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Abstract

Corley, in 1966, reported that the effect of size on the rotational capacity of plastic
hinges is not significant. In 1988, Hillerborg used a somev-hat difterent approach, and by
using Corley’s beam tests, concluded that the rotational capacity of a reinforced concrete
hinging section is inversely proportional to the effective depth of the member.

To investigate the effect of size on the behaviour of {lexural members an experimental
program was conducted. Twelve simply supported, under-reinforced, high-strength con-
crete beams were tested. The design of the tests was based on three different effective depths
and two different concrete strengths. Thr beams were subjected to two point loading.

Effect of size on deformation cap« .y of the beams tested and the development of
failure are discussed. There was no appaient effect of size un flexural strength or rotational
capacity.

Using a method based on a least squares fit of a polynomial expression to the exper-
imental data from the beam tests, stress-strain curves for concrete in the compression zone
of the beams were obtained. Two different methods were used to calculate the concrete
stress block parameters.
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Notation

4 = depth of the equivalent rectangular stress block.

' = shear span

Imn = minimum spacing of tlexural cracks.
A, = effective area of concrete in wension.
A, = area of tension reinforcement.
A, = area of compression reinforcement.
A, = area of shear reinforcement within a distance s.
b = beam width.
¢ = neutral axis depth.
¢, = neutral axis depth at failurc.
¢y, = neutral axis depth at ulumate moment.
¢, = neutral axis depth at yield.
ce, = neutral axis depth at ultimate rotation.
C = total compression force in concrete.
d = effective depth = distance frum extreme compression fiber to centroid of tension
reinforcement.
f. = concrete cylinder strength.
f. = concrete stress at extreme compression fiber.
f, = average concrete stress in concrete compression zone.
f. = stress in tension reinforcement at ultimate moment.
f’ = stress in compression reinforcement at ultimate moment.
fi = tensile strength of concrete.
Gy = fracture energy.
h = overall depth of beam.
h = height of prism.
k = amultple of d where kd = 1.

k, = ratio of average stress to maximum stress.
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ratio of the distance between the extreme compression fiber and the resultant of
the compressive force to the neutral axis depth.

ratio of maximum stress in compression zone to cylinder strength.
length over which curvature is measured.

length of beam.

a modified moment term.

moment.

moment dug 1o the compression force in concrete alone about the neutral axis.

moment at failure.

moment predicted using concrete stress-strain curve.
moment from test.

ultimate moment.

moment at yield.

moment at ultimate rotation.

a multiple of d where nd =c.

perimeter of bar.

average load.

spacing of shear reinforcement.

total tension force in reinforcement.

average bond stress.

¢-‘ormation from stress-ceformation curve.

ratio of depth of rectangular stress block, g, to neutral axis depth, c.
centerline deflection at failure.

centerline deflection at ultimate moment.

centerline deflection at yield.

centerline deflection at ultimiate rotation.

strain.

strain in concrete.

extreme compression fiber strain at failure.

extreme compression fiber strain at ultimate moment.



strain in extreme compression fiber at ultimate.
extreme compression fiber strain at yield.
extreme compression fiber strain at ultimate rotation.

strain in steel.
deflection ductility index = §,/3,.

critical rotation.
rotation at failure.
rotation at ultimate moment.

total inelastic rotation at ultimate, occurring between the section of maximum
moment and adjacent section of zero moment.

ultimate rotation.

rotation at yield.

ratio of tension reinforcement = A,/bd.

reinforcement ratio corresponding to balanced strain conditions.

stress.

maximum stress.
bar diameter.

curvature.

curvature at ultimate.

mechanical tension reinforcement ratio at ultimate moment = A,f,/f.bd.

mechanical compression reinforcement ratio at ultimate moment = A,’f,’/f.bd.



1 Introduction

1.1 Statement of Problem

In the design of reinforced concrete structures, it is customary to assume that redis-
tribution of moments takes place between the members. In order to have moment redis-
tribution, plastic hinging regions should have adequate deformation capacity. The stability
of a ductile reinforced concrete frame subjected to an earthquake depends on the deformation
capacity of the plastic hinges forming in the beams. For the safety of structures it isessential
to know the behaviour of these plastic hinging regions.

A hinging region ina beam consists of plastically deforming sections. The deformation
capacity of a hinging section is strongly affected by the deformation capacity of the concrete
in the compression zone of the beam.

There are many variables affecting the behaviour of these hinging regions and the
concrete in their compression zones. One of them may be the size of the beam.

1.2 Objectives and Scope

Hillerborg (1988a, 1988b, 1989, 1990) suggested that the deformation behaviour of
concrete in the compression zone of a reinforced concrete hinging beam section is size
dependent. He concluded that the rotational capacity of a hinging bcam section is hence
size dependent. The primary objective of the research presented in this thesis is to investigate
the effect of size on the rotational capacity of reinforced high-strength concrete hinging
sections subjected to flexure.

To achieve this objective, 12 simply supported, under-reinforced high-strength con-
crete beams were tested. The variables were the effectiv- lepth and the concrete strength.
The beams were geometrically scaled relative to the bar diameter. The beams were subjected
to two point loading producing a constant moment test region which formed the hinging
region.

To better understand the behaviour, an attempt was made to obtain the stress-strain
curves and the stiess block parameters for the concrete in the compression zones of the
beams.



1.3 Organization of Thesis

A literature review is presented in Chapter 2. This outlines some of the rescarch done
on the rotational capacity and on the effect of size on various concrete members. The
experimental program is presented in Chapter 3. Details about the test specimens, test set-up
and the materials used are given in Chapter 3. Information about how the data from the
beam tests were analyzed is given in Chapter 4. Development of failure in the beams is
presented in Chapter 4 as well. The effect of size on the deformation capacity of the test
specimens is discussed in Chapter 5. The concrete stress-strain curves and concrete stress
block parameters for the beams tested are presented in Chapter 6. Finally, a summary and
conclusions are presented in Chapter 7.



2 Literature Review

2.1 Introduction

Different types of members under various loading conditions may behave differently
depending on their size. Itis particularly important to know the effect of size on the rotational
capacity of a hinging section. In this chapter, the importance of rotational capacity for the
overall behaviour of a structure is discussed. Previous research on the effect of size on the
behaviour of concrete members, ideas prompting the test program and the effect of various
variables on rotational capacity are discussed. Finally, the objectives of the research are
presented.

2.2 Rotational Capacity of Reinforced Concrete Sections and Members

The rotational capacity is a measure of the ability of a hinging region in a structure to
undergo inelastic deformations without significant loss of strength. Two rotational
capacities can be defined, rotational capacity of a section and rotational capacity of amember.
Rotational capacity of a section can be predicted with the principles of equilibrium of forces
and compatibility of deformations. Rotational capacity of a member is more difficult to
predict. Itis related to the spread of plasticity and it is affected by many variables.

In 1950s 2nd 1960s plastic design was widely used to design steel structures. Similarly,
so called "limit design" of structural concrete was proposed by several researchers (Sawyer,
1955; Emst, 1956; Baker, 1956; Macchi, 1960). Both methodsensure formation of sufficient
number of plastic hinges to transform all or part of a structure into a mechanism and hence
cause its collapse. As concrete is much less deformable than steel, the strain capacity of a
reinforced concrete hinging section can be exhausted well before full redistribution of
bending moments is achieved in the structure as a whole. Therefore, it is essential to limit
the rotations in the hinging regions to safe values. Extensive research has been done to
obtain these safe values and to predict the rotational capacities (Chan, 1962; Baker &
Amarakone, 1964; Roy & Sozen 1964; Mattock, 1965; Corley, 1966).

As plastic design is not suitable for designing complex structures, it was soon
downplayed. The results from these tests led to the clauses in modern concrete codes limiting
the ultimate concrete strain, the amount of flexural reinforcement, the allowable moment
redistribution, and to clauses defining the detailing of hinging regions.



2.3 Effect of Size on the Behaviour of Concrete Members

Bazant and Cedolin (1991) showed analytically that there is size effect on strength
and post-peak deformation of a concrete structure. They used the term structure in a broad
sense but in some cases failed to define clearly the type of structure and loading condition
referred to. Using fracture mechanics concepts, they analyzed the effect of size on the
strength of members where behaviour of concrete in tension is important. To explain size
effect on deformation of concrete cylinders and softening hinges, a stability approach was
used. These concepts will be summarized in the following paragraphs.

Using fracture mechanics, it was shown analytically that, release of stored fracture
energy causes a size effect on plain concrete subjected to uniaxial tension. The theory is
based on the hypothesis that the fracture front dissipates the same amount of energy per unit
area of fracture surface regardless of the member size. The larger the member, the greater
is the volume from which the energy is released. As a result, larger specimens would fail
at lower stresses. To prove this theory, Bazant and Cedolin reported tests of diagonal shear
failure of beams, punching shear failure of slabs, torsional failure of beams, and pull-out
failure of bars. It is important to mention that most of these tests were conducted on very
small specimens using less than full size aggregates. More convincing results were obtained
by Bosco et al. (1990a, 1990b) from tests of real size beams. Bosco et al. concluded that
the minimum steel percentage is inversely proportional to the beam depth for high-strength
concrete beams. They also observed that the brittleness was increased by increasing the
beam size and/or decreasing the steel area. Kani (1967) suggested that size is important for
the load carrying capacity of beams without stirrups failingin shear. Currently, atest program
at the University of Toronto is underway to investigate the effect of size on the shear capacity
of beams having longitudinal reinforcement alone. Note that in all these cases the behaviour
of concrete in tension is important in the overall behaviour of the members.

Bazant and Cedolin, define damage due to compression as continuously distributed
(smeared) fractures. Theoretically, damage localizes into a zone of the minimum possible
size permitted by the continuum model. Damage is considered as a source of structural
instability. When the stress-strain curve of a material is descending due to damage, insta-
bilities and bifurications can arise. In a uniaxial compression test, damage is assumed to
start at peak stress. It is shown theoretically that, after bifurication, the slope of the
descending branch is size dependent. To prove this, they used concrete prism test data
reported by van Mier (1986). This approach for material behaviour may be particularly
important for constitutive modelling.



van Mier (1986) reported results of uniaxial compression tests on plain concrete prisms
with varying heights and constant cross-section. These tests showed that, the shorter the
specimen, the flatter was the descending branch of the concrete stress-strain curve as shown
in Figure 2.1(a). When deformations, instead of strains, were plotted beyond peak stress,
almost identical descending branches were obtained regardless of the height of the specimen
as illustrated in Figure 2.1(b). It was reported that localized fractures were observed in some
of the specimens. Additionally, it was reported thatsize did not have any effect on strength.
These tests were performed using brush platens. When rigid steel platens are used, different
behaviour may be obscrved. van Mier concludes from the surface measurements of the
prism tests that: "... the experimentally observed strain-softening branch reflects the
response of the structure formed by the specimen and the complete loading system, and
cannot be considered as a material property.”

Koike et al. (1987) reported results of uniaxial compression tests on plain concrete
prisms having scaled sizes in all three dimensions. They concluded that, as the prisms get
larger, the compressive strength increases and the descending branch gets steeper.

Hillerborg (1988a, 1988b, 1989, 1990) analyzed the van Mier data using an approach
similar to Bazant and Cedolin. Hillerborg proposed a model for concrete under uniaxial
compression which assumes a stress-strain curve for the ascending branch and a stress-
deformation curve for the descending branch. As shown in Figure 2.2, the basis of the model
is that, after the peak stress, damage localizes in a band and while all the shortening takes
place in this band, the rest of the specimen is unloading and hence is elongating. Thus, the
strain is defined as,

e’=£+71- 2.1)

where € is the strain in the unloading portion of the specimen, w is the deformation from
the stress-deformation curve, h is the height of the specimen. Note that, w is equal to zero
at peak stress, is constant at failure and it is independent of the height. Thus, as the height
increases £’ decreases and the descending branch of the stress-strain curve becomes as shown
in Figure 2.1(a).



2.4 Size Effect on Rotational Capacity of Reinforced Concrete Sections

The strain and stress distribution for a reinforced concrete beam section at ultimate
moment capacity are shown in Figure 2.3. A rectangular stress block has been used for
convenience. The curvature at ultimate moment, y,, is defined as

v, = where C =-"I- and a= Ads (2.2
" c pl 085ﬁ-b -
Rearranging,
0.851.bB,¢..
v, 08B (2.3)
AL

In Equations (2.2) and (2.3), &, is the extreme compression fiber strain at ultimate
moment capacity, c is the neutral axis depth, a is the depth of the rectangular stress block,
B, is the ratio a/c, A, is the area of steel, £, is the stress in the steel, b is the width.

The rotation at ultimate, 6,, is defined as,
8, =v,l and l=kd (2.4)

where k is a constant, / is the length over which the rotation is measured, d is the effective
depth.

Substituting Equation (2.3) into Equation (2.4),
0.85£.bB,¢,,
o OBSbBEL,

5

The mechanical reinforcement ratio, w, is defined as,

Af,
W= 7hd (2.6)
Rearranging,

0.85P,¢...
0,= ——P—'——k 2.7)

w

and,
8,0 =0.85p,e.k (2.8)



In the conventional code approach, €, is assumed to be constant and j3, is a function
of concrete strength. Thus, Equation (2.7) suggests that hinging sections having the same
o and concrete strength will have the same rotation at ultimate. Equation (2.8) suggests
that normalized rotation at ultimate, 8,m, is constant for any hinging section having the same
concrete strength.

Hillerborg (1988a, 1988b, 1989, 1990), extends the stress-strain model discussed in
Section 2.3 to a beam under flexure by assuming that the compression block in a beam
behaves similarly to a uniaxially compressed prism. Assuming that the length k in Equation
(2.1) is proportional to the neutral axis depth for a beam and assuming that w/h dominates
the right hand side of Equation (2.1), the model leads to the conclusion that the extreme
compression fiber strain in a beam at ultimate is approximately inversely proportional to its

effective depth;
£ = constant (2.9)
d
Substituting Equation (2.9) into Equation (2.8),
6,0= confitant 2.10)

Fquation (2.10) suggests that the normalized rotation of a reinforced concrete hinging
section is inversely proportional to its effective depth. As a result, Hillerborg concludes
that the limiting extreme compression fiber strain should be size dependent.

Hillerborg, used the numerical version of the stress-strain curve given in Figure 2.2
in a moment-curvature analysis. He concluded that the rotational capacity of under-
reinforced concrete sections and the ultimate strength of over-reinforced concrete sections
are both inversely proportional to the effective depth. Hillerborg further suggested that the
size effect could be particularly important for high-strength concrete hinging sections as
steeper descending branches are obtained from high-strength concrete cylinder tests.

To prove his theory, Hillerborg used the beam tests reported by Corley (1966), and
plotted 6, (o — ') against 1/d where @’ is the mechanical compressicn reinforcement ratio,
see Figure 2.4. Equation (2.10) predicts the data should fall along a radial line similar to
the dashed line while Equation (2.8) predicts a horizontal line. In Figure 2.4, the datareported
by Mattock (1965) is also included. Mattock (1965) and Corley (1966) reported results
from reinforced concrete beams subjected to midpointloading. In the four papers published
by Hillerborg on the topic, two different definitions for6, were used. Both of these definitions
were based on 8,,, a plastic rotation calculated from measured deflections, which is a measure

7



of member rotational capacity rather than sectional rotational capacity. Because the tests
reported in this thesis studied sectional rotational capacity, a different definition of 9,
presented in the next paragraph has been used to plot Figure 2.4.

Both Mattock and Corley reported v, the curvature at ultimate, measured in a gauge
length equal to the effective depth, d. The values of 6, used in Figure 2.4 were calenlated
using the relationship 6, = y,d which gives a better measure of the sectional rotational
capacity. In a midpoint bending test, it is not possible to measure the exact value for the
sectional rotational capacity due to moment gradient and spread of plasticity. The values
of @ and @’ used to plot Figure 2.4 were obtained as follows. Using the reported curvatures
and extreme compression fiber strains, the ncutral axis depths and the average strains in the
tension and compression reinforcement were calculated. The stress-strain curves for the
tension reinforcement were reported by Mattock and Corley in terms of points defining a
tri-linear diagram. The ultimate tensile strength was not reported. Using the reported
parameters idealizing the reinforcement stress-strain curves, the force in the tension rein-
forcement at ultimate was calculated. It was observed that, in some of the beams, this
calculation gave steel stresses up to 2.5 times the yield stress, in those cases the steel stresses
were taken as 1.5 times the yield stress. These calculated tension steel stresses were used
to calculate . For the compression reinforcement, only the yield strength of steel was
given. In all the beams the strain in the compression steel was above yield strain and lower
than the strain at the onset of strain hardening which was assumed to be 10,000 microstrain.
Thus, ®" was based on yield force in the compression reinforcement.

Corley reported that nine of the beams developed noticeable inclined cracking at the
ultimate load or near the end of the test. Mattock also reported results from seven heams
subjected to two pointloading. These sixteen beams were excluded in the analyses presented
here.

In Figure 2.4, the dashed line shows the trend suggested by Hillerborg. Hillerborg’s
theory suggests that the dashed line should pass through zero and the slope is a material
property of concrete. Hillerborg assumed that the constant in Equation (2.10) is a multiple
of w, the deformation from the stress-deformation curve. As he assumed that the w at
ultimate is constant for concrete, it is valid to treat the slope of the dashed line as a material
property. The slope of this trend line depends on the definitions and assumption made in
calculating the 6,(® - ®’) values. As Hillerborg defined 8, differently in his four papers,
the slope had two different values in those four papers. The slope of the dashed line in
Figure 2.4 is shown 2s an example and is different from either of Hillerborg’s definitions.



Mattock defined the test variables as: the concrete strength, the reinforcement yield
strength, the effective depth, the span and the amount of tension reinforcement. Corley
defined the test variables as: the width, the effective depth, the span, the amount of tension
reinforcement and the amount of stirrups. From the test results, Corley concluded that
extreme compression fiber strain at ultimate moment, €, is a function of the amount of
stirrups inside the test region and the width to shear span ratio. One of the primary objectives
of Corley’s tests was to investigate the effect of size on the rotational capacity of hinging
regions. Using specimens having similar width to shear span ratios and similar amounts of
stirrups, Corley concluded that the direct effect of size on extreme compression fiber strain
was not significant.

When the normalized rotation, 8, (0 — '), is used as a measure of rotational capacity,

the variables listed above theoretically reduce to: the effective depth, the width, the span
and the amount of stirrups. To better understand the effet of these variables on rotational
capacity new variables were defined as: the stirrup ratio, A,/sb; the width to effective depth
ratio, b/d; the width to span ratio, b/L; and the effective depth to span ratio; d/L. It was
observed that 8,(® - @) was mostly s ngly affected by A,/sb as illustrated in Figure 2.5.
This suggests that the stirrups acted «» -onfine the compression zone, allowing larger strains
and hence larger 6,. Itis important to note that the smallest specimens had the highestA,/sb
as well, as shown in Figure 2.6. There was slight increase in 8,(w — @) with increasing b/L.
The effects of A,/sb and b/L on 8,(® — ) is expected as 8,(w — ') is directly proportional
to €., There were no apparent effects of b/d and d/L on 8,(w— ') in the Mattock and
Corley data. Although the effect of reinforcement is considered to be taken into account
by normalizing the rotation, plotting 6,(w~ ") vs (®—0") showed that 0,(w- ) had
slightly decreasing trend with increasing (@ -®"). There were no specimens having the
sameA,/sb,b/d,b/L ord/L butdifferent 1/d, suggesting that the test series were not designed
properly to investigate the size effect. Itis believed that scaled specimens having a constant
mechanical reinforcement ratio should be tested to find the effect of size on the rotational
capacity.

In Figure 2.7, €, vs 1/c is plotted 11 Mattock and Corley tests to check Hillerborg’s
theory that the extreme compression fiber strain is inversely proportional to the depth of the
compression block. Figure 2.7 does not support this idea. Very large strains would be
attributed to the confinement caused by the compression reinforcement, the stirrups and the
loading plate.



The relationship between €, and 1/d for Mattock and Corley tests is shown in Figure
2.8. The trend observed in Figure 2.8 is similar to that in Figure 2.4. The trend in Figure
2.4 is not surprising considering Figure 2.8. All the variables affecting €., and/or 6,( - ")
seem to combine their effects when the horizontal axis is 1/d.

Bazant and Cedolin use the stability approach discussed in Section 2.3 tor a softening
hinge. A hinge is said to be softening when moment is decreasing as the rotation increases.
Such beha -iour was observed in beams carrying large axial loads and in over-reinforced
beams. It is analytically shown that the hinge rotation at the stability limit, 8,,. which is
equal to 0,, is inversely proportional to the beam depth. The discussion of Hillerborg theory
by the writers is:"... the assumption that the compression zone behaves as a uniaxially
compressed beam seems 10 be an oversimplification. So does a uniaxial treatment of the

compression fracture at bending, since this rype of fracture is inher ently a three-dimensional
phenomenon”.

Koike et al. (1987) reported results from over-reinforced scaled beam tests under two
point loading. The study was combined with the scaled prism tests mentioned in Section
2.3. They concluded that the size of the specimens affected the moment-rotation curves
due to the size effect of the concrete in compression zone. The moment-rotation curves
given in the paper seem to be very close to each other regardless of the size of the beam.

Koike et al. (1989) reported results from 75 scaled beam tests under midpoint loading.
Some of the beams were under-reinforced and some were over-reinforced. They concluded
that moment-rotation curves became more brittle with increasing size. The curves given in
this paper do not seem to show any significant size effect on rotational capacity. It was
interesting to note that, for highly reinforced beams, the normalized ultimatc moment,
M,/bd?, seemed to decrease with increasing size.

Kotsovos (1982) reported results from beam tests under third point loading. Using
the lateral strains and axial strain; measured from beam tests together with those from
uniaxial compressive cylinder tcsts, Kotsovos concludes that the rotational capacity in a
beam is due to the triaxial state of stress in the compression zone rather than the descending
branch behaviour observed in a cylinder. This conclusion suggests that concrete in the
compression zone of a beam and concrete in a uniaxially loaded specimen do nci behave
the same way.
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2.5 Objectives of Testing

As discussed in previcus sections, the effect of size on the behaviour of a concrete
member is not clear. The reason for different conclusions on size effect on the strength of
uniaxial compression is believed to be due to the various loading and reinforcing arrange-
ments used in the tests. Regardless of the testing conditions, all the reports seem to agree
on the effect of size on the descending branch behaviour of a uniaxially loaded specimen.
There is evidence to suggest that, for tension critical cases, the size of a member is important
on its strength and deformation. In the case of rotational capacity of hinging sections, there
is no clear evidence whether size has a significant effect on the behaviour or not.

The primary question is, "Is size effect a material property for concrete?". If size effect
is a material property then what kind of test is appropriate to determine this property? It
seems that the behaviour of concrete in different size members under various type of loading
conditions is member dependent.

Rather than trying to find whether size effect is a material property, it may be more
useful to know the type of members and loading conditions affected by the member size.
The main objective of the test program presented in this thes's is to investigate the effect of
size on the behaviour of concrete in the compression zone of a section under flexure. The
rotational capacity of a hinging reinforced concrete section may give the required infor-
mation for this purpose. As rotational capacity is important for the reasons disci ssed in
Section 2.2, knowledge of the effects of size on the rotational capacity of hinging sections
is essential for the safety of concrete structures. In addition, an attempt will be made to
obtain the stress-strain curves and the stress block parameters for the concrete in the com-
pression zone of the beams.
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3 Experimental Program
3.1 Introduction

The experimental program consisted of tests of 12 simply supported, under-reinforced.
high-strength concrete beams and related material tests. The beams were tested under two
point loading. The variables involved were the effective depth and the concrete strength.
Three different effective depths and two different concrete strengths were planned to be
ased. In order to have a feel for the scatter of the data, the combinations were duplicated.

3.2 Test Specimens
3.2.1 Proportioning of Specimens

As discussed in Section 2.4, many variables may affect the rotational capacity of a
reinforced concrete beam. These include: the effective depth, d; the stirrup ratio, A,/sb; the
width to effective depth ratio, b/d; the effectivz depth to length ratio, b/L; and the mechanical
reinforcement ratio, . To isolate the effect of d on the rotational capacity, all the variables
other than d should be kept constant. Because the size effect is assumed to come from the
behaviour of concrete in compression, the compression contribution to the overall behaviour
should be maximized. Thus, heavily reinforced, but still under-reinforced, specimens should
be tested.

Three different sizes of specimens, namely: small, medium and large, were tested. To
obtain the sectional rotational capacity beams were subjected to two point loading. This
also allowed A,/sb to be set equal to zero. The mechanical reinforcement index, ®, was
intended to be kept constant. After some preliminary calculations, for the small beams, it
was decided to use 4#15 bars in one layer and 8#15 bars in two layers for target concrete
strengths of 50 MPa and 100 Mpa, respectively. The beam width for the small beams was
determined as 150 mm by the bar spacing requirements. In order to isolate the effects of
the descending branch of the concrete stress strain curve on the behaviour, d was chosen in
such a way that failure would take place while the steel is still at its yield plateau. Assuming
a linear distribution of strains and choosing £,/€. at ultimate moment equal to 2, the corre-
sponding d can be calculated as 230 mm for the small beams. At this stage, the bar diameter
to effective depth ratio, ¢/d, and the width to effective depth ratio, b/d, are known and the
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section dimensions for the medium and large beams can be scaled up for #25 bars and #35
bars, respectively. This was done using the theoretical bar diameters rather than the nominal
diameters implied by the bar size numbers.

The typical beam configuration is shown on Figure 3.1. Selecting a shear span to
effective depth ratio, a/d = 4, with adequate stirrups ensures flexural failure and provides
adequate development length for the longitudinal steel. To have a long test region, the
distance between the load points was chosen to be equal to 6d. The longitudinal rein-
forcement should be extended beyond the zero moment section to anchor the hooks ade-
quately. Choosing d for the hook development length and supplying additional stirrups at
the hook locations satisfy all the requirements given in the ACI code (1989). Standard 180°
hooks were provided at the ends of the longitudinal reinforcement in the lower concrete
strength beams. In the higher concrete strength beams. the botiom layer of reinforcement
had 90° hooks and the upper layer of reinforcement had 180° hooks. The total length of the
beams was L = 16d +4¢. The resulting specimen dimensions together with the abbreviation
descriptions are given in Table 3.1. The clear cover to the longitudinal reinforcement in the
beams were scaled; 44, 70, and 97 millimeters for small, medium, and large beams,
respectively. All the spacings between the bundles of bars were also scaled. Figure 3.2
shows the sections and the side view of the beams in scale. It is important to mention that
the geometry of the beams were scaled without scaling the size of the aggregates used.

3.2.2 Details of Specimens

Many previous tests were affected by the strain concentrations caused by the loading
plates on top of the specimens. These strain concentrations lead to premature failures close
to the loading points. To avoid this, the beams were loaded through the corbels shown in
Figure 3.1. The length of the corbels in the direction of longitudinal axis of the beams was
equal to twice the beam width. The corbels were designed by a simple strut-and-tie model.
Threaded rods extending through the corbels were used to attach lifting lugs to handle the
specimens.

The shear spans were reinforced for shear ignoring the contribution of the concrete to
the shear carrying capacity. For placing convenience, U-shaped stirrups with standard 135°
hooks were used. The stirrups in the corbel regions were designed to lift the entire corbel
load to the top of the beams as the beams are effectively loaded from their bottoms. Details
of the shear span and corbel reinforcement are given in Table 3.2.
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Forms were made out of plywood and wood. Battens were provided on the sides of
the forms to prevent bulging. All the beams were cast upside down. Casting upside down
has a number of advantages. Threaded rods at appropriate locations at the top of the forms
were used both to support the steel cage at the correct locativn and o keep the top of the
forms at the desired width. In this way there was good control on the location ot the lon-
gitudinal reinforcement and on the width of the heams throughoat theis lengths. Another
advantage of casting the beams upside down is that the uniformity and quality of the concrete
in the compression side of the beams was not affected by bleed water. Figure 3.3 shows
the formwork and the reinforcement for a large higher concrete strength beam.

3.2.3 Beam Designations

Each beam was referred to using two letters and a number. The first letter was S, M
or L for small, medium or large. The second letter was L or H for lower strength (50 MPa)
or higher strength (100 MPa) concrete. The number 1 or 2 referred to which of the two
duplicate beams the beam was. See Table 3.1.

3.3 Materials
3.3.1 Concrete

There were basically two different mix designs; one for the lower strength concrete
(targetstrength of 50 MPa at 56 days) and one for the higher strength concrete (targetstrength
of 100 MPa at 56 days). In designing the mixes the procedures given by P-C. Aitcin and
the proposed ACI 211.4R-XX report "Guide for Selecting Proportions for High Strength
Concrete" were followed. The target for the lower strength concrete was reached without
difficulty. The trial batching experience showed that the highest possible concrete strength
using local aggregates and no silica fume is around 90 MPa in 56 days. After casting the
small and medium specimens, some minor changes were made in the higher strength concrete
mix design. All the mix designs are given in Table 3.3.

Bagged Type 10, Normal Portland Cement, was used to cast the specimens. Cement
supplied by Lafarge Canada Inc. was used to cast the small and medium beams. Inland
Cement supplied the cement for casting the large beams. Information about both cements
is given in Table 3.4.
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Local sands and coarse aggregates were used to cast the beams. The results of the
petrographic analysis of sand indicated that it was composed of 21.7 % orthoquartzite, 63.0%
quartzite, 4.9% sandstone, 1.5% trap (basalt), 1.9% granite. These "good" rock types formed
93% of the total sand. Similarly, the coarse aggregate was composed of 62.6% ortho-
quartzite, 14.1% quartzite, 10.6% hard sandstone, 5.6% trap (basalt), 4.0% rhyolite, 0.1%
granite. These "good" rock types formed 97% of the total coarse aggregate.

The laboratory mixer could produce a maximum 0.2 cubic meter batch. Using the
laboratory mixer required 2 batches for the small beams, 5 batches for the medium beams
and 13 batches for the large beams.

All the beams except ML2 and MH2 were cast using concrete batched in the laboratory.
Because the large beams required a large quantity of concrete it would have been much
easier to cast them using ready-mix concrete. In order to experiment whether local suppliers
could produce ready-mix high-strength concrete, beams ML2 and MH2 were cast using
concrete batched by transit mix. Bulk Type 10 Inland Cement was used in both mixes.

The laboratory batching experience showed that more uniform mixes can be obtained
by the following batching scheme. First put all the sand, cement, water and the super-
plasticizer into the mixer and mix until a slurry is obtained. The mix will look dry at the
beginning but after mixing couple of minutes, if there is enough superplasticizer and water,
the mix will suddenly turn into a semi-liquid. Then, add the coarse aggregate and mix for
another three to four minutes. Slump for these mixes is not a good measure of workability.
The workability of the mix can be checked rather qualitatively inside the mixer. Check the
concrete by running it through fingers or stopping the mixer and pressing on the surface of
concrete inside the mixer. If it feels like a waterbed the mix is workable and ready to place.
Retempering mixes at this stage gives successful results. For mixes having high super-
plasticizer amounts, using water or superplasticizer to retemper the mix does not seem to
make a difference. If the total amount of water and/or superplasticizer is added at the
beginning, a more workable mix is obtained.

The beams were cast in layers and segments. Casting started usually at the north end
of the beam. For example; dividing the large beams into three segments, the two shear spans
and the test region, gave almost equal segments. First three batches were placed in the north
shear span and flow of concrete into the test region was prevented by putting wooden blocks
supported by one of the stirrups inside the corbel region. Next three batches were placed
in the test region again flow of concrete to the next segment was prevented. Then the
remaining part of the north shear span was filled. Next three batches were placed in the
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south shear span and then the remaining part of the test region and the south shear span were
filled. The largebean were castintwo totwoanda half hours. No cold joints were formed
during casting as the time between casting two layers or two segments was no longer than
half an hour. The concrete was vibrated for short periods during casting of each layer and
was vibrated for longer from one end to the other after the form was filled up completely.
Moisture contents of the aggregates were measured every three batches and the corre-
sponding correction: were made for the next baich using a spreadsheet program. Similar
procedures were followed to cast small and medium size beams. Cores drilled from the
ends of the medium and large beams for another research project showed slight variation
on concrete strength through the length and depth of the beams. The details about the core
data are given in two papers by Bartlett and MacGregor (1993a, 1993b).

The concrete in ML2 was supplicd by a local ready mix company. The mix design
for ML2 was used by the supplier for another job. The target strength for this mix was 42
MPa at 56 days. ML2 cylinder strength reached 52.0 MPa at 28 days and as a result beam
ML2 was tested much earlier than anticipated.

The mix design for MH2 was similar to that for MH 1. After three unsuccessful trials,
the fourth mix was used to cast beam MH2. The first three batches were from a wet batching
plant and the fourth one was from a dry batching plant. In a wet batching plant all the
ingredients are mixed in a mixer at the plant and the concrete is transferred to a truck. Ina
dry batching plant, all the ingredients are loaded to the drum of the truck where the mixing
takes place. The first three mixes had serious segregation of the coarse aggregatc. While
the concrete at the bottom of the bucket was hardening almost immediately, a lot of water
was collecting on the top. As the time between batching and casting would be about half
an hour some retarder was used in the first trial. All the superplasticizer was added at the
batching plantas well. In the second trial no retarder was used, again all the superplasticizer
was added to the mix at the batching plant. In the third trial all the superplasticizer was
added to the tmck in the laboratory. But as there was water inside the drum left over from
the washing of the previous mix, again the result was unsuccessful. In the fourth trial the
dry batching plant was used thinking thatamount of water inside the mix would be controlled
much better. All the excess water in the drum was emptied. Five liters of superplasticizer,
which is one quarter of the total amount that was anticipated, was added at the batching
plant. When the concrete arrived to the laboratory 2.5 liters of superplasticizer was added
to the truck. In total 37% of the superplasticizer anticipated based on laboratory batching
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was added to the mix. Trial batching in the laboratory with the cement used in these 1aixes
showed that this amount of superplasticizer would give a mix that was impossible to work
with.

The quality control of the ready-mix concrete supplied for this job was very poor.
There are many sources of error. As there is very little water in high-strength concrete
mixes, errors in weighing water and errors in moisture content of aggregates influence the
outcome considerably. Taking moisture contents of aggregates from the bottom of the bins
and using larger volume mixes would lead to more successful results.

Along with each beam, ten 100 mm by 200 mm cylinders for uniaxial compression
tests, three 6" by 12" cylinders for split tensile strength tests and three 100 mm by 100 mm
by 840 mm beams for notched beam tests were cast. These specimens were cast using part
of the batch filling the test region. In cases where more than one batch of concrete was used
to cast compression zone of the test region, concrete from each of these batches were used
to cast the specimens. When casting was complete, the beams and the specimens for material
property tests were wrapped in polyethylene sheets. The beam and the specimens were
stripped after 24 hours. The beam was then wrapped with polyethylene sheets for one week.
The other specimens were placed in a curing tank in lime saturated water at laboratory
temperature (about 20 °C) until one or two weeks before the beams were tested. They were
tested after letting them dry for at least 7 days. The cylinder tests were carried out on the
day of testing of the accompanying beam. The split cylinder tests and the notched beam
tests were carried out whenever the scheduling in the laboratory allowed. The results from
these tests are given in Table 3.5. The specimens are grouped into three groups relative to
their cylinder strengths.

Typical stress-strain curves from cylinder tests for lower and higher concrete strengths
are shown in Figure 3.4. The ends of the specimens were lapped. The tests were carried
out by a system where a computer program written under Labview 2 creates a differential
signal between the load signal and the displacement signal giving a control parameter for
loading. This allowed the negative slope of the descending branch of the high-strength
concrete stress-strain curve to be recorded. The rate of loading was around 12 microstrain
per second. The strains were measured by the LVDT inside the testing machine. The
deformations of the loading system itself were calibrated by loading a steel cylinder with
strain gauges attached. The deformations given by the LVDT minus the deformation in the
loading system gave the shortening of the concrete cylinders.
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Typical curves obtained from notched beam tests are shown in Figure 3.5. To obtain
the fracture energy. Gy, of concrete the RILEM Draft Recommendation ( 1986) was followed.
The beams were sawn with a stiff diamond saw under wet conditions. The depth of the
notches were equal to half the beam depth. The thickness of the notches was 3 mm. The
specimens were tested under three-point bending. Some details are shown in Figure 3.5.

Regardless of whether it was a uniaxial compression test, a split cylinder test, or a
notched beam test, distinctly different failure surfaces were observed for lower and higher
concrete strength specimens. The lower concrete strength specimens developed irregular
failure surfaces including a large amount of bond failures between the mortar and the
aggregates. The failure planes in higher concrete strength specimens were nearly plane and
passed through the aggregate and the mortar.

3.3.2 Reinforcement

Longitudinal tensile reinforcing bars ranging from #15 to #35 in size were used in the
beams. To support the stirrups in the shear span #15 bars were used regardless of the size
of the beam. Only coupons from the longitudinal tensile reinforcement were tested. Typical
coupon tests are shown in Figure 3.6. As steel strains in excess of 15,000 microstrain werc
not expected in the beam tests, some of the coupons were not tested further to protect the
tension grips of the testing machine. Because the #15 bars used in the small specimens were
cut and bent in the laboratory it was possible to test coupons for every individual beam. The
coupon tests of #15 bars showed that all the steel used in the small beams came from the
same lot. Thus, average yield bar force values were used for analysis purposes.

Coupons from #25 and #35 bars used in the medium and large specimens were cut by
the supplier at the time the bars were bent. The supplier grouped the coupons in three groups.
One group forlower concrete strength beams, two groups for higher concrete strength beams;
one for upper layer and one for lower layer of reinforcement. As the coupon tests for #25
bars gave unreasonable results, judging from the observed behaviour of the medium beams,
coupons were cut from all the longitudinal bars at one end of the beams and tested. All the
#35 coupons cut by the supplier and the coupons extracted from one end of beam LH2 were
tested. The coupon tests for the #35 bars showed that there were two lots of steel, see Figure
3.6. The average static yield bar force per bar as well as the average bar force per bar at the
strain corresponding to the ultimate moment, which is used for analysis purposes, are given
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in Table 3.6. The average bar force per bar at the strain corresponding to ultimate moment
was computed as the total force based on the measured strains in the beam tests divided by
the number of bars.

The values of the mechanical reinforcement rato, o, the ratio of tension reinforcement,
p and the ratio of actual to balanced steel ratio p/p, .caiculated using the ACI code approach)
valuesare given in Table 3.6. For reinforced concrzte beams p by itself is not too meaningful.
The mechanical reinforcementindex, ®, is a bettcr measure of the reinforcementin a section.
The higher concrete strength beams had larger @ values as concrete strengths around 90
MPa were achieved instead of 100 MPa. The medium beams had larger p values due to
rounding off the scaled effective depth and width of these specimens.

3.4 Testing
3.4.1 Test Set-up and Instrumentation

The beams were tested in the loading frame shown in Figure 3.7. In the small and
medium beam tests the north reaction was a roller support and south reaction was a restricted
roller support, effectively a hinge support. In the large beam tests, both reactions were roller
supports with stops provided at both ends. Figure 3.8 shows these support conditions.
Depending on the size of the beam, different spreader beam arrangements were used to load
the beams through the corbels. The specimens were loaded by two 1780 kN capacity
hydraulic jacks which were pressurized by an "air on oil" system.” Flow of oil to each jack
was controlled separately to maintain equal loads. For the sake of safety, lateral bracing
not touching the specimens were provided as there is always a chance of rigid body rotation
of the specimen if it is not aligned properly.

All the loads and reactions were measured using various load cells. It was interesting
to note that Kyota type load cells were very sensitive to alignment. As the statics were not
satisfied in testing of beam SL1, these load cells were calibrated again after the test. Putting
a shim of thickness equal to 0.13 mm under one side of the load cell caused about 10% error
in the readings. These load cells were replaced by Strainsert flat type load cells and this
type of load cells were used for all the other tests.

Centerline deflections were measured by a cable transducer attached to the bottom of
the beams.
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The total angle change in the test region was measured by a pair of rotation meters
attached to 1/2" embedded threaded rods on the east face of the beams. These threaded rods
were located above the neutral axis at 0.26d from the top surface. The rotation meters were
located d/2 away from the corbels which put them 3.7d apart. A rotation meter consisted
of two arms and an LVDT. The bottom arm is fixed to the specimen. The arm at the top
pivots at one end and at the other end there is an adjusting screw and an LVDT attached.
Before every reading, the upper arms of the rotation meters were leveled by using the spirit
level attached. This way the LVDT would read the change in the vertical distance from
which the angle change could be computed. Figure 3.9 shows the rotation meter arrangement
for a small beam.

In the smal! and medium beams, the south reaction was a pin support and the change
in shear span was measured by measuring the movement of the south load point relative to
afixed reference. For this purpose an LVDT was used. In large beams, change in the shear
span was measured by two cable transducers one of which measured the increase in the
distance between the two reactions and the other measured the decrease in the distance
between the two load points. In either method symmetry of deformations is assumed. The
shear spans increased by 1 to 2.5 percent of the initial shear span length, 4d, during the test.
The increased length was used to compute the moments in the beams. See Section 4.3.2

for typical contribution of the moment due to increase in the shear span to the total ultimate
moment.

On the west face of the beams, three to five pairs of LVDTSs were used to measure the
curvatures and the neutral axis depths at different sections along the test regions. At the
bottom of the beams these were attached to the embedded threaded rods carrying the steel
cage during casting. On top of the beams, threaded rods were embedded during casting
above the neutral axis at a distance of 0.175d below the top surface of the beams. In the
small beam tests, instead of the top LVDTs a 5" Demec gauge was used. The side LVDT
arrangement for a large beam is shown in Figure 3.10. The gauge length for the LVDTs
was around 300 mm. Actual gauge lengths, measured from the beams before testing, were
used in the analysis of the testdata. The LVDTs could read to the nearest 0.01 mm allowing
strain to be measured to the nearest 30 microstrain.

Strains in the longitudinal reinforcement were measured by 5 mm foil strain gauges

attached on top and bottom of every bar. It was observed that upon yielding of the rein-
forcement the strain gauges started to give unreasonable values.



Strains on the top surface of the beams were measured by a 2" Demec gauge. The
Demec targets were attached by sealing wax or hot glue. Regardless of the size of the beam,
the Demec targets were located 1" apart. Every reading was assumed to give average strain
at a location at the middle of the gauge length. The 2" Demec gauge had an accuracy of 25
microstrain. The total number of readings taken at each set were 39, 59, and 89 for small,
medium, and large beams, respectively.

Figure 3.11 shows the overall view of the test set-up for a large beam.

3.4.2 Test Procedure

The specimens were aligned and plastered to the reaction point knife edges. The
spreader beams were also aligned and plastered to the corbels. Special care was taken to
make sure that the loads and the reactions were all on the same line and shear spans had
cqual lengths. The geometry of the test regions were measured at five or six different
sections. The actual dimensions of the test regions were within one to two millimeters of
that was intended. All the instrumentation was attached to the beams after they were aligned
in the test frame. Thus, the measurements do not include the effects of the dead load.

Atevery load step the data other than the Demec gauge readings were recorded by the
data acquisition system. The data were recorded within two to three minutes after the loading
had been stopped. The Demec gauge readings were recorded on a spreadsheet program
using the computer. Additional electronic data readings were taken after every Demec gauge
reading set and after other long pauses. At every second or third load step cracks were
marked.

The load steps were adjusted such that yieldi..g would occur in 10 to 15 load steps.
Loading speed before yielding was adjusted such that every load step would take about 15
minutes. Two to three sets of Demec gauge readings were taken before yielding. The total
time until yielding was about 3 to 4 hours.

After yielding the speed of loading was slower. Depending on the size of the beam a
loading rate of 2 to 5 mm of centerline deflection per 15 minutes was used. The loading
rate was even slower towards the end of the tests. Depending on the deformation capacity
of the beam, testing took between 8 to 12 hours to reach failure. It is believed that the
loading rate was siow enough that there was no dynamic effect. In total, in the entire test,
five to seventeen Deinec gauge reading sets were taken.
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Table 3.1

Specimen Descriptions

Specimen | Barsize | Size | Concrete| b(mm) | d(mm) | h(mm) | L (mm)
(inm) Strength
SL1, SL2 16.0 Small | Lower 150 230 282 3740
SHI, SH2 16.0 Small | Higher 150 230 02 3740
MLI,ML2| 25.2 |Medium | Lower 235 360 443 5860
MHI1,MH2| 25.2 |Medium | Higher 235 360 475 5860
LL1,LL2 35.7 Large | Lower 335 515 630 8380
LH1, LH2 35.7 Large | Higher 335 515 678 8380
Table 3.2
Stirrup and Corbel Reinforcement Details
Specimen Stirrups Corbel Reinforcement
Shear Spans Transverse, Stirrups
SL1, SL2 #10 @ 115 mm 2#10,2#10
SH1, SH2 #10 @ 115 mm 2#15,3 #10
ML1, ML2 #10 @ 160 mm 3#10,4 #10
MH]1, MH2 #15 @ 160 mm 3#15,4 #15
LL1, LL2 #15 @ 230 mm 4 #15,4 #15
LHI, LH2 #15 @ 115 mm 5 #20, 8 #15
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Table 3.3
Concrete Mix Designs

SPECIMEN(S)
SL1,SL2, ML1 ML2 SH1, SH2 MH2
LL1, LL2 MH1 LH1, LH2
Water/Cementitious 0.483 0315 0.27 0.27
Cement (kg/m®) 410 355 550 550
(Type 10)
Fly Ash (kg/m") - 90 - -
Water (/m*)! 198 140 150 148.5
Coarse Agg (kg/m?) 1088 1040 1100 1100
Min-max size (mm) | 5-19 uncrushed | 5-14 crushed | 5-14 crushed | 5-14 crushed
Fine Agg (kg/m*) 669 640 667 595
Fineness modules 2.3 - 2.7 27
SPN (/m)* - - 21.2 16.2
WRDA (Um®) * - 2.1 - -
DARAVAIR (V/m®) * - 0.2 - -
DARACEM (Vm’) ® - 1.6 - -
Air (assumed) 1% 5% 2% 2%

1 Water content includes water in the admixtures.
2 A poly-naphthaline sulfate based superplasticizer produced by CONCHEM. Contains

70% water by volume.

3 Water reducing admixture produced by W.R. Grace & Co. of Canada Ltd.. A non-
cloride, aqueous solution of highly purified metallic salts of lignin sulfonic acids.

4 Air-entraining admixture produced by Grace. An aqueous solution of completely neu-

tralized vinsol resin.

5 A high-range water reducing admixture produced by Grace. Blend of sodium and

potassium salts, lignosulfonate and polymerized naphtalene sulfonic acid.
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Table 3.4
Some Properties of Cements Used

Cement C,S (%) | CS (%) | C,A (%) | C.,AF (%) | Fineness (cm*/g)

Lafarge Type 10 55.1 18.2 6.4 8.7 4180

Inland Type 10 49.0 22.0 8.6 8.9 4161

Table 3.5
Concrete Strength Test Data
Specimen f. (MPa)*® f, (MPa)’ Gr(N/m)*®

SL1 51.1 @ 56 days 4.6 @ 90 days 178.5 @ 138 days
SL2 51.1 @ 56 days 4.0 @ 83 days 182.7 @ 131 days
MLI 52.7 @ 56 days 4.3 @ 106 days 193.0 @ 104 days
ML2 54.1 @ 37 days 3.7 @ 99 days 233.5 @ 97 days
LL1 54.2 @ 52 days 4.2 @ 85 days 219.2 @ 160 days
LL2 43.8 @ 44 days 3.8 @ 70days 218.4 @ 145 days
MH2 73.4 @ 73 days 4.6 @ 78 days 211.9 @ 76 days
SH1 90.1 @ 56 days 6.5 @ 76 days 216.5 @ 124 days
SH2 85.6 @ 56 days 5.5 @ 69 days 1939 @ 117 days
MHI1 90.3 @ 56 days 6.2 @ 92 days 255.7 @ 90 days
LHI 90.3 @ 46 days 5.6 @ 62 days 2242 @ 137 days
LH2 87.7 @ 47 days £2 @ 55days 233.4 " 130 days

6 Average of 6 to 8 cylinder tests.
7 Average of 2 to 3 split cylinder tests.
8 Average of 2 to 3 notched beam tests.



Table 3.6

Reinforcement Coupon Test Results

Average Static Average Bar
Specimen o’ p p/p, Yield Bar Force | Force per Bar at
per Bar (kN) Ultimate Moment

(kN)

SL1 0.186 0.0232 0.54 81.98 81.98

SL2 0.186 0.0232 0.54 81.98 81.98

MLI 0.184 0.0236 0.55 204.74 204.74

ML2 0.177 0.0236 0.53 202.00 202.00

LL1 0.183 0.0232 0.53 408.80 428.00

LL2 0.217 0.0232 0.58 408.80 409.50

MH2 0.259 0.0473 0.78 200.81 200.81

SH1 0.211 0.0464 0.64 81.98 81.98

SH2 0.222 0.0464 0.68 81.98 81.98

MH]1 0.210 0.0473 0.64 200.81 200.81

LH1 0.219 0.0464 0.63 406.10 426.00

LH2 0.229 0.0464 0.67 412.20 432.40

9 Calculated using the average bar force per bar at ultimate moment.
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Figure 3.3 Formwork and Reinforcement for a Large Beam
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Figure 3.10 LVDT Armrangement for a Large Beam
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Figure 3.11 Overall View of the Test Set-up for a Large Beam
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4 Test Results and Observations

4.1 Introduction

The material presented in this chapter gives information about how the data from the
beam tests were analyzed and prepares the basis for further analyses done in Chapter 5 and
Chapter 6. The behaviour of the beams and the development of failure are explained.

4.2 Definitions

While investigating the flexural behaviour of a reinforced concrete section, it is
important to define certain points on the load deformation relationship. These points are
those corresponding to yield, ultimate moment, ultimate rotation and failure. The definitions
used are illustrated for moment-rotation relationship in Figure 4.1. The stress-strain curves
for all the reinforcement used had definite yield points. Thus, the moment-rotation diagrams
for the lower concrete strength beams, which had one layer of reinforcement, had definite
yield points. For the higher concrete strength beams the yielding occurred gradually as there
were two layers of reinforcement. The yield load for these beams is defined as the load at
which both layers of reinforcement had yielded. The yield deformation is calculated by
averaging the deformations corresponding to the yielding of the first and the second layers.
This yield load and deformation would be obtained if all the steel was in one layer instead
of two layers. The ultimate moment is the peak load carrying capacity reached by the beam.
After the peak of the load deformation curve the beams generally had some capacity to
deform without significant reduction in load. Recognizing this, the ultimate deformation
is defined as the: dvformation at which the load starts to drop significantly. The failure point
is the last data recorded before total loss of load carrying capacity.

4.3 Load-Deformation Relationships
4.3.1 Load-Centerline Deflection

Typical load-centerline deflection curves using the load and reaction point load cells
are given in Figure 4.2. Load-centerline deflection curves were important for monitoring
and controlling the tests. A simple moment-curvature spreadsheet program was developed
and used to predict the load-centerline deflection behaviour of the beams. For symmetry
of the tests and to maintain zero shear in the test region, special attention was paid to make
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surc that the loads and reactions were equal during testing. The centerline deflections at
yield, 8,, at ultimate moment, 8, at ultimate rotation, J,,, and at failure, d,, are given in
Table 4.1.

The deflection ductility index, p, = 848,, for high-strength concrete beams has been

reported to be much lower than that for normal strength concrete beams (Leslie et al. 1976).
In light of this conclusion, Leslie et al. have suggested that the maximum allowable amount
of reinforcement for a beam, given in the ACI code as 75% of the balanced reinforcement,
should be reduced to 35% of the balanced reinforcement for high-strength concrete beams.
The deflection ductility indices for the beams tested are given in Table 4.1. The i, values
are compared with the beam tests reported by Leslie et al. (1976) and Shin et al. (1989) in
Figure 4.3. Both test series consisted of simply supported beam tests under two point loading.
The pure bending regions in the Leslie et al. beams had only tension reinforcement with
concrete strengths between 64 MPa and 81 MPa. The pure bending regions in the Shin et
al. beams were reinforced as columns; equal reinforcement at four comers with closely
spaced stirrups (76 mm or 152 mm spacing) and had concrete strengths between 28 MPa
and 103 MPa. In their paper, Shin et al. concluded that reducing the stirrup spacing from
152 mm to 76 mm did not improve performance. The University of Alberta tests did not
show any significant difference between the ductilities of the 50 MPa concrete beams
(p/py < 0.6) and the 90 MPa concrete beams (p/p, > 0.6) other than that expected due to
change in p/p,.

In order to have moment redistribution a minimum deflection ductility index of 4 is
required. Itis believed that a high-strength concrete section having compression steel and
at least a minimum amount of stirrups would satisfy the required ductility criteria.

4.3.2 Moment Carrying Capacity

The total moment carried by the beams could be divided into three parts. The first
part is the moment due to the dead weight of the beam. The dead weight of the beams were
not measured. The moment due to the dead load was calculated from the geometry of the
beams and assuming a unit weight of 24 kN/m’. The second part is the moment calculated
by multiplying the average of the loads and/or reactions by the initial shear span which is
equal to four times the effective depth, 4d. The third part is the moment due to the increase
in the shear span. The contribution of each part forming the total ultimate moment is given
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in Table 4.2. The dead load moment was | to § percent of the total ultimate moment and
the contribu*ion of the moment due to change in shear span was 1 to 2 percent of the total
ultimate moment.

The ratio of iest to ACI code values for ultimate moment, M,, are given in Table 4.2.
In calculating code values, the average bar force at ultimate moment, £,. given in Table 3.6
and the concrete cylinder strengths, f., given in Table 3.5 were used in Equation (4.1).

- a . __’i:f’_
M,,-Aj,(d—EJ—AJ,(d l.7f,b) 4.1

In Equation (4.1), A, is the area of steel, d is the effective depth, b is the width, a is the depth
of the rectangular stress block. The steel stress has been taken as f; rather than f, in Equation
(4.1) since in some cases the steel had strain hardened. The average test to code ratios tor
ultimate moment and the standard deviations for all beams, for lower concrete strength
beams and for higher concrete strength beams are given in Table 4.2, The value for beam
MH2 is not included in either group because its concrete strength fell between the lower
and higher strengths. The average test to code value for the lower concrete strength beams
is slightly lower thar that of the higher concrete strength beams. The standard deviation
for higher concrete strength beams is remarkably low. The ACI code predicts the ultimate
moment carr;ing capacity of the beams tested quite well.

The moment values at yield, M,, at ultimate moment, M,, at ultimate rotation, M,, and
at failure, M,, are given in Table 4.3. Up to 10% increase in moment was observed after
yielding. The moment at ultimate rotation was within 1.2% of the ultimate moment.

4.3.3 Curvature and Rotation Measurements

The curvatures and rotations in the beams were measured in two different ways; using
the rotation meters and using the side LVDT arrangements.

The two rotation meters measured the angle changes occurring at the two ends of the
test region. Adding the angle changes at the two ends gave the total angle change takiny
placein the testregion. Dividing the total angle change by the distance between the rotation
meters, 3.7d, gave the average curvature along the test region. Due to the symmetry of thz
test, equal rotations would be expected at the two points where the rotations were measured
Figure 4.4 shows typical rotation vs centerline deflection plots using the two rotation racters.
In all the tests the two rotation meters measured about the same rotations at the two ends of
the test regions. The curves could be defined by two straight lines; one from zero to yield
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and another from yield to failure. Towards the end of the tests the rotation meters were
detached for protection. The data were extrapolated using the centerline deflections and
the last 5 to 10 rotation readings prior to removing the rotation meters.

Using the LVDTs on the side, curvatures at different segments along the test region
were measured. These curvatures were affected by their gauge lengths, number of cracks
inside the gauge lengths and variation in the crack openings. Towards the end of the tests
the LVDTs were detached and data was not further extrapolated.

The curvature measurements using these two methods are compared in Figure 4.5 and
Figure 4.6. These plots show the best and worst cases selected from all the beam tests.
There are two conclusions from these figures. The firstconclusionis that the rotation meters
gave good average values for curvature. The measurements from the rotation meters were
either very close or slightly higher than the average of the curvatures measured by the side
LVDTs. Secondly, curvatures were not always uniform along the test region. As a result,
curvature measurements from the rotation meters were used in further analysis of data
whenever an average behaviour was needed, see Chapter 5 and Chapter 6. Additionally, it
was observed that lower concrete strength beams tend to have more variation in curvature
along the test region compared to the higher concrete strength beams.

If all the beams were scaled perfectly and if they all had the same concrete strength
and mechanical reinforcement ratio, , then according to the conventional approach all the
beams would have the same rotational behaviour, see Section 2.4. Also, they would all
yield at the same rotation and fail at the same rotation. When @ is almost constant, the effect
of concrete strength alone is not significant, see Equation (2.7). Figure 4.7 shows the moment
vs rotation curves and Figure 4.8 shows the normalized moment vs rotation curves for all
12 beams tested. The dead load moments are not included in either figure and the rotations
are those measured by the rotation meters. Recognizing thot the beams had different but
similar @ values, observed rotational behaviours are comparable. The beam having the
lowest rotation at failure was MH2. This beam had the highest ® value.

The total angle change measured by the rotation meters at yield, 8, at ultimate moment,
6,..» at ultimate rotation, 6,, and at failure, 8, are given in Table 4.4.

4.4 Extreme Compression Fiber Strain Measurements

The extreme compression fiber strains were measured in two different ways; using
the 2" Demec gauge and using the side LVDT arrangements.
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Typical strain distributions measured on top surface of the beams by the 2" Demec
gauge are presented in Figure 4.9 and Figure 4.10 for lower concrete strength beams and
for higher concrete strength beams, respectively. The average of each set of reading is also
plotted in the same figures. The arrows in the figures show the load points. It was observed
‘hat before yielding of the tension reinforcement, the strain distributions did not have sig-
nificant variation from the mean throughout the length of the test region regardless of
concrete strength and size of the beam. After yiclding, the higher concrete strength beams
followed the same trend as before yielding. In the lower concrete strength beams, the strain
distribution became more and more non-uniform as failure was approached. Withincreasing
deformation, the strains started to increase considerably at one section or part of the beam
while the strains at other sections either remained constant or increased slightly. In general,
higher compressive strains were measured above the location of cracks.

Figure 4.11 shows the typical average extreme compression fiber strains from 2"
Demec gauge readings vs centerline deflection relationship. A regression line from zero to
yield and another regression line from yield to failure are also plotted in Figure 4.11. The
regression lines allowed the average extreme compression fiber strain, €, at any centerline
deflection to be calculated.

The extreme compression fiber strains calculated using the side LVDT arrangements
and using the regression lines obtained from 2" Demec gauge measurements are compared
in Figure 4.12 and Figure 4.13. These two plots show the best and worst cases. The side
LVDTs and the 5" Demec gauge measured the strain at a certain distance below the top
surface. The extreme cc 1pression fiber strains from these measurements are calculated by
assuming a linear distribution of strains along the depth of the beams. The regression lines
from 2" Demec gauge readings were not consistently above or below the average of the side
measurements. Confidence on the 2" Demec gauge measurements is higher as the strains
were measured directly on top of the beams over the entire length of the test region. The
strain values calculated using the regression lines for the average 2" Demec gauge strains
were used in the analyses presented in Chapter 5 and Chapter 6.

The average extreme compression fiber strains at yield, €, at ultimate moment, €.,
at ultimate rotation, €.,, and at failure, €, calculated using the regression lines explained
above are given in Table 4.5. The mean extreme compression fiber strains at ultimate
rotation were 4501 microstrain for the lower concrete strength beams and 4979 microstrain
for the higher concrete strength beams excluding beam MH2. It should be noted that the
beams took 8 to 12 hours to test and these values may include some creep strains.
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4.5 Neutral Axis Depth-Centerline Deflection Relationships

The neutral axis depth along the test region was measured in two different ways; using
the rotation meters together with the 2" Demec gauge readings, and using the side LVDT
arrangements.

Knowing the curvature, , and the average extreme compression fiber strain, g, the
neutral axis depth, ¢, is calculated using the relationship ¢ = ¢/y. The average curvature
from rotation meters together with the g, from the regression lines of the 2" Demec gauge
strains gave the average neutral axis depth along the test region.

As the strains at the top and at the bottom of the test region were measured, the side
LVDT arrangements gave the neutral axis depth ina direct way. Assuming linear distribution
of strains is essential in this method.

The two methods are compared in Figure 4.14 and 4.15 for the worst and the best
cases, respectively. As the entire test region was treated as the critical section, average
measurements are desirable to explain the behaviour. Similar to the curvature and extreme
compression fiber strain measurements explained above, the neutral axis depths calculated
using the rotation meters and the 2" Demec gauge strains were not consistently above or
below the average of the depths measured by the side LVDT arrangements. Thus, for the
analyses presented in Chapter 5 and Chapter 6 the neutral axis depth values calculated from
the rotation meters and the average 2" Demec gauge strains were used.

The average neutral axis depthsat yield, c,, atultimate moment, Cyy,, at ultimate rotation,
Cour and at failure, ¢, calculated using the rotation meters and the 2" Demec gauge strains
are given in Table 4.6.

4.6 Development of Failure

Since all the beams tested were under-reinforced, the failure occurred by the failure
of concrete in compression zone after the tension reinforcement had yielded. Primary
flexural cracks were first visible at 5% to 10% of the ultimate load. These flexural cracks
extended towards the compression zone quite rapidly during the first few load steps and
their progress slowed down later. Close to the yield load new flexural cracks started to
appear and these secondary cracks extended to about the same level as the primary cracks
in a few load steps. After yield the cracks widened and some horizontal cracking was
observed at the level of longitudinal reinforcement.
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Depending on theconcrete strength of the beam, different crack propagation and failure
patierns were observed. These patterns will be explained in the following paragraphs.

In the lower concrete strength beams, the primary cracks started to split into two or
more branches that propagated at an angle away from the primary cracks. The secondary
cracks extended vertically to the same level as the tips of the branches of the primary cracks.
The failure took place at a section where a primary crack existed. It was often possible to
predict the location of the failure from the distress of the concrete at the top of the beam
and from the real time plot of 2" Demec gauge strains. The strain patterns recorded from
the 2" Demec gauge readings increased consistently at a section or at a part of the test region,
and usually allowed detection of the failure section before any distress was visual. The first
sign of distress was spalling of the corners at the top of the beam, later, cracks propagating
across the width of the top surface were visible. At this stage, the average extreme com-
pression fiber strains were between 3,000 and 3,800 microstrain with local strains as high
as 5,300 microstrain and the centerline deflections were between 65% and 75% of the failure
deflections. The failure was localized at a single section for the small and large beams. A
somewhat different failure was observed for the medium beams. In both of the medium
beams, the branches of the adjacent primary cracks connected to form a failure plane together
with crushing at a section. In all the lower concrete strength beams the failure surfaces were
irregular and included a large amount of bond failure between mortar and aggregates, similar
to that observed in the material tests. The failures were notexplosive. Typicallower concrete
strength beams after failure are shown in Figure 4.16, Figure 4.17 and Figure 4.18 for small,
medium and large beams, respectively.

In the higher concrete strength beams, very few of the primary cracks hranched. All
the cracks propagated to a height about the same distance below the top surface. It was not
possible to predict where the failure would take place. The 2" Demec gauge strains were
quite uniform, see Figure 4.10. When the first distress of the top surface comers was visible,
the average extreme compression fiber strains were between 3,400 and 4,160 microstrain
with local strains as high as 4,600 microstrain at centerline deflections between 60% and
80% of the failure deflections. When failure occurred it was sudden and explosive. The
failure surfaces passed through both mortar and aggregates. In general, the failure surface
was V-shaped, the bottom of the V being at the middle of the test region and below the
neutral axis. After failure it was observed that there was crushing at a section of the test
region as well. Typical higher concrete strength beams after failure are shown in Figure



4.19, Figure 4.20 and Figure 4.21 for small, medium and large beams, respectively. The
dislodged pieces of concrete in these photographs had not been moved since the failure
occurred when the pictures were taken.

The number of cracks in the test region of the higher concrete strength beams was
about 1.5 times that in the lower concrete strength beams. The reason for this is believed
to be the larger area of the longitudinal reinforcement. This conclusion was reached by
using the theoretical equation suggested by Hognestad (1962) for predicting the minimum
spacing of cracks, G, as dy;, = (A.f})/(u o). In this equation, A, is the effective area of
concrete in tension, f; is the tensile strciigth of concrete, u is the average bond stress, and
2 0 is the sum of the perimeters of the bars. Assuming the same tensile concrete strength
and bond stress, this equation predicts that the cracks would be 1.4 times closer in the case
where there are two layers of reinforcement.

Two factors affecting the failure of the beams are related to the strain energy balance
of the system consisting of the load frame and the specimen itself. One of these is the release
of strain energy stored in the testing frame. As the beam is deformed past the ultimate load
carrying capacity and the load drops, there is a continuous release of strain energy from the
test frame to the specimen. Another factor affecting the failure is the strain energy released
from the shear spans of the beam as the load drops. As the curvature is increasing only in
the test region, all the released strain energy should be stored at this part of the beam. When
the test region is unable to store all the released energy, failure occurs. It is believed that
these two factors always worked together and they were indistinguishable.

During testing beam SL1, about midway between yield and failure, there was a sudden
flow of oil to one of the hydraulic jacks due to opening the control valve too much. This
created a shear of 10 kN inside the test region while the beam was carrying about 65 kIN.
Some cracking was heard at the same time. Itis believed that due to this mistake beam SL1
tailed earlier than it otherwise would have. This may explain why 6,/6, was lower for SL1
than SL2.
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Table 4.1

Centerline Deflections

Specimen p/p, 3, vt ., Ly 846,
(mm) (ram) (mm) (mm)

SL1 0.54 232 40.0 51.0 51.0 22
SL2 0.54 223 60.5 63.0 63.9 29
MLI1 0.55 36.8 75.2 79.3 81.8 22
ML2 0.53 36.4 112.1 112.1 114.2 3.1
LL1 0.53 53.0 130.8 130.8 133.0 2.5
LL2 0.58 54.8 97.7 100.1 100.3 1.8
MH?2 0.78 442 59.0 61.0 615 14
SH1 0.64 263 55.1 57.0 57.0 2.2
SH2 0.68 269 54.6 54.6 54.6 20
MH1 0.64 40.2 86.3 87.8 88.3 22
LH1 0.63 59.5 132.2 132.2 134.0 23
LH2 0.67 595 136.8 136.8 137.1 23
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Table 4.2

Parts of Ultimate Moment
Dead Increase in {Moment due to| Total
Specimen| Load P,*4d | Shear Span | Increasein | Moment M,
Moment | (kN-m) (mm) Shear Span | (kN-m) | test/code
(kN-m) (kN-m)
SL1 1.74 66.17 12.8 0.92 68.83 1.025
SL2 1.74 66.21 204 1.47 69.42 1.034
ML1 9.92 243.03 19.1 3.22 256.17 0.974
ML2 9.92 258.88 35.1 6.31 275.11 1.055
LL1 38.44 723.17 35.2 12.35 773.96 0.984
LL2 38.44 699.90 27.2 9.22 747.56 1.016
MH2 10.65 460.59 15.1 4.82 476.06 0.971
SH1 1.88 131.84 19.3 2.76 136.48 1.033
SH2 1.88 129.61 18.9 2.67 134.16 1.023
MHI 10.65 502.60 245 8.56 521.81 1.030
LH1 41.38 1476.51 38.8 21.81 1545.70 1.011
LH2 41.38 1496.55 384 27.89 1565.82 1.016
Average all 1.014
Std Dev all 0.026
Average LSC 1.015
Std Dev LSC 0.031
(Excluding MH2)| Average HSC 1.022
Std Dev HSC 0.008
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Table 4.3

Moments
Specimen M, M, M,, M,

(kN-m) (kN-m) (k™'-m) (kN-m)
SL1 65.33 68.83 68.66 67.50
SL2 64.86 69.42 69.01 68.26
ML1 248.19 256.17 255.50 252.22
ML2 250.55 275.11 275.11 273.64
LL1 722.03 773.96 773.96 766.71
LL2 720.22 747.56 739.37 734.83
MH2 475.50 476.06 47448 467.11
SH1 128.24 136.48 134.81 134.81
SH2 128.75 134.16 134.16 134.16
MH1 493.76 521.80 519.79 518.13
LHI 1431.93 1545.70 1545.70 1540.01
LH2 1439.97 1565.82 1565.82 1564.52
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Table 4.4

Total Angle Change in the Test Regions

Specimen 0, Ore 6, 6,

(radians) (radians) (radians) (radians)
SL1 0.0161 0.0335 0.0448 0.0451
SL2 0.0158 0.0574 0.0604 0.0620
MLI 0.0155 0.0415 0.0444 0.0458
ML2 0.0155 0.0707 0.0707 0.0724
LL1 0.0159 0.0517 0.0517 0.0527
LL2 0.0165 0.0373 0.0384 0.0385
MH2 0.0201 0.0286 0.0299 0.0302
SH1 0.0191 0.0491 0.0518 0.0518
SH2 0.0191 0.0469 0.0469 0.0469
MHI 0.0178 0.0470 0.0481 0.0484
LH1 0.0190 0.0517 0.0517 0.0525
LH2 0.0190 0.0537 0.0537 0.0538
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Table 4.5

Average Extreme Compression Fiber Strains

Specimen

ecy Ecmu €eou Erf
(ue) (ue) (ue) (HE)
SL1 1965 3191 3962 3967
SL2 1936 4647 4818 4885
ML1 2046 3901 4097 4213
ML2 1974 5217 5217 5303
LL1 2011 4830 4830 4916
LL2 2204 3979 4081 4088
MH2 2987 4003 4142 4175
SH1 2581 4771 4906 4906
SH2 269G 4886 4886 4886
MH1 2587 4936 5012 5033
LHI1 2578 5003 5003 5062
LH2 2589 5089 5089 5097
Average all 4665
Min-Max 3972-5217
Std Dev all 466
Variance 0.100
Average LSC 4501
Min-Max 3962-5217
Std Dev LSC 520
Variance 0.116
Average HSC 4979 (Excluding
Min-Max 4886-5089 MH2)
Std Dev HSC 83
Variance 0.017
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Table 4.6

Neutral Axis Depths
Specimen c, Cu Cou ¢

(mm) (mm) (mm) (mm)
SL1 103.6 81.0 75.1 74.7
SL2 104.1 68.9 61.9 67.0
MLL1 175.6 125.0 1229 122.3
ML2 169.9 98.1 98.1 97.4
LL1 2413 178.2 178.2 177.9
LL2 253.8 203.3 202.2 202.2
MH2 198.9 186.5 184.6 184.1
SH1 115.2 82.6 80.5 80.5
SH2 121.2 88.5 88.5 88.5
MH!1 194.7 139.6 138.6 138.4
LH! 260.5 184.4 184.4 183.5
LH2 261.7 180.6 180.6 180.4
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5 Effect of Size on Deformation Capacity of Beams

5.1 Introduction

The material presented in this chapter questions the Hillerborg size effect theory in
light of the beams tested. The effect of size on the extreme compression fiber strain and on
the rotational capacity are viewed separately, followed by a combined discussion.

5.2 Effect of Size on Extreme Compression Fiber Strain

As explained in Section 2.4, the starting point of the Hillerborg theory on size effect
on the rotational capacity is the assumption that the extreme compression fiber strain is
inversely proportional to the depth of the compression block at ultimate. The ultimate
condition referred to here corresponds to the ultimate rotation as defined in Section 4.2 and
Figure 4.1. The extreme compression fiber strain at ultimate rotation, €4, is plotted in
Figure 5.1 against one over neutral axis depth at ultimate rotation, 1/c,,, for the beams tested.
The corresponding values for €., and c, are those reported in Table 4.5 and Table 4.6,
respectively. The ACI code limit for the usable extreme compression fiber strain, 3,000
microstrain, is also plotted in Figure 5.1.

Thee 4, vs 1/cq, relationship for the tests reported by Mattock (1965) and Corley (1966),
and for the beams tested in this series are plotted together in Figure 5.2. Note that, Figure
5.2 was obtained by superimposing the data from the beams tested, on top of Figure 2.7.
Both Mattock and Corley had the following definition;

“... the ultimate strains, curvatures, and rotations reported are those corre-
sponding to the instant at which the maximum load on the beam was reached
under increasing load; or to the instant at which the beam failed after some
time at constant load. Further increase in deformations while the load was
decreasing after reaching its maximum value was not considered in this
investigation."

This definition implies that the points on the load-deformation curve corresponding to
ultimate rotation and ultimate load are the same for .1e data reported by Mattock and Corley.
Thus, itis valid to compare the three series beam tests at the point of ultimate rotation.
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5.3 Effect of Size on Rotational Capacity

The Hillerborg size effect theory concludes that the rotational capacity of a hinging
region is inversely proportional to its effective depth, d. To prove his theory, Hillerborg
(1988a, 1988b, 1989, 1990) plots normalized rotation vs 1/d for the beams tested by Corley
(1966), as discussed in Section 2.4. The normalized rotation, 8,0, vs 1/d relationship for
the beams tested is shown in Figure 5.3. The corresponding values for 6,, @ and d are those
reported in Table 4.4, Table 3.6 and Table 3.1, respectively. The o values were calculated
using the average bar force per bar at ultimate moment reported in Table 3.6. The calculated
bar force at ultimate moment and at ultimate rotation were the same for every beam. The
reason is, in some of the beams both the ultimate moment and ultimate rotation occurred
while steel was at its yield plateau, and in the others the ultimate moment and ultimate
rotation points corresponded to the same deformation.

In the conventional approach, the normalized rotation is predicted by Equation (2.8).

6,0 =0.85p,¢, .k (2.8)

In Equation (2.8), B, is the ratio of depth of the rectangular stress block to the neutral axis
depth, and ¢, is the extreme compression fiber strain at ultimate, & is a constari ¢qual 1o
multiples of d where kd is the gauge iength of the rotation measurements. The ACI code
assumes &, =0.003 regardless of the concrete strength. In the ACI code, f, =(.85 for
concrete strengths lower than 27.6 MPa and B, = 0.65 for concrete strengths higher than 55
MPa. Substituting k =3.7 for the beams tested, Equation (2.8) predicts the normalized
rotation, 6,0, as 0.0063 and 0.0081 for B, equal to 0.65 and 0.85, respectively. These
predictions are plotted in Figure 5.3.

The normalized rotation vs 1/d relationship for the tests reported by Mattock (1965)
and Corley (1966) and for the beams tested is plotied together in Figure 5.4. In Figure 5.4,
the normalized rotation s defined as 8, (@ - ") to account for the compression reinforcement
in Mattock and Corley beams. For the beams tested in this series ' is equal to zero. Similar
to the extreme compression fiber strains, the tests are comparable at the point of ultimate
rotation. The curvatures in the beams reported by Mattock and Corley were measured at
the middle of the beams in a gauge length equal to d. In the beams tested, the rotations were
measured in a gauge length of 3.7d. To make proper comparison, the normalized rotations
plotted in Figure 5.3 were divided by 3.7 to provide data for Figure 5.4. For more information
on how the data from Mattock and Corley beams were analyzed, refer to Section 2.4. The
ACI predictions corresponding to k = 1 are also plotted in Figure 5.4.
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5.4 Discussion

Almost all the extreme compression fiber strains wnc¢ normalized rotations from
Mattock and Corley tests are higher than those fron: the heams tesied. One rcason is the
Mattock and Corlcy beams were tesied under single peintloading and the beams tested here
were subjected to 1wo point loading. This was obscrved by Mattock also. When the shear
span alone was in-reas:d, lower ultinate curvatures were chserved. Mattock tested beams
under two point load®. -  as well. These beams gave the lowest curvatures. As discussed in
Section 2.4, anotlie» : :ason for the much larger deformations in the Mattock and Corley
beams is the con’liement of the compression zone due to the compression reinforcement,
the stirrups and the lcading plate.

High-strengch concrete is considered by some to be more brittle than normal strength
concrete. Figure 5 | and Figure 5.3 suggest that the higher concrete strength beams are as
deformable as th:: lower concrete strength beams. Note that, the lowest concrete strength
was 44 MPa for the icams tested. This is considered to be approaching high-strength
concrete in to:Jay s construction world,

The ACI prediciions for extreme fiber strains and normalized rotations are lower than
those observe d frun ihe beams tested. Bearms subjected to midpoint loading simulate the
plastic hinge occurring in a beam next to the face of a column or at an inner support of a
continuous beam. As discussed above, beams subjected to two point loading deform less
than those subjected to midpoint loading. The code gives extreme compression fiber ~;:4:ns
and nogmiaiized rotations cveir lower than those observed here from beams subjected ¢ 0
point loading. This suggests that it ACI code is conservative 1n predicting the ductility ¢
hinging regions in a beam.

The measured extreme compression {iber strains do not suggest any size effect on the
strain capacity of concrete in the compression zone of a scction under flexure. Similarly,
the beams tested do not support the theory thzt the rotational capacity of reinforced concrete
hinging sections is size dependent
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6 Concrete Stress Block Behaviour in Beams

6.1 Introduction

One of the goals of the test project was to investigate the stress block behaviour of
high-strength concrete in flexure. Although beams are not the best specimens for (s
purpose, an attempt is made to obtain the concrete stress-strain curves and stress block
parameters.

6.2 Obtaining Concrete Stress-strain Curves

6.2.1 Methods of Analysis

A number of methods to obtain the compressive stress-strain curve of concrete in
flexure have been suggested over the years. Early methods were based on assumed shape
of stress-strain curves and various coefficients to give the ultimate load carrying capacity
of beams. One of these methods is the one developed by Whitney (1940). Whitney assumed
that stress-strain curve in a cylinder is the same as in a section subjected tc lexure. Later,
Prentis (195 "), suggested a finite difference method of analysis which involves performing
graphical differentiation on some of the plotted parameters from beam tests. Further
numerical differentiation methods for beams by Hamann (1952) and by Lee (1953) led tc
the approach used by Hognestad et al. (1955). Hognestad et al. tested specimens which, in
principle, isolated the concrete stress block in flexure. After Hognestad et al., attempts to
obtain concrete stress-strain curves from beams were downplayed and most of the later
studies were based on tests of specimens similar to thcse tested by Hognestad etal.. However,
Smith and Orangun (1969) developed a method based on using a least squares fit of a
polynomial expression to experimental data from reinforced concrete beams.

Two methods were selected from those listed above to analyze the data from the beams

tested. These are the methods developed by Hognestad et al. (1$55) and by Smith and
Orangun (1969). These two methods will be explained briefly in the following paragraphs.

Both of the methods have the same principal assumptions;

1. Linear distribution of strain across the test section.

2. Concrete does not carry any tension

3. All concrete compression fibers follow one and the same stress-strain
curve. That s, concrete stress is a function of strain only, f, = F(€,).
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The numerical differentiation method developed by Hogn<stad et al. for eccentrically
loaded ¢: . mns is also applicable to singly reinforced beams with some modification. The
method obtains the concrete stress-strain curves from two equations, one related to the axial
load equilibrium and the other related to the moment equilibrium in the section. The
derivation of the equations will not be presented here as it is given in the paper by the
researchers. For a beam, similar equations could be obtained. The equation related to loads
is

df, _ T
f= £CZ-£:+j’O where f = be 6.1

In Equation (6.1), f; is the stress at the extreme compression fiber, €. is the extreme
compression fiber strain, f, is the average compressive stress in concrete compression zone,
T is the tension in the reinforcement, b is the width of the beam, ¢ is the depth of the
compression block.

The equation related to moments is

’

ﬁ:erdg’gf+2mo where m,,=£—§3 and M'=M-T(d -c) (6.2)
In Equation (6.2), m, is a moditied moment term, M’ is the moment due to the com-
pression force in the concrete alone about neutral axis, M is the moment carried by the
section. Note that, from equilibrium of internal forces, the compression in concrete isequal
to the tension in the steel.
The method developed by Smith and Orangun uses measured values of: moment M,

extreme compression fiber strain €, and the neutral axis depth nd. The moment is related
to €, and nd by Equation (6.3) which is obtained from moment equilibrium.

M _n(l-n)
bd? £,

€ 2 )
f F(e)de+-’5,-f eF(e)de (6.3)
0 g; Jo

The objective of the method is to find the best expression for F(g) which will satisfy

Equation (6.3). In order to do that, the method assumes a polynomial in the form given in
Equation (6.4):

f=F@)=ag+ac+ag +....+a," (6.4)

where the polynomial coefficients a,, a,, etc. are yet to be determined.
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Substituting Equation (6.4) into Equation (6.3) gives anexpression relating the moment
to the unknown coefficients. Using the method uf least squares to give the closest fit to the
measured values of the bending moment leads to a set of simultaneous equations for the
coefficients. This method requires selection of the degree of polynomial by the user. The
derivation and other details of the method could be found in Smith and Orangun (1969).

6.2.2 Comparison of Methods and Results

Stress-strain curves obtained by the two methods explained in Section 6.2.1 are
compared in Figure 6.1 for a lower concrete strength beam and a higher concrete strength
beam. The load and moment related curves derived using the Hognestad et al method have
considerable noise due to the numerical differentiation of the average compressive force,
f» and the modified moment term, m,. This noise could be eliminated by curve fitting to
the teyms f, and m,,. The true stress strair. curve is somewhere between the two curves. Both
of the curves are strongly affected from the tension force, T. The tension force was calculated
using the steel coupon tests and measured average compressive strains together with the
measured rotations. The method developed by Smith and Orangun was preferred over the
Hognestad et al. method mainly because it does not require the value of the tension force.
Besides, the Smith and Orangun method scems to be easier for analyzing beams. It was
believed that if smoothing was done for the curves from Hugnestad et al method, similar
curves would be obtained. The stress-strain curves obtained using the Smith and Orangun
method will be discussed in detail in the rest of this chapter.

In the Smith and Orangun method, the main decision is the selection of the degrec of
polynomial to be used in the least squares solution. It was suggested by the researchers that
4" degree polynomial gave the best results. The degree of polynomial has considerable
effect on the shape of the stress-strain curve but negligible effect on the area under the curve
and on the centroia of this area. In other words, C, the total compression force carried by
concrete and, M, moment carried by the section are not affected strongly from the selection
of the degree of polynomial. This is expected as the basics of the method are related to
momentequilibrium. Asaresult, the selection of degree of polynomial was rather qualitative.

When a polynomial is fit to the data using the least squares method, there is error in
the calculated polynomial coefficients a,, a,, etc. As a result, the moments predicted by the
stress-strain curves may be different than the measured test moments. In their paper, Smith
and Orangun used the standard error and the index of correlation to check the goodness of
fit between the experimental and predicted moments. The important criteria for goodness
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of fit in the investigation presented here was to make sure that the ultimate moment, M,
was predicted with good precision. Figure 6.2 illustrates the goodness of fit for all the points
on the normalized moment, M/f.bd’, vs extreme compression fibei strain curves for beams
MH 1 and SL2, the best and the worst cases, respectively. A 4" degree polynomial for SL2
and a 5® degree polynomial for MH1 were used. In most of the cases, test and predicted
moments were as close as those shown for MH1. In lower concrete strength beams, the
definite yield point acted as the point of discontinuity. As a result, although moments were
predicted well in the elastic and plastic region, at yield point predicted moments were lower
than test moments as the method tends to smoothen the curve. This can be observed from
Tabie 6.1. The test to predicted moment ratios, M,/M,, and compression to tension ratios,
CIT, at yield and at ultimate moment, obtained by curve fitting to all the points, are given
in Table 6.1. The C/T and M,/M,, values, obtained using the same degree of polynomial to
fit the data up to yield only, are given in Table 6.1. The tension force, T, used to calculate
the ratios in Table 6.1 is calculated using the average bar forces at yield and at the ultimate
moment given in Table 3.6. In Table 6.1, M,/M,, values at yield obtained by curve fitting
to all the data are higher for the lower concrete strength beams than those for higher concrete
strength beams.

The effect of the degree of polynomial op the shape of stress-strain curve is illustrated
in Figure 6.3. Usually, the curves were close to each other as in the case for MH1. The
resulting curve was strongly affected from the degree of polynomial for some of the beams.
For example, for beam SL2 which was the worst case, using 5® degree polynomial,
C/T = 1.036 and M,/M,, =1.01 were obtained instead of C/T = 1.020 and M/M,,, = 1.027
computed using 3" degree polynomial at ultimate moment. The 3 degree curve was pre-
ferred for beam SL2 qualitatively.

The stress-strain curves obtained from the lower concrete strength beams and from
higher concrete strength beams (excluding Beam MH2,) are plotted to gether with a typical
stress-strain curve from cylinder test in Figure 6.4 and Figure 6.5, respectively. All the
stress-strain curves from beam tests are plotted in Figure 6.6. Smith and Orangun method
was used to obtain all of these stress-strain curves.
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6.2.3 Discussion

The method developed by Smith and Orangu:s is reliable for analyzing the data from
beam tests. The main reason is that this method uses only the data measured directly from
the beam tests. The confidence on measured values of moment, M, average extreme
compression fiber strain, €., and average neutral axis depth, ¢, is high.

The stress-strain curves explained in Section 6.2.2 seemed to divide into two groups.
one for higher concrete strength and one for lower concrete strength. The stress-strain curves
forlower concrete strength beams showed considerable descending branch behaviour before
failure. In the higher concrete st “1~th beams, failure took place without much of a
descending branch in the stress-strain curves. Especially for higher concrete strengths, the
stress-strain curves from beams were significantly different from those obtained from
cylinders. The peak in the stress-strain curves from the beam tests occurred at a higher
strain thar i+ ‘“~ cylinder test. This may be due in part to creep. The cylinder tests took
about 7 a2 ©.aam test took 8 to 12 hours to reach failure.

6.3 Concrete Stress Block Parameters
6.3.1 Methods of Analysis

The stress and strain conditions at ultimate foad capacity for a rectangular section
subjected to pure flexure are snown in Figure 6.7. The equilibrium of internal forces and
moments is expressed by

T=C=kk,f.bc where T =Af, (6.5)
M, =kk.f.bc(d - kyc) (6.6)
F-om Equations (6.5) and (6.6)
M, k,
= ] -——— 6.7
bd*f. ok, “’) 6D

In Figure 6.7 and Equations (6.5), (6.6) and (6.7), T is the total tension force in rein-
forcement, C is the total compression force in concrete, M, is the ultimate moment carried
by the section, k, is the ratio of the average stress to the maximum stress, k, is the ratio of
the distance between the extreme compression fiber and the resultant of the compressive
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force to the depth of the neutral axis, ¢, k, is the ratio of the maximum stress in the compression
zone to the cylinder strength, f,, @ is the mechanical reinforcement index, A, is the area of
steel, £, is the stress in the steel, b is the width, d is the effective depth.

Knowing the ratio k,/k,k, alone is adequate to predict the load carrying capacity of a

beam. If the properties of the stress block is known in terms of the parameters, k,, ky, ks,
any shape of section and nonsymmetrical bending of rectangular sections can be analyzed.
These parameters for the beains tested were optained using two different meti-ods. These
methods will be explained in the following paragraphs.

A way of obtaining the stress block parameters is by the use of Equations (6.5) to (6.7).
Rather than the individual values of k, and k,, the product of the two is obtained from Equation
(6.5). The value of k, can be expresse Jin 2 swber of ways, one of them is given in Equation

(6.9). From Equation (6.7) ky/k,k;isdefir.. s "7 ‘ien(6.10). The parameters required
for this method are M,, T, b, ¢, d, ®@axd 7 - = . .; block parameters which could be
calculated from this method are kk,, k =~ i . acthat, ¢ isequal to c,, neutral axis
depth at ultimate moment in Equations * .~ v (6.10) and Figure 6.7.
k= 6.8
kik, The (6.8)
L M,~Td-c) 69)
27 Tc '
ky 1 M,
k|k3 0)( (Dbdzf;.) ( )

The second method of obtaining stress block parameters was using the stress-strain
curves given in Sections 6.2.2. The area under the curve up to the extreme compression
fiber strain at ultimate moment, €, gave the total compressive force in concrete, C, and
using Equation (6.5) the value of k k; was o'stained. The value of k, was obtained dividing
the peak stress of the stress-strain curve by the cylinder strength. Knowing k3, an individual
value of k, was calculated. Finding the centroid of the area under the curve defined above,
and knowing the value of C and the neutral axis depth at ultimate, cy,,, k, was calculated.
As the stress-strain curves were known in the form of polynomials, the area and the centroid
of the area under the curve were calcul-.ed easily. The parameters requirea for this method
are moment M, extreme compression fiber strain, £, b. ¢, dandf,. The stres~ :lock parameters
which could be calculated from this method are k,, k,, &;, k,k, and ky/k;ks.
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6.3.2 Comparison of Methods and Results

The concrete stress block parameters obtained using the methods explained in Section
6.3.1 are given in Table 6.2.

The &, values obtained from stress-strain curves are plotted in Figure 6.8 against the
concrete cylinder strength together with the ACI code predictions. A k; value of 0.5 cor-
responds to a triangular stress block.

Tie k, values obtained from both methods are plotted in Figure 6.9 against the concrete
cylinder strength together with the ACI code predictions. The &, values obtained from
Equation (6.9) are unreasonably low. A triangular stress block gives (0.33 for k,. As the
triangular stress block corresponds to linear elastic case, a k, value smaller than (.33 is not
possible. Note that, Equation (6.9) is very sensitive to both neutral axis depth at ultimate
moment, c,,, and total tension force, 7. When T was kept constant and c,,, was decreased
by 8%, a 10% increase in k, was observed. Keeping c,, constant and increasing T by 2%
caused 20% increase in k,. In Table 6.1, C/T ratics from 1.008 to 1.055 are reported for
ultimate moment and curves fit to all the data. When the total compression force, C, was
used in Equation (6.9) instead of T in Equation (6.9), k, values close to those obtained from
stress-strain curves are obtained.

The &, values obtained from stress-strain curves are plotted in Figure 6.10 against the
concrete cylinder strength together with the ACI code predictions. For lower concrete
strength beams the &, values seem to be lower than those would be expected.

The k,k, values obtainec from both methods are plotted in Figure 6.11 against the
concrete cylinder strength together with the ACI code predictions. The k,k; values for lower
concrete strength beams seem to be lower than would be expected. Note that, kk, is very
sensitive to ¢ ,. The difference between the two methods are directly related to the difference
in forces, C, and T.

The k,/kk, values obtained from both methods are plotted in Figure 6.12 against the

concrete cylinder strength together with the ACI code predictions.

6.3.3 Discussion

All the stress block parameters are sensitive to both tension force carried by the
reinforcement and the neutral axis depth when they are obtained from Equations (6.8) to
(6.10).
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Although confidence in the measured values of the average neutral axis depth is high
because they are average values, this might have considerable effect on the compression
force and its location. As discussed in Chapter 4, the neutral axis depths were quite different
from one section to another in the low.r concrete strength beams. Failure in those beams
were localized at a section. Reducing the neutral axis depth values by 10% for beam LL2
and using the Smith and Orangun approach gave 2% lower compression force and shifted
the centroid of the area by 10%. This trial showed that the same k, and k, but higher ks
values were obtained with a reduction in the neutral axis depth. As aresult, the stress-strain
curves for lower concrie strength beams might have the same shape of stress-strain curve
with higher peak stre:sses than that are given in Section 6.2.2. To obtain a C/T ratio equal
to 1.0 very small neutral axis depths were required. It was interesting to note that the total
compression force, its location and the parameters were not affected by changing the extreme
compression fiber strains. The beam tests reported here were not designed for the purpose
of obtaining stress-strain curves. It was not always possible to measure the required
parameters at the specific failure sections.

Based on studies of this sort, tie k, values obtained from the stress-strain curves are
believed to be quite reliable. The k, values for lower concrete strength beams would be
higher than the calculated values as peak stresses are expected to be higher for these beams.
Similarly, the k,k; values from both methods are expected to be higher for lower concretz
strength beams as the total compression force will be divided by a smaller value of neutral
axis depth, ¢y,

The ACI code tends to predict a smaller value for k, and hence a longer moment arm
than calculated from the beam tests. This makes little difference in a beam but could be
serious in a column. When the compression force, C, is used instead of the tension force,
T, to calculate M, code, test/code values became unconservative.

6.4 Overall Discussion and Recommendations

The method developed by Smith and Orangun is quite powerful in obtaining concrete
stress-strain curves and stress block parameters from beam tests. More dependable results
might be obtained by testing beams particularly design: . for the purpose.

The size of the specimens did not seem to effect the stress-strain curves. For each
concrete strength group, similar stress-strain curves were obtained regardless of the size of
the specimen.
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Although the ACI code assumes a longer moment arm, due to the involvement of other
parameters it predicts the moment capacity of a beam conservatively given the tensile force.

The reason for the difference between the tension force and the compression force was
not found. At ultimate load, the contribution of the concrete in tension is very small. A
simple calculation revealed that the “ension carried by concrete was not big enough to
compensate for compression to tension ratios as high as 1.055.

The k, values obtained from the stress-strain curves were not sensitive to the measured
neutral axis depth values. Itis believed that these k, values are dependable. The &k, and
ky/k.k values are strongly affected from the neutral axis depth used in the calculations. Due
to the reasons discussed in Section 6.3.3, it is believed that the k k, and k,/kk, obtained from
the stress-strain curves are dependable for higher concrete strength beams.
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Table 6.1

Concrete Stress-strain Curve Fitting Data

Curve Fit to All Curve Fit Up
1o Yield
AtYield At Ultimate At Yield
Moment
Specimen | C/T |M/M,, | C/IT | M/M, CIT | M/M,, | Deg of M,
poly | test/code
SL1 0.997 | 1.032 | 1.055 | 0.997 | 1.022 | 1.003 3 1.025
SL2 0975 | 1.054 | 1.020 | 1.027 | 1.016 | 1.00] 4 1.034
ML1 1.007 | 1.016 | 1.008 | 0.999 | 1.017 | 1.004 4 0.974
ML2 1.007 | 1.027 | 1.053 | 1.003 | 1.030 | 1.000 S 1.055
LL! 0.998 | 1.024 | 1.020 | 1.005 | 1.019 | 1.000 5 0.984
LL2 1.028 | 1.015 | 1.050 | 1.007 | 1.037 | 1.006 4 1.016
MH?2 1.028 | 1.001 | 1.024 | 1.004 | 1.025 | 1.005 4 0.971
SH1 1.030 | 1.000 | 1.043 | 1.002 | 1.031 | 1.001 5 1.033
SH2 1.043 | 0.996 | 1.038 | 1.001 | 1.033 | 1.008 3 1.023
MHI 1.063 | 0.992 | 1.055 | 1.003 | 1.057 | 0.999 5 1.030
LH1 1.060 | 0.982 | 1.015 | 1.003 | 1.045 | 0.994 5 1.011
LB2 1.040 { 0.991 | 1.009 | 1.001 | 1.034 | 1.000 5 1.016
1 A
M, = Aj,(d --1—7—*}%)

79



Table 6.2
Concrete Stress Block Parameters

From Equations
(6.8) t0 (6.10)

From Stress-strain Curves

Specimen| f. k, kiky |kotkiks| K, k, ky | kiky [hJhk M,
(MPa) test/code

st1 | 511 ]025]053] 047069038 }081]056]068]| 1025

st2 | 511 ]027]062]043]|074] 041|086 |0.63]064] 1034

MLI | 527 {038} 053] 071]073]040]073|053|074] 0974

ML2 | sa1 | 020 065] 031061038 |1.03]068|056]| 1.055

Lt | 542 | 035|053 067078 042069 054]077| 0984

L2 | 438 | 029|055 053|076 041|076 {058 | 071 | 1016

MH2 | 734 | 034|050 ] 068 ] 069|039 {074 051 |075] 0971
sH1 | 90.1 | 0271059045 065038094061 061 ] 1033

sH2 | 856 | 029]0581050] 06703708 |060}063]| 1.023

MHI | 903 | 025|054 | 045|067 {038 |085|057] 066 1030
LHI | 903 | 033|061 ]0.54]065]038]096]062]061| Lt

L2 | 877 | 035|065 053|063 ]037|105]066]|056| 1016

Averageall | 030 | 057 | 0.52]0.69 | 039 | 086 | 0.59 | 0.66 | 1.014

¢ iDevall |005]005]0.12]005|002]0.12]|005]007| 0026

Average LSC | 029 | 057 {0 .| 072|040 | 081 | 059 | 0.68 | 1015
StdDevLSC | 007|005 | 0.15] 006|002 ] 012|006 008 | 0031
Average HSC | 030 | 0.59 | 0.50 j 9.65 | 038 | 094 | 0.61 | 0.63 | 1022

(Excl. MH2)
Std Dev HSC | 0.04 | 0.04 | 0.04 | 0.02 | 001 | 007 | 0,03 [ 0.03 | 0.008
(Excl. MH2)
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7 Summary and Conclusions
7.1 Summary

The rotational capacity of a hinging section is important for the overall behaviour of
a structure. One of the factors affecting the rotational capacity of a hinging section may be
its size. A literature review showed that the effect of size on the rotational capacity of
reinforced concrete hinging beam sections was not clear. This led to the experimental
program presented in this thesis.

A total of 12 under-reinforced high-strength concrete beams were tested. The beams
were subjected to two point loading. The design of the tests was based on three different
sizes and two different concrete strengths. The beams were geometrically scaled relative
to the bar diameter. Longitudinal bars 16.0, 25.2 and 35.7 mm in diameter were used. The
smallest beams were 150 by 300 mm and the largest beams were 335 by 680 mm. Six of
the beams had concrete strengths around 50 MPa, one of the beams had a concrete strength
" of 74 MPa and five of the beams had concrete strength around 90 MPa.

Total angle change inside the test regions and centerline deflections were measured.
The distribution of longitudinal strains along the test region of the beams was studied. The
failure types and surfaces were examined for the beams and the material test specimens.

A method based on a least squares fit of a polynomial expression to the experimental
data from the beam tests was used to obtain the stress-strain curves for the concrete in the
compression zone of the beams. Two different methods were used to calculate the concrete
stress block parameters.

7.2 Conclusions

The behaviour of the beams tested was not affected by the size. No effect of size on
the strain capacity of concrete in the compression zone of the beams was observed. Similarly,
no effect of size on the rotational capacity of hinging reinforced medium or high-strength
concrete beam sections was found. No effect of size on the stress-strain curves for the
concrete in the compression zone of the beams was observed.

Measured extreme compression fiber strains and rotations indicated that beams having
concrete strengths around 90 MPa are as deformable as the beams having concrete strengths
around 50 MPa. All the beams deformed more than predicted by the ACI code.
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Depending on the concrete strength of the beams, different crack propagation and
failure patterns, and different extreme compression fiber strain distributions along the test
region were cbserved. Failure surfaces in the higher concrete strength beams and material
test specimens passed through the aggregates. Bond failures between the mortar and
aggregates were observed in the lower concrete strength specimens. Explosive failures
destroying almost all of the test region were observed in the higher concrete strength beams.
More uniform extreme compression fibe. ~-- ins measured in the higher concrete strength
beams indicate that strain energy was stored -rore uniformly ir those beams. This may be
the reason for explosive failures.

The analyses of the beam test data suggest that, stress-strain curves for concrete in
flexure may be different from that in a uniaxially loaded cyiinder.

Calculated concrete stress block parameters vary from those used in the ACI code.
The code tends to overestimate the moment arm in a beam although the predicted ultimate
moments are very close to test values.
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