
A Green Miner’s Dataset: Mining the Impact of Software
Change on Energy Consumption

Chenlei Zhang
Department of Computing Science

University of Alberta
Edmonton, Canada

chenlei.zhang@ualberta.ca

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, Canada

abram.hindle@ualberta.ca

ABSTRACT
With the advent of mobile computing, the responsibility of soft-
ware developers to update and ship energy efficient applications has
never been more pronounced. Green mining attempts to address
this responsibility by examining the impact of software change on
energy consumption. One problem with green mining is that power
performance data is not readily available, unlike many other forms
of MSR research. Green miners have to create tests and run them
across numerous versions of a software project because power per-
formance data was either missing or never existed for that particu-
lar project. In this paper we describe multiple open green mining
datasets used in prior green mining work. The dataset includes nu-
merous power traces and parallel system call and CPU/IO/Memory
traces of multiple versions of multiple products. These datasets en-
able those more interested in data-mining and modeling to work on
green mining problems as well.

Categories and Subject Descriptors
D.4.8 [Performance]: Energy; D.2.5 [Testing]: Regression

General Terms
Keywords
Software Energy Consumption; Software Change; Dataset

1. INTRODUCTION
As software changes so does its performance profile. As features

are added and bugs are fixed the performance of a software system
tends to change. CPU use is easy to measure, but energy consump-
tion performance is far more difficult to measure, often requiring
hardware support or instrumentation. This is a barrier for develop-
ers who are concerned about power performance regressions.

A concrete body of research has been applied to build power
models for applications on mobile devices. Zhang et al. [10] have
implemented a power model for Android smartphones, PowerTu-
tor, which is based on the power modeling of each hardware com-
ponent. Dong et al. [1] have applied a different approach to mod-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR ’14, May 31 – June 1, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2863-0/14/05 ...$15.00.

eling application power consumption for Linux-based mobile sys-
tems based on the system statistics of each hardware component.
Gupta et al. [3] have studied the power consumption of Windows
phone. They combined power traces and execution logs in Win-
dows phone to build power models. Pathak et al. [7] have gener-
ated power consumption finite state machines for components on
smartphones and developed power profiler to estimate power con-
sumption of applications. The most recent study was done by Hao
et al. [4] regarding their power model, eLens, which models An-
droid applications based on Java instructions. These studies could
help developers account for their applications energy consumption.
However, the impact of software change on software energy con-
sumption was not addressed.

Green mining [5, 6] is the study of how software energy con-
sumption (sometimes referred to as software power consumption)
and software power use relate to software maintenance. Green min-
ing asks, “how does software change impact the energy consump-
tion profiles of a software product?”

In this data paper, we focus on generating the datasets that cor-
relate software change and energy consumption. Software energy
consumption could be measured by a power meter. In terms of soft-
ware changes, we made use of system calls, which is an essential
interface sitting between the application and the kernel of operat-
ing system (OS) that triggers hardware utilization and other kernel
services [7]. We can expect different versions of software to invoke
different system calls during their execution if they differ from each
other in which services to get and how to get the services from the
OS kernel. We also measure the use of CPU, IO and Memory.

To be specific, our datasets consist of software energy consump-
tion as well as the number of system call invocations or resource
use for 5 applications under various test cases across versions. Ul-
timately we hope this dataset can help MSR researcher and devel-
opers understand their impact on software energy behaviour while
maintaining software.

2. DATASETS
In this section, we explain the organization of our datasets and

its potential usage. Our tracing datasets were generated by analyz-
ing two open source applications, the text editor gedit, and the
audio player mpg123. For each application, we have built multi-
ple versions and developed two test cases to gather the data. The
data gathered from each test case forms a dataset and it contains
the mean power use and the corresponding invocation count of sys-
tem calls for each version. Each dataset is in CSV format and
each row in the CSV file represents the data of each application
version. The number of columns in each dataset varies because
of the number of different system calls traced in different appli-
cations as well as test cases. In our trace datasets, we have also

Table 1: Description of the datasets.
App Test Case #Versions #SysCalls

gedit
text editing 39 79
syntax highlighting 39 77

mpg123
MP3 playing 68 56
stream playing 47 60

Firefox reading webpages 509 N/A
electrolysis reading webpages 582 N/A

Vuze
leeching bittorrent 45 N/A
idling bittorrent 45 N/A

rTorrent leeching bittorrent 40 N/A

Table 2: Schema for Trace-based datasets gedit and mpg123
Field Description

POWER mean wattage of the test run
getsockname count of getsockname calls

send count of send calls
...
x count of x calls where x is a syscall

included two text files that store the version number we tested on
for both applications. There is some variation regarding the num-
ber of different system calls traced under two test cases for each
application. But the first column is always the mean power con-
sumption of each application version ordered chronologically. The
rest of the columns are different system calls and each entry shows
the number of system call invocations. System calls are described
within the Linux man page [8]. An overview of the schema is avail-
able in Table 2. This trace-based dataset is publicly available at
https://github.com/greentrace/green-dataset.

For datasets without system calls that were used in our prior
work [6], we created 4 kinds of tests for 3 products: the web browser
Firefox, and the BitTorrent clients Vuze and rTorrent. Re-
peatable tests were run against these systems numerous times, while
their power use and resource usage statistics were recorded. Un-
compressed it is approximately 1GB in size due to large number
of per second measurements taken for each and every test. These
readings and aggregates are stored in available in CSV files avail-
able at https://github.com/abramhindle/green-data-msr/. The
per second measurements also include system level CPU, IO, and
Memory statistics extracted with SAR [2], joined together. An
overview of the per second schema is available in Table 3 while
the aggregated schema is described in Table 4. This means that one
can correlate resource use with power use.

Table 1 summarizes our datasets in terms of the number of appli-
cation versions and the number of traced system calls. For gedit
there are 39 versions tested with both text editing and syntax high-
lighting test cases (we describe how to develop test cases in Sec-
tion 3). For mpg123, we have tested on 68 versions under MP3
playing test case and 47 versions under stream playing test case.

2.1 Potential Use
With our datasets, one can study the power behaviour of an ap-

plication across multiple versions. By comparing the mean power
consumption of an application over versions, one can visualize the
changing trend of the application energy consumption. More im-
portantly, system calls act as the entry points into the OS kernel for
user applications. Thus system call invocations have the potential
of modeling software energy consumption based on multiple ver-
sions and also trace back to software in order to locate software
changes that are responsible for energy consumption variations us-

Table 3: Partial Schema for per second traces of Firefox,
Vuze and rTorrent (*-model.csv files)

Field Description
FILE.testID name of the exact test
FILE.sURI binary tested

FILE.n reading number for the test
now unix time of the written record

Power.amps amperage measured
Power.volts voltage measured
Power.watts watts measured

SAR.%system % CPU time spent in kernel
SAR.%idle % CPU time spent idle
SAR.%user % CPU time spent in userspace
SAR.fault/s Page Faults / Second

tps transfers to disk / Second

Table 4: Partial Schema for per version aggregate measure-
ments of Firefox, Vuze and rTorrent (*-aggregate.csv
files)

Field Description
machine test computer name

utime UNIX time of the written record
sURI binary tested

ffversion version of binary
kwh energy consumed in KwH
max maximum watts measured
min minimum watts measured

mean mean watts measured
var variance of watts

seconds test length in seconds

ing system calls. For the green mining datasets without traces,
SAR has provided fine grained resource utilization measures that
can be used to develop power estimates or resource use estimates.
We suggest our dataset should be combined with other datasets or
static/dynamic analysis in order to mine for relationships between
power use and design patterns, bug reports, fixed code, fix inducing
code, churn, metrics, etc. Therefore, our datasets can be mined for
discovering the specific relationship between OS use, resource use,
software change, and software energy consumption.

3. METHODOLOGY
In this section, we explain the methodology for collecting and

parsing the software energy consumption among multiple versions
of software. The general process is derived from the previous work
on Green Mining [5].

1. Choose and build multiple versions of a software product.
2. Decide on the level of instrumentation.
3. Develop the test cases to run on the software.
4. Configure the testbed.
5. Run the tests and collect data.

3.1 Choosing and Building Multiple Versions
of a Software Product

We have studied five software products in this paper. The first
software project tested was gedit. This general purpose text ed-
itor has been developing for more than 10 years. It is written in C
and Python, and is the default text editor for GNOME desktop. The
second software project tested was mpg123. It is a command-line

https://github.com/greentrace/green-dataset
https://github.com/abramhindle/green-data-msr/

MPEG audio player written in C and assembly. It has been actively
maintained in the past 7 years.

In order to build multiple versions of gedit, we relied on the
Git repository of gedit 1. When choosing commits to compile
gedit, we only considered releases. From release 0.7.9 to release
3.7.3 (commits starting from June 2000 to February 2013), we were
able to build 39 revisions of gedit, covering most of the gedit
2 (18 builds) and gedit 3 versions (21 builds).

For mpg123 we built the binaries from the tarballs of past ver-
sions. In total, we have 68 reversions of mpg123 covering most of
the versions from 0.66 to 1.15.4.

For Firefox we relied on 509 nightly snapshots for the 2009–
2010 nightly builds of Firefox with versions ranging from 2.0 to
3.6 and 482 nightly snapshots from the electrolysis branch.
For Vuze, we built 45 subversion revisions starting from revision
26730 on September 14, 2011 to revision 26801 on December 15,
2011 (3 months). For rTorrent we built 18 snapshot versions:
rTorrent version 0.3.0 (2005) to rTorrent 0.8.9 (2011), and
libTorrent versions 0.6.4 (2005) to 0.13.0 (2011). These three
products were discussed in our prior work [6].

3.2 Deciding on the Level of Instrumentation
We recorded the power use and system calls consumed and in-

voked by the tested software products for each revision. The device
we used to measure the energy consumption of the testbed is an AC
power monitor, Watts Up? Pro [5]. This meter can continuously
monitor and collect power measurement with an accuracy of ±3%.
This hardware can monitor real-time electricity usage and collect
a variety of data, including power use in watts, and transmit this
result over a USB-serial connection.

For recording system calls on the testbed, we applied the debug-
ging utility for Linux, strace 2. It is able to trace the name of each
system call, its arguments and its return value called by a process
or a program. Figure 1 shows a part of strace output for the Linux
command date. The listed system calls invoked by a program
could help us detect unexpected behaviours and thus strace is often
used to debug programs.

For the datasets used in our prior work [5] (Firefox, Vuze,
and rTorrent), we did not record system calls but we relied on
SAR [2], a system monitoring utility, to record and monitor CPU,
IO and Memory information.
read(3, "\nMST7MDT,M3.2.0,M11.1.0\n", 4096) = 24
close(3) = 0
munmap(0xb7715000, 4096) = 0
fstat64(1, {st_mode=S_IFCHR|0620, st_rdev=makedev(136, 6), ...}) = 0
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0xb7715000
write(1, "Tue Jul 2 19:35:57 MDT 2013\n", 29) = 29
close(1) = 0
munmap(0xb7715000, 4096) = 0
close(2) = 0

Figure 1: An example of strace partial output for the Linux
command date.

3.3 Developing the Test Cases
Changes in software are often scattered across various features

and files. In order to correlate software changes with software en-
ergy consumption, we need to implement a set of test cases that are
able to trigger different features. In this study, we developed two
test cases for both gedit and mpg123.

For gedit, the first test case is about text editing. The second
one is about syntax highlighting. gedit is able to highlight syntax
for a number of program languages and text markup formats.

The test scenario for text editing is to simulate a user creating
a new document and then typing text into it and finally saving
1Git Repo of gedit, https://git.gnome.org/browse/gedit/
2strace, http://sourceforge.net/projects/strace/

the document. We built a X11::GUITest UI driver to simulate the
mouse actions and typing actions that we pre-recorded based on
our first author typing in the preamble of the GNU General Public
License (GPL) 3. The test took almost 6 minutes to type about 560
words of the preamble in the GNU GPL. The test procedure is to
1) start the application, which opens a new document; 2) type the
GNU GPL Preamble; 3) save the file; and, 4) close the application.

The test case of syntax highlighting intends to simulate a real
user reading through a variety of programming and text markup
language code. There are six files to read and each file is source
code (C, Java, Perl, and Python) or text from a markup language
document (HTML and LaTex) that has more than 300 lines. The
test took more than 7 minutes to go through all the six files. The
test procedure is 1) open the six files in gedit; 2) scroll down to
go through the first file in every few seconds until reach the last
line; 3) move to the next file and repeat step 2; and 4) close gedit
when finished going through the last file.

For mpg123, the test cases are to play MP3 files and music
stream using mpg123. The core functionality of mpg123 is to
decode MPEG audio files. So our first test case for mpg123 is
to listen to music by playing MP3 files using mpg123. mpg123
is a command-line based player so we tested it within a GNOME
Terminal. It was started with a 3-minute long song as a command-
line parameter and would play the song as soon as it started and
then it terminated once the song finished playing. In the second
test case for mpg123, we intended to test another functionality:
playing a music stream. We also started the test from a GNOME
Terminal and passed the url of the music stream as a parameter to
start mpg123. After playing the music stream for about 3 min-
utes we terminate mpg123 by killing the mpg123 process. Newer
versions in our mpg123 builds cannot play music stream stably so
only 47 versions of mpg123 were tested in this test case.

Our Firefox and electrolysis tests, from prior work [6],
were X11::GUITest driven tests where Firefox would startup
and view multiple webpages scrolling through them. Within 6 min-
utes 4 different webpages were visited: 2 Wikipedia pages, a mirror
of the main-page and a page about the “Battle of Vukovar”, and 2
NYAN-Cat pages (http://nyan.cat/) mirrored in different ways
but hosted remotely by us. Each test cleaned up before and after
itself and ensured it had not cached anything.

For Vuze we made an idle test and a file download or leech
test The idle test measured Vuze’s start-up, idling and file integrity
check. The leech test downloaded a 2GB file from a seeder. Both
were terminated after a set period of time, making each test take
the same amount of time. The testbed was cleaned before and after
each test.

For rTorrent, tested in our prior work [6] we repeated the
Vuze leech test. The testbed was cleaned before and after each test.

3.4 Configuring the Testbed
We implemented our tests on a laptop computer: Lenovo ThinkPad

X31. It runs 32-bit Ubuntu 12.04. Tests run for rTorrent, Fire-
fox, and Vuze were run on the same machine running Ubuntu
11.04, using the same configuration. For Vuze and rTorrent
we ran a seeder on another computer on the same local area net-
work over Ethernet. To minimize the noise when measuring the
energy consumption of tests, we turned off any services and auto-
matic updates performed by the operating system. We also disabled
the screen saver and left the screen on during the tests. Headphones
were plugged in for mpg123 test cases.

3GNU GPL, http://www.gnu.org/copyleft/gpl.html

https://git.gnome.org/browse/gedit/
http://sourceforge.net/projects/strace/
http://nyan.cat/
http://www.gnu.org/copyleft/gpl.html

We created a test-user, called greenmining, to run our test cases
and this user would run the default Ubuntu Desktop. We removed
the battery of the testing machine and it was plugged into a Watts
Up? Pro power meter, which was instructed to continuously log its
power consumption as RMS, with a resolution of 1 measurement-
per-second. The data is recorded by GreenLogger, which is our
application that records Watts Up? Pro readings.

3.5 Running the Tests and Collecting Data
For each test case in gedit and mpg123, we ran more than 10

tests over each software version we built. The first test was to trace
the system calls and the rest of the tests were to measure the energy
consumption of each software version. System calls for each ver-
sion tend to be stable and we just traced them once. We chose 10 or
more tests in order to determine normality and differences between
power measurements.

Hence, for each software revision under each test case, there is
one record of system calls and more than 10 records of energy con-
sumption measurement. We took the mean of the multiple power
use measurements for each software version under each test case.
We also grouped the system calls by names and counted the num-
ber of invocations of each system call for each software version to
form our datasets. These trace tests took more than 20 days to run.

For Firefox we had 43 distinct versions from 509 binaries,
each binary had at least 3 test runs and each distinct version had
at least 20 runs with a total of 2131 tests. For electrolysis
we had 11 distinct releases over 482 binaries with a total of 1500
tests. For Vuze idle we ran 17 to 21 tests per each version of
Vuze, for a total of 900 tests. For Vuze leech test we ran 10 to
15 tests per each of the 45 versions, resulting in 500 tests. For
rTorrent we ran each test 6 to 10 times resulting in 294 tests
across 40 combinations of rTorrent and libTorrent. These
non-trace tests took more than 30 days to run.

4. TOOLS
We provide our tools used in this study to encourage other re-

searchers to validate our datasets and also generate new datasets
for other test cases as well as more applications. The tools are
available at https://github.com/greentrace/green-tools.

For collecting data, we use GreenLogger with SAR [2] and
strace, the open source debugging utility for Linux as we men-
tioned in the previous section. GreenLogger is able to collect power
use readings from power meter Watts Up? Pro: one measurement
per second. We also apply strace to get the summary of invocation
counts for all the triggered system calls.

We have implemented the application GreenTrace for merging
the collected two data sources. It converts the summary of invo-
cation counts (tables separated by spaces) for all the system calls
to a CSV file then merges it with the mean power consumption of
multiple software versions.

5. LIMITATIONS
Since we utilized a power meter to measure the energy consump-

tion of software and a UI driver to automate some of the test cases,
the accuracy of power measurement in our datasets is limited by the
accuracy of our power meter and the overhead from the UI driver.
Tests are run multiple times because there are errors. Programs like
Firefox are very large programs and they can often exhibit errors
and bugs that are transient and inconsistent. Thus when evaluating
runs of datasets be aware that some versions will have bugs that will
make their power use seem extremely high or extremely low, these
should be removed from analysis since there could have been nu-
merous problems with the testbed, the software, the measurements

etc. Most test runs were not observed by a human so many things
could have happened.

The accuracy of traced system calls in our datasets is restricted
by the assumption that system call invocations tend to be stable in
each run of test case for the same software version.

Code coverage was not investigated when producing cases, not
all changes and not all changed files are exercised by the tests.
Changes that affect performance could be missed by our test cases.

The license of the data is CC-BY 4.0, attribution can be achieved
by citing this paper or our other work [9, 6]. Academics are ex-
pected to cite the paper in works that use the data.

Issues that we did not control for include: internet connectivity
and latency, temperature, light levels, and network traffic.

6. SUMMARY
Energy efficient applications are becoming more and more im-

portant for mobile computing platforms. Correlating the energy
behaviour of applications to the historical data in software develop-
ment repositories is a promising direction for revealing the impact
of software change on energy consumption.

In this data paper, we provided the datasets for mining the im-
pact of software changes on software energy consumption. We in-
troduced the organization of our datasets gathered from multiple
versions of gedit, mpg123, Firefox, Vuze and rTorrent.
With well documented methodologies and tools we hope that our
datasets proves useful to researchers interested in software power
modeling without the hassle of actual measurement.

Despite of the limitations within our datasets, there are numer-
ous potential usages by mining our datasets. We can visualize the
changing trend of the application energy consumption across mul-
tiple versions. Moreover, since system calls sit in the middle of
user applications and the OS kernel, it is possible for researchers
to model software energy consumption over versions and also trace
back to software in order to locate software changes that are re-
sponsible for energy consumption variations using system calls.

7. REFERENCES
[1] M. Dong and L. Zhong. Self-Constructive, High-Rate Energy

Modeling for Battery-Powered Mobile Systems. MobiSys ’11, pages
335–348, USA, 2011. ACM.

[2] S. Godard. SYSSTAT Utilities Home Page.
http://pagesperso-orange.fr/sebastien.godard/.

[3] A. Gupta, T. Zimmermann, C. Bird, N. Naggapan, T. Bhat, and
S. Emran. Detecting Energy Patterns in Software Development .
Technical Report MSR-TR-2011-106, Microsoft Research, 2011.

[4] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan. Estimating
Mobile Application Energy Consumption using Program Analysis.
In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 92–101, USA, 2013. IEEE Press.

[5] A. Hindle. Green Mining: A Methodology of Relating Software
Change to Power Consumption. In MSR, pages 78–87, 2012.

[6] A. Hindle. Green Mining: A Methodology of Relating Software
Change and Configuration to Power Consumption. Empirical
Software Engineering, pages 1–36, 2013.

[7] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang.
Fine-Grained Power Modeling for Smartphones using System Call
Tracing. EuroSys ’11, pages 153–168, USA, 2011. ACM.

[8] The Linux man-pages project. Linux Man Pages Online.
http://man7.org/linux/man-pages/, 2013.

[9] C. Zhang. The Impact of User Choice and Software Change on
Energy Consumption. Master’s thesis, University of Alberta, 2013.

[10] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang. Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones.
CODES/ISSS ’10, pages 105–114, USA, 2010. ACM.

https://github.com/greentrace/green-tools
http://pagesperso-orange.fr/sebastien.godard/
http://man7.org/linux/man-pages/

	Introduction
	Datasets
	Potential Use

	Methodology
	Choosing and Building Multiple Versions of a Software Product
	Deciding on the Level of Instrumentation
	Developing the Test Cases
	Configuring the Testbed
	Running the Tests and Collecting Data

	Tools
	Limitations
	Summary
	References

