. 5.7(a), where the dielectric constant is smaller in the lower region than in the middle 

layer ( 2 1  ), I,IIF  is negative (pointing downward) for the entire range of 31 . Regardless of the 

d  values, as 31  increases the magnitude of I,IIF  reduces and it approaches a plateau value when 

31  . This plateau value is essentially the normalized total surface force on the lower interface 

when region III is occupied by a conductor. As the point charge is moved towards the upper region 

( d increases), the surface force on the lower interface becomes smaller in magnitude; 

correspondingly the I,IIF  curve shifts upward and the plateau value for 31   is reduced 

accordingly. 
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(a) 

 
(b) 

FIGURE 5.7: Normalized total surface force on the interfaces, with red and blue lines 

corresponding to the upper and lower interfaces respectively. (a) 21 0.1  , (b) 21 5  . For each 

subfigure, 31  varies from 0.1 to 5 on the horizontal axis and d  takes four different values from 

0.3 to 0.7 (see legend for different line styles used for different d ). 
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Compared with I,IIF , the variation of I,IIIF  with 31  is  more complex: for 31 1   it is 

positive (pointing upward) and its  magnitude decreases with 31 ; at 31 1   the upper interfaces no 

longer exists and I,IIIF  becomes zero; with further increase in 31 , I,IIIF  becomes negative (pointing 

downward) and starts increasing in the opposite direction. Increasing d  causes the magnitude of 

I,IIIF  to be larger for all 31 , however, this does not correspond to a simple shift of the I,IIIF  curves, 

because of the direction change of I,IIIF  at 31 1  . In fact, for larger d , the I,IIIF  curve is steeper, 

indicating the greater influence of 31  on I,IIIF  when the charge is closer to the upper interface.  

This coupled influence was not observed for I,IIF , where the curves for different d  are more or 

less parallel. 

 Behaviors observed in Fig. 5.7(b) for 21  = 5 are qualitatively similar to those in Fig. 5.7(a), 

with a few notable differences. First of all, due to the higher dielectric constant in region II than in 

region I, I,IIF  is now pointing upwards. Secondly, while the magnitude of I,IIF  decreases with 31  

in both Figs. 5.7(a) and 5.7(b), the rate of decay is slower in Fig. 5.7(b). The higher 21  value in 

Fig. 5.7(b) has caused the impact of 31  to be less significant on I,IIF . Finally, compared with Fig. 

5.7(a), a small reduction in the magnitude of I,IIIF  can be seen as 21  is increased in Fig. 5.7(b), 

due to the greater screening provided by the lower region. 
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5.5 Implications of the total surface force 

The results from the parametric study above have useful implications in applications where 

layered dielectrics are involved. First of all, the direction of surface forces on each interface can 

be modulated individually by adjusting the dielectric constants of the materials on the two sides of 

the interface. One can introduce attractive or repulsive interactions between the two surfaces 

(forces on the two interfaces having opposite directions), as well as forces in the same direction. 

This is useful in applications where a certain nature of the interaction (e.g., attractive or repulsive) 

is desired, for instance in the development of electrostatic chuck design for holding electrical 

devices [18], or in the design of wall climbing robot technologies [19], [20].  Secondly, the 

distribution of the surface force density can be fine tuned with the dielectric properties of the 

materials, to generate the desired range of interaction (nonzero surface force) and strength of 

interaction (magnitude of surface force). 
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Chapter 6 

EXTENSION OF THE PROBLEM 

 In this chapter, the methodology of extending the work to a distribution of charges is 

presented. To demonstrate the extension, a new problem is examined where a pair of equal and 

opposite point charges are present in the middle layer. Following the basic formulation for this 

problem, the electric field, and the interfacial forces are calculated and results are described in 

details with comparison to those in Chapter 5 for a single point charge. 

 

6.1 Extended problem with a distribution of charges 

Many problems that involve multilayered semiconductors or dielectrics often have the need 

to deal with a distribution of charges near the interfaces. Therefore, the calculation of induced 

electric potential as well as interfacial forces are found to of common interest. The formulations 

for the model with a single point charge in this work can also be extended to establish a theoretical 

framework for modeling multilayered devices where interfacial forces arise from a distribution of 

charges. Because the equations governing the electric potential in the system are linear, the electric 

field due to a distribution of charges can be calculated by using linear superposition of the electric 

field obtained in the present work for a point charge (differentiations of Eqs. (3.53), (3.54) and 

(3.55)). The MST can then be calculated, from which the surface forces due to the distributed 

charges can be evaluated. 
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The distribution of charges has also significant implications in contact adhesion which is 

the result of electrostatic contact charging. Most of the available experimental evidence suggest 

that the charged surfaces after contact hold complementary mosaic patches where each charged 

patch on one surface is matched to one on the other surface with opposite charge. Motivated from 

this phenomenon, an example for extending the current problem is presented where an equal and 

opposite point charge is introduced in the same multilayered model. The method of calculating 

interfacial forces in this problem can be applied in determining the induced surface forces due to 

a distribution of correlated charge mosaics on the two surfaces.  

 

6.2 Multilayered dielectrics with a pair of point charges 

 The schematic is shown in Fig. 6.1, where two point charges (one is positive and the other 

is negative) of the same magnitude q  are embedded in region II which has a dielectric with the 

dielectric constant 1 . The two charges are located symmetrically in the middle layer, namely that 

the q  charge is located at a distance d  above the lower interface, same as Fig. 2.1, while a new 

charge q  is introduced in the same layer at a distance d  from the upper interface. The dielectric 

properties of other regions as well as all other physical description of the system remain the same 

as in Fig. 2.1. The same cylindrical coordinate system is used for the analysis. 

  





66 

 

respectively to calculate the electric potential of q  in all three regions. This results the following 

expressions: 

Region I: 
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Region III: 
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As the Laplace equation in all layers of the system is linear, the total potential total  produced by a 

pair of point charges is calculable by linear superposition. Therefore, 

 
total q q     (6.4) 

where, 
q  and 

q  correspond to the electric potential due to q  and q  charges respectively in 

the space. 

 Similarly, the total electric field totalE  induced by the pair of point charges can be 

determined from the individual contributions from q  and q , which yields, 

 
total q q q q E E E      . (6.5) 

In component form, the total electric field can be expressed as, 

 total total totalr r z zE E 
   

E e e  (6.6) 

where, totalrE
 

 and totalzE
  

 are the -r and -z components of the total electric field. Following the 

results of the total electric field, the surface force densities in the upper and lower interfaces are 

obtained. Specifically, similar to the single point charge problem, the continuity of electric 

potential and normal electric displacement require that the -r component of the surface force 
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density vanishes everywhere. The surface force densities on the upper and lower interfaces 

therefore only have the -z component, denoted by 
 I,III totalzf  and 

 I,II totalzf  respectively. 

    2 2 2 20
 I,III  total zIII total rIII total 3 zI total rI total 1

2
z

z H
f E E E E

  


       (6.7) 

 and 

    2 2 2 20
 I,II  total zI total rI total 1 zII total rII total 2

02
z

z
f E E E E

  


      . (6.8) 

Here,  totalriE  and  totalziE  correspond to the components of the total electric field in i-th layer (i=I, 

II, III). Using the continuity conditions of the electric field and the normal electric displacement 

across the interface again, Eqs. (6.7) and (6.8) can be expressed in terms of the electric field in the 

upper and lower regions respectively. Similar to the final expressions of 
zf  for the single charge 

in Eqs. (4.22) and (4.26), 
zf  for the pair of charges can be written as 

   2 20 3
 I,III total 1 3 zIII total rIII total

12
z

z H

f E E
  




 
   

 
 (6.9) 

and 

   2 20 2
 I,II total 2 1 zII total rII total

1 0
2

z

z

f E E
  




 
   

 
. (6.10) 

Finally, the total surface force is calculated knowing the surface force density on the interfaces. 

Due to the fact that the surface force density only has -z component, the magnitude of the total 

force acting on the upper interface is given by 
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 I,III total  I,III  total

0

2 zF f rdr


  . (6.11) 

Similarly, the magnitude of the total surface force on the lower interface is determined by 

 I,II total  I,II  total

0

2 zF f rdr


  . (6.12) 

 Numerical implementation of the above procedure is very straight forward. First, the 

electric fields on the upper and lower interfaces for q  and q  are calculated. As the normalized 

solution of the electric field is used in the numerical calculations and the magnitude of both charges 

is same, the electric field components of 
qE  in all layers are obtained by only changing the sign 

(from + to −) and the charge location (from d  to H d ) in those of 
qE  (Eqs. (4.16)-(4.19), (4.27) 

and (4.28)). By adding 
qE  and 

qE  numerically, the total electric field totalE  due to the pair of 

charges is calculated. Having determined the total electric field, the surface force density is 

obtained following the same integrals (Eqs. (4.22) and (4.26)). Finally, a surface integration of the 

force density is implemented to evaluate the total surface forces. For further implementation with 

more charges in the system, the same numerical scheme can be applied by repeating the calculation 

of the electric field for each charge, thus providing a convenient approach to determine the 

interfacial forces due to a distribution of charges. 

 The above procedure explained for a pair of charges can be extended further to situations 

involving a distribution of charges (along a line, over a surface, or through a volume). To calculate 

the electric field at any point in the system, the value of point charge in the expressions of the 

electric field need to be replaced with LdL , S dS  and V dV  for line, surface and volume 

distributions, respectively. Here L , S  and V  are respectively line, surface and volumetric 
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charge densities, and dL , dS and dV  are respectively a line, surface and volume element. The 

total electric field can then be determined by performing a line, surface or volume integration to 

account for contribution from all the charged elements. Following this calculation, the MST can 

be determined from where the surface forces due to the distribution of charges can be obtained.  

 

6.4 Results and comparison 

Below the results for the surface force density 
zf   and  the total surface force F  on the 

upper and lower interfaces induced by the pair of charges are presented. To compare with the case 

of a single point charge, the same normalized quantities as in Eqn. (4.35) are used. 
zf  and F  on 

the lower and upper interfaces are denoted with subscripts I, II and I, III respectively for both the 

single charge and pair of charges. 

  

6.4.1 Comparison of the surface force density (effect of dielectric constant ratios) 

 In this section, surface force densities due to a single charge and due to a pair of charges 

are compared for different combinations of the dielectric constant ratios ( 21  and 31 ). In Fig. 6.2, 

zf  is plotted as a function of r . 31  is varied from 0.1 to 5 with the other dielectric constant ratio 

fixed at 21 0.1  . In the case of a single charge (Fig. 6.2(a)), it is located at 0.4d  . This charge 

is also placed at the same location in the case of a pair of charges, but with the addition of an equal 

and opposite charge located at 0.6d   (Fig. 6.2(b)). The red and blue lines correspond to the 

surface force density on the upper and lower interfaces respectively. The normalized surface force 



71 

 

density for the lower and upper interfaces due to the pair of charges are denoted by  I,II totalzf  and 

 I,III totalzf  while the corresponding quantities for the single point charge are denoted by the 

subscripts without the term “total”. Positive values of 
zf  indicate upward direction and negative 

values indicate downward direction. 

As can be seen, the sign and trend of  I,II totalzf  and  I,III totalzf  remain same as those of the 

single charge indicating that the inclusion of q  has no qualitative impact on the surface force 

density. Specifically, in both sub-figures  I,IIzf  and  I,II totalzf  for the lower interface is negative (as 

21 1  ) and non-monotonic (due to the small 21 , 0.1). Similarly, in both sub-figures, 
  I,IIIzf  and 

 I,III totalzf  change from non-monotonic to monotonic as 31  increases, and from positive to negative 

as 31  passes one. 
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          (a)            (b) 

FIGURE 6.2: Normalized surface force density on the interfaces, with red and blue lines 

corresponding to the upper and lower interfaces respectively. (a) a single charge, (b) a pair of 

charges. For each subfigure, 0.4d  , 21 0.1   and 31  varies from 0.1 to 5 (see legend for 

different line styles used for different 31 ). 

  

 On the other hand, the quantitative influence of q  on 
zf  is clear from the sub-figures. 

The magnitude of  I,II totalzf  decreases significantly in Fig. 6.2(b); as well, the effect of 31  on 

 I,II totalzf  is reduced, evidenced by the fact that the four curves with different 31  almost coincide 

with one another in Fig. 6.2(b). The presence of the additional charge also leads to interesting 

results for  I,III totalzf  in Fig. 6.2(b): for small r  i.e. locations near the center of the upper interface, 
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the magnitude of  I,III totalzf  is larger than that of the single point charge, while for large r ,  I,III totalzf  

decays faster with the extra charge. 

To investigate these phenomena, Eqs. (6.9) and (6.10) are taken into consideration where 

the variation of 
 I,III totalzf  is governed by the two terms   2

3 1 zIII total/ E   and 2

rIII totalE  while 
 I,II totalzf  

is controlled by   2

2 1 zII total/ E   and 2

rII totalE . The electric field components along the upper and 

lower interfaces, in the normalized form (see Eqn. (4.30) for the normalization), are plotted in Fig. 

6.3 as functions of r  for 31 0.1  , 0.5  and 5 . Subscripts II and III are used to denote the electric 

field components on the lower and upper interfaces, respectively. In addition, the electric field 

components for the single charge from Eqn. (4.22) are added in the same figure, denoted by 

symbols without the subscript of “total”. For example, in Fig. 6.3(a),  IIzE  is the normalized -z

component of the electric field on the lower interface in the case of a single point charge, and 

zII totalE  is the normalized -z component of the electric field on the lower interface caused by a pair 

of charges. 
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           (a)            (b) 

           (c)            (d) 

FIGURE 6.3: Normalized electric field components on the interfaces with black and red lines 

correspond to the single and pair of charges respectively. (a) -z component on the lower interface, 

(b) -r component on the lower interface, (c) -z component on the upper interface, (d) -r component 

on the upper interface. For each subfigure, 0.4d  , 21 0.1   and 31  varies from 0.1 to 5 (see 

legend for different line styles used for different 31 ). 
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 Let us first examine the squared electric field components on the lower interface, given by 

Fig. 6.3(a) and (b). It can be seen clearly that 2

z II totalE  and 2

r II totalE  are much lower than those of the 

single charge regardless of the values of 31 . Also the red curves in Fig. 6.3(a) and (b) are much 

closer to each other which suggests that the variation of E  with 31  on the lower interface for the 

pair of charges is less significant. Physically, the electric field on the lower interface is still 

primarily governed by the q  charge since that two charges have the same magnitude and the 

q  charge is closer. The addition of the q  charge creates a compensating effect and partially 

screens the electric field induced by the q  charge. This leads to a reduction in the magnitude of 

the net electric field and consequently reduces 
 I,II totalzf  according to Eqn. (6.10). 

For the upper interface, in Fig. 6.3(c), 2

z III totalE  is found always smaller than 2

z IIIE  for 

31 0.1  . For other values of 31  (0.5 and 5), 2

z III totalE  is also smaller except for the locations near 

the center of the upper interface. On the other hand, 2

r III totalE  is found much larger than 2

r IIIE  at 

small r  in Fig. 6.3(d) for all 31 . Also, in both Fig. 6.3(c) and (d), 2E  for the pair of charges 

decays much faster at large r . The overall enhanced electric field at small r  and faster decay at 

large r , observed for the pair of charges, are consistent with the observations from Fig. 6.2 for 

the surface force density on the upper interface. The enhanced electric field may be counter-

intuitive as the q  charge is expected to partially screen the electric field of the q  charge. 

However, since now the q  charge is the one closer to the upper interface, it mainly determines 

the net electric field on the upper interface. The increased electric field at small r  arises from the 

over-compensation of q  to the electric field of the q  charge, that is, the magnitude of the net 
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electric field (due to both the q  and q ) has exceeded the original electric field (due to q

only). 

 To further study the influence of dielectric constant ratios on 
zf , 21  is increased to 5 in 

Fig. 6.4 while the charge location and other dielectric constant ratio remain same as in Fig. 6.2.  

Similar to the comparison seen in Fig. 6.2, the trend and sign of 
zf  are not altered by the addition 

of the q  charge. The magnitude of  I,II totalzf  on the lower interface is reduced due to the screening 

from the q  charge, whereas the magnitude of  I,III totalzf  on the upper interface is increased at 

small r  due to the over-compensation. 

          (a)            (b) 

FIGURE 6.4: Normalized surface force density on the interfaces, with red and blue lines 

corresponding to the upper and lower interfaces respectively. (a) a single charge, (b) a pair of 

charges. For each subfigure, 0.4d  , 21 5   and 31  varies from 0.1 to 5 (see legend for different 

line styles used for different 31 ). 
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6.4.2 Comparison of the surface force density (effect of charge location) 

 The location of point charge was shown in Chapter 5 to influence the magnitude of the 

surface force density without changing its sign or trend for a single charge. To compare the results 

with a pair of charges, 
zf  is plotted as a function of r  in Fig. 6.5 for both single charge and a pair 

of charges. In both cases, 0.3d  , and thus the location of q  is at 0.7 in Fig. 6.4(b). Physically, 

q  and q  shifts closer to the lower and upper interfaces respectively than that in Fig. 6.2. The 

other parameters are considered same as in Fig. 6.2. 

           (a)              (b) 

FIGURE 6.5: Normalized surface force density on the interfaces, with red and blue lines 

corresponding to the upper and lower interfaces respectively. (a) a single charge, (b) a pair of 

charges. For each subfigure, 0.3d  , 21 0.1   and 31  varies from 0.1 to 5 (see legend for 

different line styles used for different 31 ). 
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The trend and sign of 
zf  in Fig. 6.5 are found similar to those in Fig. 6.2 as all the 

parametric conditions are the same except the charge location. Compared with Fig. 6.2(b), the 

magnitude of 
zf  on both interfaces is much larger in Fig. 6.5(b) for each 31 . As the q  charge 

mainly influences the electric field on the lower interface, its reduced distance in Fig. 6.5(b) causes 

an enhanced net electric field and consequently higher magnitude of  I,II totalzf . Similarly, the 

magnitude of  I,III totalzf  increases significantly as the q  charge shifts closer to the upper interface. 

The influence of the extra charge on the magnitude of 
zf  for 0.3d  , observed by comparing Fig. 

6.5(b) with Fig. 6.5(a), is similar to the influence seen in Fig. 6.2: the extra charge caused increase 

in the magnitude of  I,III totalzf  (over-compensation) at small r  but decrease at large r  as well as 

decrease in the magnitude of  I,II totalzf  (partial compensation) for the entire range of r . With the 

charges closer to the interfaces, the increase in  I,III totalzf  (near the center of upper interface) is more 

significant due to the greater over-compensation from q . For instance, the magnitude of 

  I,III total 310, 5zf r    in Fig. 6.2(b) was observed about 1.2 times than that of  I,IIIzf  in Fig. 

6.2(a), while the magnitude of   I,III total 310, 5zf r    in Fig. 6.5(b) was observed about 13.2 

times than that of  I,IIIzf  in Fig. 6.5(a). Because q  is further from the lower interface, its partial 

compensation for the electric field on the lower interface is weaker, and hence the reduction in the 

magnitude of  I,II totalzf  is less in Fig. 6.5. In particular, the magnitude of   I,II 310.24, 0.1zf r    

in Fig. 6.2(a) was observed about 4 times than that of  I,IIzf  in Fig. 6.2(b), while the magnitude of  

  I,II 310.24, 0.1zf r    in Fig. 6.5(a) was observed 1.5 times than that of  I,IIzf  in Fig. 6.5(b). 
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6.4.3. Comparison of the total surface force 

The total surface force F  for a pair of charges is calculated from Eqs. (6.11) and (6.12) 

following the same method as applied to the single charge. 
zf  for the pair of charges decays much 

faster with r  (see for example Fig. 6.2) than that of the single charge which leads to a quicker 

convergence of the integration for the evaluation of F . Still, the same cut-off distance ( r =0.4) 

was maintained during the numerical calculations. In this section, the influences of the material 

properties (dielectric constants) of the three regions as well as the charge location on F  are 

described. First, F  on both interfaces is plotted as a function of 31  in Fig. 6.6 for 0.4d 

21( 0.1   in Fig. 6.6(a) and 21 5   in Fig. 6.6(b)). The results for the pair of charges are denoted 

by I,III totalF  (upper interface) and I,II totalF  (lower interface), while their counterparts for a single 

point charge are included in the same figure and denoted by symbols without the subscript of 

“total”. Similar to 
zf , positive values of F  correspond to upward direction while negative F  is 

downward. 

In both subfigures, the direction of F  induced by a pair of charges is the same as that 

caused by a single charge. In particular, the direction of I,IIF  and I,II totalF  on the lower interface is 

completely determined by the value of 21 , positive for 21 1    and negative for 21 1  . While the 

direction of  I,IIIF  and I,III totalF  are governed by the value of 31 , positive for 31 1   and negative 

for 31 1  . That is, F  always points from the region with higher dielectric constant to the region 

with lower dielectric constant. 
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(a) 

 
(b) 

FIGURE 6.6: Normalized total surface force due to a single charge and a pair of charges, with red 

and blue lines corresponding to the upper and lower interfaces respectively. For all cases, 0.4.d   

(a) 21 0.1  , (b) 21 5  . 
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 Despite the similarity, the pair of charges does introduce significant quantitative 

differences. Let us first consider the upper interface. While the trend of I,IIIF  and I,III totalF  with 

increasing 31  is monotonically decreasing in both subfigures, the magnitude of I,III totalF  is always 

smaller than  I,IIIF . Because of this, the change in I,III totalF  with 31  is more gradual than I,IIIF . To 

further study this phenomenon as well as to analyze the effect of charge location, I,IIIF  and I,III totalF  

are also determined for other values of d . In Fig. 6.7, both I,IIIF  and I,III totalF  are plotted as 

functions of 31  for 0.1d  , 0.2 and 0.3 while the other dielectric constant remains the same as 

that of Fig. 6.6(a). It is interesting to observe from the subfigures that due to the different charge 

locations, the relative magnitudes of I,IIIF  and I,III totalF  change significantly from what is found in 

Fig. 6.6(a). Specifically, unlike in Fig. 6.6(a), the magnitude of I,III totalF  in Fig. 6.7(a) and (b) 

where 0.1d   and 0.2 respectively, is always higher than I,IIIF  for the entire range of 31 . These 

are the situations where the two charges are very close to the interfaces. The addition of an opposite 

charge near the upper interface introduces strong over-compensation for the electric field on the 

upper interface induced by the original charge near the lower interface. As the charges are located 

further from the interfaces, the compensation from the additional charge becomes smaller, which 

can be seen from the behavior of I,III totalF  in Fig. 6.7(c) ( 0.3d  ) where its magnitude is smaller 

(partial compensation) than I,IIIF  for small 31  while it remains higher (over-compensation) for 

large 31 . Therefore, both the charge location and 31  have significant influence on the effect of 

the additional charge on I,III totalF , and their influences are not independent of each other. 
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                                        (a)                                         (b) 

 

                                                                          (c) 

FIGURE 6.7: Normalized total surface force on the upper interface due to a single charge (solid 

line) and a pair of charges (dashed line). (a) 0.1d  , (b) 0.2d  , (c) 0.3d  . For all cases, 

21 0.1  . 
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To discuss the total surface force on the lower interface, the trend of I,II totalF  in Fig. 6.6 is 

found more interesting. While similar to I,III totalF  for 0.4d  , the change of I,II totalF  with 31  is 

more gradual in the case of a pair of charges (supported by the results of z I,II totalf  in Fig. 6.2(b) 

where the curves for different 31  almost coincide with one another), the trend of I,IIF  vs. 31  can 

be reversed (from decreasing with 31  to increasing with 31 , or vice versa) when an extra charge 

is introduced. This interesting phenomenon is investigated by examining more closely the results 

of  I,II totalzf  in Fig. 6.2. For better comparison,  I,IIzf  and  I,II totalzf  are re-produced in Fig. 6.8 with 

a shorter range of r . 

          (a)            (b) 

FIGURE 6.8: Normalized surface force density on the lower interface. (a) a single charge, (b) a 

pair of charges. For each subfigure, 0.4d  , 21 0.1   and 31  varies from 0.1 to 5 (see legend for 

different line styles used for different 31 ). 
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 I,IIzf  and  I,II totalzf  are plotted as a function of r  in Fig. 6.8(a) and in Fig. 6.8(b), 

respectively, where 0.4d  , 21 0.1   and 31  varies from 0.1 to 5. It is clear that at any given r  

as 31  increases the magnitude of  I,IIzf  reduces while the corresponding  I,II totalzf  increases. 

Physically, the increase of 31  introduces a screening effect on the electric field of both q  and 

q  charges. However, because the q  charge is closer to the upper interface, the increase of 31  

(ratio of dielectric constants between upper and middle regions) has more impact on the electric 

field of q . Therefore, as 31  increases the partial compensation by the q  charge for the electric 

field on the lower interface is reduced and hence  I,II totalzf  increases. This is why I,II totalF  also 

increases with 31  in Fig. 6.6. To further justify this phenomenon and to study the influence of 

charge location on I,II totalF , I,IIF  and I,II totalF  are plotted as functions of 31  in Fig. 6.9 where d  

varies from 0.1 to 0.3. The other dielectric constant ratio remains the same as in Fig. 6.6(a) i.e.

21 0.1  . Therefore, in Fig. 6.9, the charges are considered closer to the interfaces than in Fig. 

6.6(a). The solid blue line corresponds to the total surface force on the lower interface due to a 

single charge while the dashed line represents the force induced by a pair of charges. 
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                                        (a)                                         (b) 

 

                                                                          (c) 

FIGURE 6.9: Normalized total surface force on the lower interface due to a single charge (solid 

line) and a pair of charges (dashed line). (a) 0.1d  , (b) 0.2d  , (c) 0.3d  . For all cases, 

21 0.1  . 
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It is clear from the subfigures that the magnitude of I,II totalF  increases with 31  while that 

of  I,IIF  decreases for all values of d , similar to Fig. 6.6. Moreover, the magnitude of I,II totalF  is 

always smaller than that of I,IIF . Unlike the upper interface, the additional charge causes only 

partial compensation of the electric field on the lower interface induced by the q  charge, 

regardless of the charge positions and hence it results in smaller I,II totalF  for the entire range of 

31.  
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 

An analytical model to calculate the local surface force density and total surface force 

between two dielectric half-spaces with a dielectric gap has been established in this work. The 

surface forces are due to the electric field induced by a point charge in the dielectric gap. To 

calculate these forces, first the electric potential due to the single point charge in that multilayered 

dielectric system is obtained in closed form from which the electric field in all regions is derived. 

The electric potential is determined by solving the linear Laplace equation where the technique of 

Hankel transformation is used. It is found that the mathematical convenience of using Hankel 

transformation, as compared to the more commonly used image charge method, to solve the 

axisymmetric electrostatic problem is evident: it easily converts the boundary value problem into 

a set of initial value problems, which can be readily solved. Nondimensionalization of the solution 

reveals three dimensionless parameters that govern the normalized electric potential: d , 21  and 

31 . A parametric study was performed to demonstrate the influence of these parameters. The 

results show that the electric potential, and hence the electric field, in the system can be modulated, 

both quantitatively and qualitatively, by adjusting the governing parameters. 

Based on the solution of the electric potential, the normalized surface force density, 
zf  and 

the normalized total surface force, F  are calculated using the Maxwell Stress Tensor. 

Furthermore, the three dimensionless parameters: d , 21  and 31  which influence the surface force 

density and the total surface force are analyzed and discussed in detail. It reveals from the solution 
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of 
zf  that it always points towards the lower dielectric constant region irrespective of the charge 

location between the two interfaces. More interestingly, the trend of 
zf  can be monotonic or non-

monotonic with the radial position, depending on the dielectric constant ratios. Specifically, for 

high values of 21  and 31 , the trend of 
zf  is governed by the z -component of the electric field, 

and hence it shows monotonic changes, whereas for smaller dielectric constant ratios the r -

component of the electric field has significant impact on 
zf  and causes 

zf  to be non-monotonic. 

The overall influence of the dielectric constant ratios on the magnitude and sign are found similar 

for both 
zf  and F . Like 

zf , F  always act in the direction from the higher dielectric constant 

region towards the lower dielectric constant region. On the other hand, the parametric analysis of 

d  shows that it only plays the role of changing the magnitudes of F  and not direction. Finally, 

these analyses support that the surface force density and the total surface force can be manipulated, 

quantitatively and qualitatively, by adjusting the dielectric materials as well as the location of the 

point charge embedded in the dielectric gap of the multilayered system.  

Lastly, the problem is extended by introducing an extra charge with opposite sign and equal 

magnitude to demonstrate the formulation for a distribution of charges. The comparative study 

with the single charge problem reveals interesting influence of the pair charges. While the surface 

force density on the lower interface  I,II totalzf  is found smaller for all r  due to the partial 

compensation of the electric field introduced by the new charge,  I,III totalzf  on the upper interface 

is found higher (over-compensation) for small  r  and smaller for large r  (partial compensation). 

The charge location is again observed to only alter the magnitude of  I,II totalzf  and  I,III totalzf . The 

total surface force I,II totalF  and I,III totalF  due to the pair of charges maintain the same trend and 
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direction as that of the single charge regardless of the charge location. However, the effect of 

charge location on the magnitude of I,III totalF  is significant as I,III totalF  can be higher than that of 

the single charge when the charges are near the interfaces and smaller when they shift further from 

the interfaces. On the other hand, the magnitude of I,II totalF  is always smaller than the single charge 

values for all charge locations. Different combinations of the dielectric constant ratios show that 

the trend of I,III totalF  vs. 31  does not change from that of the single point charge where the trend 

of I,II totalF  is reversed due to the extra charge. These comparisons give the idea about the impact 

of an opposite and equal charge in the multilayered dielectric model as it may increase or decrease 

the surface force density and total surface force depending on three non-dimensional parameters: 

the charge location and two dielectric constant ratios.  

The established formulation of the surface forces due to a pair of charges can be applied to 

solve problems that involve adhesive forces between two surfaces with a mosaic distribution of 

charges. For example, using the solution of the electric potential for the pair of charges model, the 

interaction force can be calculated between two mosaics of charge where positively charged 

patches on one side are accompanied by their complementary negatively charged patches on the 

other side. Future work could also include determining the physical deformation of the materials 

on the interfaces by solving the deformation field with appropriate boundary conditions caused by 

the interfacial forces. Finally, experimental work could be done using different dielectric materials 

in a multilayered system to verify the influence of the dielectric constants on the surface forces as 

well as use the analytical model to measure the adhesion energies. 
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APPENDIX 

MATLAB codes 

1. Main Functions 

a. The following codes calculate 
I , 

II  and 
III  given a particular set of parameters: d , 

21,

31 . Varying one of the parameters generates the dependence of electric potential on this 

parameter, as shown in the plots in Chapter 5. 

Solve the Electric Potential due to a single charge 

% A single point charge in a three-layered dielectric system; 

% The charge is located at (0, d); 

% The coordinates are r and z normalized by H, i.e., the charge is now 

% located at (r=0, z=(d/H)); 

% Potential is normalized by q/(4*pi*eps0*eps1*H); 

% rho is normalized by 1/H; 

 

clear; 

clc; 

Parameters 

H=1.0;     % gap between two interfaces 

d=0.5;     % distance between the point charge and the lower interface 

e21=10;    % dielectric constant ratio between the lower and middle regions 

e31=10;    % dielectric constant ratio between the upper and middle regions 

N=50;      % number of steps for integration 

lbd=0;     % lower limit of integration 

Mesh generation (Upper region) 

[x1,z1] = meshgrid(-2.2:0.1:2.2, H:0.1:2); 

r1 = abs(x1); 

s1 = size(r1); 

Calculate electric potential in the upper region 

for i = 1 : s1(1) 

    for j = 1 : s1(2) 
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        phi_1(i,j) = 2 * quadl(@fundcupH, lbd, N, [], [], r1(i,j), z1(i,j), d, e21, e31); 

    end 

end 

Mesh generation (Lower region) 

[x2,z2] = meshgrid(-2.2:0.1:2.2, -1.5:0.1:0); 

r2 = abs(x2); 

s2 = size(r2); 

Calculate electric potential in the lower region 

for i = 1 : s2(1) 

    for j = 1 : s2(2) 

        phi_2(i,j) = 2 * quadl(@fundclrH, lbd, N, [], [], r2(i,j), z2(i,j), d, e21, e31); 

    end 

end 

Mesh generation (Middle region) 

[x3,z3] = meshgrid(-2.2:0.1:2.2, 0:0.1:H); 

r3 = abs(x3); 

s3 = size(r3); 

Calculate electric potential in the middle region 

for i = 1 : s3(1) 

    for j = 1 : s3(2) 

        phi_0(i,j) = 1/(sqrt((r3(i,j)).^2+(z3(i,j)-d).^2)); 

        sum = 2 * quadl(@fundcmid1H, lbd, N, [], [], r3(i,j), z3(i,j), d, e21, e31) + 2 * 

quadl(@fundcmid2H, lbd, N, [], [], r3(i,j), z3(i,j), d, e21, e31) - quadl(@fundcmid3H, lbd, N, 

[], [], r3(i,j), z3(i,j), d); 

        phi_3(i,j) = phi_0(i,j) + sum; 

    end 

end 

Contour plot of the electric potential distribution 

figure; 

a = [-2.2 2.2]; 

b = [0 0]; 

f = [1 1]; 

plot(a,b,'--'); 

set(gca,'FontSize',16,'FontName', 'Times New Roman'); 

hold on 

plot(a,f,'--'); 
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% plot of electric potential in the upper region 

 

[c,m] = contour(x1, z1, phi_1, 'k'); 

set(m, 'LevelList', [0.1 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8]); 

clabel(c, m, 'FontSize',8, 'LabelSpacing', 400); 

xlabel('\it x / H','FontName', 'Times New Roman'); ylabel('\it z / H','FontName','Times New 

Roman'); 

axis equal tight; 

hold on 

 

% plot of electric potential in the lower region 

 

[c,m] = contour(x2, z2, phi_2, 'k'); 

set(m, 'LevelList', [0.1 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8]); 

clabel(c, m, 'FontSize',8, 'LabelSpacing', 400); 

axis equal tight; 

 

% plot of electric potential in the middle region 

 

[c,m] = contour(x3, z3, phi_3, 'k'); 

set(m, 'LevelList', [0.1 0.3 0.8 1.3 1.8 2.3 2.8 3.3 3.8 4.3 4.8], 

'TextList', [0.3 0.8 1.3 1.8 2.3]); 

clabel(c, m, 'FontSize',8, 'LabelSpacing', 200); 

axis equal tight; 

 

 

b. The following codes generate   at three spatial points: P1(1, 0.5), P2(0, -0.5) and P3(0, 1.5) 

for varying 21  given a particular set of parameters: d , 31 . 

Solve the Electric Potential at three spatial points 

clear; 

clc; 

Parameters 

H=1.0;                   % gap between two interfaces 

d=0.5;                   % distance between the point charge and the lower interface 

e21=0.1:0.1:20;          % varying dielectric constant ratio between the lower and middle regions 

e31=10;                  % dielectric constant ratio between the upper and middle regions 

N=50;                    % number of steps for integration 

lbd=0;                   % lower limit of integration 
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Locations of spatial points 

% P_3 

x1=0; 

z1=1.5; 

 

% P_2 

x2=0; 

z2=-0.5; 

 

% P_1 

x3=1; 

z3=0.5; 

Calculate electric potential 

s=length(e21); 

 

for i = 1 : s 

    phi_up(i) = 2 * quadl(@fundcupH, lbd, N, [], [], x1, z1, d, e21(i), e31); 

    phi_low(i) = 2 * quadl(@fundclrH, lbd, N, [], [], x2, z2, d, e21(i), e31); 

    phi_0(i) = 1/(sqrt(x3.^2+(z3-d).^2)); 

    sum = 2 * quadl(@fundcmid1H, lbd, N, [], [], x3, z3, d, e21(i), e31) + 2 * quadl(@fundcmid2H, 

lbd, N, [], [], x3, z3, d, e21(i), e31) - quadl(@fundcmid3H, lbd, N, [], [], x3, z3, d); 

    phi_mid(i) = phi_0(i) + sum; 

end 

Plot of electric potentials at P1, P2 and P3 

fig1=figure(1); 

plot(e21,phi_mid,'k--',e21,phi_low,'k-',e21,phi_up,'k:') 

 

set(gca,'FontSize',16,'FontName', 'Times New Roman'); 

xlabel(['\it',char(949),'_{21}'],'FontWeight','bold','interpreter','tex','FontSize', 

16,'FontName','Times New Roman'); 

ylabel('\it $\bar{\phi}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman'); 

legend({'$P_{1}\equiv(1,0.5)$','$P_{2}\equiv(0,-

0.5)$','$P_{3}\equiv(0,1.5)$'},'Interpreter','latex'); 

 

c. The following codes calculate 
  I,IIzf  and 

  I,IIIzf  for a single point charge given a particular 

set of parameters: d , 21, 31 . Varying one of the parameters generates the dependence of 

surface force density on this parameter, as shown in the plots in Chapter 5. 
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Solve the Surface force density due to a single charge 

% A single point charge in a three-layered dielectric system; 

% The charge is located at (0, d); 

% The coordinates are r and z normalized by H, i.e., the charge is now 

% located at (r=0, z=(d/H)); 

% Surface force density is normalized by q^2/(32*pi^2*eps0*eps1*H^4); 

% rho is normalized by 1/H; 

 

clear; 

clc; 

Parameters 

d=0.5;                   % distance between the point charge and the lower interface 

e21=0.1;                 % dielectric constant ratio between the lower and middle regions 

e31=[0.1;0.5;1;5];       % varying dielectric constant ratio between the upper and middle regions 

n=50;                    % number of steps for integration 

del_r=0.01;              % discretization of radius 

r = 0:del_r:4;           % range of radius 

s = length(r); 

t = length(e31); 

Calculate surface force density 

for i = 1 : t 

    for j = 1 : s 

 

        ez_up(i,j) = (1-d)./((r(j).^2+(1-d).^2).^(3/2)); 

        er_up(i,j) = r(j)./((r(j).^2+(1-d).^2).^(3/2)); 

 

        ez_3(i,j) = 2.*quadl(@funefupH1, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_3(i,j) = 2.*quadl(@funefupH2, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1(i,j) = ez_up(i,j) - 2.*quadl(@funefmidH11, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmidH12, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmidH13, 0, n, [], [], 

r(j), d); 

        er_1(i,j) = er_up(i,j) + 2.*quadl(@funefmidH21, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmidH22, 0, n, [], [], r(j), d); 

 

        f_up(i,j) = (ez_3(i,j).^2 - er_3(i,j).^2).*e31(i) - (ez_1(i,j).^2 - er_1(i,j).^2); % 

surface force density on the upper interface 

 

        ez_lr(i,j) = -d./((r(j).^2+d.^2).^(3/2)); 

        er_lr(i,j) = r(j)./((r(j).^2+d.^2).^(3/2)); 

 

        ez_2(i,j) = -2 * quadl(@funeflr1_H, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_2(i,j) = 2 * quadl(@funeflr2_H, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1(i,j) = ez_lr(i,j) - 2.*quadl(@funefmid21_H, 0, n, [], [], r(j), d, e21, e31(i)) + 
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2.*quadl(@funefmid22_H, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmid23_H, 0, n, [], [], 

r(j), d); 

        er_1(i,j) = er_lr(i,j) + 2.*quadl(@funefmid11_H, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmid12_H, 0, n, [], [], r(j), d); 

 

        f_lr(i,j) = (ez_1(i,j).^2 - er_1(i,j).^2) - (ez_2(i,j).^2 - er_2(i,j).^2).*e21; % surface 

force density on the lower interface 

    end 

end 

Plot of surface force density 

figure; 

 

x=6:10; 

y1=x+1;y2=x+2;y3=x+3;y4=x+4; 

plot(x,y1,'-k',x,y2,'--k',x,y3,':k',x,y4,'-.k') 

hold on 

plot(r,f_up(1,:),'-r',r,f_up(2,:),'--r',r,f_up(3,:),':r',r,f_up(4,:),'-.r') 

plot(r,f_lr(1,:),'-b',r,f_lr(2,:),'--b',r,f_lr(3,:),':b',r,f_lr(4,:),'-.b') 

xlim([0 4]); 

set(gca(),'FontSize',16,'FontName', 'Times New Roman') 

xlabel('\it $\bar{r}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman'); 

ylabel('\it $\bar{f_z}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman'); 

legend([char(949) '_{31}=0.1'],[char(949) '_{31}=0.5'],[char(949) '_{31}=1'],[char(949) 

'_{31}=5']); 

gtext('\it $\bar{f}_{zI,III}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman') 

gtext('\it $\bar{f}_{zI,II}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman') 

 

d. The following codes calculate I,IIF  and I,IIIF  for a single point charge given a particular set 

of parameters: d , 21, 31 . Varying one of the parameters generates the dependence of 

total surface force on this parameter, as shown in the plots in Chapter 5. 

Solve the Total surface force due to a single charge 

% A single point charge in a three-layered dielectric system; 

% The charge is located at (0, d); 

% The coordinates are r and z normalized by H, i.e., the charge is now 

% located at (r=0, z=(d/H)); 

% Total force is normalized by q^2/(16*pi*eps0*eps1*H^2); 
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% rho is normalized by 1/H; 

 

clear; 

clc; 

Parameters 

d=0.3;                   % distance between the point charge and the lower interface 

e21=0.1;                 % dielectric constant ratio between the lower and middle regions 

e31=0.1:0.1:5;           % varying dielectric constant ratio between the upper and middle regions 

n=50;                    % number of steps for integration 

del_r=0.01;              % discretization of radius 

r1 = 0:del_r:10;         % range of radius 

s1 = length(r1); 

t1 = length(e31); 

Calculate total surface forces 

for i = 1 : t1 

    for j = 1 : s1 

 

        ez_0_up(i,j) = (1-d)./((r1(j).^2+(1-d).^2).^(3/2)); 

        er_0_up(i,j) = r1(j)./((r1(j).^2+(1-d).^2).^(3/2)); 

 

        ez_3_up(i,j) = (2 * quadl(@funefupH1, 0, n, [], [], r1(j), d, e21, e31(i))).^2; 

        er_3_up(i,j) = (2 * quadl(@funefupH2, 0, n, [], [], r1(j), d, e21, e31(i))).^2; 

 

        ez_1_up(i,j) = (ez_0_up(i,j) - 2 * quadl(@funefmidH11, 0, n, [], [], r1(j), d, e21, 

e31(i)) + 2 * quadl(@funefmidH12, 0, n, [], [], r1(j), d, e21, e31(i)) + quadl(@funefmidH13, 0, 

n, [], [], r1(j), d)).^2; 

        er_1_up(i,j) = (er_0_up(i,j) + 2 * quadl(@funefmidH21, 0, n, [], [], r1(j), d, e21, 

e31(i)) - quadl(@funefmidH22, 0, n, [], [], r1(j), d)).^2; 

 

        fun_r_up(i,j) = ((ez_3_up(i,j) - er_3_up(i,j)).*e31(i) - (ez_1_up(i,j) - 

er_1_up(i,j))).*r1(j); % function for the upper interface 

 

 

        ez_0_lr(i,j) = -d./((r1(j).^2+d.^2).^(3/2)); 

        er_0_lr(i,j) = r1(j)./((r1(j).^2+d.^2).^(3/2)); 

 

        ez_2_lr(i,j) = (-2 * quadl(@funeflr1_H, 0, n, [], [], r1(j), d, e21, e31(i))).^2; 

        er_2_lr(i,j) = (2 * quadl(@funeflr2_H, 0, n, [], [], r1(j), d, e21, e31(i))).^2; 

 

        ez_1_lr(i,j) = (ez_0_lr(i,j) - 2 * quadl(@funefmid21_H, 0, n, [], [], r1(j), d, e21, 

e31(i)) + 2 * quadl(@funefmid22_H, 0, n, [], [], r1(j), d, e21, e31(i)) + quadl(@funefmid23_H, 0, 

n, [], [], r1(j), d)).^2; 

        er_1_lr(i,j) = (er_0_lr(i,j) + 2 * quadl(@funefmid11_H, 0, n, [], [], r1(j), d, e21, 

e31(i)) - quadl(@funefmid12_H, 0, n, [], [], r1(j),d)).^2; 

 

        fun_r_lr(i,j) = ((ez_1_lr(i,j) - er_1_lr(i,j)) - (ez_2_lr(i,j) - 

er_2_lr(i,j)).*e21).*r1(j); % function for the lower interface 
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    end 

end 

 

for k=1:t1 

     

    e_force1_up(k) = trapz(r1,fun_r_up(k,:)); % total surface force on the upper interface 

     

    e_force1_lr(k) = trapz(r1,fun_r_lr(k,:)); % total surface force on the lower interface 

end 

Plot of total surface forces 

set(gca(),'FontSize',16,'FontName', 'Times New Roman') 

plot(e31,e_force1_up,e31,e_force1_lr) 

xlabel([char(949) '_{31}'], 'FontSize', 16,'FontName','Times New Roman'); 

ylabel('\it $\bar{F}$', 'interpreter','latex','FontSize', 16,'FontName','Times New Roman'); 

legend({'\it $\bar{F}_{I,III}$','\it 

$\bar{F}_{I,II}$'},'FontWeight','bold','interpreter','latex','FontSize', 16,'FontName','Times New 

Roman') 

 

e. The following codes calculate  I,II totalzf  and  I,III totalzf  for a pair of charges given a particular 

set of parameters: d , 
21, 31 . Varying one of the parameters generates the dependence of 

surface force density on this parameter, as shown in the plots in Chapter 6. 

Solve the Surface force density due to a pair of charges 

% A pair of charges in the middle layer of a three-layered dielectric system; 

% The positive charge is located at (0, d); 

% The negative charge is located at (0, H-d); 

% The coordinates are r and z normalized by H, i.e., the charges are now 

% located at (r=0, z=(d/H)) and (r=0, z=(1-d/H)) respectively; 

% Surface force density is normalized by q^2/(32*pi^2*eps0*eps1*H^4); 

% rho is normalized by 1/H; 

 

clear; 

clc; 

 

 

Parameters 
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dcharge=0.4;             % distance between the positive charge and the lower interface 

e21=0.1;                 % dielectric constant ratio between the lower and middle regions 

e31=[0.1;0.5;1;5];       % varying dielectric constant ratio between the upper and middle regions 

n=50;                    % number of steps for integration 

del_r=0.01;              % discretization of radius 

r = 0:del_r:4;           % range of radius 

s = length(r); 

t = length(e31); 

Calculate surface force density 

for i = 1 : t 

    for j = 1 : s 

 

        % calculate electric fields on the upper interface 

        % for positive charge 

 

        d=dcharge; % location of the positive charge 

 

        ez_up(i,j) = (1-d)./((r(j).^2+(1-d).^2).^(3/2)); 

        er_up(i,j) = r(j)./((r(j).^2+(1-d).^2).^(3/2)); 

 

        ez_3(i,j) = 2.*quadl(@funefupH1, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_3(i,j) = 2.*quadl(@funefupH2, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1_up(i,j) = ez_up(i,j) - 2.*quadl(@funefmidH11, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmidH12, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmidH13, 0, n, [], [], 

r(j), d); 

        er_1_up(i,j) = er_up(i,j) + 2.*quadl(@funefmidH21, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmidH22, 0, n, [], [], r(j), d); 

 

        ez_3_tot_up(i,j)=ez_3(i,j); 

        er_3_tot_up(i,j)=er_3(i,j); 

        ez_1_tot_up(i,j)=ez_1_up(i,j); 

        er_1_tot_up(i,j)=er_1_up(i,j); 

 

        % calculate electric fields on the upper interface 

        % for negetive charge 

 

        d=1-dcharge; % location of the negetive charge 

 

        ez_up(i,j) = (1-d)./((r(j).^2+(1-d).^2).^(3/2)); 

        er_up(i,j) = r(j)./((r(j).^2+(1-d).^2).^(3/2)); 

 

        ez_3(i,j) = 2.*quadl(@funefupH1, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_3(i,j) = 2.*quadl(@funefupH2, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1_up(i,j) = ez_up(i,j) - 2.*quadl(@funefmidH11, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmidH12, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmidH13, 0, n, [], [], 

r(j), d); 

        er_1_up(i,j) = er_up(i,j) + 2.*quadl(@funefmidH21, 0, n, [], [], r(j), d, e21, e31(i)) - 
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quadl(@funefmidH22, 0, n, [], [], r(j), d); 

 

 

        ez_3_tot_up(i,j)=ez_3_tot_up(i,j)-ez_3(i,j); 

        er_3_tot_up(i,j)=er_3_tot_up(i,j)-er_3(i,j); 

        ez_1_tot_up(i,j)=ez_1_tot_up(i,j)-ez_1_up(i,j); 

        er_1_tot_up(i,j)=er_1_tot_up(i,j)-er_1_up(i,j); 

 

        f_up(i,j) = (ez_3_tot_up(i,j).^2 - er_3_tot_up(i,j).^2).*e31(i) - (ez_1_tot_up(i,j).^2 - 

er_1_tot_up(i,j).^2); % surface force density on the upper interface 

 

        % calculate electric fields on the lower interface 

        % for positive charge 

 

        d=dcharge; % location of the positive charge 

 

        ez_lr(i,j) = -d./((r(j).^2+d.^2).^(3/2)); 

        er_lr(i,j) = r(j)./((r(j).^2+d.^2).^(3/2)); 

 

        ez_2(i,j) = -2 * quadl(@funeflr1_H, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_2(i,j) = 2 * quadl(@funeflr2_H, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1_lr(i,j) = ez_lr(i,j) - 2.*quadl(@funefmid21_H, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmid22_H, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmid23_H, 0, n, [], [], 

r(j), d); 

        er_1_lr(i,j) = er_lr(i,j) + 2.*quadl(@funefmid11_H, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmid12_H, 0, n, [], [], r(j), d); 

 

        ez_2_tot_lr(i,j)=ez_2(i,j); 

        er_2_tot_lr(i,j)=er_2(i,j); 

        ez_1_tot_lr(i,j)=ez_1_lr(i,j); 

        er_1_tot_lr(i,j)=er_1_lr(i,j); 

 

        % calculate electric fields on the upper interface 

        % for negetive charge 

 

        d=1-dcharge; % location of the negetive charge 

 

        ez_lr(i,j) = -d./((r(j).^2+d.^2).^(3/2)); 

        er_lr(i,j) = r(j)./((r(j).^2+d.^2).^(3/2)); 

 

        ez_2(i,j) = -2 * quadl(@funeflr1_H, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_2(i,j) = 2 * quadl(@funeflr2_H, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1_lr(i,j) = ez_lr(i,j) - 2.*quadl(@funefmid21_H, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmid22_H, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmid23_H, 0, n, [], [], 

r(j), d); 

        er_1_lr(i,j) = er_lr(i,j) + 2.*quadl(@funefmid11_H, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmid12_H, 0, n, [], [], r(j), d); 

 

        ez_2_tot_lr(i,j)=ez_2_tot_lr(i,j)-ez_2(i,j); 

        er_2_tot_lr(i,j)=er_2_tot_lr(i,j)-er_2(i,j); 

        ez_1_tot_lr(i,j)=ez_1_tot_lr(i,j)-ez_1_lr(i,j); 

        er_1_tot_lr(i,j)=er_1_tot_lr(i,j)-er_1_lr(i,j); 
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        f_lr(i,j) = (ez_1_tot_lr(i,j).^2 - er_1_tot_lr(i,j).^2) - (ez_2_tot_lr(i,j).^2 - 

er_2_tot_lr(i,j).^2).*e21; % surface force density on the lower interface 

    end 

end 

Plot of surface force density due to a pair of charges 

figure; 

 

x=6:10; 

y1=x+1;y2=x+2;y3=x+3;y4=x+4; 

plot(x,y1,'-k',x,y2,'--k',x,y3,':k',x,y4,'-.k') 

hold on 

plot(r,f_up(1,:),'-r',r,f_up(2,:),'--r',r,f_up(3,:),':r',r,f_up(4,:),'-.r') 

plot(r,f_lr(1,:),'-b',r,f_lr(2,:),'--b',r,f_lr(3,:),':b',r,f_lr(4,:),'-.b') 

xlim([0 4]) 

set(gca(),'FontSize',16,'FontName', 'Times New Roman') 

xlabel('\it $\bar{r}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman'); 

ylabel('\it $\bar{f_z}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman'); 

legend([char(949) '_{31}=0.1'],[char(949) '_{31}=0.5'],[char(949) '_{31}=1'],[char(949) 

'_{31}=5']); 

gtext('\it $\bar{f}_{zI,IIItotal}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman') 

gtext('\it $\bar{f}_{zI,IItotal}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman') 

 

f. The following codes calculate I,II totalF  and I,III totalF  for a pair of charges given a particular 

set of parameters: d , 21, 31 . Varying one of the parameters generates the dependence of 

surface force density on this parameter, as shown in the plots in Chapter 6. 

Solve the Total surface force on the upper interface due to a pair of charges 

% A pair of charges in the middle layer of a three-layered dielectric system; 

% The positive charge is located at (0, d); 

% The negative charge is located at (0, H-d); 

% The coordinates are r and z normalized by H, i.e., the charges are now 

% located at (r=0, z=(d/H)) and (r=0, z=(1-d/H)) respectively; 

% Total force is normalized by q^2/(16*pi*eps0*eps1*H^2); 

% rho is normalized by 1/H; 
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clear; 

clc; 

Parameters 

dcharge=0.4;             % distance between the positive charge and the lower interface 

e21=0.1;                 % dielectric constant ratio between the lower and middle regions 

e31=0.1:0.1:5;           % varying dielectric constant ratio between the upper and middle regions 

n=50;                    % number of steps for integration 

del_r=0.1;               % discretization of radius 

r = 0:del_r:4;           % range of radius 

s = length(r); 

t = length(e31); 

Calculate total surface force on the upper interface 

for i = 1 : t 

    for j = 1 : s 

 

        % calculate electric fields on the upper interface 

        % for positive charge 

 

        d=dcharge; % location of the positive charge 

 

        ez_up(i,j) = (1-d)./((r(j).^2+(1-d).^2).^(3/2)); 

        er_up(i,j) = r(j)./((r(j).^2+(1-d).^2).^(3/2)); 

 

        ez_3(i,j) = 2.*quadl(@funefupH1, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_3(i,j) = 2.*quadl(@funefupH2, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1_up(i,j) = ez_up(i,j) - 2.*quadl(@funefmidH11, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmidH12, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmidH13, 0, n, [], [], 

r(j), d); 

        er_1_up(i,j) = er_up(i,j) + 2.*quadl(@funefmidH21, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmidH22, 0, n, [], [], r(j), d); 

 

        ez_3_tot_up(i,j)=ez_3(i,j); 

        er_3_tot_up(i,j)=er_3(i,j); 

        ez_1_tot_up(i,j)=ez_1_up(i,j); 

        er_1_tot_up(i,j)=er_1_up(i,j); 

 

        % calculate electric fields on the upper interface 

        % for negetive charge 

 

        d=1-dcharge; % location of the negetive charge 

 

        ez_up(i,j) = (1-d)./((r(j).^2+(1-d).^2).^(3/2)); 

        er_up(i,j) = r(j)./((r(j).^2+(1-d).^2).^(3/2)); 

 

        ez_3(i,j) = 2.*quadl(@funefupH1, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_3(i,j) = 2.*quadl(@funefupH2, 0, n, [], [], r(j), d, e21, e31(i)); 
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        ez_1_up(i,j) = ez_up(i,j) - 2.*quadl(@funefmidH11, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmidH12, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmidH13, 0, n, [], [], 

r(j), d); 

        er_1_up(i,j) = er_up(i,j) + 2.*quadl(@funefmidH21, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmidH22, 0, n, [], [], r(j), d); 

 

 

        ez_3_tot_up(i,j)=ez_3_tot_up(i,j)-ez_3(i,j); 

        er_3_tot_up(i,j)=er_3_tot_up(i,j)-er_3(i,j); 

        ez_1_tot_up(i,j)=ez_1_tot_up(i,j)-ez_1_up(i,j); 

        er_1_tot_up(i,j)=er_1_tot_up(i,j)-er_1_up(i,j); 

 

 

        f_up(i,j) = ((ez_3_tot_up(i,j).^2 - er_3_tot_up(i,j).^2).*e31(i) - (ez_1_tot_up(i,j).^2 - 

er_1_tot_up(i,j).^2)).*r(j); % function for the upper interface 

 

    end 

end 

 

for k=1:t 

    e_force1_up(k) = trapz(r,f_up(k,:)); % total surface force on the upper interface 

end 

Plot of total surface force on the upper interface 

figure; 

plot(e31,e_force1_up) 

 

set(gca(),'FontSize',16,'FontName', 'Times New Roman') 

xlabel([char(949) '_{31}'], 'FontSize', 16,'FontName','Times New Roman'); 

ylabel('\it $\bar{F}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman'); 

legend({'\it $\bar{F}_{I,IIItotal}$'},'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman') 

Solve the total surface force on the lower interface due to a pair of charges 

clear; 

clc; 

Parameters 

dcharge=0.4;            % distance between the positive charge and the lower interface 

e21=0.1;                % dielectric constant ratio between the lower and middle regions 

e31=0.1:0.1:5;          % varying dielectric constant ratio between the upper and middle regions 

n=50;                   % number of steps for integration 

del_r=0.1;              % discretization of radius 

r = 0:del_r:4;          % range of radius 
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s = length(r); 

t = length(e31); 

Calculate total surface force on the upper interface 

for i = 1 : t 

    for j = 1 : s 

 

        % calculate electric fields on the lower interface 

        % for positive charge 

 

        d=dcharge; % location of the positive charge 

 

        ez_lr(i,j) = -d./((r(j).^2+d.^2).^(3/2)); 

        er_lr(i,j) = r(j)./((r(j).^2+d.^2).^(3/2)); 

 

        ez_2(i,j) = -2 * quadl(@funeflr1_H, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_2(i,j) = 2 * quadl(@funeflr2_H, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1_lr(i,j) = ez_lr(i,j) - 2.*quadl(@funefmid21_H, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmid22_H, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmid23_H, 0, n, [], [], 

r(j), d); 

        er_1_lr(i,j) = er_lr(i,j) + 2.*quadl(@funefmid11_H, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmid12_H, 0, n, [], [], r(j), d); 

 

        ez_2_tot_lr(i,j)=ez_2(i,j); 

        er_2_tot_lr(i,j)=er_2(i,j); 

        ez_1_tot_lr(i,j)=ez_1_lr(i,j); 

        er_1_tot_lr(i,j)=er_1_lr(i,j); 

 

        % calculate electric fields on the lower interface 

        % for negetive charge 

 

        d=1-dcharge; % location of the negetive charge 

 

        ez_lr(i,j) = -d./((r(j).^2+d.^2).^(3/2)); 

        er_lr(i,j) = r(j)./((r(j).^2+d.^2).^(3/2)); 

 

        ez_2(i,j) = -2 * quadl(@funeflr1_H, 0, n, [], [], r(j), d, e21, e31(i)); 

        er_2(i,j) = 2 * quadl(@funeflr2_H, 0, n, [], [], r(j), d, e21, e31(i)); 

 

        ez_1_lr(i,j) = ez_lr(i,j) - 2.*quadl(@funefmid21_H, 0, n, [], [], r(j), d, e21, e31(i)) + 

2.*quadl(@funefmid22_H, 0, n, [], [], r(j), d, e21, e31(i)) + quadl(@funefmid23_H, 0, n, [], [], 

r(j), d); 

        er_1_lr(i,j) = er_lr(i,j) + 2.*quadl(@funefmid11_H, 0, n, [], [], r(j), d, e21, e31(i)) - 

quadl(@funefmid12_H, 0, n, [], [], r(j), d); 

 

        ez_2_tot_lr(i,j)=ez_2_tot_lr(i,j)-ez_2(i,j); 

        er_2_tot_lr(i,j)=er_2_tot_lr(i,j)-er_2(i,j); 

        ez_1_tot_lr(i,j)=ez_1_tot_lr(i,j)-ez_1_lr(i,j); 

        er_1_tot_lr(i,j)=er_1_tot_lr(i,j)-er_1_lr(i,j); 

 



111 

 

        f_lr(i,j) = ((ez_1_tot_lr(i,j).^2 - er_1_tot_lr(i,j).^2) - (ez_2_tot_lr(i,j).^2 - 

er_2_tot_lr(i,j).^2).*e21).*r(j); % function for the lower interface 

 

    end 

end 

 

for k=1:t 

    e_force1_lr(k) = trapz(r,f_lr(k,:)); % total surface force on the lower interface 

end 

Plot of total surface force on the lower interface 

figure; 

plot(e31,e_force1_lr) 

 

set(gca(),'FontSize',16,'FontName', 'Times New Roman') 

xlabel([char(949) '_{31}'], 'FontSize', 16,'FontName','Times New Roman'); 

ylabel('\it $\bar{F}$', 'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman'); 

legend({'\it $\bar{F}_{I,IItotal}$'},'FontWeight','bold','interpreter','latex','FontSize', 

16,'FontName','Times New Roman') 

2. Other Functions 

The following functions are called by the above codes and are required for the calculation of 

electric potentials, electric fields and surface forces. 

fundcupH.m 

function y = fundcupH( rho, r, z, d, e21, e31 ) 

y1 = sinh((1-d).*rho)+(cosh(rho)+e21.*sinh(rho)).*sinh(rho.*d); 

y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(e21*e31+1)); 

y3 = exp(rho.*(1-z)).*besselj(0,rho.*r); 

y = (y1.*y3)./y2; 

fundclrH.m 

function y = fundclrH( rho, r, z, d, e21, e31 ) 

y1 = sinh(rho.*d)+(cosh(rho)+e31.*sinh(rho)).*sinh((1-d).*rho); 

y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(e21*e31+1)); 

y3 = exp(rho.*z).*besselj(0,rho.*r); 

y = (y1.*y3)./y2; 
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fundcmid1H.m 

function y = fundcmid1H( rho, r, z, d, e21, e31 ) 

y1 = sinh((1-d).*rho)+(cosh(rho)+e21.*sinh(rho)).*sinh(rho.*d); 

y2 = ((sinh(rho)).^3).*((e21+e31).*coth(rho)+(e21*e31+1)); 

y3 = sinh(rho.*z).*besselj(0,rho.*r); 

y = (y1.*y3)./y2; 

fundcmid2H.m 

function y = fundcmid2H( rho, r, z, d, e21, e31 ) 

y1 = sinh(rho.*d)+(cosh(rho)+e31.*sinh(rho)).*sinh((1-d).*rho); 

y2 = ((sinh(rho)).^3).*((e21+e31).*coth(rho)+(e21*e31+1)); 

y3 = sinh((1-z).*rho).*besselj(0,rho.*r); 

y = (y1.*y3)./y2; 

fundcmid3H.m 

function y = fundcmid3H( rho, r, z, d ) 

y1 = exp(-(1-d).*rho).*sinh(rho.*z); 

y2 = exp(-rho.*d).*sinh((1-z).*rho); 

y3 = sinh(rho); 

y = ((y1+y2).*besselj(0,rho.*r))./y3; 

funefupH1.m 

function y = funefupH1( rho, r, d, e21, e31 ) 

y1 = sinh(rho.*(1-d))+(cosh(rho)+e21.*sinh(rho)).*sinh(rho.*d); 

y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y =(y1.*rho.*besselj(0,rho.*r))./y2; 

funefupH2.m 

function y = funefupH2( rho, r, d, e21, e31 ) 

y1 = sinh(rho.*(1-d))+(cosh(rho)+e21.*sinh(rho)).*sinh(rho.*d); 

y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y =(y1.*rho.*besselj(1,rho.*r))./y2; 

funefmidH11.m 

function y = funefmidH11 (rho, r, d, e21, e31) 

y1 = sinh(rho.*(1-d))+(cosh(rho)+e21.*sinh(rho)).*sinh(rho.*d); 

y2 = ((sinh(rho)).^3).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y = (y1.*cosh(rho).*rho.*besselj(0,rho.*r))./y2; 
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funefmidH12.m 

function y = funefmidH12 (rho, r, d, e21, e31) 

y1 = sinh(rho.*d)+(cosh(rho)+e31.*sinh(rho)).*sinh(rho.*(1-d)); 

y2 = ((sinh(rho)).^3).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y = (y1.*rho.*besselj(0,rho.*r))./y2; 

funefmidH13.m 

function y = funefmidH13 (rho, r, d) 

y1 = (exp(-(1-d).*rho)).*cosh(rho)-exp(-rho.*d); 

y2 = sinh(rho); 

y = (y1.*rho.*besselj(0,rho.*r))./y2; 

funefmidH21.m 

function y = funefmidH21 (rho, r, d, e21, e31) 

y1 = sinh(rho.*(1-d))+(cosh(rho)+e21.*sinh(rho)).*sinh(rho.*d); 

y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y = (y1.*rho.*besselj(1,rho.*r))./y2; 

funefmidH22.m 

function y = funefmidH22 (rho, r, d) 

y = (exp(-(1-d).*rho)).*rho.*besselj(1,rho.*r); 

funeflr1_H.m 

function y = funeflr1_H( rho, r, d, e21, e31 ) 

y1 = sinh(rho.*d)+(cosh(rho)+e31.*sinh(rho)).*sinh(rho.*(1-d)); 

y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y = (y1.*rho.*besselj(0,rho.*r))./y2; 

funeflr2_H.m 

function y = funeflr2_H( rho, r, d, e21, e31 ) 

y1 = sinh(rho.*d)+(cosh(rho)+e31.*sinh(rho)).*sinh(rho.*(1-d)); 

y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y = (y1.*rho.*besselj(1,rho.*r))./y2; 

funefmid11_H.m 

function y = funefmid11_H (rho, r, d, e21, e31) 

y1 = sinh(rho.*d)+(cosh(rho)+e31.*sinh(rho)).*sinh(rho.*(1-d)); 
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y2 = ((sinh(rho)).^2).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y = (y1.*rho.*besselj(1,rho.*r))./y2; 

funefmid12_H.m 

function y = funefmid12_H (rho, r, d) 

y = (exp(-rho.*d)).*rho.*besselj(1,rho.*r); 

funefmid21_H.m 

function y = funefmid21_H (rho, r, d, e21, e31) 

y1 = sinh(rho.*(1-d))+(cosh(rho)+e21.*sinh(rho)).*sinh(rho.*d); 

y2 = (sinh(rho)).^3.*((e21+e31).*coth(rho)+(e21.*e31+1)); 

y = (y1.*rho.*besselj(0,rho.*r))./y2; 

funefmid22_H.m 

function y = funefmid22_H (rho, r, d, e21, e31) 

y1 = sinh(rho.*d)+(cosh(rho)+e31.*sinh(rho)).*sinh(rho.*(1-d)); 

y2 = ((sinh(rho)).^3).*((e21+e31).*coth(rho)+(1+e21.*e31)); 

y = (y1.*cosh(rho).*rho.*besselj(0,rho.*r))./y2; 

funefmid23_H.m 

function y = funefmid23_H (rho, r, d) 

y1 = exp(-(1-d).*rho)-(exp(-rho.*d).*cosh(rho)); 

y2 = sinh(rho); 

y = (y1.*rho.*besselj(0,rho.*r))./y2; 

Published with MATLAB® R2015a 
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