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Abstract

The reinforcement learning framework provides a simple way to study compu-

tational intelligence as the interaction between an agent and an environment.

The goal of an agent is to accrue as much reward as possible by intelligently

choosing actions given states. This problem of finding a policy that maximizes

the expected total reward is called the control problem. Many algorithms that

solve the control problem also solve a related problem called the prediction

problem. The goal in prediction is to accurately estimate the expected total

reward from different states while following a given policy.

Both the prediction and control problems can be formulated as optimiza-

tion problems with different objectives. In this thesis, we present the first

attempt at interrelating the prediction and control objectives. Prediction has

often been studied independently in the past, but it is a subproblem sub-

servient to the primary control problem that we generally care about.

There is a need for interrelating the objectives particularly when the num-

ber of states is large and agents cannot learn about all states equally well.

Agents are forced to use function approximation, and we have to specify how

to allocate function approximation resources.

The Emphatic Temporal Difference algorithm is the first prediction algo-

rithm that allows a specification of a degree of caring about value function

accuracy at different states. This specification is done through an interest

function that changes the prediction objective. We now have a way to com-

municate to the agent how much we care about different states beyond how

ii



often they occur. However, interest is strictly a problem-related concept, defin-

ing the objective, in prediction. There were no clear insights about how to set

the interest.

We take this opportunity to use interest as a solution-related concept in

control and ground the choice of prediction objective in improving control

performance. As a running example, we use the episodic discounted control

problem where distal rewards are worth exponentially less, and interaction

terminates upon reaching a terminal state. In this problem setting, we study

the actor-critic class of solution methods that neatly separate the two problems

with the actor solving the control problem and the critic solving the prediction

subproblem. First, we discuss a recent controversy in discounting and the role

it should play in the learning updates of the actor. After concluding how we

should update the actor, we move on to the critic. We find the first suggestion

of an interest over states for the prediction problem by analyzing the updates

made by the actor and hence present a choice of prediction objective motivated

by a control objective. Experimental results confirm that control performance

is indeed improved when the critic uses the new prediction objective.
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Preface

No part of this thesis has been previously published.
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Meanings are not determined by situations, but we determine ourselves by the

meanings we give to situations.

– Alfred Adler
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Chapter 1

Introduction

This thesis presents ideas and contributions within the Reinforcement Learning

(RL) framework (Sutton and Barto, 2018). It is a simple framework for testing

computational intelligence, the computational part of the ability to achieve

goals in the world (McCarthy, 2007). The core of RL is the interaction between

an agent and an environment (the agent’s world) over time. In the Markov

Decision Process (or MDP) mathematical formulation of RL which we use

throughout this thesis, learning is associative. At each timestep, the agent

learns and acts with a state describing the agent’s current situation. The

environment produces a resultant scalar reward and the agent transitions to a

new state.

The goal of an RL agent is to find a way of behaving, i.e. a policy, that

accrues as much reward as possible. This maximization problem over policies

is commonly known as the control problem.

RL differs fundamentally from other forms of learning because feedback is

evaluative. Upon taking an action, the environment produces a scalar reward

that only suggests how good the action the agent just took was. The agent

is not instructed as to what the best action was. Moreover, the immediate

reward may provide little information about the long term goodness of the

action. So, the agent may need numerous samples of cumulative rewards to

learn a good policy for control. These characteristics of the reward signal make

it difficult and slow to learn from the reward signal alone.

We can now describe two types of feedback for agents to learn from when
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solving control problems, primary and secondary reinforcers. The rewards that

an agent gets while following a policy solely determine whether the policy is

good or bad. The reward signal provided by the environment can therefore be

called the primary reinforcer. As discussed before, learning with the primary

reinforcer alone can be difficult and slow. Secondary reinforcers that have a

history of association with the primary reinforcer can be used to aid in solving

the primary control problem.

Prediction is the general problem of learning secondary reinforcers. For

example, an agent can learn to predict whether a particular property holds

about a state some timesteps in the future. Such predictive knowledge can be

incorporated into the state to help in maximizing expected return. Prediction

can therefore be a useful subproblem for the primary control problem. Such

generality in the definition of prediction problems is highlighted in the line of

work on General Value Functions (Sutton et al., 2011). However, when we talk

about prediction in this thesis we refer to a particular secondary reinforcer, the

value function. The value of a state under some policy is simply the expected

total reward or expected return from that state when following the policy

at hand. We call the problem of estimating the value function for a given

policy the prediction problem. Note that this specific prediction problem can

be particularly useful for control. The general principle is that, by learning

a state-value function, the agent can change the policy to visit states with

higher value more.

The prediction and and control problems can both be formalized as opti-

mization problems with different objectives. By the term objective, we refer

to the function we optimize when solving an optimization problem. We are

generally interested only in how well the control problem is solved. So, we can

freely choose among prediction objectives the one that would best aid in solv-

ing the control problem. We would thus like a way to find such a prediction

objective with a given control objective. In this thesis, we aim to do exactly

this and we refer to this process alternatively as interrelating the prediction

and control objectives.

A setting in which this need to interrelate the objective arises is when the
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number of states is very large. If there are only a few states, the agent can

maintain a table and learn policies and values for each state independently.

However, if there are many states, agents are forced to approximate functions

and make tradeoffs between how well functions are approximated at different

states. So, there is a need to specify how to allocate function approximation

resources. If we have any information about how we should allocate function

approximation resources for the prediction problem from the control prob-

lem, we can communicate it to the prediction algorithm to improve control

performance. However, we did not have a mechanism to do so until recently.

The Emphatic Temporal Difference (ETD) learning algorithm (Mahmood

et al., 2015; Sutton et al., 2016) is the first prediction algorithm that allows

a user to specify how much we care about prediction error in different states.

Prior algorithms learned about states to the extent they were encountered.

ETD gives us flexibility through a user-defined interest function that maps

each state to a non-negative scalar. If a state has high interest, we care more

about reducing its prediction error and vice versa. Thus, changing the interest

changes the prediction objective. The fundamental difference between ETD

and other algorithms is that ETD calculates an emphasis every timestep that

accumulates the interest over time we have in accurately predicting the cur-

rent state’s value. This emphasis is then used to emphasize or de-emphasize

updates.

ETD was proposed as a stable prediction algorithm for the off-policy pre-

diction problem and it was later shown to also be convergent as well (Yu,

2015). Off-policy learning entails learning about the value function under a

target policy with data from a behaviour policy. However, we will be focusing

on the on-policy case of ETD as the control algorithm we study is on-policy.

In this thesis, we study a control algorithm that makes the separation and

relation between the prediction and control problems clear. Actor-critic al-

gorithms (Sutton, 1985) are a class of solution methods that solve both the

prediction and control problems. The actor maintains a policy, chooses ac-

tions, and attempts to solve the control problem. The critic maintains an

approximate value function, provides evaluative feedback to the actor, and
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attempts to solve the prediction problem. Additionally, actor-critic methods

use parameterized function approximators for both the actor and critic. We

can use an ETD critic instead of, say, the commonly used TD critic. A natu-

ral question then arises: “What interest and hence what prediction objective

should we use in an actor-critic setup?”

To answer this question, we first have to specify the control objective we

care about. We focus on the episodic discounted setting in this thesis. This

setting is commonly used in practice and it is perhaps the setting which we

understand the most. In this problem setting, agents begin interaction with

the environment at a start state and interaction ends when the agent reaches

a terminal state. Rewards are downweighted in an exponentially decaying

manner by a discount factor γ. The control objective in this setting is simple.

The agent’s goal is to find a policy that maximizes the start-state value and

the objective is therefore the start-state value.

We now discuss the actor and how the control problem is solved by an

actor-critic agent. We need to do this before we can seek for an interest

as the choice of prediction subproblem depends on the control problem. To

solve the control problem, the actor estimates and moves the parameters in

the direction of what is known as the policy gradient. The policy gradient

is simply the gradient of the parameters of the policy with respect to the

objective we would like to maximize, the expected cumulative reward.

With the episodic discounted setting in mind, recent work has shown that

the learning updates used by the actor in practice are missing an important

γt term where t is the timestep. We reiterate that this term arises out of the

policy gradient theorem which specifies how the parameters should be moved

in order to improve the policy. We also present a simple novel experiment to

show that the omission of the term can result in learning poor policies.

Having discussed the issue of how we should incorporate discounting in the

actor, we seek for and find an interest over states motivated by an analysis

into the learning updates of the actor. Thus, we provide the first suggestion

of a particular prediction objective for improving control performance. In the

resulting interest, we find that there is a similar decaying term to the γt term in
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actor updates, γ2t. Moreover, we interestingly find that the interest includes

the norm of a vector called the characteristic eligibility from the previous

timestep. The characteristic eligibility is the gradient of the log probability of

taking the action that was chosen by the actor with respect to the parameters

of the policy. There is a simple interpretation of this latter term as having

a high interest in states that we can get to more with small changes in the

policy parameters.

We present empirical results comparing the control performance of actor-

critics when the critics use various settings of the interest motivated by the

γt term in actor updates and the interest that we found from our seeking for

an interest. The goal of the experiments is to see whether there is a need for

an interest with both the decaying γ2t term and the characteristic eligibility

term. First, we present a set of simple experiments for showcasing that using

a decaying interest of γt or γ2t performs the best compared to other settings

of interest such as the one used by TD. Next, we present results on com-

monly used benchmark tasks of Mountain Car and Puddle World. Similarly,

we present results which show that incorporating the characteristic eligibility

term helps and a novel algorithm we introduce called Sliding Step MINCE-AC

achieves the best control performance across a wide range of settings for the

algorithm parameters.

To conclude this chapter, the main contributions of this thesis are that we:

• Show that the commonly used TD(λ) prediction algorithm can be viewed

as solving different prediction problems depending on the problem pa-

rameter γ and the solution parameter λ when the interest can depend

on time,

• Present novel empirical results showing that a γt term in actor updates

is necessary in actor updates when solving the episodic discounted start-

state formulation control problem,

• Seek for and find an interest over states given the updates of episodic

actor-critic and hence propose for the first time a way of interrelating

the prediction and control objectives,
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• Introduce new algorithms that are novel variations of episodic actor-critic

algorithms where the critics optimize for different prediction objectives

as a result of using an interest inspired by the novel interest we found,

and,

• Demonstrate empirically that using the novel algorithms results in im-

proved control performance.
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Chapter 2

Background on RL, Prediction,
and Control

The aim of this chapter is to present the RL framework and the Markov

Decision Process mathematical formulation that we use in the rest of this

thesis. We also discuss the prediction and control problems of RL along with

commonly used objectives for these problems. This discussion is important as

we later will be be seeking for a prediction objective given a control objective.

This seeking has become possible due to a recent algorithm called Emphatic

TD which is discussed in the following chapter. To understand Emphatic TD

and contrast it with algorithms that existed before, a good grasp of prior

prediction algorithms is needed and hence relevant prediction algorithms to

our discussions are also presented in this background chapter. I delay the

presentation of the algorithms for control and the actor-critic algorithm in

particular to later chapters where the actor and critic components and related

ideas will be introduced as and when necessary.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is an approach to artificial intelligence wherein

agents interact with an environment by perceiving states, taking actions, and

receiving resultant rewards and new states. States are generally some useful

representation of an agent’s current situation. At each discrete timestep t, an

agent takes an action, denoted At, at state St. As a result, the environment
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produces a new state St+1 and reward Rt+1. The reward serves as evalua-

tive feedback about how good the action taken was. In the commonly used

episodic setting we consider throughout this thesis, agents start in a start-

ing state S0 and keep interacting with the environment until a terminal state

ST is reached when interaction stops. This agent-environment interaction re-

sults in a trajectory or episode containing all the states, actions and rewards,

{S0, A0, R1, S1, ..., ST−1, AT−1, RT , ST}.
The typical mathematical formulation of an environment is known as a

Markov Decision Process, often abbreviated as MDP. An MDP can be concisely

expressed as a tuple 〈S,A, p, γ〉. S is the set of states and A is the set of

actions. P : S × A × S × R → [0, 1] is the transition model which specifies

the probability distribution over next states and rewards given a state and

action, p(r, s′|s, a)
.
= Pr(Rt+1 = r, St+1 = s′|St = s, At = a). Note that

.
= is

used to signify equality by definition throughout this thesis. Also, note that

the next state and reward distributions are functions of the current state and

action and independent of history. This property of the environment is often

called the Markov property. The transition model is unknown to the agent.

In model-free RL, which we focus on in this thesis, no attempt is explicitly

made to learn an approximate model. Finally, the discount factor γ ∈ [0, 1]

weights later rewards exponentially less. Thus, γ controls how much rewards

received earlier are worth as compared to rewards received later.

An agent selects actions according to its policy which specifies probability

distributions over actions conditioned on states:

π(a|s) .
= Pr(At = a|St = s).

One key random variable in the reinforcement learning problem setting is the

return, defined as follows:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + ... =

T−t−1∑
k=0

γkRt+k+1

The expected return from a state s following policy π is known as the value

of state s under policy π. Concisely, we represent the above statement and
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define the value function vπ at state s as:

vπ(s)
.
= Eπ[Gt|St = s] (2.1)

We can similarly define the action-value function, qπ as follows:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a] (2.2)

To distinguish between vπ and qπ, we sometimes explicitly refer to vπ as the

state-value function.

Finally, there is an important relation between qπ and vπ. vπ(s) is simply

the average of qπ(s, ·) weighted by the policy π(·|s):

vπ(s) =
∑
a

π(a|s)qπ(s, a) (2.3)

2.2 Control and the Episodic Discounted Con-

trol Objective

The primary problem of reinforcement learning is to find a policy that max-

imizes expected return. This is often known as the control problem. Note

that we have to specify which states we wish to maximize expected returns

from. The specific control problem we are interested in this thesis is the con-

trol problem in the episodic discounted setting. In an episodic problem, we

can compare policies simply by comparing their expected returns (or value by

(2.1)) from the start state. The episodic discounted start-state formulation

control problem can be expressed as the following optimization problem:

max
π

vγπ(s0) (2.4)

The superscript γ above is used to make it explicit that the value function

definition uses discounting. We may omit this, but it is good to note here

that whenever we discuss about value functions or returns further, we refer

to the definitions with discounting. The objective for the episodic discounted

control problem is the start-state value, vγπ(s0). This is because, by the term

objective, we mean the function which we try to optimize in an optimization

problem.
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2.3 Prediction

Apart from the primary control problem, another important problem in rein-

forcement learning is to estimate the value function for a given policy. This

problem is often referred to as the prediction or policy evaluation problem

and serves as a useful subproblem to the primary control problem of RL. Note

that when talking about prediction, we generally mean the problem of esti-

mating the state-value function, but, without loss of generality, we can define

prediction problems with the action-value in mind problem and algorithms

can be modified appropriately. Having said that, like in the control problem,

we again have to specify how much we care about value prediction error in

different states. We will introduce the commonly used prediction objective

in this chapter. This objective has a weighting on states such that the agent

cares about states to the extent they occur. Before explaining this objec-

tive however, we first need to introduce function approximation which follows

below.

2.4 Function Approximation

In general, the environment is much larger than the agent. Thus, for example,

the state space of the environment is usually very large. Tabular methods that

maintain a table of estimates for each state are generally not viable in such

scenarios due to memory constraints. Instead, we use function approximation

to get approximate value functions and approximate policies.

The general idea of function approximation is to assume that there is a

function f which we would like to approximate well. However, we only observe

some samples or get noisy estimates from f . We can define a parameterized

function approximator, f̂w or f̂(·,w), parameterized by weights w. The key

problem in function approximation is how to find a w, and hence f̂w, that well

approximates f .

This thesis focuses on the linear function approximation case of algorithms

where theoretical analysis and empirical evaluations are easier.
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In linear value function approximation, the function approximator we use

is defined by a single set of parameters or weights w and the approximation

to the value of state s under policy π is given as follows:

v̂(s,w)
.
= x(s)Tw (2.5)

where x(s) is the feature vector of state s, given by the environment, and both

w and x(s), for all s, are in Rd.

Similarly, we use linear function approximation for parameterizing policies

with SoftMax applied on the outputs to generate a probability distribution.

We use θ ∈ Rd×|A| generally to denote the parameters of the policy parame-

terization. Thus, the policy is defined as follows:

π(a|s,θ)
.
=

ex(s)T θ[a]∑
b

ex(s)T θ[b]
(2.6)

where the notation [·] is used to index the vector x(s)Tθ.

2.5 Mean Squared Value Error Prediction Ob-

jective

Having briefly described function approximation, we come back to define a

commonly used prediction objective. Given a policy π, the aim of an agent in

the prediction problem is to accurately estimate the values of different states,

i.e., estimate vπ with a function approximator v̂w. Let the probability dis-

tribution over states encountered while following policy π be µ, commonly

known as the on-policy state distribution. Then, one prediction problem can

be defined as follows:

min
w

∑
s

µ(s) [vπ(s)− v̂(s,w)]2 (2.7)

The objective above is called the Mean Squared Value Error or VE objective.

The term ‘mean’ and the bar in VE indicate that this objective is the average

approximation error in the state-values weighted by the distribution of states

as they are encountered while following policy π.

11



Note that the VE cannot be minimized directly as agents do not have access

to the value function. Agents generally minimize some surrogate learning

objective.

2.6 Solution Methods for Policy Evaluation

In this section we discuss different solution methods for the prediction problem.

First, we discuss Monte-Carlo methods, then one-step TD, and finally TD(λ).

2.6.1 Gradient Monte-Carlo for Policy Evaluation

Gradient Monte-Carlo for policy evaluation, like the other methods we study

in this thesis, is a stochastic gradient style method where parameters are up-

dated in the direction of the gradient. In this algorithm, we run policy π and

wait till the end of an episode. Then, at the end of the episode, we have a

sample return from each state visited in the episode. We can then move the

parameters in a direction that gets the estimated values of each state closer to

the sample returns. The full pseudocode for the algorithm with linear function

approximation is given in the box titled Algorithm 1.

Algorithm 1: Gradient Monte-Carlo for Policy Evaluation

Input: policy π
Input: a differentiable state-value function v̂(s,w)
Parameters: step-size αw > 0
Initialize value-function weights w ∈ Rd

foreach episode do
Generate trajectory {S0, A0, R1, S1, ..., ST−1, AT−1, RT , ST}
following π

foreach timestep t in episode do
w← w + αw[Gt − v̂(St,w)]x(St)

end foreach

end foreach

Here, we see for the first time the step-size parameter. It specifies to what

extent we move in the direction of the gradient. Or, in other words, the step-

size parameter modulates the step-size. Large step-sizes can result in large

fluctuations while small step-sizes can result in slow learning. Gradient Monte-
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Carlo uses sample returns which are unbiased estimates of the expected return.

So, with small step-sizes and enough samples, in the limit, the value estimates

will converge to v̂(s,w∗) where w∗ = minw VE. However, sample returns can

have high variance as they involve the sum of many random variables and thus

convergence to w∗ can be slow.

Now, it would be good to understand how an agent can minimize the VE

even without having access to the true value function. The gradient Monte-

Carlo algorithm in fact reduced another proxy error called the Mean Squared

Return Error. The RE is given by RE(w) = E[(Gt − v̂(St,w))2] = VE(w) +

E[(Gt − vπ(St))
2] (Sutton and Barto, 2018). Only the VE term depends on

the weight vector and so, if we minimize the RE, we minimize the VE and

the variance term that does not depend on the parameter vector w can be

ignored.

2.6.2 One Step Temporal Difference Learning

Temporal difference (TD) methods learn incrementally over time within an

episode without having to wait till the end of an episode to perform learning.

In doing so, TD methods move towards the online end of the online-offline

spectrum of solution methods. Namely, they rely on less waiting into the

future and make updates sooner than Monte-Carlo methods in which agents

must wait till the end of an episode to make learning updates.

A central property of temporal difference methods is the use bootstrapping.

They improve a value estimate using another value estimate. Particularly, they

rely on important relations between the value function at successive states, of-

ten known as the Bellman equations. Recall from (2.1) that the value function

vπ(s) is the expected return of state s under policy π. The derivation of the

Bellman equation for vπ follows below:

vπ(s)
.
= Eπ

[
T−t−1∑
k=0

γkRt+k+1

∣∣∣∣St = s

]

= Eπ

[
Rt+1 +

T−t−1∑
k=1

γkRt+k+1

∣∣∣∣St = s

]
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= Eπ

Rt+1 + γ

T−(t+1)−1∑
k=0

γkR(t+1)+k+1

∣∣∣∣St = s


= Eπ [Rt+1 + γGt+1 | St = s]

= Eπ [Rt+1 + γEπ[Eπ[Gt+1 | St+1] | St = s] | St = s] (∵ Law of iterated expectations)

= Eπ [Rt+1 + γvπ(St+1) | St = s] (∵ Markov assumption) (2.8)

Let v̂(·,w) be an approximation to vπ, then generally there will be some

Bellman error, i.e., |v̂(s,w)−E[Rt+1 + γv̂(St+1,wt)|St = s]| > 0 where wt are

the parameters of the value function approximator at time t. While following

π, we can consider minimizing the error [Eπ [Rt+1 + γv̂(St+1,wt)]− v̂(St,wt)]
2.

However, while following policy π, we only observe one possible next state St+1.

Since we will observe states St+1 according to the on-policy state distribution,

we can minimize with respect to the sample next state we observe. Thus, we

can minimize the following error: [Rt+1 + γv̂(St+1,wt)− v̂(St,wt)]
2. The term

inside the square is called the (one-step) TD error or temporal-difference error,

often denoted δ:

δt
.
= Rt+1 + γv̂(St+1,wt)− v̂(St,wt)

The gradient of the squared TD error with respect to w is 2δt[γ∇wv̂(St+1,wt)−
∇wv̂(St,wt)]. If we minimize the squared TD error presented above, we get a

resulting algorithm known as the naive residual gradient algorithm. For the

linear value function approximation case, the update equation is as follows

with the 2 folded into the step-size parameter:

wt+1 ← wt + αw[Rt+1 + γv̂(St+1,wt)− v̂(St,wt)][x(St)− γx(St+1)]

This algorithm is undesirable in a few ways. One of them is that the solution it

finds is one which performs temporal smoothing to ensure that the TD errors

at all timesteps is small by having gradients flowing forward and backward in

time. We are instead looking for accurate predictions. One-step semi-gradient

TD methods do something different:

wt+1 ← wt + αw[Rt+1 + γv̂(St+1,wt)− v̂(St,wt)]x(St)

As can be seen above, we ignore the gradient estimation of the next-state’s

value prediction in the update. We are not following the “full” gradient, and
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thus we refer to such an algorithm as a semi-gradient method. The one-step

term refers to the fact that we are looking one-step ahead for a better estimate

of vπ(s). Such a technique of moving an estimate towards a better estimate

after having seen more data is called bootstrapping. We sometimes refer to

Rt+1 + γv̂(St+1,wt) as the TD target or the one-step truncated return.

Like with Gradient Monte-Carlo, we do not have access to the true value

function. TD(0) minimizes a different error called the Mean Squared Projected

Bellman Error. We discussed the Bellman Error above. The project step

simply involves projecting the Bellman Error vector which will generally lie

outside of the representable space onto the lower dimensional space that is

spanned by the parameter vector.

Finally, while TD(0) has lower variance than Gradient Monte-Carlo for

prediction due to the inclusion of only one random variable in the target, it has

higher bias since the estimate of the value of the next state might be incorrect.

Given the advantages and disadvantages of TD(0) and Gradient Monte-Carlo

for prediction, we now discuss an algorithm that strides between the two in the

online-offline spectrum and allows for controlling this bias-variance tradeoff.

2.6.3 Temporal Difference Learning with Eligibility Traces

Instead of using the one-step truncated return, we can instead use an n-step

truncated return as the target. By waiting for n steps while accumulating

the rewards and then using our value function approximation, we can update

towards an n-step TD target. The learning update for the n-step TD algorithm

is given by:

wt+1 ← wt + αw[Gt:t+n −wT
t x(St)]

where Gt:t+n = Rt+1 + γRt+2 + ...+ γn−1Rt+n + wT
t x(St+n).

We can also move estimates towards any weighted average of n-step trun-

cated returns as long as the sum of the weightings is 1. Thus, we could for

example use 1
2
Gt:t+2 + 1

2
Gt:t+4 as a target.

TD(λ) uses a decaying weighting over truncated returns. This can be seen
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from the TD(λ) target which is called the λ-return:

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt

λ is known as the trace decay parameter. If we use λ = 0, we get the one step

TD(0) algorithm. If we use TD(1), we get the gradient Monte-Carlo algorithm.

Note that, to calculate the above λ-return for any λ > 0 we have to wait till

the end of an episode. Thus, we have an offline forward-view TD(λ) algorithm

where we have to look forward and wait till the end of the episode to perform

updates and learn.

Instead, it has been shown that with equivalence at the end of episodes,

we can use the concept of an eligibility trace to assign credit backward in time

and get the mechanistic online backward view TD(λ) algorithm:

et ← γλet−1 + xt, with e−1 = 0 (2.9)

wt+1 ← wt + αwδtet (2.10)
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Chapter 3

Interest, Emphasis and
Emphatic TD

Most algorithms weight states proportional to the extent they are visited. In

this thesis, we challenge this idea and aim to show that learning about states

according to a different weighting is more appropriate for prediction when

it serves as a subproblem for control. The Emphatic TD (ETD) algorithm

(Mahmood et al., 2015; Sutton et al., 2016) is the first prediction algorithm

that allows us to flexibly choose such a weighting over states. We make use of

this algorithm in this thesis and therefore we naturally need to describe ETD.

This chapter describes the algorithm and the important concepts of interest

and emphasis that arose as a result of the work. I also present an analysis that

suggests that TD(λ), a prior algorithm that does not have an explicit concept

of interest, can also be viewed as an algorithm solving different prediction

problems depending on the problem parameter γ (the discount factor) and

the solution parameter λ (the trace decay).

3.1 Emphatic TD

There has been a line of recent work into off-policy policy evaluation. The

goal in such a problem setting is to approximate the value function of a policy

with data generated from a different policy. The policy used to collect data

for training is called the behaviour policy, often denoted µ. The policy being

learned about is the target policy, often denoted π. Thus, the goal in such a

17



problem setting is to solve different prediction problems of the following form:

min
w

∑
s

d(s) [vπ(s)− v̂(s,w)]2

The difference in the above objective from on-policy policy evaluation ob-

jective is the distribution of states that weight the prediction errors. Instead of

dπ, we have some other distribution d. Methods differ in what weighting over

states they use in their learning objectives. Some use the behaviour policy

distribution dµ. Others correct for the state distribution difference and use dπ

in their objective.

Methods can be broadly characterized based on whether they only correct

for the difference in behaviour (use posterior corrections) or whether, in addi-

tion, they correct for the difference in state distributions (use prior corrections)

(Ghiassian et al., 2018).

Let us consider the difference in behaviour first. One assumption com-

monly made is the coverage assumption. We say that the behaviour policy

has coverage if π(a|s) > 0 =⇒ b(a|s) > 0. Even with coverage, we have

a mismatch between the probabilities of observing transitions when following

the behaviour policy versus when following the target policy. We would like to

make updates to our value function approximation so that it is as if the actions

were taken according to the target policy π. The common approach for such

posterior corrections is to use the importance sampling (IS) ratio. The IS ratio

is simply the relative probability of taking the action taken, At, in the state

observed, St, under the target and behaviour policies: ρt
.
= π(At|St)

µ(At|St)
. Off-policy

TD(0) applies such a posterior correction to get the following update:

wt+1 ← wt + αwρtδtx(St)

Some methods also use prior corrections by correcting for the difference be-

tween the state distribution under µ and π. One way to correct for the state

distribution weighting and effectively solve for the objective using dπ as the dis-

tribution d is to use the product of importance sampling ratios from timestep

0. Thus, we can modify off-policy TD(0) to get the following Alternative-life
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TD(0) algorithm:

wt+1 ← wt + αwρt

(
t−1∏
k=0

ρk

)
δtx(St)

The Alternative-life TD(0) algorithm can have unacceptably large variance

since the product of importance sampling ratios can be very large.

Emphatic TD (ETD) performs a different prior correction and as a result

has been shown to be stable and convergent with probability 1 (Sutton et al.,

2016; Yu, 2015). At each timestep, it is assumed that an excursion away

from the behaviour policy is taken. Then, instead of using the product of

importance sampling ratios from the beginning of time, ETD uses the product

of importance sampling ratios since the beginning of the excursion and tamps

down the variance by the discount factor which can be treated as representing

a probability of termination.

For the simplest case of one-step updates, ETD(0) can be described using

the following two updates:

Ft ← γρt−1Ft−1 + 1, with F0
.
= 1 (3.1)

wt+1 ← wt + αwδtFtx(St) (3.2)

Ft is a scalar known the followon trace which calculates the discounted state

visitation under the target policy while doing excursions away from the be-

haviour policy. With the above updates, we can see that ETD uses a different

weighting d over states. Namely, the followon weighting which is given by:

f(s) = dµ(s) + γ
∑
s̄,ā

dµ(s̄)π(ā|s̄)p(s|s̄, ā) + ...

The followon captures bootstrapping relationships. Thus, ETD makes bigger

updates to a state if many previous states care about its value due to their

value estimates relying on its estimate.

Now, let us briefly get back to the mean squared value error objective.

The distribution under the behaviour policy alone is limiting. We are bound

to care about states based on how often they are visited. However, we may

care about the value error in states in a different way and define a more flexible
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objective with a different optimization problem. Let interest i be a mapping

from states to positive scalars so that i : S → [0,∞). Interest is then defined

to be the i(s) weighting on states we have in the following objective:

min
w

∑
s

dµ(s)i(s) [vπ(s)− v̂(s,w)]2 (3.3)

We now present the more general algorithm, ETD(λ) that attempts to min-

imize the above objective and allows for state-dependent discounting, boot-

strapping and user-specified interest. The ETD(λ) algorithm can be fully

specified with the following updates:

wt+1 ← wt + αwδtet (3.4)

et ← ρt(γtλtet−1 +Mtx(St)), with e−1
.
= 0 (3.5)

Ft ← ρt−1γtFt−1 + i(St), with F−1
.
= 0 (3.6)

Mt ← λti(St) + (1− λt)Ft (3.7)

Above, γt and λt are generalizations of the discount factor and trace decay

parameters to be functions of state: γt
.
= γ(St) and λt

.
= λ(St).

Specific to ETD(λ), when comparing with TD(λ), are the non-negative

scalars, Ft and Mt. Ft is the followon trace that was discussed before. However,

it now accumulates interest over time (instead of 1 at every timestep) while

following an excursion away from the behaviour policy and accounting for

termination while following the target policy. Mt is known as the emphasis

in the update at timestep t. The emphasis reflects the interest we have in a

state arising from the user-specified interest we have on the state as well as the

accumulated interest we have on the state due to bootstrapping relationships

which is calculated using the follow-on trace.

Thus, we have presented ETD, a simple single parameter set (weight vector)

algorithm for off-policy policy evaluation. The ideas of interest and emphasis

have also been introduced in this context.
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3.2 Interest Specified with Information from

the History

In this thesis, we will be comparing algorithms that use different specifications

of interest. These interest functions are generally of the form It = i(St) =

f(〈x(S0), A0,x(S1), ...,x(St−1), At−1,x(St)〉). In other words, interest is spec-

ified as a function of the history of feature vectors and actions till the current

timestep. In this section, we explain how interest functions using such informa-

tion from the experience stream are consistent with the definition of interest:

a function mapping from S to [0,∞) that serves as a weighting in the MSVE

prediction objectve.

In the episodic setting, we are interested in maximizing the start-state

value and can compare policies simply by looking at their start-state values.

Therefore, a commonplace interest is to have an interest on the start-state

alone. That is, an interest of 1 for the first timestep and interest of 0 for later

timesteps. There is an apparent violation even in this simple choice of interest.

Interest is a function of the timestep and no longer a function mapping from

S to [0,∞).

Consider any given finite-state MDP. We can always transform the MDP

so that the state now contains the timestep. In doing this transformation,

state remains Markovian as all we have done in the transformation is to add

additional information to a state that already contained all the information

necessary for prediction and control. More importantly though, we can now

define interest as a function of the timestep, and yet the interest remains a

function mapping the (modified) state-space to the non-negative reals and

serves as a weighting on the (modified) states in the prediction objective.

Therefore, interest is consistently defined.

However, there are some issues that need to be resolved. Notably, the trans-

formed MDP may have a countably infinite state-space due to the timestep

being included as part of the state. For example, an MDP may probabilis-

tically terminate, and hence the timestep may grow without bound. Prior

proofs of stability and convergence of ETD relied on the MDP having finite
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state and action spaces. Therefore, we acknowledge that further investigation

into the convergence of ETD is needed when we perform such a transformation

and, more generally, when the state-space is infinite. Finally, the interest on

the states of the original MDP requires investigation. In fact, an analysis into

what the interest is on the states of the original MDP may be particularly

useful to understand all of these issues.

We can also specify interest as a function of the history of feature vec-

tors and actions up till the current timestep. The question of consistency in

the definition of interest arises in this case as well. However, the arguments

remain the same. We can transform any given MDP to include the history

of previous feature vectors and actions. In other words, St is transformed to

〈St,x(S0), A0,x(S1), ...,x(St−1), At−1,x(St)〉. Again, the states remain Marko-

vian and interest remains a function from S to [0,∞) when specified with

information from the history. However, the theoretical concerns about the

state-space being countably infinite and the convergence of ETD remain, and

we leave to future work an investigation into these issues.

As a first example of where we use a specification of interest that relies

on the history, in the next section, we will show that TD(λ) and ETD(λ)

are equivalent with a particular setting of interest for ETD which relies on

information about the timestep. Later, we will consider algorithms that rely

on more than just the timestep and the previous feature vector and action in

particular.

3.3 Implicit Interest in TD(λ)

ETD(λ) and TD(λ) differ only in the use of the emphasis term Mt. We can

alternatively view on-policy TD(λ) as ETD with an emphasis of Mt = 1, ∀t
with constant trace decay parameter λt = λ, constant discount factor γt = γ,

and ρt = 1, ∀t.
A curious question that arises is then, what is the interest function that

results in an emphasis of 1 at all timesteps. We can solve for this with some

algebra based on the updates (3.4) - (3.7) for a few steps and then we observe
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a pattern.

For timestep 0, we have that M0
.
= (1 − λ)F0 + λI0. Since F−1 = 0,

F0
.
= γF−1 +I0 = γ ·0+I0 = I0. To obtain M0 = 1, we need (1−λ)I0 +λI0 = 1.

No matter the choice of λ, we thus have that I0 = 1. Also, the followon

F0 = I0 = 1.

Consider timestep 1, we have M1
.
= (1 − λ)F1 + λI1. Since F0 = 1, F1

.
=

γF0 + I1 = γ + I1. Again, to get M1 = 1, we need (1 − λ)(γ + I1) + λI1 = 1.

Simplifying, we get that 1−Z
ZλI1 = γ+ I1−λγ−Z

ZλI1 or I1 = 1− γ(1−λ). The

followon, F1, is thus γ + I1 = 1 + γλ.

Finally, consider timestep 2. If we apply the same steps, we get that

I2 = 1− γ(1− λ)− γ2λ(1− λ) and F2 = 1 + γλ+ γ2λ2.

Now, we can see a pattern in the interest and followon across timesteps. The

implicit interest on states used by TD(λ) is given by:

It = 1−
t∑

k=1

γkλk−1(1− λ)

The corresponding followon trace is given by:

Ft =
t∑

k=0

γkλk

We have thus shown for the first time that we can characterize the prediction

problems that TD(λ) solves for as prediction problems with different time-

dependent interest weightings. γ being part of the interest is of little issue as

it is a parameter of the problem. However, that the solution parameter λ is also

part of the interest perhaps raises further questions. The main point to keep

in mind however is that, by choosing λ, we are choosing to care about different

states differently. Note that TD does not use the follow-on weighting in the

error it minimizes while ETD does use the follow-on weighting. Nevertheless, it

is interesting to see what interest would result in TD and ETD being equivalent

algorithms.

For our purposes, the implicit interest we are concerned with only includes

the discount factor, γ. This is because we will be using one-step algorithms,
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TD(0) and ETD(0), in our experiments. Thus, we note an important conclu-

sion about the interest function used by TD(0):

It =

{
1 if t = 0

1− γ otherwise
(3.8)

As can be seen above, the time-dependent interest on the start state is 1 and

for later states is 1 - γ. The extreme cases are of particular importance. When

γ = 0, the interest is 1 in all states, while when γ = 1, the interest is only on

the start state.
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Chapter 4

Incorporating Discounting in
Actor Updates

In this thesis, we present how one might interrelate the prediction and control

problems by starting with a control objective and presenting an algorithm

that optimizes for this objective. Then, we seek for an interest based on the

learning updates of this algorithm. Thus, we need to present this control

algorithm before moving on to seek an interest and interrelate the prediction

and control problems. This chapter can be largely read separately from the

other chapters and is largely motivated by recent work talking about a subtle

point in policy gradient algorithms when using discounting. I first present

the policy gradient theorem for the discounted setting and the REINFORCE

policy gradient algorithm (Williams, 1992). Then, I reiterate claims from

recent work (Nota and Thomas, 2019) that there is a need for a γt factor

on updates. Finally, with a simple yet illustrative example, I conclude that

without the γt term, the actor updates can result in agents converging to poor

policies.

4.1 Policy Gradient Theorem for the Discounted

Setting

Suppose we have a parameterized policy π(s, a,θ). To solve the control prob-

lem, we would like an expression that tells us how to change the parameters of

the policy to maximize expected return from a given state. The policy gradi-
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ent theorem tells us exactly this. As an agent follows the direction suggested

by the policy gradient, the policy improves if small enough steps are taken.

The expected return from a state s under a policy π is simply the state-value

of state s, vπ(s). Thus, we would like an expression for ∇θvπ(s) with which

we can make updates to θ.

In particular, for the episodic discounted control objective J(θ) = vπ(s0),

the policy gradient theorem tells us that∇θJ(θ) =
∑
s

µ(s)
∑
a

∇θπ(a|s)qπ(s, a).

For the first step of deriving the theorem, recall that the state-value func-

tion can be expressed as the expected action-value (2.3). Using this fact, we

can continue expanding the expression by using the rules of differentiation and

the Bellman equations. This derivation follows (Sutton and Barto, 2018) but

crucially uses discounting with the terms related to γ shown in boxes with

the notation Pr(s→ x, k, π) denoting the probability of going from state s to

state x in k steps while following π.

∇θvπ(s) = ∇θ

[∑
a

π(a|s)qπ(s, a)

]
=
∑
a

[∇θπ(a|s)qπ(s, a) + π(a|s)∇θqπ(s, a)] (Sum & Product Rule of Differentiation)

=
∑
a

[
∇θπ(a|s)qπ(s, a) + π(a|s)∇θ

∑
s′,r

p(s′, r|s, a)[r + γ vπ(s′)]

]

=
∑
a

[∇θπ(a|s)qπ(s, a)] +
∑
a

[
π(a|s)∇θ

∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

]

Define g(s) =
∑
a

∇θπ(a|s)qπ(s, a). Then, we have:

∇θvπ(s) = g(s) +
∑
a

π(a|s)∇θ

∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)]

= g(s) +
∑
a

π(a|s)
∑
s′

p(s′|s, a)γ∇θvπ(s′)(Derivative of Constant Terms is 0)

= g(s) + γ
∑
a

∑
s′

π(a|s)p(s′|s, a)∇θvπ(s′)

= g(s) + γ
∑
s′

Pr(s→ s′, 1, π)∇θvπ(s′)
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Therefore, we now have that:

∇θvπ(s) = g(s) + γ
∑
s′

Pr(s→ s′, 1, π)∇θvπ(s′) (4.1)

We can “unroll” once more by using Equation (4.1) in ∇θvπ(s′) and then we

see a pattern:

∇θvπ(s) = g(s) + γ
∑
s′

Pr(s→ s′, 1, π)

[
g(s′) + γ

∑
a′

∑
s′′

π(a′|s′)p(s′′|s′, a′)∇θvπ(s′′)

]
= g(s) + γ

∑
s′

Pr(s→ s′, 1, π)g(s′) + γ2
∑
s′′

Pr(s→ s′′, 2, π)∇θvπ(s′′)

= γ0
∑
s

Pr(s→ s, 0, π)g(s) + γ1
∑
s′

Pr(s→ s′, 1, π)g(s′) + . . .

=
∑
x∈S

∞∑
k=0

γk Pr(s→ x, k, π)g(x)

=
∑
x∈S

∞∑
k=0

γk Pr(s→ x, k, π)
∑
a

∇θπ(a|x)qπ(x, a)

Assuming the episodic start state formulation objective, we are looking to

increase the start-state value. So, we use s0 in the above equation:

∇J(θ) = ∇θvπ(s0)

=
∑
s∈S

∞∑
k=0

γk Pr(s0 → s, k, π)
∑
a

∇θπ(a|s)qπ(s, a) (4.2)

To proceed, we need to define the on-policy state distribution in episodic

settings. First, we define η as the expected number of visits to a state in an

episode:

η(s) = h(s) + γ
∑
s̄

η(s̄)
∑
a

π(a|s̄)p(s|s̄, a), ∀s ∈ S (4.3)

Time is spent in a state s if an episode starts from it (which occurs with

probability h(s)) or if we enter state s from another state s̄. When we use

discounting, we treat it as a form of termination and use a factor of γ in the

second term.

The on-policy state distribution is then simply the fraction of time spent

in each state normalized to sum to one:

µ(s) =
η(s)∑

s′
η(s′)

, ∀s ∈ S (4.4)
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Now, let us go back to the objective. Since η(s) =
∞∑
k=0

γkPr(s0 → s, k, π), we

have that:

∇J(θ) = ∇θvπ(s0)

=
∑
s

η(s)
∑
a

∇θπ(a|s)qπ(s, a)

=
∑
s′

η(s′)
∑
s

η(s)∑
s′
η(s′)

∑
a

∇θπ(a|s)qπ(s, a)

=
∑
s′

η(s′)
∑
s

µ(s)
∑
a

∇θπ(a|s)qπ(s, a)

∝
∑
s

µ(s)
∑
a

∇θπ(a|s)qπ(s, a) (4.5)

The gradient of our objective being the final expression is the policy gradi-

ent theorem which we claimed and have now shown. There are a few subtleties.

The constant of proportionality above is the average length of an episode. Re-

call that when discounting is used, it is treated as a probability of termination

in defining η. Thus, the average length should change accordingly.

4.2 The REINFORCE Algorithm

Now, we have established the policy gradient theorem for the discounted set-

ting. We look at how we move on to a practical algorithm called REINFORCE

(Williams, 1992).

∇J(θ) ∝
∑
s

µ(s)
∑
a

∇θπ(a|s)qπ(s, a)

= Eπ

[∑
a

qπ(St, a)∇θπ(a|St,θ)

]

= Eπ

[∑
a

qπ(St, a)π(a|St,θ)
∇θπ(a|St,θ)

π(a|St,θ)

]

= Eπ
[
qπ(St, At)

∇θπ(At|St,θ)

π(At|St,θ)

]
= Eπ [Gt∇θ ln π(At|St,θ)]

Going from the penultimate step to the final expression is possible because we

can use a sample of qπ and still maintain the expectation (formally, this would
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be explained noting that Gt is an unbiased estimate of qπ meaning that they

have the same expectation).

Noting the final expression above, the following REINFORCE update is

often used:

θ ← θ + αθGt∇θ ln π(At|St,θ) (4.6)

However, this ignores the fact that γ is only used in the multiplicative

factor on rewards when defining the return. We do not actually terminate

episodes based on the discount factor. In other words, the agent observes

states according to the undiscounted state distribution. Thus, we can instead

use the definition of η without discounting but then we need to introduce a γt

factor:

θ ← θ + αθγ
tGt∇θ ln π(At|St,θ) (4.7)

We now have two different algorithms based on the two different actor

updates. Before we present empirical results showing how the two compare,

move on to discuss what the algorithm without the γt term is doing, how it

might be problematic and how we might interpret the γt term.

4.3 Empirical Demonstration for the Need of

a γt term in Actor Updates

Note that the difference between the updates reduces as γ → 1 because γt for

γ ≈ 1 is near equivalent to using a uniform weighting of 1 on the updates.

Thus, the biggest difference between the two updates is when γ = 0.

We now design an MDP to highlight the difference between the two algo-

rithms. A particular property we are looking for is that the meaning of actions

in the first few states is different from the meaning of the same actions many

states later.

To simplify MDP design, we use just 2 states and share the feature param-

eterization for both so that the states appear identical to the agent. Action

Right is good in the start state but is bad in the second state. On the other

hand, action Left is bad in the first state but good in the second. With γ = 0,
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the agent should be myopic and take action right. The full environment spec-

ification is given in Figure 4.1.

Now, we compare the two agents: one that does not use a γt term and the

REINFORCE algorithm that uses the theoretically suggested γt term.

The learning curve for actor step-size parameter 0.1 is given in Figure 4.2

with similar results across many different choices for the step-size parameter.

T

+100 -100

0.9
0.1

0.9
0.1

00

-1 +1
1.01.0

Figure 4.1: Environment illustrating need for γt term in actor updates. States
appear identical to the agent and hence the agent is forced to take the same
policy in both states. There are two actions, Left (lavender coloured tran-
sitions) and Right (red coloured transitions). Action Right is good in the
starting state while the action Left is good in second state. Since γ = 0, the
horizon is a single timestep and the optimal policy is to take right action.
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Figure 4.2: Learning curves comparing the algorithm that uses a γt term with
one that does not use it. Action step-size parameter: αθ = 0.1. We see that the
algorithm using a γt term converges to a good policy. However, the algorithm
that does not use the γt term converges to a poor policy.

We see that the agent with the γt term does better. It is easy to see why

this is the case. When γ = 0, no updates to the actor take place after the first

timestep when using a γt term as 00 = 1 but 0t = 0, ∀t > 0. However, the

algorithm without the γt term updates the actor on every timestep.

Since γ = 0, we only care about the immediate reward from the start

state. Thus, naturally, the algorithm with the γt term which only updates at

the first timestep converges towards to the best policy of always taking the

Right action. On the other hand, without the γt term, the agent updates on

all transitions and the multiple large positive rewards from taking action Left

in the second state reinforces taking action Left. This leads to convergence

towards a poor policy of always taking action Left since the states appear

identical to the agent.
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Chapter 5

Seeking Interest

Till now, we largely discussed algorithms for solving the prediction and con-

trol problems separately (ETD and REINFORCE respectively) and have only

briefly touched upon actor-critic algorithms. In this chapter, I introduce the

actor-critic algorithm as an extension to REINFORCE with a component

called the critic that solves the prediction problem. Then, I attempt to find a

prediction objective motivated by the learning updates of the actor in REIN-

FORCE. I first discuss how the addition of a critic affects control performance

in terms of bias and variance of the policy-gradient estimator. Then, the crux

of this thesis follows. I seek for and find the first suggestion of an interest

over states for the prediction subproblem given a control problem and hence

interrelate the prediction and control objectives.

5.1 Introducing Baselines

It is well known that without changing the expected update of the REIN-

FORCE algorithm, any state-dependent function called a baseline can be sub-

tracted from the sample return. We include the proof here for completeness.

First, consider the REINFORCE with a baseline update:

θt+1 ← θt + αθγ
t∇θ ln π(At|St,θt)[Gt − b(St)] (5.1)

The expected update for REINFORCE is:

Eπ[∇θ ln π(a|s,θ)qπ(s, a)]
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The expected update for REINFORCE with a baseline is instead:

Eπ[∇θ ln π(a|s,θ)[qπ(s, a)− b(s)]]

By linearity of expectations, we can rewrite the expected update of REIN-

FORCE with a baseline as two terms:

Eπ[∇θ ln π(a|s,θ)qπ(s, a)]− Eπ[∇θ ln π(a|s,θ)b(s)]

Let us define the random variables At = ∇θ ln π(At|St,θt)[Gt] and Bt =

∇θ ln π(At|St,θt)[Gt − b(St)]. Then, to show that introducing a baseline does

not introduce any bias, we simply need to show that E[At] = E[Bt]. From

looking at the two terms, we can conclude the use of a baseline will not add

any bias if the second term is 0. Using ∇θ ln π(a|s,θ) = ∇θπ(a|s,θ)
π(a|s,θ)

, the sum

rule of differentiation,
∑

a π(a|s,θ) = 1 and that d
dx
c = 0, we have:

Eπ[∇θ ln π(a|s,θ)b(s)] =
∑
s

dγπ(s)
∑
a

π(a|s,θ)∇θ ln π(a|s,θ)b(s)

=
∑
s

dγπ(s)
∑
a

XXXXXπ(a|s,θ)
∇θπ(a|s,θ)
XXXXXπ(a|s,θ)

b(s)

=
∑
s

dγπ(s)b(s)
∑
a

∇θπ(a|s,θ)

=
∑
s

dγπ(s)b(s)∇θ

∑
a

π(a|s,θ)

=
∑
s

dγπ(s)b(s)∇θ1

= 0

Thus, we have shown that introducing a baseline does not introduce any bias.

The addition of a baseline can however affect the variance of the gradient

estimator. So, the choice baseline b can affect E[Bt − Eπ[Bt]]
2. A common

choice for the baseline is the state-value function v̂(s,w):

θt+1 ← θt + αθγ
t∇θ ln π(At|St,θt)[Gt − v̂(St,wt)] (5.2)

v̂(s,w) can be learned with any prediction algorithm. However, the optimal

baseline is in fact not the state-value and is instead the following (Wu et al.,

2018):

b∗(St) =
E
[
∇θ ln πθ(At|St,θt)T∇θ ln πθ(At|St,θt)q̂(St, At,wt)

]
E[∇θ ln πθ(At|St,θt)T∇θ ln πθ(At|St,θt)]

(5.3)

33



We do not discuss variance reduction further, but the important takeaway

from this discussion about baselines is that learning a state-value and using it

as a baseline only does not introduce any bias.

5.2 Actor-Critic Methods

Note that, even with a baseline, we must wait until the end of the episode

before making updates as the sample returns Gt are available only then.

Instead of using Gt, we can use bootstrapping and perform updates much

sooner. Any target which in expectation is qπ(s, a) can be used. Equivalently,

we can use any estimate of the advantage which is defined as qπ(s, a)− vπ(s).

In this thesis, we focus on the one-step TD target and the one-step TD error

estimate of the advantage in our theoretical analysis and experiments. Using

the one-step TD target, we get the following actor update for (TD) actor-critic:

θt+1 ← θt + αγt∇θ ln π(At|St,θt)[Rt+1 + γv̂(St+1,wt)− v̂(St,wt)]︸ ︷︷ ︸
∆θAC

(5.4)

If we use an approximate value function as above (instead of just as a baseline),

we call the component maintaining the value function the critic. A common

choice of prediction algorithm for the critic is TD(0). The main question we

will go on to discuss is what prediction algorithm and objective we should use

for the critic.

5.3 Analysis of the Bias in Actor-Critic meth-

ods

By replacing the use of estimation for the value of state St+1, we get the

following unbiased update:

θt+1 ← θt + αγt∇θ ln π(At|St,θt)[Rt+1 + γvπ(St+1)− v̂(St,wt)]︸ ︷︷ ︸
∆θUnbiased

(5.5)

Let us consider the difference between ∆θUnbiased and ∆θAC. We call this error

vector ε and define it as follows:

εt
.
= αγt∇θ ln π(At|St,θt) [γvπ(St+1)− γv̂(St+1,wt)] (5.6)
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Therefore, we now have an error vector that expresses the bias introduced due

to our use function approximation and bootstrapping.

5.4 An Interest to Reduce Bias

If we use biased updates, we are not guaranteed to follow the policy gradient

and improve the policy. We can improve control performance by reducing the

bias of the gradient estimator. So, to get an algorithm that does a better

job of reducing the bias, we now think about how we might change the critic

parameters so that ε is reduced on average across all timesteps and all states.

The key insight now is that we can do so by using ETD for the critic and

choosing a particular interest function. To get a scalar interest, expand the

squared norm of the of the error vector. In particular, note that:

‖εt‖2
2 = ‖αγt∇θ ln π(At|St,θt)[γvπ(St+1)− γv̂(St+1,wt)]‖2

2

= ‖αγt+1∇θ ln π(At|St,θt)[vπ(St+1)− v̂(St+1,wt)]‖2
2

= α2γ2(t+1)[vπ(St+1)− v̂(St+1,wt)]
2‖∇θ ln π(At|St,θt)‖2

2

The penultimate step takes a common γ factor out. The last step above is

due to the absolute homogeneity property of norms which tells us that we can

move scalars out of the norm with an absolute sign on them (‖cv‖ = |c|‖v‖).
All the terms are squared, so they are non-negative and hence the absolute

value is redundant.

Now, let the squared norm of the vector εt be the scalar εt. Transitions into

state St+1 occur from may occur from different states taking different actions.

In general, the transition to St+1 may also occur at different timesteps. Letting

the random variable St+1 = s, if we accumulate all such errors, we can calculate

the total error in using approximation for the value of state s. Since we care

not only about the value function approximation error for the state s, but

across all states, we also have to sum over all states. A final expression for the

total bias introduced to the policy gradient estimator due to the use of function

approximation along all possible transitions and all states at all timesteps is
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given by:

∑
s

∑
s̄

∞∑
k=0

Pr(s0 → s̄, k, π)
∑
a

π(a|s̄)p(s|s̄, a)[γ2(k+1)‖∇θ ln π(a|s̄,θ)‖2
2(vπ(s)−v̂(s,w))2]

Now, recall the definitions of η and the on-policy distribution µ (Eqns. 4.3

and 4.4) and the manipulations made to get Eqn. 4.5. Note for example that

η(s̄) =
∞∑
k=0

Pr(s0 → s̄, k, π) when we assume the undiscounted state visitation

which is how states are observed in an episodic setting. The next summation

over actions of π and p together can be combined to get η(s). Then, by

multiplying and dividing by
∑
x

η(x), we complete the manipulations to see

that the above expression is an expectation with the on-policy distribution.

Moreover, recall that the interest weighted mean squared value error objective

is of the form
∑
s

µ(s)i(s)[vπ(s) − v̂(s,w)]2. Thus, we have that the above

expression is an interest weighted mean squared value error objective.

The interest is the term beside the on-policy distribution weighting and

the squared value error term. We can consider just the error from the one

transition we see online, and we thus have that the interest is:

i(St) = γ2t‖∇θ ln π(At−1|St−1,θ)‖2
2 (5.7)

Note that the interest is actually however the average of the above right

hand side expression across all timesteps and all transitions leading to the

state St. Also, note that the step-size that was present before is not included.

Suppose we have an interest function i(s) across a state space S. Any constant

multiplier can be factored out such that a different step-size would give the

same interest function. So, any interest function of the form i′(s) = i(s) ·m
for some constant m can be considered to be the same and we can ignore the

multiplier m. The other modification used to get the final interest is a simple

shift of timestep to express the interest we have on the state at time t + 1 to

the interest we have on the state observed at time t.

There are two terms within the interest above. One is an exponential decay

similar to the γt term in actor updates. The other term is the norm of the

characteristic eligibility at the previous timestep.
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Consider how we might interpret the interest as a whole, under averaging.

The interest is high on any state for which, on average, a small change in

the policy parameters leads to a large positive change in the probabilities of

taking actions that lead to this state. In other words, if a small change in the

policy parameters is sufficient to reach this state more, we should care about

it more. This is quite intuitive. The additional modulation by discounting

can be viewed as a message from the actor about the γt weighting used in its

updates.

In the next chapter, we will discuss many algorithms that are motivated

by the interest we found above.
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Chapter 6

Algorithms for the Critic

The goal of this thesis has been to attempt to interrelate the prediction and

control objectives of RL by finding an interest and hence a prediction objective

for a given control objective. We found an interest in the previous chapter

motivated by reducing bias in actor updates of episodic actor-critic. Now, we

want to show that using prediction algorithms that optimize for this novel

objective within the actor-critic setup leads to improved control performance.

Before we can do this however, we need to discuss the different algorithms we

will compare in the empirical study in the next chapter. These algorithms are

inspired from the interest we found and the γt term in actor updates. While

we refer to these algorithms by the interest or emphasis used in prediction,

the algorithms all use the actor-critic setup with an ETD(0) critic and differ

only in the setting of the interest.

6.1 Algorithms Motivated by Discounting-Dependent

Decay Terms

In the previous chapter, the interest we found (Eqn. 5.7) included a discounting-

dependent decay term of γ2t. Also, earlier we showed that an unbiased actor

update uses a γt term. Finally, TD uses an emphasis of 1 at all timesteps.

Therefore, the first set of algorithms we choose to compare are all combina-

tions of using 1, γt and γ2t as the interest and emphasis. This results in six

algorithms.

Before discussing the algorithms, we note that we use discount factor terms
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as is without incorporating time in the state. Future work can consider the

effects of doing this and try incorporating time into state and see how learning

is affected.

Now, we get back to discussing the six algorithms. A brief summary of

the algorithms with their interests and emphases are given in Table 6.1. Also,

plots of the emphasis for the different algorithm with different settings of γ

are shown in Figure 6.1.

Name It Mt max
t
Mt lim

t→∞
Mt

TD

{
1 t = 0

1− γ t > 0
1 - 1

Mt = γt

{
1 t = 0

0 t > 0
γt 0 0

Mt = γ2t

{
1 t = 0

γ2t − γ2t−1 t > 0
γ2t 0 0

It = 1 1 γt+1−1
γ−1

∞ 1
1−γ

It = γt γt (t+ 1)γt

{
−1−ln γ

ln γ
γ ≥ 1

e

0 γ < 1
e

0

It = γ2t γ2t γt γ
t+1−1
γ−1

{
− ln 2−ln γ

ln γ
γ ≥ 1

2

0 γ < 1
2

0

Table 6.1: Summary of algorithms motivated by discounting-dependent decay
terms with their interests and emphases.

In the first column of the table I have listed the name by which we refer to

the algorithm in the plots and discussions. Note again that the algorithms we

use in our experiments will be control algorithms using the actor-critic setup

with ETD(0) used in the critic. The only difference between the algorithms

we compare is the setting of the interest over states for prediction. The second

column contains the interest over states used by the algorithm. The third

column contains the resulting emphasis. The fourth and fifth columns list

some properties about the emphasis. For the algorithm named It = 1 there is

no particular timestep which has the maximum emphasis (as emphasis grows

forever) and it is hence omitted. Now, let us discuss the algorithms in more
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Figure 6.1: Visualization of the emphases in critic updates for algorithms
differing in how discounting is incorporated in the interest for two discount
factors, γ = 0.1 on the left and γ = 0.9 on the right.

detail by row in the table.

The first algorithm, TD, uses a uniform emphasis of 1 at all timesteps. As

we showed for TD, the interest is given by (3.8).

Using the second algorithm, Mt = γt results in the actor and critic having

the same emphasis of γt. Note that the interest is such that we are only

interested in accurately predicting the start-state’s value. As can be seen from

the plots as well, the emphasis decays to 0 asymptotically and the maximum

emphasis of 1 is at timestep 0.

Next, the third algorithm, Mt = γ2t uses γ2t term as the emphasis instead

of the interest. The properties of the emphasis used by the algorithm are very

similar to that of the algorithm using Mt = γt. However, the decay is simply

faster.

The fourth algorithm, It = 1, uses an interest of 1 at all timesteps instead

of an emphasis of 1 at all timesteps like TD. The resulting emphasis grows

forever but converges asymptotically to the effective horizon, 1
1−γ .

Next, we have It = γt which uses an interest of γt which is same as the term

used in actor updates. The resulting emphasis is such that, below a threshold

discount factor of 1
e
, the emphasis only decays. However, above this threshold,
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the emphasis grows for a while before it eventually decays toward 0. This can

be seen in the plots with the line labeled It = γt. The emphasis only decays

for the case where γ = 0.1 but rises and then falls for the case where γ = 0.9.

Finally, we have the algorithm that is closest to an algorithm motivated by

our analysis into what we should set the interest as. Using It = γ2t means that

we use one of the two terms of the interest from the previous chapter. This

algorithm behaves similarly to the algorithm using It = γt but the threshold

where transition occurs from only decaying emphasis to a rise and then fall is

1
2
.

6.2 Algorithms Motivated by the Character-

istic Eligibility Term

Now, we can discuss the more complex term of the interest we found. Stated

in full terms, the second term of the interest is the squared norm of the char-

acteristic eligibility at the previous timestep. Unlike depending on just the

timestep, the interest involving a characteristic eligibility means that the in-

terest depends on the previous state and action as well. Agents can choose

to incorporate information about prior states and actions when constructing

state. However, learning state is not the focus of this thesis. We do not do

such state construction and use the interests as is. For the characteristic eligi-

bility term, we consider two simple alternatives to incorporating information

about previous state and action into state resulting in two interest functions

and two corresponding algorithms.

The simpler of the two alternatives uses the norm of the characteristic

eligibility seen online. We call this interest Online Norm of the Characteristic

Eligibility (ONCE) and specifically call the actor-critic algorithm using this

interest in the critic, ONCE-AC. Depending on the trajectory, ONCE-AC may

assign different interests to a state based on what the previous state and action

were.

The more complex of the two alternatives maintains an additional set of

weights, η, and estimates the mean norm of the characteristic eligibility. We
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call this interest Mean Norm of the Characteristic Eligibility (MINCE) where

the ‘I’ is added for easier pronunciation. Similarly, we refer to the actor-critic

algorithm using ETD with MINCE as the interest as MINCE-AC. Note that

this algorithm uses an interest closest to the one we found as it approximates

the average of the two terms in the interest across timesteps and transitions

from different states under different actions leading to the state.

Table 6.2 contains information about these algorithms. Note that informa-

tion about the emphasis is omitted as there is no simple closed form expression

for the emphasis. Also, note that we always use the discounting-dependent de-

cay term γ2t in these algorithms. The γ2t term is motivated by the interest we

found but we can largely ignore it as we only focus on the γ = 1 case in experi-

ments when analyzing the algorithms. Moreover, considering all combinations

(such as those with a γt or 1 decay) would be computationally expensive and

may obfuscate from the central idea of this thesis that using the interest we

found in the previous chapter in the prediction objective can improve control

performance.

Name It

ONCE

{
1 t = 0

γ2t‖∇θ ln π(At−1|St−1,θ)‖2
2 t > 0

MINCE ηTt x(St)

Table 6.2: Summary of algorithms motivated by the characteristic eligibility
term with their interests.

Since MINCE-AC is more complex and involves an additional set of param-

eters, we provide the pseudocode for this algorithm in the box titled Algorithm

2: MINCE-AC.

42



Algorithm 2: MINCE-AC

Input: a differentiable state-value function v̂(s,w)
Input: a differentiable policy π̂(s, a,θ)
Input: a differentiable mean norm of the previous character
eligibility estimator mince(s, η)

Parameters: step-sizes αw, αθ, αη > 0

Initialize w ∈ Rd, θ ∈ Rd×|A|, η ∈ Rd

foreach episode do
F ← 0
I ← x(S0)Tη
foreach timestep t in episode do

F ← γF + I
δt ← Rt+1 + γx(St+1)Tw − x(St)

Tw
w← w + αwFδtx(St)
c← ∇θ ln π(At|St,θ)
θ ← θ + αθcδt
η ← η − αη∇η[γ

2t+1c− x(St+1)Tη]2

I ← x(St+1)Tη

end foreach

end foreach

The main takeaway from the pseudocode is that MINCE-AC uses mean

squared error loss to move an estimate of the average norm of the previous

characteristic eligibility towards the sample we see online.

6.3 Sliding-Step Algorithms

Finally, we note a small modification to certain algorithms that we try. Sliding-

step prediction algorithms were introduced as algorithms that bound the size

of updates (Tian, 2018) while maintaining convergence.

Consider ETD first. The updates of ETD can have large variance as a

result of the follow-on trace and important sampling ratios being too large.

Sliding-step ETD was introduced as an algorithm that bounds the size of

updates (Tian, 2018):

wt+1 ← wt +
1− exp(−αFtρtxTt xt)

xTt xt
δtxt (6.1)

For our experiments, we focus on the on-policy setting where ρt = 1. How-
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ever, Ft may be large and hence ETD may have large updates resulting in wild

fluctuations and divergence. With Sliding-step ETD, when the term inside the

exponent is large, the effective step-size is 1
xT
t xt

. So, very large Ft would only

move the estimates to the target in one-step. Thus, there will never be over-

shooting beyond the target and the updates are bounded to move the estimates

some small step towards the target.

Similarly, sliding-step TD was introduced as an algorithm that bounds the

size of updates of TD (Tian, 2018):

wt+1 ← wt +
1− exp(−αxTt xt)

xTt xt
δtxt (6.2)

Sliding-step algorithms generally perform well across a wide range of step-size

parameter. Moreover, one benefit of sliding-step TD shown was that sliding-

step TD learns faster than TD when the magnitude of the feature vectors

x(s)Tx(s) varied significantly.

At this point, we note that, for conciseness, we sometimes refer to sliding-

step TD as SSTD and sliding-step ETD with a MINCE interest weighting as

SSMINCE.
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Chapter 7

Experiments

The aim of this chapter is to empirically compare different variations of actor-

critic algorithms that differ only in their choice of prediction objective. In

particular, we will be comparing the control performance of different algo-

rithms that all use Emphatic TD for the critic but differ in their settings

of the interest function. The main takeaway from this chapter will be that,

indeed, using both the discounting-dependent decay and the characteristic eli-

gibility terms improve control performance and that the actor-critic algorithm

using a sliding-step ETD critic with the MINCE interest weighting over states

(which we refer to as SSMINCE) gives the best control performance across a

wide range of settings for the algorithm parameters.

7.1 Effect of the Choice of Prediction Objec-

tive when γ = 0

Consider the empirical experiment we conducted for studying the γt term in

actor updates, i.e., the environment in Figure 4.1. There, we used an actor only

algorithm, REINFORCE. We can rerun the experiment with an actor-critic

agent.

Let us hypothesize what value function estimate the critic might learn

when the emphasis is 1 at all timesteps (as in TD), or, equivalently, when the

interest is as defined in Eqn. 3.8. Recall that there are two states that appear

identical to the agent and that the first state is only visited once while the

second state can be visited multiple times. Since the agent spends more time
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in the second state, the value function estimate would move towards the true

value of the second state.

Consider another natural choice of emphasis for the critic updates. We can

use γt which arose as a term in actor updates. Equivalently, this is the case

for which we have interest only on the start state. Since γ = 0, updates to

the critic will only be done in the first state and the value function estimate

would move towards the true value of the first state.

Since γ is zero, the TD error is given by Rt+1− v̂(St,wt) instead of Rt+1 +

v̂(St+1,wt)− v̂(St,wt). This means that we only really use the value function

approximation as a baseline. Thus, the value function approximation does

not introduce any bias and we would expect the prediction subproblem to not

affect the policy learned by the actor.

Given the above hypothesis that we expect the value functions learned

to be different but the policy the same, we compare the algorithm using an

emphasis of 1 at all timesteps, i.e., the common choice of emphasis, with the

algorithm using γt emphasis.
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Figure 7.1: Illustration that, when γ = 0, the choice of critic objective affects
the value function while the policy is unaffected. We compare two actor-critic
agents differing only in their choice of critic interest in the ETD critic: 1 at all
timesteps (leading to Mt = 1 and equivalent to TD) vs. 1 only on the start-
state (when Mt = γt). The same policies are learned by both the algorithms
(Top diagram). However, the value functions learned are drastically different
(Bottom Diagram).

As can be seen above, we learn the same near-optimal policy with both

algorithms. However, the algorithm using an emphasis of 1 at all timesteps

in the critic updates learns a perhaps philosophically strange value estimate.

Even though the policy is consistently getting a return of 1 upon convergence,
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the value function estimate is negative and closer to the value of the second

state if γ were bigger than 0.

This experiment sheds light on an obvious but insightful conclusion. When

γ = 0, control performance is unaffected by the choice of prediction objective.

This is obvious because there is no need for secondary reinforcers when γ = 0,

the immediate reward suffices for learning. On the other hand however, this

means that the choice of prediction objective is likely more important when γ

is large. This is in some sense opposite to what we saw with the actor. The

bias introduced in actor updates by omitting the γt term reduces as γ → 1

and increases as γ → 0.

7.2 MDP Experiments

In this section, we compare the control performance of the actor-critic algo-

rithms on two simple MDPs in which all states appear the same. We will

be investigating which of the six variations of using 1, γt or γ2t each as the

interest or emphasis gives the best control performance. We leave considering

the characteristic eligibility term to the next section where we will consider

more complex environments.

First, we test the algorithms on simple environment similar to the one

presented in (Nota and Thomas, 2019). The discount factor is small but non-

zero γ = 0.1. As we showed in the previous section, using a discount factor

of exactly 0 will result in the choice of prediction objective not having any

influence on control performance. But, now, we expect the choice of prediction

objective to have some influence, but not as large an influence as when γ is

much higher. The MDP is given in Figure 7.2.
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Figure 7.2: MDP environment with a low discount factor for comparing the
control performance of agents that differ in how discounting is accounted for
in the prediction objective. All states appear the same. Two actions are
available to the agent, left (represented as lilac coloured transitions) and right
(represented as red coloured transitions). The optimal policy is to take the
right action. Under this policy, the start-state value is 1. Under the policy of
taking the left action, the start-state value is 0.

There are three states that all appear the same and two actions, Left and

Right. The optimal policy is to take action Right. There is a motivation for

the above environment in comparing different settings of interest. If too high

an interest is given to the second state, the agent may quickly learn that the

value of the single feature vector common to all states is close to -10 if the

critic step-size is large enough. Then, in the second state, the advantage of

taking action Left is much higher than the advantage of taking action Right

while the advantages of taking either action are the same in the first state.

Therefore, taking action Left is reinforced over time.

The results follow in Figure 7.3 with the parameter studies over different

actor step-size parameters for fixed critic step-size parameters.
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Figure 7.3: Parameter study in the MDP given in Figure 7.2. Each plot
presents a parameter study over different actor step-size parameters (αθ) for a
fixed critic step-size parameter (αw). Since the y co-ordinate represents average
return which denotes control performance, higher is better in the plots. The
error bars denote one standard error. The algorithms compared are actor-
critic algorithms that only differ in their of use 1, γt or γ2t each as interest or
emphasis in the critic.

To analyze the results, let us refer back to the emphasis visualization plot,

Figure 6.1. The emphasis of most algorithms decay very quickly when γ is

small. However, there are two exceptions. The algorithm using Mt = 1, ∀t
and the algorithm using It = 1. Note that the former in fact can be viewed as

an algorithm using an interest of 1 at the start-state and 1−γ = 1−0.1 = 0.9

at later states (see Eqn. 3.8). So, the two algorithms are very similar in

their choice of interest over states. These two algorithms that have a high

emphasis over time that does not decay quickly are exactly the ones that

perform poorly in some settings of the actor and critic step-size parameters.
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Specifically, when the the critic step-size is large, making large actor updates

causes learning to suffer. These findings align with the hypothesis we had

about what might occur when the critic step-size is large. The results thus

demonstrate that using an interest or emphasis of 1 uniformly results in poor

control performance sometimes and hence the resulting prediction objectives

may not be appropriate to solve with the aim of solving the control problem.

The results on the previous environment indicate that we only seem to

have an issue of magnitude due to the actor step-size parameter. However, as

we will now see, with a high discount factor, we see that the choice of interest

can have a much more drastic effect.

Consider another environment where the discount factor is high γ = 0.99.

This is a discount factor close to 1 which aligns with the discount factors

commonly used in practice. The MDP is specified in Figure 7.4. Again, all

the states look the same and there are two actions. Here, we call them Continue

and Terminate. The former continues along the chain, each time accruing the

agent some increasingly large negative reward while the latter transitions the

agent to the terminal state with an increasingly large positive reward. The

plot that follows the MDP diagram specifies the value of the start-state for

different policies given the probability of selecting the continue action.

The optimal policy is stochastic as the agent must continue and then ter-

minate to receive large positive rewards. Moreover, crucially, the discount

factor affects the optimal policy. Thus, this problem where the optimal policy

is stochastic and depends on the discount factor is a good test for actor-critic

agents and particularly, studying the choice of discounting-dependent decay

terms in interest and emphasis.
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Figure 7.4: MDP environment with a high discount factor for comparing the
control performance of agents that differ in how discounting is accounted for in
the prediction objective. All states appear the same. Two actions are available
to the agent, continue (represented as cyan coloured transitions) and terminate
(represented as teal coloured transitions). The optimal policy is stochastic.
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Figure 7.5: Visualization of the value under different policies for the MDP
given in Figure 7.4. Recall that all states appear the same, so there is only
one value. As we can see, the optimal policy is to take action Continue with
probability about 0.7. The state value under this policy is about 600.

Again, the results follow in Figure 7.6 with parameter studies on the actor

step-size parameter for fixed critic step-size parameters.
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Figure 7.6: Parameter study in the MDP given in Figure 7.4. Each plot
presents a parameter study over different actor step-size parameters (αθ) for a
fixed critic step-size parameter (αw). Since the y co-ordinate represents average
return which denotes control performance, higher is better in the plots. The
error bars denote one standard error. The algorithms compared are actor-
critic algorithms that only differ in their of use 1, γt or γ2t each as interest or
emphasis in the critic.

We can see that the actor-critic agents using an emphasis of 1, γt or γ2t

in critic updates do not perform well across all parameter settings. However,

using each of them as the interest leads to good control performance in some

settings of the actor and critic step-size parameters. Note that since γ ≈ 1,

the interests these algorithms use are all approximately the same. However,

we saw that using It = 1 results in poor performance when γ is low. Thus,

generally, we can conclude that we should use an interest of γt or, agreeing

with the interest we presented, γ2t.
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7.3 Mountain Car and Puddle World Experi-

ments

We now present experiments and results in common benchmark domains,

Mountain Car and Puddle World. The aim of these experiments is to study

whether there is any benefit to using the norm of the previous characteris-

tic eligibility term, ‖∇θ ln π(At−1|St−1,θ)‖2
2 in the interest over states for the

prediction subproblem.

Let us first discuss the environments. There are some characteristics shared

by both domains. The state-space is continuous. Hence, it is not possible to

learn about each state separately and agents likely need to use some form of

function approximation. The action-space is discrete. Finally, the discount

factor is 1. We now explain each of these domains in more detail.

Puddle World. The goal of an agent in the Puddle World domain is to

move from the starting state to a goal state while avoiding a puddle. The

puddle world domain has been used in different works with different formu-

lations (Degris et al., 2012; Sutton, 1996). We use the domain presented in

Off-Policy Actor Critic work with some small differences. The state-space

consists of the 2-dimensional continuous coordinates within [0, 1]2. The action

space consists of 4 actions that can be succinctly described as action vectors:

(−0.05, 0.00), (0.00,−0.05), (0.00, 0.05), (0.05, 0.00). Uniform noise in [-.025,

.025] is added to each component of the action vector. The reward function is

defined based on the position the agent is in after taking an action. Suppose

this position is (x, y), then the reward is defined as follows: −1−2(N(x, .3, .1) ·
N(y, .6, .03) + N(x, .4, .03) ·N(y, .5, .1) + N(x, .8, .03) ·N(y, .9, .1)) where N is

the probability density function of the normal distribution. An episode ends

when the distance to the goal in L1-norm is less than 0.1 or 1000 steps are

completed. The differences are therefore that the no-operation action (0, 0)

is not included in the action space and episodes terminate in 1000 steps as

opposed to 5000 steps.

Mountain Car. The goal of an agent in the Mountain Car domain is to

move along a valley and gain enough velocity to climb to the top of one side

55



of the valley. We use the MountainCar-v0 domain from the Open AI Gym

framework (Brockman et al., 2016) with a small modification. The state space

is a 2 dimensional continuous space consisting of the 1 dimensional position

(between -1.2 and 0.6) and the velocity of the agent (between -0.07 and 0.07).

There are three actions available to the agent, decelerate, no-operation and

accelerate. The reward function is -1 per step that the agent does not reach

the goal. Episodes by default terminate when the agent reaches the goal or

at 200 steps in the Open AI Gym environment, we change the termination

condition based on timesteps to 1000 steps.

Now, we discuss the algorithms we used in the experiments. We used tile

coding function approximation with 8 tilings resulting in binary vectors with

exactly 8 components being 1 and the rest being 0. Each tiling consisted of tiles

covering a fourth of the state space along each of the two components of the

2 dimensional state-space. The tilings are asymmetrically offset by successive

odd numbers. We considered four algorithms: TD, It = 1, ONCE-AC and

MINCE-AC. TD or Mt = 1 refers to the commonly used actor-critic algorithm

that uses TD(0) for the critic. It = 1 is equivalent to It = γ2t since γ = 1.

Therefore, It = 1 is the algorithm using one of the two terms in the interest we

found but not both. Recall that ONCE-AC uses the previous characteristic

eligibility seen online and MINCE-AC estimates the mean norm of the previous

characteristic eligibility given a state. We tried three different settings for the

step-size parameter used to learn the MINCE weighting: {10−1, 10−3, 10−5}.
For the critic step-size parameter, we sweeped over multiples of 1

8
. Using

a critic step-size of exactly 1
8

would result in one-step learning that moves

the estimate fully to the target. There is no similar simple way to set the

actor step-size parameter and therefore we performed a wide sweep over a

logarithmic scale. All the weight vectors were initialized to zero.

The results now follow in the same pattern. We have different plots for dif-

ferent critic step-size parameters and sweep over the actor step-size parameter.

Multiple plots are shown for MINCE-AC for different step-size parameters αη

that it uses for for updating η which estimates the mean norm of the previous

characteristic eligibility.
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Figure 7.7: Parameter study comparing episodic actor-critic algorithms dif-
fering in their choices of interest in the Puddle World Domain. Each plot
presents a parameter study over different actor step-size parameters (αθ) for
a fixed critic step-size parameter (αw). Since the y co-ordinate represents the
average return, higher is better in these plots. The error bars denote one
standard error. The actor-critic algorithm that has been commonly used in
practice, i.e. with a TD(0) critic, is denoted by the blue lines labeled TD. The
rest of the algorithms are novel algorithms we propose based on the interest
we found. The actor-critic only accounting for the discounting decay term is
denoted by the black lines labeled It = 1 since γ = 1. ONCE refers to the
algorithm using the online observed squared norm of the previous character-
istic eligibility as the interest. Finally, MINCE refers to the algorithm that
estimates the mean squared norm of the previous characteristic eligibility and
uses it as the interest.
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Figure 7.8: Parameter study comparing episodic actor-critic algorithms dif-
fering in their choices of interest in the Mountain Car Domain. Each plot
presents a parameter study over different actor step-size parameters (αθ) for
a fixed critic step-size parameter (αw). Since the y co-ordinate represents the
average return, higher is better in these plots. The error bars denote one
standard error. The actor-critic algorithm that has been commonly used in
practice, i.e. with a TD(0) critic, is denoted by the blue lines labeled TD. The
rest of the algorithms are novel algorithms we propose based on the interest
we found. The actor-critic only accounting for the discounting decay term is
denoted by the black lines labeled It = 1 since γ = 1. ONCE refers to the
algorithm using the online observed squared norm of the previous character-
istic eligibility as the interest. Finally, MINCE refers to the algorithm that
estimates the mean squared norm of the previous characteristic eligibility and
uses it as the interest.
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Figure 7.9: Parameter study in the Puddle World Domain with the addition of
the Sliding-Step Variants of the TD and ETD algorithms. Each plot presents
a parameter study over different actor step-size parameters (αθ) for a fixed
critic step-size parameter (αw). Since the y co-ordinate represents the average
return, higher is better in these plots. The error bars denote one standard
error. The actor-critic algorithm that has been commonly used in practice,
i.e. with a TD(0) critic, is denoted by the blue lines labeled TD. SSTD refers
to the sliding-step variant of TD(0). MINCE refers to the algorithm that
arose as a culmination of our search for a prediction objective given a control
objective. It estimates the mean squared norm of the previous characteristic
eligibility and uses it in the interest. SSMINCE refers to the algorithm using
sliding-step ETD with the MINCE interest weighting.

59



°1000

°750

°500

°250

0

Average
Return
(over 50 episodes
and 30 runs)

Æw = 1.25£ 10°2 Æw = 1.25£ 10°3

°1000

°750

°500

°250

0

Average
Return
(over 50 episodes
and 30 runs)

Æw = 1.25£ 10°4 Æw = 1.25£ 10°5

10°3 10°1

Actor Step-Size Parameter (Æµ)

°1000

°750

°500

°250

0

Average
Return
(over 50 episodes
and 30 runs)

Æw = 1.25£ 10°6

10°3 10°1

Actor Step-Size Parameter (Æµ)

Æw = 1.25£ 10°7

 

Ss
43 TD 43 Milos

SS D SS DAN AN
ss.sc i u TDa ggTD 4 10 ss.ioan

sina.io't c b naif't
Xq1O't

c ss.sc c C 3 SS C
3 NWO 3 XylO xylO5SS 10 SS 10AN c AN xf.io

5C Anto anito'tIss.io SS C cten gyTD xj IO ttxy.to t

TD STD TD
ten

C z 55 Ez C 3xy IO 4 10 Xy lO
SS Cs i y1o_xylO

bis
lb SS C 4g do 8,105
do xy I0t th SIMO 9 4tin

TD SSTD TDs.STDi

Figure 7.10: Parameter study in the Mountain Car World Domain with the
addition of the Sliding-Step Variants of the TD and ETD algorithms. Each
plot presents a parameter study over different actor step-size parameters (αθ)
for a fixed critic step-size parameter (αw). Since the y co-ordinate represents
the average return, higher is better in these plots. The error bars denote one
standard error. The actor-critic algorithm that has been commonly used in
practice, i.e. with a TD(0) critic, is denoted by the blue lines labeled TD. SSTD
refers to the sliding-step variant of TD(0). MINCE refers to the algorithm that
arose as a culmination of our search for a prediction objective given a control
objective. It estimates the mean squared norm of the previous characteristic
eligibility and uses it in the interest. SSMINCE refers to the algorithm using
sliding-step ETD with the MINCE interest weighting.
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As can be seen from the first two figures, MINCE-AC performed the best

across a wide range of actor step-size parameter settings when the critic-size

was small (albeit if αη is small). In the same small critic step-size regime,

ONCE and It = 1 also performed quite well with the episodic actor-critic

using TD performing the poorest. These results are promising with the caveat

that the the critic step-size should be small for the novel algorithms to perform

well. This is however expected as TD and ETD generally learn well in different

step-size regimes as the follow-on trace may have high variance.

A more stronger result would be better as the Episodic Actor-Critic using

a TD critic performed the best when the critic step-size parameter was large.

An ideal result would be that using the MINCE interest weighting results in

better control performance across a wide range of actor and critic step-size

parameters than the commonly used actor-critic which uses a TD critic. In a

final set of experiments, we run sliding-step TD and sliding-step ETD with the

MINCE interest weighting. We then get the desired result that using sliding-

step ETD with the prediction objective using the MINCE interest weighting

on states gives us the best control performance across a wide of parameter

settings.

While we have statements above about an algorithm being better than

another, we do note that we have to qualify our statements to only be about

the environments we used in our experiments. A stronger theoretical argument

that presents how control performance is influenced by the choice of prediction

subproblem would be needed to make stronger statements about the relative

control performance of algorithms differing only in their choice of prediction

subproblem.
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Chapter 8

Conclusion

In this thesis I took upon the responsibility of finding a way to relate the pre-

diction and control problems. We had well defined objectives for the prediction

and control problems and a way to specify how much we care about different

states in the prediction problem through the interest function of Emphatic

TD. We did not however have an understanding as to how the prediction sub-

problem should be chosen to improve control performance. Particularly, it

was unknown what prediction objective or what interest over states we should

have in states when solving the control problem.

We focused on a particular control objective and re-iterated the need for

a γt in actor updates. We showed that not using this term can result in poor

empirical performance.

We then found a particular interest over states by looking at the bias intro-

duced due to function approximation and bootstrapping. Hence, we provided

an interest with motivation that its use in the prediction objective or sub-

problem could result in improved control performance. Thus, we interrelated

the prediction and control objectives by seeking for an interest. Our empir-

ical results confirmed that we indeed get improved control performance on

commonly used benchmark environments when using the interest we found in

an ETD critic. We do not however make a strong theoretical argument that

using the suggested interest with ETD will always result in improved con-

trol performance. Further theoretical work presenting bounds on the control

performance given the use of a particular prediction subproblem could be an
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interesting direction to pursue.

We have however presented empirical evidence that suggests the choice of

prediction subproblem can be an important choice of a control algorithm that

affects control performance. Moreover, we also had a theoretical argument that

a particular choice of subproblem, the subproblem solved by the MINCE-AC

algorithm, can be promising for control and is worthwhile to study further.

Future work can also develop a better understanding of how terms depen-

dent on previous states, actions and time should be incorporated into interest.

We also focused on the one-step ETD(0) case in our experiments to simplify

analysis. Empirical experiments with the suggested interest with λ > 0 is an

obvious avenue to pursue. Additionally, testing the algorithms with ETD(λ, β)

(Hallak et al., 2016) could also be good to study. In this algorithm the follow-

on decays by β instead of γ and β trades off bias and variance.
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