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Abstract 

Tight reservoirs stimulated by multistage hydraulic fracturing are commonly described by 

a dual porosity model. This work hypothesizes that the production data of some fractured 

horizontal wells (which contain reactivated natural fractures) may also be described by a 

triple porosity model. We test this hypothesis by extending the existing triple porosity 

models to develop an analytical procedure for determining the reservoir parameters. We 

derive the simplified equations for different regions of the rate-time plot including linear 

and bilinear flow regions. 

The second part of this work focuses on analyzing production data of tight oil 

reservoirs. We plot rate-normalized pressure (RNP) versus material balance time (MBT) 

of two wells drilled in Cardium and Bakken formations. We observe a half-slope 

followed by a unit-slope in both cases. We hypothesize that the unit slope reflects the 

linear pseudosteady state (PSS) flow and develop a new model to analyze this boundary-

dominated flow.  
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CHAPTER I 

INTRODUCTION 

Tight oil and shale gas reservoirs are considered “unconventional” 

resources, requiring horizontal wells and massive hydraulic fracturing for 

economic production. Tight hydrocarbon production is emerging as an important 

source of energy supply in the United States and Canada. Some of these 

unconventional resources are naturally fractured. A naturally fractured reservoir 

(NFR) can be defined as a reservoir that contains fractures (planar discontinuities) 

created by natural processes like diastrophism and volume shrinkage, distributed 

as a consistent connected network throughout the reservoir (Ordonez et al., 2001). 

Fractured petroleum reservoirs represent over 20% of the world's oil and gas 

reserves (Saidi, 1983).  

Horizontal drilling and multi-stage fracture stimulation is a successful 

technique in allowing shale gas production. It has proved to work equally well for 

producing light crude oil trapped in low permeability (e.g., tight) shale, sandstone, 

or carbonate rock formations. Characterization and modeling of naturally 

fractured tight reservoirs stimulated by hydraulic fractures present unique 

challenges that differentiate them from conventional reservoirs. 

Traditionally, dual-porosity models have been used to model NFRs where 

all fractures are assumed to have identical properties. Different dual-porosity 

models have been proposed such as Warren & Root (1963) sugar cube model in 

which matrix provides the storage while fractures provide the flow medium. The 

model assumed pseudosteady state fluid transfer between matrix and fractures. 

Since then, several models were developed mainly as variation of the Warren & 

Root model assuming different matrix- fracture fluid transfer conditions (Kazemi 

1969 and Liu 1981). 

Characterizing and modeling NFRs is challenging due to the highly 

heterogeneous and anisotropic nature of the fracture system (Ordonez et al., 
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2001). It is more realistic to assume fractures having different properties.  This is 

more apparent in case of hydraulically fractured wells. Thus, triple-porosity 

model have been developed and is more realistic models to capture reservoir 

heterogeneity in hydraulically fractured NFRs. Triple porosity model developed 

for linear flow that considers transient fluid transfer (between media) is available 

in the literature (Al-Ahmadi, 2010). In this work we further extend this model to 

develop analysis equations of each flow regime observed during hydrocarbon 

production. 

Furthermore, the existing models available in the literature are useful in 

analyzing matrix flow in hydraulically fractured reservoir. No appropriate models 

are available to analyze the boundary dominated linear flow. Boundary dominated 

flow in the hydraulically fractured reservoirs occurs when the pressure 

interference reaches the virtual no flow boundaries developed at the center of two 

adjacent fractures. New analysis equations are developed to model this flow 

occurring under pseudosteady state flow conditions. 

1.1. PROBLEM DEFINITION 

Horizontal wells with multistage hydraulic fracturing are used to produce 

economically from NFRs.  It has been documented that hydraulic fractures growth 

could re-open the pre-existing natural fractures (Gale et al. 2007). Therefore, for 

any model to be used to analyze such wells, it has to account for both natural and 

hydraulic fractures to be practical. Under these conditions, the reservoir should be 

described by a triple porosity model.  

1.2 OBJECTIVES 

The objective of this research is to develop analysis equations to model each flow 

regime occurring during production from a horizontal well in a triple-porosity 

reservoir. The system consists of matrix and two sets of orthogonal fractures that 

have different properties. These fractures are the more permeable macro-fractures 
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and the less permeable micro-fractures. Existing triple porosity model for linear 

systems will be extended. New analytical equations will also be derived to model 

boundary dominated flow in dual porosity reservoirs. 

1.3 OUTLINE 

This dissertation is divided into seven chapters. It is organized in a manner 

that follows a gradual process of developing a conceptual and logical 

understanding of the basic dual and triple porosity model and its limitations. It 

progresses through by developing the analysis equations of different flow regimes 

observed during production from a triple porosity system. This dissertation also 

includes the modeling of boundary dominated (pseudosteady state) flow for linear 

dual porosity reservoirs. 

Chapter II presents a literature review of existing dual and triple porosity 

models and its extensions for linear flow. This chapter also includes review of 

existing models to analyze boundary dominated flow. 

Chapter III discusses the new analysis equations developed for linear flow 

towards a horizontal well in triple porosity reservoirs. The new equations are 

developed to analyze each individual flow regime observed during hydrocarbon 

production. The solutions are presented for slightly compressible (oil) and highly 

compressible (gas) fluids. 

Chapter IV presents the new equations are developed to model the boundary 

dominated (pseudosteady state) flow for slightly compressible fluids in a dual 

porosity system. 

Chapter V presents the application of the newly developed triple porosity 

model for two shale gas wells. 

Chapter VI presents the application of new equations developed in Chapter 

V for modeling boundary dominated flow for tight oil reservoirs. The transient 

linear matrix flow of tight oil reservoirs is also analyzed using previously 
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developed dual porosity equations. The analysis results obtained from both 

models are compared. 

Chapter VII presents conclusions and recommendations.  
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CHAPTER II 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter provides the literature review of naturally fractured reservoirs. 

Some of available dual and triple porosity models will be reviewed. In addition, 

linear flow solutions for the fractured reservoirs will be discussed. 

2.2 DUAL POROSITY MODELS 

Dual porosity models are usually used to analyze naturally fractured 

reservoirs. These models assume fractures to have identical properties. Barenblatt 

et al. (1960) introduced the first dual porosity model. Warren and Root (1963) 

extended Barenblatt model for well test analysis. The model presented by Warren 

and Root forms the basis of modern day analysis of naturally fractured reservoirs 

(NFRs). The model assumes that the fluid transfer between matrix and fractures is 

under pseudosteady state. The fractures provide flow medium and matrix provide 

storage of fluid. They introduced two dimensionless parameters, storativity (ω) 

and interporosity flow parameter (λ). 

Dual porosity models can be further categorized based on the interporosity 

fluid transfer assumptions: 

i) Pseudosteady state models 

ii) Transient models 

2.2.1 Pseudosteady state models 

Warren and Root (1963) analyzed NFRs by idealizing matrix blocks as 

sugar cubes and assumed a continuous uniform fracture network oriented parallel 

to the principal axes of permeability (Fig 2.1). They assumed pseudosteady flow 

between matrix and fracture system. In their model, two differential forms (one 

for matrix and one for fracture were solved simultaneously at a mathematical 
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point. An equation for interporosity flow from the matrix to the fractures was 

presented: 

𝑞 =  𝛼 
𝑘𝑚
𝜇

 �𝑃𝑚 −  𝑃𝑓�                                                                                                (2.1) 

Where, 𝑞 is the fluid transfer rate, 𝛼 is the Warren and Root shape factor, 𝑃𝑚 is 

the matrix pressure, 𝑃𝑓 is the pressure of fractures, 𝜇 is the viscosity of fluid and 

𝑘𝑚 is the matrix permeability. 

Warren and Root applied the Laplace transformation to obtain transfer 

function "𝑓(𝑠)" and presented a method to analyze pressure build up data for 

infinite radial reservoirs. Kazemi et al (1968) extended his model to interference 

testing. 

 

Fig. 2.1 – Idealization of the NFR system (Warren and Root, 1963). 
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Da Prat et al. (1981) extended the Warren and Root (1963) solutions to 

constant pressure inner boundary conditions and bounded outer boundary cases 

for radial reservoir and presented type curves for declined curve analysis. 

2.2.2 Transient Models 

Kazemi (1969) proposed a slab matrix model with horizontal fractures 

based on transient flow condition between matrix and fracture systems. The 

solutions were developed for single-phase flow in radial reservoirs. He solved the 

problem using numerical techniques. It was concluded that the results are similar 

to that of Warren and Root. Thus this model is also appropriate for analyzing 

NFRs. 

2.3 TRIPLE-POROSITY MODELS 

The induced hydraulic fractures can create new fractures or reactivate the 

pre-existing natural fractures that may transform the reservoir into a triple 

porosity media (Gale et al 2007). 

Liu (1981) introduced the first triple porosity model. The system consists of two 

matrix systems flowing into one fracture. The model was developed for radial 

flow of slightly compressible fluids. The interporosity flow in the reservoir is 

considered under pseudosteady state. This model was not published in petroleum 

literature. 

Abdassah and Ershagi (1986) developed the first triple porosity model for 

petroleum literature. They developed an improved model for pressure transient 

tests of naturally fractured reservoirs. Geometrical configuration studied include, 

both the strata model and uniformly distributed blocks. Both models considered 

two matrix systems with different properties flowing under transient interporosity 

flow. It was concluded that the triple-porosity systems are characterized by 

anomalous slope changes during the matrix-flow controlled region. The slope 

change is the result of the contribution of matrix blocks that have the lowest 
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interporosity flow.  

Al-Ghamdi and Ershaghi (1996) introduced the concept of dual fracture 

triple porosity model. Dual fracture model consist of highly permeable macro 

fractures and less permeable micro fractures. They proposed two sub models to 

represent the dual fracture system. The first model is similar to the triple porosity 

system (two matrix systems and one fracture) where one of the matrix systems is 

replaced by micro-fractures. This model assumes no interporosity flow between 

the micro-fracture and the matrix systems, yet both support flow in the macro-

fracture system. The second model assumes pressure support from the matrix to 

the micro-fractures, which in turns feed the macro-fractures. The macro-fractures 

and the micro-fractures both contribute to the production at the test well. 

Liu et al. (2003) presented a mathematical model for analysis of pressure 

behavior in a tri-continuum medium. The medium consists of fractures, rock 

matrices and cavities. Fractures are considered to have homogeneous properties 

whereas matrix and cavities have different permeability and porosity. The matrix 

and cavities provide fluid storage and feeds the fractures and the fractures feeds 

the well. The interporosity flow occurs under pseudosteady state condition. The 

Warren–Root approach was used in developing the solution. The analytical model 

was applied to a published field-buildup test and was able to match the pressure 

buildup data. 

Wu et al. (2004) proposed a triple-continuum model to study the effect of 

micro-fractures on flow and transport processes in fractured rocks to simulate the 

transport of tracers and nuclear waste of Yucca Mountain. They developed a 

triple-continuum system (consisting of large fractures, small fractures and matrix) 

for estimating reservoir parameters. They investigated the behavior of flow and 

transport processes in fractured rocks and verified the validity of analytical 

solutions with numerical modeling results. They concluded that the micro-

fractures have a significant effect on the radionuclide transport in the system. 

All the models previously described were developed for the radial reservoir 
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cases. 

2.4 LINEAR FLOW IN HYDRAULICALLY FRACTURED HORIZONTAL WELLS 

Linear reservoirs are those reservoirs that show predominately linear flow 

because of the shape of reservoirs. These reservoirs would impose one-

dimensional linear flow (El-Banbi 1998). Tight oil and gas reservoirs are 

hydraulically fractured through horizontal wells for economic production.  

Horizontal wells and hydraulically fractured horizontal wells may develop several 

linear flow periods depending on the type of well and shape of reservoirs. The 

duration of linear flow periods is governed by reservoir properties. Linear flow 

occurs at early times when the flow is perpendicular to any flow surface. Many 

wells have been observed to show long-term linear flow. Linear flow may be 

present for years before any boundary effects are reached. Several causes of linear 

transient flow may include draining of adjacent tight layers into high permeability 

layers, early-time constant pressure drainage and hydraulic fracture draining a 

square geometry (Wattenbarger, 2007). 

Several authors (Miller, 1962 and Nabor and Barham, 1964) considered a 

linear reservoir model of rectangular geometry and presented constant rate and 

constant pressure solutions for linear aquifers. 

El-Banbi (1998) was the first to present the analytical solution to model 

fluid flow in linear fractured reservoirs. New solutions were presented for 

naturally fractured reservoir using a linear reservoir model for dual porosity 

systems. Solutions are derived in Laplace domain for different inner boundary 

(constant pressure and constant rate) and outer boundary (infinite, closed and 

constant pressures). The effects of skin and wellbore storage effects have also 

been included. 

Bello (2009) used El-Banbi solutions to model linear flow in dual porosity 

models. Horizontal well performance in tight fractured reservoirs was analyzed. 

El-Banbi’s solution for constant pressure solution was applied to analyze rate 
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transient in horizontal multi-stage fractured wells. He considered a bounded 

rectangular reservoir with slab matrix blocks draining into adjoining fractures and 

subsequently to a horizontal well in the center. Five flow regions were identified. 

New analytical equations for transient flow conditions were presented. Skin effect 

for the constant rate and constant pressure was also studied. His analytical 

equations for dual porosity transient linear will be used in this work to analyze 

wells exhibiting dual porosity behavior. Bello (2009) and Bello and Wattenbarger 

(2008, 2009, 2010) used the dual porosity linear flow model to analyze shale gas 

wells. 

Al-Ahmadi (2010) extended Bello’s (2009) dual porosity model and 

proposed a triple porosity model for horizontal fractured wells. This model 

assumes that micro fractures are perpendicular to the hydraulic fractures and 

parallel to the horizontal well. The model was developed based on the assumption 

that the flow is sequential from the matrix to the micro fractures and from the 

micro fractures to the hydraulic fractures and no flow occurs between matrix and 

hydraulic fractures. Four sub-models were developed based on the interporosity 

flow assumptions for transient and pseudosteady state flow conditions. He 

presented fracture transfer function "𝑓(𝑠)" for all four models. Non-linear 

regression analysis technique was used to calculate the unknown reservoir 

parameters for hydraulically fractured shale gas horizontal well. 

Dehghanpour and Shirdel (2011) developed the triple porosity model for 

inner shale reservoir (Fig 2.2). The system consists of macro fractures with higher 

permeability, matrix blocks with intermediate permeability and porosity and 

matrix blocks with low permeability and porosity. They extended the existing 

dual porosity models and studied the pressure response under transient and 

pseudosteady state condition. They also performed sensitivity analysis to study 

the effect of properties of each medium on the pressure response. 
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Fig. 2.2 – Schematic illustration of triple porosity model (Dehghanpour and Shirdel, 

2011) 

In this work Al-Ahmadi’s transfer function is further simplified for the 

transient case only and analytical equations are developed and presented to 

characterize triple porosity reservoirs. 

2.5 BOUNDARY DOMINATED (PSEUDOSTEADY STATE) FLOW 

 
After the transient matrix flow in linear reservoirs, boundary dominated 

flow occurs. This flow is under pseudosteady state flow condition. This flow 

occurs as the pressure transient response reaches the virtual no flow boundaries 

developed between two adjacent hydraulic fractures. 

Blasingame and Lee (1986) introduced the original analysis equation for 

boundary-dominated flow (i.e. pseudo steady state flow) for radial reservoirs. 
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Placio and Blasingame (1993) later modified their analysis equation for any 

instantaneous production time, flow regime or production scenario.  

A new model for boundary dominated flow occurring in linear dual porosity 

reservoirs is developed in this work. 
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CHAPTER III 

DEVELOPMENT OF ANALYSIS EQUATIONS FOR SEQUENTIAL 

TRIPLE POROSITY SYSTEM 

3.1 INTRODUCTION 

In this chapter, we develop the new analytical equations to analyze different 

flow regions observed on a rate-time plot of triple porosity system. This work is 

an extension of Al-Ahmadi’s (2010) triple porosity model for transient linear 

flow. The triple porosity system consists of macro-fractures (higher permeability), 

micro fractures (intermediate permeability) and matrix (low permeability). The 

matrix feeds only the micro-fractures and micro-fractures feeds the macro-

fractures. The macro-fractures are connected to horizontal well. The model and 

analysis equation are developed based on the assumption that the flow is 

sequential from one medium to another.  

3.2 TRIPLE-POROSITY MODEL FOR SEQUENTIAL LINEAR FLOW 

Al-Ahmadi (2010) proposed a new triple porosity model to analyze linear 

flow in a triple porosity system. A schematic of the triple porosity model is shown 

in Fig 3.1. The arrows indicate the flow direction. The fluid flows from the matrix 

to the micro-fractures and then to the macro-fractures and finally to the horizontal 

well. This model is an extension to the transient dual porosity model proposed by 

Kazemi (1969). Al-Ahmadi made the following assumptions to develop the 

analytical solutions. 

1. The closed rectangular reservoir is producing at a constant rate through a 

horizontal well centrally placed in the reservoir 

2. Triple porosity system consists of three contiguous media i.e. matrix, micro-

fractures and macro fractures 

3. Each media in the reservoir is assumed to be homogenous and isotropic 

4. Matrix blocks are idealized as slabs 
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5. Flow direction is sequential 

6. Fluid is slightly compressible 

 

Fig. 3.1 – Top view of a horizontal well in a triple porosity system. Red dotted lines 

indicated virtual no flow boundaries. Arrows indicate direction of the flow (Al-

Ahmadi 2010). 

 

El-Banbi (1998) presented the constant rate and constant pressure solutions 

for linear fluid flow in fractured reservoirs. The analytical solution in Laplace 

domain for the constant rate is given by 

 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
�
1 + 𝑒−2�𝑠𝑓(𝑠)𝑦𝐷𝑒

1 − 𝑒−2�𝑠𝑓(𝑠)𝑦𝐷𝑒
�                                                                               (3.1) 
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Al-Ahmadi (2010) derived the new transfer functions that can be used in 

Eq. 3.1 to model triple porosity systems. He proposed four sub-models of the 

triple porosity system for pseudosteady state and transient flow conditions. The 

fracture functions 𝑓(𝑠) for the fully transient triple porosity model in Laplace 

domain are given by 

 

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) 𝑡𝑎𝑛ℎ�𝑠𝑓𝑓(𝑠)                                                             (3.2) 

 

Where  𝑓𝑓(𝑠) is given by  

 

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

𝑡𝑎𝑛ℎ�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                     (3.3) 

 

The dimensionless variables is Eq. 3.1, 3.2 and 3.3 are defined as 

 

1
𝑞𝐷𝑙

=
𝑘𝐹�𝐴𝑐𝑤�𝑚(𝑝𝑖) −𝑚�𝑝𝑤𝑓��

1422𝑞𝑔𝑇
                                                                            (3.4) 

 

𝑡𝑑𝑎𝑐 =  
0.00633𝑘𝐹𝑡
(∅𝜇𝑐𝑡)𝑡𝐴𝑐𝑤

                                                                                                      (3.5) 

 

 𝜆𝐴𝑐𝐹𝑓 =
12
𝐿𝐹2

𝑘𝑓
𝑘𝐹
𝐴𝑐𝑤                                                                                                      (3.6) 

 

 𝜆𝐴𝑐𝑓𝑚 =
12
𝐿𝑓2

𝑘𝑚
𝑘𝐹

𝐴𝑐𝑤                                                                                                     (3.7) 

 

𝜔𝑖 =  
(∅𝜇𝑐𝑡)𝑖
(∅𝜇𝑐𝑡)𝑡

                                                                                                                 (3.8) 
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Where i= F, f and m,  

 

(∅𝜇𝑐𝑡)𝑡 = (∅𝜇𝑐𝑡)𝐹 + (∅𝜇𝑐𝑡)𝑓 + (∅𝜇𝑐𝑡)𝑚                                                              (3.9) 

 

𝑦𝐷𝑒 =
𝑦

�𝐴𝑐𝑤
                                                                                                                 (3.10) 

 

𝑧𝐷 =
𝑧

𝐿𝑓
2�

                                                                                                                     (3.11) 

 

𝑥𝐷 =
𝑥

𝐿𝐹
2�

                                                                                                                     (3.12) 

Refer to Appendix A for a detailed derivation of this linear triple porosity 

model.  

3.3 FLOW REGIONS BASED ON THE ANALYTICAL SOLUTION 

There are six different region identified by Al-Ahmadi (2010) for the 

constant pressure solution as the pressure propagates through the triple porosity 

system. The solutions are obtained by replacing Eq. 3.2 and 3.3 in Eq. 3.1. These 

solutions are inverted to real (time) domain using inverting algorithms like 

Stehfest Algorithm (Stehfest 1970). The solutions are then plotted on a log-log 

plot of dimensionless flow rate versus dimensionless time. Figure 3.2 shows 

different flow regimes observed during production.  

A negative quarter-slope identifies the bi-linear transient flow region and a 

negative half-slope identifies the linear transient flow region. Region 1 represents 

the linear flow through the hydraulic fractures. Region 2 represents the bi-linear 

flow due to simultaneous depletion of macro fractures and micro fractures. 
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Region 3 represents the linear flow through micro fractures. Region 4 represents 

bi-linear flow due to simultaneous depletion of the micro- fractures and the matrix 

blocks. Region 5 is the linear flow from matrix blocks. Region 6 represents the 

boundary dominated flow. 

 

 

Fig. 3.2 – Log-log plot of dimensionless rate versus dimensionless time for a triple 

porosity system. Bi-linear flow indicated by a slope of 0.25 and linear flow is 

indicated by slope of 0.5 (Al Ahmadi 2010). 

3.4 DEVELOPMENT OF ANALYSIS EQUATION FOR FLOW REGIONS OBSERVED 

DURING PRODUCTION 

In this work we further simplify Eq. 3.2 and Eq. 3.3 to develop the new 

equations to analyze each flow region observed during production. We develop 

the analysis equation for the triple porosity system for transient case only. Bello 

(2009) developed similar analytical equations to analyze rate transient in 

horizontal multi-stage fractured shale gas wells for dual porosity system.  

 The details of the derivation are shown in Appendix B. 
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3.4.1 Region 1 

We observe this region when transient linear flow occurs in macro-fractures. This 

occurs at early time scales when the drainage of micro-fractures and matrix is 

negligible. A negative half-slope on the log-log plot characterizes this region. We 

simplify Eq. 3.2 and 3.3 to obtain a dimensionless equation to analyze this region. 

The mathematical details are given in Appendix B-1. The equation for Region 1 is 

given by 

 

𝑞𝐷𝑙 =  
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜔𝑓                                                                                                (3.13) 

 

Equation 3.13 can be converted into dimensional form by substituting 

dimensionless parameters defined by Eq. 3.4 to Eq. 3.12:  

 

�𝑘𝐹𝐴𝑐𝑤 =
1262𝑇
�(∅𝜇𝑐𝑡)𝑓

1
𝑚1

                                                                                          (3.14) 

 

Where m1 is the slope obtained by plotting m(pi)−m(pwf)
qg

 versus √t. We can 

calculate the permeability of macro-fractures using Eq. 3.14 if the other 

parameters are known. 

Acw is the total drainage area of the reservoir and can be calculated by 

𝐴𝑐𝑤
= 2 ×  𝑋𝑒  × ℎ                                                                                                         (3.15) 

3.4.2 Region 2  

We observe this region during simultaneous depletion of both macro-fracture and 

micro-fracture (bi-linear flow). This region is characterized by a negative quarter-
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slope on the log-log plot. We simplify Eq. 3.2 and 3.3 to obtain a dimensionless 

equation to analyze this region. The mathematical details are given in Appendix 

B-2. The dimensionless equation for Region 2 is given by 

 

𝑞𝐷𝑙 =
1

10.1332
�
𝜆𝐴𝑐𝐹𝑓𝜔𝑓
𝑡𝑑𝑎𝑐

4
                                                                                         (3.16) 

 

Equation 3.16 can be converted into dimensional form by substituting 

dimensionless parameters defined by Eq. 3.4 to Eq. 3.12: 

 

�𝑘𝐹𝐴𝑐𝑤 =
4070𝑇

�𝜎𝐹𝑘𝑓(Ø𝜇𝑐𝑡)𝑓4

1
𝑚2

                                                                                (3.17) 

 

Where m2 is the slope obtained by plotting m(pi) − m(pwf)
qg

 versus √t4  . If Region 2 is 

observed and other parameters are known, Eq. 3.17 can be used to determine 

𝑘𝐹�𝑘𝑓. 

3.4.3 Region 3 

We observe this region when transient linear flow occurs in micro-fracture. A 

negative half-slope on the log-log plot characterizes this region. We simplify Eq. 

3.2 and 3.3 to obtain a dimensionless equation to analyze this region. The 

mathematical details are given in Appendix B-3. The dimensionless equation for 

Region 3 is given by 

 

𝑞𝐷𝑙 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝐹𝑓𝜔𝑓

3
𝑦𝐷𝑒                                                                               (3.18) 
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Equation 3.18 can be converted into dimensional form by substituting 

dimensionless parameters defined by Eq. 3.4 to Eq. 3.12:  

  

�𝜎𝐹𝑦𝑒�𝑘𝑓𝐴𝑐𝑤 =
2182𝑇

�(Ø𝜇𝑐𝑡)𝑓

1
𝑚3

                                                                              (3.19) 

 

Where 𝜎𝐹 = 12
𝐿𝐹2

                                                                                                           (3.20) 

 

Where m3 is the slope obtained by plotting m(pi)−m(pwf)
qg

 versus √t . If Region 3 is 

observed and other parameters are known, Eq. 3.19 can be used to determine 𝑘𝑓 

or 𝑦𝑒  if one is known from other sources. 

3.4.4 Region 4 

We observe this region when both matrix and micro-fracture deplete at the same 

time. A negative quarter slope on the log-log plot characterizes this region. We 

simplify Eq. 3.2 and 3.3 to obtain a dimensionless equation to analyze this region. 

The mathematical details are given in Appendix B-4. The dimensionless equation 

for Region 4 is given by 

 

𝑞𝐷𝑙 =
1

17.31�
𝜆𝐴𝑐𝐹𝑓�

𝜆𝐴𝑐𝑓𝑚𝜔𝑚
𝑡𝑑𝑎𝑐

4
𝑦𝐷𝑒                                                                       (3.21) 

 

Equation 3.21 can be converted into dimensional form by substituting 

dimensionless parameters defined by Eq. 3.4 to Eq. 3.12: 
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�𝜎𝐹𝑦𝑒�𝑘𝑓𝐴𝑐𝑤 =
6943𝑇

�𝜎𝑓𝑘𝑚(Ø𝜇𝑐𝑡)𝑚4

1
𝑚4

                                                                  (3.22) 

 

Where  𝜎𝑓 = 12
𝐿𝑓2

                                                                                                           (3.23) 

Substituting shape factor σf in Equation 3.22 

  

�𝜎𝐹𝑦𝑒�
𝑘𝑓
𝐿𝑓
𝐴𝑐𝑤 =  

2004𝑇
�𝑘𝑚(Ø𝜇𝑐𝑡)𝑚
4

1
𝑚4

                                                                     (3.24) 

 

Where m4 is the slope obtained by plotting 𝑚
(𝑝𝑖)−𝑚�𝑝𝑤𝑓�

𝑞𝑔
 versus √𝑡4 . If Region 4 is 

observed and other parameters are known, Eq. 3.24 can be used to determine the 

ratio 𝑘𝑓
𝐿𝑓

, if ye is known from other sources. 

3.4.5 Region 5 

We observe this region when transient linear flow occurs in matrix. This is the 

longest region we observe before reaching the boundary effect. A negative half-

slope on the log-log plot characterizes this region. Analysis of this region gives 

the total matrix drainage area that determines the effectiveness of stimulation job. 

We simplify Eq. 3.2 and 3.3 to obtain a dimensionless equation to analyze this 

region. The mathematical details are given in Appendix B-5. The dimensionless 

equation for Region 5 is given by 

 

𝑞𝐷𝑙 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝑓𝑚𝜔𝑚

3
 𝑦𝐷𝐸                                                                             (3.25) 
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Equation 3.25 can be converted into dimensional form by substituting 

dimensionless parameters defined by Eq. 3.4 to Eq. 3.12: 

�𝜎𝐹𝑦𝑒�𝑘𝑚𝐴𝑐𝑤 =
2182𝑇

�(Ø𝜇𝑐𝑡)𝑚

1
𝑚5

                                                                            (3.26) 

 

Where m5 is the slope obtained by plotting m(pi)−m(pwf)
qg

 against √t. We can 

calculate the stimulated fracture half-length ye by analyzing this region. 

𝐴𝑐𝑚 is the area of interface between matrix and micro fractures (for triple porosity 

case) and is given by  

 

𝐴𝑐𝑚 = 𝐴𝑐𝑤
2 𝑦𝑒
𝐿𝑓

                                                                                                           (3.27) 

Here, 

𝐴𝑐𝑤 is the drainage area given by Eq. 3.15 

𝑦𝑒  is the fracture half-length. 

𝐿𝑓 is the spacing between micro fractures 

 

Where 𝑦𝑒
𝐿𝑓

 represents the number of micro fractures (nfye). 

Therefore, Eq. 3.26 can be converted to simpler form 

 

�𝑘𝑚𝐴𝑐𝑚 =
2182𝑇

�(Ø𝜇𝑐𝑡)𝑚

1
𝑚5

                                                                                       (3.28) 
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If Region 5 is observed and other parameters are known, Eq. 3.28 can be used to 

determine the matrix drainage area 𝐴𝑐𝑚. 

3.4.6 Region 6  

We observe this region when the reservoir boundary begins to influence the 

transient response. In other words, the pressure transient response in the matrix 

blocks has reached the virtual no flow boundaries developed between two 

adjacent fractures. This region is also defined in the petroleum literature as 

boundary dominated flow. We can calculate the stimulated reservoir volume SRV 

by analyzing this region to estimate the OOIP and OGIP. We will derive an 

equation for boundary-dominated flow of slightly compressible fluid in linear 

dual porosity system. 

The summary of the results for the highly compressible fluids (gas) and 

slightly compressible fluid (oil) is presented in Table 3.1 and Table 3.2 

respectively. 
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Table 3.1 Summary of analysis equations developed for constant Pwf of rate 

transient solution for triple porosity system for highly compressible fluid 

(gas) 

Region Inverse Laplace Solution Analysis Equation 

Region 1 

(Macro-Fracture 
Flow) 

𝑞𝐷𝐿 =  
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜔𝑓 �𝑘𝐹𝐴𝑐𝑤 =

1262𝑇

�(∅𝜇𝑐𝑡)𝐹

1
𝑚1

 

Region 2 

(Bilinear flow 
b/w macro & 

micro-fractures) 

𝑞𝐷𝐿 =
1

10.133
�
𝜆𝐴𝑐𝐹𝑓𝜔𝑓
𝑡𝑑𝑎𝑐

4
 �𝑘𝐹𝐴𝑐𝑤 =

4070𝑇

�𝜎𝐹𝑘𝑓(Ø𝜇𝑐𝑡)𝑓4

1
𝑚2

 

Region 3 

(Micro-fracture 
flow) 

𝑞𝐷𝐿 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝐹𝑓𝜔𝑓

3
𝑦𝐷𝑒  �𝜎𝐹𝑦𝑒�𝑘𝑓𝐴𝑐𝑤 =

2182𝑇

�(Ø𝜇𝑐𝑡)𝑓

1
𝑚3

 

Region 4 

(Bilinear flow 
b/w matrix & 

micro-fractures) 

𝑞𝐷𝐿 =
1

17.54�
𝜆𝐴𝑐𝐹𝑓 �

𝜆𝐴𝑐𝑓𝑚𝜔𝑚
𝑡𝑑𝑎𝑐

 4
𝑦𝐷𝑒 �𝜎𝐹𝑦𝑒�

𝑘𝑓
𝐿𝑓
𝐴𝑐𝑤 =

2004𝑇

�𝑘𝑚(Ø𝜇𝑐𝑡)𝑚
4

1
𝑚4

 

Region 5 

(Matrix flow) 𝑞𝐷𝐿 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝑓𝑚𝜔𝑚

3
𝑦𝐷𝑒  �𝑘𝑚𝐴𝑐𝑚 =

1262𝑇

�(Ø𝜇𝑐𝑡)𝑚

1
𝑚5
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Table 3.2 Summary of analysis equations developed for constant Pwf of rate 

transient solution for triple porosity system for slightly compressible fluid (oil) 

Region Inverse Laplace Solution Analysis Equation 

Region 1 

(Macro-fracture 
flow) 

𝑞𝐷𝐿 =  
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜔𝑓 �𝑘𝐹𝐴𝑐𝑤 =

125.11𝐵𝑜𝜇

�(∅𝜇𝑐𝑡)𝐹

1
𝑚1

 

Region 2 

(Bilinear flow b/w 
macro & micro-

fractures) 

𝑞𝐷𝐿 =
1

10.133
�
𝜆𝐴𝑐𝐹𝑓𝜔𝑓
𝑡𝑑𝑎𝑐

4
 �𝑘𝐹𝐴𝑐𝑤 =

403.5𝐵𝑜𝜇

�𝜎𝐹𝑘𝑓(Ø𝜇𝑐𝑡)𝑓4

1
𝑚2

 

Region 3 

(Micro-fracture flow) 𝑞𝐷𝐿 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝐹𝑓𝜔𝑓

3
𝑦𝐷𝑒 

𝐿𝑓
𝐿𝐹
�𝑘𝑓𝐴𝑐𝑚 =

125.11𝐵𝑜𝜇

�(Ø𝜇𝑐𝑡)𝑓

1
𝑚3

 

Region 4 

(Bilinear flow b/w 
matrix & micro-

fractures) 

𝑞𝐷𝐿 =
1

17.54�
𝜆𝐴𝑐𝐹𝑓 �

𝜆𝐴𝑐𝑓𝑚𝜔𝑚
𝑡𝑑𝑎𝑐

 4
𝑦𝐷𝑒  

𝐿𝑓
𝐿𝐹
�𝑘𝑓𝐴𝑐𝑚 =

403.5𝐵𝑜𝜇

�𝛼𝑚𝑘𝑚(Ø𝜇𝑐𝑡)𝑚
4

1
𝑚4

 

Region 5 

(Matrix flow) 𝑞𝐷𝐿 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝑓𝑚𝜔𝑚

3
𝑦𝐷𝑒 �𝑘𝑚𝐴𝑐𝑚 =

125.11 𝐵𝑜𝜇

�(Ø𝜇𝑐𝑡)𝑚

1
𝑚5
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CHAPTER IV 

DEVELOPMENT OF ANALYSIS EQUATION OF BOUNDARY 

DOMINATED FLOW 

4.1 INTRODUCTION 

In this chapter, we develop a new model for analyzing boundary dominated 

flow in fractured tight oil wells. In Chapter VI we use this model to analyze the 

boundary dominated flow in fractured tight oil reservoirs. The boundary 

dominated flow occurs under pseudosteady state flow conditions.  

4.2 MODELING BOUNDARY DOMINATED FLOW IN FRACTURED HORIZONTAL 

WELLS 

Pseudosteady state flow is observed when pressure interference occurs 

between two adjacent transverse fractures. A no flow imaginary boundary is 

formed at the middle of two adjacent fractures. We develop the equations to 

analyze this pseudosteady behavior identified by a unit-slope on the plot of rate-

normalized pressure (RNP) versus material balance time (MBT). Fig. 4.1 shows 

the no flow boundaries developed at the center of the matrix blocks separated by 

two adjacent fractures. A 3D view of the horizontal well placed in the center of 

reservoir is shown in Fig. 4.2.  

4.2.1 Model Assumptions 

In order to develop the analysis equations, we make the following assumptions: 

1. The system is a dual porosity and no micro fractures (natural fractures) exist 

2. The fluid flow is only from the matrix blocks to the hydraulic fractures and 

only hydraulic fractures feed the well bore 

3. The fluid is slightly compressible and single phase 

4. The no flow boundary is assumed to be in the middle of the matrix blocks 

separating two adjacent fractures 

5. Spacing between the hydraulic fractures is uniform 



 

27 

6. When the pseudo steady state is reached, the pressure drop in the fractures is 

negligible 

7. The contribution of the matrix blocks beyond the fracture half-length is 

ignored 

8. Horizontal permeability is higher than vertical permeability 

 

 

 

 

Fig. 4.1 – Plan view of hydraulic fractures connected to the horizontal well. The 
direction of flow is from the matrix to the fractures and from the fractures to the 
well. This figure also shows fracture half-length ye. Arrows indicate the flow 
direction. 
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Fig. 4.2 – Front view of hydraulic fractures connected to the horizontal well.  

4.3.2 Development of a New Solution for the Boundary Dominated Linear 

Flow in Horizontally Fractured Tight Reservoirs 

Starting from the material balance equation and using the linear diffusivity 

equation, we model the boundary dominated linear flow in fractured tight 

reservoirs. To develop the analysis equation we consider, a control volume, 𝑉𝑚, 

shown in Fig 4.3. It represents the volume of reservoir feeding one fracture. The 

no-flow boundary is established at a distance of 0.5 𝐿𝑓from the fracture where 𝐿𝑓 

is the spacing between the fractures.  
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Fig. 4.3 – Schematic of the selected control volume showing a hydraulic fracture 

surrounded by the matrix blocks. Two no-flow boundaries are virtually created at 

the center of adjacent fractures at distance of 0.5 Lf from the fracture 

 

We apply mass balance for control volume 𝑉𝑚 as shown in Fig. 4.3, 

4.3.2.1 Material balance equation 

Mass in – Mass out = Accumulation in the matrix        (4.1) 

0 −  𝑞𝑜𝜌𝑜𝛥𝑡│𝑥 =  𝜌𝑜 𝜙𝑚𝑉𝑚│𝑡 +𝛥𝑡  −  𝜌𝑚𝜙𝑚𝑉𝑚|𝑡                                                  (4.2) 

0 −  𝑞𝑜𝜌𝑜 =  
𝜌𝑜 𝜙𝑚𝑉𝑚│𝑡 +𝛥𝑡  −  𝜌𝑚𝜙𝑚𝑉𝑚|𝑡

∆𝑡
                                                           (4.3) 

Taking limits as Δt approaches to zero 
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− 𝑞𝑜𝜌𝑜 =  
𝑑
𝑑𝑡

(𝜌𝑜 𝜙𝑚𝑉𝑚)                                                                                              (4.4) 

− 𝑞𝑜𝜌𝑜
𝑉𝑚

=  
𝑑
𝑑𝑡

(𝜌𝑜 𝜙𝑚)                                                                                                   (4.5) 

Using chain rule 

− 𝑞𝑜𝜌𝑜
𝑉𝑚

=  
𝑑𝑃
𝑑𝑡

� 𝜙𝑚
𝑑
𝑑𝑃

𝜌𝑜+𝜌𝑜 
𝑑
𝑑𝑃

𝜙𝑚�                                                               (4.6) 

Dividing both sides by 𝜙𝑚 and 𝜌𝑜 

− 𝑞𝑜
𝑉𝑚 𝜙𝑚 

=  
𝑑𝑃
𝑑𝑡

� 
1
𝜌𝑜

𝑑
𝑑𝑃𝑚

𝜌𝑜  +  
1

 𝜙𝑚
𝑑
𝑑𝑃

𝜙𝑚�                                                           (4.7) 

− 𝑞𝑜
𝑉𝑚 𝜙𝑚 

=  
𝑑𝑃
𝑑𝑡

� 𝑐𝑤 +  𝑐𝑓 �                                                                                           (4.8) 

− 𝑞𝑜
𝑉𝑚𝜙𝑚 

=  
𝑑𝑃
𝑑𝑡

( 𝑐𝑡 )                                                                                                       (4.9) 

𝑑𝑃
𝑑𝑡

=  −
𝑞𝑜

𝑉𝑚𝜙𝑚 𝑐𝑡
                                                                                                       (4.10) 

Where 𝑉𝑚 is the controlled volume given by 

𝑉𝑚 =  𝐿𝑓  .ℎ  . 2𝑦𝑒                                                                                                      (4.11) 

4.3.2.2 Linear Diffusivity Equation 

Diffusivity equation for linear flow is given as 

𝑑2𝑃
𝑑𝑥2

= �
𝜙𝑚 𝜇𝑜 𝑐𝑡
𝑘𝑚

�  
𝑑𝑃
𝑑𝑡

                                                                                          (4.12) 

Replacing 𝑑𝑃
𝑑𝑡

 from Eq. 4.9 

𝑑2𝑃
𝑑𝑥2

= �
𝜙𝑚 𝜇𝑜 𝑐𝑡
𝑘𝑚

� �−
𝑞𝑜

𝑉𝑚𝜙𝑚 𝑐𝑡
�                                                                           (4.13) 

Integrating both sides gives 
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𝑑𝑃
𝑑𝑥

= �
 𝜇𝑜 
𝑘𝑚

� �−
𝑞𝑜
𝑉𝑚

 𝑥� + 𝐶1                                                                                   (4.14) 

Applying the first boundary condition 

At 𝑥 = 𝐿𝑓
2

, 𝑑𝑃
𝑑𝑥

= 0 

C1 is given by 

𝐶1 = �
 𝜇𝑜 
𝑘𝑚

𝑞𝑜
𝑉𝑚
�  
𝐿𝑓
2

                                                                                                      (4.15) 

Replacing C1 from Eq. 4.15 into Eq. 4.14, we obtain 

𝑑𝑃
𝑑𝑥

= �
 𝜇𝑜 
𝑘𝑚

��−
𝑞𝑜
𝑉𝑚

  � 𝑥 + �
 𝜇𝑜 
𝑘𝑚

𝑞𝑜
𝑉𝑚
�   
𝐿𝑓
2

                                                             (4.16) 

Integrating both sides of Eq. 4.16 

�𝑑𝑃 = ��
 𝜇𝑜 
𝑘𝑚

� �−
𝑞𝑜
𝑉𝑚

 � 𝑥 𝑑𝑥 +  ��
 𝜇𝑜 
𝑘𝑚

𝑞𝑜
𝑉𝑚
�  
𝐿𝑓
2

 𝑑𝑥                                      (4.17) 

𝑃𝑚 = �
 𝜇𝑜 
𝑘𝑚

� �−
𝑞𝑜

2 𝑉𝑚
 𝑥2� +  �

 𝜇𝑜 
𝑘𝑚

𝑞𝑜
𝑉𝑚
�  
𝐿𝑓
2
𝑥 + 𝐶2                                               (4.18) 

Applying the second boundary condition 

At 𝑥 = 0, 𝑃𝑚 =  𝑃𝑓 

Eq. 4.18 becomes 

C2 =  𝑃𝑓                                                                                                                        (4.19) 

Replacing C2 from Eq. 4.19 into Eq.4.18 

𝑃𝑚 = �
 𝜇𝑜 
𝑘𝑚

��−
𝑞𝑜

2 𝑉𝑚
 𝑥2� +  �

 𝜇𝑜 
𝑘𝑚

𝑞𝑜
𝑉𝑚
�  
𝐿𝑓
2
𝑥 +  𝑃𝑓                                               (4.20) 

Eq. 4.20 represents pressure profile in the matrix block. 

4.3.2.3 Average matrix pressure from the pressure solution  

Average pressure of the control volume 𝑉𝑚 is given by 
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∫ 𝑃𝑚𝑑𝑉𝑚
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2
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∫ 𝑑𝑉𝑚
𝐿𝑓
2
0

                                                                                                         (4.21) 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 – The pressure profile in the matrix during the boundary dominated flow. 

The rate of pressure drop with respect to time remains constant at pseudosteady 

state conditions. 

 

Replacing 𝑃𝑚 from Eq. 4.20 and 

𝑑𝑉𝑚  = 2 𝑦𝑒 ×  ℎ 

×  𝑑𝑥                                                                                                (4.22) 

On solving Eq. 4.21, the average matrix pressure is given by 

𝑃𝑚���� −  𝑃𝑓 =  
𝜇 𝐵𝑜 𝑞𝑜 𝐿𝑓2

12 𝑘𝑚 𝑉𝑚 
                                                                                             (4.23) 

4.3.2.4 Average matrix pressure based on Pseudo-steady state flow  

Expressing Pf as a function of time, 

𝝏𝒅
𝝏𝝏

= 𝒄𝒄𝒄𝒄𝝏 

 
𝒅𝒅
𝒅𝒅

= 𝟎 

No Flow 
Boundary 
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 𝑐𝑡  = −
1

𝜙𝑚𝑉𝑚
∆𝑉𝑜
∆𝑃𝑚

                                                                                                     (4.24) 

 𝐶𝑡 𝑉𝑚 𝑑𝑃𝑚 = −𝑑𝑉𝑚                                                                                                    (4.25) 

Here,  

∆𝑃𝑚 = 𝑃𝑖 − 𝑃𝑚����    𝑎𝑛𝑑   ∆𝑉𝑜 =  𝐵𝑜 𝑞𝑜 𝑡                                                                    (4.26) 

 𝜙𝑚𝑉𝑚 = 𝜙𝑚 𝐿𝑓 ℎ 2𝑦𝑒                                                                                                  (4.27) 

Substituting Eq. 4.26 and 4.27 in Eq. 4.24, 

𝑃𝑚����−𝑃𝑖 =  
𝐵𝑜 𝑞𝑜 𝑡

𝐿𝑓ℎ 2𝑦𝑒  𝜙𝑚 𝑐𝑡 
                                                                                          (4.28) 

4.3.2.5 Final Solution 

Replacing 𝑃𝑚���� from Eq. 4.23 

𝑃𝑖 − 𝑃𝑓 =  
𝐵𝑜𝑞𝑜 𝑡

𝐿𝑓 ℎ 2𝑦𝑒 𝜙𝑚 𝑐𝑡 
+  
𝜇 𝐵𝑜 𝑞𝑜 𝐿𝑓2

12 𝑘𝑚 𝑉𝑚 
                                                            (4.29) 

We know 𝑁𝑝 =  𝑞𝑜 𝑡                                                                                                   (4.30) 

Replacing Eq. 4.30 in Eq. 4.29 and dividing by 𝑞𝑜 we obtain 

𝑃𝑖 − 𝑃𝑓
𝑞𝑜 

=  
𝐵𝑜   𝑁𝑝

𝐿𝑓 ℎ 2𝑦𝑒  𝜙𝑚 𝑐𝑡 𝑞𝑜   
+  
𝜇 𝐵𝑜 𝑞𝑜 𝐿𝑓2

12 𝑘𝑚 𝑉𝑚 
                                                     (4.31) 

Replacing  𝑁𝑝
𝑞𝑜 

=  𝑡̅                                                                                                        (4.32) 

𝑃𝑖 − 𝑃𝑤𝑓
𝑞𝑜

=  
 𝐵𝑜 𝑡̅

𝐿𝑓 ℎ 2𝑦𝑒 𝜙𝑚 𝑐𝑡 
+  

𝜇 𝐵𝑜 𝐿𝑓2

12 𝑘𝑚 𝑉𝑚 
                                                           (4.33) 

 

𝑡 ̅     is the material balance time (MBT) 

Np     is the cumulative oil production 

Qo  is the daily oil rate 
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Blasingame and Lee (1986) introduced the original material balance approach for 

boundary-dominated flow (i.e. pseudo steady state flow), which is later modified 

by Placio and Blasingame (1993) for any instantaneous production time, flow 

regime or production scenario.  

When the boundary effects are observed after the transient flow regime, we 

assume Pf  = Pwf, this means that the pressure drop in the fracture is negligible. 

𝑃𝑖 − 𝑃𝑤𝑓
𝑞𝑜

=  
 𝐵𝑜 𝑡̅

𝐿𝑓 ℎ 2𝑦𝑒 𝜙𝑚 𝑐𝑡 
+  

𝜇 𝐵𝑜 𝐿𝑓2

12 𝑘𝑚 𝑉𝑚 
                                                           (4.33) 

Eq. 4.33 is developed for one producing fracture; to incorporate the effect of 

multiple numbers of fractures we multiply 𝑞𝑜 and 𝑉𝑚 by number of fractures Nf to 

obtain total flow rate 𝑄𝑜 and total reservoir volume. 

𝑃𝑖 − 𝑃𝑤𝑓
𝑄𝑜

=  
 𝐵𝑜 𝑡̅

𝐴𝑐𝑤 𝑦𝑒 𝜙𝑚 𝑐𝑡 
+  

𝜇 𝐵𝑜 𝐿𝑓2

12 𝑘𝑚 𝑁𝑓 𝑉𝑚 
                                                        (4.34) 

𝑃𝑖−𝑃𝑤𝑓
𝑞𝑜

 is defined in the petroleum literature as Rate-Normalized Pressure (RNP). 

To analyze the boundary dominated flow we plot RNP versus MBT.  

𝑃𝑖 − 𝑃𝑤𝑓
𝑄𝑜

=  𝑚𝑠𝑠 𝑡̅ +  𝑏𝑠𝑠                                                                                           (4.35) 

Here 𝑚𝑠𝑠 and 𝑏𝑠𝑠 are the slope and intercept of the line on the plot of RNP versus 

MBT given by: 

𝑚𝑠𝑠 =
 5.615 𝐵𝑜

𝐴𝑐𝑤 𝑦𝑒 𝜙𝑚 𝑐𝑡 
                                                                                                  (4.36) 

By replacing 𝑆𝑅𝑉 = 𝐴𝑐𝑤  ×  𝑦𝑒  ×  𝜑𝑚 in Eq. 4.36 we obtain 

𝑚𝑠𝑠 =
 5.615 𝐵𝑜
𝑆𝑅𝑉 𝑐𝑡 

                                                                                                          (4.37) 

The intercept is given by 
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𝑏𝑠𝑠 =
𝜇 𝐵𝑜 𝐿𝑓2

12 𝑘𝑚 𝑁𝑓 𝑉𝑚 
                                                                                                    (4.38) 

Replacing 𝑉𝑚 from Eq. 4.11 and converting to field units 

𝑏𝑠𝑠 =
36.96 𝜇 𝐵𝑜 𝐿𝑓
 𝑘𝑚 𝑁𝑓 𝑦𝑒 ℎ   

                                                                                                   (4.39) 

 

Using 𝑚𝑠𝑠 we calculate the stimulated reservoir volume 𝑆𝑅𝑉. Comparing with 

𝑆𝑅𝑉 calculated from transient region, we identify whether the pressure 

interference has occurred not. If the value of 𝑆𝑅𝑉 obtained from matrix analysis is 

very high as compared to the value obtained from analysis of the boundary-

dominated flow, we can say that the reservoir has not been depleted completely. 

Another explanation is that the fracture half-length 𝑦𝑒 is over estimated. Similarly 

we can identify if the number of fracture is optimum for efficient reservoir 

depletion or not.  

By analyzing the intercept of the line (𝑏𝑠𝑠) we can estimate the minimum 

permeability of the reservoir (Song and Economides 2011). For homogenous 

reservoirs, the value calculated from this analysis should be approximately equal 

to the permeability obtained by well testing.  
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CHAPTER V  

PRODUCTION DATA ANALYSIS OF GAS RESERVOIRS IN BARNET 

SHALE 

5.1 INTRODUCTION 

Shale gas reservoirs play a major role in the United States natural gas 

supply. The unconventional shale gas reservoirs that are the focus of this study are 

self-sourcing reservoirs. The shale acts as both the source rock and reservoir. In 

shales, natural fractures provide permeability and the matrix provides storage of 

most of the gas. Shale permeability can be as low as 10-9 md. 

The Gas Technology Institute estimates that organic shale reservoirs in 

United States contain up to 780 tcf of gas. The Barnet Shale in the Fort Worth 

Basin is by far most active shale gas play in the United States. Horizontal wells 

producing gas in the Barnet Shale are typically multi-stage hydraulic fractured. 

Mayerhofer et al (2006) present a model for hydraulically fractured shale 

gas reservoirs. Their model represents the hydraulic fracture as interconnected 

network of fractures. Their paper indicates that drainage does not occur far 

beyond the stimulated region because of low matrix permeability.  

Linear flow is the dominant flow regime for fractured horizontal wells in 

tight formations for most of their production lives (Medeiros et al (2008). Many 

other authors (Bello 2009, Bello and Wattenbarger 2008, 2009, Al-Ahmadi et al 

2010) also observed that the wells in tight formations (such as Barnett Shale) are 

controlled by transient linear flow. 

A negative half-slope on the log-log plot characterizes this behavior. 

However, a bi-linear flow is also observed just before the linear flow in some 

shale gas reservoirs. A negative quarter-slope on the log-log plot characterizes 

this behavior. This bi-linear flow is due to the simultaneous depletion of two 
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connected media. The two media could be micro-fractures and matrix or micro-

fractures and macro-fractures.  

Shale gas wells have been modeled using linear dual-porosity models. Some 

of the horizontal wells drilled in shale gas reservoirs are hydraulically fractured. 

According to Gate et al (2007), propagation of these hydraulic fractures re-

activate the pre-existing natural fractures resulting in the two perpendicular 

fractures systems with different properties. Therefore, dual porosity models 

(which assume homogeneous matrix properties) are not sufficient to characterize 

these reservoirs, as the matrix permeability will be enhanced by reactivated 

natural fractures. A triple porosity model is thus required to model horizontal 

shale gas wells containing reactivated (or pre-existing) natural fractures. 

This chapter deals with analysis of Region 4 and Region 5 in detail. A 

preliminary procedure is also presented for analyzing field data. 

5.2 PROCEDURE FOR PRODUCTION DATA ANALYSIS FOR TIGHT GAS WELLS 

In this section we present the procedure to analyze the production data of 

tight gas reservoir using triple porosity equations developed in Chapter III of this 

dissertation. After obtaining the field data, we identify different flow regions by 

constructing a specialized plot of flow rate versus material balance time. The 

procedure for analyzing Region 4 and Region 5 as define in Chapter III is 

presented below. 

5.2.1 Region 4 (Bilinear Flow in Micro-fractures and Matrix) 

Region 4 can be analyzed by following the steps presented below: 

1. Identify the transient flow region indicated by quarter slope on the log-log 

plot of flow rate against material balance time. 

2. Plot Rate Normalized pseudo-pressure (RNP) 𝑚(𝑃𝑖)−𝑚(𝑃𝑤𝑓)
𝑄𝑔

 versus √𝑡̅4   
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3. Use the slope of the line (m4) to calculate either 𝑘𝑓 or 𝐿𝑓  if one of them is 

known, or if  𝑘𝑓 and 𝐿𝑓 are not known we can calculate the ratio of  𝑘𝑓
𝐿𝑓

 using 

𝐿𝑓
𝐿𝐹
�𝑘𝑓𝐴𝑐𝑚 =  

2004𝑇
�𝑘𝑚(Ø𝜇𝑐𝑡)𝑚
4

1
𝑚4

 

5.2.2 Region 5 (Rate Transient Flow from Matrix) 

Region 5 can be analyzed by following the steps presented below: 

1. Identify the transient flow region indicated by a half slope on the log-log plot 

of flow rate against material balance time. 

2. Plot Rate Normalized Pressure (RNP) 𝑚(𝑃𝑖)−𝑚(𝑃𝑤𝑓)
𝑄𝑔

 versus √𝑡 ̅for gas wells. 

3. Use the slope of the line (m5) to calculate area of interface between matrix and 

hydraulic fractures 𝐴𝑐𝑚 from  

 

�𝑘𝑚𝐴𝑐𝑚 =
2182𝑇

�(Ø𝜇𝑐𝑡)𝑚

1
𝑚5

                                                                                   (5.2) 

 

4. The number of micro fractures (𝑛𝑓𝑦𝑒) can be calculated using 

  

𝑛𝑓𝑦𝑒 =
𝐴𝑐𝑚

2 𝐴𝑐𝑤
                                                                                                             (5.3) 
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5.3 APPLICATION OF ANALYSIS PROCEDURE TO PRODUCTION DATA  

In this section we use the developed triple porosity model to analyze the field data 

of two wells from Barnett Shale i.e. well 314 and well 73. Gas rate history of 

these well is shown in Fig. 5.1 (Al-Ahmadi 2010).  

 

 

 
 

Fig. 5.1 – Log-log plot of gas rate versus time for two horizontal shale gas wells. Well 
73 exhibits bi-linear flow between micro fracture and matrix followed by matrix 
linear flow as it gives negative quarter-slope for some time and then negative half-
slope. Well 314 shows negative half-slope for almost two log cycles and indicates 
matrix linear flow. 
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5.3.1 Production Data Analysis of Well 73  

Table 5.1 summarizes the petro-physical and completion data of Well 73. 

 

Table 5.1 Reservoir and fluid properties obtained from well tests of Well 73 

Reservoir Type Homogeneous 
Permeability – Horizontal 

(k) 
1.50E-04 md 

Dominant Flow  Gas Reservoir thickness (h) 300 ft. 

Multiphase flow in 

reservoir 
No Matrix Porosity (ϕm) 0.06 

Reservoir Pseudo 

pressure m(Pi) 

5.97E+08 

psi2/cp 
Fracture Spacing (L) 79 ft. 

Flowing BHP m(Pwf) 
2.03E+07 

psi2/cp 
Gas viscosity (μgi) 0.0201 cp 

Number of stages of 

fractures 
18 Temperature (T) 610  0R 

Length of horizontal well 

(Χe) 
1420 ft. Total Compressibility (ct) 3.00E-04 psi-1 

 

5.3.1.1 Analysis of bilinear transient region  

We consider the production data of well 73 till the point it exhibits a negative 

quarter slope as shown in Fig.5.2. In Fig. 5.3 we plot RNP versus fourth root of 

time. 
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Fig. 5.2 – Log-log plot of gas rate versus MBT that shows a negative quarter slope.                     

 

Fig. 5.3 – Plot of fourth root MBT versus RNP that gives slopes equal to 136370 

psi/cp2/Mscf/day/day0.25 

 
Now we use Eq.5.1 for analysis of Region 4 to obtain the ratio  𝑘𝑓

𝐿𝑓
. Slope m4 is 

found to be 136370 psi/cp2/Mscf/day/day0.25. If we assume stimulated fracture 

half-length ye = 150 ft then 𝑘𝑓
𝐿𝑓

 is calculated by, 

qg= 4243.4 MBT-0.252 
R² = 0.9793 
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�σFye�
kf
Lf

Acw =
2004T

�km(Øµct)m
4

1
m4

 

� 12
792

×  150 × �
kf
Lf

 ×  85200 =
2004x610

�(1.5x10−4x3.62x10−7)4 ×
1

136370
 

kf
Lf

= 0.000626 md
ft �  

 

5.3.1.2 Analysis of Linear Transient Region (Matrix) 

We consider the part of production data that shows linear flow i.e. Region 5. We 

plot RNP versus square root of MBT as shown in Fig. 5.4. In Fig. 5.5 we plot 

RNP versus fourth root of time. Reservoir data and other parameters used are 

same as in Table 5.1. 

 

Fig. 5.4 – Log-log plot of gas rate versus MBT shows a negative half slope. 
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Fig. 5.5 – Plot of square root MBT versus RNP that gives slopes equal to 54961 

psi/cp2/Mscf/day/day0.5 

From Fig-5.5 slope is found to be 54961 psi2/cp/MScf/day/day0.5. We use Eq. 

5.2 to calculate the drainage area Acm. 

 

�𝑘𝑚𝐴𝑐𝑚 =
1262𝑇

�(Ø𝜇𝑐𝑡  )𝑚 
1
𝑚5

 

 

Replacing the corresponding values,  

 

Acm =
(1262)(610)

�(1.5x10−7)(3.62x10−7 )
×  

1
54961

= 1,900,000 ft2  

   

Now we calculate the number of micro-fractures nfye  using Eq. 5.3, 

 Acm = �2nfyeAcw� 
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5.3.2 Regression Results for Well 73 

Al-Ahmadi (2010) used Least Absolute Value (LAV) regression analysis 

technique to determine the unknown parameters in his transfer function. He 

assumed the values of the macro-fracture and micro-fracture storativity and 

porosity. The assumed values are shown in Table 5.2. 

 

Table 5.2 Values of Assumed Parameters for Regression for Well 73 

Parameter Assumed Values 

ΦF 0.2 

ωF 0.1 

Φf 0.01 

ωf 0.01 

 

The results obtained after regression are shown in Table 5.3 (Al-Ahmadi 

2010). 

 

Table 5.3 Regression results for Well 73 (Assuming no adsorption) 

Parameter LAV Results 

kF , mD 3.7 

kf , mD 0.1 

Lf , ft 23 

ye , ft 185 
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5.3.2.1 Comparison of Results 

The results obtained from analytical equations vary significantly from results 

obtained from regression analysis. The production data doesn’t usually contain 

flow data from early time scales (fluid production from macro fractures and 

micro-fractures). If the fracture properties are assumed, the regression results will 

be affected. The regression results depend on the initial assumed value and can 

vary if the initial guess made is not close.  

5.3.3 Production Data Analysis of Well 314  

The production data for this well only exhibits linear flow that reflects the matrix 

depletion. Reservoir data is summarized in Table 5.4. The production data plot is 

shown in Fig. 5.6. 

 

Table 5.4 Reservoir and fluid properties obtained from well tests of Well 314 

Reservoir Type Homogeneous Permeability – Horizontal (k) 1.50E-04 md 

Dominant Flow  Gas Reservoir thickness (h) 300 ft. 

Multiphase flow in 

reservoir 
No Matrix Porosity (ϕ) 0.06 

Reservoir Pseudo 

pressure m(Pi) 
5.97E+08 psi2/cp Fracture Spacing (L) 106 ft. 

Flowing BHP m(Pwf) 2.03E+07 psi2/cp Gas viscosity (μgi) 0.0201 cp 

Number of stages of 

fractures 
28 Temperature (T) 610  0R 

Length of horizontal 

well (Χe) 
2968 ft. Total Compressibility (ct) 3.00E-04 psi-1 
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Fig. 5.6 – Log-log plot of gas rate versus MBT shows a negative half slope. 

 

 

Fig. 5.7 – Plot of square root MBT versus RNP that gives slopes equal to 20701 

psi/cp2/Mscf/day/day0.5 

 

Figure 5.7 shows the square root time plot slope is equal to 20701 

psi2/cp/MScf/day/day0.5. Using Eq. 5.2 to calculate Acm. 
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�kmAcm =
1262T

�(Øµct  )m 
1

m5
 

Replacing the corresponding values in Eq. 5.2 

 

Acm =
(1262)(610)

�(1.5x10−4)(3.62x10−7 )
 ×

1
20701

 = 5,050,000 ft2 

 

Using Eq. 5.3 to calculate the number of micro-fractures. 

nfye =  
Acm

2Acw
=

5050000
2 ×  1780800

≅ 1 

5.3.4 Regression Results for Well 314 

The assumed values are for regression is shown in Table 5.5. 

 

Table 5.5 Values of Assumed Parameters for Regression for Well 314 

Parameter Assumed Values 

ΦF 0.2 

ωF 0.1 

Φf 0.01 

ωf 0.01 

 

The results obtained after regression are shown in Table 5.6. 
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Table 5.6 Regression results for Well 314 (Assuming no adsorption) 

Parameter LAV Results 

kF , mD 10.9 

kf , mD 0.26 

Lf , ft 24 

ye , ft 205 
 

5.3.4.1 Comparison of Results 

The results for Well 314 obtained from regression also vary from our analysis. 

The results can be interpreted similarly as Well 73. 

5.3.5 Summary and Discussion of Results 

The analysis results of both wells show that the number of micro fracture(s) is 

1, which means that only one connected micro-fracture is enough to create the 

required interface for the matrix depletion (In the absence of fluid transfer 

between matrix and hydraulic fracture). We consider the following two 

interpretations. 

• A dual porosity model is more suitable to characterize this reservoir and the 

early region (bilinear flow) observed during production is because of 

simultaneous depletion of hydraulic fractures and matrix. 

• If the micro fractures are present they are not connected. A higher number of 

smaller fractures are still possible for this case. 
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CHAPTER VI 

PRODUCTION DATA ANALYSIS OF TIGHT OIL RESERVOIRS 

6.1 INTRODUCTION 

Recent advances in horizontal drilling and multi-stage hydraulic fracturing 

have led to the successful exploitation of tight oil and shale gas reservoirs. 

Clarkson and Pedersen (2011) proposed the term “Unconventional Light Oil” 

(ULO) and proposed further categories of ULO on the basis of play types and 

matrix permeability. Reservoir properties that could distinguish ULO plays from 

conventional light oil plays also include low matrix permeability (<0.1 md). A 

classification for the ULO plays in Western Canada is as follows: 

1. Halo Oil – High matrix permeability (e.g. Cardium and Viking Pools of 

Alberta) 

2. Tight Oil – Low matrix permeability (e.g. Saskatchewan Bakken Formation) 

3. Shale Oil – Very low matrix permeability (e.g. Duvernay and Muskwa 

Formations) 

This chapter deals with the analysis of tight oil wells from Cardium and 

Bakken formations. The production data of tight oil wells exhibit linear transient 

behavior that is analyzed using the dual porosity models. The linear transient flow 

from matrix depletion is analyzed using dual porosity model presented by Bello 

(2009). The boundary dominated flow (that occurs under pseudosteady state flow 

conditions) is analyzed by the model developed in Chapter IV of this work. 

6.1.1 Pembina Cardium (Halo Oil) 

Cardium Formation is the largest conventional oil reserves in the Western 

Canada Sedimentary Basin.  The oil production initiated in the early 1950s, and 

only approximately 20% of the reserve is recovered. The Cardium Formation 

(deposited in the Late Cretaceous, approximately 88 million years ago) consists of 
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interbedded sandstone and shale, and some local conglomerate, spread over much 

of western Alberta. Over the past fifty years, conglomerates and porous 

sandstones have been targeted for conventional production of oil, mainly from the 

Pembina Field. The Cardium Formation in Alberta is estimated to have contained 

1,678 million m³ (10.6 billion barrels) of oil originally in place, 1,490 million m³ 

(9.4 billion barrels) of which was in the Pembina Field. Since its discovery in 

the 1950s, 234 million m³ (1.5 billion barrels) of Cardium oil has been produced. 

Production of oil in the Cardium Formation rebounded in 2009, when horizontal 

drilling and multi-stage fracturing technology increased the oil recovery factor. 

6.1.2 Saskatchewan Bakken (Tight Oil) 

The Bakken Formation in Saskatchewan and Manitoba is a part of a relatively 

thin accumulation of siltstone and sandstone sandwiched between organic-rich 

shales extending over much of western Canada. It was deposited as the Devonian 

Period transitioned into the Mississippian Period, approximately 360 million years 

ago. The Bakken tight oil play is about 25 meters thick and consists of lower 

organic-rich shale, a middle siltstone and sandstone unit, and overlying organic-

rich shale. 

So far, companies have publicly reported 36 million m³ (225 million barrels) 

of proved and probable reserves from the Bakken. No reserves from the Exshaw 

have been publicly reported. Where the Bakken extends into North Dakota and 

Montana, the United States Geological Survey estimates that there are 

580 million m³ (3.65 billion barrels) of recoverable oil. The areal extent of oil-

prone Bakken in the United States is far more extensive than in Saskatchewan. 
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6.2 PROCEDURE FOR PRODUCTION DATA ANALYSIS OF TIGHT OIL RESERVOIRS 

In this section we present a procedure for analyzing the production data of 

tight oil reservoirs using the dual porosity equations. The boundary dominated 

flow (pseudosteady state flow) is analyzed using the equations developed in 

Chapter IV. After obtaining the field data, we identify different flow regions by 

constructing a specialized plot of flow rates versus material balance time. 

Analysis procedure of matrix flow and boundary dominated flow is discussed 

below. 

6.2.1 Analysis of Transient Matrix Depletion (Dual porosity systems) 

Transient linear flow from matrix is analyzed by the following steps: 

1. Identify the transient flow region by half slope on the log-log plot of flow rate 

against material balance time 

2. Plot Rate Normalized Pressure (RNP) Pi−Pwf
Qo

 against material balance time √t ̅

for oil wells 

3. Use slope of the line (m) in the analysis equation presented by Bello (2009) for 

the dual porosity systems to calculate area of interface between matrix and 

hydraulic fractures Acm: 

�𝑘𝑚𝐴𝑐𝑚 =
125.11 𝐵 𝜇
�(Ø𝜇𝑐𝑡)𝑚

1
𝑚

 

4. Calculate the effective fracture half length ye by using following equation 

 𝑦𝑒 =
𝐴𝑐𝑚 𝐿𝐹

 𝐴𝑐𝑤
 

Where, 

𝐿𝐹 is the spacing between hydraulic fractures 
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6.2.2 Analysis of boundary dominated flow (PSS flow) 

Boundary dominated flow can be analyzed by the following steps: 

1. Construct a log-log plot between rate-normalized pressure (RNP) and material 

balance time (MBT) for the complete production data. 

2. The region for the pseudo steady flow is recognized by a constant slope of one 

on a log-log plot of flow rate versus MBT. 

3. Plot RNP versus MBT of data points of pseudo steady state flow region on a 

linear scale. 

4. Record the line slope, mss, and the line intercept, bss 

5. Calculate the stimulated reservoir volume SRV by substituting mss in 

𝑚𝑠𝑠 =
 5.615 𝐵𝑜
𝑆𝑅𝑉 𝑐𝑡 

   

6. Calculate the minimum permeability of the reservoir by substituting bss in 

𝑏𝑠𝑠 =
36.96 𝜇 𝐵𝑜 𝐿𝑓
 𝑘𝑚 𝑁𝑓 𝑦𝑒 ℎ   

 

6.3 PRODUCTION DATA ANALYSIS OF CARDIUM WELLS 

In this section, we analyze the production data of tight oil wells drilled in Cardium 

formation. 

6.3.1 Observing behavior of Cardium Wells 

We analyze production data from several oil wells drilled in Cardium formation to 

identify different flow regimes. Figure 6.1 shows log-log plot of cumulative oil 

production versus time. The advantage of such plots is the insensitivity to shut-ins 

and fluctuations in production rate. The slope of this plot may indicate the 

dominant flow regimes (El Banbi 1998). 
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Fig. 6.1 – Plots of cumulative oil production versus time for five fractured horizontal 
wells completed in Cardium formation. The log-log plots show a slope of 0.6 - 0.75 
for early time scales and a slope of approximately 0.5 for late time scales. The length 
of horizontal wells and number of stages of hydraulic fractures are different in these 
wells. The consistent behavior of cumulative plots shows that the flow regime is 
relatively similar for all the wells. 
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Da Prat el al (1981) recognized that for linear flow regime, dimensionless 

cumulative production QD versus dimensionless time on a log-log plot gives a 

slope of 0.5. They observed this linear flow behavior for transient dual porosity 

case. Therefore it can be interpreted from the second part of these plots that the 

dominant flow regime in Cardium wells is also linear transient. The first region 

can be interpreted as bi-linear flow. Therefore, the analysis equation developed 

for linear flow for slightly compressible fluid can be applied here. 

6.3.2 Example Application for Characterizing a Fractured Well in Cardium 

Formation 

We select a tight oil well in a Pembina field. The well is hydraulically fractured 

(18 multi stages) and has been producing for nearly 2 years. The fluctuation in 

production rate were caused by shut-ins. Unfortunately, complete information 

about those shut-in periods is not available. Table 6.1 presents the available fluid 

and reservoir properties.  

Table 6.1 Reservoir and fluid properties of Well in Cardium Formation 

Reservoir Type Homogeneous 
Permeability–

Horizontal(khor) 
0.640 mD 

Dominant Flow  Oil Phase Permeability–Vertical (kver) 9.03 x 10-4 mD 

Multiphase flow in 

reservoir 
No Reservoir thickness (h) 7 m 

Reservoir Pressure 

(Pi) 
15,575 KPaa Matrix Porosity (𝛟𝐦) 0.120 

Flowing BHP (Pwf) 7,413 KPaa 
Oil Formation Volume factor 

(Bo) 
1.221 Rm3 / m3 

Number of stages of 

fractures 
18 Oil Viscosity (μo) 1.13 cp 

Length of horizontal 

well (Χe) 
1370 m 

Total Compressibility (ct) 

(Assumed) 
1.54 x 10-4 psi-1 
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We assume that the oil flows directly into the hydraulic fractures since the vertical 

permeability is very low as compared to the horizontal permeability. Figure 6.2 

shows the daily oil rate versus time on a log-log plot. The data indicates that the 

production rates are variable and therefore it is difficult to distinguish any flow 

regimes from this plot. 

 

 

Fig. 6.2 – Log-log plot of daily oil rate versus time for a Well in Cardium Formation 

 

In order to identify different flow regimes, we plot the production rate versus 

material balance time. Figure 6.3 shows the log-log plot of oil rate versus 

material balance time for the same well in which three distinctive flow regions 

can easily be identified. Region 1 shows of negative half-slope during maximum 

life of production and Region 2 shows a negative slope of one. 

We assume that Region 1 (transient matrix flow) represents linear transient 

flow from the matrix into the hydraulic fractures. This assumption is supported by 

low vertical permeability in Cardium formation. We apply the dual porosity 

model of Bello (2009) to analyze this region. Furthermore we assume that Region 
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2 (boundary dominated flow) represents PSS matrix depletion when pressure 

interference has occurred between two adjacent fractures. We use the PSS model 

developed in this work to analyze this region. 

 

 

Fig. 6.3 – Log-log plot of daily oil rate versus calculated material balance time of the 

well in Cardium Formation. 

Region 1 is not analyzed, as the production data of this region is very limited. 

This region can also be the representative of well bore storage. 
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6.3.2.1 Analysis of Linear Transient Region 

In Fig. 6.4 we plot RNP versus MBT. 

 

Fig. 6.4 – Specialized plot of Rate Normalized Pressure versus square root of 

Material Balance Time for analyzing flow from matrix to fracture 

 

We substitute the value of m, determined in Fig. 6.4, in the analysis equation of 

dual porosity model and calculate the fracture-matrix interface area 𝐴𝑐𝑚: 

�𝑘𝑚𝐴𝑐𝑚 =
125.11 𝐵 𝜇
�(Ø𝜇𝑐𝑡)𝑚

1
𝑚

 

Slope of the line m = 56.946 KPaa / R m3 / day / day0.5 or 1.313 psi / res bbl / day 

/ day0.5  
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1

1.313
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𝐴𝑐𝑤 = 2 × 1370 ×  7 × 3.282 = 206,346.11 ft2 

Stimulated fracture half-length 𝑦𝑒  is calculated using 𝑦𝑒 = 𝐴𝑐𝑚
𝐴𝑐𝑤

 ×  𝐿𝑓 

𝑦𝑒 =
36,197.60 ×  76 ×  3.28

206,346.11
 

𝑦𝑒 = 43.73 ft or 13.33 m 

The stimulated reservoir volume (𝑆𝑅𝑉 = 2 ×  𝑋𝑒  ×  ℎ  ×  𝜙𝑚  ×  𝑦𝑒) is 

calculated to be 1,082,800 ft3 or 30,685.05 m3. 

6.3.2.2 Analysis Of Boundary Dominated Flow Region 

In Fig. 14, we plot RNP versus MBT 

 

Fig. 6.5 – Specialized plot of RNP versus MBT for analyzing boundary dominated 

flow of the well completed in Cardium Formation. 
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Slope of the line mss = 1.8503 KPaa / R m3 / day / day or  0.0427 psi / STB / day /  

day 

and bss = 49.118 KPaa / Rm3 / day or 1.134 psi / STB / day 

Using Eq. 6.2 

𝑚𝑠𝑠 =
 5.615 𝐵𝑜

𝐴𝑐𝑤 𝑦𝑒 𝜙𝑚 𝑐𝑡 
 

We also know that Stimulated Reservoir Volume (𝑆𝑅𝑉) = 𝐴𝑐𝑤 𝑦𝑒 𝜙𝑚.  

Therefore, 

𝑆𝑅𝑉 = 5.615
 𝐵𝑜
 𝑐𝑡 

 
1
𝑚𝑠𝑠

 

SRV = 5.615
 1.221

 1.52 × 10−4 
 

1
0.0427

 

SRV = 1,056,316.2 ft3 or SRV = 29,934.53 m3  

Now, we use the intercept equation to determine the matrix permeability: 

𝑏𝑠𝑠 =
36.96 𝜇 𝐵𝑜 𝐿𝑓
 𝑘𝑚 𝑁𝑓 𝑦𝑒 ℎ   

 

𝑘𝑚 =
36.96 𝜇 𝐵𝑜 𝐿𝑓
 𝑏𝑠𝑠 𝑁𝑓 𝑦𝑒 ℎ   

 

𝑘𝑚 =
36.96 ×  1.13 ×  1.221 ×  76 ×  3.28 

1.134 ×  18 ×  43.73 ×  7 ×  3.28
 

𝑘𝑚 =   0.620 mD 
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6.3.3 Summary of Results 

The analysis results are summarized in Table 6.2 

 

Table 6.2 Unknown reservoir parameters obtained by analyzing matrix transient 

region and boundary dominated region of production data of the well completed 

in Cardium Formation 

PARAMETER VALUE 

Slope of line for matrix region m 1.313 psi / res bbl / day /  day0.5 

Slope of line for PSS region mss 0.0427 psi / STB / day /  day 

Intercept of the line bss  (PSS region) 1.134 psi / STB / day 

Permeability - k  
0.620 mDarcy (From PSS Analysis) 

0.640 mDarcy (Well Tests) 

Total Reservoir Area - Acw 19180 sq.m or 206,346.112 sq.ft 

Drainage Interface - Acm 3364.5 sq.m or 36,197 sq.ft 

Effective fracture half length - ye 13.33 m or 43.72 ft. 

Stimulated Reservoir Volume SRV 
30,685 m3 (Matrix Analysis) 

29,934 m3 (Pseudo steady state Analysis) 

 

The value of SRV obtained by analyzing linear transient region is similar to 

that obtained by analyzing the PSS region. Furthermore, the value of permeability 

obtained by well testing and that obtained by our PSS analysis are very close to 

each other (See Table 6.2). 
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6.4 EXAMPLE APPLICATION FOR CHARACTERIZING A FRACTURED WELL IN 

BAKKEN FORMATION 

In this section we analyze the production data of a tight oil well completed in 

Bakken formation. The well is hydraulically fractured consisting of 16 fracture 

stages and has been producing for nearly 3 years. Table 6.3 summarizes the 

available fluid and reservoir properties. 

Table 6.3 Reservoir and fluid properties of well in Bakken Formation 

Reservoir Type Unknown 
Permeability – 

Horizontal (k hor) 
0.026 mD 

Dominant Flow  Oil Phase API Gravity  40 API 

Multiphase flow in 

reservoir 
No Reservoir thickness (h) 19 ft. 

Reservoir Pressure (Pi) 6800 psia Matrix Porosity (𝛟𝐦) 0.09 

Flowing BHP (Pwf) Varying 
Total Compressibility 

(ct) 
1.726 x 10-5 psi-1 

Number of stages of 

fractures 
16 

Oil Formation Volume 

factor (Bo) 
1.329 

Length of horizontal well 

(Χe) 
5600 ft. Oil Viscosity (μo) 0.5643 cp 

 

We make the same specialized plot of oil flow rate versus material balance time 

as shown in Fig. 6.6 to identify different flow regions. 
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Fig. 6.6 – Log-log plot of daily oil rate versus calculated MBT of a Well in Bakken 

Formation. 

In Fig. 6.6, we clearly see the linear transient flow region identified by a negative 

half-slope followed by a pseudosteady state regime identified by negative one 

slope. We analyze these two regions separately. 

6.4.1 Analysis of Linear Transient Region 

In Fig. 6.7, we make the plot of RNP versus square root of MBT of matrix 

transient region. 

We substitute the value of m, determined in Fig. 6.7, in the analysis equation of 

dual porosity model and calculate the fracture-matrix interface area 𝐴𝑐𝑚:  
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Fig. 6.7 – Plot of RNP versus square root of MBT of only transient region of the well 

completed in Bakken Formation 
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1
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𝑦𝑒 = 435.82 ft 

The stimulated reservoir volume (SRV) = 2 ×  Xe   ×  h  × ϕm  ×  ye is 

calculated to be 8,346,824.6 ft3 . 

6.4.2 Analysis Of Boundary Dominated Flow 

In Fig. 6.8, we plot the RNP versus MBT of the boundary-dominated flow region. 

 

Fig. 6.8 – Specialized plot of RNP versus MBT for analyzing boundary dominated 

flow in Bakken Formation 

Slope of the line mss = 0.0521 psi / STB / day / day 

And bss = 8.0981 psi / STB / day 

Using Eq.6.2 

𝑚𝑠𝑠 =
 5.615 𝐵𝑜

𝐴𝑐𝑤 𝑦𝑒 𝜙𝑚 𝑐𝑡 
 

We also know that Stimulated Reservoir Volume (𝑆𝑅𝑉) = 𝐴𝑐𝑤 𝑦𝑒 𝜙𝑚  

Therefore, 

RNP = 0.0521 MBT + 8.0981 
R² = 0.92405 

0

200

400

600

800

1000

1200

1400

1600

0 5000 10000 15000 20000 25000 30000

R
at

e 
N

or
m

al
iz

ed
 P

re
ss

ur
es

 (p
si/

st
b/

da
y)

 

Material Balance Time (days)  



 

65 

𝑆𝑅𝑉 = 5.615
 𝐵𝑜
 𝑐𝑡 

 
1
𝑚

= 5.615
 1.329

 1.726 ×  10−5 
 

1
0.0521

= 8,298,435.6 ft3   

Now we use the intercept equation to determine the matrix permeability: 

𝑏𝑠𝑠 =
36.96 𝜇 𝐵𝑜 𝐿𝑓
 𝑘𝑚 𝑁𝑓 𝑦𝑒 ℎ   

 

 

𝑘𝑚 =
36.96 𝜇 𝐵𝑜 𝐿𝑓
 𝑏𝑠𝑠 𝑁𝑓 𝑦𝑒 ℎ   

 =
36.96 ×  0.5643 ×  1.329 ×  312.5 

8.098 ×  16 ×  435.82 ×  19
 =   0.008 mD 

6.4.3 Summary of Results 

The analysis results are summarized in Table 6.4. 

Table 6.4 Unknown reservoir parameters obtained from the analysis of the 

matrix transient region and boundary dominated region of production data of 

the well completed in Bakken Formation 

PARAMETER VALUE 

Slope of line for matrix region m 2.96 psi / res bbl / day /  day0.5 

Slope of line for PSS region mss 0.0521 psi / STB / day /  day 

Intercept of the line bss for PSS 8.0981 psi / STB / day 

Permeability k 
0.008 mDarcy (PSS Analysis) 

0.026 mDarcy (Well Tests) 

Total Reservoir Area - Acw 212,800 sq.ft 

Drainage Interface - Acm 309,502 sq.ft 

Effective fracture half length - ye 454.5 ft. 

Stimulated Reservoir Volume SRV 

8,346,824.64 ft3 (Matrix Analysis) 

8,298,435.6 ft3 (Pseudo steady state 

Analysis) 
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The value of SRV obtained by analyzing the linear transient region is 

similar to that obtained by analyzing the PSS region. The value of permeability 

obtained by well testing and that obtained from our PSS analysis are different 

(See Table 6.4). This difference can be due to the heterogeneity of the reservoir. 
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CHAPTER VII 

CONCLUSION AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

The major findings of this work can be summarized as follows: 

1. New equations have been developed for analyzing different regions of 

production data from tight reservoirs with induced hydraulic and 

reactivated natural fractures. 

2. A procedure is proposed for determining the reservoir properties by using 

the hydrocarbon production data and the proposed equations. 

3. We used the proposed equations to analyze the production data of two 

wells from Barnett shale. The results show that a dual porosity model is 

more appropriate than a triple porosity data for describing Barnett well 

data. Even if the micro-fractures are present in Barnett shale, their length 

scale should be less than the spacing between the hydraulic fractures. 

4. New equations are developed to analyze boundary dominated 

(pseudosteady state) flow of a slightly compressible fluid in linear dual-

porosity systems.  

5. The pseudosteady state model proposed for boundary-dominated flow can 

be used in determining stimulated reservoir volume, minimum reservoir 

permeability. The proposed linear pseudo-steady state analysis 

complements the previously developed linear transient analysis.  

6. We used the proposed PSS model to analyze the production data of two 

tight oil wells from Cardium and Bakken reservoirs. The results show that 

values of stimulated reservoir volume obtained from analysis of transient 

matrix flow and boundary dominated flow are very close for selected wells 

in both formations. The values of permeability are very close in Cardium 

well and relatively close for Bakken Well.  
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7.2 RECOMMENDATIONS 

The following subjects remain the subject of future study:  

1. The analysis equations were developed for the fully transient triple 

porosity model. Similar equations can be developed by considering the 

assumption of pseudosteady state matrix-fracture interflow assumption. 

2. The analysis equations can be extended to include the skin effect. 

3. The analysis equations for boundary dominated flow in triple porosity 

reservoirs can be developed. 
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NOMENCLATURE 

 
Acm = Total matrix/micro-fracture surface drainage area, ft2 

Acw = well-face cross-sectional area to flow, ft2 

ct    = total compressibility, psi-1 

ff(s) = fracture function for matrix-micro-fracture fluid transfer 

f(s) = fracture function for micro-fracture-macro-fracture fluid transfer 

h    = matrix block thickness, ft. 

kf    = permeability of micro-fracture, md 

kF   = permeability of macro-fracture, md 

km  =  permeability of matrix block, md 

ℒ−1= inverse Laplace operator 

Lf   = micro fracture spacing, ft. 

LF  = macro fracture spacing, ft. 

mr  = slope of region 

m(pi)= gas pseudo pressure at initial conditions, psi2 /cp 

m(pwf)= gas pseudo pressure at well-bore, psi2 /cp 

Np     = cumulative oil production 

nfxe = number of micro fractures in the direction of well length 

nfye = number of macro fractures in the direction of macro-fracture length 

Pi   = pressure of reservoir at initial conditions, psi 

Pwf  = pressure of reservoir at well-bore, psi 

qDL = dimensionless flow rate 

qg  = gas rate, MScf/day 

qo  = oil rate produced from one fracture, m3/s 

Qo = daily oil rate, STB/day 

s    = laplace space variable 

t    = time, days 

t ̅   = material balance time, days 
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tdac =dimensionless time 

T   = absolute temperature, 0R 

xD  = dimensionless distance along micro-fracture spacing 

Xe   = length of horizontal well, ft. 

yDe = dimensioless length of reservoir 

ye  = macro-fracture half-length , ft. 

zD = dimensionless distance along macro-fracture spacing 

 

Greek Symbols 

Ø  = porosity, fraction 

μ   = viscosity of a gas , cp 

σi   = shape factor, 1/ft2 

ωi  = storativity ratio 

λAc = dimensionless interporosity flow  

  

Subscript 

f     = micro-fracture 

F    = macro-fracture 

m   = matrix 

 i    = f,F, &m 

ss   = Pseudo steady state 

o    = oil 

g    = gas 
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APPENDIX A 

TRANSIENT LINEAR TRIPLE POROSITY ANALYTICAL SOLUTIONS 
 

The rate solutions in fractured linear reservoirs is derived by Laplace 

transformation which enables us to reduce the second-order partial differential 

flow equations to a second order ordinary differential equation in Laplace domain. 

Stehfest algorithm (Stehfest 1970) is then used to easily invert the Laplace 

domain solution to time domain. 

The differential equation in Laplace domain that describes the main flow in 

linear reservoir system is given by 

𝜕2𝑝𝐷𝐿𝐹
𝜕𝑦𝐷2

− 𝑠𝑓(𝑠)𝑝𝐷𝐿𝐹������ = 0                                                                                      (A − 1) 

A-1 Linear Flow Solutions for Fractured Linear Reservoirs (Dual Porosity 

System)  

El-Banbi (1998) developed the first linear flow solutions for dual porosity 

system in fractured linear reservoirs. In Laplace domain, Eq. A-2 relates the 

constant rate and constant pressure solutions at the well bore 

𝑝𝑤𝐷𝐿������  ×  𝑞𝐷𝐿����� =
1
𝑠2

                                                                                                     (A − 2) 

Therefore, the solution for constant pressure case (El-Banbi 1998) is 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
�
1 + 𝑒−2�𝑠𝑓(𝑠)𝑦𝐷𝑒

1 − 𝑒−2�𝑠𝑓(𝑠)𝑦𝐷𝑒
�                                                                        (A − 3) 

 

A-2 Analytical Solutions for Triple Porosity System in Linear Reservoirs 

Al-Ahmadi (2010) developed the analytical solutions for triple porosity 

system in linear reservoirs. The three contagious media include: macro-fractures, 

micro-fractures and matrix. The fluid flow is assumed to be sequential i.e. matrix 



 

77 

to micro-fractures and micro-fractures to macro-fractures. The schematic of the 

Al-Ahmadi (2010) triple porosity model is shown in Fig. A-1. 

 

 

Fig. A-4 – Top View of a horizontal Well in a triple porosity system. Red dotted lines 

indicated virtual no flow boundaries. Arrows indicate direction of the flow (Al-

Ahmadi 2010). 
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A-3 Summary of Equations used in developing Analytical Solutions 

This section presents the summary of analytical equations used by Al-

Ahmadi to develop the analytical solutions. For details of the derivation of the 

solutions, refer to Al-Ahmadi dissertation (2010). 

A-3.1 Matrix Equation 

Matrix equation under transient condition is given by 

𝑘𝑚
𝜇
𝜕2𝑝𝑚
𝜕𝑧2

= (𝜑𝑉𝑐𝑡)𝑚
𝜕𝑝𝑚
𝜕𝑡

                                                                                    (A − 4) 

𝜕2𝑝𝑚
𝜕𝑧2

=
(𝜑𝑉𝜇𝑐𝑡)𝑚

𝑘𝑚
𝜕𝑝𝑚
𝜕𝑡

                                                                                        (A − 5) 

 

A-3.2 Micro-fracture Equation 

Micro-fracture equation under transient condition is given by 

𝑘𝑓
𝜇
𝜕2𝑝𝑓
𝜕𝑥2

+ 𝑞𝑠𝑜𝑢𝑟𝑐𝑒,𝑚 =  (𝜑𝑉𝑐𝑡)𝑓
𝜕𝑝𝑓
𝜕𝑡

                                                                 (A − 6) 

 

Where 𝑞𝑠𝑜𝑢𝑟𝑐𝑒,𝑚 is a source term of flow term from matrix to micro-fracture, 

given by 

𝑞𝑠𝑜𝑢𝑟𝑐𝑒,𝑚 =  −1
𝐿𝑓�
𝑘𝑚
𝜇
𝜕𝑝𝑚
𝜕𝑧

�
𝑧= 

𝐿𝑓
2�

                                                                  (A − 7) 

 

Thus, the final form of micro-fractures equation is 

𝜕2𝑝𝑓
𝜕𝑥2

=
(𝜑𝑉𝜇𝑐𝑡)𝑓

𝑘𝑓
𝜕𝑝𝑓
𝜕𝑡

+ 1
𝐿𝑓�
𝑘𝑚
𝑘𝑓

𝜕𝑝𝑚
𝜕𝑧

�
𝑧= 

𝐿𝑓
2�

                                                (A − 8) 
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A-3.3 Macro-fracture Equation 

Macro-fracture equation under transient condition is given by 

𝑘𝐹
𝜇
𝜕2𝑝𝐹
𝜕𝑦2

+ 𝑞𝑠𝑜𝑢𝑟𝑐𝑒,𝑓 =  (𝜑𝑉𝑐𝑡)𝐹
𝜕𝑝𝐹
𝜕𝑡

                                                                 (A − 9) 

Where 𝑞𝑠𝑜𝑢𝑟𝑐𝑒,𝑚 is a source term of flow term from micro-fractures to macro-

fracture, given by 

𝑞𝑠𝑜𝑢𝑟𝑐𝑒,𝑓 =  −1
𝐿𝐹�
𝑘𝑓
𝜇
𝜕𝑝𝑓
𝜕𝑥

�
𝑥= 𝐿𝐹 2�

                                                                   (A − 10) 

A-3.4 Initial and Boundary conditions 

Matrix 

Initial Condition: 

𝑝𝑚(𝑧, 0) = 𝑝𝑖 

Inner Boundary: 

𝜕𝑝𝑚 

𝜕𝑧
= 0           @ 𝑧 = 0 

Outer boundary 

𝑝𝑚 = 𝑝𝑓           @ 𝑧 =
𝐿𝑓
2

 

Micro-fracture 

Initial Condition: 

𝑝𝑓(𝑥, 0) = 𝑝𝑖 

Inner Boundary: 

𝜕𝑝𝑓 

𝜕𝑥
= 0           @ 𝑥 = 0 

Outer Boundary: 
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𝑝𝑓 = 𝑝𝐹           @ 𝑥 =
𝐿𝐹
2

 

Macro-fracture 

Initial Condition: 

𝑝𝐹(𝑦, 0) = 𝑝𝑖 

Inner Boundary: 

𝑞 = −
𝑘𝐹𝐴𝑐𝑤
𝜇

𝜕𝑝𝐹
𝜕𝑦

�
𝑦=0

 

Outer Boundary:  

𝜕𝑝𝐹
𝜕𝑦

= 0       @ 𝑦 = 𝑦𝑒 

A-3.5 System Dimensionless Equations 

Equations presented in Appendix A-3.3 can be converted to dimensionless 

equations using dimensional variables defined in Chapter 3 and dimensionless 

boundary conditions. 

Matrix: 

𝜕2𝑝𝐷𝐿𝑚
𝜕𝑧𝐷2

=
3𝜔𝑚
𝜆𝐴𝑐,𝑓𝑚

𝜕𝑝𝐷𝐿𝑚
𝜕𝑡𝐷𝐴𝑐

                                                                                    (A − 11) 

Micro-fracture: 

𝜕2𝑝𝐷𝐿𝑓
𝜕𝑥𝐷2

=
3𝜔𝑓
𝜆𝐴𝑐,𝐹𝑓

𝜕𝑝𝐷𝐿𝑓
𝜕𝑡𝐷𝐴𝑐

+
𝜆𝐴𝑐,𝑓𝑚

𝜆𝐴𝑐,𝐹𝑓

𝜕𝑝𝐷𝐿𝑚
𝜕𝑧𝐷

�
𝑧𝐷=1

                                               (A − 12) 

Macro-fracture: 

𝜕2𝑝𝐷𝐿𝐹
𝜕𝑦𝐷2

= 𝜔𝐹
𝜕𝑝𝐷𝐿𝐹
𝜕𝑡𝐷𝐴𝑐

+
𝜆𝐴𝑐,𝐹𝑓

3
𝜕𝑝𝐷𝐿𝑓
𝜕𝑥𝐷

�
𝑥𝐷=1

                                                       (A − 13) 

  



 

81 

A-3.6 Laplace Transformation 

The differential equations presented in Appendix A-3.5 are transformed into 

Laplace domain. 

Matrix Equation 

𝑝𝐷𝐿𝑚������� =
𝑝𝐷𝐿𝑓������

𝑐𝑜𝑠ℎ ��
3𝑠𝜔𝑚
𝜆𝐴𝑐,𝑓𝑚

�
𝑐𝑜𝑠ℎ ��

3𝑠𝜔𝑚
𝜆𝐴𝑐,𝑓𝑚

𝑧𝐷�                                                (A − 14)  

Micro-fracture Equation 

𝑝𝐷𝐿𝑓������ =
𝑝𝐷𝐿𝐹������

𝑐𝑜𝑠ℎ��𝑠𝑓𝑓(𝑠)�
𝑐𝑜𝑠ℎ ��𝑠𝑓𝑓(𝑠)𝑥𝐷�                                                   (A − 15) 

Macro-fracture Equation 

𝜕𝑝𝐷𝐿𝐹������
𝜕𝑦𝐷2

=  𝜔𝐹 𝑠  𝑝𝐷𝐿𝐹������� +  
𝜆𝐴𝑐,𝐹𝑓

3
 
𝜕𝑝𝐷𝐿𝑓������
𝜕𝑥𝐷2

�
𝑥𝐷=1

                                                   (A − 16) 

Differentiating Eq. A-15 and Replacing in Eq. A-16, the solution becomes  

𝜕2𝑝𝐷𝐿𝐹������
𝜕𝑦𝐷2

− 𝑠𝑝𝐷𝐿𝐹������ �𝜔𝐹 +
𝜆𝐴𝑐,𝐹𝑓�𝑠𝑓𝑓(𝑠)𝑡𝑎𝑛ℎ��𝑠𝑓𝑓(𝑠)�

3𝑠
� = 0                     (A − 17)  

In short form 

𝜕2𝑝𝐷𝐿𝐹������
𝜕𝑦𝐷2

− 𝑠𝑓(𝑠)𝑝𝐷𝐿𝐹������ = 0                                                                                   (A − 18) 

Where 𝑓(𝑠) is Al-Ahmadi’s transfer function for the fully transient case is given 

by 

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠)                                                    (A − 19) 

Where 𝑓𝑓(𝑠) is given as  
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𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                            (A − 20) 
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APPENDIX B 

DEVELOPMENT OF ANALYSIS EQUATIONS 

In this section, the analysis equations for the linear triple porosity model are 

derived. Al-Ahmadi’s transfer function “𝑓(𝑠)” is further simplified to develop 

analysis equation for each region. The fluid transfer is assumed to be under 

transient flow. Al-Ahmadi’s transfer function 𝑓(𝑠) for the transient case is given 

by 

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠)                                                         (B − 1) 

Where 𝑓𝑓(𝑠) is given as  

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                (B − 2) 

Eq. B-1 and B-2 are replaced in El-Banbi (1998) Laplace solution developed for 

linear reservoirs. The equation for constant pressure inner boundary, closed outer 

boundary (slab matrix) developed by El-Banbi is given as 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
�
1 + 𝑒−2�𝑠𝑓(𝑠)𝑦𝐷𝑒

1 − 𝑒−2�𝑠𝑓(𝑠)𝑦𝐷𝑒
�                                                                          (B − 3) 

Using 

coth (x) = 
𝑒2𝑥 + 1
𝑒2𝑥 − 1

                                                                                                  (B − 4) 

Eq. B-3 can be written as 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                        (B − 5) 

Further simplifying the Eq. B-1, B-2 and B-5, we obtain the analysis equation for 

each individual regions observed on the log-log plot of dimensionless flow rate 

versus dimensionless time.  
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B-1 REGION 1 
This region represents flow at early time scale in the macro-fractures only. Using 

Eq.  B-5 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                        (B − 5) 

For early time, the value is s is larger (Since t and s are inversely related) 

Approximately for x > 3,  coth  (𝑥) = 1 

Therefore for  

coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒� = 1 When �𝑠𝑓(𝑠)𝑦𝐷𝑒 > 3 

Eq. B-5 can be written as 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

�𝑠𝑓(𝑠)
                                                                                                           (B − 6) 

Here 𝑓(𝑠) is given as  

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠)                                                         (B − 1) 

Where 𝑓𝑓(𝑠) is given as  

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                (B − 2) 

For early time scales (higher values of s) considering fracture depletion only, we 

can assume in Eq. B-1 

𝜔𝐹 ≫≫  
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠) 

Therefore Eq. B-1 can be simplified into 

𝑓(𝑠) = 𝜔𝐹                                                                                                                   (B − 7) 

Replacing B-7 in Eq. B-6 we obtain, 
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1
𝑞𝐷𝑙����

=  
2𝜋𝑠
√𝑠𝜔𝐹

                                                                                                              (B − 8) 

or 

𝑞𝐷𝑙���� =
1

2𝜋√𝑠
�𝜔𝐹                                                                                                       (B − 9) 

Eq. B-9 can be converted from Laplace space to time domain by applying inverse 

Laplace on both sides. The inverted equation is given as 

𝑞𝐷𝑙 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜔𝐹                                                                                            (B − 10) 

Using definition of dimensionless parameters defined, Eq. B-10 is converted to 

obtain the analysis equation for Region 1, 

�𝑘𝐹𝐴𝑐𝑤 =
1262𝑇
�(∅𝜇𝑐𝑡)𝑓

1
𝑚1

                                                                                     (B − 11) 

Where 𝑚1 is the slope obtained by plotting 𝑚
(𝑝𝑖)−𝑚(𝑝𝑤𝑓)

𝑞𝑔
 against √𝑡 

B-2 Region 2 

This region is observed during when bilinear flow occurs between macro fracture 

and micro fracture. Using Eq.  B-5 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                        (B − 5) 

This region also occurs at early time scale, as the permeability of macro-fractures 

is very high. For early time, the value is s is larger (Since t and s are inversely 

related) 

Approximately for x > 3, coth  (𝑥) = 1 

Therefore, 

coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒� = 1     When �𝑠𝑓(𝑠)𝑦𝐷𝑒 > 3 
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Eq. B-5 can be written as, 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

�𝑠𝑓(𝑠)
                                                                                                           (B − 6) 

Here 𝑓(𝑠) is given as  

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠)                                                         (B − 1) 

Where 𝑓𝑓(𝑠) is given as,  

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                 (B − 2) 

During the production from macro-fractures and micro-fractures, the flow from 

matrix is assumed to be zero. Therefore Eq. B-2 can be simplified into, 

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

                                                                                                         (B − 12) 

Replacing Eq. B-12 in Eq. B-1, 

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

tanh�𝑠
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

                                                    (B − 13) 

Since, 

tanh (x) ≈ 1, for x > 3 

Therefore for higher values of s 

tanh�𝑠𝑓𝑓(𝑠) ≈ 1, for �𝑠𝑓𝑓(𝑠) >3 

Therefore Eq. B-13 can be written as 

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠)                                                                                 (B − 14) 
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For bilinear flow from micro-fractures and macro-fractures, we can assume 

storativity of macro-fractures doesn’t play a significant role. Therefore,  

𝜔𝐹 ≪≪≪
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) 

Eq. B-14 can be written as 

𝑓(𝑠) =
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠)                                                                                            (B − 15) 

Replacing Eq. B-15 in B-6 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

�𝑠 𝜆𝐴𝑐𝐹𝑓
3𝑠 �𝑠𝑓𝑓(𝑠)

                                                                                      (B − 16) 

Substituting the value of Eq. B-12 in Eq. B-16 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

�𝑠 𝜆𝐴𝑐𝐹𝑓
3𝑠 �𝑠

3𝜔𝑓

𝜆𝐴𝑐𝐹𝑓

                                                                                     (B − 17) 

Simplifying B-17 to obtain analytical solution for Region 2 in Laplace space 

𝑞𝐷𝑙���� =
1

2𝜋
�𝜆𝐴𝑐𝐹𝑓𝜔𝑓

3
4

𝑠−0.75                                                                                   (B− 18) 

Inverting Eq. B-18 in real time, using Laplace inversion. The analytical solution 

for Region 2 is obtained as 

𝑞𝐷𝑙 =
1

10.1332
�
𝜆𝐴𝑐𝐹𝑓𝜔𝑓
𝑡𝑑𝑎𝑐

4
                                                                                    (B − 19) 

Using definition of dimensionless parameters defined, Eq. B-19 is converted to 

obtain the analysis equation for Region 2, 

�𝑘𝐹𝐴𝑐𝑤 =
4070𝑇

�𝜎𝐹𝑘𝑓(Ø𝜇𝑐𝑡)𝑓4

1
𝑚2

                                                                            (B − 20) 
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Where 𝑚2 is the slope obtained by plotting 𝑚
(𝑝𝑖)−𝑚(𝑝𝑤𝑓)

𝑞𝑔
 against √𝑡4 . 

 

B-3 Region 3 

This region represents the transient linear flow occurring in the micro-fracture 

only. Using Eq.  B-5 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                        (B − 5) 

Here 𝑓(𝑠) is given as  

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠)                                                         (B − 1) 

Where 𝑓𝑓(𝑠) is given as  

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                 (B − 2) 

In Region 3 flow is from micro-fractures only, therefore storativity and 

interporosity of matrix blocks can be neglected.  

𝜔𝑓 ≫≫≫≫≫  
𝜆𝐴𝑐𝑓𝑚

3𝑠 �
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

 

Eq. B-2 can be written as 

𝑓𝑓(𝑠) =
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

                                                                                                          (B− 21) 

Since, 

tanh (x) ≈ 1, for x > 3 

Therefore for higher values of s 

tanh�𝑠𝑓𝑓(𝑠) ≈ 1, for �𝑠𝑓𝑓(𝑠) >3 
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Eq. B-1 becomes, 

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠)                                                                                 (B − 22) 

 

Similarly for Region 3, storativity of macro-fracture is also neglected.   

𝜔𝐹 ≪≪≪<
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) 

Eq. B-22 becomes 

𝑓(𝑠) =
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠)                                                                                            (B− 23) 

Consider Eq. B-5 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                        (B − 5) 

Taylor series expansion of coth (x) is given as  

coth 𝑥 =
1
𝑥

+
𝑥
3
−
𝑥3

45
+ ⋯… … … … … … .. 

Assume 

coth 𝑥 ≈
1
𝑥

 

coth�𝑠𝑓(𝑠)𝑦𝐷𝑒 ≈
1

�𝑠𝑓(𝑠)𝑦𝐷𝑒
 

Replacing in Eq. B-5 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠𝑓(𝑠)𝑦𝐷𝑒
                                                                                                     (B− 24) 

Substituting Eq. B-23 in Eq. B-24, we obtain, 
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1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠 𝜆𝐴𝑐𝐹𝑓
3𝑠 �𝑠𝑓𝑓(𝑠)𝑦𝐷𝑒

                                                                                   (B − 25) 

Substituting Eq. B-21 in Eq. B-25 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠 𝜆𝐴𝑐𝐹𝑓
3𝑠 �𝑠

3𝜔𝑓

𝜆𝐴𝑐𝐹𝑓
𝑦𝐷𝑒

                                                                                 (B − 26) 

Simplifying Eq. B-26, we obtain the analytical solution in Laplace space, 

𝑞𝐷𝑙���� =
1

2𝜋
�𝜆𝐴𝑐𝐹𝑓𝜔𝑓

3𝑠
𝑦𝐷𝑒                                                                                      (B − 27) 

Inverting Eq. B-27 to real time, we obtain 

𝑞𝐷𝐿 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝐹𝑓𝜔𝑓

3
𝑦𝐷𝑒                                                                                   (B− 28)  

Using definition of dimensionless parameters defined, Eq. B-28 is converted to 

obtain the analysis equation for Region 3, 

�𝜎𝐹𝑦𝑒�𝑘𝑓𝐴𝑐𝑤 =
2182𝑇

�(Ø𝜇𝑐𝑡)𝑓

1
𝑚3

                                                                         (B − 29) 

Where 𝑚3 is the slope obtained if we plot 𝑚
(𝑝𝑖)−𝑚�𝑝𝑤𝑓�

𝑞𝑔
 against √𝑡 

B-4 Region 4 

This region represents transient bi-linear flow between micro-fractures and 

macro-fractures. Using Eq.  B-5 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                        (B − 5) 

Here 𝑓(𝑠) is given as  

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠)                                                         (B − 1) 
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Where 𝑓𝑓(𝑠) is given as  

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                 (B − 2) 

During bilinear flow between micro fracture and matrix, storativity of micro-

fractures doesn’t play a significant role hence it can be neglected in Eq. B-2. 

𝜔𝑓 <<<<
𝜆𝐴𝑐𝑓𝑚

3𝑠 �
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

 

Eq. B-2 becomes, 

𝑓𝑓(𝑠) =  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                               (B − 30) 

Assuming  

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

> 3 

Approximately for x>3, tanh x = 1 

Therefore 

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

 ≈ 1 

Eq. B-30 becomes, 

𝑓𝑓(𝑠) =  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                                                        (B − 31) 

For Region 4, storativity of macro-fractures can also be neglected in Eq. B-1 

𝜔𝐹 ≪≪≪  
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠) 

In order to simplify the equation, we assume tanh�𝑠𝑓𝑓(𝑠) ≈ 1 
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Eq. B-31 can be written as, 

𝑓(𝑠) =   
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠)                                                                                          (B− 32) 

Now consider equation B-5  

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                      (B− 5) 

Taylor series expansion of coth (x) is given as  

coth 𝑥 =
1
𝑥

+
𝑥
3
−
𝑥3

45
+ ⋯… … … … … … .. 

Assume 

coth 𝑥 ≈
1
𝑥

 

coth�𝑠𝑓(𝑠)𝑦𝐷𝑒 ≈
1

�𝑠𝑓(𝑠)𝑦𝐷𝑒
 

Eq. B-5 becomes, 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠𝑓(𝑠)𝑦𝐷𝑒
                                                                                                     (B− 36) 

Replacing 𝑓(𝑠) from Eq. B-32 in Eq. B-36, 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠 𝜆𝐴𝑐𝐹𝑓
3𝑠 �𝑠𝑓𝑓(𝑠)𝑦𝐷𝑒

                                                                                  (B − 37) 

Replacing 𝑓𝑓(𝑠) from Eq. B-31 in Eq. B-37, 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠 𝜆𝐴𝑐𝐹𝑓
3𝑠

�𝑠 3
𝜆𝐴𝑐𝐹𝑓

� 𝜆𝐴𝑐𝑓𝑚
3𝑠 �

3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

�𝑦𝐷𝑒

                                             (B − 38) 

Simplifying Eq. B-38, 
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𝑞𝐷𝑙���� =
1

2𝜋
�𝜆𝐴𝑐𝐹𝑓�𝜆𝐴𝑐𝑓𝑚𝜔𝑚4

√3𝑠3 𝑦𝐷𝑒                                                                        (B − 39) 

Inverting Eq. B-39 to real time using Laplace inversion, 

𝑞𝐷𝑙 =
1

2𝜋
�𝜆𝐴𝑐𝐹𝑓�𝜆𝐴𝑐𝑓𝑚𝜔𝑚4

√33 𝑦𝐷𝑒
Γ(0.75)
𝑡𝑑𝑎𝑐  0.25                                                        (B− 40) 

 

Further simplifying Eq. B-40, we obtain the analytical solution for Region 4 

𝑞𝐷𝑙 =
1

17.31�
𝜆𝐴𝑐𝐹𝑓�

𝜆𝐴𝑐𝑓𝑚𝜔𝑚
𝑡𝑑𝑎𝑐

4
𝑦𝐷𝑒                                                                  (B − 41) 

Using definition of dimensionless parameters defined, Eq. B-41 is converted to 

obtain the analysis equation for Region 4, 

�𝜎𝐹𝑦𝑒�𝑘𝑓𝐴𝑐𝑤 =
6943𝑇

�𝜎𝑓𝑘𝑚(Ø𝜇𝑐𝑡)𝑚4

1
𝑚4

                                                              (B − 42) 

Where 𝑚4 is the slope obtained if we plot  𝑚
(𝑝𝑖)−𝑚�𝑝𝑤𝑓�

𝑞𝑔
 against √𝑡4  

B-5 Region 5 

This region represents the transient linear case when the transient linear response 

is primarily from the drainage of the matrix. Using Eq.  B-5 

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                        (B − 5) 

Here 𝑓(𝑠) is given as  

𝑓(𝑠) = 𝜔𝐹 +
𝜆𝐴𝑐𝐹𝑓

3𝑠 �𝑠𝑓𝑓(𝑠) tanh�𝑠𝑓𝑓(𝑠)                                                         (B − 1) 

Where 𝑓𝑓(𝑠) is given as  

𝑓𝑓(𝑠) =  
3𝜔𝑓
𝜆𝐴𝑐𝐹𝑓

+  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                 (B − 2) 
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Consider Eq. B-2, during linear flow in the matrix  

𝜔𝑓 <<<<<<<
𝜆𝐴𝑐𝑓𝑚

3𝑠 �
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

 

Eq. B-2 can be reduced to 

𝑓𝑓(𝑠) =  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                               (B− 43) 

In order to simplify Eq. B-43, we assume that 𝜔𝑚 > 𝜆𝐴𝑐𝑓𝑚 as the storativity of 

matrix is very high as compared to the interporosity flow parameter. Hence, 

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

> 3 

Therefore, 

tanh�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

 ≈ 1 

Eq. B-43 can be written as 

𝑓𝑓(𝑠) =  
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                                                                                        (B − 44) 

Substituting Eq. B-44 in Eq. B-1 and neglecting 𝜔𝐹, 

𝑓(𝑠) =
𝜆𝐴𝑐𝐹𝑓

3𝑠
�𝑠

𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

tanh�𝑠
𝜆𝐴𝑐𝑓𝑚
𝑠𝜆𝐴𝑐𝐹𝑓

�
3𝑠𝜔𝑚
𝜆𝐴𝑐𝑓𝑚

                            (B− 45) 

Or 

𝑓(𝑠) =
𝜆𝐴𝑐𝐹𝑓

3𝑠 �
3𝑠   𝜆𝐴𝑐𝑓𝑚
𝜆𝐴𝑐𝐹𝑓

2 𝜔𝑚
4

tanh �
3𝑠   𝜆𝐴𝑐𝑓𝑚
𝜆𝐴𝑐𝐹𝑓

2 𝜔𝑚
4

                                    (B − 46) 
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Since 𝑘𝑓 ≫  𝑘𝑚, therefore 𝜆𝐴𝑐𝐹𝑓 >> 𝜆𝐴𝑐𝑓𝑚 , the assumption of  3𝑠   𝜆𝐴𝑐𝑓𝑚
𝜆𝐴𝑐𝐹𝑓

2 𝜔𝑚 > 3 

is not valid. 

Using Taylor approximation 

tanh(𝑥) ≈ 𝑥 

Eq. B-46 can be simplified as 

𝑓(𝑠) =
𝜆𝐴𝑐𝐹𝑓

3𝑠 �
3𝑠   𝜆𝐴𝑐𝑓𝑚
𝜆𝐴𝑐𝐹𝑓

2 𝜔𝑚                                                                             (B − 47) 

Or 

𝑓(𝑠) = �  𝜆𝐴𝑐𝑓𝑚
3 𝑠

𝜔𝑚                                                                                              (B− 48) 

Now consider equation B-5  

1
𝑞𝐷𝑙����

=
2𝜋𝑠

�𝑠𝑓(𝑠)
 coth ��𝑠𝑓(𝑠)𝑦𝐷𝑒�                                                                      (B− 5) 

Taylor series expansion of coth (x) is given as  

coth 𝑥 =
1
𝑥

+
𝑥
3
−
𝑥3

45
+ ⋯… … … … … … .. 

Assume 

coth 𝑥 ≈
1
𝑥

 

coth�𝑠𝑓(𝑠)𝑦𝐷𝑒 ≈
1

�𝑠𝑓(𝑠)𝑦𝐷𝑒
 

Eq. B-5 becomes, 

1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠𝑓(𝑠)𝑦𝐷𝑒
                                                                                                     (B− 49) 

Substituting Eq. B-48 in Eq. B-49 
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1
𝑞𝐷𝑙����

=  
2𝜋𝑠

𝑠�  𝜆𝐴𝑐𝑓𝑚
3 𝑠

𝜔𝑚𝑦𝐷𝑒
                                                                                      (B − 50) 

Or 

𝑞𝐷𝑙 =
1

2𝜋√𝑠
�𝜆𝐴𝑐𝑓𝑚𝜔𝑚

3
𝑦𝐷𝑒                                                                                 (B− 51) 

Inverting Eq. B-51 to real time using Laplace inversion, 

 

𝑞𝐷𝑙 =
1

2𝜋�𝜋𝑡𝑑𝑎𝑐
�𝜆𝐴𝑐𝑓𝑚𝜔𝑚

3
𝑦𝐷𝑒                                                                        (B − 52) 

 

Using definition of dimensionless parameters defined, Eq. B-52 is converted to 

obtain the analysis equation for Region 5, 

�𝜎𝑓𝑦𝑒�𝑘𝑚𝐴𝑐𝑤 =
2182𝑇

�(Ø𝜇𝑐𝑡)𝑚

1
𝑚5

                                                                       (B − 53) 

Where 𝑚5 is the slope obtained if we plot 𝑚
(𝑝𝑖)−𝑚�𝑝𝑤𝑓�

𝑞𝑔
 against √𝑡 
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