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ABSTRACT

The Wombeat pipe (64.918° N, 110.447° W) is a diamondiferous kimberlite in the Lac de
Gras kimberlite field of Northwest Territories, Canada. Two drill cores, CH93-29 and
00-05, intersect the Wombat crater facies and include 195 m of well preserved,
undisturbed lake sediment fill. Bulk sediment elemental analysis, C isotope composition,
and Rock-Eval pyrolysis together with inferences from microfossils, are used to

characterize conditions of sedimentation and paleoenvironmental variability in the maar

lake.

Bulk sediment C/N, hydrogen index (HI), and 6'*C indicate material derived from Cs
land plants dominates the sedimentary organic matter, with a possible minor algal
contribution. The 8'3C values range from -25.3 %o to -30.2 %o and C/N ratios vary
between 14.6 and 38.4, recording the shifts in the proportions of land-derived material
and algal organic matter as climate conditions fluctuated. Eighteen samples analyzed by
Rock-Eval pyrolysis all plot in the Type III kerogen field for HI vs. Tmax, with average
Tmax values ~425 °C indicative of the low thermal maturity of organic matter. Total
organic carbon (TOC) averages 3.6 wt% and average total carbonate content is 14.1 wt%,
indicating bottom water anoxia and substantial carbonate input from weathering of
overlying carbonate cover rocks, respectively. Together with well-preserved freshwater
microfossils (e.g. diatoms, chrysophytes, synurophytes), the results indicate deposition in
a non-marine setting, likely during a period of regression of the Western Interior Seaway.
The age of the Wombat maar lake sediments is determined using MC-LA-ICP-MS U-Pb

zircon geochronology from two distal rhyolitic tephra beds found in the core 00-05,

il



yielding a date of 82.36 + 0.44 Ma (n = 18/34, MSWD = 1.51). This minimum age
suggests that Wombat kimberlite pipe emplacement occurred during the Late Cretaceous,
with sedimentation in the maar beginning shortly thereafter. The major and trace element
geochemical analysis of the tephra glasses allows to make inferences about the type and
the spread of the Late Cretaceous volcanism in subarctic Canada. The findings from the
Wombat pipe post-eruptive maar lake sediment fill provide direct evidence for a non-
marine environment in the Lac de Gras area during the Late Cretaceous. Furthermore,
microfossils in the Wombat pipe sediment fill likely include the oldest-known occurrence

of freshwater diatoms.
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PREFACE

This thesis is a collaborative work by Serhiy Buryak and faculty at the Department of
Earth and Atmospheric Sciences, University of Alberta, Canada, identified below. The
Wombat core CH93-29 samples were collected by Dr. Alberto Reyes and Dr. Peter Siver
at Connecticut College (New London, USA) and samples from core 00-05 were collected
by Serhiy Buryak and Dr. Alberto Reyes at the Northwest Territories Geological Survey
core archive (Yellowknife, Canada). The tephra geochemical data were collected
together with Dr. Britta Jensen; Rock-Eval/LECO data were obtained from a commercial

vendor (GeoMark Research, USA).

The rest of the data analysis, literature review, and interpretations are my original work
with the guidance from Dr. Alberto Reyes and others. This thesis includes an
introductory review chapter on the current state of the maar lake research, followed by a

main thesis chapter which is in preparation for submission to a peer-reviewed journal.
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CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Since the 1991 discovery of the Lac de Gras kimberlite field on the Slave Craton of
Northwest Territories, more than 270 confirmed kimberlites have been found in the region
(Fig 1.1). The existing geochronology, based largely on U-Pb and Rb-Sr dating of mineral
phases associated with kimberlite emplacement, indicates that most of them were emplaced
in several intervals spanning a period between 75—45 Ma (Creaser et al., 2004; Sarkar et al.,
2015). Though the Slave Craton is largely devoid of Phanerozoic sediment cover (Nowicki
et al., 2004), abundant sedimentary xenoliths (e.g. Sweet et al., 2003) hosted in the
kimberlite diatreme provide glimpses of the now eroded cratonic sedimentary cover and
associated depositional environments prior to kimberlite emplacement. In rare cases,
kimberlite emplacement was followed by development and sedimentary infilling of maar
lakes in the kimberlite diatreme (e.g. Hamblin et al., 2003). These maar lake fills, which
provide continuous, well-preserved sedimentary sequences from which paleoclimate and

paleoenvironments can be inferred, are the subject of this thesis.

1.2 KIMBERLITES IN THE LAC DE GRAS REGION

The Lac de Gras kimberlite field is located in the central part of the Canadian Shield within
the Archean Slave craton (Kjarsgaard, 2001) and includes more than 270 confirmed
kimberlites. Kimberlites in the Lac de Gras field are characterized by a small (150-250 m
diameter), steep-sided, irregularly shaped diatreme morphologies. The majority of
kimberlites have surface areas < 5 Ha at the top of the diatreme, with several larger

exceptions up to ca. 20 Ha (e.g. Wombat, Fox kimberlites), and can extend to great depths



below the surface (400-600 m) (Pell, 1997). Periods of kimberlite magmatism in the Lac de
Gras are thought to fall into five major intervals centered on 48, 54, 61, 66, and 72 Ma
(Sarkar et al., 2015). Older, pre-Cenozoic kimberlites are rare in the Lac de Gras field (e.g.
the Carboniferous Eddie kimberlite), but since many of the Lac de Gras kimberlites remain

undated it is possible that other older pipes exist (Sarkar et al., 2015).

The suggested eruption mechanisms for kimberlite emplacement involve explosive
devolatilization of CO»-rich kimberlite magma coupled with phreatomagmatism, leading to
excavation and expulsion of host rock, in turn fragmenting the magma, country rock and
overlying cover in the process (Nowicki et al., 2004). The open crater then probably gets
infilled directly by the deposition of the eruption column and/or resedimentation of the crater
rim material. The pipe diatreme morphologies are controlled by near-surface structures
(faults, joints) as well as by the thickness of the cover rocks and competence of the country

rock at the time of the eruption (Field and Scott Smith, 1998; Nowicki et al., 2004).

The crater fill facies in Lac de Gras kimberlites is unique compared to counterparts in South
Africa or Siberia. Lac de Gras crater fill successions are dominated by pyroclastic,
volcaniclastic and resedimented volcaniclastic kimberlite rather than primary and hypabyssal
volcanics (Carlson et al., 1998). In addition, the Lac de Gras kimberlite crater facies are
known to include abundant sedimentary xenoliths of now-eroded cover rocks (e.g.
Cookenboo et al., 1998) and contemporaneous wood megafossils entombed at time of

emplacement (Wolfe et al., 2012). Rarely, Lac de Gras kimberlites may also host sediments



that infilled a post-emplacement diatreme maar lake (e.g. Giraffe, Wombat kimberlites)
(Nassichuk and Dyke, 1998; Hamblin et al., 2003; Sweet et al., 2003; Siver et al., 2016;

Wolfe et al., 2017).

1.3 MAAR LAKES AS PALEOENVIRONMENTAL ARCHIVES

Maars are typically monogenetic volcanic craters formed by an explosive eruption that cut
into the country rock and comprise the pyroclastic (tuff) rim, the crater infill sediments, the
diatreme, and the feeder dyke system (Biichel, 1993). Most maars are typical collapse craters
resulting from an explosive ejection of the host rock, but the exact formation mechanism
may depend on the type of volcanism (e.g. caldera volcano, kimberlite) and is not universal
for all localities. The maar crater usually creates a topographic depression that undercuts the
groundwater level leading to the formation of a lake. The lake is then filled by marginal and
profundal sediments. There are four primary sources of the infilling sediment and organic
matter in maars (Biichel, 1993): marginal mass movement and flows; allochthonous deposits
from discharging streams and creeks; direct atmospheric or aeolian deposition; and
autochthonous production of organic matter, carbonates, and silica within the lake.
Importantly, the character of the infilling sediment is strongly dependant on the
paleoclimatic conditions at the time of sedimentation. Maar lakes are known to be excellent
high resolution paleoenvironmental archives often due to deep water anoxia facilitating good

preservation of organic matter (e.g. Herendeen and Jacobs, 2000; Pirrung et al., 2003).



Maar lake fills are thought to be rare in the Lac de Gras kimberlite field. The most prominent
example is the Giraffe kimberlite diatreme, which hosted a small, low-energy maar lake
deposited during the warm, temperate, humid climate of the middle Eocene (Hamblin et al.,
2003; Wolfe et al., 2017). The sediment kerogen type and abundant preserved land plant
detritus indicate deposition from a terrestrial environment (Hamblin et al., 2003). Studies of
the >50 m-thick lake sediment succession have inferred paleoclimatic variation (temperature,
precipitation, atmospheric CO: concentrations) during part of the early Cenozoic
“greenhouse” in subarctic Canada (Wolfe et al., 2017), as well as characterization of early

freshwater diatoms (e.g. Wolfe and Siver, 2009).

Some of the best-known maar localities are found in the Cenozoic Central European
Volcanic Province, including the Eckfeld, Messel, and Enspel maars, providing an
interpretative framework for the Lac de Gras maars (Pirrung et al., 2001). For example, the
Eckfeld maar hosts ~100 m of middle Eocene lake sediment deposited in a subtropical
climate and is similar in many aspects to the succession recovered from the Giraffe maar.
The maar fill includes a shallowing upward succession of laminated bituminous shales and
siltstones capped with a final gyttja and peat (Sabel et al., 2005). Similarly, the annually
laminated oil shale from the middle Eocene (ca. 48 Ma) Messel maar provides important
paleoenvironmental and paleontological data. In particular, Messel maar sediments record
unique information about the early stages of mammalian evolution from exceptionally well-
preserved mammal fossils, ranging from fully articulated skeletons to stomach contents

(Meyer, 1994).



Numerous other examples can be drawn from other localities around the world such as the
Late Cretaceous maar in Bushmanland, South Africa (Smith, 1986), the middle Eocene
Mahenge kimberlite maar in Tazannia (Herendeen and Jacobs, 2000), and late Quaternary
maars on the Seward Peninsula in Alaska (Colinvaux, 1964). All share the key feature of
excellently persevered sedimentary and fossil records, due to confined catchments and
bottom water anoxia which result in unusually high preservation potential of the sediment

organic matter.

1.4 MULTIDISCIPLINARY APPROACH TO THE CHARACTERIZATION OF
MAAR LAKE SEDIMENTS

Given the strong preservation potential of sediment organic matter in maar lakes, the
physical, chemical and biological characterization of lake sediments can produce highly
resolved data for the interpretation of environmental change at various time scales (Frey,
1998; Williamson et al., 2009), assuming that the sediment record is constrained by reliable
chronology. This can be particularly difficult for pre-Quaternary lacustrine sequences
outside the limit of '*C techniques (ca. 45,000 years before present). Biostratigraphy and
stratigraphic palynology can be a powerful dating tools for such lacustrine sequences if age-
diagnostic fossils can be found but can only provide a non-numerical age estimate.
Additionally, recycling of palynomorphs, differential preservation, and misidentification can
distort the record. Radiometric dating techniques (U-Pb, U-series, Ar-Ar, K-Ar etc.) can be

used to achieve reliable geochronological constraints for the lake sediments. In the case of



maar lakes, the lake forms shortly after the eruption, making it possible to estimate
maximum ages of lacustrine fills by dating the primary volcanic rocks. However, in the case
of kimberlite maars it can be problematic to obtain necessary accessory minerals (e.g.
perovskite, phlogopite, rutile, baddeleyite) due to the difficulty finding primary kimberlite

samples and the rarity of the suitable mineral phases.

Alternatively, distal tephra deposits can be used to determine a direct age for maar lake
sediment deposition. In current usage, tephra is a distally derived mixture of volcanic glass
with a minor mineral component (< 10 % of total volume), where the accessory mineral
phases (e.g. zircon, apatite, sanidine, titanite) can be dated using radiometric techniques. U-
Pb zircon dating provides an approximate timing for the volcanic eruption associated with a
tephra deposit. However, this approach can be challenging due to uncertainty in the disparity
between zircon crystallization and “true” volcanic eruption ages, as well as possibility of
inheritance of older xenocrystic/antecrystic grains. Additionally, trace and major element
geochemical characterization of the tephra glasses is particularly informative in identifying
the sources of volcanic activity, the type and the extent of volcanism in the region and can be

useful for data reduction of mineral isotope composition for radiometric dating.

Carbon isotope composition and bulk sediment geochemical parameters are widely used in a
paleoenvironmental studies. Rock-Eval pyrolysis indices, such as the hydrogen index (HI)
and T (the temperature of maximum hydrocarbon release during pyrolysis), provide

insight into the origin and thermal maturity, respectively, of the organic matter (Talbot and



Livingstone, 1989). Ratios of sediment organic C to total N (Corg:Niot) are a proxy for
estimating the proportions of autochthonous (aquatic) and allochthonous (land-derived)
material. Carbon isotopic composition, expressed as the ratio of '*C to '?C in the sample
relative to a standard (8'°C), provides insight into lake productivity, carbon recycling, and
variations in the watershed vegetation due to climatic shifts. For example, during periods of
higher autochthonous organic matter input and increased algal productivity, HI is typically
elevated while Corg:Niot is lowered (Meyers and Ishiwatari, 1993). The isotopic composition
and Corg:Nior ratios generally reflect the type of organic matter source, but interpretation is
not straightforward because these proxies can be affected by diagenetic processes. For
example, under anoxic conditions denitrification and carbon cycling may lead to increased
bulk sediment Corg:Niot and lower 5'3C (Hollander and Smith, 2001; Whiticar, 1999; Lehman
et al., 2002). Under oxic bottom water conditions, decomposition of organic matter can lead
to an increase in sediment 5'3C due to preferential loss of the light isotope '2C, but no
significant changes in Corg:Niot is usually observed (Freudenthal et al., 2001; Lehman et al.,
2002). Additionally, other modifications such as bioturbation and alteration of organic
matter during sinking and at the lake bottom can modify the source character of organic
matter (Talbot and Livingstone, 1989). Hence, by combining multiple geochemical proxies
and geochronological age model of the sediment it is possible to extract a reliable
paleoenvironmental data and make inferences about environmental conditionings during the

maar infilling.



1.5 THESIS OBJECTIVES

The preceding discussion highlights the importance of both solid geochronology and a
multiproxy approach to characterizing maar lake sediment fills in the Lac de Gras kimberlite
field. To date, only the Giraffe pipe sediment fill has received any systematic attention from

a geochronological and lake sediment paleoenvironments perspective.

In this thesis I focus on the post-eruptive maar lake fill of the Wombat kimberlite in the Lac
de Gras field. Though the Wombat kimberlite pipe was first drilled in 1993, its maar lake fill
initially received little attention (c.f. Nassichuk and Dyke, 1998). More recently, the
Wombat kimberlite maar sediments have been studied for freshwater microfossils (e.g. Siver
et al., 2016). However, there is little context for the microfossil studies from either
geochronology or bulk sediment analysis. The only geochronological constraint comes from

an unpublished pollen biostratigraphic age determination (Hu et al., 2011).

The overall aim of this study is thus to provide information about the age and
paleoenvironment of the Wombat maar lake by applying a multimethod approach including
tephra zircon U-Pb geochronology, and bulk sediment geochemical analysis.
The specific goals of this thesis are:
1. Establish a minimum age for the post-eruptive Wombat maar fill in order to build a
chronological framework for paleoenvironmental interpretation and microfossil

studies.



2. Explore the application of bulk sediment geochemical parameters as tools for the
reconstruction of the depositional environment, organic matter characteristics, and
paleogeography of the study area.

The results obtained through addressing these first two objectives led to two secondary
objectives:

3. Investigate the application of the trace and major element geochemical characteristics
of the tephra glass to provide an insight on the extend and type of the Late
Cretaceous volcanism in subarctic Canada.

4. Broaden our knowledge of the paleogeography of the Western Interior Seaway in the
Slave craton during the Late Cretaceous and propose an inferred stratigraphy for the
Lac de Gras area during the Cretaceous and Paleogene.

The main body of the thesis is organized as a single manuscript intended for submission to a
peer-reviewed journal. Detailed descriptions of methods and full tables of analytical results

are presented in appendices.
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Figure 1.1 Generalized geological map and location of kimberlites in the Lac de Gras region

(modified from Sarkar et al., 2015; Kjarsgaard et al., 2002).
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CHAPTER 2. GEOCHEMISTRY, GEOCHRONOLOGY, AND
PALEOENVIRONMENTS OF THE LATE CRETACEOUS MAAR LAKE

SEDIMENTARY FILL OF THE WOMBAT KIMBERLITE PIPE

2.1 INTRODUCTION

Kimberlites are ultramafic volcanic rocks sourced from the mantle that are widely exploited
for diamond mining (e.g. Bryan and Bonner, 2003) and the study of deep mantle processes
(e.g. Davies et al., 2004). The 1991 discovery of kimberlites on the Slave craton, in subarctic
central Canada, led to rapid diamond exploration and identification of over 270 kimberlite
pipes in what came to be termed the Lac de Gras kimberlite field. Reports during exploration
drilling and open-pit mining highlighted the presence of exceptionally well-preserved plant
fossils (e.g. Nassichuk and Mclntyre, 1996; Sweet et al., 2003) in association with the Lac
de Gras kimberlites. Because most of the kimberlites in the region were emplaced during the
Paleocene and Eocene “greenhouse” interval, when atmospheric CO> was higher than
present (e.g. Wolfe et al., 2017) and there was likely no perennial cryosphere at high
latitudes (e.g. Sluijs et al., 2006), the well-preserved organics associated with Lac de Gras

kimberlites have considerable potential as paleoclimate and paleoenvironmental archives.

As kimberlite erupts a highly volatile phreatomagmatic explosion leads to a formation of a
broadening diatreme and, under exceptional circumstances, to the formation of a post-
eruptive crater and maar lake. Maar lakes are known as an excellent source of high

resolution paleoenvironmental information. In a small, but relatively deep kimberlitic maar

11



lake, anoxic conditions at the bottom water often facilitate an exceptional preservation of
fossil remains and sedimentary organic matter. Despite this potential these deposits have
received relatively little attention. Until now only Giraffe kimberlite post-eruptive lake fill
was systematically studied as being a source of paleoenvironmental, paleogeographic and
paleontological significance. Exceptionally well-preserved Middle-Eocene Giraffe maar
sedimentary fill provided an insight on the paleoclimatic conditions during Cenozoic
“greenhouse” in a subarctic Canada and hosts a suite of well-preserved microfossils (e.g.
early diatoms) and abundant land plant detritus (Wolfe et al., 2017). Additionally, abundant
sedimentary xenoliths recovered from the crater fills from Lac de Gras kimberlites were
extensively studied as the source of paleogeographic and paleoenvironmental significance
providing information about the now eroded cratonic sedimentary cover in Lac de Gras (e.g.
Sweet et al., 2003). However, the geological record of cratonic sedimentary cover and
associated depositional environments remains sparse in Lac de Gras and requires a much-
needed revision taking into consideration kimberlitic maar lake fills as a potential targets for

this future studies.

Sediments from one such kimberlite diatreme maar lake are present in the “Wombat” pipe,
one of the largest identified kimberlite pipes in the Lac de Gras kimberlite field. The
Wombat pipe post-eruptive sedimentary fill is unusually thick and homogenous; as defined
in three exploration drill cores that intersect the pipe, over 195 m vertical-equivalent (VE)
meters of undisturbed, laminated lacustrine sediment were deposited in the diatreme maar.

These sediments host exceptionally well-preserved microfossil remains, which are the only
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aspects of the Wombat sedimentary record that have received study (Siver et al., 2016).
There are no published studies that have addressed the age and paleoenvironmental setting of

the Wombat pipe post-eruptive sediments.

The aim of this study is thus to provide a geochronological and paleoenvironmental
framework for Wombat maar lake sediments, using a multidisciplinary approach that
includes zircon U-Pb geochronology of distal tephra, bulk sediment geochemical analyses,
and inferences from microfossil assemblages (Siver et al., 2016). I will demonstrate that the
Wombat maar lake sediments were deposited during the late Cretaceous, and likely represent
the only preserved remains of strata of this age on the Slave craton. The inferred timing of
kimberlite emplacement extends the temporal window of diamondiferous kimberlites in the
Lac de Gras field to include the late Cretaceous, and geochemical analysis of the Wombat
tephra beds provides insight into the extent and sourcing of volcanism in the region at that
time. Finally, the results of this study yield new context on the paleogeography of the
Western Interior Seaway in the region during the early Campanian and have important

implications for evolution of freshwater diatoms.

2.2 GEOLOGICAL SETTING AND SAMPLES

The Wombat kimberlite maar (64.92° N, 110.45° W; paleolatitude ~63°N, Wolfe et al.,
2017) is situated in the Slave craton within the Lac de Gras kimberlite field of Northwest
Territories, Canada (Fig. 2.1). The Slave craton is an Archean granite-greenstone terrane of

Neoarchean metaturbidites with syn- to post-tectonic granite, tonalite and granodiorite
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plutons (ca. 2.63 to 2.58 Ga) (Bowring and Williams, 1999; Nowicki et al., 2004). In
addition, five major mafic dyke swarms, ranging from ca. 2.23 to 1.27 Ga, and numerous
kimberlites of Neoproterozoic, Cambrian, Siluro-Ordovician, Permian, Jurassic, Cretaceous,
and Eocene age, intruded the Slave craton (LeCheminant and van Breemen, 1994; Creaser et
al., 2004; Heaman et al., 2004; Kjarsgaard, 2001; Sarkar et al., 2015). Studies of sedimentary
xenoliths within kimberlite crater fills suggests that the region at various times has been
covered by middle Devonian and Cretaceous-Paleogene marine shales and mudstones
(Cookenboo et al., 1998; Nassichuk and McIntyre, 1996; Sweet et al., 2003). Notably,
xenoliths of Cretaceous marine and Paleogene terrestrial sedimentary cover rocks, together
with Paleogene post-eruptive maar lake sediments in the Lac de Gras kimberlite field,
suggest a post-100 Ma transition from a marine to terrestrial environment on the Slave
craton (Ault et al., 2013; Stasiuk et al., 2002; Stasiuk et al., 2006; Sweet et al., 2003).

At present, the Slave craton is largely devoid of Phanerozoic sedimentary cover rocks. The
nearest Phanerozoic cover strata are found in the Brackett Basin ~650 km WNW of the Lac
de Gras region (Stasiuk et al., 2006). During the Quaternary the Slave craton was subjected
to multiple periods of glaciation. The till blanketing Lac de Gras is mostly 2—5 m thick and
is often found capping the surface kimberlite diatremes. The glaciofluvial deposits are also
prominent, connecting into an extensive network of sinuous eskers. The modern landscape is
dominated by sediments and landforms attributed to advance and retreat of the Laurentide

Ice Sheet during the last glaciation (ca. 18, 000 years) (Dredge et al., 1994).
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The Wombat kimberlite pipe was initially characterized by horizontal-loop electromagnetic
(HLEM) geophysical surveys that defined a quasi-elliptical anomaly (long axis ~475 m;
short axis ~250 m) (Fig. 2.2) (Counts, 1996). Diamond exploration efforts resulted in
recovery of three drill cores—CH93-29, 00-05, and 05-11—by BHP Billiton Diamonds Inc.
in 1993, 2000, and 2005, respectively. Most of core CH93-29 is archived at Connecticut
College (New London, USA); core 00-05 is deposited with Northwest Territories Geological

Survey core archive in Yellowknife, Canada.

A total of ~195 m (VE) of crater lake facies was intersected by two BHP Billiton Diamonds
Inc. exploration drill cores CH93-29 and 00-05 drilled at angles of 45° and 60° respectively
(Fig 2.3). The upper “180 m (VE) of the crater fill comprises dark poorly consolidated clay-
rich laminites with rare lithic and country rock fragments (Fig. 2.4). The lower "15 m (VE)
of the crater fill comprises grey laminated to massive siltstone with common flattened clay
lenses, land plant detritus and fully articulated fish fossil remains (Fig. 2.4; Fig. 2.5).
Vivianite and siderite-goethite nodules are unevenly present throughout the lake facies
steadily increasing in abundance and size towards the top of the sequence. Two tephra layers
were found and sampled from each core at approximately the same depth intervals near the
bottom of the lake sequence indicating a potential region of stratigraphic overlap between
the two cores two tephra layers from core 00-05 were assigned University of Alberta tephra
collection identification codes: UA3134 and UA3135. The cores were further continuously
sampled (every ~75 cm of the core length) and each sample identified with the three number

code: the first represents the core box number, the second the channel in the box (4 channels
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in the box, each contains 1.5 m of the core) and the third the depth of the sample in the
channel. The detailed sedimentological descriptions for Wombat drill cores 00-05 and

CH93-29 are provided in Appendix B tables B.11 and B.12.

The Wombat maar sedimentary fill is nested within the surrounding post-Yellowknife
Supergroup Granites (ca. 2.599 — 2.582 Ga) (Kjarsgaard et al., 2002). The age of kimberlite
emplacement remains uncertain, with unpublished phlogopite Rb-Sr model ages of ca. 1.8 —
2.5 Ga indicating contamination from local country rock or detrital sourcing (R. Creaser,
pers. comm., cited in Siver et al., 2016). Siver et al., (2016), citing unpublished work by Hu
et al., (2011), suggest that at least part of the Wombat lacustrine fill is Paleocene in age on
the basis of pollen biostratigraphy. This determination was based on the apparent absence of
the Late Cretaceous taxa Aquilapollenites and Wodehouseia, the presence of
Ericaceiopollenites and Alnipollenites, and the absence of Platycarya, an Eocene indicator

taxon (Hu et al., 2011).

2.3 METHODS

2.3.1 Carbon isotope and C:N analyses

Subsamples of Wombat pipe core sediment were ground and weighed prior to treatment with
1 N HCI to remove carbonate. The decalcified samples were rinsed, freeze-dried, weighted
(2-5 mg) and loaded into tin capsules. The capsules were then combusted using a FLASH
HT Plus Elemental Analyzer with residual nitrous oxides reduced by reaction with Cu. Total

organic carbon (Corg) and total nitrogen (Niot) were determined with a Thermal Conductivity
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Detector (TCD) in the elemental analyzer; carbon isotope ratios were measured with a
Thermo Fisher Delta V Plus isotope-ratio mass spectrometer. The carbon isotope ratios are
given in standard delta-notation (6'3C) relative to the Vienna Pee Dee Belemnite (VPDB)
standard (Craig, 1957). The analytical reproducibility of 0.2 %o (25) for §'3C is based on 38
replicate analyses of IRMS soil standards. Carbon isotope and C:N analyses were carried out

at the University of Alberta Stable Isotope Geochemistry Laboratory.

2.3.2 Rock-Eval pyrolysis and LECO total carbon determination

Pyrolysis and total organic carbon (Core) analyses of Wombat pipe sediments were carried
out using Rock-Eval IT and LECO C230 instruments, respectively, at the GeoMark Research
analytical services facility. For pyrolysis, ~100 mg of ground sediment was gradually heated
in a helium atmosphere to induce the release of hydrocarbons and CO,. The Hydrogen Index
(HI) was calculated by normalizing the released amount of hydrocarbons (HC) between 300-
550 °C (S2) to Corg (mg HC/g Corg). Similarly, the oxygen index (OI) was calculated by
normalizing the released amount of CO- during pyrolysis of kerogen (S3) to Corg (mg CO2/g
Corg), though due to potential interference of carbonate minerals the OI parameter was not
considered further. The organic matter maturation parameter 7. is the pyrolysis
temperature yielding the maximum hydrocarbon release from cracking of kerogen and is
based on the temperature at the time S peak is recorded. Pyrolysis results with S, values less
than 0.50 mg HC/g rock and less than 0.2 wt% Corg were not used, because samples with

very low Corg usually give erroneous results (Peters, 1986).
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LECO analysis of ground, weighed, and decalcified samples was used to measure Corg by
heating the sample to 1200 °C, measuring the generated CO,, and comparing the amount to
that of a calibration standard. Carbonate percentage (Cinorg) Was determined by taking the

sample weight difference before and after HCI decalcification.

2.3.3 Tephra glass trace and major element geochemistry

Tephra samples from Wombat pipe cores were treated with diluted H>O» to remove organic
matter and wet sieved into multiple size fractions, with the 149—75 um size fraction was
retained for analysis. A hand magnet was used to remove magnetite and the remainder was
run three times through a Frantz magnetic separator (model LB-1) to remove Fe-rich
minerals at 0.2, 0.4, and 0.6 A current settings. The non-magnetic portion was further
separated into glass and two mineral fractions using the heavy liquids tetrabromoethane at a
density of 2.8 g/cm? and methylene iodide at a density of 3.3 g/cm?®. The light, glass-rich

fraction was then epoxy mounted in an acrylic puck, polished, and carbon coated.

Single shard glass major-element geochemistry was determined by wavelength dispersive
spectrometry on a JEOL 8900 electron microprobe at University of Alberta using 15 keV
accelerating voltage, 6 nA beam current, and 10 um beam diameter. Two secondary standard
reference materials, Lipari obsidian (ID 3506) and Old Crow tephra glass (Kuehn et al.,
2011), were run concurrently with all samples to assure proper calibration. All data were

normalized to 100% on a water-free basis.
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Trace-element composition was determined by laser ablation inductively coupled plasma
mass spectrometry (LA-ICP-MS) using a RESOlution ArF 193 nm excimer laser ablation
system coupled with the Thermo Scientific Element XR Sector Field (SF)-ICP-MS at
University of Alberta Arctic Resources Geochemistry Laboratory. Individual glass shards
were analyzed with a 23 um diameter beam at 2.8 J/cm? energy density, 5 Hz repetition rate
and 20 s ablation time. 2°Si was used as an internal standard and the instrument was
calibrated against NIST SRM 612. NIST SRM 610 and ATHO-G were analyzed as

secondary standards to monitor accuracy and analytical reproducibility.

2.3.4 U-Pb zircon geochronology

Individual zircon grains were handpicked under a binocular microscope from the >3.3 g/cm?
mineral fraction, mounted in a standard 1’ epoxy puck and polished to expose zircon internal
surfaces and to remove adhered glass. Cathodoluminescence (CL) and backscattered electron
(BSE) imaging of the zircon grains was done using a Zeiss EVO LS15 EP-SEM at
University of Alberta. Analysis of individual zircon grains was performed by NewWave 213
nm laser system coupled with a NuPlasma I multi-collector ICP-MS (MC-ICP-MS) at
University of Alberta. The analytical procedure involved using a 30 um beam diameter, 4 Hz
repetition rate, ~3 J/cm? energy density, and 30 s ablation time. Analytical reproducibility,
U-Pb fractionation, and instrument drift were monitored using GJ-1(Jackson et., 2004)
primary standard reference zircon grains along with PleSovice (Slama et al., 2008) and 94-35
(Klepeis et al., 1998) as a secondary zircon standard (Appendix A; Table B.1). Common Pb

correction was applied using the 2°’Pb method (Williams, 1998) with initial Pb composition
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estimated from Stacey and Kramers (1975) Pb evolution model. Zircon ages are based on
206pb/238U ages with 2c analytical reproducibility estimated to be 1.9 % based on GJ-1
primary zircon standard results. The weighted mean was used to visualize the crystallization
age of the youngest, most coherent zircon group overlapping within 2c analytical

uncertainty using IsoplotR software (Vermeesch, 2018; R Core Team, 2013).

2.4 RESULTS AND DISCUSSION
2.4.1 Tephra glass characterization

The two dated tephra beds were collected from core 00-05. Sample UA3135 (7 cm
thick; core depth 270.1 m; VE depth 233.9 m) is ~3 m stratigraphically above sample
UA3134 (4 cm thick; core depth 273.43 m; VE depth 236.8 m) (Fig. 2.3; Fig. 2.4). Both
tephra beds were light grey and finely laminated, with rare dark interlaminae. Sample
UA3134 was dominated by well-preserved glass in the form of tricuspate and platy glass
shards with rare partially altered glassy-clay aggregates. UA3135 was more mixed, with
partially altered glass pseudomorphs, glassy-clay aggregates, and unaltered glass shards with

generally platy morphologies.

2.4.2 Major and trace-element glass geochemistry

The glass major element composition of UA3134 is variable (Figs. 2.6, 2.7; Table B.5), with
wt.% of 73.10 — 75.33 SiO3, 0.25 — 0.49 TiO», 12.58 — 14.32 AL203, 2.17 — 2.78 FeOt, 0.18 —
0.44 MgO, 1.18 — 1.89 Ca0, 1.66 — 4.28 Na,O, and 2.80 — 6.35 K>0. Notably, KO

increases with increasing SiOz, while Na,O decreases. No significant variability is observed
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in the range of trace element concentrations, with 92.9 + 2.3 ppm Rb, 106.9 £+ 2.5 ppm Sr,
22.6 0.8 ppm Y, 125.8 £ 2.8 ppm Zr, 3.7 + 0.4 ppm Nb, 1048.2 = 23.9 ppm Ba, and 13.8 +
0.5 ppm La. Light rare earth elements (LREE) are enriched relative to heavy rare earth
elements (HREE), with (La/Yb)~ = 3.5 £ 0.7), and there is a negative europium anomaly

(EwEu*y = 0.62) (Fig. 2.8).

Glass shards from UA3135 have greater major element variability than the overlying
UA3134 tephra, particularly in SiO2 (72.9-76.4 wt.%), CaO (0.56—1.88 wt.%), and MgO
(0.25 - 0.73 wt.%). Trace element concentrations are largely homogeneous (95.0 = 5.2 ppm
Rb, 109.2 £ 2.2 ppm Sr, 23.0 £ 0.9 ppm Y, 126.7 £ 5.2 ppm Zr, 3.8 + 0.4 ppm Nb, 1041.8 £+
36.4 ppm Ba and 14.8 £ 0.5 ppm La), with similar LREE enrichment (La/Yb) n=3.9 £0.3)

and negative Eu anomaly ( Eu/Eu*x = 0.77) to sample UA3134 (Fig 2.8).

2.4.3 Glass geochemistry discussion

The trace element geochemistry of the two Wombat tephra beds is practically
indistinguishable, suggesting that they probably originate from the same or similar
tectonomagmatic environment. The greater variability in major element composition as
compared to trace element composition indicates the effects of post-depositional alteration,
making them less suitable for tephra characterization (e.g. for classical tephrostratigraphic
correlation). Total alkali content (Na;O + K20) and SiO; were used to characterize tephra
glass on a non-genetic basis (LeBas et al., 1986). On this basis, both UA3134 and UA3135

glasses are classified as low-silica rhyolites (SiO> < 75 wt.%) (Fig. 2.7).
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The Nb - Y and Rb - (Y + Nb) tectonomagmatic discrimination diagrams were used to
constrain the tectonic setting of the parent volcanism. This classification scheme is based on
the trace element compositions of unaltered granitoid rocks from different tectonic settings,
e.g. ocean ridge, volcanic arc, intraplate, and collisional settings (Pearce et al., 1984). The
trace element compositions for UA3134 and UA3135 glasses plot as volcanic arc granites
(Fig. 2.9) and thus probably originated from a continental magmatic arc setting, which is
coincident with LREE enrichment and relatively high Ba and Rb concentrations (Fig. 2.8).
Additionally, low Ta and Nb contents (Ta 0.2 + 0.1 wt.%; Nb 3.7 = 0.4 wt% ) and
consequently negative Nb-Ta anomalies in glasses from both tephra samples also suggest
resemblance to volcanic arc granites (Harris et al., 1986) Similarly, using Th/Hf vs. Ta/Hf
tectonomagmatic discrimination diagrams from Schandl and Gorton (2002), the tephra
samples plot in the active continental margin field (Fig 2.10). The geochemical composition
of the volcanic glass and small grain size of the samples strongly suggest distal origin of the
tephra deposits possibly form a volcanic arc system and not the more proximal kimberlitic

volcanism as the source.

Post-depositional weathering and alteration of tephra can result in the depletion or
enrichment of elements in volcanic glass. In glass from UA3135, and to a lesser degree
UA3134, glasses alkali and alkali earth elements (Na, K, Ca) are mostly variable indicating
their mobility. The effects of alteration are also evident in TAS and bivariate plots vs. TiO>

(Fig. 2.6). Na and K are the most variable, K is slightly enriched in both samples compared
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to Na. Si, Al, Fe and Ti show the least variation, suggesting that they are relatively
immobile. The Chemical Index of Alteration (CIA) of the samples average at 62.6 for the
UA3134 and 68.3 for the UA3135, suggesting low to intermediate chemical weathering of
the glass. Trace element concentrations are more consistent than those of major elements,
indicating little mobility during diagenetic alteration of the glasses. However, some variation
in Th/U can be attributed to relative post-depositional mobility of U. The tephra glasses also
do not show a negative Ce anomaly, which would be expected in the case of low-

temperature alteration by oxic sea water (Piper, 1974).

2.4.4 U-Pb zircon dating

A total of 34 zircon grains from tephra sample UA3135 and 3 zircon grains from tephra
sample UA3134 were analyzed using by MC-LA-ICPMS (Tables B.2, B.3). Most zircon
grains were euhedral to subhedral, or partially broken fragments, with an average diameter
less than 60 pm. The CL imaging in both samples shows that oscillatory zoning is the
predominant type of internal texture, though some grains exhibit no visible zoning. Several
grains had partially weathered from the sample UA3135 had adhered glass rims, suggesting

that they have a magmatic rather than a xenocrystic origin.

The common Pb corrected 2°°Pb/>38U dates from UA3134 were not coherent. Two zircon
grains gave ages of ca. 190 Ma and one grain dated to ca. 1370 Ma. These are not known
ages of magmatism on the Slave craton, thus suggesting contamination by xenocrysts or

antecrysts during the eruption from volcanic and/or crustal sources.
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In contrast, common Pb corrected 2°Pb/?*3U dates from UA3135 yielded a tighter age range
from 72.9 to 99.1 Ma. The youngest population overlapping within uncertainty yields a
weighted mean 2°Pb/?*8U date of 82.36 + 0.44 Ma (n = 18, MSWD = 1.51) (Fig. 2.11). The
MSWD of this dataset is on the high side of the recommended range (0.445-1.776) for a
single population (Mahon, 1996). The high MSWD likely results from underestimation of
analytical uncertainty or internal zircon heterogeneity and compositional complexities. The
weighted mean of these 18 grains likely represents the crystallization date of a single
population. Considering that zircon may reside in the magma chamber for an unspecified
period of time ranging from 10s to 100s of thousands of years before the eruption occurs
(Costa, 2008), the crystallization age is thus a maximum age for tephra deposition. Fifteen
older zircon grains in UA3135 indicate contamination by xenocrysts and antecrysts during
the eruption, rather than admixing of detrital material, since the sampled tephra bed had no
indication of post-depositional reworking. One zircon grain dated to 72.9 + 1.5 Ma and is far
younger than the main population; the outlier probably resulted from postcrystallization loss
of radiogenic Pb from zircon (Fig. 2.12). This interpretation is further supported by
observation of continuous decrease in 2°°Pb/?*3U as a function of increasing depth in the
ablation pit. The high surface area to volume ratio of the small grain (~ 35 um) also makes it

more prone to Pb loss (Silver and Deutsch, 1963).
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2.4.5 Timing of the Wombat maar sedimentation and kimberlite magmatism

We interpret the UA3135 zircon U-Pb weighted mean age of 82.36 + 0.44 Ma to be a close
minimum age estimate for the onset of Wombat maar sedimentation. On this basis, we place
the start of the lake infilling around the early Campanian age during the Late Cretaceous.
This radiometric age constraint is inconsistent with the Paleocene age previously determined
using stratigraphic palynology (Hu et al., 2011) from a limited number of samples from the
Wombat pipe lacustrine sediments. The Late Cretaceous index taxa Aquilapollenites Rouse
and Wodehouseia Stanley are absent from the pollen assemblage, as is the Eocene marker
taxon Platycarya. Pollen of the Neogene taxa Ericaceiopollenites and Alnipollenites is
abundant. Hu et al., (2011) thus suggested a Paleocene age for the maar sediments. It is
possible that several eruptions may have occurred during the sedimentation of the crater re-
ejecting the fill and modifying pipe morphology leading to distortion of the pollen record,
but more evidence is required to validate the occurrence of additional eruptions. Resolution
of the discrepancy between the radiometric tephra ages and the pollen biostratigraphy awaits
new pollen analysis of a series of samples spanning the entire Wombat lacustrine fill

sequence, which is currently in process with Eva Koppelhus (University of Alberta).

The Wombat kimberlite does not have an established emplacement age, with previous
attempts using phlogopite Rb-Sr model ages (R. Creaser, pers. comm., cited in Siver et al.,
2016) and U-Pb rutile (S. Buryak and C. Sarkar, unpublished data) yielding inconclusive
data. However, comparison of the Wombat tephra zircon ages to the known radiometric

emplacement ages from the Lac de Gras and Alberta kimberlite clusters shows that there is a
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consistent temporal correlation. The oldest Cretaceous kimberlites with known emplacement
ages in Lac de Gras include the Kudu (73.7 + 7.4 Ma), C13 (73.9 + 2.6), Jaeger (71.4 + 7.8
Ma), and Hardy Lake kimberlites (71 — 73 Ma), which are younger than the Wombat maar
sediment age (Heaman et al., 2004; Sarkar et al., 2015). In Alberta, Maastrichtian —
Santonian kimberlites are present in the Birch Mountains (70 -78 Ma) and Buffalo Head
Hills (81 — 88 Ma) (Heaman et al., 2004; Eccles, 2011). If the Wombat sedimentation began
shortly after kimberlite emplacement, it is plausible that the Wombat kimberlite eruption
occurred during the early Campanian which coincides well with a temporal pattern of

Cretaceous kimberlite magmatism in the western North America.

2.4.6 Results and interpretation Rock-Eval Pyrolysis and LECO Coe

The results of Rock-Eval pyrolysis indicate low thermal maturity of organic matter,
with Tyax values ~425 °C. The HI values are low, between 18.1 and 185.9 mg HC/g Corg,
suggesting a high contribution of humic material from land plants. The HI vs. T},qc diagram
shows that all of the Wombat maar samples plot in Type III kerogen field (Fig. 2.13), which
is characteristic of terrestrial vascular plant material (Espitalié et al., 1984; Talbot and
Livingstone, 1989). Result from LECO analysis (Table B.9) indicate variable carbonate
content (Cinorg = 5.3 — 39.1 wt.%) that generally decreases upcore, and total organic carbon

contents that are generally high (Corg = 1.7 — 10.3 wt.%).

Typically, HI <200 HC/g Cor indicates abundance of woody, oxidized or carbonized plant

material, but it can also reflect increasingly oxidizing conditions during subaerial exposure
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of lacustrine sediment (Talbot and Livingstone, 1989). Decrease in both HI and Cor values
can occur as an effect of oxidation and bacterial respiration during subaerial exposure or low
water level conditions in the lake. It is plausible that some of the very low HI (< 50 HC/g
Corg) and Corg values can be associated with a low water conditions, however no obvious

subaerial surfaces have been identified in the Wombat cores.

2.4.7 Results and interpretation of 5'3C, Coroand atomic Corg:Niot

Sedimentary organic matter 3'3C, Corg, and atomic Corg:Niot display marked variability over
the ~ 195 m (VE) of sampled core from the Wombat maar (Fig 2.14). The elemental
analyzer Core concentrations are variable but generally high, between 1.1-8.8 wt.%. High
Corg content can be attributed to good preservation of organic matter under reducing
conditions below the oxic-anoxic interface. The Corg and Nt have a strong positive
correlation (* = 0.82), although the regression line intercept suggests a small contribution of
inorganically bound nitrogen in excess of that associated with organic matter (Fig 2.15). The
atomic Corg:Niot ratios (Corg:Niot mass ratio multiplied by atomic weights of nitrogen and
carbon) are used in this study because they reflect biochemical stoichiometry (Talbot, 2001).
The atomic Corg:Niot Varies between 14.6 and 38.4 with a mean value of 24.1, with intervals
of relatively high and consistent values (~25-30) at 222.4 - 178.8 m and 125 - 66.4 m VE
depth. The 8!3C varies between - 30.2 %o and -25.3 %o with a mean value of -26.6 %o and
with intervals of relatively uniform values between -26 %o to -27 %o at 222.4 - 178.8 m and

125 - 66.4 m VE depth (Fig. 2.14).
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The 6"*C and Corg:Niot ratios can be used to discriminate the type of the organic matter source
(terrestrial vs. aquatic). Plants using the Cs photosynthetic pathway have §!*C values
between about -20 %o to 30 %o, compared to values of ~ -10 to -15 for C4 plants (Tieszen et
al., 1979; Meyers, 1994). Cs terrestrial plants are isotopically indistinguishable from Cs
algae but have a higher Corg:Niotratios > ~ 20. Thus, §'3C and Core:Niot of the sediments from
the Wombat maar indicate predominance of organic matter derived from Cs terrestrial plants
(Fig. 2.16). These results are in agreement with low HI values suggesting high contribution
of land plant material to the lake sediment organic matter (Type III kerogen).

Corg concentrations change with depth and record fluctuations in organic matter delivery
rates and preservation. Based on the Core:Niot ratio depth profile, values > 20 reflect high
contributions of land-derived plant organic matter, which also corresponds to elevated Corg
concentrations. Intervals of Corg:Niot < 20 correspond broadly to lower and more variable Corg
values; this probably indicates increased contribution of algal organic matter to the sediment,
reflecting the shift in proportions of allochthonous and autochthonous organic material
(Meyers and Ishiwatari, 1993). The variation in Corg can also reflect a lower preservation

potential of algal organic matter as compared to that from vascular terrestrial plants.

Carbon cycling and post-burial diagenetic processes (i.e. denitrification) within the lake can
alter sediment isotopic composition and Corg:Nior, and must be taken into consideration when
interpreting those data. Sediment 8'3C values can become more negative in response to
carbon cycling under anoxic conditions through production and deposition of '*C-depleted

biomass via activity of anaerobic bacteria in and above the anoxic zone (Hollander and

28



Smith, 2001; Whiticar, 1999). Furthermore, under anoxic or dysoxic conditions
denitrification can lead to a significant loss of nitrogen through microbial conversion of NO3
and nitrogen in organic matter to gaseous N», causing an increase in Corg:Niot ratios (Deines,
1980; Van Mooy et al., 2002). Bioturbation is another process that can add to degradation of
organic matter through activity of benthic fauna. The presence of frequently laminated lake
sediment in the Wombat maar indicate little to no biological mixing or resuspension and the

absence of significant bioturbation zone (Meyers and Ishiwatari, 1993).

2.5 PALEOENVIROMENT AND PALEOGEOGRAPHY

2.5.1 The Wombat maar paleoenvironment

The results of this study indicate that the Wombat maar was a small lake with at least semi-
permanent bottom water anoxia formed during the earliest Campanian. The combination of
excellent preservation of the fossil remains and plant detritus, absence of bioturbation zones,
and abundant vivianite nodules collectively suggest that anoxic conditions were common at
the bottom of the Wombat lake. Vivianite [(Fe3(PO4)2:8H20)] is commonly observed
forming under reducing conditions in slightly alkaline (pH 7-8), non-sulfidic, iron-
dominated lakes (O'Connell et al., 2015). Though the processes associated with vivianite
formation are poorly understood, its abundance in the Wombat lake sediments suggests

presence of reducing conditions.

Based on mean sedimentation rates for Cenozoic maar lakes in subarctic Canada and Central

European Volcanic Province, and the minimum ~195 m of lacustrine sediment present in the
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Wombat maar, the lake likely persisted for at least ~100 000 years. Bulk sediment
geochemical parameters (8'3C, Corg, atomic Corg:Niot, HI) indicate a dominance of a
terrestrial organic material derived primarily from Cs land plant, interspersed with periods of
increased autochthonous organic matter production. Based on this, the presence of fossil
angiosperm plant foliage, and woody plant detritus in the sediment, the Wombat maar lake
was unambiguously nested in a terrestrial environment. The climate during the Late
Cretaceous in Arctic regions was significantly warmer than present, with a high in Turonian

and declining by the Campanian (Barron, 1983, Amiot et al., 2004).

2.5.2 Early freshwater diatom occurrence

The zircon U-Pb geochronology for the Wombat maar sediments provides substantial new
insight into the evolutionary origin of freshwater diatoms. Diatoms are unicellular,
photosynthetic organisms with opaline silica cell walls that are present in numerous aquatic
habitats worldwide. The fossil record suggests that marine diatoms radiated extensively
during the Early Cretaceous (Siver et al., 2018), but there is little record to constrain the
timing of their expansion into freshwater habitats (Harwood et al., 2007). The most recent
work on the early freshwater diatom fossil record suggests that diatoms colonized freshwater
systems sometime during the Late Cretaceous but did not become prominent until the middle
to late Eocene (Siver et al., 2010; Benson and Kociolek, 2012). Carbonaceous cherts from
the Late Cretaceous Tarahumara Formation in Mexico (ca. 70 Ma) contain one of the oldest
known freshwater diatom occurrences (Chacén-Baca et al., 2002). However, the uncertainty

in the conditions of the habitat and absence of a positive taxonomic assignment have led to
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questions whether diatoms indeed inhabited a freshwater environment (Sims et al., 2006).
Latest Cretaceous (ca. 65 Ma) occurrences of the freshwater diatom taxon Aulacoseira are
known from the Deccan Intertrappean beds (Singh et al., 2006). More recently, freshwater
diatoms were reported from the Battle Formation (ca. 66.5 Ma) in western Canada, including

Aulacoseira and seven other pennate morphotypes (Siver et al., 2018).

The Wombat maar sediment have already yielded a diverse and well-preserved siliceous
microfossil assemblage (Siver et al., 2016). The microfossil assemblage includes the new
centric freshwater diatom genus Fideliacyclus wombatiensis, and abundant remains of
chryophyte cysts, synurophyte and chrysophyte scales, heliozoans, and other diatoms. The
U-Pb zircon age of ca. 83 Ma reported here for the Wombat maar sediment fill suggests that
this locality is a strong candidate for the world’s oldest freshwater diatom occurrence.
Considering that Western Interior Seaway extended over the Lac de Gras region at some
point during the Cretaceous (Sweet et al., 2003) (Fig 2.17), it is plausible that marine diatom
species colonized freshwater environments in the region during the early Campanian seaway
regression, in turn acquiring complex cell wall morphologies as they adapted to this new

environment.

2.5.3 Paleogeography of the Western Interior Seaway
During most of the Cretaceous, the Western Interior Seaway (WIS) covered a vast portion of
North America spanning more than 6000 km from the Gulf of Mexico to the Arctic Ocean

with a width of more than 1600 km at the maximum extent (Leckie et al., 1991; Hay, 1995).
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The WIS first linked the Gulf of Mexico and the Arctic Ocean during late Albanian, with
permanent connectivity established during the Cenomanian and persisting at least until the
early Maastrichtian (Slattery et al., 2015). At broad spatial scales, paleogeographic changes
of the WIS are characterized by a periodic transgressive-regressive cycle as a response to
global and regional climatic fluctuations. The reconstruction of the WIS involves a multitude
of data sets, from outcrops and hydrocarbon wells spanning a large area, that are
nevertheless commonly limited by hiatuses in the stratigraphic record or patchy spatial
coverage of outcrops. In particular, broad swaths of subarctic Canada, such as the Lac de
Gras region, are devoid of known Phanerozoic sedimentary rocks, making it difficult to infer

WIS paleogeography in those areas.

In this context, the Wombat maar lake sequence represent the only intact early Campanian
sediment record in the Lac de Gras region. Combined with insight from xenoliths in Lac de
Gras kimberlite facies, these records provide an important glimpse into depositional
conditions during a period that is otherwise unrepresented in the rock record of that region.
Organic geochemistry, palynology, and petrophysical analysis allow us to determine the age
and the depositional environment of the Tertiary and Cretaceous sedimentary cover during
and before kimberlite emplacement. The (U-Th)/He apatite (AHe) thermochronometry,
combined with vitrinite reflectance data from sedimentary xenoliths, also yields estimates
for the approximate burial depth of the strata. Here I synthesize results from sedimentary

xenoliths from eight volcanoclastic kimberlite fills (DO18, EG130-1, T14, AB2, Scorpion,
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Panda, Hawk and Hardy Lake) and four kimberlitic maar sedimentary fills (Giraffe, Sue,

Wombat, KBS-3).

The vitrinite reflectance and AHe thermochronometry data suggest that the Lac de Gras
region was covered by Cretaceous strata ranging between 1.4 — 2.7 km, which is
significantly thicker than early estimates between 100 to <300 m (Stasiuk et al., 2002; Ault
et al., 2015). The palynology of sedimentary xenoliths provides further context on the
inferred stratigraphic order in the region. Between ca. 90 - 105 Ma, palynomorph
assemblages and kerogen types in kimberlite sedimentary xenoliths indicate a marine or
marginal marine depositional environment, suggesting that the Lac de Gras area was near the
sea level at this time (Nassichuk and MclIntyre, 1995; McKinlay et al., 1998; Stasiuk et al.,
2002; Sweet et al., 2003). Sedimentary xenoliths dating between ca. 80 — 90 Ma are only
encountered in Hardy Lake kimberlites, which contain terrestrial Type III kerogen but likely
with significant reworking and recycling of organic matter (Stasiuk et al., 2002). During this
time, Sweet et al., suggested a significant hiatus in deposition due to absence of age

indicative pollen assemblages (2003).

However, the results of this study indicate that during the early Campanian the WIS
regressed and the Lac de Gras area was above sea level. Data from EG130-1 and Hardy Lake
kimberlite xenoliths suggest that the WIS presumably transgressed again during the late
Campanian, submerging the Lac de Gras region under full marine conditions followed by a

hiatus between ca. 69 — 73 Ma (McKinlay et al., 1998; Stasiuk et al., 2002; Sweet et al.,
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2003). Xenoliths from kimberlites EG130-1, AB2, T14, and post-eruptive sediment fills
from Giraffe, Panda, and KB-3 pipes, suggest that non-marine conditions persisted between
~ 45 - 69 Ma, with a gap in record between ca 56 - 61 Ma (McKinlay et al., 1998; Stasiuk et
al., 2002; Hamblin et al., 2003; Sweet et al., 2003; Wolfe et al., 2012). At some point after ~
45 Ma, most of the Cretaceous strata must have been eroded away by river systems or
preserved only regionally as a kimberlitic maar lake fills. (Bell, 1885; Duk-Rodkin and
Hughes, 1994). Hence, at Lac de Gras, at least four periods of erosion/hiatuses in deposition
can be inferred: ca. 95 — 98 Ma, ca. 83 — 90 Ma, ca. 69 — 73 Ma and ca. 56 — 61 Ma, based
on the absence of the palynomorphs indicative of this time periods in the sedimentary
xenoliths records (Sweet et al., 2003). The exact timing of erosional events and the final
complete unroofing of Lac de Gras is not clear but it probably occurred during post-100 Ma
elevation gain of the Slave craton due to the effects of Cordilleran orogenesis along the

western plate boundary of North America (Ault et al., 2013).

Regional correlation of marine and non-marine sedimentation between contemporaneous
sequences along the Manitoba Escarpment, Brackett Basin, and Sverdrup Basin, together
with inferred stratigraphy in Lac de Gras area, provides a broader perspective on WIS
paleogeography (Fig 2.17). The Brackett Basin, ~650 km WNW of the Wombat locality, is
the closest sedimentary sequence to the Lac de Gras area (Sweet et al., 1989). The Little
Bear Formation in the Brackett Basin has been interpreted as a series of delta-front or
propagating shoreface deposits, contains both marine and non-marine strata, and is roughly

contemporaneous to that of the Wombat maar sedimentary fill (Dixon, 1999). The
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underlying and overlying Slate River/Trevor (Cenomanian—Turonian) and East Fork
(Campanian—Maastrichtian) Formations are characterized as a marine deposits, suggesting a
Turonian regression of the WIS and transgression sometime in the Late Campanian (Y orath

and Cook, 1981).

The Manitoba Escarpment is a mostly marine Cretaceous sedimentary sequence located
~1300 km SE of the Lac de Gras region, roughly along depositional strike. The Cenomanian
to Late Campanian formations in the Manitoba Escarpment were deposited in a marine
setting near the eastern margin of the Western Canada Sedimentary Basin (Braman et al.,
1995; Schroder-Adams et al., 2001). The late Maastrichtian to Paleocene formations (the
Boissevain Court and Turtle Mountain Formations) are mainly non-marine and represent

final regression of WIS in the region.

The Sverdrup Basin is a rift basin located over the Queen Elizabeth Islands and inter-island
channels ~1500 km NE of the Lac de Gras region. The predominately marine Cretaceous
strata of the Bastion Ridge Formation, the Kanguk Formation, and a lower section of the
Eureka Sound Group combined span the Cenomanian to early-middle Paleocene suggesting
the region was below sea level for the most of the Late Cretaceous (Ricketts and Stephenson,
1994; Embry and Beauchamp, 2019). By the middle-late Paleocene the area was
predominately non-marine, as indicated by terrestrial plant fossils in the Iceberg Bay

Formation within Eureka Sound Group on Ellesmere Island (Williams et al., 2009).
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The ages and depositional environments of stratigraphic sequences in the Brackett Basin,
Manitoba Escarpment, and Sverdrup Basin, together with the xenolith and kimberlite
sediment records from Lac de Gras, make it possible to infer patterns of regression-
transgression of the northern reaches of WIS shoreline (Fig. 2.17). Marine conditions
persisted at all of the localities from Cenomanian to at least middle-Turonian time, followed
by hiatuses in the Brackett Basin and Lac de Gras lasting at least until the late Santonian. An
early Campanian member of the Little Bear Formation and the Wombat maar lake sequence
both contain unambiguous terrestrial signatures, suggesting at least a regional narrowing of
the WIS and a shift to a non-marine environment at the Lac de Gras site, while the Manitoba
Escarpment likely had hiatus in deposition and Sverdrup Basin remained below the sea level.
The subsequent middle — late Campanian transgression of the WIS reversed conditions back
to the full/marginal marine environment in the Lac de Gras region and the Brackett Basin.
The timing of final shift from marine to permanent terrestrial setting in the Lac de Gras
region is unclear but probably occurred sometime in the late Maastrichtian to early

Paleocene.

2.5.4 Late Cretaceous volcanism and regional correlation

Late Cretaceous silicic tephra beds are common in sedimentary strata of the Sverdrup Basin
and throughout Alaska, but the two tephra deposits characterized here from the Wombat
maar sediment are the first to be described from the Slave craton. Both tephra samples,
UA3135 and UA3134, are very fine silica-poor rhyolites with trace element composition

pointing to an origin in a continental magmatic arc (Figs. 2.9, 2.10). This magmatic affinity
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indicates a markedly distal origin for the Wombat tephras, with potential source regions in
NE Eurasia (Okhotsk-Chukotka Volcanic Belt), NW North America (e.g., the Alaska Range-
Talkeetna Mountain magmatic belt, Kluane arc, Coast arc, Idaho batholiths), and the

Canadian High Arctic.

The Okhotsk-Chukotka Volcanic Belt (OCVB) is a subduction-related magmatic province in
NE Eurasia, located on the western coast of the Sea of Okhotsk to the east of the Chuckhi
Peninsula. The OCVB is characterized by voluminous high-silica magmatism (SiO2 > 80
vol.%) that occurred in five main episodes, with the most recent at ca. 79 — 82 Ma
(Tikhomirov et al., 2012; Pease et al., 2018). The zircon U-Pb ages for the rhyolitic
ignimbrites of the western Okhotsk flank zone of the OCVB suggest occurrence of
volcanism from the Coniacian to the Campanian — Maastrichtian boundary (ca. 70 — 83 Ma),
which is contemporaneous with the Wombat tephra zircon U-Pb ages (Tikhomirov et al.,
2012). The OCVB is located > 2500 km NW of the Wombat locality requiring a very
intense, large scale Plinian-type volcanism in order to reach that far east. Prevailing winds
would plausibly transport a tephra plume from the OVCB eastwards towards the Lac de Gras
region in northern North America, consistent with the lack of OVCB tephra deposits west of

the source region (Spicer and Herman, 2010).

Several regions of NW North America host ca. 60 - 80 Ma plutons and volcanic rocks with
geochemical compositions typical of a continental-margin volcanic settings (Moll-Stalcup,

1994; Cecil et al/, 2011; Gaschnig et al., 2011). However, post-Cretaceous tectonic activity
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and erosion left only local evidence for magmatism. The evidence from preserved localities
such as Coast arc, Kluane arc, and Idaho batholiths, combined with evidence from detrital
zircon U-Pb dating, all suggest active arc volcanism spanning most of the Late Cretaceous
(Trop et al., 2005) and thus are plausible source regions for the Wombat rhyolitic tephra

beds.

The Hansen Point Volcanic Complex (HPVC) on Ellesmere Island is a less likely source for
the Wombat tephra beds because most of the HPVC rocks have an intarplate geochemical
signature and probably were erupted in a continental rift setting (Balkwill, 1978). The sparse
radiometric age data from the HPVC suggest a broad range between ca. 75 — 95 Ma, which
makes temporal correlation with the Wombat samples more difficult (Trettin and Parrish,
1987; Estrada and Henjes-Kunst, 2004, 2013; Bono et al., 2013). The geochemical affinity
of the rocks and sparsity of the age data thus make the HPVC an unlikely candidate for the

eruption source of the Wombat tephra beds.

Middle — late Cretaceous bentonite and tephra deposits that are potential correlatives for the
Wombat tephra beds occur extensively in northern Alaska (e.g. Seabee Formation, Schrader
Bluff Formation, Prince Creek Formation, Hue Shale Formation), the Mackenzie Delta (e.g.
Boundary Creek Formation, Smoking Hills Formation) and the Canadian Arctic Islands
(Kanguk Formation) (e.g. Molenaar et al., 1987; Bacon et al., 1990; Parsons, 1993; Kemp,
1994, Dixon, 1996; Bergman et al., 2006). Late Cretaceous rhyolitic tephra beds and

bentonites were also recovered in piston cores from the Northwind Ridge, Chukchi
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Borderland; however potassium — argon ages on biotite suggest that they are somewhat older
(Cenomanian) than the Wombat samples (Phillips et al., 1998). It has been suggested that
Cretaceous tephra deposits in northern Alaska and the Mackenzie Delta likely were derived
from OCVB caldera-forming eruptions (Miller et al., 2002; Bergman et al., 2006), but
absence of detailed published geochemical and age data make it difficult correlate them

individually with the Wombat samples glass geochemistry.

The Upper Cretaceous tephra deposits preserved in the Kanguk Formation (Canadian Arctic
Archipelago), however, have been characterized using major and trace element glass
geochemistry by Kemp (1993). The age of the individual tephra deposits described by Kemp
(1993) is uncertain, but SIMS and CA-ID-TIMS U-Pb ages on zircon from Kanguk
Formation bentonites suggests volcanism spanning Cenomanian to early Campanian time
(ca. 93 Ma — 83 Ma), with the youngest bentonites in the upper section of the Kanguk
Formation dating at 83.1 +1.0/-2.1 Ma (bentonite S PH0256) and 83.80 = 0.21 Ma

(bentonite C84) (Davis et al., 2017; Pointon et al., 2019).

The Kanguk Formation tephra beds are mostly fine-grained high-silica rhyolites that
probably originated in a continental magmatic arc setting (Kemp, 1993). The trace element
geochemistry broadly matches those found in the Wombat maar (eg. samples UT940,
UT629), but with several major distinctions. The geochemical composition of the glass
shows higher LREE and Sm, and typically lower Ba, than glasses in the Wombat maar

samples. The Wombat maar tephra glasses have a high negative Eu anomaly (Eu/Eu*n =
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0.62 - 0.77) compared to the moderate negative Eu anomaly (Euw/Eu*x=0.24 — 0.71) for

Kanguk Formation tephra.

Importantly, potential geochemical correlation of Kanguk Formation and Wombat maar
tephras will require single-grain reanalysis of the trace element composition using modern
instrumentation (LA-ICP-MS), since the original analyses of Kemp (1993) were conducted
by older, lower sensitivity LA-ICP-MS methods and also could have been a subject to
microcryst contamination. Nevertheless, the broadly similar tephra characteristics suggest
that Wombat tephra deposits probably originated from a similar tectonomagmatic setting as
those found in the Kanguk Formation. Based on their geochemistry, the distal nature of the
glass and mineral content, and paleo-wind inferences, the most likely eruption source area
for the Wombat tephra beds is the OCVB, although northern Alaska sources cannot be
discounted entirely. The sparse availability of reliable geochemical and geochronological
data for Late Cretaceous tephra deposits in northern North America is a major hurdle for
reliable correlation of these distal tephra tephra beds, despite their potential applicability as

tephrostratigraphic marker horizons.

2.6 CONCLUSION

The well preserved, post-eruptive sedimentary fill of the Wombat maar provides a unique
paleoenvironmental snapshot of the Late Cretaceous in the Lac de Gras region, which is
otherwise largely devoid of any Phanerozoic strata. The lacustrine sedimentary succession

recorded in the two exploration drill cores examined here was deposited in a small,
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predominantly anoxic lake in a terrestrial setting, with substantial contribution of C; plant
material to the organic-rich lake sediments inferred from bulk sediment geochemical

parameters.

The geochronology of the Wombat maar sedimentary fill, as determined by zircon U-Pb
dates from distal rhyolitic tephra bed found near the base of the lake sequence, yields a close
minimum age for onset of lacustrine deposition at 82.36 + 0.44 Ma (early Campanian). This
chronology suggests that siliceous microfossils from the Wombat maar sediments represent

the oldest-known occurrence of freshwater diatoms.

Trace and major element composition of rhyolitic tephra beds in the Wombat maar fill
expand the currently limited knowledge on the extent of Late Cretaceous volcanism in arctic
and subarctic Canada. Wombat tephra age and glass geochemistry suggest that the most
probable volcanic sources for the tephra beds are the Okhotsk-Chukotka Volcanic Belt in NE
Eurasia or northern Alaska sourcing. Trace element composition of the Wombat tephra
yields potential correlation with distal tephra recovered from the Kanguk Formation on
Ellesmere Island, but sparse geochronology for the Kanguk Formation tephra beds is a

source of ambiguity.

The Wombat maar sediments are the only record of the early Campanian terrestrial strata in
Lac de Gras, providing a paleoenvironmental snapshot that supplements limited information

from xenoliths of now-eroded Mesozoic cover rock in Lac de Gras kimberlites. Together

41



with stratigraphic sequences from sedimentary basins elsewhere in midcontinent Canada, the
Wombat maar sediment provide new insight on Lake Cretaceous and Paleogene

paleogeography of a data-poor region of the Western Interior Seaway.
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Figure 2.1. Map of the Wombat locality and locations of other kimberlite pipes in the Lac de

Gras, Northwest Territories, Canada (adapted from Stasiuk et al., 2002). Azimuths for the

Wombat pipe exploration drill cores are indicated by short dashes on the red location
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Figure 2.5. Feature of the Wombat pipe maar sediments. A. Representative image of
rhythmically laminated sediment from sample 27-1-34 (core depth 207.48 m; V.E. depth
179.7 m; core CH93-29). Arrows indicate vivianite (VV) inclusions and UP arrow indicates
younging direction in the core. B. Partially preserved angiosperm leaf fossil from samples
40-3-30 (core depth 274.22 m; V.E. depth 237.5 m; core 00-05). C. Well preserved fish
fossil found in core 00-05, box 40 (Photo credit: Dr. Alberto Reyes). D. Cross polarized light
(XPL) image of sample 26-1-120 (core depth 201.4 m; V.E. depth174.4 m; core 00-05)
indicating heterogeneous nature of lamination within varved sediment. E. Plane polarized
light (PPL) image of well-preserved volcanic glass shards from the tephra sample 40-2-110

(core depth 273.43 m; V.E. depth 236.8 m; core 00-05).
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Additional sedimentary xenolith and maar lake sedimentary fill data from Nassichuk and

Mclntyre, 1995; McKinlay et al., 1998; Stasiuk et al., 2002; Stasiuk et al., 2006.
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CHAPTER 3. CONCLUSION

3.1 THESIS SUMMARY

Maar lake sedimentary records from Lac de Gras kimberlites provide rare glimpses of
ancient paleoenvironments in subarctic Canada. These records potentially represent the only
preserved and intact evidence of now-eroded sedimentary rocks for a broad swath of
northern Canada that essentially lacks any pre-Late Quaternary Phanerozoic sedimentary

record.

The work presented in this thesis addressed two fundamental questions regarding a relatively
unstudied sedimentary record from the Wombat kimberlite pipe, which comprises over 195
m of fine-grained, laminated post-eruptive sedimentary fill: (1) what is the age of this
sediment sequence?, and (2) what is the broad paleoenvironmental context for this sediment
sequence? A distal rhyolitic tephra in the Wombat maar sediments was dated by zircon U-Pb
methods to 82.36 + 0.44 Ma, providing a minimum age for emplacement of the Wombat
pipe and a close constraining age for the onset of maar lake sedimentation. A major
implication is that Wombat pipe is thus the only kimberlite in the Lac De Gras region that
predates 80 Ma (except the Carboniferous Eddie kimberlite), which implies that other older
pipes maybe present in the region. This work also demonstrates that geochronology on post-
eruptive sediments may be a valuable tool for determining kimberlite emplacement ages
when traditional methods on primary kimberlitic mineral phases are unsuccessful. In

addition to the direct geochronology of the Wombat sediments, the tephra beds interbedded
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in the maar sediments are potential correlatives to distal tephras in other high-latitude

sedimentary records.

Results of bulk sediment geochemical analyses through the Wombat post-eruptive sediment
fill indicate that the maar lake setting is likely a small, monomictic or meromictic lake
situated in a relatively warm terrestrial environment during Late Creatceous. Anoxic bottom
water conditions in the Wombat maar lake contributed to excellent preservation of
freshwater microfossils, fully articulated fish fossils, and plant detritus. This study presents
the second detailed description of maar lake deposit in Canada, with the first one recovered
from the middle Eocene Giraffe kimberlite maar located ~ 20 km NW of the Wombat
locality. The Wombat maar sediments complement limited information on Slave Craton
paleoenvironments derived from xenoliths of now-eroded Mesozoic cover rock in Lac de
Gras kimberlites. When considered with the stratigraphic framework of Late Cretaceous
sedimentary rocks elsewhere in midcontinent Canada, results presented here provide new
insight on Lake Cretaceous and Paleogene paleogeography of a data-poor region of the

Western Interior Seaway.

3.2 FUTURE WORK

From the results of this study it is clear that kimberlitic maar lake deposits have strong
potential for developing paleoenvironment, tectonic, paleogeographic, and paleontological
records on the Canadian Shield. However, much more work is needed to fully understand

these extraordinary sedimentary archives. This study provides a first glance at the
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depositional setting of the Wombat maar lake. The geochronological approach used in this
study can be potentially applied to all pre-Quaternary lake deposits that contain deposits of
tephra or bentonite in the sedimentary sequence. However, the Wombat kimberlite still
requires clarification on the age of emplacement by dating primary minerals derived from
the primary kimberlite samples. This will require more scientific drilling to obtain needed

kimberlite samples and additional maar sediments.

The bulk geochemical analysis of the sediment provides valuable information on the
depositional environment that persisted during maar sedimentation, with the key point from
this work being the excellent preservation of organic material. New pollen analyses of the
Wombat maar sediments is in process, with potential for quantitative paleoclimate
reconstruction based on modern analogue techniques. A related focus of future work should
be analysis of biomarkers such as leaf waxes and other lipids, which have yielded
independent quantitative paleoclimate estimates in the nearby Giraffe kimberlite pipe.
Furthermore, due to the excellent preservation conditions of the Wombat maar sediments,
there is excellent potential for paleontological research of the Late Cretaceous flora and
fauna in Lac de Gras during this time. The varved nature of the sediment has potential for
future sedimentological research on sedimentation rates and further geochemical analysis of
annually resolved mass accumulation rates of important elements (e.g. mercury). The
research provided in this thesis gives the first detailed description of the geochronology and
broad paleoenvironmental reconstruction of the Wombat maar, but much more work is

required to fully understand this unique sedimentary archive.
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APPENDIX A

METHODS A.1 ZIRCON AND VOLCANIC GLASS SEPARATION TECHNIQUES
Samples UA3134 (40-2-110) and UA3135 (39-3-39) were collected from the Wombat core
00-05 in April, 2018 at the Northwest Territories Geological Survey core facility. All zircon
and volcanic glass separations and analysis were conducted at the University of Alberta.
First, the samples were disintegrated using ultrasonic bath to separate clays from the
minerals and glass and then treated with hydrogen peroxide to remove the organics. The bulk
tephra samples were wet sieved into discrete grain size fractions using 250 um, 149 pm, 75
um and 45 um mash sieves. The 149 um - 75 pm fraction was used for further separation,
due to the predominance <45 pm material. A handheld magnet was used to remove
magnetite and then the non-magnetic fraction was further concentrated by magnetic
separation at 0.2, 0.4, 0.6 amps using a Frantz LB1 magnetic separator. The remaining non-
magnetic fraction was then density separated using tetrabromoethane (TBE) at a density of
2.8 g/cm? and again purified using methylene iodide (MI) at a density of 3.3 g/cm?. Zircon
grains were hand picked from a heavy mineral-rich fraction under a binocular microscope
and mounted in a standard 1" epoxy puck. The grains were polished to remove adhered glass
and to expose the grains centers. Imaging under petrographic microscope combined with
cathodoluminescence and electron backscatter imaging on a Zeiss EVO LS15 EP-SEM was
used to identify internal zircon textures, inclusions and morphology. ImageJ software was
used to characterize individual zircon shape and size. Similarly, the light, glass rich fraction

was epoxy mounted in acrylic puck, polished and carbon coated. Images of volcanic glass
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were obtained by petrographic microscope. Cathodoluminescence and electron backscatter

imaging on the volcanic glass shards was not performed.

METHODS A.2 ZIRCON U-Pb DATING BY LA-ICP-MS

Zircon U-Pb isotope data were collected using a NewWave 213 nm laser system coupled
with a NuPlasma I Multi-Collector ICP Mass Spectrometer (MC-ICPMS) at University of
Alberta. The analytical procedure involved using a 30 pm beam diameter, 4 Hz repetition
rate, 3 J/cm? energy density and 30 s ablation time. A standard-sample-standard method
was used to correct instrumental drift, U-Pb fractionation and reproducibility by analyzing
GJ-1(?%Pb/?*8U,ge = 600.7 £ 1.1 Ma; Jackson et al., 2004) primary standard reference zircon
grains along with PleSovice (2%Pb/?*8U,ge = 337.13 £ 0.37 Ma; Slama et al., 2008) and 94-35
(?%Pb/?*8U,ge = 55.5 + 1.5 Ma; Klepeis et al., 1998) as a secondary zircon standards after
each set of 10 unknowns. The reported 2°°Pb/>38U ages of the standard reference zircon
grains agree within uncertainty with those published in the literature, with weighted means
of ages for PleSovice zircon standard at 2°°Pb/>*¥Uag = 338.59 +3.23 Ma (n="7, MSWD =
0.56) and the 94-35 zircon standard at 2°°Pb/>3¥Uug = 55.67 £0.71 (n =5, MWD = 1.64).
The quadratic addition was used to propagate external uncertainties and the 2c analytical
reproducibility estimated from GJ-1 primary standard for 2°°Pb/>¥U ~ 1.9 % . 233U was
calculated from 23U assuming 2*U/%*°U = 137.818 (Hiess et al., 2012) and U-Pb ages were

calculated using the decay constants from Jaffey et al., (1971).
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All zircon analyses were corrected for common lead using the “207 method” and an initial
Pb composition taken from Stacey and Kramers (1975). This method is ideal for samples
that are expected to be concordant and for applications requiring 2°°Pb/>*3U to be determined
as accurately as possible. The fraction of the common lead is calculated from the theoretical
207Pb/2%Pby, estimated initial common 2°’Pb/?%Pb, and measured 2°’Pb/?°Pby, using:
£ = (VPb/2%Ph, - 27Pb/20Phy,) / (207Pb/2%Ph - 27Pb/205Phy)
The radiogenic 2°°Pb*/>38U can then be calculated from the measured 2°°Pb/>*3U,, using:
206pb* /238U = £ x (29Pb/28Un)
The percent of common Pb in 2°Pb/?*U is calculated by using:
206pb.= f x 100
The 2°Pb*/?38U is used for the zircon age calculation, due to the difficulty in measuring 2°’Pb
in young samples resulting in larger 20’Pb/?%Pb uncertainty and because the range in
radiogenic 20’Pb/?%Pb throughout the Phanerozoic (0.0461 — 0.0584) is too small to provide
a sensitive measure of the age. The uncorrected data were first plotted on a Wetherill
diagram using IsoplotR software to illustrate the effects of common Pb and Pb loss in U-Pb
isotopic analysis of the zircon grains (Wetherill, 1956; R Core Team, 2013; Vermeesch,
2018). The final age for the tephra zircon crystallization was calculated using the weighted
mean of the common Pb corrected 2°°Pb/>38U ages for the youngest group of zircon analysis

overlapping within 2 uncertainty.
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METHODS A.3 83C, Corg:Niot, Corg

Forty-three of the Wombat core samples were ground with a mortar and pestle and weighted.
The carbonates were removed by treating samples with 1 N HCI over 24 hours. The
decalcifed samples were washed, freeze-dried, weighted (2-5 mg) on a microscale, and
loaded into a tin capsules. The capsules were then combusted in excess oxygen using a
FLASH HT Plus Elemental Analyzer with residual nitrous oxides reduced by reaction with
Cu. Total organic carbon (Corg) and total nitrogen (Ni) were determined with Thermal
Conductivity Detector (TCD) and Thermo Fisher Delta V Plus isotope-ratio mass
spectrometer was used to determine carbon isotope composition. The IRMS soil standard
were placed through each run of samples at a range of weights, the standards used include:
High Organic Content Sediment IRMS Standard (Corg = 7.45 £ 0.14 wt.%; Niot = 0.52 £ 0.02

wt.%; 8'3C -28.85 £ 0.20 %o, VPDB) and Low Organic Content Sediment IRMS Standard

(Corg = 1.61 £ 0.09 Wt.%; Niot= 0.133 = 0.023 wt.%; 6'°C = -26.66 £ 0.24 %o, VPDB).

Stable isotope results are expressed in delta () notation and are measured in per mil (%o)
difference between the *C/'?C isotope ratio of the sample and that of the international
standard. The carbon isotope (8'°C) values were determined by calibration of '3C/!2C isotope
ratio against the Vienna Pee Dee Belemnite (VPDB; Craig, 1957) standard using:

S13C = [(BC/C)sampte / (BPC/M2C)vpp)] — 1 X 1000
The difference between the certified 5'°C value and the linearity-corrected raw 8'*C of the
IRMS standards was used to derive C correction factor which was then added to the linearity

corrected 8'3C values of the unknowns. The analytical reproducibility of 0.2 %o (25) for §'*C
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was based on replicate analysis of IRMS soil standards. The weight percentage ratio between
total organic carbon (Corg) and total nitrogen (Niot ) was used to derive Corg:Niot, Which can be
multiplied by 1.167 (the ratio of atomic weights of carbon and nitrogen) to provide atomic

Corg:Nio ratios (Leng and Lewis, 2017).

METHODS A.4 GLASS MAJOR AND TRACE ELEMENT GEOCHEMISTRY

The major element compositions were examined using bivariate plots to identify outliers and
examine the effect of alteration and mobility of the elements. The outliers analysis are
defined as points lying beyond 2c uncertainty of the main oxide geochemical population and
were attributed mainly to the accidental analysis of the mineral microcrysts in the glass

matrix.

The rare earth element (REE) compositions were normalized to that of chondrite following
Sun and McDonough (1989). The light REE (LREE) were compared to heavy REE (HREE)
using (La/Yb)n as a proxy for a degree of fractionation (where “N” indicates that the ratio of
La and YD is normalized to the abundances in chondrite). La is a LRRE and is highly
incompatible in spinel and garnet, while Yb is a HREE is incompatible in spinel, but not

garnet.

The Eu and Ce anomalies were calculated as:
Euw/Eu*n= (Eu)xn / [(Sm)x x (Gd)N]%® (Taylor and McLennan, 1985)

and

82



Ce/Ce*n =3(Ce)n / [2(La)n+ (Nd)n] (Sholkovitz, 1995)
The “N” depicts the chondrite normalized values. The Eu/Eu*y and Ce/Ce*x values of 1
indicate that elements are not fractionated relative to the crustal composition, values less

than 1 indicate negative anomaly and more than 1 indicate a positive anomaly.

The degree of chemical alteration of the glass is estimated using the chemical index of
alteration (CIA):

CIA=[ALO3 / (ALO3+Ca0+Na,O+K>0)] x 100 (Nesbitt and Young, 1984)
For example, the low (< 50) CIA of tephra deposits 2suggests the absence of chemical
weathering due to the conservation of mobile cations Ca®*, Na* and K* relative to the

immobile Al.
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Table A.1 LA-ICP-MS operating conditions

Laboratory Name

Canadian Center for isotopic Microanalysis, Dept. of Earth & Atmos.Sci., University of Alberta

sample type zircon

imaging Cathodoluminescense, BSE

Laser system ESI/New Wave Research UP213 Nd YAG
ablation cell New Wave/ESI standard cell, 33cm3 volume
laser wavelength 213nm

pulse width <4 ns

fluence ~2-3J/cm2

repetition rate 4 Hz

ablation duration 30s

ablation pit depth ~10-15um

spot diameter 30um

sampling mode

spot ablation

carrier gas 100% ultrapure Helium

cell carrier gas flow 0.5L/min

ICPMS NuPlasma | Multi-Collector ICP-MS
sample introduction Ablation aerosol

RF power 1550W

make up gas flow

~0.55 L/min Ar + 4 mis/min N ; Makeup gas and ablated aerosol mixed in 30cc syringe mixer volume

detection system

collector array consisting of 12 Faraday buckets and three ion counters

masses measured

238, 235, 208-204

dwell times 238 20ms, 235, 208-206 30ms, 204 40ms total sweep time 200 ms
deadtime 40 ns

data processing Offline, internal spreadhsheet

gas blank 25 second on peak zero subtratction

calibration strategy

GJ-1 used as primary reference material, Pleosvice and 94-35 used for secondary validation

data processing

U-Pb fractionation and normalization, uncertainty propagation in external spreadsheet

mass discrimination

normalized to GJ-1

common Pb correction

207 method

Uncertainty level/propagation

Uncertainties are 2 sigma ablsolute. External unctertainties propagted by quadratic addition.
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Table B.4 Major-element Glass Analysis for Standard Reference Glass Samples

b

Sample name Si0, o, AO;  FeOt®  MnO MgO cao Naz0 K0 cl T(O/t?' Hi‘;
D3506_001 7494 0.1 13.19 152 0.08 004 0.70 3.96 5.21 033 10000 079
D3506 002 74.86 0.05 13.20 153 0.04 007 075 413 512 033 10000 088
D3506_003 74.71 0.06 13.23 154 0.07 0.06 073 406 5.25 037 10000 128
D3506 004 74.94 0.06 13.20 158 0.06 002 075 3.99 5.16 031 10000 1.8
D3506_005 74.90 0.12 13.04 167 0.06 005 074 395 5.21 032 10000 077
D3506_006 7483 0.07 13.35 1.48 0.09 005 071 419 5.01 028 10000 054
ID3506_007 7475 0.10 1333 152 0.05 005 069 409 517 033 10000 102
ID3506_008 75.01 0.03 13.11 151 0.09 006 072 395 5.21 037 10000 069
ID3506_009 74.90 0.10 13.19 1,60 0.06 002 072 4.06 5.0 034 10000 025
ID3506_010 74.80 0.10 1331 145 0.09 005 073 407 5.6 030 10000 072
ID3506_011 74.95 0.11 1311 154 0.05 005 0.76 402 5.14 034 10000 082
ID3506_012 7470 0.07 1317 158 0.08 006 075 3.99 5.31 037 10000 095
ID3506_013 74.80 0.04 13.18 147 0.03 004 071 423 5.26 030 10000 024
ID3506_014 74.60 0.04 13.27 155 0.08 004 073 423 5.18 036 10000 0.13
ID3506_015 7454 0.10 13.34 165 0.11 0.02 073 398 5.6 034 10000 061
ID3506_016 74.60 0.07 13.27 156 0.06 005 075 404 5.22 037 10000 083
ID3506_017 7450 0.07 13.29 163 0.03 006 0.71 415 527 037 10000 054
ID3506_018 74.66 0.07 13.26 1,60 0.06 004 0.71 420 513 032 10000 055
ID3506_019 74.82 0.07 13.33 154 0.06 004 073 404 5.12 033 10000 075
ID3506_020 74.84 0.08 13.25 153 0.08 004 072 412 5.11 032 10000 069
ID3506_021 74.80 0.06 13.24 1.44 0.06 003 0.71 413 5.29 031 10000 061
ID3506_022 74.92 0.11 13.32 152 0.08 005 072 393 5.0 033 10000 026
Mean 74.79 0.08 13.24 1565 0.07 005 073 407 518 033 10000 069
StDev 0.14 0.03 008 0.06 0.02 001 002 0.09 008 003 000 030
ID 3506 74.10 0.07 13.10 1.55 0.07 0.04 0.74 4.06 5.13 034 9900 -
assayed 0.96 0.03 034 0.06 0.03 002 005 0.28 026 003 ; .
0ld Crow Tephra

OldCrow_001 7525 0.39 13.08 178 0.11 027 139 374 379 026 10000 406
OldCrow_002  75.28 0.29 13.04 170 0.05 026 1.46 393 376 028 10000 3.44
OldCrow_003  75.29 0.29 12.98 177 0.07 024 151 374 389 030 10000 438
OldCrow_004 7525 037 13.10 164 0.08 028 1.34 391 3.85 025 10000 374
OldCrow_005 7461 0.28 12.91 171 0.06 031 142 479 371 028 10000 131
OldCrow_006  75.19 0.36 13.20 176 0.02 027 145 3.75 376 030 10000 626
OldCrow_007 7536 0.29 13.10 1.64 0.06 028 1.44 403 as7 029 10000 161
OldCrow_008 7557 0.27 12.97 170 0.04 032 1.44 3.75 374 027 10000 352
OldCrow_009  75.59 0.33 12.83 1.66 0.09 029 142 3.90 368 027 10000 151
OldCrow_010 7540 0.27 13.18 165 0.09 030 143 363 383 028 10000 5.12
OldCrow_011 7548 0.24 13.11 165 0.02 025 147 3.94 362 026 10000 105
OldCrow_012  75.26 0.36 1325 165 0.08 032 147 3.66 374 029 10000 500
OldCrow_013  75.00 0.30 13.18 170 0.10 029 150 3.86 383 031 10000 414
OldCrow_014  75.44 034 13.08 176 0.02 025 1.44 3.61 385 028 10000 481
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OldCrow_015
OldCrow_016
OldCrow_017
OldCrow_018
OldCrow_019
OldCrow_020
OldCrow_021
OldCrow_022
Mean

StDev

Old Crow

assayed

75.21
75.48
75.43
74.71
75.28
74.58
75.37
75.35
75.24
0.28
75.15

1.00

0.27
0.35
0.36
0.26
0.35
0.30
0.34
0.28
0.31
0.04
0.31
0.05

13.11
13.00
13.10
13.25
13.19
13.03
13.11
13.11
13.09
0.11

13.14
0.34

1.79
1.75
1.73
1.69
1.66
1.70
1.73
1.78
1.71
0.05
1.70
0.14

0.06
0.04
0.06
0.05
0.09
0.07
0.10
0.07
0.07
0.03
0.05
0.03

0.35
0.29
0.24
0.26
0.31
0.31
0.22
0.28
0.28
0.03
0.29
0.03

1.50
1.46
1.42
1.40
1.45
1.49
1.43
1.40
1.44
0.04
1.48
0.05

3.64
3.64
3.54
4.36
3.65
4.38
3.84
3.69
3.86
0.30
3.84
0.26

3.83
3.78
3.86
3.79
3.82
3.91
3.70
3.85
3.78
0.09
3.72
0.26

0.30
0.28
0.32
0.31
0.27
0.30
0.22
0.24
0.28
0.03
0.28
0.05

100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
100.00
0.00
100.00

4.50
3.93
213
3.54
3.38
4.66
4.22
5.07
3.70
1.39
412

Note: All data are normalized to 100%. XXX. All data are in wt% unless otherwise noted.

#FeOt - Total Fe as FeO.
®H,0d - water content by difference (100 - analytical total).
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Table B.S Major-element Glass Analysis for UA3134 (40-2-110)

Sample name Sio, TiO, AlO3 FeOt? MnO MgO Ca0O Na0 K0 Cl 1;‘:/:?' Hff:j ’ Comment
A3134 (40-2-110)
UA3134_025 73.10 0.48 14.32 277 0.10 0.44 1.82 4.06 2.82 0.13 100.00 6.99 °
UA3134_021 73.50 0.35 14.06 257 0.11 0.40 1.73 3.91 3.27 0.14 100.00 7.09 -
UA3134_028 73.53 0.45 14.07 2.69 0.12 0.42 1.85 3.35 3.39 0.17 100.00 7.77 -
UA3134_029 73.58 0.35 13.88 2.60 0.10 0.37 1.71 4.20 3.08 0.17 100.00 717 -
UA3134_030 73.63 0.43 14.04 248 0.09 0.39 174 4.28 2.80 0.15 100.00 7.43 °
UA3134_002 73.65 0.43 13.87 2.63 0.08 0.37 1.80 3.27 3.77 0.18 100.00 8.40 -
UA3134_019 73.83 0.45 13.92 2.65 0.11 0.38 171 3.80 3.03 0.18 100.00 6.97 -
UA3134_006 73.84 0.41 14.09 2.59 0.07 0.40 1.69 3.93 2.88 0.14 100.00 7.38 -
UA3134_020 73.87 0.40 13.96 253 0.11 0.36 1.80 3.19 3.64 0.18 100.00 7.64 °
UA3134_015 73.92 0.48 13.94 2.62 0.10 0.42 1.72 3.51 3.16 0.15 100.00 7.56 -
UA3134_024 73.94 0.36 13.97 272 0.13 0.44 1.79 2.59 3.94 0.15 100.00 8.34 -
UA3134_022 73.94 0.44 14.13 2.63 0.09 0.38 1.73 3.08 3.47 0.14 100.00 7.01 -
UA3134_014 74.01 0.40 13.98 265 0.07 0.40 171 3.49 3.21 0.12 100.00 6.61 °
UA3134_009 74.03 0.43 13.96 2.63 0.11 0.40 1.67 2.81 3.80 0.18 100.00 7.36 -
UA3134_003 7413 0.46 14.06 2.76 0.09 0.41 1.77 1.68 452 0.17 100.00 9.15 -
UA3134_012 74.23 0.44 14.10 2.65 0.12 0.40 1.81 2.563 3.59 0.17 100.00 8.25 :
UA3134_027 7427 043 13.81 268 0.08 0.39 1.82 2.05 4.36 0.14 100.00 8.15 °
UA3134_017 74.29 0.37 13.98 2.64 0.13 0.38 1.71 2.68 3.71 0.15 100.00 7.95 -
UA3134_018 7433 0.45 13.96 2.48 0.09 0.39 171 2.55 3.90 0.16 100.00 8.02 -
UA3134_016 74.36 0.39 13.92 2.63 0.12 0.44 1.68 3.24 3.13 0.13 100.00 7.29 -
UA3134_013 74.41 0.48 14.09 2.61 0.10 0.39 1.77 1.84 4.22 0.12 100.00 8.42 -
UA3134_026 74.42 0.46 13.78 2.58 0.10 0.38 1.76 2.29 4.10 0.16 100.00 8.04 :
UA3134_001 74.43 0.44 13.84 2.47 0.11 0.42 1.82 231 4.04 0.16 100.00 8.55 -
UA3134_005 74.45 0.49 13.90 2.67 0.13 0.44 1.89 1.95 3.99 0.12 100.00 8.91 -
UA3134_023 74.49 0.42 13.79 271 0.10 0.37 172 231 4.00 0.13 100.00 8.04 -
UA3134_011 7454 0.40 13.90 2.47 0.13 0.40 1.54 1.77 4.66 0.24 100.00 15.81 :
UA3134_008 74.54 0.49 13.78 2.63 0.10 0.41 1.68 175 4.47 0.19 100.00 11.03 -
UA3134_010 74.68 0.41 13.78 2.61 0.07 0.43 1.71 1.70 4.50 0.12 100.00 8.44 -
UA3134_007 74.89 0.47 13.82 278 0.07 0.41 1.80 1.66 3.94 0.22 100.00 13.23 -
UA3134_004 75.33 0.25 12.58 217 0.00 0.18 1.18 1.85 6.35 017 100.00 6.71 -
Mean 7414 0.42 13.91 2.61 0.10 0.39 1.73 2.79 3.79 0.16 100.00 8.32 :
StDev 0.46 0.05 0.28 0.12 0.03 0.05 0.12 0.85 0.72 0.03 0.00 1.93 -

Note: All data are normalized to 100%. XXX. All data are in wt% unless otherwise noted.

#FeOt - Total Fe as FeO.

°H,0d - water content by difference (100 - analytical total).
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Table B.6 Major-element Glass Analysis for UA3135 (39-3-39)

Total  H,Od®

Sample name Si0, Tio,  ALO;  FeOt* MmO MgO ca0 Naz0 K0 c %) (%)

Comment

A3135 (39-3-39)

Plagioclase

Plagioclase

Plagioclase

Plagioclase
UA3135_001 72.86 0.62 15.62 2.81 0.13 0.73 1.81 0.84 4.45 0.18 100.00 15.16 :
UA3135_002 73.01 0.59 15.55 2.59 0.14 0.62 175 0.98 4.66 0.12 100.00 11.54 -
UA3135_009 73.42 0.64 15.50 2.54 0.15 0.62 172 0.66 4.62 0.15 100.00 11.94 -
UA3135_003 73.78 0.58 15.66 244 0.13 0.68 177 1.14 3.71 0.13 100.00 10.40 -
UA3135_015 73.80 0.63 15.67 2.56 0.17 0.63 174 1.82 2.89 0.13 100.00 11.01 -
UA3135_012 73.96 0.55 15.67 2.59 0.19 0.65 1.88 1.25 3.14 0.15 100.00 1282 -
UA3135_008 74.05 0.63 15.66 2.52 0.09 0.68 172 1.19 3.34 0.15 100.00 10.78 -
UA3135_013 74.05 0.58 15.65 2.53 0.14 0.60 1.79 0.87 3.69 0.13 100.00 12.14 -
UA3135_014 74.67 0.47 15.37 227 0.16 0.53 1.58 1.87 2.99 0.12 100.00 10.80 -
UA3135_011 76.03 0.52 12.34 1.97 0.11 0.25 0.56 0.88 7.23 0.14 100.00 8.05 -
UA3135_010 76.41 0.52 12.74 2.06 0.09 0.27 0.61 0.96 6.23 0.14 100.00 8.72 -
Mean 74.19 0.57 15.04 244 0.14 0.57 1.54 113 4.27 0.14 10000 11.22 .
StDev 1.13 0.05 1.24 0.25 0.03 0.16 0.48 0.39 1.39 0.02 0.00 192 5

Note: All data are normalized to 100%. XXX. All data are in wt% unless otherwise noted.
#FeOt - Total Fe as FeO.
H,0d - water content by difference (100 - analytical total).
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Table B.9 8'3C, atomic Corg:Ntot, Corg and Niot Analysis for the Wombat Samples

Sample Depth (m)  Core  Corg® (W1%) Nio® (W1%) CorgNie (atomic) 5C (%o vs. PDB) 20 (%o vs. PDB)
6-3-17 66.4 DDH 00-05 3.3 0.15 25.3 -26.0 0.2
7-1-24 67.7 DDH 00-05 41 0.17 28.9 -26.1 0.2
9-1-26 81.6 DDH 00-05 3.5 0.16 24.8 -27.5 0.2
10-3-79 95.4 DDH 00-05 4.4 0.22 23.4 -25.7 0.3
11-2-85 101.3 DDH 00-05 2.2 0.16 16.6 -25.3 0.4
12-3-55 107.6 DDH 00-05 3.2 0.14 26.6 -25.9 0.3
13-3-35 113.6 DDH 00-05 2.6 0.19 15.7 -25.9 0.3
15-4-13 125.0 DDH 00-05 2.4 0.14 20.1 -26.1 0.2
44-1-12 128.6 CH93-29 8.8 0.27 38.4 -28.3 0.4

16-2-140 131.1 DDH 00-05 1.7 0.14 14.6 -25.6 0.3
17-3-10 135.0 DDH 00-05 3.0 0.15 23.1 -25.8 0.3
18-2-30 138.3 DDH 00-05 4.3 0.15 33.0 -26.3 0.3
45-1-95 138.6 CH93-29 2.8 0.16 20.8 -27.0 0.4
19-1-2 140.9 DDH 00-05 3.3 0.16 23.4 -26.4 0.4
20-1-54 144.9 DDH 00-05 4.2 0.19 26.0 -26.0 0.4
47-2-16 149.9 CH93-29 41 0.17 28.9 -26.8 0.2
48-1-60 153.5 CH93-29 2.3 0.14 19.8 -26.5 0.2
21-1-90 152.5 DDH 00-05 1.9 0.15 15.2 -26.0 0.2
49-1-73 157.6 CH93-29 54 0.19 32.5 -27.4 0.2
23-3-5 161.8 DDH 00-05 15 0.11 16.6 -26.0 0.2
50-2-73 163.2 CH93-29 7.7 0.25 35.1 -27.4 0.2
24-3-3 168.1 DDH 00-05 3.4 0.19 20.6 -25.8 0.2
52-1-147 172.7 CH93-29 1.9 0.14 16.1 -26.0 0.3
26-3-75 178.8 DDH 00-05 51 0.20 30.2 -27.7 0.3
54-3-8 182.7 CH93-29 2.6 0.15 20.2 -25.8 0.2
56-1-46 190.1 CH93-29 2.9 0.13 25.6 -26.0 0.3
57-2-140 196.2 CH93-29 25 0.17 175 -26.2 0.3
30-2-44 197.2 DDH 00-05 2.3 0.14 19.3 -26.2 0.3
31-1-45 200.0 DDH 00-05 2.8 0.17 19.4 -25.9 0.2
33-1-30 206.5 DDH 00-05 3.6 0.19 22.2 -26.1 0.2
60-1-125 207 1 CH93-29 2.6 0.15 19.3 -26.3 0.2
61-3-108 2145 CH93-29 2.0 0.16 15.2 -26.5 0.2
35-3-77 218.3 DDH 00-05 15 0.11 16.2 -25.8 0.3
62-4-120 2199 CH93-29 45 0.20 26.6 -27.6 0.3
63-2-142 222.4 CH93-29 8.1 0.25 37.3 -27 1 0.2
64-2-17_18 227.9 CH93-29 4.8 0.21 26.6 -28.4 0.2
38-1-21 226.9 DDH 00-05 3.4 0.16 241 -26.6 0.3
64-4-70 230.4 CH93-29 54 0.19 32.9 -28.8 0.2
65-1-15 233.7 CH93-29 6.2 0.22 32.9 -28.9 0.2
40-1-60 234.4 DDH 00-05 5.8 0.22 30.5 -27.4 0.2
66-1-80 238.0 CH93-29 6.1 0.25 28.3 -30.2 0.2
66-3-43 239.9 CH93-29 2.7 0.14 23.2 -26.0 0.2
67-2-88_90 246.0 CH93-29 1.4 N.D. N.D. -26.5 0.3
67-4-64 248.0 CH93-29 1.1 N.D. N.D. -26.7 0.2

#Organic carbon content.

P Total nitrogen content.
¢ Corg and Ny atomic weight ratio.
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