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Abstract

This thesis evaluated Convoultional LSTM (ConvLSTM) for frame prediction

to help better understand motion in neural networks. Three different neural

networks were implemented and trained. The three networks included, the

original ConvLSTM paper by Shi et al . [35], the Spatio-Temporal network by

Patraucean et al . [32], and the VPN by Kalchbrenner et al . [21].

Implementing and training the three networks allowed thorough testing

and comparison of the accuracy and performance of the networks. The original

ConvLSTM was reasonably easy to re-implement and train, and it performed

as expected. The Spatio-Temporal network and VPN were unable to achieve

the desired results, but still showed improvements over the ConvLSTM. The

VPN outperformed both the ConvLSTM and spatio-temporal networks and

performed better than the reported results in Patraucean et al . [32]. The VPN

also showed that it over-fits the data.
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Chapter 1

Introduction

Over the last decade, the development of neural networks has revolutionized

the field of computer vision. Some of these neural networks have solved nu-

merous object classification [13], [24], [27] problems. Many of them can learn

automatically features in the data that would be nearly impossible to recre-

ate with hand-crafted solutions [24], [42]. These capabilities have motivated

many researchers in other research fields, such as speech recognition [12], nat-

ural language processing [1], and artificial intelligence for games [29] to use a

similar approach to solve their problems.

Although most of the work in this field deals with static image identifica-

tions and segmentation, more recent results have been suggested to deal with

video and motion analysis. Understanding motion is essential for computer

vision and AI, as most real-world applications must deal with dynamic envi-

ronments. For instance, accurate motion predictions can help a robot navigate

its environment and avoid collisions.

The main objective of this thesis is to implement and compare three state-

of-the-art unsupervised neural network architectures capable of performing

frame prediction. The three neural network architectures are Convolutional

LSTM Network, Spatio-Temporal Autoencoder, and Video Pixel Network.

The networks are trained and tested with two moving handwritten digits from

the MNIST [26] database. The data consist of sequences of two moving digits

from the MNIST training set. Each sequence of 20 frames is 64 x 64 pixels in

size.
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Chapter 2 review the current state-of-the-art of convolutional neural net-

work as it applied to temporal data inputs. Chapter 3 describes in detail

the three network architectures used in this thesis. All important parameters

to these networks, such as the kernel sizes, number of filters, and hyperpa-

rameters, will be presented. Although all three networks use a version of the

ConvLSTM architectures, each network has its unique structure and approach

to frame prediction. By implementing all three networks, some insight into the

strengths and weaknesses of each architecture will be gained. Chapter 4 first

looks at replicating the results of each implementation to the results found in

the original articles by computing the average error of ten predicted frames.

As will become evident, averaging the error can hide subtle and important

details of the network. We will also analyze the error distributions of each

network as well as randomly picked test samples to help answer the following

questions:

RQ1. Do the networks maintain an accurate motion for each digit, or do the

digits drift from their correct position in the image?

RQ2. Do the networks maintain the spacial structure of the digits, or do the

digits become blurry and unrecognizable?

Chapter 4 explore the robustness of each networks. These tests include

increasing the number of digits, up to four digits, and using a different data

set for the digits. In Chapter 5, we will then conclude and compare each

architecture’s pros and cons. We will also explore how one can improve their

performance.

1.1 Contributions of the thesis

The main thesis contributions are:

• Implement and test three frame prediction Convolutional LSTMs based

architectures found in the literature;
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• Test and compare the performance of each architecture with a simple

image sequence based on MNIST moving handwritten digits dataset;

• Analyze the pros and cons of each architecture and its potential improve-

ment.

3



Chapter 2

Literature Review

2.1 Introduction to Neural Networks

Although there has been a lot of interest and progress in artificial neural

networks (ANN) over the last decade, ANN dates back to the 1940s. Warren

S. McCulloch and Walter Pitts [28] were two of the first researchers to propose

the idea of simulating the neural activity of the brain. Their work was a long

way from our current neural network models, mainly because they were unable

to implement their ideas on any computer available at the time. However, their

work laid the foundation for today’s research. Even though the requirement of

large computing power is still an issue, recent parallel computing capabilities

such as the Graphic Processing Units (GPUs) and large supercomputers have

allowed the research community to train large and complex networks in a

reasonable amount of time. For example, the supercomputer developed for

the OpenAI company is a single system with more than 285,000 CPU cores,

10,000 GPUs, and 400 gigabits per second of network connectivity for each

GPU server [25].

In 2010, the AlexNet architecture [24] had been introduced and was able

to outperform the best-handcrafted algorithms for image classification. This

pioneering work has led many researchers to move away from the standard

handcrafted approach towards more efficient approaches based on neural net-

works [12], [13], [24], [27], [29], [30]. The AlexNet results [24] also showed

that it was possible to train larger networks on low-cost GPUs. Currently,

many neural network approaches dominate the research fields, such as com-
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puter vision [13], [24], [27], speech recognition [12], and speech synthesizers

[30]. Researchers have also used neural networks to create a more general

artificial intelligence (AI) by teaching the AI to play games [29].

Modern-day neural networks need two elements to be successful in addi-

tion to the network architecture, which needs to be designed to represent the

problem accurately. First, as mentioned previously, neural networks require

massive computing power to calculate the vast amount of connection weights

(more than two million) between the neurons. The connection weights are

updated using gradient descent and backpropagation algorithms, which are

very costly, especially when the number of neurons increases. Second, to train

neural networks, one needs to have a large amount of data to determine the

network’s parameters. Companies like Facebook and Google specialize in col-

lecting data to be used to train those networks. Besides the private data that

companies have gathered over the years, there are also large public data sets

created by research institutes such as the MNIST [26] and ImageNet [3]. These

data sets allow researchers to test new ideas and compare their results against

other networks.

2.2 Convolutional Neural Networks

As applications move away from small, simple images such as the MNIST [26],

fully connected neural networks start to struggle. Since a fully connected layer

has a connection to each pixel, when the size of the image increases, then the

number of parameters in the network must increase accordingly. The most

common method to overcome this shortcoming is to use convolutional neural

networks (CNN) [26]. Instead of learning the connections to every pixel, like in

a fully connected network, a convolutional neural network learns convolution

kernels to filter the input image at different scales. These convolution kernels

also have the benefit of being differentiable, making it possible to train the

network using backpropagation algorithms.

Today’s top image classification neural networks are based on this con-

volutional approach [13], [24], [27]. The convolutional approach allows the
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networks to be deeper due to their smaller overhead. They also outperform

fully connected layers, even when a fully connected layer is feasible, such as

with the MNIST dataset. One of the reasons the convolutional approach works

well is that they can deal with the spatial locality of features. In some images,

neighboring pixels are more relevant than those on the opposite side of the

image. In convolutional layers, the kernel is only seeing a small part of the

image at a time. Zeiler and Fergus have tried to understand what a convo-

lutional neural network learns [42]. In their example, the first layers of the

network learned simple structures like edges and corners. The following layers

then learned the more complex structures like a person’s nose or eye.

2.3 Deep Neural Networks

Increasing the number of layers has been shown to improve the accuracy of

neural networks [5], [13] recognition. However, there are some issues with

increasing neural network depth. The obvious problems are the increase in the

computing requirements and the training time because increasing the number

of layers also increases the number of parameters. As mentioned by He et al .

[13] increasing the number of layers in a network can harm its accuracy. In

their paper, they propose a new architecture called ResNets that can preserve

and even increase the accuracy when the number of layers increases. The

authors show that increasing the depth of a ResNet does not affect the accuracy

allowing them to create networks with more than 152 layers. Their approach is

based on adding “shortcut connections” where previous layers could pass the

learned information through the network without going through the deeper

layers of the network. These shortcut connections usually skip one or two

layers. In the case of the ResNet architecture, “the shortcut connections simply

perform identity mapping, and their outputs are added to the outputs of the

stacked layers” [13].
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2.4 Image Generation

There has been much research to make neural networks generate data. Some of

the early approaches used autoencoder architectures [15]. The main idea is to

reduce the dimensions of the data into a smaller vector using a network called

“an encoder” and then recreate the higher dimensional data using another

network called “a decoder.” The major flaw with traditional autoencoder is

that the encoded vector, or latent space, can be sparse. Therefore, if the

latent space is randomly sampled, then the reconstructed data will likely be

non-sensical. In many applications, the decoder produced by the traditional

autoencoder is not a reliable generator.

Later works have attempted to create a better encoded latent space by

introducing a variational autoencoder (VAE) [23], [33]. By putting extra con-

straints on the latent space, VAEs force the latent space to be continuous.

Therefore, the decoder of a trained VAE can be randomly sampled and gen-

erate new meaningful data. Many results found in the literature show the

successful generation of new images, such as handwritten numbers that closely

resemble those found in the MNIST dataset [33].

An interesting property of VAEs [23], [33] is that the latent space created

is continuous and allows interpolation. If one takes two randomly sampled

points in the latent space, point A and point B, one can interpolate between

the generated images. As the interpolated point moves from point A to B,

the generated image slowly transforms between the two samples. For exam-

ple, using the MNIST dataset, if point A generates the digit “1” and point

B generates the digit “7”, then moving from point A to point B in the latent

space will create images that transition from “1” to “7”. While interpolating,

the network should not generate any random images that do not closely rep-

resent a digit from the MNIST database. This is not the case with traditional

autoencoders as their latent space may not be continuous.

The main drawback to VAEs [23], [33] compared to other generative mod-

els, is that VAEs are trying to reduce both the reconstruction and the latent

variable cost. This tends to produce lower quality results. The images gen-
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erated by VAEs are usually missing the fine details and can often be blurry.

This is especially the case with more complex images, such as the ones found

in ImageNet [3]. On simpler images, like the MNIST numbers, VAEs can

actually perform quite well as a generative model.

Another approach to generating data is through the use of Generative

Adversarial Networks (GANs) [10]. GANs use two neural networks where one

network is a generative model G that generates fake data, and the other is a

discriminative model D that learns to detect fake data. During the training

process, the generative model attempts to fool the discriminative model into

predicting the generated data is from the training data. Simultaneously, the

discriminative model attempts to detect data generated from G, versus data

that came from the training data. After the training, network G can be used to

create new data. Goodfellow et al . [10] trained the network to learn to generate

images. One of the datasets used was the MNIST [26]. After training, the

generative model could create new images close to the original images. Like

VAEs, the latent space of GANs is continuous, which means one can randomly

sample the latent space, and the generative model will produce meaningful

data.

One disadvantage of GANs is that they are more difficult to train. Since

the training process is a min-max problem between two networks, one network

must not get overtrained before updating the other network. Goodfellow et al .

[10] describes a situation where the generative model can collapse the latent

space, z, of a generative model, G, too quickly. This means the latent space

will not be able to represent the dataset accurately.

PixelCNNs [31] take a slightly different approach to image generation. In-

stead of generating an image from a latent vector, PixelCNNs predict the value

of a pixel from the values of the previous pixels. Therefore, one method for

generating images is to input an image with random pixel values and have the

PixelCNN generate an image from the noise. This approach usually requires

the network to be run multiple times before a valid image is produced. Unlike

VAEs and GANs this approach is difficult to generate specific images, such as

a specific digit from MNIST database.

8



Van Oord et al . [31] had a more useful use case, where the PixelCNN

generated a missing part of an image. The authors showed examples of images

with the bottom half of the image missing, and the PixelCNN was able to

regenerate the missing part. This seems to be closer to the intended use case

for PixelCNNs. They can be used to correct errors or missing information

from existing images rather than generate new images from a latent vector.

2.5 Optical Flow Neural Networks

Many researchers [6], [17], [41] have expanded the application of neural net-

works to other areas of computer vision. One such area of research is the

computation of optical flow in videos. Optical flow is a way to track the mo-

tion of objects, frame by frame, in a video. By tracking features of an object,

the velocity of pixels can be calculated because the pixel intensity changes

between frames. One optical flow method described in Fleet and Weiss [7]

consists of using temporal gradients from successive video frames to compute

how pixels move from one frame to the next. Many algorithms are based on

intensity conservation assumption, where the intensity of a pixel is assumed

to be constant between two frames. These handcrafted methods are easier to

implement than neural network approaches but do not produce very accurate

results as they are susceptible to occlusions and noise issues.

FlowNet [6] introduces a new neural network architecture that can compute

optical flow. Instead of looking at single-pixel evolution between two consec-

utive frames, the FlowNet uses convolutional layers to calculate the flow in a

hierarchy of larger neighborhoods. The output is an image in which each pixel

represents the optical flow. FlowNet uses a supervised approach, meaning

the network needs both the input and output during training. The algorithm

uses computer-generated video frames from computer graphic 3D renderings

to ensure an accurate ground truth flow map during training.

FlowNet and the follow-up paper [17] have shown to accurately generate

an optical flow map that is much less sensitive than its handcrafted versions.

However, one criticism of this approach is that one needs the flow map ground

9



Figure 2.1: An example of optical flow. Given two images an output image is
returned with vectors showing the motion between the two images.

Figure 2.2: The FlowNet simple [6].
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truth to train the network. For research, this is not a problem, but it can be

challenging to generate an accurate reference optical flow map for real-world

data.

Table 2.1: Comparison of Optical-Flow Methods

Approach
Chairs

KITTI
Avg. All Avg. NOC

Test Train Test Train Test
FlowNetS [6] 2.7 7.5 9.1 5.3 5.0

Back to Basics [41] 5.3 11.3 9.9 4.3 4.6

Yu et al . [41] present an unsupervised approach for neural networks to

generate optical flow, which is referred to as back to basics [41]. The authors

do not require the ground truth flow map in their training. The algorithm

tries to warp the first frame in the video to match the second frame to learn

the optical flow. The warping consists of applying a translation to each pixel

in the first frame and then attempt to match those pixels in the second frame.

The way the pixels are moving, or warped, correspond to the optical flow that

needs to be computed. This unsupervised approach introduces a smoothing

function that forces neighboring pixels to move at similar velocities. Without

this smoothing function, the network would struggle to learn any useful optical

flow mapping. One limitation of this approach is that some edges get blurred.

Even with these limitations, the back to basics [41] approach claims to produce

similar results as FlowNet. However, when tested with reference test data,

FlowNet still outperforms this approach.

2.6 Self-Supervised Learning

Given the data there are different approaches to training a neural network.

When the data is labeled then the model can be trained in a supervised ap-

proach [13], [24], [27]. This usually provides the best results; however, it can

be difficult to gather a large collection of labeled data. Another approach is

unsupervised learning [10], [23], [33]. Unsupervised learning does not require

the data to be labeled. Instead the model is structured in a way that allows
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Figure 2.3: The network used in back to basics [41].

it to learn features of the data.

Self-supervised learning is when the data is not labeled, but the problem

is structured like a supervised problem. Natural language processing (NLP)

uses this approach when training transformers [4]. NLP transformers use a

large corpus of text for their data. Unlike some of the image classification

problems mentioned previously this data of text is not labeled. However, the

data still has a structure to it. For example the order of the sentences and

words matters. Therefore classification problems are created from the data.

One training problem is to mask out a random word and have the model predict

the missing word. Another is to take two sentences and predict if the second

sentence should come after the first. Similar to the supervised approach the

model is given an input and a label. However, the labels are not hand crafted

before training begins and instead are created by an algorithm.

2.7 Frame Prediction

Other researchers have tried doing frame prediction with neural networks [21],

[32], [35], [36]. These neural networks use multiple video frames to predict

the next frame in a video. Many of these neural networks do not predict just

one frame, but instead, they try to predict many frames. There are some

algorithms that can also create a video frame from a single frame [39], [40].
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Some of the more obvious use cases of these algorithms are to fix missing

frames in a video or to add extra frames to simulate slow-motion video [20].

Figure 2.4: An example of frame prediction.

One area that frame prediction algorithms were used that may not be as

obvious was in a maze solving AI [18]. A DeepMind paper by Jaderberg et

al . [18] used an auxiliary task that predicted future rewards to help better

navigate a three-dimensional maze. Given the last three frames that the bot

saw, this additional task predicted the likelihood of receiving a reward in the

next unforeseen frame. In this case, the reward predictor does not generate a

new frame like the above frame predictors but instead outputs the probability

of a reward.

When working with temporal data, the network can be crafted to handle

a fixed number of time steps. This is the approach that FlowNet [6] took

and can usually be the simplest. Using a fixed number of frames can cause

issues when the data has a variable number of frames. There could also be

information in previous frames that the network is ignoring and can help with

future predictions. One approach is to use recurrent neural networks.

Recurrent neural networks (RNNs) [34] allow artificial neural networks to

handle temporal and variable-length data. This network architecture has been

used in many applications, including, speech recognition [12], translation [1],

video [36], and artificial intelligence in games [29]. Similar to a hidden layer in

a feed-forward neural network, a recurrent layer takes input from the previous

layer and outputs to the next layer. Unlike feed-forward networks, RNNs
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Figure 2.5: A simple recurrent neural network.

have a different internal state that allows the network to remember important

information from previous time steps. Unfortunately, it can be difficult to

train long RNNs as they can suffer from vanishing or exploding gradients [16].

The vanishing gradients can make the long-term dependencies seem far less

important than the short-term dependencies.

Figure 2.6: A long short-term memory (LSTM) module [16].

Long short-term memory (LSTMs) [16] were introduced to help solve the

gradient problems with RNNs. There are variations on LSTMs; however, it

is common for an LSTM unit to consist of a memory cell, an input gate, an

output gate, and a forget gate. The gates are used to control the flow of

information to and from the cell. The drawback to LSTMs is their increased

memory usage and training time as the network must now store and learn

weights for all the gates. Since the benefits of LSTMs usually outweigh the

drawbacks, LSTMs are commonly used for recurrent neural networks.

Srivastava et al . [36] introduced the idea that LSTMs can be used for frame

14



prediction. They created a simple test set of two moving MNIST digits [33]

and had decent results predicting the future frames. Later work introduced a

method called ConvLSTMs, which combines LSTMs with convolutional net-

works [35]. In the next chapter, I will review and implement multiple versions

of frame prediction networks.
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Chapter 3

Predicting Frames Using Three
Neural Networks

In this chapter, I will explore three different neural network architectures for

frame prediction: Convolutional LSTM Network, Spatio-Temporal Autoen-

coder, and Video Pixel Network. First a description of the data used for

training and testing using the MNIST database will be provided. Then I will

describe the structure of the three network architectures and their training

process.

3.1 Network Training Data

The networks are trained and tested with two moving handwritten digits

database from the MNIST [26]. This database was first developed by Sri-

vastava et al . [36]. The data consist of sequences of two moving digits from

the MNIST training set. Each sequence of 20 frames is 64 x 64 pixels in size.

All three networks are trained on two moving digits.

Using this test set will allow us to compare my research results to the

results proposed by the original authors. However, to double-check, a research

test set of two moving MNIST digits is also created. The digits are selected

from the MNIST test set and moved using the same algorithm as the training

data for generating the motion.

In addition, using the original dataset, all three networks are also tested on

sequences ranging from one to four digits. The purpose is to test the versatility
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Figure 3.1: Top: Sample from the two moving MNIST digits. This is the type
of data the models were trained on. Bottom: Sample from the one moving
EMNIST digit. The models were not trained on this data and is only used for
testing.

of the network’s motion tracking. One of the question to be answered is, can

the networks handle more than two digits? If the error of a network increases

drastically after two digits, then the network has most likely learned to only

track two objects. A random test sample with four digits will be used to

analyze further insight into the behavior of the networks.

The networks are also all tested on sequences where the digits are taken

from the EMNIST [2] dataset instead of the MNIST. The EMNIST dataset

contains handwritten characters other than the digits zero to nine, like the

digits found in MNIST. The other reason for using the EMNIST dataset is

that it is formatted similarly to MNIST. The digits in the EMNIST dataset

are the same size and have the same pixel values as the digits found in the

MNIST dataset. The only difference is the shape of the digits. By using the

EMNIST dataset, one can determine whether the networks rely heavily on the

spatial structure of the digits.

3.2 Networks Architectures

This section will discuss the architecture of each network. Their performances

will be described in Chapter 4.

3.2.1 Convolutional LSTM Network

Srivastava et al . [36] were one of the first authors to use long-term short term

memory (LSTM) networks [8], [16] to predict future frames in videos. Their

work showed promising results but required a large number of parameters
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because the networks were fully connected, and therefore, each pixel in the

image needed its own connection. This is a fundamental flaw in using tra-

ditional LSTM networks with images. Shi et al . [35] introduced the use of

convolutional LSTM (ConvLSTM) networks to help solve this problem. By

combining traditional LSTM architecture with convolution, the resulting net-

work needed fewer parameters while being able to achieve better performance.

The ConvLSTM network is expressed mathematically by:

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct)

(3.1)

where ‘∗’ denotes the convolution operator and ‘◦’ denotes the Hadamard

product. Like traditional LSTMs, the ConvLSTM still has an input, Xt, input

gate, it, forget gate, ft, output gate, ot, hidden state, Ht, and cell state, Ct.

The hidden state and cell state are passed on to the LSTM in the next time

step. The hidden state is also passed onto the next layers in the model. All the

remaining variables are the weights and biases, W and b, and these variables

are learned during training. This equation is also shown graphically in Figure

3.2.

The equation used for the ConvLSTM networks is almost identical to the

equation for the standard LSTM networks [9], [11], [36] except that the mul-

tiplication is replaced by a convolution. Therefore, instead of vectorising the

image and using a traditional LSTM network with matrix-vector multiplica-

tion as shown in Srivastava et al . [36], the image structure is preserved, and a

convolution operation is applied. With a convolutional layer, only the weights

for the kernels are learned, and the kernel size is much smaller than the in-

put images. The fully connected LSTM network [36] required ∼ 142 million

parameters whereas the ConvLSTM network [35] only required ∼ 7 million

parameters and is capable of outperforming the fully connected network.
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Figure 3.2: Right: The structure of the ConvLSTM network. More details of
the network are described above. Left: The structure of a ConvLSTM layer
is shown in equation 3.1.

The ConvLSTM network, I use is the same network described in Shi et al .

[35], and its architecture can be seen in Figure 3.2. The network consists of

three ConvLSTM layers and a final output convolutional layer. All the outputs

of the ConvLSTM layers are concatenated together before being passed to the

final layer. The ConvLSTM layers use a kernel size of 5 x 5 with 128, 64, and

64 hidden states. The final convolutional layer has a kernel size of 1 x 1 and

is followed by a sigmoid activation layer. Due to the concatenation performed

on all ConvLSTM layers, the final output layer has an input feature map with

256 channels. To train the network, a cross-entropy loss 1 function is used.

This network is by far the simplest architecture of the three networks, making

it the easiest to build and train.

3.2.2 Spatio-Temporal Video Auto-encoder with Differ-
entiable Memory

The second network I implement was introduced by Patraucean et al . [32]. Its

architecture can be seen in Figure 3.3. The core concept of this network is

to use a ConvLSTM network [35] with a modified spatial transformer [19] to

1The cross-entropy loss of the predicted frame P and the ground-truth frame T is defined
as −

∑
i,j,k Ti,j,k logPi,j,k + (1− Ti,j,k) log(1− Pi,j,k)
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learn the optic flow. Then, the learned optic flow will transform the features

of the current frame in the sequence to closely match the next frame in the

sequence. The network is similar to a convolutional auto-encoder and adds

a learned optic flow module. The optical flow module is referred to in the

original paper [32] as a temporal auto-encoder. Due to this structure, the

network can be broken down into three distinct structures: the convolutional

encoder, the temporal auto-encoder, and the convolutional decoder.

Spatio-Temporal Network Architecture

The first layer of the encoder is composed of a convolutional layer with a 7

x 7 kernel and 16 filters. This layer is then followed by a tanh non-linearity

activation function and a 2 x 2 max-pooling layer. The output of the con-

volutional encoder is then passed to both the temporal auto-encoder and the

modified spatial transformer.

The temporal auto-encoder is a type of network capable of learning the

motion/optical flow. It starts with a 7 x 7 ConvLSTM layer with 64 hidden

states. The output of the ConvLSTM layer is then passed to three convolu-

tional layers. The first two layers use a kernel size of 15 x 15. The last layer,

with a kernel size of 1 x 1, outputs the optical flow. None of these layers have

an activation layer.

Using ideas taken from Jaderberg et al . [19], the output from the convolu-

tional encoder is warped using the learned optical flow. This warping function

is a differentiable lookup table. By using optical flow, the pixel at each loca-

tion of the current frame is moved to its new location on the next frame. This

new warped image is then passed to a convolutional decoder where it is first

resized, using a nearest-neighbor spatial up-sampling to match the original size

of the input. This resized frame is then passed to a convolutional layer with

a 7 x 7 kernel and is then followed by a sigmoid activation layer that outputs

the predicted frame.
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Figure 3.3: The structure of the Spatio-Temporal video auto-encoder network.

Spatial Transformer

The spatial transformer first proposed by Jaderberg et al . [19] applies a spatial

transformation to the features during the forward pass of a network. This

transformation is not handcrafted but instead is learned during the training

of the network. The authors did this by creating a sub-network to learn

the parameters of a transformation matrix. Note that these parameters can

be different on every forward pass as the network is generating them. The

transformation matrix is then applied to a grid that is used as a lookup table

for a differentiable sampler.

A modified spatial transformer is used for the spatio-temporal network.

This is the same transformer introduced in the paper by Patraucean et al .

[32]. Unlike the original spatial transformer proposed by Jaderberg et al .

[19], a transformation matrix is not applied to the entire grid, but instead,
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the learned optical flow applies a translation for each pixel of the grid. The

spatial transformer takes the learned optic flow and the feature map created

by the encoder as input. Let U ∈ RHxWxC be the feature map, with width

W , height H, and C channels. A grid is generated, G ∈ RHxWx2, to have

the same width and height as the feature map. The grid has two channels for

the translation in the x and y directions. The original paper by [19] added a

third channel filled with ones to the grid. This allows a transformation matrix

to be used and the translation to be calculated in a single matrix operation.

However, the spatio-temporal network replaces a matrix transformation with

a simple addition because it is only working with the translation of each pixel.

Therefore, the extra channel filled with ones is not needed. This network is

expressed mathematically as:

Tθ(., .) =

(
1 0 θx
0 1 θy

)
(3.2)

Tθ(G) = G+ θ (3.3)

Each point on the grid are normalized to between −1 ≤ xi, yi ≤ 1. There-

fore a grid for a 5 x 5 feature map would look as following:

G =


−1.0 −0.5 0.0 0.5 1.0
−1.0 −0.5 0.0 0.5 1.0
−1.0 −0.5 0.0 0.5 1.0
−1.0 −0.5 0.0 0.5 1.0
−1.0 −0.5 0.0 0.5 1.0



−1.0 −1.0 −1.0 −1.0 −1.0
−0.5 −0.5 −0.5 −0.5 −0.5
0.0 0.0 0.0 0.0 0.0
0.5 0.5 0.5 0.5 0.5
1.0 1.0 1.0 1.0 1.0

 (3.4)

The learned optic flow, θ, is added to the grid to give the transformation,

Tθ(G).

This transformed grid, Tθ(G), is then submitted to a differentiable bi-linear

sampler kernel define by:

V c
i =

H∑
n

W∑
m

U c
nm max(0, 1− |xsi −m|) max(0, 1− |ysi − n|) (3.5)

where (xsi , y
s
i ) are the source pixels in Tθ(G) and V c

i is the output for pixel i

and channel c. Note that the same transformation is applied to each channel

so Tθ(G) does not have the same number of channels as the feature maps U

and V .
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Loss Function

The spatio-temporal video auto-encoder is the only network of the three that

does not use a cross-entropy loss function to determine if the iteration has

converged. Instead, it uses a L2 loss function with a smoothness penalty

applied to the optic flow. The L2 loss function is defined as:

‖T − P‖22 (3.6)

where P is the predicted frame and T the ground-truth frame. The smoothness

penalty is calculated by applying a convolution over the flow map and then

applying a weighted Huber loss function [32], [38]. The Huber loss function is

defined as the following:

Hδ(ai,j) =

{
1
2
a2i,j, for | ai,j |≤ δ

δ(| ai,j | −1
2
δ), otherwise

. (3.7)

Patraucean et al . defined the convolution filter used in the Huber loss function

as a “fixed, non-trainable”, 2 x 3 x 3 filter, corresponding to a 5-point stencil,

and 0 bias [32]. This convolution filter calculates the local gradients of the

flow map, ∆T , and is defined by: 0 0 0
−1 0 1
0 0 0

0 −1 0
0 0 0
0 1 0

 (3.8)

Using these equations the total loss function is defined as:

Lt = ‖Tt − Pt‖22 + wHH(∆T ) (3.9)

where wH is set to 10−2 and the delta, δ, in the Huber loss function is set to

10−3.

3.2.3 Video Pixel Network

The third network is the Video Pixel Network (VPN). It was originally devel-

oped by Kalchbrenner et al . [21] and combined a convolutional LSTM network

[35] with a PixelCNN [31]. The VPN comprises three parts: an encoder, a

ConvLSTM unit, and a PixelCNN decoder. The encoder and decoder follow
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a structure similar to the networks introduced in ResNets [13] and the Pix-

elCNN [31]. The authors of the VPN tried two versions. The first one used

convolutional layers with a pre-activation ReLu similar to the PixelCNN [31]

and is described in [14]. The second network introduces units called residual

multiplicative blocks (RMBs) that incorporate gates, similar to LSTMs, into

the convolutional layer. On the MNIST dataset, the RMBs performed about

the same as the ReLu networks, but the RMBs outperformed the ReLu net-

works on the real-world data the authors tested. Since the authors showed that

there is no significant difference in performance between the two models on

the MNIST data, I decided to use the ReLu model as it is a simpler model and

will limit the number of variables that could complicate its implementation.

The authors of the VPN did not go into great detail describing the archi-

tecture of their network and its implementation. Many details were missing

in the paper, and I had to look to previous works by the authors to fill in the

gaps. Therefore, when I go over the implementation of the VPN network, I

will be describing my implementation of the VPN described in the paper [21].

Background: PixelCNN

The VPN is heavily inspired by the PixelCNN described in the original paper

by van den Oord et al . [31]. The PixelCNN is used to generate images on a

pixel by pixel level. The network predicts the current pixel based on all the

previous pixels in the image, row by row. Therefore the probability of an n x

n image is:

p(x) =
n2∏
i=1

p(xi|x1, ..., xi−1) (3.10)

To achieve this, the authors masked the pixels in a convolutional layer so

the layer could only use as input the previous pixels. After the first layer,

the following layers also get the prediction of the current pixel xi from the

previous layers as input. This led to two types of masks referred to as A-type

and B-type, which are defined as follows:
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A =

1 1 1
1 0 0
0 0 0

 (3.11)

B =

1 1 1
1 1 0
0 0 0

 . (3.12)

The A-type mask is only used in the first layer and limited the connections

to previous pixels. All the following layers use the B-type mask and are also

able to see the current pixel, xi. This allowed layers to pass their prediction

of the current pixel, xi, onto the next layers.

The decoder in the VPN is a PixelCNN. It used the output of the Con-

vLSTM layer, F<t, as context along with the current frame, Ft, to make a

prediction. The prediction of the next frame is then computed using:

p(x) =
T∏
t=0

n∏
i=0

n∏
j=0

p(xt,i,j|x<) (3.13)

where x< = x(t,<i,<j) ∪ x(<t,:,:) and combines data from both the current

frame, Ft, and all previous frames, F<t. Equation 3.13 is similar to equation

3.10, but it adds a time variable and uses previous frames as part of the pre-

diction. The current frame is only submitted into the network during training

and is used to help teach the network the spatial structure of the image. When

a VPN is tested, the current frame is not passed into the decoder, and instead,

a blank image filled with zeros is used. This way, the network will only be

able to use previous frames in its prediction for the current frame, Ft.

Structure of the Encoder and Decoder

The encoder and decoder networks I implement follow a similar architecture

to the PixelCNN [31], but the encoder does not implement any pixel masking.

The encoder started with a 7 x 7 convolutional layer with 256 channels. This

layer has no activation layer that follows, and the output is passed directly to

16 residual blocks with a kernel size of 3 x 3, as shown in [31] and Figure 3.4.

The residual blocks use a pre-activation ReLu inspired by the work of He et

25



Figure 3.4: Right: The structure of the VPN network. Left: The structure of
a Residual Block that was introduced in introduced in [13] and then modified
to follow the structure above in [31].

al . [14]. The output of the encoder is passed to a single ConvLSTM layer with

a kernel size of 7 x 7 and 256 hidden states.

The decoder starts with a 7 x 7 convolutional layer with 256 channels, and

like the encoder, this layer has no activation layer. This first convolutional

layer is masked with the A-type mask described above. This masking allows

the layer to take the output from the ConvLSTM as well as the current frame,

Ft, as input. Since the A-type mask is used, the current pixel, xi, is masked out

for Ft. This helps the decoder learn the correct structure, but does not allow

the network to pass the current pixel of Ft all the way through the network

to the output. Next, the output from the convolutional layer is passed to the

24 residual blocks with a kernel size of 3 x 3. Each 3 x 3 layer in the residual
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block is masked with a B-type mask, which was described in PixelCNN [31].

After the residual blocks, there are two convolutional layers with a kernel size

of 1 x 1 and a B-type mask where both layers have 768 channels. The final

layer outputs the resulting image.

Depth of the VPN

The ConvLSTM and spatio-temporal networks described in the previous sec-

tions use only a few layers to capture the motion. The limited depth of the

two networks requires the kernel sizes of the layers to be large enough that

the receptive field of the network can accurately capture the motion. One can

see this in the spatio-temporal network when it uses two 15 x 15 convolutional

layers. If the kernels in the network are too small, the networks will fail to

capture the larger motions.

Figure 3.5: The figure shows that a single 5 x 5 convolution layer has the same
receptive field as two stacked 3 x 3 convolution layers.

Instead of building a shallow network with a limited number of layers with

a large kernel size, the VPN network uses more layers with smaller kernel size

and a larger number of channels to help encode the complexities of the motion.

Although the kernel size for most of the layers is small, only 3 x 3, the encoder

has a respective large field due to the depth of the network. The 16 layers is

equivalent to a single layer with a 33 x 33 kernel.

Going deeper also allows a network to capture a richer structure. This

has been shown in work done by Eldan and Shamir [5]. They showed that

a 3-layer network could learn structures a 2-layer network is unable to learn.
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Also, using a deeper network has been shown to perform better in practice. If

one looks at the VGGNet [27] it has 16 layers with ∼ 140 million parameters.

While the ResNet [13] outperformed the VGGNet with 152 layers and only

using ∼ 2 million parameters.

3.3 Setup

All the networks described in this section are simulated in Tensorflow version

1.8. Most of the networks can run on a single NVIDIA GeForce GTX 1080

ti; however, the VPN [21] requires too many resources to train in a timely

manner, and therefore this network is trained on four NVIDIA P100 Pascal

GPUs with 16 GB of HBM2 memory from Compute Canada. Even with the

four P100 cards, the network takes multiple weeks to train.

3.4 Training the Networks

All three networks use RMSProp [37] for optimization and have a decaying

learning rate. The ConvLSTM network, the Spatio-Temporal network, and

the VPN are all started with a different learning rate of 10−3, 10−4, and 3·10−4

receptively.

3.4.1 Training the VPN: Frame Masking

As mentioned previously, the VPN uses the current frame, Ft, as part of the

input for the PixelCNN decoder during training. Part of the current frame,

Ft, is masked out, so the decoder does not see the entire image. This masking

allows the decoder to learn the structure of the image. By seeing what pixels

should come first, the decoder can predict what pixels should be in the current

position. If the network does not mask out the current pixel of Ft then the

network will learn how to pass the current pixel through the network.

One downside to this approach is that the network will put too much weight

on the input Ft even with the masking. To counter this effect, I weighted the

cost function at Ft. This required me to run the decoder twice during each

training step. Once with Ft passed as input and once without. Then I weighted
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the two-loss functions and added them together. I found that having a weight

of 0.2 worked well for the Ft loss.
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Chapter 4

Evaluation and Comparison of
the Three Networks

This chapter describes the results and analyzes my various implementations of

the three networks discussed in Chapter 3. These networks are ConvLSTM,

Statio-Temporal, and VPN. The chapter will begin by looking at what the

trained networks can achieve on the same test data used by the original au-

thors. In the next section, individual test samples will be analyzed. Finally,

the three networks will be tested and analyzed for different data sources.

4.1 Checking the Implementation of the Three

Architectures

The experiments started with the implementation of the ConvLSTM network

by Shi et al . [35]. This was found to be a good starting point as the Con-

vLSTM network is the easiest to implement, and it would help confirm if my

implementation of ConvLSTMs is correct. Validating the ConvLSTM imple-

mentation is vital because the other two networks use a ConvLSTM layer.

As seen in Table 4.1, my results for the ConvLSTM network are comparable

to the results published by Shi et al . [35]. One can safely assume that there

are no significant flaws in my implementation of the ConvLSTM. If the other

networks are unable to achieve similar results, then the possible errors occur

elsewhere in the network.

The second network implemented was the Spatio-Temporal network for-
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merly described by Patraucean et al . [32]. This network was initially imple-

mented using only information found in the paper; however, results were not

as expected. To double-check my implementation, the authors’ source code,

which they posted online, was reviewed. Although I referred to the source

code to confirm my implementation, the original paper did provide a clear

description of their network.

When comparing my implementation with the original paper and going

through the entire code base, no issues with my code were found. The authors

did use the Torch library instead of the Tensorflow deep learning library that I

used. However, even though the libraries are different, the same functions are

being used in both implementations. Also, both libraries are industry-proven

standards; it is unlikely that a function implemented in one of the libraries

has a bug.

During training, the same optimizer, rmsprop, was used in both imple-

mentations and with the same hyperparameters. Other hyperparameters and

optimizers, such as Adam [22], were used to test whether better results could

be achieved. All testing produced similar or worse results. No better results

were achieved. Therefore, the same optimizer and hyperparameters described

by the original authors [32] were used.

In the paper, the authors used a different cost function for training than the

other two networks. The authors also formatted their test results differently

using cross-entropy, which is the same cost function as the other networks. The

authors might have been unclear about their results, and the expected results

posted in Table 4.1 are not correct. Another possibility is that the authors’

testing methodology might have been different from the other networks or that

they might have used different test data. Either way, I was not able to achieve

similar results.

The third network implemented was the VPN, which was created by Kalch-

brenner et al . [21]. As stated in Chapter 3, the implementation in the original

paper was unclear at times; therefore, I cannot be entirely sure that my net-

work is the same as the network the authors used in their paper. The authors

did not post their source code, and only the original paper was used as a ref-
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erence. However, multiple variations were tested to eliminate possible errors.

These variations include changing the kernel size of the ConvLSTM, increasing

the depth of the network, using a 7 x 7 convolutional layer after the ConvLSTM

to better match the original PixelCNN [31] algorithm, connecting the output

of the ConvLSTM directly into the residual blocks of the decoder. Other minor

tweaks were tested, such as changing some of the hyperparameters. Nothing

seemed to make any drastic improvements.

The one variation that had the most significant effect on the performance

was increasing the kernel size in the ConvLSTM. Due to the number of filters

used by the ConvLSTM layer, increasing the kernel size caused the number

of trainable parameters to increase drastically. The authors did not mention

the kernel size of the ConvLSTM. However, they did mention a kernel size of

3 x 3 on other layers, and it was initially presumed they used a kernel size

of 3 x 3 for the ConvLSTM layer. However, to give the best chances for the

network to work well, I used a kernel size of 7 x 7 as it performed the best

in my testing. I was unable to increase the kernel size beyond 7 x 7 due to

memory limitations.

Even with the different tests and tweaks to the VPN network, results pub-

lished in the original paper were not achieved. The network did outperform

the other networks and is still one of the best performing networks for this

task. Most versions of the VPN tested were able to achieve an average train-

ing error between 220 and 280. Networks with a kernel size of 3 x 3 for the

ConvLSTM layer had a significantly higher error. Once the kernel size was

increased to 5 x 5, the network performed much better. The change to a 7 x

7 kernel had diminishing returns compared to the jump to 5 x 5 from 3 x 3.

Table 4.1: Comparison of Results
Network Expected Results 1st-Frame 10th-Frame

ConvLSTM 367.2 361.6 219.7 457.0
Spatio-Temporal 179.8 354.7 302.3 395.2

VPN 87.6 170.3 119.8 216.1

Table 4.1 shows the results of the three networks as published in the original

papers, labeled “Expected”, and the results obtained from my implementation.
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The error values are the average error over the ten predicted frames. The

last two columns correspond to the average error of the first and last frames,

respectively. All errors were calculated using cross-entropy using the same test

data provided by Srivastava et al . [36].

4.2 Training

Table 4.2: Number of Parameters in Networks
Network Number of Parameters

ConvLSTM 3.7 ∗ 106

Spatio-Temporal 1.0 ∗ 106

VPN 3.8 ∗ 107

Training of the ConvLSTM network was reasonably straightforward. The

paper was detailed enough to allow the re-implementation and training of the

model. Training took about two days on an NVIDIA GTX 1080 TI and the

trained model performed as expected.

The spatio-temporal network also took about two days to train on a 1080

ti. It was not difficult to achieve an error of 354.7 which is shown in Table

4.1. However, the model could not achieve anything better than the reported

354.7. Different optimizers, learning weights, parameter initializations, and

cost functions were used. All performed as well or worse than the reported

results. Better results were not achieved.

If the spatio-temporal network was trained only to predict one frame into

the future, then a significantly lower error could be achieved. During training,

an error of approximately 210 was achieved, which is considerably better than

the reported one frame prediction of 302.3 shown in Table 4.1. However,

once this network was asked to predict more frames, the performance was

significantly worse, and for ten frame predictions, the error was approximately

600. This approach was, therefore, scrapped as the purpose of the network

was to predict ten frames.

This large discrepancy between learning to predict one frame versus ten

frames could be caused by a limited number of parameters. The network might

33



be unable to maintain important information from previous frames. However,

if the network is only tasked with predicting one frame, then it may not need

to store as much information for the later frames. This would allow it to use

more parameters for the generation of the first frame. Increasing the size of the

layers could help; however, this would not be the original network described

by Patraucean et al . [32].

The VPN took multiple weeks to train on four NVIDIA P100 Pascal GPUs

with 16 GB of memory. With the VPN described in Chapter 3 it was not

difficult to achieve the results is shown in Table 4.1. However, it does take a

significant amount of training time to converge.

4.3 Over-fitting

To confirm the accuracy of the models, and the validity of the data, a second

test set with two moving MNIST [26] digits was created. The motion of the

digits was generated using the same algorithm as the training data. In order

to test the spacial reconstruction of the digits, the digits were pulled from the

test set of the MNIST database.

Table 4.3: Comparison of Test Set
Network Original Test Set Research Test Set

ConvLSTM 361.6 361.5
Spatio-Temporal 354.7 354.8

VPN 170.3 205.5

Table 4.3 shows the error of my research test set compared to the original

test set provided by Srivastava et al . [36]. As expected, the error between the

two test sets is comparable for the ConvLSTM and Spatio-Temporal networks.

However, the error for the VPN is significantly lower for the original test

set. Furthermore, the error of 170.3 is almost the same as the training error.

Therefore, this discrepancy in error is likely caused by the VPN over-fitting

the MNIST data.

This over-fitting is likely caused by the PixelCNN as it is designed to

generate new images. It has probably learned to generate MNIST digits from

34



the training set of the MNIST database. When it is given a new digit from the

MNIST test set, it will convert it to something that came from the MNIST

training set. This would explain why the resulting testing error is higher than

the training error of approximately 170. If the PixelCNN is the issue, then

improving the performance of the PixelCNN will likely increase the over-fitting.

During training, the VPN struggled to achieve an error lower than 200.

It was only once an error lower than 200 was achieved that the discrepancies

between the two test sets appeared. Likely, if an error lower than 200 is

achieved, then the model will be over-fitting the MNIST data. Therefore, it

will not improve and might even start to perform worse on the test MNIST

data.

As stated above, the kernel size of the ConvLSTM layer in the VPN was

limited to 7 x 7. If a network with a larger kernel size is trained, then the model

might perform better. It could also increase the over-fitting. It is important

to test thoroughly. A validation set used while training would help to identify

and limit any over-fitting.

This case of over-fitting shows a potential flaw in the original test data.

Others who use the original test data should be aware and test their models

on other test sets pulled from the test set in the MNIST database.

4.4 Comparing the Three Networks

This section describes a more in-depth comparison of the three networks. It

can be challenging to see exactly how well the networks perform and where they

fall apart if only the average error is considered. Unfortunately, papers often

publish the average error in the results. By implementing all three networks,

I was able to run more detailed tests and gain further insight into how they

perform.

Because the VPN has discrepancies between the two test sets, as shown

in Section 4.3, both test sets will be used where possible. If the test set is

not specified, it came from my research test set and not the one provided by

Srivastava et al . [36].
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4.4.1 Distribution of the Networks Error

Figure 4.1: Box plot showing the average error after all ten frames. This is the
same test data that all three papers used for their testing, the MNIST data
with 2 digits.

I began by looking at the distribution of the error for each network. Box

plots were used to compare the distributions of all three networks, as shown

in Figure 4.1. Each sample in the distributions is still the average error over

all ten frames.

The ConvLSTM and the spatio-temporal networks perform about the same,

but the ConvLSTM has a slightly larger variance. Figure 4.1 shows that the

ConvLSTM minimum is marginally lower than the spatio-temporal network.

This suggests that there are some test samples where the ConvLSTM net-

work will slightly outperform the spatio-temporal network. However, since

the Spatio-Temporal network has a slightly lower average, the spatio-temporal

network outperforms the ConvLSTM on average over the ten frames.

The VPN has a significantly lower error on average than both of the other
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two networks. When comparing the models with the original test set, the

VPN also has the smallest variance. A smaller variance implies a more con-

sistent performance. When using my test set, the VPN still performs better

on average; however, the distribution has a positive skew. This implies that

the majority of the test samples will have a low error, but there are going to

be test samples that show drastically worse performance. This can be seen in

Figure 4.1 when looking at the two test sets for the VPN. My research test set

has a significantly higher maximum and larger outliers.

Figure 4.2: The same data as in figure 4.1, but only showing the error of the
first frame instead of the average of all ten frames.

Next, I looked at the error of the first frame instead of averaging the error

of all ten frames. When looking at only one frame, the errors of the other nine

frames were dropped from the results. These results, as shown in Figure 4.2,

reveal some interesting insight into the behavior of the three networks. The

ConvLSTM now significantly outperforms the Spatio-Temporal network. The

ConvLSTM would be the better choice if only predicting one frame into the
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Figure 4.3: The same data as in figure 4.1, but only showing the error of the
tenth frame instead of the average of all ten frames.

future as needed. This also implies that the ConvLSTM network was likely

better at generating new frames, but was unable to maintain the required

information over time. Therefore, the error was likely caused by the structure

of the digits degrading over time.

Figure 4.3 shows a large increase in error of the last frame as compared

to the first frame, as seen in Figure 4.2. This supports the idea that the

ConvLSTM network was likely better at generating new frames, but could not

maintain needed information over time. It still does not tell us exactly why the

network performs worse in later frames. Section 4.4.2 will look at individual

test samples to gain further insight.

When only predicting one frame, the VPN still outperforms the other two

networks, as shown in Figure 4.2. Like the other two networks, the error of the

VPN increases over time, as shown in Figure 4.3. This suggests that the VPN

still struggles to maintain the needed information over time and the structure
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of the digits degrades over time.

There was a surprising result when I looked only at the error of the first

frame, as shown in Figure 4.2. The error distribution of the first frame in my

research test set does not show the same positive skew, as shown in Figure 4.1

where all ten frames were used. However, the last frame of the VPN, as shown

in Figure 4.3, shows an increase in error and a positive skew. This suggests

that the over-fitting in my research test set is occurring in the later frames.

Because the only difference between the original test set and my test set is

that my test set pulls the digits from the MNIST test set instead of the training

set, the increase in error likely comes from the digits themselves. Also, since

the error is similar after only one frame, then the error likely comes from the

network being unable to maintain the spacial structure of the digits. Due to

the generative nature of the VPN, it is likely the digits are being converted

into digits that resemble digits found in the MNIST training set. Section 4.4.2

will look at individual test samples to gain further insight. Section 4.5 shows

a specific test sample where the VPN converts a digit to resemble a digit from

the MNIST training set.

The final test was to check whether my research test samples have a corre-

lation of the error distribution in all three networks. For example, if I pick a

random test sample, do the networks find that test to have the same relative

error compared to all the other test samples? Does network A find a test sam-

ple easy (e.g., does it have one of the lowest relative errors?). And if network

A finds this test sample to be easy, then does network B also find it an easy

test sample? Or does network B find this test sample to be one of the more

difficult test samples relative to the entire test set?

To test the correlation, each test sample was given an index number and

was sorted based on the error. Next, a correlation test was run on the index

numbers. If the tests are in the same order, the correlation would be one.

If they are in the complete opposite order, then the correlation would be a

negative one. If they are in a random order, the correlation would be close to

zero.

The correlation coefficients from the Spearman’s test, shown in Table 4.4,
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Table 4.4: Results of the Spearman’s Correlation Test
Spearman’s Correlation

ConvLSTM and Spatio-Temporal 0.798
ConvLSTM and VPN 0.574

Spatio-Temporal and VPN 0.553

indicate a strong correlation between the ConvLSTM and Spatio-Temporal

networks. Then there is a moderate correlation between the VPN and the

other two networks. This means that in general, if one test sample performs

well on a network, then there is a high likelihood that it will perform well

on another network. Based on these findings, I hypothesize that there is a

good chance that some features in the test data cause problems for all these

networks.

4.4.2 A Look at Individual Test Samples

This section will examine five randomly selected test samples. Due to the

over-fitting in the VPN, the samples were taken from my research test data

set. The digits in my research data set are taken from the MNIST [26] test set.

The purpose was to see how well the networks handle specific test samples. Do

the digits in the image become unreadable, or do they maintain their spacial

structure? Does each network correctly move the digits, or does the digits’

motion deviate from the ground truth?

Unless otherwise specified, the following figures show an individual test

sample where: row one is the ground truth, row two is the ConvLSTM, row

three is the Spatio-Temporal network, row four is the VPN, row five is the

overlap of rows one and two, row six is the overlap of rows one and three,

and row seven is the overlap of rows one and four. The last three rows help

show the error between the ground truth and the three networks’ results. In

the last three rows, the white digit is the ground truth, and the red is the

results. Since the white digit of the ground truth covers most of the results, it

is difficult to tell when the structure has failed. However, it shows where the

digits’ motion deviates from the ground truth as another digit in red appears.
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Figure 4.4: Sample 608

Figure 4.5: Sample 3713
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Figure 4.6: Sample 4543

Figure 4.7: Sample 5214
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Figure 4.8: Sample 5721

Figures 4.4, 4.5, 4.6, 4.7, and 4.8, show that all three networks seem able to

track the motion of the digits. The last frame of Figure 4.5 shows this especially

well. Although the digits get blurred and the spacial structure is lost, the digits

end in the image’s relatively correct positions. This suggests that the networks

are not struggling to learn the digits’ motion but are struggling to maintain

the digits’ spacial structure.

If the networks are struggling to maintain the digits’ spacial structure, this

would explain why the VPN performs the best. The decoder of the VPN is a

PixelCNN, and its purpose is to generate images. Therefore it can generate a

new digit based on the previously encoded structural information. The VPN

network also has the most parameters, allowing it to encode more information

than the other networks.

In the test sample 3713 for the ConvLSTM, the second row in Figure 4.5,

the first frame shows that the ConvLSTM is able to generate a fairly accurate

prediction. However, as time goes on, the digits’ structure is lost, and the

digits end up being two blurry blobs. On the same test sample, the VPN,
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shown in the fourth row, can maintain the digits’ spacial structure through all

ten frames.

Even when there is no overlap, the ConvLSTM and Spatio-Temporal net-

works struggle to maintain the structure. Figure 4.7 shows even in the first

frame, the digits in the ConvLSTM and Spatio-Temporal networks have vis-

ible artifacts. By the fifth frame, most of the structural information is lost

even though the digits do not overlap.

The decoder of the VPN could still generate blurry digits. Figure 4.7 shows

that the tenth frame loses some of the structure, especially for the digit “1”.

Interestingly, the digits lose some of their spacial structure even when there

are no overlapping digits. So even without overlap, the VPN can still struggle

to maintain the structure of the digits.

4.4.3 Effects of Increasing the Number of Digits

This section looks at how increasing the number of digits affects the networks.

A simple line plot, as shown in Figure 4.9, is used to illustrate the changing

error. The average error of all ten frames is used in the plot.

As shown in Figure 4.9, the error rate increases almost linearly when the

number of digits is increased. Based on this line plot and my previous conclu-

sions, much of the error will likely come from a loss of structural information.

Therefore the digits are becoming blurred in the later frames. Figure 4.10

shows an example with four digits and confirms this conclusion. Revisiting

Section 4.4.2 it can be seen that the tracking of the two digits was maintained,

but the structure was lost.

Figure 4.10 shows that even with four digits, as compared to two digits, the

networks can maintain a somewhat correct motion. The motion of the digits

can be observed, particularly with the VPN on the last row. However, even

looking at the other two networks, there is some evidence of correct motion.

With the blurry digits and loss of spatial structure, digits’ motion can be

difficult to observe. For the spatio-temporal network on the third row, the

“1” digit moves across the image from left to right. This is clear when looking

at frames four to eight. The ConvLSTM network is even harder to see any
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Figure 4.9: This shows how each network is effected by the changing of the
number of digits in the images. All networks were still only trained once on
data with two digits.

movement as the structure is completely degraded. However, the “7” moves

down and then back up to the cluster of digits.

After looking at the sample, it appears that the networks are able to main-

tain the motion when increasing the number of digits. Just like when there

were only two digits, the networks are still going to lose the digits’ structure

over time. The VPN appears to be able to maintain the structure of the digits

for a longer time.

Although the structure is maintained longer with the VPN, artifacts begin

to appear. Looking at frames four and on, the “1” starts to turn into a “6”.

This seems to be caused when one of the “7” digits and the “1” overlap in the

third frame. During the overlap, a “6” appears. To a human observer, it is

clear that these are just two overlapping digits. The VPN did not make this

distinction.
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Figure 4.10: A random sample from the test set with four digits. The top row
is the ground truth, followed by the ConvLSTM, Spatio-Temporal network,
and finally the VPN.

4.5 Digits From a Different Dataset

Based on my previous findings, it appears that the biggest struggle for all

these networks is maintaining the spatial structure of the digits. To test the

network’s ability to handle unique digits, the networks are tested on digits

that are from a different dataset. Hopefully, this will not allow the networks

to fall back on structures similar to the ones seen in training. The VPN is

likely to struggle with this task as we already saw it struggle with the digits

pulled from the MNIST test set. However, how well do these networks handle

unique digits?

Figure 4.11 shows the error distribution of the MNIST and EMNIST test

sets. Each sample is the average for all ten frames. The test samples only

include one digit to isolate the network’s ability to handle a new digit with

a unique spacial structure. All networks perform worse on the new dataset,

as shown in Figure 4.11. This is to be expected as the networks are not

trained on this data. Both the ConvLSTM and Spatio-Temporal networks

perform about the same on both the EMNIST data. The VPN has the most

significant increase in error from the MNIST to the EMNIST dataset. There

is also a substantial increase in the variance and a positive skew for the VPN.

This implies that some test samples will give significantly worse results when

running on the VPN. This is clear when looking at the maximum and outliers
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Figure 4.11: A box plot showing the difference in error between MNIST and
EMNIST datasets.

of the VPN in Figure 4.11.

Figure 4.12: A sample showing how the spacial structure will degrade over
time.

Figure 4.12 shows an individual test sample and gives a better insight into

what is happening with the VPN network. The random test sample shows

the VPN struggling to maintain the spacial structure of this new digit. In the

last frames, the digit starts to become blurred as well as the VPN starts to

add another edge, creating loops, to the right of the digit. It appears that the

VPN tries to turn this digit into a “8” as to closer resemble something from
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the MNIST training set.

This is one possible downside to the VPN and using a generative network

like the PixelCNN as a decoder. The PixelCNN will learn to generate new

images based on images it has previously seen during training. Therefore, if

the PixelCNN is given a unique image, it will most likely generate an image

closer to something it has already seen. This is expected, as this is what it

is trained to do. Now, as seen in Figure 4.8, this can help generate cleaner

images. But the generative process can also correct what it perceives to be an

error when it is not an error and is instead a correct part of the image.
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Chapter 5

Conclusion

5.1 Overview and Research Results

In the fields of computer vision and AI, many datasets contain motion. To

improve our current systems, it is advantageous to have a strong understand-

ing of our tools’ strengths and weaknesses, such as LSTMs, ConvLSTMs, and

PixelCNNs. This thesis evaluated ConvLSTM for frame prediction to help

better understand motion in neural networks. Three different neural networks

were implemented and trained. The three networks included, the original Con-

vLSTM paper by Shi et al . [35], the Spatio-Temporal network by Patraucean

et al . [32], and the VPN by Kalchbrenner et al . [21].

Implementing and training the three networks allowed thorough testing

and comparison of the accuracy and performance of the networks. This thesis

started by testing these networks on the original data provided by Srivas-

tava et al . [36]. This allowed me to compare my research results with those

of the original authors. The original ConvLSTM was reasonably easy to re-

implement and train, and it performed as expected. The Spatio-Temporal

network and VPN were unable to achieve the desired results, but still showed

improvements over the ConvLSTM. The VPN outperformed both the ConvL-

STM and spatio-temporal networks and performed better than the reported

results by Patraucean et al . [32].

This thesis tested the networks on alternative data. This alternative data

was similar to the original data provided by Srivastava et al . [36], but varied

in ways to stress different aspects of the networks. The original data contained
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two MNIST [26] digits moving around in an image. The digits were pulled out

from the MNIST training set.

The first alternative dataset proposed in this thesis was almost identical

to the original data; however, the digits were pulled out from the MNIST

testing set. The purpose of this data was to detect whether any networks were

over-fitting the data. A significant flaw in the original experiment proposed

by Srivastava et al . [36] was that the training and testing both used data from

the MNIST training set. The networks can over-fit the data, and this can go

undetected if the networks are tested on the same data as they were trained

on. After testing on my research data, the ConvLSTM and spatio-temporal

networks showed no signs of over-fitting. The VPN did show that it over-fit

the data. The PixelCNN decoder most likely caused this.

Using my proposed research data, individual samples were analysed. The

networks appeared to maintain accurate motion for the digits. However, all

networks struggled to preserve the spatial structure of the digits. In the last

frames, the digits became blurry blobs. The VPN was able to keep the spatial

structure longer but still started to struggle in later frames.

The second alternative dataset proposed used digits from the MNIST test-

ing set and varied the number of digits in the image. My research testing

started with one digit and incrementally increased the number of digits un-

til four digits. When the number of digits increased, the networks were able

to track the motion of the digits. However, the networks struggled to main-

tain the spatial structure of the digits in later frames. This showed that the

networks were not limited to only tracking two digits.

The final alternative dataset proposed used digits from the EMNIST [2]

dataset. This test was designed to test the networks’ reliance on the spacial

structure of the digits. All networks performed worse on this data, suggesting

they relied heavily on the shape of the digits. My case study on the VPN

showed the VPN slowly turned the digit in the EMNIST dataset into something

closer to a digit in the MNIST dataset. This highlights that these networks

cannot be used on different data without retraining.
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5.2 Implementation Challenges

The ConvLSTM and Spatio-Temporal papers were written and straightforward

to implement. The VPN paper lacked essential details. For re-implementation

and further testing, the authors must include a detailed description of every

layer and its parameters. Also, the hyperparameters are important for training

and need to be included. The VPN was vague on some of the layers and their

kernel sizes. This made it difficult to re-implement.

The VPN drastically increased the number of parameters in the network.

This seems to be a growing trend in machine learning. Instead of creating

more efficient networks, researchers are only focused on reducing the error.

This can make it difficult for researchers without access to super-computers to

compete in the field. Increasing the number of parameters makes it difficult to

know if the approach was better, or if the network performed better because

it contained more parameters.

5.3 Future Work

In the thesis, the VPN was shown to over-fit the data. Other networks and

future work should be cautious with over-fitting. To combat over-fitting, the

networks should be tested on data that is taken from the MNIST test set.

Also, a validation set should be used during training. This will help detect

early over-fitting.

Current methods are still not perfect at predicting future frames on the

simple MNIST data. There is still room for improvement using the MNIST

data. Researchers should probably focus on the ConvLSTM as the networks

struggle to maintain structural information into the later frames. It might

be beneficial to test alternatives to LSTMs and recurrent networks. Once

better solutions to this problem are discovered, more real-world test data will

be needed. Like our current data, this new data should be shared and used

between the varying implementations.

The current test data does not implement any form of changing velocity.
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This was outside the scope of this research as it would require the networks

to be trained on different data. However, acceleration is important as most

real-world motion does not have a constant velocity.
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