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Abstract

Standard large-sensor-array-based camera designs are uneconomical when imaging with

exotic wavelengths that require expensive photodetectors. The single-pixel camera allows

image acquisition with only one sensor; however, its compressive sampling rate is too low

to reliably acquire video signals. Hence, we consider the problem of compressive video

acquisition with just a few sensors. We propose a block-based framework featuring two

sensor modes that does not require the periodic collection of reference frames. We use a

joint-sparse signal model to exploit temporal correlations in the video signal, and we explore

the behaviour of our framework under different sampling conditions.
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Acronyms

DMD digital micromirror device

RIP restricted isometry property

SBHE scrambled block-Hadamard ensemble

GPSR gradient projection for sparse reconstruction

OMP orthogonal matching pursuit

CoSaMP compressive sampling matching pursuit

StOMP stagewise orthogonal matching pursuit

SOMP simultaneous orthogonal matching pursuit

MSE mean squared error

PSNR peak signal-to-noise ratio

SSIM structural similarity index
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List of Symbols

fdmd micromirror switching frequency of the DMD

fr video frame rate

S number of sensors

F number of frames

B number of blocks in a frame

L block side length

N target signal length

ζ the set of all sensor indices

β the set of all block indices

ξb the set of all frame group indices for block b

Γg the set of frame indices for frame group g

fg frame index of the last frame in frame group g

x(f,b) target image signal corresponding to the fth frame and bth block

α(f,b) sparse transformed target signal corresponding to the fth frame and bth block

αC
g sparse common component shared by a frame group

α
Q
f sparse innovation component of frame f

Kg sparsity of the common component shared by frame group g

Kf sparsity of the innovation component of frame f
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K̂b sparsity estimate of block b

K̂β sum of sparsity estimates for all blocks

y(s,f,b) measurement vector associated with the sth sensor, fth frame, and bth block

y0(s,f,b) pre-sample vector associated with the sth sensor, fth frame, and bth block

d0(s,f,b) inter-frame pre-sample difference of the the sth sensor, fth frame, and bth block

ystack(f,b) stack of measurements in frame f and block b across all sensors

ybuff(b) buffer of measurements for block b in the central hub during acquisition

Mframe total number of measurements per frame

Msensor total number of measurements per sensor per frame

Minit number of measurements collected per sensor for each block in the first frame

M0 number of measurements collected per sensor for each block while pre-sampling

Mt number of measurements allocated to a block by a texture-focused sensor

Mm number of measurements allocated to a block by a motion-focused sensor

M(s,f,b) number of measurements allocated to the sth sensor, fth frame, and bth block

Mtotal total accumulated measurements for a block so far in the frame grouping module

Mg total number of measurements in a frame group

Φs compressive measurement matrix associated with the sth sensor

Φs(1:M) the first M rows of Φs

Ψ expansion (synthesis) basis

Ψ̃ sparsifying (analysis) basis

Nt number of texture-focused sensors

Nm number of motion-focused sensors

length (·) number of elements in a vector
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Chapter 1

Introduction

1.1 Background

The famous Nyquist-Shannon-Kotelnikov sampling theorem [1–4] states that if a signal

is sampled at at least twice the rate of its highest frequency component, then it can be

accurately and reliably reconstructed from its samples. This condition is sufficient, but

it’s not strictly necessary—in fact, engineering applications have been successfully violating

the traditional sampling theorem since the 1970s [5–8]. In traditional sampling, we assume

the signal is frequency-dense; i.e., it contains frequencies everywhere within its bandwidth.

However, large classes of signals are actually or approximately frequency-sparse and can be

recovered from fewer measurements than traditional wisdom would prescribe.

The term “compressed sensing” was first used by Donoho in 2006 [9] following a series of

foundational papers by Candès and Tao in abstract harmonic analysis [10–13]. They focused

on accurate recovery of sparse signals in the Fourier domain using convex optimization with

only partial signal knowledge. These early papers outline the principles of incoherence,

isometry, and random projections that dictate conditions on compressive sampling strategies

along with the recovery guarantees and reconstruction principles that characterize the field.
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Compressive sampling [14] allows subversion of traditional sampling theorems if the tar-

get signal is compressible in some basis or frame. Video signals are highly compressible—as

demonstrated by the success of the MPEG-4 video compression standard [15]—but conven-

tional video acquisition technology wastes sampling resources by collecting massive amounts

of data with a huge array of sensors before extracting the important information. With

compressive video acquisition, we can acquire video signals with greater sampling efficiency,

hence simplifying encoding at the expense of complex decoding. Furthermore, we can do

it with only a few sensors, which is economical when imaging at exotic wavelengths that

require expensive photodetectors.

1.2 Motivation

The single-pixel camera [16–18] is a simple compressive imaging framework that consists

mainly of a digital micromirror device (DMD) and a single photodetector. A DMD is a

two-dimensional array of tiny mirrors, each of which can point either toward the sensor or

away from the sensor. One row of a binary-valued compressive measurement matrix Φ is

reshaped and loaded into the 2D mirror array at every sensing cycle to obtain exactly one

measurement; each measurement is a linear combination of would-be pixel intensities from

the target image. The temporally sequential imaging approach of the single-pixel camera is

comparable to a conventional camera with an extremely slow shutter speed; hence, to avoid

motion blur, early approaches to compressive video acquisition assume the target video

consists only of slowly-changing scenes [19].

The measurement rate of a single-pixel camera is limited by the mirror-switching rate

of the DMD. Currently, the fastest DMD on the market is Texas Instruments’ DLP7000

with a switching frequency of fdmd = 32,522 Hz [20]. If we want to acquire a video with

the DLP7000 at a frame rate of fr = 24 Hz we must do it with only fdmd/fr = 1355 mea-
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surements per frame. For small frames of 128 × 128 pixels, this yields a sampling ratio

of about 8%—a severe undersampling even for compressive sensing. Hence, to make com-

pressive video acquisition feasible, it’s sensible to use more than one sensor (but still many

fewer sensors than a traditional CCD array) to increase the total number of measurements

available per frame.

One possible application of compressive video acquisition is remote sensing of infrared

radiation. Infrared sensors are up to ten times more expensive than visible light sensors;

hence, compressive sampling makes infrared image and video acquisition affordable. Since

compressive video acquisition involves simple encoding and complex decoding, it is well-

suited for quickly acquiring video in hostile environments (e.g. a forest fire) and then

reconstructing it offline later in safe conditions.

1.3 Proposed Framework

In the following, we outline a framework for compressive acquisition of video with multiple

sensors. To our knowledge, no work has yet explicitly considered using multiple sensors for

compressive video acquisition. Our framework is block-based for computational feasibility

and to allow dynamic allocation of measurements within each frame. Our original contribu-

tions are as follows: we explicitly consider the feasibility of the compressive video acquisition

problem using single-pixel cameras; we explicitly consider using multiple single-pixel cam-

eras; we introduce a texture-focused acquisition mode and a motion-focused acquisition

mode to address different types of perceptual salience in video signals; we do not require

acquisition of reference frames, as groups of frames are jointly reconstructed to exploit tem-

poral redundancy and prevent alias accumulation; we recover implicit reference frames and

their associated innovation frames using the theory of distributed compressive sampling.
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Chapter 2

Literature Review

2.1 Compressive sampling

Discrete sampling can be described in terms of a linear system of equations:

y = Ax+ z (2.1)

where y ∈ R
M is the measurement vector, x ∈ R

N is the target signal, A ∈ R
M×N is the

sampling operator, and z ∈ R
M is noise. In traditional sampling, M = N , and A is simply

the identity matrix.

In compressive sampling, M < N , A := Φ, and x := Ψα; i.e.,

y = ΦΨα+ z (2.2)

where α ∈ R
N is a sparse vector, Φ ∈ R

M×N is a random matrix whose rows are indepen-

dently and identically drawn from a random distribution, and Ψ is a matrix whose columns

contain N dictionary elements {ψi}Ni=1 in R
N . The dictionary Ψ can be a basis or a frame.

It is essential that α be sparse or at least compressible; this allows us to sample at

a rate proportional to the signal’s sparsity level K = ‖α‖ℓ0 instead of its (much larger)

ambient dimension N . Note that ‖·‖ℓ0 indicates the ℓ0 “norm”, defined as the number of
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nonzero elements of a vector; i.e., ‖α‖ℓ0 := #{k : αk 6= 0}. Sparsity occurs when K ≪ N ;

compressibility occurs when the sorted magnitudes of the elements of α exhibit power-law

decay.

Compressive sampling performs a dimension-reducing, information-preserving linear

transformation on the target signal. Measurements are acquired via computing M ran-

dom linear combinations of signal elements, creating an underdetermined system of linear

equations. Strictly speaking, an underdetermined system of linear equations has an infinite

number of possible solutions; however, if Φ and Ψ satisfy certain conditions and if M is

sufficiently large, we can recover α from the underdetermined system simply by finding the

sparsest signal that explains our measurements. In the noiseless case, we write:

α̂ = argmin ‖α‖ℓ0 subject to y = ΦΨα (2.3)

This is a constrained combinatorial optimization problem, which is known to be NP-hard.

Luckily, we can perform convex relaxation on the problem:

α̂ = argmin ‖α‖ℓ1 subject to y = ΦΨα (2.4)

where ‖·‖ℓp indicates the ℓp norm; i.e., ‖v‖ℓp :=
(

∑N
i=1 |vi|

p
)

1
p
. The formulation in (2.4) is

referred to as “Basis Pursuit” [21]. It is an optimization principle, not a specific algorithm,

and several algorithms for its solution exist in the literature.

If we know that the optimal solution of (2.4) is equivalent to the optimal solution of

(2.3), we can guarantee successful recovery of the compressively sampled signal. Hence, we

require the random sampling operator Φ to satisfy certain conditions; for instance, we often

require Φ to be incoherent with Ψ, where their mutual coherence is defined as [22]:

µ(Φ,Ψ) := max
m,i

|〈φm,ψi〉|
‖φm‖ℓ2‖ψi‖ℓ2

(2.5)

where φm is the mth row of Φ and ψi is the ith column of Ψ. Note that 〈·, ·〉 indicates

the inner product. Incoherence between Ψ and Φ means that when a signal is sparse in Ψ,
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it is dense in Φ; this increases the probability that all significant coefficients of the target

signal are captured during sampling. Ideally, we would like a (Φ,Ψ) pair that achieves the

minimal mutual coherence value of µ(Φ,Ψ) = 1/
√
N . Though intuitively appealing, the

mathematics of incoherence yield weak guarantees: for successful recovery we theoretically

require K ≤ 1
2

(

1 + 1
µ(Φ,Ψ)

)

[23]. In practice, however, we observe successful recovery with

much larger values of K.

A stronger condition we might impose on Φ and Ψ is adherence to the restricted isometry

property (RIP) [24]. The RIP is defined as:

(1− δK)‖α‖2ℓ2 ≤ ‖Aα‖
2
ℓ2
≤ (1 + δK)‖α‖2ℓ2 (2.6)

where A := ΦΨ and δK is the restricted isometry constant of order K. The RIP of order

K holds if δK ∈ (0, 1) exists for all K-sparse vectors in R
N . The RIP ensures that small

perturbations in the signal do not lead to large perturbations in the measurements; i.e., it

enforces a stability condition on the sampling operator. Furthermore, recovery is guaranteed

when δ2K <
√
2− 1 [25].

Neither incoherence nor the RIP are strictly necessary conditions for guaranteed recov-

ery, but they are sufficient [26] and popular in the literature [27]. If either holds, the optimal

solution of (2.4) is guaranteed to be equivalent to the optimal solution of (2.3). Still, suc-

cessful recovery is observed even when the RIP is not satisfied. Further efforts to derive

recovery guarantees via concepts of isotropy [28] and a “restricted width” property [29] are

underway, but these are still in their infancy. To date, the best proven approach to deriving

precise conditions for guaranteed recovery uses combinatorial geometry [30,31], from which

we receive a lower bound on M . With enough measurements, the target signal is guaranteed

to be captured either perfectly [32] or approximately [33]. Specifically, we require:

M & 2K · log(N/M)

for K,M,N large and K ≪ N [34], which is an accurate and useful result.
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2.2 Distributed compressive sampling

Compressive sampling succeeds because of the known sparse structure of the target signal.

In distributed compressive sampling, we collect an ensemble of target signals and impose

additional structure on the ensemble by assuming the signals are jointly sparse.

Given an ensemble of J signals {α1, . . . ,αJ}, we assume that each αj for j ∈ {1, . . . , J}

consists of a sparse common component and a sparse innovation component [35], i.e.

αj = α
C +αQ

j (2.7)

where αC ’s support set ΛC := {k : αC
k 6= 0} is common to all αj and the support set ΛQ

j

is unique for each innovation αQ
j . Other joint-sparse signal models are possible: we can

assume that all αj fully share the same support with no innovations; we can assume that

only the innovations are sparse while the common component is non-sparse. Such models

are useful elsewhere but are unrealistic for the case of compressive video acquisition.

Intuitively, we expect that the additional structure of joint sparsity will allow us to

recover the entire ensemble using fewer measurements than we’d need to recover each signal

individually. This is true; analogous to the single-signal case, measurement conditions and

recovery guarantees exist for distributed compressive sampling. The entire ensemble is

reconstructed jointly, but each signal can be acquired independently.

Assuming each signal in the ensemble is sampled using a measurement matrix Φj ∈ R
Mj×N

that is sufficiently incoherent with Ψ, the number of measurements required to recover the

signal ensemble is subject to an additive condition [36]:

J
∑

j=1

Mj > c

(

KC +
J
∑

j=1

KQ
j

)

(2.8)

where Mj is the number of measurements collected of the jth signal, KC = ‖αC‖ℓ0 ,

KQ
j = ‖αQ

j ‖ℓ0 , and c ≈ log2 (1 +
N
K
) is an oversampling factor that depends on the total
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sparsity of the signal ensemble K := KC +
∑J

j=1K
Q
j . In the literature, the sparsity depen-

dency is often ignored and we heuristically set c ≈ 3 [37]. Furthermore, each individual

signal in the ensemble must receive enough measurements to reconstruct its local innova-

tion component; i.e., we require Mj > cKQ
j for all j ∈ {1, . . . , J} [38]. Failure to meet this

condition along with the additive condition in (2.8) leads to a failure to reconstruct [39,40].

When attempting compressive video acquisition with multiple sensors, one might naively

assemble signal ensembles using measurement vectors drawn independently from each sen-

sor. This is the wrong approach. Assuming all sensors have identical views of the scene, they

all sample identical signals. Hence, each frame in the video is better reconstructed by sim-

ply concatenating sensor measurements. In the following framework for compressive video

acquisition, we take groups of frames as signal ensembles. Neighbouring frames are highly

correlated but not identical, which makes them good candidates for joint reconstruction.

2.3 Single-pixel camera

The single-pixel camera [16–18] is a simple compressive imaging framework that consists of

a DMD and a single photodetector. Image acquisition with only one sensor is made possible

by trading broad spatial sampling for lengthy temporal sampling. A single-pixel camera

has binary-valued hardware; it consists of a two-dimensional array of tiny mirrors that can

point either toward or away from the sensor. Each row of a compressive measurement ma-

trix Φ yields exactly one measurement. The way a DMD uses a measurement matrix Φ is

illustrated in Figure 2.1. Random linear measurements are acquired by projecting random

linear combinations of would-be pixel intensities from the target image onto the photode-

tector. This is illustrated in Figure 2.2. The effect of randomness is that all compressive

measurements of a certain image contain roughly the same amount of information and are

naturally encrypted.
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rithm. Optical flow estimation effectively exploits temporal redundancy but is extremely

computationally intensive, and so we do not use it in our approach.

2.4.2 Temporal redundancy

Temporal redundancy is addressed many ways in the literature. For instance, one might

simply ignore it and reconstruct all frames as if they were independent images. Obviously,

this naive approach is far from optimal. At the other dimensional extreme, one might

treat the video as a 3D volume and try to reconstruct the entire sequence simultaneously

[47,48]. While theoretically clever, this approach is extremely computationally complex and

infeasible for a video of any appreciable size.

Reference/difference-based methods are a popular reconstruction strategy [49–51]. Ref-

erence frames—either measured uncompressively or with a greater number of compressive

measurements than non-reference frames—are periodically inserted during the sampling

phase. Non-reference frames are then reconstructed using an inter-frame differencing ap-

proach, where the measurements from one frame are subtracted from the measurements of

the subsequent frame and then reconstructed. The reconstructed difference is much sparser

than an entire frame; frames are recovered by adding their differences to the previously

reconstructed frame. While effective, the periodic insertion of reference frames wastes sam-

pling resources, disrupts the frame rate, and may cause alias accumulation if not performed

often. Furthermore, such methods require differenced measurement vectors to be the same

length, which implies either uniform sampling throughout time or non-uniform sampling

with discarded measurements. Discarding measurements is a waste of resources, and uni-

form sampling is not optimal; different parts of a scene require different sampling ratios due

to varying sparsity levels, and dynamic measurement allocation is especially important on a

limited measurement budget. In the following framework, we avoid using explicit reference

frames. We instead compute implicit reference frames based on the joint reconstruction of

11



frame groups. We then compare each frame with its implicit reference frame and use the

result to individually reconstruct the innovation components of each frame.

2.4.3 Block-based imaging

Video signals are dimensionally huge. Larger images are generally sparser in the wavelet

domain thanks to extra levels of dyadic decomposition, but measuring an entire frame

simultaneously is computationally infeasible: storing the measurement matrix takes too

much memory; the reconstruction process takes too long. A solution to this is to use

block-based imaging [52], which breaks up the frame into smaller blocks that are collected

independently. This results in decreased computation time plus a lighter memory burden.

One block-based approach that exploits temporal redundancy involves motion estima-

tion/compensation [53]. The requisite motion vector search is very computationally expen-

sive, and since reconstruction is already so arduous we prefer to avoid any extra compu-

tation. Furthermore, the block sizes at which motion compensation is effective are much

smaller than the block sizes at which block-based compressive reconstruction is effective—

motion compensation requires blocks so small they are hardly sparse at all. In the following

framework, we do not use motion compensation. We partition scenes using a large block

size to accommodate a reasonable number of levels of wavelet decomposition while still

maintaining computational feasibility.

2.5 Reconstruction strategies

Many algorithms have been developed to recover sparse signals from compressive measure-

ments. They can be divided into two major categories: convex optimization and greedy

pursuits. Bayesian probability/belief-based methods are also common [54], but they are

computationally complex, require prior estimates on the coefficient distribution of the tar-
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get signal, come with no guarantees, and are therefore unsuitable for serious recovery of

image and video signals.

2.5.1 Convex optimization

The theory of compressive sampling was originally developed using tools from convex op-

timization. Indeed, the formulation in (2.4) is a convex problem, and can be solved easily

using existing linear programming methods [55].

Unfortunately, (2.4) is only feasible in noiseless cases, which is extremely unrealistic for

engineering applications. As a result, many approaches focus on solving formulations that

can accommodate noise, e.g.:

α̂ = argmin ‖α‖ℓ1 subject to ‖y − ΦΨα‖ℓ2 ≤ ǫ (2.9)

and the closely related problem:

α̂ = argmin
1

2
‖y − ΦΨα‖2ℓ2 + τ‖α‖ℓ1 (2.10)

The problem in (2.9) is a noise-accommodating variation (where ǫ depends on the noise

level) of the basis pursuit problem in (2.4) and hence is often referred to as “basis pursuit

de-noising”. The problem described by (2.10) is much more popular than (2.9); it is in some

sense an unconstrained version of (2.9), though both approaches generally yield different

results and come with different guarantees [56].

Compressible signals contain many small non-zero coefficients where a truly sparse signal

would contain zeros. Noise also commonly manifests as many small non-zero coefficients;

hence, to a convex optimization algorithm, the discardable part of a compressible signal

looks very much like noise. In (2.10), the ℓ1 regularization term forces small coefficients

to zero while the ℓ2 error term encourages accurate reconstructions. As a result, we are

able to control the trade-off between sparsity and accuracy via the penalty parameter τ .
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Ultimately, it will be (2.10) that we solve to reconstruct our signals from their compressive

samples.

2.5.2 Greedy pursuits

There also exist “greedy” approaches [57] to solving (2.4), including orthogonal matching

pursuit (OMP) [58], compressive sampling matching pursuit (CoSaMP) [59], and stagewise

orthogonal matching pursuit (StOMP) [60]. We might even try to simultaneously recon-

struct an entire signal ensemble using simultaneous orthogonal matching pursuit (SOMP)

[61]. These methods are generally faster than convex optimization and perform comparably

under certain conditions. They are synthesis-based; i.e., they build up a signal representa-

tion by selecting the dictionary atom that explains the largest proportion of signal energy

on every iteration. However, they do not come with the same strong mathematical guaran-

tees as convex methods. In fact, greedy approaches fail when the sparsifying basis Ψ is too

coherent [62], while convex optimization methods remain successful [41].
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Chapter 3

Framework Details

3.1 Signal model

We assume we are trying to capture real-time video in real life. A video is a sequence

of images, and images contain high levels of spatial redundancy. Hence, we assume each

frame of the video is compressible in some basis Ψ. Explicitly, we assume xf = Ψαf and

α̃f = Ψ̃xf , where xf is the vectorized target image, Ψ̃ is the dual basis of Ψ, and the

magnitudes of the sorted coefficients of both αf and α̃f exhibit power-law decay.

Videos also contain high levels of temporal redundancy; i.e., each frame is usually highly

correlated with both prior and subsequent frames. In the following, we employ a joint-sparse

signal model [36] to describe inter-frame correlations. We assume that we can partition the

set of all frames into groups such that each frame consists of a sparse common component

and a sparse unique component relative to other frames in the group:

αf = αC
g +αQ

f (3.1)

where G is the total number of frame groups, ξ = {1, 2, . . . , G}, and g ∈ ξ. Moreover, Γg is

the set of all frame indices in group g, and f ∈ Γg. For each g ∈ ξ, the common component
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Figure 3.1: Overall block diagram of our framework.

αC
g is identical for all αf when f ∈ Γg. Furthermore, we assume that ‖αQ

f ‖ℓ0 ≪ ‖αC
g ‖ℓ0 for

all f ∈ Γg and all g ∈ ξ. Obviously, this assumption will become stronger or weaker depend-

ing on how the frames are grouped. Frame grouping is performed during reconstruction.

The details of the frame grouping process are outlined in Section 3.3.3.

In our framework, we only begin video reconstruction (decoding) after all samples have

been collected (encoding). A high-level block diagram is shown in Figure 3.1. The remainder

of this chapter will discuss the functions of each stage in detail.

16



3.2 Video acquisition

3.2.1 Block-based imaging

We divide each frame into blocks of size L×L. We assume the signal model defined in Section

3.1 holds for each block b ∈ β, where β = {1, 2, . . . , B} and B is the total number of blocks

in each frame. The vectorized target image corresponding to block b and frame f is now

written as x(f,b) ∈ R
L2
; the entities αf ,α

C
g ,α

Q
f , and ξ described in Section 3.1 acquire an

additional index b. Block-based imaging radically reduces the amount of memory required

to store Φ, eases the computational burden of reconstruction, and allows us to distribute

measurements within a frame according to where they will be most useful. Under this

paradigm, each block has a signal length N = L2.

3.2.2 Choice of measurement matrix

Gaussian-distributed random matrices are proven to be ideal for compressive sampling.

They satisfy the RIP, are incoherent with most bases Ψ, and require the fewest number

of measurements in order to successfully recover any target signal. However, Gaussian

matrices are real-valued and dense, which makes them incompatible with the binary-valued

hardware of the single-pixel camera’s DMD and computationally expensive to generate and

store. [63].

In contrast, the scrambled block-Hadamard ensemble (SBHE) is sparse, can be generated

quickly using a few permutation operations, and performs nearly as well as traditional

Gaussian sensing matrices [64]. Importantly, the SBHE is also compatible with single-

pixel camera hardware. Hence, we choose the SBHE as our measurement matrix Φ due to

its technical feasibility, memory efficiency, and fast implementation. Furthermore, we can

quickly compute matrix-vector multiplications since the SBHE is structured—this will be

important during reconstruction.
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3.2.3 Arrangement and behaviour of sensors

Using multiple sensors allows us to collect more information at one time than we’d be able

to collect with only one sensor. This is especially valuable in the case of the single-pixel

camera, which collects measurements sequentially over time. For simplicity, we assume each

sensor has an identical view of the target scene. Each sensor is paired with its own DMD

plus a processing unit that can perform simple arithmetic operations on the measurements

in real time. Additionally, all sensors are connected to a central hub capable of executing

fast convex optimization algorithms.

Let ζ = {1, 2, . . . , S}, where S is the total number of sensors. Each sensor s ∈ ζ is

assigned a unique Φs that it repeatedly uses to measure every block in each frame. This is

done by simply generating each Φs with a unique random seed. Using a unique measurement

matrix for each sensor avoids redundant measurements; using the same measurement matrix

repeatedly for each frame and block eliminates the need to constantly compute new matrices.

The compressive sampling rate of each sensor is limited by the pattern switching rate

of the DMD, fdmd. Each sensor collects the same number of measurements per frame,

calculated as:

Msensor =

⌈

fdmd

fr

⌉

(3.2)

where fr is the desired frame rate of the reconstructed video. This allows for a steady

frame rate upon reconstruction. Each sensor will distribute its measurements across all

blocks b ∈ β in the frame. The total framewise compressive sampling rate is given by

Mframe = SMsensor (3.3)

Before the main sensing loop, each sensor thoroughly samples the first frame by taking

an initial Minit measurements of each block, where Msensor ≤ BMinit < BN . All sensors

then send these initial measurements to a central hub, where they are pooled together

and each block is reconstructed by a fast convex optimization algorithm. This slow and
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computationally expensive process is necessary in order to obtain a sparsity estimate K̂b

for each block; sparsity estimates are important for effective measurement allocation.

At the start of each frame acquisition cycle each sensor obtains an initial M0 measure-

ments of each block in the frame, where BM0 < Msensor. These preliminary measurements

y0(s,f,b) are stored locally within each sensor for one cycle in order to efficiently compute

inter-frame differences for each block. The absolute inter-frame differences are then used

during measurement allocation.

Each sensor can operate in one of two modes: “texture-focused” mode or “motion-

focused” mode. In texture-focused mode, sensors allocate their measurements across all

blocks according to the estimated sparsity of each block, K̂b. The details of texture-focused

mode are outlined in Section 3.2.4. In motion-focused mode, sensors allocate their mea-

surements across all blocks according to the absolute local inter-frame difference:

d0(s,f,b) = ‖y0(s,f,b) − y0(s,f−1,b)‖ℓ1

The details of motion-focused mode are outlined in Section 3.2.5.

At the end of each frame acquisition cycle, all sensors send their measurements to the

central hub. We assume sending information to the central hub is a parallel process to other

sensor operations and does not interrupt video acquisition. Once at the hub, measurements

from all sensors within a block are stacked:

ystack(f,b) =













y(1,f,b)

...

y(S,f,b)













=













Φ1(1:M0+M(1,f,b))

...

ΦS(1:M0+M(S,f,b))













x(f,b) (3.4)

and stored in a buffer. Note that M(s,f,b) indicates the number of measurements allocated

to sensor s, frame f , and block b, and Φs(1:M) indicates the first M rows of Φs. Addi-

tional buffered measurements are accumulated with every new frame. When the number

of measurements in a block’s buffer exceeds a threshold T , a new sparsity estimate K̂b for
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that block is produced and communicated to all sensors. More measurements are allocated

to fast-changing blocks, so the update rate of K̂b will be higher in blocks with significant

motion—this lowers the risk of estimation error due to large sparsity differences. To ensure

that sparsity estimates are sufficiently synchronized with the actual sparsity of the signal, we

force the sparsity estimation algorithm to terminate after a small number of iterations. The

sensors never communicate with each other. A diagram of the operation of an individual

sensor is shown in Figure 3.2.

3.2.4 Texture-focused sensor mode

The sensing framework periodically produces sparsity estimates K̂b for b ∈ β. Assuming

the innovation signals for each frame are sufficiently small, K̂b is a good predictor of the

sparsity of the common component of the frame group. Hence, sampling according to K̂b

is approximately analogous to sampling according to the sparsity of αC
(g,b).

The number of measurements required for accurate reconstruction is related to signal

sparsity as follows [34]:

M & 2K · log(N/M) (3.5)

for K,M,N large, K ≪ N . Hence, we can optimally adjust the number of measurements

required by solving the following equation for M̂b:

M̂b = 2K̂b · log(N/M̂b) (3.6)

which yields:

M̂b = N exp(−W
(

N

2K̂b

)

) (3.7)

where W (·) is the Lambert W function [65]. Then, to allocate the sensor’s measurements

among all blocks within a frame, we normalize M̂b and assign measurements to each block

as follows:

M(s,f,b) = round

(

(Msensor −BM0)
M̂b

M̂β

)

(3.8)
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Figure 3.2: Frame acquisition process for sensor s ∈ ζ. Sensor processes are orange, hub
processes are blue, and communication processes are yellow.
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where M̂β =
∑

b∈β

M̂b. For computational efficiency, the ratio M̂b/M̂β should be calculated

at the hub and communicated to all sensors instead of K̂b. Any leftover measurements

produced by round(·) are added to the block with the most measurements, since a large

number of measurements indicates perceptual importance. Similarly, any extra-budgetary

measurements produced by round(·) are subtracted from the block with the most measure-

ments, since subtracting from a block with fewer measurements may cause reconstruction

failure.

3.2.5 Motion-focused sensor mode

Texture-focused mode allocates measurements according to the sparsity of a frame group’s

common component αC
(g,b); hence, motion-focused mode attempts to allocate measurements

according to each frame’s innovation component αQ

(f,b). Since we have no direct access to the

innovation component or its sparsity, we find the inter-frame innovation difference instead.

We compute:

d0(s,f,b) = ‖y0(s,f,b) − y0(s,f−1,b)‖ℓ1 (3.9)

which is equal to:

d0(s,f,b) = ‖Φs(1:M0)Ψα(s,f,b) − Φs(1:M0)Ψα(s,f−1,b)‖ℓ1 (3.10)

which through (3.1) becomes:

d0(s,f,b) = ‖Φs(1:M0)Ψ
(

αC
(g,b) +α

Q

(f,b) −
(

αC
(g,b) +α

Q

(f−1,b)

)

)

‖ℓ1 (3.11)

The common components cancel, leaving:

d0(s,f,b) = ‖Φs(1:M0)Ψ
(

α
Q

(f,b) −α
Q

(f−1,b)

)

‖ℓ1 (3.12)

Due to the RIP, the distance ‖αQ

(f,b) − α
Q

(f−1,b)‖ℓ1 is well-preserved under the transfor-

mation Φs(1:M0)Ψ. Hence, we expect the ℓ1 norm of the inter-frame measurement difference
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to perform reasonably well as an estimator of innovation sparsity, provided the signal co-

efficients are sufficiently small and do not vary too much in magnitude. Such assumptions

are reasonable for inter-frame differences.

Finally, as in texture-focused mode, we allocate each sensor’s measurements among all

blocks within a frame after normalizing d0(s,f,b):

M(s,f,b) = round

(

(Msensor −BM0)
d0(s,f,b)

d0β

)

(3.13)

where d0β =
∑

b∈β

d0(s,f,b). Since we wish to minimize the amount of computation undertaken

by a single sensor, we do not scale d0(s,f,b) with the Lambert W function. Any leftover

measurements are allocated to the block with the most measurements, since this indicates

salience; extra-budgetary measurements are taken from the block with the most measure-

ments to avoid aliasing blocks with fewer measurements.

3.2.6 Choice of sensor mode

How many sensors should be texture-focused, and how many should be motion-focused?

The most salient (and therefore important) part of a video is its motion, but we want to

ensure successful reconstruction even if there is no motion. In the following, we derive a

lower bound on the number of sensors that must be in texture-focused mode.

From the frame grouping module in Section 3.3.3 (omitting the block index b for clarity)

we have:

Mg =
∑

f∈Γg

Mf (3.14)

where Mf is the number of measurements obtained of αf for f ∈ Γg and Mg is the total

number of measurements in frame group g . The number of measurements allocated to each

frame (within a block) is given by:

Mf = NtMt +NmMm (3.15)
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where Nt is the number of texture-focused sensors, Nm is the number of motion-focused

sensors, Mt is the number of measurements allocated to frame f by a texture-focused sensor,

and Mm is the number of measurements allocated to frame f by a motion-focused sensor.

For simplicity, we assume Mt and Mm are the same for all sensors in the same mode (and

the same frame and block). Obviously, Nt + Nm = S. From the theory of distributed

compressive sampling, we require the following condition to hold for successful recovery of

the frame group [36]:

Mg > cKg + c
∑

f∈Γg

Kf (3.16)

where Kg is the sparsity of the common component αC
g shared by all frames in frame

group g, Kf is the sparsity of the innovation component αQ
f of frame f ∈ Γg, and c is an

oversampling factor that depends on the sparsity of the signal but is heuristically regarded

as c ≈ 3 [37].

Assuming Mf for all f ∈ Γg are identical and combining (3.14), (3.15), and (3.16), we

obtain:

|Γg|(NtMt +NmMm) > cKg + c
∑

f∈Γg

Kf (3.17)

where | · | indicates the cardinality of a set.

Letting Mm →
Msensor

B
while all innovation sparsities Kf → 0:

|Γg|
(

NtMt +Nm
Msensor

B

)

> cKg (3.18)

Without loss of generality, we assume each frame has uniform texture and let Mt →
Msensor

B

as well:

|Γg|Msensor

B
(Nt +Nm) > cKg (3.19)

rearranging to isolate Nt +Nm = S and recalling that Msensor =
fdmd

fr
, we obtain:

Nt +Nm >
cBKgfr
|Γg|fdmd

(3.20)
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We see from (3.20) that the minimum number of sensors required to capture a scene

with no motion depends on four things: the hardware sampling rate fdmd, the desired frame

rate fr, the total sparsity of the scene BKg, and the size of the frame groups used during

reconstruction |Γg|. Here we have assumed |Γg| and Kg are the same for all blocks, but

generally they will vary. The result in (3.20) makes sense intuitively: more measurements

per sensor necessitates fewer total sensors, a higher desired frame rate requires more mea-

surements and hence more sensors, and a more complex frame texture (indicated by a large

BKg) requires more measurements to capture. Jointly reconstructing more frames at once

reduces the number of sensors required since extra frames contribute additional information

about the common texture component.

Our framework is flexible: using S sensors instead of just one allows either an increase in

frame rate by a factor of S, a decrease in frame group size by a factor of 1
S
, or a simultaneous

increase in frame rate by a factor of S1 with a decrease in frame group size by a factor of

1
S2
. Here, S = S1S2. Smaller frame group sizes generally correspond to higher individual

frame qualities; hence, we are able to trade off frame rate and frame quality.

Since we cannot know Kg in advance, we might assume e.g. Kg ≈ (0.2)N , c ≈ 3, and

|Γg| ≈
BN

SMsensor

to obtain:

Nt > (0.6)S −Nm (3.21)

and use a fixed number of Nt =
⌈

(0.6)S
⌉

sensors in texture-focused mode. We assign the

remaining Nm = S −Nt sensors to motion-focused mode. The number of sensors required

to be in each mode will vary between applications. If there is extreme motion in the video,

we should assign more sensors to motion-focused mode.
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3.3 Video reconstruction

3.3.1 Choice of sparsifying basis

We choose biorthogonal CDF 9/7 wavelets as our basis Ψ. CDF 9/7 wavelets were used in

the development of the lossy JPEG2000 image compression standard [66]; they are a very

good choice for lossy compression of natural images. Wavelets also have a fast transform,

which is useful during reconstruction.

3.3.2 Choice of optimization algorithm

Video signals are dimensionally huge; hence, we require an optimization algorithm that

is fast and computationally feasible. We might consider a greedy pursuit for speed and

simplicity; however, the synthesis frame for our chosen CDF 9/7 wavelet basis is too coherent

for greedy recovery approaches to succeed [62]. Hence, we must use convex optimization.

Convex solvers capable of handling problems (2.4), (2.9), and (2.10) are available online

[67, 68], but the interior-point methods they employ are slow and contain several nested

loops. Moreover, we need an algorithm that does not require explicit computation and

storage of A = ΦΨ, as A is dense and very large.

The gradient projection for sparse reconstruction (GPSR) algorithm [69] has no nested

loops and requires only matrix-vector products of the form Aα and ATy to solve (2.10).

This allows us to represent A and AT as functions that take α or y as input and quickly

return Aα or ATy, respectively. This is much more memory-efficient than explicitly storing

the entirety of A, and especially useful when coupled with fast wavelet transforms as our

sparsifying basis. With the correct choice of τ , the GPSR algorithm is both fast and

accurate. We use GPSR for all convex optimization tasks in our framework.
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3.3.3 Joint reconstruction of frame groups

Before we can jointly reconstruct groups of frames, we must first divide the frames into

groups. For each block, we group frames via accumulation: we start at the first frame and

keep adding frames to the group until the total number of measurements contained in the

group is no greater than N . This is to prevent our linear system of equations from becoming

overdetermined and to ensure that the scene doesn’t change too much within a frame group.

Accumulating frames this way forms larger groups when the average number of measure-

ments in a frame is small and smaller groups when the average number of measurements

in a frame is large. This naturally aligns with intuition about joint reconstruction: if a

frame group has a smaller number of average measurements, it means there is very little

texture complexity and/or very little motion and hence the common component will be

more strongly shared amongst the group. The details of the frame grouping procedure are

illustrated in Figure 3.3.

Omitting the block index b for clarity, the set of frame indices for frame group g ∈ ξ is

given by:

Γg = {f(g−1) + 1, . . . , fg} (3.22)

where fg is the final frame in frame group g and f0 = 0. Frame groups completely partition

the set of all frames and do not overlap.

We remove the need for explicit reference frames by defining innovation components rel-

ative to an implicit reference frame; implicit reference frames are obtained by reconstructing

the common component of all frames in a frame group. Inspired by [70], we reconstruct the

common component by stacking measurements from all frames in the group:

y(g,b) =













ystack(f(g−1)+1,b)

...

ystack(fg ,b)













(3.23)
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Figure 3.3: Frame grouping process for block b ∈ β.
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and reconstructing the stack as if all the measurements were of the same frame. Note that

ystack(f,b) was defined in (3.4). Reconstructing y(g,b) effectively averages away the innovation

components from all frames in the group stack, leaving only the common component; i.e.:

α̂C
(g,b) ← Recover

(

y(g,b),Φ(g,b)

)

(3.24)

where:

Φ(g,b) =













Φ(f(g−1),b)+1

...

Φ(fg ,b))













(3.25)

and:

Φ(f,b) =













Φ1(1:M0+M(1,f,b))

...

ΦS(1:M0+M(S,f,b))













(3.26)

Note that the compressive measurement matrices {Φ1(1:M0+M(1,f,b)), . . . ,ΦS(1:M0+M(S,f,b))}

will have different numbers of rows depending on the number of measurements allocated to

their respective sensors, frames, and blocks. The common component is subtracted from

each individual frame’s measurements:

ỹstack(f,b) ← ystack(f,b) − Φ(f,b)Ψα̂
C
(g,b) (3.27)

and the difference is reconstructed as the innovation component for that frame:

α̂
Q

(f,b) ← Recover
(

ỹstack(f,b),Φ(f,b)

)

(3.28)

finally, the entire frame is reassembled:

α̂(f,b) = α̂
C
(g,b) + α̂

Q

(f,b) (3.29)

and untransformed:

x̂(f,b) = Ψα̂(f,b) (3.30)
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Figure 3.4: Frame reconstruction process for block b ∈ β.
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for all f ∈ Γg, all g ∈ ξb, and all b ∈ β. A block diagram of the reconstruction process

is shown in Figure 3.4. Since innovation components are not added to explicit reference

frames, aliasing is confined within frame groups and alias accumulation is prevented. Once

all blocks in all frames are reconstructed, we re-assemble them in the correct configuration

and perform a simple blur across block borders to mitigate the perceptual effects of block-

based sampling and reconstruction.
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Chapter 4

Simulation Results

4.1 Quality evaluation metrics

The peak signal-to-noise ratio (PSNR) is an industry standard for evaluating image quality.

It is based on the mean squared error (MSE) between an image and its approximation, and

does not conform well to human visual perception. A better approach is to use the struc-

tural similarity index (SSIM) [71] which combines sophisticated judgements of luminance,

contrast, and structure to produce a score that more accurately represents the way human

subjects perceive image quality. In our simulations, we calculate both PSNR and SSIM and

demonstrate that SSIM is indeed a better metric.

For all of the following simulations, we assume one frame-sensing cycle takes the same

amount of time as 50 GPSR iterations. We force GPSR to terminate during sparsity

estimation when a stopping tolerance of 1e–6 is reached or after 200 iterations, yielding a

maximum sparsity estimate update delay of 4 frames. We use τ = ‖y‖ℓ2/16
√
M for all

GPSR calls, where y is the input vector and M is its length. During reconstruction, we

set GPSR’s stopping tolerance at 1e–7 and do not set an iteration limit. We use CDF 9/7

wavelets with three levels of dyadic decomposition.
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Figure 4.2: An implicit reference frame and two innovation frames. The innovation frames
have been luminance-inverted to show detail. The innovation frames are very sparse; the
implicit reference frame resembles an average of all frames in the frame group. Note that
each block in the implicit reference frame was reconstructed independently using different
frame group sizes.

Figure 4.2 shows an implicit reference frame and two innovation frames. The implicit

reference frame was reconstructed using the first frame group for each block; it appears

blurred where motion occurs within a frame group. The innovation frames are very sparse.

4.3 Comparison of sensor modes

In our second simulation, we demonstrate the behaviour of the two sensor modes. We

severely undersample F = 16 frames of ‘foreman’ using S = 8 sensors with a sampling ratio

of 12%. Each frame has dimensions 256× 320 divided into B = 20 blocks of size 64× 64; i.e.,

N = 4096. We use values ofMinit = ⌈N/4S ⌉ = 128,M0 = ⌈0.04⌊12%× 256× 320⌋/B⌉ = 20,

Msensor = ⌊12%× 256× 320/S⌋ = 1228, and Mframe = SMsensor = 9824. For sparsity esti-

mation at the central hub, we set T = SMinit = 1024.

Figure 4.3 illustrates the difference between texture-based versus motion-based sens-

ing approaches. There is no hope of successfully recovering the entire 16 frames with a

sampling ratio of only 12%, so we must trade-off diffuse texture quality with targeted mo-

tion quality. We see that a purely texture-based approach yields a higher PSNR, but a

purely motion-based approach yields a higher SSIM. The texture-based approach recovers
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Figure 4.3: Severe undersampling with different sensor modes. Left: original frame 16 of
‘foreman’. Middle: reconstructed frame with all texture-focused sensors and a sampling
ratio of 12%; PSNR = 13.7 dB, SSIM = 0.327. Right: reconstructed frame with all motion-
focused sensors and a sampling ratio of 12%; PSNR = 11.4 dB, SSIM = 0.375. At this
point in the video, the foreman is moving his head toward the upper right corner and there
is a slight upward global camera motion.

significant portions of most blocks but leaves the foreman’s face blurry. The motion-based

approach recovers a clear picture of the foreman’s face but fails to reconstruct a significant

number of blocks in the frame.

4.4 Extended video sampling and reconstruction

In our final simulation, we sample and reconstruct all 150 frames of ‘tennis’ using S = 8 sen-

sors with a sampling ratio of 40%. We use 6 texture-focused sensors and 2 motion-focused

sensors. Each frame has dimensions 192× 320 divided into B = 15 blocks of size 64× 64;

i.e., N = 4096. We take Minit = ⌈0.4N/S ⌉ = 205, M0 = ⌈0.04⌊40%× 192× 320⌋/B⌉ = 66,

Msensor = ⌊40%× 192× 320/S⌋ = 3072, and Mframe = SMsensor = 24576. For sparsity esti-

mation at the central hub, we set T = SMinit = 1640.

Figure 4.4 illustrates the actual sparsity ratio K/N for each block in each frame of

‘tennis’. All blocks were wavelet-transformed and coefficients with magnitudes below Th = 5

were set to zero. The beginning of the video has a higher overall texture complexity than

the rest of the video; this is caused by a high-frequency background texture. At frame 90
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there is an abrupt scene change, after which the average sparsity becomes low except for a

few extremely non-sparse blocks. The ‘tennis’ sequence features global camera movement

in the first half and fast sports movement in the second half.

Figure 4.5 shows measurement allocations assigned to each block in each frame. The red

areas in blocks 3 and 8 from frame 1–25 correspond to a ball bouncing up and down. The red

streaks after frame 90 correspond to the fast motion of a tennis player. The motion-focused

sensors react quickly to the scene change at frame 90, but the texture-focused sensors don’t

notice until they receive updated sparsity estimates a few frames later.

Figure 4.6 shows blockwise PSNR values for the reconstructed video after sampling

according to the measurement allocations in Figure 4.5. PSNR is generally uniform within

frames, but changes significantly from frame to frame. After frame 90 some reconstruction

failures become obvious. Quality drops noticeably just before and right after frame 90; this

is primarily due to the joint reconstruction of disparate frames, but it is also partially an

effect of the sparsity estimate update delay. The PSNR trace is reminiscent of the actual

sparsity traces in Figure 4.4.

Figure 4.7 shows the blockwise SSIM for the reconstructed video after sampling accord-

ing to the measurement allocations in Figure 4.5. The SSIM is generally uniform within

frames and between frames, especially in the first half of the video. Immediately prior to

frame 90, blocks 5 and 10 experience extreme aliasing effects that are very obviously out of

place in the scene. This phenomenon is shown in Figure 4.10. After frame 90, blocks 5 and

10 remain poorly reconstructed; however, the degradation is not as perceptually shocking

since it coincides with a high complexity area of the scene. This can be observed in Figure

4.11. The PSNR and SSIM traces tell different stories about what happens around frame

90: the PSNR trace suggests that the quality in blocks 5 and 10 is better just before the

scene change, which is not perceptually true. Clearly, SSIM is a more useful and intuitive

metric for describing reconstructed video.
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Figure 4.8: Original vs. reconstructed frame 23 of ‘tennis’.
PSNR = 25.8 dB, SSIM = 0.604. The quality is uniform throughout all blocks. The
sampling ratio is not quite adequate to recover the fine texture of the wall.

Figure 4.8 shows the reconstructed frame 23 of ‘tennis’. The fine texture of the back-

ground is blurred due to a slight measurement insufficiency. The movement of the tennis

player’s hand and the bouncing ball are captured adequately.

Figure 4.9 shows frame 53 of ‘tennis’. It is a good quality frame reconstruction; both

PSNR and SSIM are high, though fine textures are still blurred.

Figure 4.10 shows frame 87 of ‘tennis’. In this frame, there is a perceptually prominent

reconstruction artifact caused by joint reconstruction of disparate frames.

Figure 4.11 shows frame 90 of ‘tennis’. This frame is the first frame of a new scene.

It is of generally poor quality due to joint reconstruction of disparate frames coupled with

mis-allocated measurements from outdated sparsity estimates.

Figure 4.12 shows frame 140 of ‘tennis’. The SSIM for frame 140 is higher than that

of frame 23, even though frame 23 has a better PSNR; frame 23 is generally blurry while

frame 140 has localized quality degradations. In frame 140, the sparsity estimates have been

thoroughly updated but there are insufficient measurements available to fully reconstruct

the high complexity static blocks in the upper right corner.
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Figure 4.9: Original vs. reconstructed frame 53 of ‘tennis’.
PSNR = 28.5 dB, SSIM = 0.738. The quality is uniform throughout all blocks and the
sampling ratio is adequate.

Figure 4.10: Original vs. reconstructed frame 87 of ‘tennis’.
PSNR = 24.0 dB, SSIM = 0.644. The two blocks in the upper right-hand corner are of
poor quality because they were jointly reconstructed in a group with significantly different
video frames.
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Figure 4.11: Original vs. reconstructed frame 90 of ‘tennis’.
PSNR = 21.4 dB, SSIM = 0.610. The two blocks in the upper right-hand corner are
of poor quality because their texture complexity is too high for the sampling ratio. The
frame is generally of poor quality because the texture-focused sensors are still allocating
measurements according to sparsity estimates from the previous scene.

Figure 4.12: Original vs. reconstructed frame 140 of ‘tennis’.
PSNR = 23.0 dB, SSIM = 0.704. The two blocks in the upper right-hand corner are of
poor quality because their texture complexity is too high for the sampling ratio. The rest of
the frame is of good quality because sparsity estimates have been refreshed and the tennis
player is being adequately covered by the motion-focused sensors.

43



Chapter 5

Conclusion

5.1 Conclusion

Compressive video acquisition seeks to collect as many measurements of the most per-

ceptually salient scene components as fast as possible—an impossible task using existing

single-sensor technology. Many works on single-sensor compressive video acquisition indi-

cate that video quality can be improved by simply adding more sensors in parallel, but ours

is the only one that explicitly considers using multiple sensors to perform different acquisi-

tion tasks. Using separate sensors for texture-focused and motion-focused video acquisition

minimizes the number of computations required at each sensor on each sensing cycle; if

we had only one sensor, we would need to blend the modes and incur extra computation

time during intra-frame measurement allocation. Hence, our framework minimizes wasted

acquisition time while making the compressive video acquisition problem feasible.

In this work, we proposed a framework for compressive video acquisition with multiple

sensors. We introduced two novel and distinct sensor modes: texture-focused mode and

motion-focused mode. We saw that texture-focused sensors tended to increase the PSNR of

the recovered signal while motion-focused sensors increased the SSIM. Motion is extremely
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significant in human perception; this is reflected in the higher SSIM values observed when

focusing on motion. Our framework was block-based for computational feasibility and

to allow intra-frame measurement allocation. Although no explicit reference frames were

obtained, a joint-sparse signal model allowed us to reconstruct implicit reference frames

using the theory of distributed compressive sampling. For each group of frames, we recovered

an implicit reference frame along with unique innovation components for each frame in the

group—a novel approach to compressive video reconstruction. We allocated measurements

according to where they were most needed in the video and we used every measurement

during reconstruction.

5.2 Future directions

In our framework, the number of sensors in each mode is fixed for each video acquisition

session. However, this is unlikely to be optimal; more research into adaptive sensor mode

switching could improve the accuracy of the measurement allocation scheme. Furthermore,

in reality, it is impossible for every sensor to have an identical view of the scene. Hence,

one might investigate the consequences of each sensor having a different viewpoint; e.g.,

if each sensor’s view differed by only a sub-pixel shift, super-resolution techniques might

be used to increase the dimensions of the recovered frames. Finally, single-pixel cameras

introduce large amounts of noise; this noise—often indistinguishable from small wavelet

coefficients—is hard to remove, and could be a valuable research topic.
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