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Abstract

W ith the emergence of more and more data  stream applications, such as In

ternet traffic measurement, sensor network data monitoring, Web click and 

crawling stream analysis, financial data  alert and so on, researchers realize 

tha t many data  processing models and algorithms well-suited for traditional 

database applications are not applicable in those new streaming scenarios. To 

address the  problem, novel data  stream processing systems and algorithms 

have been proposed within database, theory and computer networking com

munities. Some of the work has led to commercial systems or algorithms which 

have been applied in industry. Streaming algorithms also have found their way 

into non-streaming environments where massive data processing is needed.

This thesis focuses on the algorithmic aspect of da ta  stream processing, 

more specifically, approximation algorithms for answering frequency related 

queries on streaming data. Example-queries are “find the number of similar 

record pairs in a very large relational table” , “identify URLs th a t appear for 

the first time in the crawling stream of a search engine” and “give a  list of IDs 

which appear more frequently in a web click stream” . Efficiently answering 

these queries with bounds on time and space costs is both im portant and chal

lenging, because fast response is either required or desirable in many scenarios, 

and the available computing and fast storage resources are often very limited 

compared with the massive streaming data volume. Thus, approximation al

gorithms trading accuracy for computing or storage resources is a valuable 

option in these cases.

In this thesis, two types of data reduction techniques, namely sketching
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and sampling, are studied. Both techniques are suitable not only for answer

ing frequency related queries over streaming data, but also have a wide range 

of other application areas. This thesis focuses on exploring these powerful 

techniques to  answer frequency related queries under data stream scenarios. 

More precisely, based on well-known sketching and sampling techniques, this 

thesis proposes new data  structures and one-pass approximation algorithms to 

answer membership queries, frequency queries, join/self-join size estimations, 

similarity join/self-join size estimations and result set size estimations for sim

ilarity searches. Both theoretical and experimental analysis show th a t our new 

techniques improve the state-of-the-art.
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Chapter 1

Introduction

In this chapter, we present a few data stream processing applications, review 

some background and related works, and discuss the outline of our .research 

and its contributions.

1.1 Data Stream Applications

A number of applications sharing certain common properties such as the one 

pass requirement and fast data arrival rates can be classified into data stream 

applications. These applications include IP traffic monitoring and measure

ment, real-time stock analysis, Web click stream processing, telephone call 

record analysis, sensor network monitoring, real-time server workload mea

surement, XML streams filtering, online auction bid stream monitoring and so 

on. While these applications have some properties in common, they also have 

some distinct characteristics in terms of data arrival rates, processing speed 

requirements, query types, accuracy requirements and so on. Next, we discuss 

some of these applications in detail.

1
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1.1.1 Network Traffic M onitoring and M easurement

The Internet is becoming increasingly im portant and ubiquitous in today’s 

business, science, education and entertainment, almost touching every aspect 

of our daily lives. It is also growing and changing: new applications emerge 

everyday, and technologies and users push the Internet to new territories.

To better understand the dynamics of a network and to react to changes, 

there is an increasing demand for network traffic monitoring and measurement. 

Following are some examples [74, 57, 26].

•  Network engineering. Internet Service Providers (ISP) can monitor the 

network traffic and alleviate network congestions based on the gathered 

information. For example, network operators can change the routing 

configuration and reroute part of traffic away from congested areas.

•  Network usage-based billing. When an ISP charge customers, network 

traffic to or from customers can directly or indirectly affect the billing 

policy.

• Network intrusion detection. Network attacks often lead to changes in 

traffic patterns. For example, there will be a large number of small flows 

from different IP addresses forwarded to a host under a DDos attack.

•  Network topology and capacity planning. After monitoring or measuring 

the network for weeks or months, ISPs may consider upgrading their 

devices to  eliminate the bottlenecks or change their network topology to 

improve the performance.

C hallenges for In te rn e t  tra ffic  m o n ito rin g  an d  m e asu re m en t. First, 

with the improvement of hardware devices, the volume and speed of Internet 

traffic keep growing. Routers tha t can forward gigabits of IP packets per 

second are common nowadays. A large ISP may collect data from tens of 

thousands of network interfaces [57]. A single high speed network interface 

could generate hundreds of gigabytes of unsampled flow statistics per day if 

fully utilized.

2
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It has been reported tha t ordinary memory (DRAM) is sometimes too slow 

for per packet processing, while fast memory (SRAM) is quite expensive [63, 

12]. For example, to  process a 40-byte packet a t a 40Gbps speed , a router has 

only 8 nanoseconds. DRAM access time (40 nanosecond) is obviously too slow. 

On-chip(l-2 nanoseconds access time) and off-chip SRAM (2-5 nanoseconds 

access time) are faster. But on-chip SRAM is limited (say 4 megabytes) and 

off-chip SRAM is very expensive [63].

Second, the current mechanisms provided for Internet measurements are 

very limited. The main task of a network is to deliver messages. In the original 

design of the Internet, only highly aggregated measurements were considered, 

and today only aggregate loss and utilization statistics are ubiquitously re

ported by router interfaces [57]. Obtaining detailed measurement information 

without incurring too much overhead is not easy.

Third, the resources th a t can be allocated for Internet measurements are 

also limited. Due to  the huge data volume and high forwarding rates, very few 

CP-U cycles and fast memory can be used for traffic measurement at routers. 

Usually, a portion of IP packet headers are collected and sent to  a  remote 

machine to be further analyzed. The required network bandwidth to transm it 

data from a collecting point to an analyzing machine is also high. Even at 

the remote data analyzing point, processing the transm itted data stream is 

not easy: it may need large amount of memory, huge secondary storage and 

powerful CPU.

C u rre n t In te rn e t  m e asu re m en t te ch n iq u es . Due to the speed con

straints in data gathering and processing, different aggregation granularities 

including packet level, flow level and SNMP level aggregations may be ap

plied [100]. At the finest level, IP packet headers such as source/destination 

IP addresses, source/destination port numbers, protocol types and so on are 

extracted. A higher level aggregation may be applied to  flows, where a flow is 

a sequence of packets sharing some common properties such as IP addresses, 

port numbers or protocol types during a period of time [25, 106]. Flow mea

surements include flow identifiers, s tart time, end time, number of packets and 

bytes and so on. At the highest level, SNMP collects traffic volume statistics

3
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over links every few minutes. For packet and flow level aggregation, sampling is 

widely used in network measurement and accounting applications. Although 

sampling is already accepted as a standard solution for flow measurement 

[106, 105], it does not mean tha t it cannot be improved. Currently, active 

research is conducted on this topic in the network community [61, 62].

1.1.2 R eal-tim e Financial D ata Analysis

Another data  stream application is monitoring real-time financial data  such 

as stock ticks and foreign exchange rates. There are about 50,000 securities 

trading in the United States. Although the data generation rate is not as fast 

as tha t of IP packets, every second up to 100,000 quotes and trades (ticks) are 

generated based on a 2002 figure [121].

Real-time financial data analysis is becoming important. W ith the increase 

of trading speed, in addition to  long-term trading, intra-day trading strategy is 

also widely used to make small profits in a short period, especially in electronic 

trading markets such as the NASDAQ. Uncovering momentary opportunities 

are crucial in this trading policy [90]. Therefore, real-time financial data mon

itoring tools are becoming more and more im portant for short term traders. 

Some sample queries on real-time financial data are posted a t [113]. One ex

ample is “Find all stocks between $20 and $600 where the spread between the 

high tick and the low tick over the past 30 minutes is greater than 3% of the 

last price and in the last 5 minutes the average volume has surged by more 

than 300%.”

1.1.3 Stream s from the Web

U R L  a n d  D o cu m en t S tream s o f a  W eb C raw ler. Search engines reg

ularly crawl the Web to  enlarge their collections of Web pages. During the 

crawling, some processing may be performed over the streams of crawled URLs 

and Web documents. For example, given the URL of a  page which is extracted 

from the content of a crawled page, a search engine must probe its archive to

4
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find out if the URL is in the engine collection and if the fetching of the URL 

can be avoided [24, 78]. If the URL is not found in the archive, the crawler 

has to  download this page from the Web.

W eb C lick S tream s. Many individuals or companies who put their infor

mation on the Web care about the popularity of their web pages. Sometimes 

they are even willing to  pay for the clicks to  gain popularities [96]. In these 

cases, monitoring the web page clicks is quite important. Such statistics can 

be generated from the stream of source addresses of the users who click the 

web page address.

1.2 Traditional Data Processing V.S. Data Stream  

Applications

In the past few decades, many data processing techniques have been developed 

in the database community, but most of them  are not suitable in a streaming 

environment for the following reasons.

First, traditional database applications store data  on disks before queries 

arrive. The users assume tha t all data is available. The problem is how to 

find the information and answer the queries efficiently, and how to maintain 

the data. In contrast, most data stream applications do not require storing all 

the data, and sometimes it is hard to record the whole data stream because 

of the data  arrival rate. For example, in Internet measurement applications, 

monitoring devices may not be able to keep up with the high speed IP packet 

forwarding rate using ordinary RAM. It is hard to store the whole packet 

streams even just with the header portion [62].

Second, the volume of data is relatively limited in most traditional database 

applications. This is unlike streaming data  tha t can be potentially infinite in 

terms of its size, because new streaming data  keeps arriving.

Third, multiple passes of data is possible in most traditional database 

applications. Since it is assumed th a t all data  is stored on disks, DBMSs can

5
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load the data as many times as they want to evaluate a query. In data stream 

applications, the full data stream can be only processed once; queries can be 

answered either based on current stream information in memory or a partial 

archived stream or sketch on disks.

Fourth, random access to the data is possible in most traditional database 

applications. Since all data is available on disks, DBMS can access any part 

of the data to  answer a query, whereas in data stream applications, the data 

stream can only be accessed sequentially. The order of which data is processed 

is not controllable and is determined by the source generating the stream. 

When a partial stream is archived, it is possible to gain random access to  the 

partial data. But it is only useful in the offline query case, and the query 

answer may not be precise.

Fifth, precise query answers are usually required in most traditional database 

applications. Again, since all data is available, query answers in most tradi

tional database applications are usually precise. In comparison, due to  the 

high arrival rate of streaming data, some queries are hard to  be answered 

precisely and timely. For example, if users are interested in finding the num

ber of distinct elements in the stream, for a precise answer a large amount 

of fast memory needs to  be used to store all the distinct elements. Since the 

stream can be potentially unbounded, the available memory may not always 

be sufficient to evaluate this query effectively.

Finally, in most traditional database applications, time information (trans

action or valid time) is not kept or is not important. If time needs to be 

included, it is usually organized as a separate attribute, and many queries do 

not include time. However, in data  stream applications, timing information 

is much more im portant because data  keeps arriving and changing. W ithout 

specifying the time, the query would be ambiguous and incomplete.

6
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1.3 Data Stream Model

For the kind of applications discussed here, a data stream can be modeled as a 

sequence of records S  — e\ . . .  ejv ordered by their arrival time t \ . . .  t ^ ,  where 

N  is the size of the stream, and epj is the most recent record seen so far. Each 

record may contain one or more attributes such as record identifier, arrival 

time, record size, etc.

1.3.1 Tuple-based and Tim e-based Stream

We can further classify data streams into tuple-based, and time-based. In tuple- 

based model, the record arrival time is represented simply by the subscripts 

of the record. For example, the arrival time of ejv is N. In time-based model, 

the record arrival time is represented by a separate timestamp attribute.

1.3.2 O ne-tim e Query and Continuous Query

D ata stream queries can be classified into one-time queries and continuous 

queries [9]. One-time queries are issued occasionally like traditional DBMS 

queries, while continuous queries are issued and evaluated frequently and reg

ularly with the arrival of streaming data. For example, in tuple-based query 

model, a continuous query should be evaluated whenever a record arrives; in 

time-based query model, the query should be evaluated after every fixed time 

interval.

1.3.3 Query W indows

Based on the temporal span of the queries, we can classify query windows 

into landmark windows, sliding windows and damped windows[121]. In the 

landmark window model, user queries are answered based on the data arrived 

between a  particular timepoint (called landmark) and present. The landmark 

does not shift when the current timepoint keeps moving towards the future,

7
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unless a new landmark is redefined explicitly later. In the sliding window 

model, user queries are answered based on the data arrived between a starting 

timepoint and the current timepoint. In contrast to the landmark window 

model, the starting timepoint shifts accordingly when the current timepoint 

keeps moving towards the future, and the time span between them  is always 

fixed. In the damped window model, the data under consideration are weighted 

differently. Users can specify a data importance function which affects the 

query results. For example, one can specify an exponential decay function 

indicating tha t recent data is much more important than the old ones. Damped 

windows are considered in some past work [93, 103, 38] where applications are 

also provided.

1.4 Data Stream Research Sketch

In this section, a  brief summary of current data stream research is provided. 

The work can be classified into two categories: data  stream systems and data 

stream algorithms.

1.4.1 D ata Stream  System s

Some of the d a ta  stream research focus on building general-purpose data 

stream systems, while others specialize in a particular application domain. 

Examples of general-purpose data stream systems are STREAM [9, 6], AU

RORA [27, 2, 13], and TelegraphCQ [28, 87]. Examples of specialized data 

stream systems include Gigascope [51, 52], NIAGARA [101, 37], and Tribeca 

[H O ]-

S T R E A M . Mainly motivated by the Internet traffic monitoring and mea

surement, the STREAM project a t the Stanford University aims a t implement

ing a general-purpose data stream system, which may be applied to financial 

data analyses, telecommunication data management and click stream moni

toring as well as IP traffic monitoring. STREAM focuses on online continuous

8
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queries, processing data streams in real-time and producing continuous output 

streams. In addition to  generating a live output stream mainly based on data 

in memory, STREAM can archive the input streams on disks for offline analy

ses and sometimes stores the output results as relations on disks. Furthermore, 

the real-time input streams can be combined with static stored relations to 

generate the output. Registered continuous queries in STREAM are expressed 

using a declarative language which is an extension of SQL.

A u ro ra . The joint project, Aurora [27], from the Brandeis University, 

Brown University and MIT is another example of general-purpose data  stream 

systems. Based on user-specified queries (continuous or ad-hoc), the input 

streams are processed by a centralized stream engine, and the output streams 

are provided to applications. W ithin the stream engine, there are a  set of 

operators ( “boxes” in their terminology), including “windowed” operators, 

Filter, Drop, Map, GroupBy and Join operators. In addition to  on-the-fly 

processing of the input streams, Aurora can archive input streams to  disks 

especially for answering ad-hoc queries. Another feature of Aurora is that 

an application can specify Quality of Service (QoS), and the system can make 

run-time optimizations to  provide the service. For example, when the system is 

overloaded, load shedding can be done based on user-provided QoS description 

rather than randomly dropping data.

Aurora* [40] is the distributed version of Aurora. More recently, Borealis 

[1] supersedes Aurora*.

T eleg rap h C Q . TelegraphCQ is an extension of Telegraph [108] for con

tinuous queries. The features of TelegraphCQ are as follows. First, different 

types of queries axe considered, including snapshot queries (one-time queries), 

landmark window queries and sliding window queries. Second, disks are used 

to archive historical data. Third, QoS is considered in managing the limited 

resources.

A T & T  G igascope. Gigascope [51, 52] is a data stream system dedicated 

to Internet monitoring. More precisely, Gigascope can be used for TCP, IP or 

higher level traffic measurements and identifications.

T ribeca . Tribeca [110] is another data stream system designed for network

9
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traffic analysis. Besides basic operators such as qualifications (filters), projec

tions and aggregates, Tribeca also provides demultiplexing and remultiplexing 

which partitions and combines data  streams. Another features of Tribeca is 

the support of secondary indices on sorted fields of the data stream records 

(e.g. timestamp) since the network traffic can be stored on tapes and analyzed 

in an offline manner.

N iag ara . Niagara [101, 37] is a data stream system focusing on XML 

documents. In collaboration with an XML search engine, Niagara processes 

XML document streams from the search engine, possibly with different arrival 

rates.

1.4.2 D ata Stream Algorithms

In the previous subsection, we briefly describe some of the data stream systems 

and their features. Another research direction is on data stream algorithms. 

This is a subject th a t has drawn great interest not only from the database 

community, but also from the theory community. Since there are too many 

papers on this area, we just review those closely related to our work in the 

next chapter. More work in this area can be found in the surveys by Babcock 

et al. [9] and Muthukrishnan [100].

1.5 Thesis Overview

This section briefly discusses the scope of this thesis and its contributions.

1.5.1 Thesis Scope

In this thesis, we focus on a particular class of data stream algorithms for ap

proximately answering a few im portant frequency related queries: membership 

queries, iceberg queries, join/self-join size estimations, similarity join/self-join 

size estimation and selectivity estimation for similarity searches. The main

10
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techniques we explore are sketching and sampling; both techniques are based 

on probabilistic analysis, and can be considered as lossy compression of streams 

to answer particular queries.

S ketch ing . Sketching is a summarization technique where each data 

stream element contributes to the summary. This method usually takes ad

vantage of hash functions to transform stream elements and construct a sum

mary. For example, an IP packet header consisting of several fields can be 

transformed into a bit in the summary, thus saving space. Of course, certain 

information such as IP source and destination addresses are lost. For certain 

queries where those lost information is not relevant or im portant, sketching 

techniques can be quite useful.

Sam pling . Sampling is also a summarization technique where a subset of 

the elements of the original stream is obtained. Sampled stream elements or 

records are exactly the same as the ones in the original stream, and not every 

stream element contributes to the sample. One nice property of sampling is 

tha t it keeps the entire record in the sample, which can be useful for different 

purposes. Based on the queries to be answered, there can be many different 

sampling strategies.

More details about sketching and sampling are discussed in Chapter 2.

1.5.2 Contributions

A summary of the contributions of this thesis is as follows:

• For approximate membership query, this thesis extends and generalizes 

a well known sketching technique, Bloom filters, to be applicable to data 

stream scenario, and accordingly, present a novel algorithm which dy

namically updates the sketch to  represent recent data in a data  stream. 

Some im portant properties of this new sketching technique are investi

gated and proved. Experiments on both  real-world and synthetic data  

show tha t this technique improves upon some of the best known algo

rithms.

11
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• For frequency related queries, this thesis describes a new sketching tech

nique CMM, whose estimation accuracy is very similar to a well known 

sketching technique, AMS sketch, but CMM is more flexible and pow

erful because the new technique can be combined with another query 

answering method, Count-min, using exactly the same sketch. Analyti

cal and experimental results are both provided, showing CMM is indeed 

a more flexible and powerful method.

• For similarity join and self-join size estimations and similarity search 

selectivity estimations, this thesis presents efficient one-pass algorithms, 

approximately answering the queries with provable accuracy and high 

probability using only small amount of space. The key idea is to map a 

stream of multi-dimensional objects into one-dimensional data  streams 

via sampling such th a t efficient data stream sketches can be used for the 

transformed stream.

12
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Chapter 2

Sketching and Sampling

This chapter gives background knowledge about two data  reduction tech

niques, namely, sketching and sampling. A review of more data  reduction 

techniques including singular value decomposition (SVD), wavelets, regres

sion, histograms and so on can be found in the New Jersey da ta  reduction 

report [15].

2.1 Sketching

In general, sketching techniques use hash functions to map each data  stream 

element into a hash value, and update a space efficient data  structure (some

times called a sketch) based on the hash value. After processing the whole 

stream, certain queries can be answered based on the sketch content. Usually 

all stream elements contribute to the sketch, unlike in the sampling techniques. 

Note th a t sketching is not a strictly defined term, and it may have different 

interpretations in other places.

13
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2.1.1 Bloom  Filters and their extensions

B loom  filters. Bloom [17] proposes a synopsis data structure, known as the 

Bloom filter, to  approximately answer membership queries. A Bloom filter, 

B F ,  is a bit array of size m, all of which are initially set to 0. For each element, 

K  bits in BF are set to  1 by a set of hash functions { h i ( x ) , h x ( x ) } ,  all 

of which are assumed to  be independent perfect random hash functions. It is 

possible tha t one bit in BF is set multiple times, while only the first setting 

operation changes 0 into 1, and the rest has no effect on th a t bit. To know 

whether a newly arrived element Xi has been seen before, we can check the bits 

{ h i ( x i ) , h , K { x i ) } .  If any one of these bits is zero, with 100% confidence we 

know Xi is a distinct element. Otherwise, it is regarded as a duplicate with a 

certain probability of error. An error may occur because it is likely tha t the 

cells {h i(x i) , . . . ,  h x ix i)}  are set before by elements other than Xi.

The probability of a false positive (false positive rate) F P  =  (1 — p)K, 

where p = (1 — l / m ) Kn is the probability th a t a particular cell is still zero 

after seeing n distinct elements. It is shown tha t when the number of hash 

functions K  = ln (2)(m /n ), this probability will be minimized to  ( \ /2 ) ln^ m/n\  

where m  is the number of bits in BF and n  is the number of distinct elements 

seen so far [98].

C o u n tin g  B loom  filte rs . Elementscan be inserted into a BF, but cannot 

be deleted. To handle deletions, Fan et al. [66] extend BF to Counting Bloom 

Filters (CBF), in which each bit of a Bloom filter is changed to a counter. 

Whenever an element is inserted, all counters the element is mapped to are 

incremented by one. To delete the element, those counters are decremented 

by one. Even though CBF is originally proposed for membership queries, it 

can be used to answer multiplicity queries as well.

S p e c tra l B loom  filte rs . Cohen and Matias [42] propose Spectral Bloom 

Filters (SBF) to answer multiplicity queries. An SBF is a 1-dimensional array 

of counters, initially all set to 0. To insert an element into the SBF, k  hash 

functions are used to pick k  counters uniformly at random, and those counters 

are incremented by 1. To answer a query, the k  counters the query element has
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touched are checked, and the minimum value of those k  counters is returned 

as the approximate query answer.

To increase the accuracy, they propose two independent (but incompat

ible) heuristics: Minimal Increase (MI) and Recurring Minimum (RM). To 

insert an element x  into the SBF in the MI heuristic, only the minimum 

counter/counters rather than all of the counters x  touches is increased by 

1. This heuristics decreases the error because it makes the counters increase 

slower. However, the error reduction depends on data distribution and the 

order of element insertions. Therefore, analyses become hard and are given in 

[42] only in the case tha t element frequencies are uniformly distributed. Also 

MI does not support element deletions, unlike the basic SBF.

The other heuristic, RM, uses a secondary data  structure, which is the same 

as the main data structure, to  store certain elements th a t have higher chance 

of being wrongly estimated. The following observation is used to find such 

elements: of the counters an element touches, if there are multiple counters 

tha t share the minimum value,, this element has less chance of being wrongly - 

estimated; otherwise, RM stores this element in a separate secondary data 

structure. RM is less accurate than MI, but RM supports element deletions.

C o u n t-m in  Sketches. A count-min sketch CM[i , j ]  is a 2-dimensional 

array of counters, with d (sketch depth) rows and w (sketch width) columns. 

All counters are initially set to 0. To insert an element x  into the sketch, d 

hash functions hi(x) € {0, . . . ,  w — 1} with * =  0 , . . . ,  d —1, picked uniformly at 

random, are used to determine which counters to be updated. For each row i, 

counter CM[i ,  hi(x)} is incremented by 1. The procedure to delete an element 

x  is similar: for each row i, counter CM[i ,  h i(x)] is decremented by 1.

To find the number of occurrences of an element x, all the d counters tha t 

x  has touched, i.e. CM[i ,  hi(x)\ with (i =  0 , . . . ,  d — 1), are checked, and the 

m inim um  counter value is returned as the estimated frequency of x. Clearly, 

the estimate is an upper bound of the true frequency.

Having a count-min sketch, the self-join size can be estimated as follows: 

For each row i of the sketch, sum up the square of each counter value in tha t 

row, and return the minimum sum of all d rows as the estimate. T hat is, the
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estimate =  min{sumJ~o (CM[i,  j])2, i =  0 , . . . ,  d — 1}. This estimate is an 

upper bound of the true value as well.

D is tin c t c o u n tin g  using  B loom  filters. In addition to  aforementioned 

membership queries, multiplicity queries, self-join size, Bloom filters can be 

used to approximate the number of distinct elements in a data stream. By 

counting the fraction of zero bits in a Bloom filter, Whang et al. [119] estimate 

the number of distinct elements using space linear in the number of distinct 

elements, and constant time for updating each element. To have a  reason

able estimation accuracy, one has to know a rough estimate of the number 

of distincts so as to allocate a proper amount of space handling the stream. 

However, this may not always be possible in practice. To tackle this, Estan 

et al. [64] propose multi-resolution Bloom filters where stream elements are 

partitioned into multiple groups based on their hash values. The number of 

distinct elements hashed to different groups are exponentially decreasing. For 

each group, they use a fixed size Bloom filter to represent the elements as in a 

regular Bloom filter. In the end, they estimate the final results based on those 

Bloom filters which are not full (i.e. there are a certain fraction of zeros in the 

bitmap).

S p ace-C ode B loom  filte rs  (S C B F ) an d  flow size d is tr ib u tio n  es

tim a tio n  u sin g  B loom  filters. Kumar et al. [89] extend Bloom filters to 

estimate element multiplicities. For each Bloom filter, they use multiple groups 

of hash functions instead of one group as in the regular Bloom filters. When 

inserting an element into the Bloom filter, they pick a group of hash functions 

uniformly at random and use them to hash the element into the SCBF as in a 

regular Bloom filter. By checking the number of bits set by an element after 

the whole data  stream has been processed, one can estimate the multiplicity of 

the element. However, if the multiplicity of an element is more than a thresh

old, this approach will not work anymore because after all bits th a t can be 

possibly touched by the element have been set, any more occurrences will not 

change the SCBF. Thus, a multi-resolution SCBF which consists of multiple 

SCBFs is proposed by Kumar et al. [89]. Whenever an element arrives, it is 

hashed to each of the multiple SCBFs with a different probability. Accord-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ingly, only a fraction of the stream elements (random sample) will touch each 

SCBF. By probing the SCBF with a high sampling rate, the multiplicities of 

frequent elements can also be estimated. Since in their paper there are no 

comparisons with other methods such as Fast-AGMS sketching [31], which 

will be discussed later in this chapter, it is not clear how well this technique 

performs.

Kumar et al. [88] also use Counting Bloom filters to estimate flow size 

distributions, where the flow size can be considered as the multiplicity of an 

element. In the network community, a flow usually refers to a number of 

IP packets sharing certain common properties, e.g. source and destination 

IP addresses. Thus, estimating the flow size distribution is to  find out the 

number of distinct elements which occur a certain number of times. Kumar 

et al. summarize the stream using a Counting Bloom filter. By guessing the 

.combinations of each counter value, they find the combinations maximizing 

the likelihood of the counter value distribution. They compare their approach 

with the results from a random sampling [58], but it is not clear how their 

approach performs compared with distinct sampling [54, 50].

2.1.2 FM  Sketches and their extensions

Another well-known sketching technique was proposed by Flajolet and Martin 

[67], to approximate the number of distinct elements in a data stream.

F M  S ketch ing . The basic idea of FM sketching is as follows. The sketch 

consists of a set of bitmaps. Whenever an element arrives, it is hashed to 

one bit in a bitmap, and the probability th a t the element is hashed to  a more 

significant bit is exponentially decreasing. For example, the probability tha t an 

element touches the least significant bit is 1/2, and the probability of touching 

the next bit is 1/4, and the probability of touching the third least significant 

b it is 1/8. One way of implementing the hash function is to hash the element 

uniformly a t random to a binary string with the same size as the bitmap; then 

find the least significant 1 bit and return the position of tha t bit as the hash 

value. One advantage of this technique is the space efficiency. However, it
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may not be suitable for real-time applications where per element processing 

time is critical because its per element processing time is proportional to the 

number of bitmaps used and thus proportional to the size of allocated space.

A M S v aria tio n . In Flajolet and M artin’s paper, the authors assume the 

hash function is truly random; since it is not known how it can be implemented 

in practice, Alon et al. [4] modified FM sketches to the case tha t only pairwise 

independent hash functions are needed. Another change is th a t they only keep 

track of the most significant position in the sketch tha t has been touched after 

processing the whole stream rather than the whole sketch. But this approach 

does not improve FM sketch’s time efficiency.

M in  h ash  value ap p ro ach . Bar-Yossef et al. [14] extend the idea of 

Alon et al. and propose another algorithm for counting distinct elements. The 

algorithm works as follows: whenever an element arrives, hash it to a large 

universe (to avoid hash collisions) uniformly at random; meanwhile maintain 

the k  smallest hash values seen so far; after processing the whole stream, one 

can estimate the number of distinct elements based on the largest value of the 

k  hash values stored. This method has a space bound similar to the above 

two techniques, and has a much better per element processing time, which is 

0(log(l/e) • loglogm • log(1/5) • logm), where e is the relative error, m  is the 

universe size, and 5 is the confidence probability. Although this method is 

both space and time efficient, it is no t clear how accurate it would perform, in 

practice especially compared with a Bloom filter based approach.

Space b o u n d s . One im portant property of all above algorithms is tha t 

they all need only 1 /e2(0(logn)  +  0(logm )) bits space to bound the relative 

error within e factor and with a constant probability, where m  and n  are the 

universe of stream elements and stream size respectively. It means th a t a 

small amount of space is enough to accurately estimate the number of distinct 

elements in a massive data stream. Moreover, Woodruff [120] showed tha t 1/e2 

is the space lower bound needed for any approximation algorithm in terms of 

e. Note tha t e must be no less than 1 /  y/rn since otherwise a straightforward 

deterministic algorithm is applicable when the space is large enough. This 

lower bound is im portant because it indicates tha t the space complexity of
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above algorithms is already optimal in terms of e.

2.1.3 AM S Sketches and extensions

A M S sketches. Alon et al. [4] proposed sketching techniques, to approximate 

A;-th frequency moment of a data stream. The fc-th frequency moment, Fk, is 

f t  where D  is the universe or the domain from which the element values 

are drawn, and /* is the frequency of value i in the stream. In particular, the 

well-known sketching technique, referred to as AMS sketch, is developed for 

approximating F^. The basic idea is as follows: for each data stream  element, 

use a 4-wise independent hash function to hash it into either —1 or 1, and 

store the sum of the hash values of all stream elements into a counter; this is 

one instance of the sketch; by using a set of independent hash functions, one 

can obtain a set of counters. After processing the whole stream, the median 

of all these counters turns out to be an unbiased estimate for F2 .

F ast-A G M S  Sketches. Based on the AMS sketching technique[4], Charikar, 

Chen and Farach-Colton [31] propose Count-sketches to  estimate element mul

tiplicities. The same sketches are also called Fast-AGMS sketches [46] in self- 

join size estimation scenarios. For the ease of presentation, we only use the 

term  Fast-AGMS sketches, to refer to  this data structure in the rest of the 

paper.

The Fast-AGMS sketches are organized as a 2-dimensional array of coun

ters. To insert an element into the sketch, for each row of the sketch, a hash 

function is used to  determine which counter should be updated according to 

the hash value of the element, and another independent hash function maps 

the element to either —1 or 1 uniformly a t random, indicating the value to 

be added to  the counter. To delete an element from the sketch, based on the 

same hash functions either —1 or 1 is deducted from the counters the element 

is hashed to.

To check the multiplicity of a query element, for each row of the sketch, 

map the element into a counter and a value (either —1 or 1), using the same 

two hash functions as in the sketch construction process. Obtain the product
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between the hash value (—1 or 1) and the value of the counter the element 

is mapped to, then report the median of those products from all rows as the 

multiplicity estimate. This estimate is shown [31] to be unbiased.

To estimate the self-join size, for each row of the sketch, sum up the squares 

of all counter values, and return the median of those sums from all rows as the 

self-join size estimate. Again, this is also an unbiased estimate.

2.2 Sampling

Sampling has been used in many areas and has been studied for many years. 

As a data reduction technique, sampling has also a wide range of applications 

including traditional database systems [102]. Here we just focus on using 

sampling to answer frequency related queries for streaming data.

2.2.1 Random  Sampling

Among different types of sampling, random sampling probably is the most 

widely studied topic since it has lots of applications and can be used to answer 

different types of queries. For example, a random sample can be used to  answer 

queries on the number of distinct elements [30], the total number of elements, 

average data  element value and so on.

In the database area, several work have been focusing on how to maintain 

a random sample. V itter [115] studied the problem of obtaining a fixed size 

random sample for a data  set in one pass. Babcock et al. [10] proposed 

algorithms to  maintain a random sample of streaming data within a sliding 

window. Jermaine et al. [82] studied how to efficiently maintain a large random 

sample on disks.

Random samples can be used to answer many types of queries. However, 

for many frequency related queries, the results from a random sample may 

not be accurate. For example, Charikar et al. [10] showed negative results for 

counting distinct elements using random sampling. For inverse distribution
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estimation [50], where the goal is to find the numbers of distinct elements 

with different frequencies (e.g. the number of elements only appear once in 

the stream), it is not hard to see th a t random sampling is not proper since 

high frequency elements will dominate the sample, and a large fraction of low 

frequency elements will not be sampled. In many of those scenarios, distinct 

sampling may be a  better option.

2.2.2 D istinct Sampling

Another sampling technique tha t has many applications is distinct sampling. 

The main difference between random sampling and distinct sampling is tha t 

in distinct sampling, once a distinct element is included in the sample, all its 

duplicates will be sampled. This is because the sampling process often involves 

hashing the streaming element into a hash value; based on the hash value, the 

element either is kept in the sample or discarded. Thus, the chance th a t an 

element stays in the sample is irrelevant to its frequency unlike in the random 

sampling case.

Gibbons [71] studied the problem of finding the number of distinct values 

of one attribute while some other attributes of the records satisfy certain pred

icates. An example query can be: “How many distinct source IP addresses 

have sent TCP packets in the IP packet stream?” In this query, the goal is to 

find the number of distinct source IP addresses, bu t only those packets whose 

protocol type is TCP are under consideration, so sketching methods are not 

applicable in this case.

2.2.3 Count sample and sticky sample

Another type of sampling technique in the data streaming area is count sam

pling or sticky sampling, which focus on answering frequent element queries. 

Gibbons and Matias [72] proposed count sampling technique, where the main 

idea is as follows. Whenever an streaming element arrives, they check the 

current sample; if the element is found, increment its frequency counter by 1;
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if not found, add the element to the current sample with probability p. When 

the sample size bound is reached, for each element in the sample, they flip 

biased coins until a head appears, and they decrement the number of coin 

tosses from the frequency counter of tha t element. Meanwhile, they decrease 

the probability p  to p' to set a smaller probability of inserting a new element 

into the sample. Manku and Motwani [94] used a similar idea to answer ice

berg queries rather than top-k frequent element queries, with different detailed 

analysis.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

Approximate Membership 

Query Processing

In this chpater, we propose Stable Bloom Filter (SBF) [56], which extends and 

generalizes the regular Bloom filter, and accordingly, a novel algorithm which 

dynamically updates the sketch to represent recent data. We find and prove 

the stable properties of an SBF including stability, exponential convergence 

rate and monotonicity, based on which we show th a t using constant space 

the chance of a false positive can be bounded to a constant independent of 

the stream size, and this constant is explicitly derived. Furthermore, we show 

tha t the processing time of SBF for each element in the stream is also constant 

independent of the stream size. To make our algorithm readily applicable in 

practice, we provide detailed discussions of the parameter setting issues both 

in theory and in experiments. And we compare our method to  alternative 

methods using both real and synthetic data. The result shows th a t our method 

is superior in terms of both accuracy and time efficiency when a  fixed small 

space and an acceptable false positive rate are given.

Section 3.1 describes the membership query and its importance. In Sec

tion 3.2, we present the problem statement and some background on existing
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approaches. Our solution is presented and discussed in Section 3.3. In Section

3.4, we discuss how our algorithm can be used in practice. In Section 3.5, we 

verify our theoretical findings, experimentally evaluate our method and report 

the results of our comparisons to those from alternative methods. Related 

work is reviewed in Section 3.6, and conclusions and future work are discussed 

in Section 3.7.

3.1 Approximate Membership Query

A membership query is to answer if a given element belongs to  a set or not. 

From another angle, this query can be described as “if the given element has 

a non-zero frequency or multiplicity” . It is also known as duplicate detec

tion or duplicate elimination problem. Eliminating duplicates is an im portant 

operation in traditional query processing, and many algorithms have been de

veloped [69]. A common characteristic of these algorithms is the underlying 

assumption th a t the whole data set is stored and can be accessed if needed. 

Thus, multiple passes over data  are possible, which is the case in a traditional 

database scenario. However, this assumption does not hold in the streaming 

applications, which are becoming increasingly important. Consequently, de

tecting duplicates precisely is not always possible. Instead, it may suffice to 

identify duplicates with errors which will be discussed later.

While it is useful to have duplicate elimination in a D ata Stream Man

agement System (DSMS)[9], some new properties of these systems make the 

duplicate detection problem more challenging and to some degree different 

from the one in a traditional DBMS. First, the timely response property of 

data stream applications requires the system to respond quickly in real-time. 

There is no choice but to  store the data in limited main memory rather than 

in huge secondary storage. Sometimes even main memory is not fast enough. 

For example, for network traffic measurement and accounting, ordinary mem

ory (DRAM) is too slow to process each IP packet in time, and fast memory 

(on-chip SRAM) is small and expensive [63, 12].
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Second, the potentially unbounded property of data streams indicates tha t 

it is not possible to store the whole stream in a limited space. As a result, 

exact duplicate detection is infeasible in such data stream applications.

On the other hand, there are cases where efficiency is more im portant than 

accuracy, and therefore a quick answer with an allowable error rate is better 

than a precise one th a t is slow. Sometimes there is no way to  have a precise 

answer a t all. Therefore, load shedding is an im portant topic in data  stream 

system research [111, 11]. Next, we provide some motivating examples.

3.1.1 M otivating Examples

U R L  C raw ling . Search engines regularly crawl the Web to enlarge their 

collections of Web pages. Given the URL of a page, which is often extracted 

from the content of a crawled page, a search engine must probe its archive to 

find out if the URL is in the engine collection and if the fetching of the URL 

can be avoided [24, 78].

One way to  solve the problem is to store all crawled URLs in main memory 

and search for a newly encountered URL in it. However, the set of URLs can 

be too large to fit in memory. Partially storing URLs in the secondary storage 

is also not perfect because of the large volume of searches tha t is expected to 

be performed within a time unit.

In practice, detecting duplicates precisely may not be indispensable. The 

consequence of an imprecise duplicate detection is th a t some already-crawled 

pages will be crawled again, or some new URLs which should be crawled are 

missed. The first kind of error may lead the crawler to do some redundant 

crawling. This may not have a great influence on performance as long as the 

error rate is not high. For the second kind of errors, since a search engine 

can archive only a small portion of the entire web, a small miss rate is usually 

acceptable. In addition, if a missed URL refers to  a high quality page, it is 

quite likely th a t the URL will be listed in the content of more than one crawled 

page, and there is less chance of missing it again. The solution adopted by the 

Internet Archive crawler introduces the second kind of errors [78].
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S electing  d is tin c t I P  addresses. In network monitoring and account

ing, it is often im portant to understand the traffic and users on the network 

[79]. The following two queries, for example, may be interesting to network 

monitors: who are the users on the network within past one hour? Where do 

they go? The query may be written as:

SELECT DISTINCT source ip, destination ip 

FROM ip.packetsstream 

WITHIN PAST 1 hour

The result could be helpful for further analyzing the user profiles, interests 

and the network traffic. Because of the high throughput of Internet routers 

and limited amount of fast memory, currently it is hard to capture per packet 

information precisely, and sampling is often used as a compromise [61]. We are 

not aware of any work using sampling for this duplicate elimination problem.

D u p lic a te  d e te c tio n  in  click s tre a m s. Recently, Metwally et al. pro

pose another application for approximate duplicate detection in a streaming 

environment [96]. In a Web advertising scenario, advertisers pay web site pub

lishers for clicks on their advertises (or links). For the sake of profit, it is 

possible tha t a publisher fakes some clicks (using scripts), hence a third party, 

called an advertising commissioner, may want to detect those false clicks by 

monitoring duplicate user IDs. We discuss more about their work in the related 

work section.

3.2 Preliminaries

This section presents the problem statement in a data stream model and some 

possible solutions.
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3.2.1 Problem  Statem ent

We consider a data stream as a sequence of numbers, denoted by S n  =  

x i , . . . ,  Xi, . . . ,  xjv, where N  is the size of the stream. The value of N  can 

be infinite, which means tha t the stream is not bounded. In general, a  stream 

can be a sequence of records, but it is not hard to transform each record to a 

number (e.g., using hashing or fingerprinting) and use this stream model.

Our problem can be stated as follows: given a data stream S n  and a 

certain amount of space, M, estimate whether each element Xi in S n  appears 

in x i , . . . ,  Xi-i or not. Since our assumption is th a t M  is not large enough to 

store all distinct elements in x \ , . . . ,  Xj_i, there is no way to  solve the problem 

precisely. Our goal is to  approximate the answer and minimize the number of 

errors, including both false positives and false negatives , where a false positive 

is a distinct element wrongly reported as duplicate, and a false negative is a 

duplicate element wrongly reported as distinct.

To address this problem, we examine two techniques tha t have been pre

viously used in different contexts.

3.2.2 The Buffering M ethod

A straightforward solution is to allocate a buffer and fill the buffer with enough 

elements of the stream. For each new element, the buffer can be checked, and 

the element may be identified as distinct if it is not found in the buffer, and 

duplicate otherwise. When the buffer is full, a newly arrived element may 

evict another element out of the buffer before it is stored. There are many 

replacement policies for choosing an element to be dropped out (e.g. [69]). 

Clearly, buffering introduces no false positives. We will use this method in our 

experiments and compare its performance to th a t of our method.
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3.3 Stable Bloom Filters

The Bloom filter is shown to  be useful for representing the presence of a set of 

elements and answering membership queries, provided tha t a proper amount 

of space is allocated according to  the number of distinct elements in the set.

3.3.1 The Challenge to  Bloom  Filters

However, in many data  stream applications, the allocated space is rather small 

compared to the size of the stream. When more and more elements arrive, the 

fraction of zeros in the Bloom filter will decrease continuously, and the false 

positive rate will increase accordingly, finally reaching the limit, 1, where every 

distinct element will be reported as a duplicate, indicating tha t the Bloom filter 

is useless.

Our general solution is to avoid the state where the Bloom filter is full 

by evicting some “elements” from it before the error rate reaches a prede

fined threshold. This is similar to  the replacement operation in the buffering 

method, in which there are several possible policies for choosing a past element 

to drop. In many real world data stream applications, often the recent data  is 

more im portant than the older data  [41, 104]. However, for the regular Bloom 

filter, there is no way to distinguish the recent elements from the past ones, 

since no time information is kept. Accordingly, we add a random deletion op

eration into the Bloom filter so th a t it does not exceed its capacity in a data 

stream scenario.

3.3.2 Our Approach

To solve this problem, we introduce the Stable Bloom Filter, an extension of 

the regular Bloom filter.

D efin ition  1 (S tab le  B loom  F ilte r  (S B F )). An SBF is defined as an array 

of integer 5 B F [1 ],. . . ,  SBF[m] whose minimum value is 0 and maximum value 

is Max. The update process follows Algorithm 1. Each element of the array
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is allocated d bits; the relation between M ax  and d is then M a x  = 2d — 1 . 

Compared to bits in a regular Bloom filter, each element of the S B F  is called 

a cell.

Concretely speaking, we change bits in the regular Bloom filter into cells, 

each consisting of one or more bits. The initial value of the cells is still zero. 

Each newly arrived element in the stream is mapped to  K cells by uniform 

and independent hash functions. As in a regular Bloom filter, we can check if 

a new element is duplicate or not by probing whether all the cells the element 

is hashed to are non-zero. This is the duplicate detection process.

After detecting duplicates, we need to update the SBF. We first randomly 

decrement P  cells by 1 so as to make room for fresh elements; we then set the 

same K cells as in the detection process to M ax.  Our symbol list is shown in 

Table 3.1, and the detailed algorithm is described in Algorithm 1.

A lg o rith m  1 : Approximately Detect Duplicates using SBF 
' D a ta : A sequence of numbers S  =  x i , . . . ,  Xi, . . . ,  x ^ .
R esu lt: A sequence of “Yes/No” corresponding to  each input number.
beg in

initialize SBF[1]. . .  SBF[m] — 0 
for each x t E S  do

Probe K  cells SB F [h i(x i) ] . . .  SB F [hK(Xi)] 
if  none of the above K  cells is 0 th e n  
| DuplicateFlag =  “Yes” 

else
|_ DuplicateFlag =  “No”

Select P  different cells uniformly at random 
S B F \ jx] . . . S B F \ j P) ,P
for each cell SBF[j]  €  { S B F [ j i } , S B F [ j P]} do  

if  SBF[j]  >  1 th e n  
[  L SBF\j]  =  SBF[j\  -  1

for each cell € {SB F [h i(x i)},. . . ,  SBF[hi((xi)}  do  
L SBF[h(xi)] =  M ax  

[_ O utput DuplicateFlag
en d
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Table 3.1: The Symbol List

Symbols Meanings
N Number of elements in the input stream
M Total space available in bits
m Number of cells in the SBF

M ax The value a cell is set to
d Number of bits allocated per cell
K Number of hash functions
k The probability tha t a cell is set 

in each iteration
P Number of cells we pick to decrement by 1 

in each iteration
P The probability that a cell is picked 

to be decremented by 1 in each iteration
hi The ith hash function

3.3.3 The Stable Property

Based on the algorithm, we find an im portant property of SBF both in theory 

and in experiments: after a number of iterations, the fraction of zeros in the 

SBF will become fixed no m atter what parameters we set at the beginning.

We call this the stable property of SBF and deem it im portant to our 

problem because the false positive rate is dependent on the fraction of zeros 

in SBF.

T h eo re m  1. Given an SBF with m  cells, i f  in each iteration, a cell is decre

mented by 1 with a probability p and set to M a x  with a probability k, the 

probability that the cell becomes zero after N  iterations is a constant, provided 

that N  is large enough, i. e.

lim P r(S B F N =  0)
N - *  oo

exists, where SBFpj is the value of the cell at the end of iteration N  .

In our formal discussion, we assume tha t the underlying distribution of the 

input data  does not change over time. Our experiments on the real world data
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show th a t this is not a very strong assumption, and the experimental results 

verify our theory.

Proof. W ithin each iteration, there are three operations: detecting duplicates, 

decreasing cell values and setting cells to M ax.  Since the first operation does 

not change the values of the cells, we just focus on the other two operations.

W ithin the process of iterations from 1 to N ,  the cell could be set 0,..., (N — 

1) or even N  times. Since the newest setting operation clears the impact of 

any previous operations, we can just focus on the process after the newest 

setting operation.

Let Ai denote the event tha t within the N  iterations the most recent setting 

operation applied to  the cell occured at iteration N  — I, which means tha t 

no setting happened within the most recent I iterations (i.e. from iteration 

N  — I +  1 to  iteration N , I < N ),  and let A m denotes the event th a t the cell 

has never been set within the whole N  iterations. Hence, the probability tha t 

the cell is zero after N  iterations is as follows: '

N - 1

P r (S B F N =  0) =  £  [Pr{SBFN =  0 | A )P r(A ,)]
l=Max  ( 3 . 1 )

+ P r (S B F N = 0 \ A N)Pr{AN),

where ^

Pr(SBFM — 0 | Ai) = J 2  ( l \ p f ( l - p ) l- j  (3.2)
j  - - M  a x  ^

Pr(Ai)  =  (1 -  k)lk  (3.3)

P r(S B F N = 0 | A n ) =  1 (3.4)

P r(A N) = { l - k ) N. (3.5)

We have Eq 3.2 because during those I iterations, there is no setting operation, 

and the cell becomes zero if and only if it is decremented by 1 no less than  M ax  

times. Clearly when I < M a x , the cell is impossible to be decreased to  0, and
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I = N  means A n  happens, so we just consider the cases of M a x < I < (N  — 1) 

in Eq 3.2. When A n  happens, the cell is 0 with a probability 1 because the 

initial value of the cell is 0 and it has never been set, therefore we have Eq

3.4. Having the above equations, we can prove tha t limjv-*oo P t (SB F n  =  0) 

exists.

From Eq 3.4 and Eq 3.5 we can clearly see the limit of the second part of 

P t{SBF n  =  0) (when N  goes to infinity)

which is denoted by P rparti{0) in the rest of this proof. Now let us look at 

the first part of Prparti(0)-

P r ( S B F N  =  0 | A n ) * P t {An )

is 0. So we just need to  focus on the first paxt of Eq 3.1, i.e.

N - 1

J 2  (P r(SB F N = 0 \ A l)* P r { A l)),
I—Max

P r(S B F N =  0 | A{) =
1  =  M  n.'T '

m a x —± / 1 \

= i ~  s
j =o V /

M ax—1

0 (o)
= 1 - ( 1  - p ) 1
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JV—1

Prpartli0) <  (1 -  (1 -  p)l)( 1 -  k)lk
l=Max

=  x ; « i  - * ) < ) -  f ; ( t ( i - * ) ‘(i  - p )1)
I—Max l=Max

=  ( i  _  Q M a x  _  ^  _  fc)JV

“  T + p ^ k p 1'1'1 -  

( l - k f ( l - p ) N)

lim P r p arti {0)iv—*oo

<  (1 _  jfc)Wo* _ ------ —---— ((1 -  k )MaX{ 1 - p ) Mq:c
k  “4“

V PfParti(o) monotonically increases when N  6  [Max, oo) increases limAr-.oo Prparti(0) 

exists. •/ The limit of the second part of Pr(SBFpf — 0) also exists. The 

limit of Pr(SBFpj  =  0) exists. □

Having Theorem 1, now we can prove our stable property statement.

Corollary 1 (Stable Property). The expected fraction of zeros in an SBF  

after N  iterations is a constant, provided that N  is large enough.

Proof. In each iteration, each cell of the SBF has a certain probability of 

being set to M a x  by the element hashed to tha t cell. Since the underlying 

distribution of the input data does not change, the probability tha t a particular 

element appears in each iteration is fixed. Therefore, the probability of each 

cell being set is fixed.

Meanwhile, the probability tha t an arbitrary cell is decremented by 1 is 

also a constant. According to Theorem 1, the probabilities of all cells in the 

SBF becoming 0 after N  iterations are constants, provided th a t N  is large 

enough. Therefore, the expected fraction of 0 in an SBF after N  iterations is 

a constant, provided tha t N  is large enough. □

Now we know an SBF converges. In fact this convergence is like the pro-
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cess tha t a buffer is filled by items continually. SBF is stable means th a t its 

maximum capacity is reached, similar to the case tha t a buffer is full of items. 

Another im portant property is the convergence rate.

C oro lla ry  2 (C onvergence R a te ) . The expected fraction of Os in the SBF

converges at an exponential rate.

Proof. From Equations 3.1, 3.4 and 3.5, we can derive

P r(S B F N -  0) -  P r(S B F N-1  =  0)

= P r(S B F N =  0 | A jv-i)Fr(A jv-i)
(3.6)

+  P r (A N) -  P r(A jv-i)

=k{ 1 -  k)N~1(P r (S B F ^  =  0 | Ajv-i) -  1)

Clearly, Eq. 3.6 exponentially converges to 0. i.e. Pr(SBFpf[c}= 0) converges 

at an exponential rate, and this is true for all cells in the SBF. Therefore, the 

expected fraction of Os in the SBF converges a t an exponential rate. □

L em m a 1 (M o n o to n ic ity ). The expected fraction of Os in an SBF is mono- 

tonically non-increasing.

Proof. Since the value of Eq. 3.6 is always no greater than 0, the probability 

that a cell becomes zero is always decreasing or remains the same. Combining 

the proof of Corollary 2, we can draw the conclusion. □

This lemma will be used to prove our general upper bound of the false 

positive rate where the number of iterations needs not to be infinity.

3.3.4 The Stable Point

Currently we know the fraction of 0s in an SBF will be a constant a t some 

point, but we do not know the value of this constant. We call this constant 

the stable point.
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D efin ition  2 (S tab le  P o in t) . The stable point is defined as the limit of the 

expected fraction of Os in an SBF when the number of iterations goes to infinity. 

When this limit is reached, we call SBF stable.

From Eq 3.1, we are unable to obtain the limit directly. However, we can 

derive it indirectly.

T h eo rem  2. Given an SBF with m  cells, i f  a cell is decremented by 1 with 

a constant probability p and set to M ax  with a constant probability k in each 

iteration, and if  the probability that the cell becomes 0 at the end of iteration 

N  is denoted by P r (S B F jy =  0),

lim P r{S B F N =  0) =  (3.7)
1 +  RT7^i)

Proof. The basic idea is to make use of the fact th a t SBF is stable, the expected 

fraction of 0,1 ,...,Max  in SBF should be all constant.

Similar to  the proof of Theorem 1, we can prove tha t

lim P r (S B F 'n — v )
N ~~»oo

exists, where 0 <  v < Max.  In other words, when N  is large enough, the 

probability th a t the cell becomes v is a constant. To simplify our notation, we 

will refer to limjv->oo P r ( S B F ^  = v) as Pr(v)  in this proof.

The key idea of this proof is as follows: since Pr(v)  is a constant, when 

the SBF is stable, the probability th a t the cell changes to  v from some other 

values (e.g. v +  1) in each iteration must be the same as the probability 

tha t the cell changes from v to other values. Otherwise, P r(v ) will either 

increase or decrease. Note tha t the probabilities of those changes caused by 

the decrementing and setting operations are all constants {p and k).

For example, we can consider the case of M ax = 3 and P r(  1). In each 

iteration, we decrement 1 from the cell with a constant probability p, and set 

the cell to M a x  with a constant probability k. Since P r(  1) is a constant after
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the SBF becomes stable, the probability tha t the cell changes from 2 to 1 

should be the same as the probability tha t the cell changes from 1 to 0 and 

Max. This can be expressed as

P r (2 -» 1 | S B F  =  2) * P r(2)

=  P r ( l  -» 0 | S B F  =  1) * P r ( l )

+  Pr{  1 -» M ax  | S B F  =  1) * P r '( l ) )  (3.8)

Note tha t P r '( l )  is the probability of S B F  — 1 after the decrementing but

before the setting operation. Accordingly, we have

p * P r(  2) — p *  Pr{  1) + k *  (p* Pr{  2) — p *  Pr{  1) +  P r ( l) ) .

The left hand side of the above equation is the probability of gaining Is from 

the decrementing operation, and right hand side is the probability of losing Is 

from both the decrementing and setting operations.

Using the same idea, the relationship among P r(0 ) ,P r( l) ,  ..., P r(M ax)  

can be expressed as follows(when M ax > 3) : when v — 0,

p  * P r(v  +  1) =  k * (p * Pr{v  +  1) +  Pr(v)), (3.9)

when 0 < v < M a x ,

p * P r(v  +  1) =  p * Pr{v) + k *  (p* Pr(v  +  1) — p  * Pr(v)  +  Pr(v)), (3.10)

when v =  M ax,

k  * (1 — Pr(v) + p *  P r (v )) —p *  Pr(v). (3-11)
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From the above equations, we can derive

 ) " “ ■
1  +  p ( l / f c - l )

Currently this equation only holds when M a x  > = 3  since we have this as

sumption earlier. But it is not hard to verify tha t it holds when M ax  =  1,2 

as well using the same idea. □

The theorem can be verified by replacing the parameters in Eq. 3.1 with 

some testing values.

From Theorem 2 we know the probability tha t a cell becomes 0 when

SBF is stable. If all cells have the same probability of being set, we can

obtain the stable point easily. However, tha t requires the data  stream to be 

uniformly distributed. W ithout this uniform distribution assumption, we have 

the following statement.

Theorem 3 (SBF Stable Point). When an SBF is stable, the expected 

fraction of  Os in the SBF is no less than

f _________ ^_________ \ M a x
4  + ____ i '  ’

where K  is the number of cells being set to Max and P  is the number of cells

decremented by 1 within each iteration.

Proof. The basic idea is to prove the case of m  — 2 first, and generalize it to 

rn > 2 .

To simplify our notation, we refer to limjv_+00 Pr(SBFN[ci\ =  0) as Pr^O), 

(i =  1, . . .  ,m) and (— fy )Max as LBound  in this proof.
1 +  P ( l / K - l / m )

We know tha t when all cells have the same probability of being set, the 

expected fraction of Os in the SBF is LBound.

Now we prove tha t when cells have different probabilities of being set, the 

expected fraction of Os in the SBF is no less than LBound. In other words,
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we need to prove when ki = k2 =  . . .  =  km = K /m ,  the average probability

771 - 771 -|

-  g  P r,(0) =  ~  E < X +  - lp (1/jfc, -  ! ) ) " “ '

reaches the minimum value, where ki is the probability that 5BF[cj] is set. 

Note tha t =  K-

To simplify the problem, we first prove when m =  2, k\ +  ki =  ck,(0 < a  < 

K),  the above statement holds, i.e. when k\ =  k2 — a /2 ,  ,, 11 ■+ -—— —

is minimized. If F (k i ) denote the above formula and /(&i) denote the first 

part, F(k{) — f ( k \ )  +  f ( a  — k\). For f ( k \ ) ,  we can verify tha t the derivative 

of f ( k i )  w.r.t. ki, d f /d k i  < 0, and d ? f/dk \ > 0 when k\ € [0, a]. Because of 

the symmetric property between f ( k i )  and f ( a  — ki), the decreasing rate of 

f ( k \ ) is faster than the increasing rate of / ( a  — k\) when k\ G [0 , a / 2), thus 

F (k i) monotonically decreases within this period. When k\ =  a /2 , those two 

rates are equal. Symmetrically it increases monotonically when k\  G (a /2 , a]. 

Therefore, when k\ = a /2 , F(ki)  is minimized.

Now we prove when m  > 2, this conclusion also holds. First we assume 

m  = 2j , where j  is an integer greater than zero. Later we will discuss the 

general case without this assumption. Since we have proved the case of two 

cells, we can group all cells into m /2  pairs arbitrarily. For each pair, we know 

if those two cells are set with an equal probability, the sum of Pri{0) will 

decrease. For example, if we group 5BF[1] and SB F [2] together, we can 

minimize P r,i(0) +  P i?2(0) simply by changing both Aq and k2 into (k\ + k2)/2. 

This is the case for all other pairs. After the first grouping, we have at most 

m /2 different fc;S. We then group those m /2  cells into pairs and minimized 

their sums again by balance those pairs. We can keep doing this until all cells 

are all balanced, i.e. all of them have the same probability being set. Now the 

sum is minimized because in each step the partial sum is minimized.

When the assumption m =  2J does not hold, we can divide one cell into 

two, where both have a same kx and the sum does not change. For example, 

when m =  3, we can pick one cell arbitrarily, say 5BF[3], whose probability of
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being set is k3. We can find a proper kx, such tha t f ( k f )  — 2f ( k x). Therefore, 

we can transform all cases into what we have proved, i.e. m  =  2J . □

3.3.5 False Positive Rates

In our method, there could be two kinds of errors: false positives (FP) and false 

negatives (FN). A false positive happens when a distinct element is wrongly 

reported as duplicate; a false negative happens when a duplicate element is 

wrongly reported as distinct. We call their probabilities false positive rates 

and false negative rates.

Corollary 3 (FP Bound when Stable). When an SBF is stable, the FP  

rate is a constant no greater than F P S ,

F P S  =  (1 -  (— ---------  ) " “ )*  (3.12)
* +  P ( l / K - \ / m )

Proof. If P rj(0) denotes the probability tha t the cell SBF[j) — 0 when the 

SBF is stable, the FP rate is

( i ( l  -  F r,(0 )) + . . .  +  1 ( 1  -  P r m(0))K

=  ( l - i ( F r 1(0 ) +  - - - + F r m(0))) 'c
m

Please note tha t T ( p r i (o) -\ b P rm(0)) is the expected fraction of Os in

the SBF. According to Theorems 1 and 3, the FP  rate is a constant and Eq. 

3.12 is an upper bound of the FP rate. □

This upper bound can be reached when the stream elements are uniformly 

distributed.

Corollary 4 (The case of reaching the FP B ound). Given an SBF with m  

cells, i f  the stream elements are uniformly distributed when the SBF is stable, 

the FP rate is F P S  (Eq. 3.12).
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Proof. Because elements in the input data stream are uniformly distributed, 

each cell in the SBF will have the same probability to be set to Max.  According 

to Theorem 1 and the proof of Theorem 3 we can derive this statement. □

C oro lla ry  5 (G en era l F P  B o u n d ). Given an SBF w ithm  cells, F P S  (Eq. 

3.12) is an upper bound for FP rates at all time points, i.e. before and after 

the SBF becomes stable.

Proof. This can be easily derived from Lemma 1 and Corollary 3. □

Therefore, the upper bound for FP rates is valid no m atter the SBF is 

stable or not.

From Eq. 3.12 we can see th a t m  has little impact on F P S ,  since 1/m  is 

negligible compared to 1 / K  (m S> K ).  This means the amount of space has 

little impact on the FP bound once the other parameters are fixed. The value 

of P  has a direct impact on F P S:  the larger the value of P,  the smaller the 

value of F P S .  This can be seen intuitively: the faster the cells are cleared, 

the more Os the SBF has, thus the smaller the value of F P S  is. Oppositely, 

increasing the value of M a x  results in the increase of F P S .  In contrast to P  

and Max,  from the formula we can see the impact of the value of K  on F P S  

is twofold: intuitively, using more hash functions increases the distinguishing 

power for duplicates (decreases F P S ) ,  but “fills” the SBF faster (increases 

F P S).

3.3.6 False N egative Rates

A false negative(FN) is an error when a duplicate element is wrongly reported 

as distinct. It is generated only by duplicate elements, and is related to the in

put data distribution, especially the distribution of gaps. A gap is the number 

of elements between a duplicate and its nearest predecessor.

Suppose a duplicate element Xi whose nearest predecessor is Xi-s^Xi = 

XiSi) is hashed to K  cells, SBF[Ca\ . . .  SBF[Cnc]- An FN happens if any of 

those K  cells is decremented to 0 during the 5t iterations when Xi arrives. Let
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PR0(5i, kij) be the probability th a t cell Cy (j =  1. . .  K )  is decremented to 0 

within the 8i iterations. This probability can be computed as in Eq 3.1:

S t -1

P R D fa k i j )  =  £  [Pr(SBFSi =  0 | A )P r(A )]
l=Max  (3.13)

+ P r (S B F 6i= 0 \ A Si)P r (A Si),

where

P r(S B F Sj =  0 1.4;) =  £  ( ‘. W - p ) ' - ' ,  (3.14)
j —Max

P r(A ,) -  (1 -  % )*% , (3.15)

/  r \
P r(S B F Si =  0 | =  Y .  P y i l - v t - * ,  (3.16)

j —Max  '

■Pr(A54) =  ( l - f c y ) ^ .  (3.17)

and is the probability tha t cell Cy is set to M a x  in each iteration. The 

meanings of the other symbols are the same as those in the proof of Theorem 

1. Also, most of above equations are similar, except th a t Eq. 3.16 is different, 

from Eq. 3.4. This is because the initial value of the cell in the case of Theorem 

1 is 0, but it is M ax  here.

Furthermore, the probability tha t an FN occurs when Xi arrives can be 

expressed as follows:

K

P r(FN i)  =  1 -  J J (1  -  PR0(6i, % )). (3.18)
J = 1

When 8i < Max, PR0(8i, fcy) is 0, which means the FN rate is 0. Besides, for 

distinct elements who have no predecessors, the FN rates are 0. The value of 

8i depends on the input data stream. In the next section, we discuss how to 

adjust the parameters to  minimize the FN rate under the condition th a t the 

FP rate is bounded within a user-specified threshold.
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3.4 From Theory to Practice

In the previous section we proposed the SBF method and analytically studied 

some of its properties: stability, convergence rate, monotonicity, stable point, 

FP rates (upper bound) and FN rates. In this section, we discuss how SBF 

can be used in practice and how our analytical results can be applied.

3.4.1 Setting Parameters

Since FP rates can be bounded regardless of the input data but FN rates 

cannot, given a fixed amount of space, we can choose a combination of M ax, K  

and P  tha t minimizes the number of FNs under the condition tha t the FP  rate 

is within a user-specified threshold. Meanwhile we take into account the time 

spent on each element, which is crucial in many data stream applications.

T h e  ex p e c te d  n u m b e r o f F N s. Since our goal is to  minimize the number 

of FNs, we can compute the expected number of FNs, E ( # F N ) ,  as the sum of 

FN rates for each duplicate element in the stream: E ( # F N )  — Y i L  1 P r (FNi), 

where N  is the number of duplicates in the stream. Combining it with Eq. 3.18 

we have
N  K

f?(#FiV ) =  ^ [ 1 - n ( 1 - i , ^ . f e t f ) ) ] ,  (3-19)
i=l j=1

where 5i is the number of elements between and its predecessor, and fcy is 

the probability th a t cell Cy is set to M ax  in each iteration. Cy is the cell 

element Xi is hashed to by the j t h  hash function. Since the function PRO(6, k ) 

is continuous, for each x t there must be a fcj such tha t

K

(1 -  PR0{Sh h ) ) K =  I ^ 1 -  ™ ( ^ »  M ) -  
3=1
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For the same reason, there must be an “average” 5 and an “average” k  such 

tha t

N

N[ 1 -  (1 -  PR0(5, k))K] = £ [ 1  -  (1 -  PR0(Si, h ) ) K] =  E ( # F N ) .
i= 1

Let f(5,  k) be the average FN rate, i.e.

/(? , k) = 1 -  (1 -  PRQ(5, k))K . (3.20)

Our task then becomes setting the parameters to minimize this average FN 

rate, f (8,  k), while bounding the FP rate within an acceptable threshold.

The setting of P .  Suppose users specify a threshold F P S ,  indicating 

the acceptable FP  rate. This threshold establishes a constraint between the 

parameters: M ax, K , P, m  and F P S  according to Corollary 5. Thus, users 

can set P  based on the other parameters:

P   _______________________________ 1_______________ 13.211
((1 -FPS^/K)1/Max ~  ~  V m )

Since m  is usually much larger than K ,  1 j m  is negligible in the above equation, 

which means th a t the setting of P  is dominated only by F P S , M ax, K ,  and 

is independent of the amount of space.

The setting of K .  Since the FP  constraint can be satisfied by properly 

choosing P  , we can set K  such tha t it minimizes the number of FNs. From 

the above discussions we know the relationship between the expected number 

of FNs and the probabilities tha t cells are set to M ax.  Next, we connect these 

probabilities with our parameters K , m  and the input stream.

Suppose there are N  elements in the stream of which n  are distinct, and the 

frequency for each distinct element Xi is // .  Clearly / /  — N.  Assuming 

tha t the hash functions are uniformly at random, for a cell th a t element X{ 

is hashed to, the number of times the cell is set to M a x  after seeing all N
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Figure 3.1: FN rates vs. K
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elements is a random variable, /* +  Y a=i f lh ,  where fo is the frequency of £; 

in the stream, and each Ii(l =  1 .. . n  — 1) is an independent random variable 

following the Bernoulli distribution, i.e.

1. Pr(/, =  1) =  £ ,

0, P r ( / , = 0 )  =  l - £

Thus, ki =  j f f i  +  j f  E 7=i f'ih is also a random variable. For the K  cells an 

element Xi is hashed to, the probabilities tha t those cells are set to  M a x  in 

each iteration can be considered as K  trials of ki. Since the mean and the 

variance of each Ii are p./, =  ^  and a \  = ^ (1  — respectively, it is not 

hard to  derive tha t the mean and variance of ki. /ifc. =  Ty. +  TIC Y^i=i f'l 

= j f h  +  mf i  ~  Jjh)  and ali = w  ̂ (1  -  i / /  - Let

(j,. = ^  ~  ^ ki _  ^  ~  ^  ~  ~  Tift) 22)
j £ (  l  -  £ )y m ' m ' y mv m >

be a transformation on fcj. Then fa € [— ] is a
Vmd-m)

random variable whose mean and variance are: /i^  =  0 and <r̂ . =  ^  Y a = 1 f ' 2- 

Note th a t aj. < ■fo' Ei =i ( f l f Lx)  < W  E " = i( //fmax) =  where ?max is 

the frequency of the most frequent element in the stream. Since the mean and 

the variance of the random variable fa are independent of K  and m, we may 

consider fa independent of K  and m  in practice. In other words, fa can be 

seen as a property of the input stream. Similar to ki we can obtain a fa such 

tha t

K

1 — (1 — PR0(5i,  fa))K =  1 — n o  -  PR0(5i,  faj)) =  Pr{FNi)  (3.23)
3 = 1

where fa € [Min(faj), Max(faj)],  and f a j  are K  trials of fa(j  — 1 . . .  K) .  Since
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the standard deviation of fa is very small compared to the range of its possible 

values, and fa is considered independent of K  and m, fa can be approximately 

considered independent of K  and m  as well. For example, when =  0.01, 

N =  15* ’ 7? =  106, the value range of fa is approximately [0 , 1000], while 

0-*  <  0. 1.

To set K,  keeping all other parameters fixed we vary the values of K  

and compute the FN rate based on Equations 3.23, 3.13, 3.21 and 3.22. By 

trying different combinations of parameter settings (M ax =  1,3,7,15, F P S  = 

0 .2, 0 . 1, 0 .01 , 0 .001; m =  1000, 105, 107, 109 ; 6, =  10, 100, 1000, 105, 107, 109 ; 

#  =  0.5,0.1; 0.01,0.0001,0.000001 and fa =  0.001,0.1, 1,10,100,1000, . . . ),  

we find tha t once the values of F P S  and M ax  are fixed, the value of the 

optimal or near optimal K  is independent of the values of Si, f o / N, fa and m.

O bserv a tio n  1. The value of the optimal or near optimal K  is dominated by 

M ax and F P S .  The input data and the amount of the space have little impact 

on it. Furthermore, the value is small (<10 in all of our testing).

For example, when F P S  — 0.2 and M ax = 1, the value of the optimal or 

near optimal K  is always between 1 and 2; when F P S  =  0.1 and M ax — 3, 

it is always between 2 and 3; when F P S  =  0.01 and M ax =  3, it is always 

between 4 and 5. Therefore, without considering the input data stream we 

can pre-compute the FN rates for different values of K  based on M ax  and 

F P S  and choose the optimal one. Our experimental results reported in the 

next section are consistent with this observation.

Figure 3.1 shows an example of how the FN rates change with different 

values of K  under different parameter settings based in Eq. 3.23 and Eq. 3.13. 

From the figure we can see th a t in the case of M ax — 1 and F P S  =  0.1, 

we can set K  to 2 regardless of the input stream and the amount of space. 

Therefore, in practice we can set fa, 5, and fa /N  to some testing values (e.g. 

0,200,0.00001 respectively) and find the optimal or near optimal K  using the 

formulas.

T h e  se tt in g  o f  M ax.  Based on the above discussion, we can set K  

regardless of the input data, bu t to choose a proper value of Max,  we need
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to consider the input. More specifically, to minimize the expected number of 

FNs, we need to  know the distributions of gaps in the stream to  try  different 

possible values of M ax  on Eq. 3.20 and 3.13. Since the expected value of <fii 

is 0 and its standard deviation is very small compared to  its value domain, we 

set <j> to 0 in the formulas.

To effectively use the space we only set M ax  to 2d — 1 (d is the number 

of bits/cell), otherwise the bits allocated for each cells are just wasted. Fur

thermore, in terms of the time cost, M ax  should be set as small as possible, 

because the larger M a x  is set, the larger P  will be (see Eq.3.21, assuming K  

is a constant). For example, when M ax  =  1, F P S  =  0.01 and K  =  3(the 

optimal K ), the computed value of P  is 10; while M a x  =  15, F P S  =  0.01, 

and K  =  6 (the optimal K ),  the value of P  computed is 141 (the value of P  is 

not sensitive to m). In practice, we limit our choice of M ax  to  1, 3 and 7 (if 

higher time cost can be tolerated, larger values of M ax  can be tried similarly).

To choose a M a x  from these candidates, we try  each value on Eq. 3.20 and 

Eq. 3.13, and find the one minimizing the average FN rate.

Figure 3.2 depicts the difference of average FN rates between M ax  =  3 

and M ax  =  1 based on Eq.3.20 and Eq.3.13. We set ^  — 0 because we are 

considering the entire stream rather than a particular element in this case. 

The figure shows tha t if the values of gaps(<5) are smaller than a threshold, 

M ax =  3 is a better choice. When the gaps become larger, M ax  =  1 is better. 

If the gaps are large enough, there is not much difference between the two 

options. The figure shows the cases under different settings of <j>, space sizes 

and acceptable FP  rates.

We also tested the FN rate difference between M ax = 7 and M ax — 3, and 

observe the same general rule: a larger value of M ax  is better for smaller gaps, 

and a smaller F P S  suggests a larger setting of M ax.  Similarly, we find no 

exceptions under other combinations of settings: F P S  — 0.2,0.1,0.01,0.001 

and m  =  1000 , 105, 107, 109.

Trying different value of M ax  on Eq. 3.20 and Eq. 3.13, we set ^  to  0 and 

assume tha t the distribution of the gaps are known. If the assumption cannot 

be satisfied in practice, we suggest setting M ax  to  1, because this setting
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Figure 3.2: FN rates difference between M ax  =  3 and M ax  =  1 (M ax3 — 
M ax  1) vs. gaps. K  is set to the optimal value respectively under different 
settings.

often benefits a larger range of gaps in the stream. And our experiments also

show tha t in most cases setting M ax  to 1 achieves better improvements in

terms of error rates compared to the alternative method, LRU buffering. In 

fact, buffering performs well when gaps are small, which is similar to the cases 

that M ax  is larger. The behavior of our SBF becomes closer to  the buffering 

method when the value of M ax  is set larger.

S u m m ary  o f  p a ra m e te rs  s e tt in g  a n d  F P /F N  tradeo ff. In practice, 

given an F P S ,  the amount of available space and the gap distribution of the 

input data, to set the parameters properly, we first establish a constraint for 

P, which means P  can be computed based on F P S , m, M ax  and K; then 

find the optimal values of K  for each case of M ax( 1,3,7) by trying limited 

number(< 10) of values of K  on the FN rate formulas; Last, we estimate the 

expected number of FNs for each candidate value of M ax  using its correspond

ing optimal K  and some prior knowledge of the stream, and thus choose the 

optimal value of M ax. In the case tha t no prior knowledge of the input data  is 

available, we suggest setting M ax  =  1. The described parameter setting pro

cess can be implemented within a few lines of codes. In addition, based on the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



above analysis, we obtain a constraint function between FN rates, F P S  and 

other parameters, where the tradeoff between FPs and FNs can be clearly seen: 

when the other parameters are fixed, the larger the FP bound, the smaller the 

FN rate is.

3.4.2 Tim e Complexity

Since our goal is to minimize the error rates given a fixed amount of space 

and an acceptable FP rate, we do not discuss space complexity, and just focus 

on time complexity. There are several parameters to be set in our method: 

K ,M a x  and P. W ithin each iteration, we firstly need to  probe K  cells to 

detect duplicates. After tha t we pick P  cells and decrement 1 from them. 

Last we set the same K  cells as probed in the first step to M ax.

Therefore, the time cost of our algorithm for handling each element is 

dominated by K  and P.

T h eo re m  4 (T im e C om plex ity ). Given that K  and M ax are constants, 

processing each data stream element needs 0 (1) time, independent of the size 

of the space and the stream.

Proof. From Eq.3.21 we know the constraint among K , P , m , M ax  and 

F P S (the user-specified upper bound of false positive rates). If K , M ax  and 

F P S  are constants, the relationship between P  and m  is inversely propor

tional, which means m  has no impact on the processing time. Since M ax, K  

and F P S  are all constants, the time complexity is 0(1). □

Based on the discussion of parameter settings, we know tha t the selection 

of K  is insensitive to m. Furthermore, the value of m  and the stream size 

have little impact on the selection of M ax  based on our testing on Eq. 3.20. 

Therefore, our algorithm needs 0 (1) time per element, independent of the size 

of space.
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3.5 Experiments

In this section, we first describe our data set and the implementation details 

of 4 methods: SBF, Bloom Filter(BF), Buffering and FPBuffering (a variation 

of buffering which can be fairly compared to SBF). We then report some of 

the results on both real and synthetic data sets. Last, we summarize the 

comparison between different methods.

3.5.1 D ata Sets

R eal W o rld  D a ta . We simulated a web crawling scenario [24] as discussed in 

Section 3.1.1, using a Web crawl data set obtained from the Internet archive[8]. 

We hashed each URL in this collection to a 64-bit fingerprint using Rabin’s 

method [107], as was done earlier [24]. W ith this fingerprinting technique, 

there is a very small chance tha t two different URLs are mapped to the same 

fingerprint. We verified the data set and did not find any collisions between 

the URLs. In the end, we obtained a 28GB data file th a t contained about 700 

million fingerprints of links, representing a stream of URLs encountered in a 

Web crawling process.

S y n th e tic  D a ta . We used 2 steps in generating the synthetic data. 

First, we generated a sequence of positive integers in which there was only one 

frequent integer appearing multiple times, and all others were distinct integers. 

Second, we scanned through the integer sequence generated in the first step, 

and randomly converted the only frequent integer into another integer with 

certain probability. We describe the details next.

In the first step, we used 2 different models to  simulate the arrival positions 

of the only frequent integer in the sequence: the Poisson model and the b- 

model. The Poisson model is widely used in modeling real world traffic [43]; 

it is also shown tha t when the traffic has a bursty or a self-similar property, 

the b-model is more accurate [116].

The Poisson model had a parameter A(< 1), indicating the number of 

arrivals of the frequent integer within a unit time interval. Since we used a
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tuple-based stream model, there were no explicit timestamps for elements in 

our case. Instead, we used the element arrival positions as timestamps. As a 

result, when the arrivals of the only frequent integer followed a Poisson process 

with a parameter A, the fraction of the frequent integer among an arbitrary 

number of elements is A on average. It was also shown tha t the inter-arrival 

time (the number of elements in our case) between two consecutive arrivals 

followed an exponential distribution with a parameter 1/A [43].

To simulate bursty traffics we used the b-model. The b-model had 3 pa

rameters: bias b(> 0.5), aggregation level 2, and to tal volume v. W hen b =  0.7 

and 2 =  1, the entire time interval under consideration was divided into 2 equal 

sub-intervals: v*b  traffic volume in the first sub-interval, and v * ( l  — b) in the 

second sub-interval. In other words, 70% of the total volume v was in the first 

sub-interval and 30% in the second sub-interval (or 30% in the first and 70% 

in the second, but we assumed the former case for the ease of presentation). 

If I = 2, we could further divide the first sub-interval into two equal finer 

sub-intervals, and allocate 70% of the volume in the higher level sub-interval 

into the first finer sub-interval and the remaining 30% into the second finer 

sub-interval. This process could be continued recursively for a larger 2.

The traffic volume v in our case was the fraction of duplicates. As an 

example, b — 0.7 and 2 =  1 meant tha t 70% of the arrivals of the frequent 

integer were in the first half of the sequence, and 30% in the second half. 

However, it was possible th a t the predicted number of arrivals of the frequent 

integer in the first half was greater than the to tal number of arrivals in the 

first half. For example, if v =  0.9, the number of duplicates in the first half 

of the sequence was 0.9 * 0.7 =  0.63, which meant th a t 63% of the total 

number of elements in the sequence should be allocated in the first half of 

the sequence. This was obviously infeasible. Observing this, we obtained a 

constraint between v, b and 2: 2 < ln (v )/ln (^ ) .  This constraint indicated tha t 

to obtain a larger aggregation levels 2, the value of v and b should be smaller. 

For example, when v =  0.1 and b =  0.7, 2 <  6 . But when v = 0.5 and b =  0.8, 

2 <  1. When b =  0.5, there was no constraint because the recursive division 

process was always possible.
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In the second step, we scanned through the integer sequence generated in 

the first step using the Poisson model or the b-model, and randomly converted 

the only frequent integer into another number i with a probability which 

followed an exponential distribution with a parameter u. After the second 

step, there were more than one frequent integer in the sequence, and the new 

arrival process of any frequent number i still followed the Poisson model or 

b-model, with a new parameter different from the old one by a  factor of Qi 

(the Poisson case) or with the same parameter (the b-model case). By varying 

the parameters of the Poisson model or b-model in the first step, we were 

able to tune the arrival rate or the burstiness of duplicates. By varying the 

parameters of the exponential distribution in the second step, we were able to 

tune the fraction of distinct integers in the set of duplicates and the frequency 

distribution of those duplicates.

3.5.2 Im plem entation Issues

SB F Im p lem en ta tio n . Our algorithm is simple and straightforward to im

plement: 1) hash each incoming stream element into K numbers using multi

plication hash [44], and check the corresponding K cells; 2) generate a random 

number, decrement the corresponding cell and (P -l) cells adjacent to it by 1; 

3) set those K cells checked in step 1 to  Max. One issue we have to deal with 

is setting the parameters Max, K and P.

Based on the previous discussion, we can find some typical settings for 

different FPS regardless of different data sets. For example, for FPS=10%, we 

set M ax=l, K=2 and P=4, which worked well for different data sets in our 

experiments. To evaluate our work, we implemented 3 alternative methods: 

Bloom Filters(BF), buffering and FPBuffering.

B loom  F ilte rs  Im p lem en ta tio n . In our implementation, BF becomes 

a special case of SBF where Max—1 and P=0. Knowing the number of distinct 

elements and the amount of space, we can compute the optimal K (see the 

discussion in Section 2.3).

B uffering  Im p le m e n ta tio n . Implementing buffering needs more work.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



First, to detect duplicates we need to search the buffer. To speed up the 

searching process, we used a hash table, as was done by Broder et al. [24]. 

Second, when the buffer is full, we have to choose a policy to evict an old 

element and make room for the newly coming one. Broder et al. [24] compared 

5 replacement policies for caching Web crawls. They showed tha t LRU and 

Clock, the la tter of which is used as an approximation of LRU, were the best 

practical choices for the URL data set (there were some ideal but impractical 

ones as well); in terms of miss rate (FN rate in our case), there was almost 

no difference between these two though. We chose LRU in our experiments. 

Both LRU and clock need a separate data structure for buffering elements, so 

tha t we can choose one for eviction [24], For simplicity of the implementation, 

we used a  double linked list, while Broder et al. chose a heap. This difference 

should not affect our experimental results since our error rate comparison did 

not account for the extra space we used in buffering.

F P b u ffe rin g  Im p lem en ta tio n . To fairly and effectively compare our 

method to buffering method, we introduced a variation of buffering called 

FPbuffering. There are two reasons for this. First, SBF has both FPs and 

FNs while buffering has only FNs. In different applications the importance 

of FPs and FNs may be different. So it is hard to compare SBF to  buffering 

directly. Second, the fraction of duplicates in the data stream is a dominant 

factor affecting the error rates, because FNs are only generated by duplicates 

and FPs by distincts. For buffering, a data stream full of duplicates will cause 

many FNs, while a stream consisting of all distincts cause no errors a t all.

FPbuffering works as follows: when a new data stream element arrives, we 

search it in the buffer. If found, report duplicate as in the original buffering; 

if not found, we report it as a duplicate with a probability q, and as a distinct 

with probability (1 — q). In the original buffering, if an element is not found in 

the buffer, it is always reported as a distinct. This vaxiation can increase the 

overall error rates of buffering when there are more distincts in the stream, 

but can decrease the error rates when there are more duplicates in the stream. 

Clearly, FPbuffering has both FPs and FNs. In fact, q is the FP rate since a 

distinct element will be reported as duplicate with a probability q. By setting
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a common FP rate with SBF, we can fairly compare their FN rates, and this 

comparison will not be affected by the fraction of duplicates in the stream.

In our experiments, we assumed tha t buffering and FPbuffering required 

64 bits per URL fingerprint on the Web data (same as [24]) , and 32 bits 

per element on the synthetic data simulating the size of an IP address. In 

other words, each element occupies 64 bits for the real data and 32 bits for 

the synthetic data.

3.5.3 Theory Verification

In an experiment to verify some of our theoretical results, we tested the stable 

properties of our SBF and the convergence rate. The results are shown in 

Figures 3.3. From the graph we can see tha t the fraction of zeros in the 

SBF decreases until it becomes stable. When the allocated space is small, 

the convergence rate is higher. This is because when the space is larger, the 

probability a cell being set is smaller. From Corollary 2 and Eq 3.6 we know 

the convergence rate should be lower in this case. Also, we can see tha t when 

the SBF is stable, the fraction of zeros is still fluctuating slightly. This can 

be caused by the input data  stream whose underlying distributions is varying. 

Furthermore, the fraction of Os keeps decreasing in general before being stable; 

at this point, the FP  rate should reach its maximum, and our theoretical upper 

bound for FP rates is also valid before the SBF become stable in this case. Our 

next experiments show the effectiveness of our theoretical FP bound. When 

the space is relatively small, the real FP rate is close to the bound.

3.5.4 Error R ates Comparison

This experiment compared the error rates between SBF, FPbuffering, buffering 

and BF on the real data  by varying the size of the space. The real data set 

contained 694,984,445 URL fingerprints, of which 14.75% were distinct. To 

do the comparison under different fractions of distinct elements, we built two 

more real data sets by using the first 100,000 and 10 million elements of the
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Figure 3.3: Fraction of zeros changed with time on the whole real data set 
(M ax=l, K=2, P=4, FPS=10%), space unit=64bits

original data  file. The fractions of distinct elements for these two data set 

respectively were 75.66% and 48.51%. For SBF, we set the acceptable FP  rate 

(number of FPs/num ber of distincts), FPS, to 10%, and Max, K,P to  1, 2, 

4 respectively. The results under different FPS settings will be shown in the 

next experiment. For FPbuffering, we set the FP rates to the same number 

as SBF so tha t both generated exactly the same number of FPs, and we can 

just compare their FN rates. Please note tha t buffering and BF only generate 

FNs and FPs respectively, and FPbuffering reduces the FN rates of buffering 

substantially in most cases by introducing a certain amount of FPs.

C o m p ariso n  b e tw ee n  d ifferen t m e th o d s . The tables in Figure 3.4 

show th a t when the space is relatively small, SBF is better. SBF beats FP

buffering by 3-13% in terms of FN rate on different data sets, when their FP 

rates are the same. For the problem we are studying, we think this amount of 

improvement is nontrivial for 2 reasons. First, Broder et al. [24] implemented 

a theoretically optimal buffering algorithm called MIN, where they assume 

“the entire sequence of requests is known in advance” , and accordingly choose 

the best replacement strategy. Even this obviously impractical and ideal al

gorithm can only reduce the miss rates (FN rates in our case) of the LRU 

buffering, by no more than 5% in about 2/3 region (different buffer sizes). 

Second, from the tables we can see tha t even increasing the amount of the 

space by a factor of 4, the FN rates for buffering can be decreased by around 

10-20%, which means the improvement from SBF may be equivalent of tha t
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76% Distinct(100K elements)
Space FPBuffering SBF SBF&FPBuffering Buffering BF
(bits) FN Rate FN Rate FP Rate FN Rate FP Rate

16384 46% 35% 8.4% 50% 83.8%
65536 35% 23% 6.7% 37% 43.4%

262144 24% 11% 3.0% 25% 7.2%
1048576 9% 4% 0.4% 9% 0.6%
4194304 0.1% 1% 0.1% 0.1% 0.1%

49% Distinc (10M elements)
Space FPBuffering SBF SBF&FPBuffering Buffering BF
(bits) FN Rate FN Rate FP Rate FN Rate FP Rate

16384 60% 54% 8.1% 65.7% 99.7%
262144 48% 40% 6.6% 51.5% 95.9%

4194304 30% 23% 4.5% 31.7% 43.5%
67108864 11% 5% 0.5% 11.0% 0.7%

1073741824 0.0% 0.4% 0.1% (only SBF) 0.0% 0.1%
15% Distinct (695M elements

Space FPBuffering SBF SBF&FPBuffering Buffering BF
(bits) FN Rate FN Rate FP Rate FN Rate FP Rate

16384 71% 68% 8.2% 78% 99.99%
262144 65% 60% 7.0% 70% 99.81%

4194304 55% 50% 5.7% 58% 96.93%
67108864 43% 36% 3.5% 45% 54.08%

1073741824 17% 13% 1.6% 17% 2.65%
4294967296 2% 5% 1.6% 2% 1.87%

Figure 3.4: Error rates comparison between SBF, FPBuffering, Buffering and 
BF
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from doubling the amount of space. The FP rates of BF is much higher than 

the acceptable FP  rates in the first 2-3 rows of each table. Since buffering only 

generates FNs, it is not comparable to SBF here. But we can see tha t the FN 

rates of FPbuffering also decrease by introducing FPs into it.

However, we also notice tha t when the space is relatively large (the last row 

of each table), SBF performs not as good as buffering and BF. This is because 

when the space is large, BF might be able to hold all the distincts and keep a 

reasonable FP rates. We can directly compute the amount of space required 

based on the FP rates desired and the number of distincts in the data set 

according to the formula in Section 2.3. In this case, there is no need to evict 

elements out of the BF, which means SBF is not applicable. If we can afford 

even more space, which is large enough to hold all the distincts in the data  set 

using a buffer, there will be no errors at all. The last row of the second table 

shows this scenario. But in many data stream applications, a fast storage is 

needed to  satisfy real time constraints and the size of this storage is typically 

less than the universe of the stream elements as discussed in Introduction.

Another fact is tha t in both SBF and buffering, we can refresh the storage 

and bias it towards recent data; they both evict stale elements continuously 

and keep those fresh ones. While BF is not applicable in this case since BF 

can be only used to  represent a static data set. Thus, it is not useful in many 

data stream scenarios th a t require dynamic updates.

V ary ing  a cc ep tab le  F P  ra te s . Another experiment we ran was to 

test the effect of changing the acceptable FP rates. The results are shown 

in Figure 3.5. In this experiments, we set Max=3, K =4 when acceptable FP 

rates are set to 0.5% and 1%, and set M ax=l, K =2 when acceptable FP rates 

are set to  10% and 20%. The bar chart depicts the FN rate difference between 

FPbuffering and SBF. Again, the FP  rates of both methods are set to  the 

same number. Clearly, it shows tha t the more FPs are allow, the better SBF 

performs.

C om parison  o n  d ifferen t d a ta  se ts . To see the impact of different data 

sets on both the SBF and FPBuffering methods, we ran similar experiments 

on the synthetic data. In general, the results were consistent with those from
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Figure 3.5: FN rate differences between FPBuffering and SBF varying allow
able FP rate(695M elements)

the real data.

The acceptable FP rate was set to 10%, and the parameters for SBF were 

as follows: M ax  =  1, K  =  2 and P  =  4. In these data sets, the stream 

sizes were all fixed to  224 (about 16 million elements). The parameters used 

to generate the data sets are shown in Figure 3.6.

Between the two data sets shown in Figure 3.6(a) and 3.6(b), the only 

difference is the bias parameter 6, which indicates the burstiness of the data 

sets. These two sub-figures show tha t the FN rate difference between SBF 

and FPBuffering becomes smaller when the data  set has the bursty property 

(b =  0.7) compared to  the case tha t the data set is not bursty (b =  0.5). But 

the impact of this burstiness is not significant.

We also set b to 0.7 and change the exponential distribution parameter 

u. which controls the frequency distribution of duplicates, from 103 to 106. 

In the data set generated under this setting, the gaps between duplicates are 

increased in general, because increasing u  means tha t the exponential distri

bution becomes less skewed, and the number of distinct elements in the set 

of frequent elements is increased (we consider the first time tha t a frequent 

element appears as a distinct element), and thus the probability of generating
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two identical integers within a short period becomes smaller. Figure 3.6(c) 

shows the results obtained from experiments run on this data set. It demon

strates tha t both SBF and FPBuffering need more space to  reach a particular 

FN rate when the gaps are increased. In the region with the FN rate 90%, the 

space allocated to  both methods is too small and does not help much, because 

without any space cost one can obtain similar results by randomly predicting 

each element as a duplicate at a probability 0 .1.

Figure 3.6(d) depicts the results from the experiments run on the Poisson 

data set. u  is set to the same value as in the previous sub-figure. Since there 

are more duplicates in this data set, the gaps in general are smaller compared 

to the previous data set. As a result, to reach a certain FN rate, both methods 

need less space. From this and some others experiments whose results are not 

shown here we find tha t SBF consistently outperforms FPBuffering on datasets 

generated using both the Poisson and the b- models.

Besides, all sub-figures in Figure 3.6 also show tha t SBF can beat FP- 

Buffering up to 30% in terms of FN rates when both methods have exactly 

the same FP rate (<  10%). When the allocated space is large (but not large 

enough to store all distinct elements), FPBuffering may be more accurate than 

SBF. But in this case, as discussed in the comparison on the real world data, 

the original BF method (which is also a special case of SBF) is usually the 

best since it only generates FPs under the acceptable threshold and no FNs. 

Of course, if the available space is large enough to store all distinct elements, 

buffering is the best in terms of accuracy, since it is precise.

3.5.5 Tim e Comparison

As discussed in the implementation section, SBF and BF need 0(1) time to 

process each element. The exact time depends on the the param eter settings. 

For example, when K—2 and P=4, SBF needs less than 10 operations within 

each iteration.

For buffering and FPbuffering, their processing time is the same. I t de

pends on 2 processes: element searching and element evicting. Searching can
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Figure 3.6: FN rate comparisons between SBF and FPBuffering on synthetic 
data sets (FP rates <  10%, in the SBF method M ax =  1, K  — 2 and P  =  4).
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be quite expensive without an index structure. Both our experiments and 

those of Broder et al.[24] used a hash table to accelerate the search process. 

The extra space th a t is needed for a hash table to keep the search time con

stant is linear in the number of elements stored. The process of maintaining 

the LRU replacement policy(finding the least recently used element) is also 

costly, and extra space is needed to make it faster. This extra space can be 

quite large for LRU. However, this cost can be reduced to 2 bits per elements 

by using the Clock approximation of LRU [24].

Therefore, buffering and FPbuffering need extra space linear in the number 

of buffer entries to reach a similar 0(1) processing time. But in our error rate 

comparison, we did not count this extra space for buffering and FPbuffering.

3.5.6 M ethods Comparison Summary

We compared 4 methods in this section: SBF, BF, FPbuffering and buffering. 

Among them, BF and buffering have only FPs and FNs respectively, and SBF 

and FPbuffering have errors of both sides.

BF is a space efficient data structure which has been studied in the past and 

is widely used. It is good for representing a static set of data provided tha t the 

number of distinct elements is known. However, in data stream environments, 

the data is not static and it keeps changing. Usually it is hard to know the 

number of distinct elements in advance. Moreover, BF is not applicable in 

cases where dynamic updates are needed since elements can only be inserted 

into BF, but cannot be dropped out. Consequently, BF is not suitable for 

many data stream applications.

SBF, buffering and FPBuffering can be all applied to data stream scenarios. 

SBF is better in terms of accuracy and time when certain amount of FP rates 

are acceptable and the space is relatively small, which is the case in many 

data stream applications due to the real-time constraint. When the space is 

relatively large or only small FP  rates are allowed, buffering is better.
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3.6 Related Work

The recent work of Metwally et al.[96] also study the duplicate detection prob

lem in a streaming environment based on Bloom filters(BF) [17]. They consider 

different window models: Landmark windows, sliding windows and jumping 

windows. For the landmark window model, which is the scenario we consider, 

they apply the original Bloom filters without variations to detect duplicates, 

and thus do not consider the case tha t the BFs become “full” . For the sliding 

window model, they use counting BFs [66] (change bits into counters) to allow 

removing old information out of the Bloom filter. However, this can be done 

only when the element to be removed is known, which is not possible in many 

streaming cases. For example, if the oldest element needs to be removed, one 

has to know tha t which counters are touched by the oldest element, but this 

information cannot be found in counting BFs, and maintaining this knowl

edge can be quite expensive. For the jumping window model, they cut a large 

jumping window into multiple sub-windows, and represent both the jumping 

window and the sub-windows with counting BFs of the same size. Thus, the 

jumping window can “jum p” forward by adding and removing sub-window 

BFs.

Another solution for detecting duplicates in a streaming environment is 

the buffering or the caching method, which has been studied in many areas 

such as database systems [69], computer architecture [76], operating systems 

[112], and more recently URL caching in Web crawling [24]. We compare our 

method with those of Broder et al.[24] in the experiments.

The problem of exact duplicate elimination is well studied, and there are 

many efficient algorithms(e.g. see [69] for details and references). For the 

problem of approximate membership testing in a non-streaming environment, 

the Bloom filter has been frequently used (e.g. [92, 91]) and occasionally 

extended [66 , 98]. Cohen and Matias[42] extend the Bloom filter to answer 

multiplicity queries. Counting distinct elements using the Bloom filter is pro

posed by Whang et al. [119]. Another branch of duplicate detection focus on 

fuzzy duplicates [35, 5, 16, 118], where the distinction between elements is not
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straightforward to see.

A related problem to duplicate detection is counting the number of dis

tinct elements. Flajolet and Martin[67] propose a bitmap sketch to  address 

this problem in a large data set. The same problem is also studied by Cormode 

et al. [45], and a sketch based on stable random variables is introduced. Be

sides, the sticky sampling algorithm of Manku and Motwani [94] also randomly 

increment and decrement counters storing the frequencies of stream elements, 

but the decrement frequency is varying and not for each incoming element. 

Their goal is to find the frequent items in a data stream.

As for data  stream systems [9, 27, 114, 28, 51, 37], as far as we know, most 

of them divide the potentially unbounded data stream into windows with lim

ited size and solve the problem precisely within the window. For example, 

Tucker et al. introduce punctuations into data streams, and thus duplicate 

eliminations could be implemented within data stream windows using tradi

tional methods[114]. “ ■

Since there is no way to store the entire history of an infinite data  stream 

using limited space, our SBF essentially represents the most recent information 

by discarding those stale information continuously. This is useful in many 

scenarios where the recent data is more im portant and this importance decays 

over time. A number of such kinds of applications are provided in [41] and 

[104]. Our motivating example of web crawling also has this property, since it 

may not m atter tha t much to  redundantly fetch a Web page tha t have been 

crawled a long time ago compared to fetching a page tha t have been crawled 

more recently.

3.7 Summary and Possible Extension

In this chapter, we propose the SBF method to approximately detect dupli

cates for streaming data. SBF extends the Bloom filter to allow outdated infor

mation to be removed from the summary structure so as to have enough space 

to represent fresh data. We formally and experimentally study the properties
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of our algorithm including stability, exponential convergence rates, monotonic

ity, stable points, bounded FP rates, FN rates dependent on input data  stream, 

0 (1) time independent of the stream size and space.

We empirically evaluate SBF and report the conditions under which our 

method outperforms the alternative methods, in particular buffering and FP- 

Buffering methods using LRU replacement policy, both of which need extra 

space linear in the buffer size to obtain constant or nearly constant processing 

time.

Our SBF method works in a “landmark” window environment where the 

starting point of the window is fixed. Since an element arrives recently has less 

chance being “kicked out” , SBF implicitly favors recent data. But no explicit 

sliding windows can be specified by users to indicate the “recentness” range. 

We are working on the sliding version now.
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Chapter 4 

Approximate Frequency Query 

Processing

In this chapter, after introducing frequency queries and multipurpose sketch

ing techniques, we first propose a new unbiased estimation algorithm, referred 

to as CMM, based on Count-min sketches [48] to approximately answer mul

tiplicity queries of data streams. Our experiments on both synthetic and real 

data sets show th a t the new algorithm gives much more accurate results (e.g. 

orders of magnitude improvement on the real data set) than the CM estimation 

algorithm on a wide range of data sets except when data is highly skewed.

Second, we show through theoretical analyses and experimental evaluations 

tha t CMM performs very similarly to the algorithms based on Fast-AGMS 

sketches [31, 46], and all the analytical results reported for Fast-AGMS [31] 

also hold for Count-min with our CMM algorithm. Hence, Count-min can be 

also applied to the cases where Fast-AGMS is used as a building block without 

losing accuracy, time and space efficiency (e.g. [81] and [68]).

Having two estimation options with different properties, Count-min can do 

more than Fast-AGMS. For example, the CM estimation approach provides 

one-sided error approximations, which can be very useful in some cases. In
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finding frequent elements in a data stream, all candidates whose multiplicities 

exceed a given threshold are guaranteed to be returned using the CM estima

tion. Multiplicity estimates for all qualified candidates can be obtained using 

our CMM approach since it is usually much more accurate in practice. In 

contrast, Fast-AGMS fails to provide this deterministic guarantee no m atter 

how much space is given. In addition, Count-min with the CM estimation is 

more accurate than  Fast-AGMS when the data  set is highly skewed, and CM 

has a better space bound, meaning tha t given an error bound and a confidence 

interval, Count-min using CM needs less space than Fast-AGMS.

Third, we propose a new unbiased algorithm for self-join size estimations 

based on Count-min sketches. Unless there is a confusion, we will also refer 

to this algorithm as CMM. Similarly, the accuracy of this algorithm is much 

better than the previous Count-min estimation algorithm (also referred to  as 

CM) in practice on a wide range of data sets except when the data set is 

highly skewed. Through our analytical and empirical evaluations we show 

that CMM performs very similarly to Fast-AGMS in terms of self-join size 

estimations. Again, having two estimation approaches with different properties 

makes Count-min a more powerful and flexible data stream summary.

The rest of this chapter is organized as follows. Section 4.1 describes the 

queries to be answered and the importance of those queries. Then we introduce 

our CMM estimation algorithm for multiplicity queries in Section 4.2, where 

analyses and experimental results are also provided. Section 4.3 discusses our 

CMM algorithm for self-join size estimations. In Section 4.4 we describe the 

research work closely related to CMM. Section 4.5 summarize this chapter.

4.1 Frequency Queries and Multipurpose Sketch

ing.

As discussed in the previous chapters, different time and space efficient sketch

ing techniques have been proposed, some dedicated to one type of query, and
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a few others such as Count-min [48] and Fast-AGMS sketch (a.k.a Count- 

sketch) [31] can be used to answer multiple queries. Two im portant queries 

th a t can be answered using Count-min or Fast-AGMS sketches are multiplicity 

queries and self-join size estimations. Although our estimation algorithms can 

be extended to answering other queries, in this chapter we focus on these two 

queries.

A multiplicity query, also called a point query or a frequency query, is to 

find the number of times a given element appears in a data stream. This is 

an important query because the techniques for answering multiplicity queries 

can be often applied to  answer other frequency related queries such as iceberg 

queries [42] (where the goal is to find the elements whose frequencies exceed a 

threshold), finding top-K frequent elements [31], range queries [48] (where the 

goal is to find the sum of frequencies of elements within a range), and approx

imating quantiles [48]. Multiplicity queries are also im portant in traditional 

non-streaming settings (see [42] for more examples).

The self-join size, also known as the second frequency moment, of a multi

set is YlieD f i t  where D  is the domain from which the values are drawn, and 

f i  is the frequency of value i. The self-join size indicates the degree of skew 

of a data set. For data  distributions such as Zipfian and exponential, the 

self-join size uniquely determines the parameter of the distribution [3]. Know

ing the parameter of a distribution can improve the accuracy of estimations. 

For instance, in answering multiplicity queries, we can compute the Zipfian 

parameter of the input data stream (assuming it follows the Zipfian model), 

and accordingly choose an algorithm between the new one we propose in this 

chapter and the one previously proposed since both algorithms are based on 

the same sketch. As another example, the self-join size can be also useful 

in selecting an optimal sampling strategy to estimate the number of distinct 

values [75]. More applications of the self-join size can be found in [4] and [3].

To answer multiplicity queries and self-join size estimations, we focus on 

Count-min sketches [48], which have been implemented on an operational data 

stream monitoring systems, AT&T’s Gigascope [51, 47], for real-time IP traffic 

analyses (including multiplicity queries and self-join size estimations) and for
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other operational reasons [85]. Count-min has some nice properties such as 

one-sided errors and better space bounds (smaller by a factor of 1/e, where e 

is the relative error) in comparison with the best known alternative sketching 

techniques. However, better space bounds may not always guarantee better 

performance in practice. Based on our experiments, we find th a t the pre

vious estimation algorithms using Count-min, referred to as CM, are not as 

accurate as those using Fast-AGMS [31] on a wide range of da ta  sets. On 

slightly skewed or uniformly distributed data sets, in particular, Fast-AGMS 

performs significantly better. In this chapter, we demonstrate th a t Count-min 

sketches can actually do as well as Fast-AGMS both in theory and in practice 

regardless of the data distributions using our new estimation algorithms. Fur

thermore, our new estimation algorithms can be combined with those previous 

algorithms without conflicts, hence making Count-min a more powerful and 

flexible sketch.

Next, we introduce our new estimation algorithms for multiplicity queries 

based on Count-min sketches.

4.2 Unbiased Estimates for M ultiplicity Queries 

using Count-min Sketches

The estimation procedures described in Section 2.1.1 give upper bounds of the 

true values. We propose our estimation methods, count-mean-min (CMM)

, which gives unbiased estimates for both multiplicity queries and self-join 

size estimations using exactly the same count-min sketch. We discuss the 

multiplicity query case in this section.

4.2.1 Basic Idea

Recall the estimation procedure of CM: given a query element q and hash 

functions hi (i — 0 , . . . ,  d — 1), the frequency estimate f q is the minimum value
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of the counters q has touched (i.e. CM[i, hi(q)}, i — 0 , . . . ,  d — 1). Usually the 

counters q touches are also touched by other elements, thus even the minimal 

counter value is expected to be larger than the true value f q. The source of the 

error is the contributions of other elements to the counters CM [i, hi(q)}. We 

characterize the contributions made by elements other than q to the counters 

CM \i, hi(q)] as noise. The CM algorithm returns the counter value with the 

least noise. Our CMM algorithm tries to estimate the noise in each counter, 

removes the noise and returns the residue.

Of course we do not know exactly the value of the noise since the noise 

is a random variable, but we can estimate its expected value. For a counter 

C M \i, hi(q)], the noise can be estimated from the values of all other counters 

not touched by q in tha t row i. The value of each counter not touched by 

q can be considered as an independent random variable following the same 

distribution as the noise, assuming th a t the hash functions map each element 

i to  the range [0, d — 1] uniformly at random (pair-wise independence [99] is 

sufficiently for our theoretical results in this section). In fact, for a  multiplicity 

query, the values of the counters tha t are not touched by the query element 

q in row i demonstrate the probability distribution of the noise in counter

CM[iMq)]-

4.2.2 Our Estim ation Algorithm

Given a query element q, we use the same set of hash functions hi (i =  

0 , . . . ,  d — 1) as used in constructing the Count-min sketch, and check the 

d counters q is mapped to, i.e. CM[i, hi(q)] (i =  0 , . . . ,  d — 1). Instead of 

returning the minimum value of the d counters, we deduct the value of esti

mated noise from each of those d counters, and return the median of the d 

residues. The estimated noise in each counter CM[i, hi(q)\ can be computed 

as the average value of all counters in row i except counter CM[i, hi(q)] itself. 

That is, the noise is estimated to be (N  — CM[i, — 1), where N  is

the stream size and w is the sketch width.
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4.2.3 Analyses of Our Algorithm

Since for each row of the sketch, the analysis is the same, we just discuss the 

case for a particular row i. Let X x be a Bernoulli random variable indicating 

if element x  is hashed to the same counter tha t the query element q is hashed 

to, i.e.

Assuming tha t the hash function maps each element to one of the w  counters 

uniformly at random, the probabilities of the above two cases are as follows: 

Pr[Xx =  1] =  1/w  and P r[X x =  0] =  1 — l /w .  The value of the counter q is 

hashed to is also a random variable, f q +  Y lx^ q fx X x, where f q and f x are the 

true frequencies of q and x  respectively.

L em m a 2 . Given a hash function picked uniformly at random from a pairwise 

independent family, fo r a multiplicity query of element q and each row of 

the sketch, our CMM estimate f q is expected to be f q, and the variance is 

Yhx^q fx> where w is the sketch width.

Proof. We only discuss the case for row i of the sketch here since the analysis 

for other rows is exactly the same. Recall tha t our estimation procedure 

described in Section 4.2.2 is to deduct an estimated noise, the average value 

of other counters, from the counter q is hashed to. Thus, the estimate

0 , otherwise.

1 , a; is hashed to the same counter as q is;

xqtq

x^q
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The expectation of fq

B lA] =  / , + r - r r E A M W - 1)
x̂ tq

=  fq + —^—r fx (w -  -  !) =  Uw — 1 wx^q

Therefore, f q is an unbiased estimate.

The variance of f q

VAR{f,\ = E[(f, -  B[/,]f]

x^q

To simplify the formula, let Z x — w X x — 1, then

Thus,

E[ZX] =  0 

E \Z l\ = E[w2X 2x -  2w Xi +  !] =  « / - ! .

v m t i  =  T ^ w E { ( £ f , z , ) 2] 

T^jl^E Hzl + 2 Y, E  U,2,2,\
x j i q  x j t q  y ^ q

y<x

(•_■ Z x, Z y pairwise independent)

s#? y#g
y<x

z t E ^ -u; Xytq
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C o m p ariso n  w ith  F ast-A G M S . Fast-AGMS [31] can be used to  answer 

multiplicity queries as well. It is not hard to show the following statement.

L em m a 3. Given sketches of the same width and depth and using independent 

hash functions, the expectation and variance of the estimates from Fast-AGMS 

are the same as those from our CMM algorithm.

Proof. Similar to the proof of Lemma 2, we can obtain the expected value and 

the variance of the Fast-AGMS estimate; the expectation is the same as tha t 

of CMM’s, and the variance is ^  ^2x^ q f x - For a given element q, let f q be 

the frequency estimate from a Fast-AGMS sketch with width w  and depth d. 

X x is still defined as the same indicator variable, indicating whether element 

x  is hashed to  the same counter as q is. Let Yx be another random variable 

indicating x  is hashed to  either —1 or 1 with the same probability 1/2  by 

another independent hash function. That is

1, Pr[Yx =  1]
Y~

-1 ,  Pr[Yx =  —1]
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then we have

f q = f q + J 2 f * x *Y*>
xjtqE[fq] = fq + E fxE[Xx}E[Yx] = fq,x̂qVAR[fq] = E[(fq - fq)2} = £[(£ fxXxYx)2}

= £ [ £  + E{2 Y i  £  f ,/y X ,X tY,Yv]
x ^ q  x ^ q yjiq

y<x

('.• XxXy, Y^y^pairwise independent)

=  £ / j £ [ j r „ W , 2] +x̂q2 E E fxfyE[Xx}E[Xy\E[Yx]E[Yy\
x+q y^q  

y<x

=  - Y f .w 2-^ x
xjzq

Recall tha t the variance of our CMM estimate is ^2x^ qf x , meaning th a t 

if CMM is given one more counter in each row, the variances of these two 

methods will be exactly the same. Given tha t CMM needs one less hash 

function in each row, and this can lead to some saving in the storage of the 

hash functions, we consider the two variances the same. Even if there is any, 

the difference is negligible especially when the depth of the sketch is small due 

to the time cost. □

T h eo rem  5. The analytical results reported for Fast-AGMS [31] are all ap

plicable to the Count-min sketch using the CMM algorithm.

Proof. Because the expectations and variances of the two methods are the 

same, all proofs in [31] can be adapted to our CMM estimation. See [31] for 

the detailed proof. Note th a t the presentation style and some of the notations 

in [31] are different from ours. □

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.2.4 Experim ents for M ultiplicity Queries

In this section, we experimentally compare CMM to the related estimation 

algorithms: CM, Fast-AGMS and SBF with the MI heuristic (see the Spectral 

Bloom filters part in Section 2.1.1).

Im p le m e n ta tio n  issues. In our CMM algorithm for answering multi

plicity queries, we also use the median of all counters in a sketch row as the 

estimated noise besides using the mean as described in the algorithm, because 

median is less sensitive to outliers in data values. Computing the median of 

the counters not touched by the query element for each query is costly. To 

improve the time efficiency, we consider the median of all counters as the noise, 

which can be obtained once and used for all queries. This estimate is still ac

curate because the median of all counters in one sketch row is approximately 

the same as the median of tha t row with one less counter.

To further increase accuracy for both CMM and Fast-AGMS, we return 0 

if CMM or Fast-AGMS gives a negative estimate since the estimate is clearly 

wrong. Similarly, if CMM gives an estimate larger than the one from CM, 

we return the latter instead since an estimate above the upper bound is also 

obviously wrong. Having multiple estimates from multiple sketch rows, we 

return the median as the final estimate for both CMM and Fast-AGMS. The 

hash functions we use are obtained from MassDal [95].

S y n th e tic  a n d  re a l d a ta  se ts . We generated synthetic data sets whose 

element frequencies followed Zipfian distributions with different Zipfian pa

rameters between 0 and 2. Each data set had 1 million elements, where the 

elements were integers drawn from the domain from 1 to 1 million. The code 

used for generating the data sets were also obtained from MassDal [95]. We 

also ran experiments on a Web crawl data  set, originally obtained from In

ternet Archive [8], containing a stream of URLs sequentially extracting from 

the crawled pages. We hashed each URL in this collection to a 64-bit finger

print, verified the data  set and found no hash collisions between the URLs. 

The stream size (number of URL fingerprints) we used was 1 million. Using 

the second frequency moment of this URL stream, we approximately com-
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puted the Zipfian parameter assuming the URL frequencies follow the Zipfian 

model, and found tha t the Zipfian parameter were between 0.8 and 0.9. We 

also used longer and shorter stream sizes, but found similar Zipfian parameters 

and experimental results.

E x p e rim e n ta l se ttin g s . In the experiments, we queried the multiplicities 

of all elements in the domain and the multiplicities of the top-100  frequent 

elements appeared in the data set using different sketching techniques. We 

obtained true frequencies of the elements using a sufficiently large buffer, and 

computed the absolute values of the differences between the estimates and the 

true frequencies as the error measurement.

16384
Fast-AGMS — i—  

CM — x—  
CMM

Ml ...
CMM-mean — b —

8192

4096

2048

1024

512

256

128

64

32

16
21 1.50.50

Skew

Figure 4.1: Average absolute errors vs. data set skew, comparing Fast-AGMS, 
CM, MI and our CMM; queries are all elements in the domain. The sketch 
width and depth are 64 and 3 respectively.

V ary ing  th e  skew  o f th e  sy n th e tic  d a ta  se ts . In our first experiment, 

we query each element in the domain once and return the average of the 

absolute errors of all queries. The result from data  sets with different Zipfian 

parameters is shown in Figure 4.1. CMM-mean represents the algorithm using
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Figure 4.2: Average absolute errors vs. data  set skew, for top-100 frequent 
element queries using Fast-AGMS, CM, CMM and MI. The sketch width and 
depth are 256 and 5 respectively.

the mean value of counters as the noise, while CMM represents the algorithm 

using the median of all counter values in a row as the noise. From the figure 

we can see th a t when the data set is less skewed, CMM-mean, Fast-AGMS 

and CMM all perform significantly better than CM and MI, while CM and MI 

become more accurate than Fast-AGMS when the data set is highly skewed.

Among CMM-mean, Fast-AGMS and CMM we also see some differences: 

CMM-mean and CMM both perform better than Fast-AGMS when the data 

set is highly skewed because of the CM bound applied to  both CMM-mean 

and CMM; when the data set is less skewed, the performance of Fast-AGMS is 

between those of CMM-mean and CMM. Actually, CMM-mean performs well 

mainly because of the 0 bound we used. When the data set is skewed, it is very 

likely tha t there are some large outliers in row counters, which make CMM- 

mean significantly overestimate the noise, and accordingly return a negative 

estimate. This is good for those 0-frequency elements which do not appear
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Figure 4.3: Average absolute errors vs. sketch width, for top-100 frequent 
element queries using Fast-AGMS, CM, CMM and MI on the 1M URL data 
set. The sketch depth is 5.

in the data set, because the final CMM-mean estimate will be 0 whenever 

CMM-mean returns a negative estimate. In contrast, CMM has less chance of 

overestimating the noise, thus CMM is less likely to take advantage of the 0 

bound. Regarding Fast-AGMS, the chance of returning a negative estimate is 

one half for those 0-frequency elements. Given tha t a large fraction of query 

elements in the domain have frequency 0 in the synthetic data  sets, which 

makes the 0 bound a dominant factor, in the rest of our experiments we focus 

on finding the multiplicities of frequent elements, where the 0 bound has much 

less impact on the experimental results.

In our second experiment, we query the multiplicities of the top-100 fre

quent elements. The average of the absolute errors of the 100 query answers 

on the data sets with different skew is shown in Figure 4.2. Some general 

trends observed from the figure are as follows. First, the accuracy difference 

between CMM and Fast-AGMS is small. Second, CMM and Fast-AGMS sig-
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Figure 4.4: Average absolute errors vs. sketch depth, for top-100 frequent 
element queries using Fast-AGMS, CM, CMM and MI on the 1M URL data  
set. The sketch width is 256.

nificantly outperform CM when the data set is less skewed; the difference 

becomes smaller when the skew increases; when the data set is highly skewed, 

CM becomes more accurate than CMM and Fast-AGMS. Third, the MI heuris

tic consistently outperforms CM; but it is still much less accurate than CMM 

and Fast-AGMS for less skewed data; in the high skew cases, MI is much 

better.

One clear inconsistency between Figure 4.1 and 4.2 is the performance of 

MI. In the high skew cases, when query elements are the frequent ones, MI 

performs much better than all others, while MI performs much worse in Fig

ure 4.1. This is because when the data set is highly skewed, there are less 

high frequent elements. The counters those elements are mapped to are very 

likely to be increased to  a high value by the frequent elements themselves. 

When a non-frequent element arrives, it will only increase the minimum coun

ters it is mapped to, which are less likely to be the ones frequent elements
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have touched because the values of those counters are likely to  be very large 

already. Therefore, when the query elements are frequent ones, MI only gives 

very small errors. As discussed in Section 2.1.1, The benefit of this method 

depends on the frequency distribution and the order in which elements arrive. 

So it is difficult to be further analyzed.

V ary ing  th e  sk e tch  w id th  on  th e  re a l d a ta  se t. In this set of ex

periments, we fixed the sketch depth to 5 and varied the sketch width. The 

results are shown in Figure 4.3. Similar to the results from the previous ex

periments, CMM performs very close to Fast-AGMS, and they both performs 

significantly better than  CM. MI does not perform well when the space is 

small; but it becomes better when the space is large.

V ary ing  th e  sk e tch  d e p th  on  th e  rea l d a ta  se t. In this set of exper

iments, we fixed the sketch width to 256 and varied the sketch depth. The 

results are shown in Figure 4.4. Similar to the results from the previous exper

iments, CMM performs very similarly to Fast-AGMS, and they both performs 

significantly better than  CM. MI is better than CM, but not as good as CMM 

and Fast-AGMS.

4.2.5 Summary of Comparisons

In this chapter, we discuss 4 algorithms for approximately answering multi

plicity queries: CM, Fast-AGMS, CMM and MI.

C M M , C M  a n d  F ast-A G M S . In general, CMM and Fast-AGMS give 

better estimates over a larger range of data sets. They perform similarly 

both in theory and in practice. But CM and CMM are 2 different estimation 

algorithms using exactly the same sketch. Therefore, the Count-min sketches 

can be more powerful than Fast-AGMS sketches as discussed in Section 4.1.

M I an d  o th e r  tech n iq u es . The MI heuristic consistently improves the 

accuracy of CM estimates, especially when the queries are frequent elements. 

In general, it may perform better than CMM and Fast-AGMS for highly 

skewed data sets when querying frequent elements. When the data  set is less 

skewed, CMM and Fast-AGMS seem to perform better. But we are unable
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to reach a conclusion for our comparison because the results of MI may vary 

greatly even for data  sets with the same skew but different element arrival 

orders. Furthermore, MI does not have certain nice properties, such as the 

ability to handle element deletions and the ease of analysis, which CMM, CM 

and Fast-AGMS all have. This is again because the arrival order of elements 

will change the performance of MI, while this order has no effect on CM, CMM 

and Fast-AGMS. In other words, the sketch will be the same for CM, CMM or 

Fast-AGMS as long as the frequencies of elements do not change, and hence 

the estimation will be the same regardless of the element order. Because MI 

is hard to be analyzed, the space bound remains the same as tha t of CM.

T im e cost co m parisons. The time cost of per element update for CM,

CMM and Fast-AGMS is the same, i.e. 0(d)  where d is the depth of the sketch.

The time cost for MI depends on the number of hash functions used, and we 

are not sure how to  set the number of hash functions properly to minimize the 

error.

As for the query time cost, CM needs 0(d)  time to find the minimum 

counter. Both CMM and Fast-AGMS can find the median in 0 ( d ) time as 

well using the SELECT algorithm [44], under the condition th a t the mean of 

all counters except the one touched by the query element is used to estimate the 

noise in CMM. But if CMM uses the median of each row for noise estimation, 

as we did in our experiments, then CMM needs 0( w)  preprocessing time to 

find the median of counters for each sketch row. But those medians need to 

be computed only once and can be used for all queries.

4.3 Unbiased Self-join Size Estimates from Count- 

min Sketches

Count-min sketches can be also used to estimate the self-join size of a data 

stream as discussed in Section 2 .1.1, where the estimate is an upper bound of 

the true value. Similar to the case of multiplicity queries, we propose a new

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



estimation algorithm which gives an unbiased self-join size estimate of a data 

stream.

4.3.1 Our Estim ation Algorithm

The CM algorithm [48] computes the sum of squares of all counters in each 

sketch row, and returns the minimum sum of all rows as the self-join size 

estimate. Our approach (CMM) use the same sketch with width w and depth 

d, but the estimation procedure is different: for each counter in a sketch row, 

we compute the average value of all other counters in the row except the 

counter itself, and deduct the average from th a t counter; by doing this, w 

residues are obtained, one for each counter. We then calculate the sum of the 

squares of the w residues, and return the product of the sum and (w — l ) / w 

as the self-join size estimate from tha t row. The final estimate is the median 

of the estimates from all d rows.

Formally, given a Count-min sketch CM[  0 . . . d  — 1 , 0 . . .  to — 1] with d rows 

and w columns, we return the median of the following d values as the estimate:

— 1 ul~ 1 1
- £ ( C M [ i J ]  -  - f - ( N - C M { i , j ) ) ) \

j=o

0 <  i <  d — 1,

where N  is the stream size, i is the row index and j  is the counter index within 

a row. Next we show tha t this CMM algorithm gives an unbiased estimate for 

the self-join size and the variance is the same as tha t of AMS and Fast-AGMS.

4.3.2 Analyses of Our Algorithm

L em m a 4. The estimate from each row of a Count-min sketch using the above 

CMM algorithm is expected to be the true self-join size (under pairwise inde

pendent hash functions), and the variance is ^ i Y ^ x<y f xf y (under f-wise
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independent hash functions), where (x , y) is an arbitrary pair of distinct ele

ments of the stream.

Proof. For a particular row of the sketch, let be the true self-join size, and 

X Xtj be a Bernoulli random variable indicating if an element x  is hashed to 

counter j  (j  =  0 , . . . ,  w — 1). T hat is

1, x  is hashed to  the counter j,  (j  =  0 , . . . ,  w — 1);

0 , otherwise.

Then the self-join size estimate

w —l

j = 0 x x<y

w —l
x '  j=Q 
w—l

j = 0 j = 0 xx

1 w—1

£ / . 2 +  -  u 2 + 2w ' £ u , ' £ x *j X , j ).

The expected estimate

X X
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The variance

x<y j = 0

(v  the hash function 2-wise independent, 

••• E[ X, j X , j ] =  i )

=  E i 2 +  ^ r i « E / - ) 2 - Jv2) =  E *
X X X

VAR[ F2] = E[F2 ) -  (E[F2])2

W x
w—l“• * j

+ 2u; f xf y ^  ^  . 2
x<i/ i= o  '  '

w—l

e \( £ / 2 -  A/'2 +  2w
x x<j/ j= 0

I _ E [ ( £ / ’ -ivY
' 'T.(w

w—l

+m£  /J - jv2)(E /*/» E
x x< y  j = 0

tw—1

+ 4 » j ( ^ / , / „ E ^ * J ^ ) 2]
* < * /  3 =  0

( y ; _ l ) 2 (2 S / ^ ) 2 -
'  '  x<y  v '  x<y

+ 5 ^ E ( £ £ £ [ E * 2 A
' ' x<y j=0

0<j<k<w—l  

Q 2 lw“ 1+=Jrn5 E U l f ^ E i ^ x l j X ^ j X y . j
'  ' yi<V2 j= o

x̂ vi¥=y2

+  ^ ^ ^ x , j Xy i , j XXtk Xy2<k}) +  , ^  . 2
j#fc V ’
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X \ < X

f 2 f 2
(w — l ) 2 ^  v
'  '  x<y

yi<V2
v^yvfy?.

1 i w(w  — 1) - -|- ~

x<y

□

Note tha t the variances of estimates from AMS [4, 3] and Fast-AGMS [46] 

are both £  J 2 x <y f x f y  given 4-wise independent hash functions. The difference 

between the expression of this variance and tha t of our CMM is in the terms 

w and w — l,  meaning tha t CMM needs one more counter to reach the same 

variance. Since our CMM only needs one hash function per sketch row, while 

Fast-AGMS needs two per row and AMS needs w per row, CMM needs less 

space in storing hash functions. Thus, we consider the CMM variance the 

same as tha t of Fast-AGMS, and slightly smaller than tha t of AMS.

T h eo re m  6 . Let F2 be the self-join size estimate of a data stream using our 

CMM algorithm, and F2 be the true self-join size. Given 0 (lo g (l/S )/e 2) coun

ters, with probability 1 — 5, the relative error \F2 — F2\/F2 < e.

Proof. This result is the same as tha t of AMS [4, 3] and Fast-AGMS [46] (the 

result for Fast-AGMS is shown in the form of join size of two data streams). 

Since in Lemma 4, we have shown th a t the variances of the estimates from these 

algorithms are all the same, the rest of the proof is just applying Chebyshev’s 

Inequality. Details can be found in [4]. □
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4.3.3 Experim ents for Self-join Size Estim ations

To verify the performance of CMM in estimating self-join sizes, we ran two 

sets of experiments comparing CMM with CM and Fast-AGMS. Since AMS 

needs to update all sketch counters for each element, which is too slow for 

many real-time data stream applications, and Fast-AGMS is a much faster 

but similar alternative with the same estimation expectation and variance, we 

do not include AMS in our experiments.

E x p e rim e n ta l se ttin g s . For each sketch row, we computed a self-join 

size estimate using CMM, Fast-AGMS and CM respectively. Then for CMM 

and Fast-AGMS, we return the median of estimates obtained from all sketch 

rows; for CM, we return the minimum value of estimates obtained from all 

sketch rows.

The data  sets used in this experiments and the sketch construction process 

were the same as in the multiplicity query experiments described in Section 

4.2.4. Cormode and Muthukrishnan [49] propose a variation of the CM algo

rithm, called CM-, for less skewed (Zipfian parameter < 1) and uniform data 

sets. Their experiments on data sets similar to ours shows tha t CM and CM- 

performs similarly, hence we did not include CM- in our experiments.

V ary ing  d a ta  s e t skew. In this experiment we fixed the sketch width and 

depth and varied the skew of the synthetic data  sets. The results are shown in 

Figure 4.5. The two sub-figures are the same except tha t the second one shows 

a small error range so tha t the difference between CMM and Fast-AGMS can 

be seen.

From the figure we can see tha t when the data set is low skewed, CMM and 

Fast-AGMS perform significantly better than  CM; when the data set is more 

skewed, the difference becomes smaller. Furthermore, the difference between 

CMM and Fast-AGMS is always small.

V ary ing  th e  sk e tch  w id th . In this experiment, we fixed the sketch depth 

varying the sketch width and ran our experiments on the URL fingerprint data 

set. The results are shown in Figure 4.6. From the sub-figures we can see th a t 

CMM and Fast-AGMS always perform similarly, and they both outperform
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CM significantly especially when the space is small.

V ary ing  th e  sk e tch  d e p th . In this experiment, we fixed the sketch width 

varying the sketch depth and ran our experiments on the URL fingerprint data 

set. The results are shown in Figure 4.7. Again, from the figure we can see 

tha t CMM and Fast-AGMS perform similarly, and they both outperform CM 

significantly. Furthermore, increasing the sketch depth within a small range 

(e.g. from 1 to 10) has almost no impact on the estimation accuracy for 

all tested algorithms. Because of the time cost, exponentially increasing the 

sketch depth is infeasible in most real-time applications.

T im e  cost co m parisons. The time efficiencies for CMM, CM and Fast- 

AGMS are the same. In terms of per element update, CMM, CM and Fast- 

AGMS all need 0 (d ) time. Regarding the query answering time, the costs 

of these methods are still the same: they all scan counters in a  sketch row 

linearly, i.e. 0 (w )  time; in CMM and Fast-AGMS, finding the median of 

estimates from all rows requires 0(d ) time using the SELECT algorithm [44]; 

finding the minimum value of the counters in CM also requires the same time.

4.4 Related Work

There are many data stream summary techniques, each proposed for different 

purposes. In this section, we only discuss the work closely related to ours and 

not covered earlier in this thesis.

Krishnamurthy et al. independently proposed a technique called k-ary 

sketch [86], which is similar to  our CMM technique. But their goal is to detect 

changes for IP packet streams, and they do not compare their technique with 

Fast-AGMS or Count-min. Our explanation is also much simpler than theirs. 

Most importantly, we proposed the median heuristic such tha t the estimation 

errors are significantly decreased to a similar level to those from Fast-AGMS. 

Accordingly, we can claim tha t our CMM method is more powerful and flexible 

than Fast-AGMS.

F in d in g  freq u en t e lem en ts. There are some work (e.g. [94, 84, 97])
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focusing on finding frequent elements approximately in a data stream. These 

algorithms also construct data  summaries in one pass, bu t they are specialized 

for finding frequent items and not for other queries.

R ecen t ap p lica tio n s  o f C o u n t-m in  a n d  F ast-A G M S . Korn et al. [85] 

use Count-min sketches as underlying data structures to answer multiplicity 

queries, self-join size estimations, range sum queries, quantile approximations. 

Cormode and Garofalakis [46] apply Fast-AGMS in a distributed environment 

to answer multiple queries such as multiplicity queries, iceberg queries, range 

queries, join and self-join size estimations. Indyk and Woodruff [81] use Fast- 

AGMS as a building block to find the A;-th (k  > 2) frequency moments.

4.5 Summary and Potential Extension

In this chapter, we propose new estimation algorithms, CMM, for multiplicity 

queries and self-join size estimations based on a data stream summary tech

nique, Count-min. Compared to the previous estimation algorithms based on 

Count-min, our new methods significantly improve the estimation accuracy 

on a wide range of data sets. In contrast with another influential general- 

purpose data stream summary technique Fast-AGMS, Count-min sketches can 

give estimates with the same accuracy, time and space efficiency using CMM. 

Moreover, there are other attractive estimation options and error bounds for 

Count-min, which are not applicable to Fast-AGMS; with our new estimation 

algorithms, we make a case th a t Count-min is more flexible and powerful.

In addition to  the applications of finding the top-k frequent elements and 

answering iceberg queries, CMM can be potentially extended to answer other 

queries such as SUM aggregates (i.e. a generalization of multiplicity queries 

where frequency updates are not limited to  1 and -1), range queries, quantiles 

approximations and join size estimations, as shown by Cormode and Muthukr- 

ishnan [48] for CM. Some of these extensions are straightforward, but others 

need further research.
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Figure 4.5: Self-join size estimation errors vs. data set skew, comparing Fast- 
AGMS, CM and CMM. The sketch width and depth are 16 and 5 respectively. 
(The 2nd sub-figure zooms in the 1st one). The stream sizes are all 1 million.
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Chapter 5

Efficient Result Set Size 

Estimation for Similarity 

Queries on Large Data Sets

5.1 Similarity Join/Self-join and Selectivity Es

timation

Similarity queries are applied to a wide range of domains with applications 

ranging from finding near-duplicate Web pages, filtering approximately dupli

cate records, detecting possible plagiarism, detection of similar protein struc

tures, etc. In many of these applications, data must be self-joined before 

near-duplicates can be listed. Consider for instance cleaning and filtering in a 

data integration environment where data records are gathered from multiple 

different sources and the same entity can be described differently, leading to 

both redundancies and inconsistencies. For example, multiple records can re

fer to the same person, address, product description, etc. Inconsistencies may
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also arise due to misspellings and encoding differences. Similarity join  is con

sidered as a key operation in reconciling many of these inconsistencies and has 

received more attention recently. The work includes efficient near-duplicate 

detection [77, 19, 59], set similarity join [7, 34] and finding fuzzy duplicates 

[36, 32].

Efficiently evaluating similarity join and self-join on large datasets can be 

computationally challenging. For example, in a Web document clustering ap

plication, Broder et al. [22] spent more than 10 CPU days to find all 50% 

similar pairs among 30 million documents; the memory requirement of the 

work was 20GB. Although hardware is getting faster and memory is becoming 

larger, the Web is also growing in the same or even larger scale. A similar 

experiment was run more recently by Henzinger on 1.6 billion pages but the 

running time of the experiment was not reported [77]. A reason for this be

haviour is th a t their near-duplicate detection algorithms have a few key steps 

which are not parallelizable [22], hence their powerful distributed cluster is not 

fully utilized. Despite these and other algorithmic research work in the area, 

the nature of the problem determines tha t it can be very expensive both in 

time and space cost when the result set is large, no m atter how good the al

gorithms are. In many cases, knowing an estimate of the result set size before 

actually executing the potentially expensive operation is important.

In this chapter, we study the problem of estimating the result set sizes of 

two types of queries: similarity self-join/join and similarity search. Here are a 

few motivating examples for this work.

•  Estimating result set is im portant in building more interactive and user- 

friendly systems. W ith an estimate of the result set and the portion of 

work done so far, one may predict the approximate remaining work and 

the expected wait time, and pass this information to users (e.g. in the 

form of a progress bar).

•  W ith the current and expected level of support for similarity queries 

in DBMSs, estimating the selectivity of similarity predicates is impor

tan t for estimating the costs of query plans and generally for optimizing
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queries.

•  In data  cleaning and filtering over large datasets, knowing the result 

set sizes before the actual operations is desired and can be helpful. For 

example, if there are hundreds or thousands of tables, the data cleaner 

should know which one is ‘dirty’ and which one is ‘clean’. This is par

ticularly im portant for very large tables; if the estimates show tha t a 

table is clean, meaning tha t it doesn’t  have many near-duplicates, an 

expensive data cleaning task may be avoided.

Clearly, the techniques for estimating a query result set size should be 

inexpensive and accurate. The estimation process should be much faster than 

running the queries; otherwise it is not much useful. Often an approximate 

fast answer is preferred over a slow exact answer. However, the approximate 

estimates should be relatively accurate; fast but wrong estimates are useless 

a t all. The inexpensiveness and accuracy requirements make the result set size 

estimation a challenging problem for large d a ta  sets.

In this chapter, we focus on estimating the result sizes of the aforemen

tioned queries (similarity self-join, join and similarity search) when the sim

ilarity measure is based on the Hamming distance. Specifically under this 

distance, two vectors are similar if they have certain number of coordinates in 

common, and a pair of records are similar if some fraction of their columns 

are the same. This similarity measure has been useful in several different 

applications.

For example, Broder et al. [19, 22] and Henzinger [77] fingerprint web doc

uments (or strings) into 6-dimensional vectors, which they call super-shingls, 

by using min-wise independent hashing [21 , 20] on n-grams generated from 

documents. One nice property of this technique is tha t the number of com

mon coordinates between the hashed vectors of two documents is expected 

to give the Jaccard similarity 1 of the two documents. As another example,

1Jaccard similarity measure of two set of terms is the size of intersection of the two sets 
divided by the size of the union of the two sets
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Charikar [29] shows th a t documents (or strings) can be sketched using a ran

dom projection into vectors such tha t the number of common coordinates is 

proportional to the Cosine similarities 2 of the documents. Henzinger [77] also 

uses this technique in her experiments for finding near-duplicate documents. 

In data cleaning applications, the Hamming distance between, for example, 

the records of a Person  table with 6 attributes (First Name, Last Name, Da- 

teOfBirth, Address, HomePhoneNumber, CellPhoneNumber) would indicate 

how many record pairs share 1, 2, . . . ,  6 attributes. If two records have certain 

number of common attributes, it is very likely tha t they are duplicates.

O u r c o n tr ib u tio n s  in  th is  C h a p te r . In this chapter, we propose effi

cient probabilistic algorithms for approximating the result set size of similar

ity queries: similarity self-join, join and search. To the best of our knowledge, 

there is no prior work addressing the same issue, giving unbiased estimates and 

tight error bounds, in one pass over data. We consider both offline and online 

scenarios for processing the queries. By offline we mean the amount of space 

available for storing the data  summary is large; by online we mean only a small 

amount of memory is available for the data summary. The basic idea of our 

algorithms is as follows: if two vectors share certain number of coordinates, 

when we randomly pick a few coordinates, which we call their concatenation 

a super-value, from both vectors, the chance of'selecting the same super-value 

is proportional to the similarity of the two vectors. By repeating this random 

selection process for each vector in the data set and finding statistics of the 

super-value streams, we can estimate the number of similar vector pairs. In 

other words, we map the result set size estimation problems for multidimen

sional similarity queries to frequency estimation problems for one dimensional 

data streams, where sketching techniques can be used to efficiently estimate 

join/self-join sizes and frequency counts of the data streams using a very small 

amount of space.

2 Cosine similarity of two documents is measured by the angle between the two attribute 
vectors of the documents. In information retrieval, document attribute vectors are usually 
TF-IDF vectors of the document, where TF indicates the frequency of a term in a document 
and IDF indicates the popularity of the term in the document collection.
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Both theoretical analysis and experimental evaluation show tha t our algo

rithm works well for large data sets. Specifically, the absolute errors for the 

result set size estimates are only related to the true answer, independent of 

the data set size (the number of vectors in the data set); the relative error is 

inversely proportional to the true answer. As for the selectivity estimation, 

errors generated from our algorithms are inversely proportional to the data set 

size. Thus, our algorithms are efficient and accurate for large data sets.

We believe a linear scan of the data set is not a strict requirement even 

for very large data sets. Our data summary structure can be incrementally 

constructed whenever a vector or record is inserted into the data set. Also, our 

algorithms are fully parallelizable. A large data set can be cut into small pieces 

and distributed over multiple machines to speed up the process; a centralized 

data summary can also be easily constructed from summary fragments on 

different machines, thus estimates for the overall data set can be generated. 

However, we have to point out tha t our algorithms may not be applicable to 

high-dimensional vectors, although they work well in the kind of examples we 

have mentioned here.

O u tlin e  o f th is  c h a p te r . Section 5.2 discuss our PairCount algorithm for 

similarity self-join size estimations, which is the core of all other algorithms; 

Section 5.3 extends PairCount to estimate the result set size of similarity join 

and search; experimental results are reported in Section 5.5. Section 5.4 dis

cusses how our algorithms can be extended to handle other similarity measure, 

and a few potential applications are list. Section 5.6 is related work. Last, we 

summary this chapter and discuss possible extension of this work.

5.2 Similarity Self-join Size Estimation

This section presents the problem statements and our proposed algorithms in 

both offline and online scenarios.
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5.2.1 Problem  Statem ent

We first give the definitions of some of the terms we use in this section.

D efin ition  3. (Similarity measure) A pair of d-dimensional vectors is s- 

s im ila r  if  and only i f  the two vectors have s coordinates in common. Clearly, 

this similarity measure is based on Hamming distance.

D efin ition  4. (Similarity self-join size and selectivity) For a set of n  vectors, 

the s-similarity self-join size is the number of vector pairs that are at least 

s-similar; the selectivity of s-similarity self-join is the fraction of vector pairs 

that are at least s-similar among all possible pairs.

P ro b lem  1. (Similarity self-join size and selectivity estimation) Given n d- 

dimensional vectors where each coordinate o f the vectors is a non-negative 

number, our goal is to efficiently estimate the size and selectivity of an s- 

similarity self-join, where s is a given parameter. The problem can be also 

defined similarly fo r a relation with n  records and d attributes; since each 

attribute value can be fingerprinted into a non-negative number i f  necessary, 

we do not distinguish vectors or records in this chapter.

Based on different potential applications, we consider two scenarios: offline 

and online. By offline we mean the application does not require an immediate 

query answer right after the data processing; intermediate data summary can 

be flushed to disks. By online we mean the application requires timely query 

result on-the-fly once the input data has been processed. Usually data can be 

processed in memory in a streaming fashion. We first discuss our proposed 

algorithms for the offline case. The online algorithm is similar to the offline 

one in general except th a t the space consumption must be bounded such tha t 

the intermediate results can fit in memory.

5.2.2 A Straightforward Solution

For a relatively small data set (e.g. less than 100,000 records), the problem 

can be solved precisely in the following way: store all n  records into a list in
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memory; compare each record i with all other records tha t appear after i in a 

given ordering, and obtain their similarity by counting the number of common 

attributes; for each pair of s-similar records, increase the counter C[s] by one. 

The number of comparison is 0 ( n 2), and the space cost is O(n). Clearly, 

this algorithm is inefficient for large data  sets. For example, it takes about 5 

minutes to process 100,000 records with 6 attributes each on a AMD64/4000 

machine, while processing 400,000 similar records takes more than one hour 

on the same machine. For large data sets containing millions of records, this 

algorithm is generally too slow. If the data set does not fit in memory, the 

situation becomes even worse, and the algorithm may not be feasible a t all.

5.2.3 Random sampling

A widely used approximation technique is random sampling. For the similarity 

self-join size estimation problem, random sampling is also applicable. One can 

pick R  different records from the input data  set uniformly a t random (sam

pling without replacement); then use the straightforward algorithm to find the 

similarity self-join size of the sample set; last, scale the similarity self-join size 

of the sample set by a factor of • Alon et al. [3] used a similar random 

sampling technique in their experiments for estimating the self-join sizes of 

data streams. However, the results show tha t it is not as accurate as other 

methods. Although random sampling has certain nice properties such as the 

ability of handling different queries and the implementation easiness, it may 

not be the best choice for specific tasks as a general-purpose data  summary. We 

compared random sampling with our method in our experiments and showed 

tha t our method is significantly more accurate than random sampling in the 

experiments section of this chapter.

5.2.4 Our SelfJoinPairCount Algorithm  (Offline Scenario)

Given a data set with n  records, each having d attributes, our offline Self- 

JoinPairCount algorithm first scans the data set once and constructs data
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summaries (a few data streams). Based on the self-join size of those streams, 

SelfJoinPairCount estimates the similarity self-join size.

Step 1 - Transforming input data into super-value streams. Self

JoinPairCount scans the data set once. For each record and each k = s , . . .  ,d, 

SelfJoinPairCount picks k  different attribute values uniformly a t random, tags 

each attribute value with its attribute index, concatenates the k  labeled val

ues into one k-super-value in their attribute index order 3 ; repeat this process 

h  — [r (fc)l times for 0 <  r <  1, and store all fe-super-values as a stream of 

items either in memory or on disks.

Step 2 - Finding the self-join size of super-value streams. In the 

offline scenario, obtaining the precise self-join size for a data stream can be 

done efficiently. If the stream fits in memory, a hash index can be used to 

speed up the process of detecting duplicates and counting the frequency of 

each distinct item. Accordingly, the self-join size can be computed easily. If 

the stream does not fit in memory, external sorting needs 0 (Zog^_1) passes 

to sort the data stream, where M  is the number of memory pages available, 

and R  is the number of blocks occupied by the data stream. Having a sorted 

stream, computing the self-join size is straightforward.

Step 3 - Estim ating the similarity self-join size. Let Yjt denote the 

self-join size of the fc-super-value stream found in the previous step; let X k  

be the estimated number of fc-similar record pairs, and Xk be the true value. 

To find out the s-similarity self-join size, gs =  Ylt=s x ki SelfJoinPairCount 

computes each X k  and accordingly Gs = Y^t=s Xk using the following formula:

d

Xk =  (Yk IklT-  ̂  ̂ t ĵfkXj)/fJ'kjki 
j = k + 1

where fjt^k = i t ) 2 the expected value tha t a j-similar pair contributes 

to Yfc, k E [s,d \,j € [k,d\.

3If necessary, a fc-super-value can be fingerprinted into a fixed length hash value. Provided 
a proper fingerprint size, the mapping can be guaranteed to have almost 0 hash collision.
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A lg o rith m  analysis. The basic idea of the algorithm is as follows: two

at least fc-similar; thus such record pairs are expected to contribute a certain 

number of duplicates to the /c-super-value stream. By checking the self-join 

size of those streams and estimating the contribution from record pairs with 

different similarities, we can estimate the number of pairs tha t are ( d , . . . ,  k)- 

similar.

Next, we discuss the property and performance of this offline SelfJoinPair

Count algorithm including its accuracy, time and space costs.

T h eo re m  7. (Unbiased similarity self-join size estimate and the standard de

viation - offline case) The offline SelfJoinPairCount algorithm gives an un

biased estimate of the s-similarity self-join size, i.e. E[GS] — gs, and the

standard deviation of is at most J gs .

where Gs is the estimate and gs is the true value.

Proof. Let Z0j>k be the value th a t a j-similar record pair, denoted by Oj, con

tributes to Yfc, the self-join size of the fc-super-value stream.

The main structure of this proof is to find the expected values and variance 

bounds of ZQjtk, Yk, Xk  and Gs sequentially. In the middle of this process, we 

use a simplified expression of Xk, which is a function of Yj (k <  j  < d) rather 

than a function X j (k +  1 <  j  < d).

First, we have 4

Note th a t Xk, Yk and Z0j,k are all random variables. The expected value of

records have certain chance of generating the same fc-super-value if they are

(5.2)

4Since r{ f )  may not be an integer, in practice SelfJoinPairCount picks Ik =  [r (fc)l Re
combinations, but in our analysis we assume Ik =  r(^), and this should not significantly 
affect our results.
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IUj7k is the expected value tha t a j-similar pair contributes to Y/.. From Eq. 5.1 

we can see tha t SelfJoinPairCount removes the contributions of {k  +  l , k  + 

2 , . . . ,  d}-similar pairs from Yk, thus it is not hard to verify th a t Xk  is an 

unbiased estimate for Xk■ Next, we will focus on the proof of the standard 

deviation part.

Let Pj,k,i  be the probability tha t a j-similar record pair contributes i to Yk, 

then the variance of Z Qjtk

Second, we prove by induction tha t (the simplified expression of Xk)

From Eq. 5.1, we can easily verify tha t Eq. 5.3 holds for k  =  d, d —1. Assuming 

Eq. 5.3 holds for k, we need to  prove it holds for k  — 1 as well.

V A R [ Z ^ k] =  E {Z fa] -  f a  =  XYpjjb.< -  f a

d

(5.3)

where fee [1, d\, and Ck is a constant which is not important in our analysis.
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From Eq. 5.1 we have

k - \ n  -

d

-E
d

j= k

/

-Ei [ k -

/

j= k
d

-Ei
j —k G -

j=k x '
i i d /  . \  . d

-— y k -  k~in
r 2 1 r2 A—' \  fc — i  / 'r c 1’' 'j=k '  i=j  v

d i

rs n - .  -  p  g  E ( - « w  ( *  L  0  G ) r ‘ +

l=k  N '  j —k '

t—k N '

i=fe—1 '  '

.'. Eq. 5.3 holds for k  — 1, thus it holds for all k £ [1, d].

d  ̂ d d /  »\ d

G-=E ̂ ^  E Ef-1)’"* u) ̂ +E c‘
fc=s fc=s j= k  '  '  fc=s

1  ̂ 3 / \

E E(-1>3_fc uV*+E c‘-
j = s  k=s '  fe=s

Last, assuming the covariance between Z 0itkl and Z Q j is small, we have

VAR[Yk] «  J ]  <  r3 ( f j Y ,
j= k  '  '  j=fc

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



.■.VAX[GJ < ^ E Q  V A R W

v '  j=s k=.

\ ( d \ 2 [ 2 ( d - s Y  
> U  I  d - s  ^

Therefore, the standard deviation of — is a t most’ 9*

□

Remarks. This result shows tha t the estimation accuracy is dominated by 

several factors: the true similarity self-join size gs, the number of attributes d, 

the given similarity threshold s, and the sampling rate r. In general, a larger 

data set has a larger gs. For fixed d, s and r , the relative error is expected to 

decrease when n  increases. Therefore, SelfJoinPairCounts is suitable for large 

data sets.

In the expression of the standard deviation, s and d are also im portant 

factors. When d and s are small, the standard deviation is small; but when d 

increases, the expected error increases sharply. For example, when d =  5 and 

s =  4> 0 \ / ( 2(<£s)) =  7; when d =  10 and s -  8 , =  110; when

d — 20 and s =  16, (f) ^ /(2(̂ }) =  40536.

Meanwhile, d also affects the selection of r. For each record, SelfJoinPair

Count generates r  J2k=s i t )  suP^r-values, which dominates the time and space 

costs. To keep the time or space cost reasonably small, r should not be a
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large value. In general, depending on the data set size and the given similarity

relatively small.

Next theorem shows the space and time costs to bound the selectivity error. 

Note th a t we just discuss the time and space cost for processing the data set; 

the cost for generating the result, e.g. finding the self-join size of super-value 

streams, depends on if the data set fits in memory or not, and it is not hard 

to see based on the description in our algorithm.

T h eo re m  8 . (Space and time cost to bound the selectivity error) The offline 

SelfJoinPairCount algorithm guarantees that the estimated selectivity o f the 

similarity self-join deviates from the true value by at most e with probability at 

least 1 — A. More precisely, Pr[\ds — 9S\ <  e] >  1 — A, where 0S is the estimated 

selectivity and 6S is the true value. The space cost for processing the input data 

set i ,  O ( M 1/A) 0 e2n)), and the time fo r  processing each record 

is 0 { lo g { l/A) (^)2 (2^ ) 2d/e2n 2) 5, where n  is the number of records, d is the 

number o f attributes, and s is the given similarity threshold.

Proof. From Theorem 7 we know the variance of the similarity self-join size,

To increase the success probability, we can repeat the same algorithm indepen

dently 2/03 (1/ A) times, and take the median of the multiple results. Due to

When Ik =  1, the tim e and space cost is clear, and we do not discuss this case in the 
following theroems.

threshold, SelfJoinPairCount work well only when the number of attributes is

VAR[G 3] <  r ( f ) 2 (2d!-ŝ ) 3s- By Chebyshev Inequality we have

Let the last term  above be a constant, say | ,  we have

5when this term  is smaller than 0 (1), the tim e bound is not valid because each i* >  1. We 
have this result because we assume Ik =  r{ff) in our analysis, while in practice Ik =  •
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Chernoff bound [99], we can guarantee the probability tha t SelfJoinPairCount 

fails is at most A. Since SelfJoinPairCount picks 0 (r2 d) super-values for each 

record, the time and space costs stated in the theorem can give the desired 

result. □

Remarks. This theorem shows tha t a large n can help us bound the error 

of the selectivity estimate within a small range. The larger the data set is, the 

smaller the per record processing time cost will be. Actually, this bound is 

not as tight as the one in the previous theorem because the bound is obtained 

based on the previous theorem using more inequalities. Although the relative 

error here is based on n 2, and the previous one is based on gs, which can be 

significantly smaller than n 2, depending on the data set and the similarity 

threshold, this is just because the two theorems measure two different values: 

relative similarity self-join size and selectivity of similarity self-join. Besides, 

the term  2 d is actually a bound coming from Y lk = s  i t )  > w^ich can be also much 

smaller than 2d depending on d and s.

5.2.5 Our SelfJoinPairCount Algorithm  (Online Scenario)

In the second step of our offline SelfJoinPairCount algorithm, we find the self

join size of the super-value streams by storing them either in memory or on 

disks. In this sub-section we discuss how to obtain an approximate self-join 

size more efficiently when the application requires a faster result while the 

super-value streams are too large to fit in memory. Furthermore, we study 

the performance changes after applying the faster but not precise self-join size 

estimates in our SelfJoinPairCount algorithm.

T h e  need  for fa s te r  self-jo in  size e s tim a tes . When the data set is 

large and the generated super-value stream does not fit in memory, the offline 

SelfJoinPairCount algorithm stores the the super-value stream on disks. After 

processing the whole data set, SelfJoinPairCount sorts the super-value streams 

in a few passes to  find their self-join sizes. Note tha t SelfJoinPairCounts 

generates up to  0 (r 2 d) super-values for each record; depending on the value
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of r, the size of super-value streams can be larger than the size of the original 

data set. For certain extremely large data sets or online data streams, even a 

few passes on the super-value streams can be too expensive or infeasible. It 

would be desired to process the data set in one pass and generate the result in 

memory promptly. The key challenge is how to find out the self-join sizes of 

the super-value streams efficiently in memory. Fortunately, there are existing 

algorithms efficiently approximating the self-join size of data streams in one 

pass using only a small amount of memory.

E s tim a tin g  th e  self-jo in  size o f  a  d a ta  s tre a m . A few sketching 

techniques can be used to estimate the self-join size of a data stream. Fast- 

AGMS or CountSketch, initially proposed by Charikar et al. [31] and used for 

self-join size estimation by Cormode and Garofalakis [46] is a more recent one. 

It has certain nice properties and theoretical guarantees, and we will use this 

sketching technique in our work. Note th a t Fast-AGMS is not the only option 

we have, other sketching techniques are also applicable to  our algorithm. More 

sketching techniques are discussed in the related work section, and the previous 

chapter. For the ease of reading, we list the following result for Fast-AGMS; 

the proof can be found in the related work.

L em m a 5. [55] Fast-AGMS gives an unbiased self-join size estimate fo r a 

data stream; the standard deviation of the estimate is at most

V Va<b 

where f a and fb are the frequencies o f two different items, a and b.

O nline S e lfJo in P a irC o u n t. Our Online SelfJoinPairCount algorithm is 

similar to the offline one described in the previous sub-section. The difference 

is online SelfJoinPairCount uses sketching techniques to  approximate the self

join sizes of the super-value streams, while offline SelfJoinPairCount finds the 

precise self-join sizes by storing the streams exactly, either in memory or on 

disks. The next theorem shows the performance of our online SelfJoinPair-
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Count.

T h eo rem  9. (Unbiased estimate and standard deviation from online Self

JoinPairCount) The online SelfJoinPairCount algorithm gives an unbiased 

estimate for the s-similarity self-join size, i.e. E[GS] — gs, and the standard 

deviation of is at mostJ 9s

\ s j  v r \  d — s J  w w rgs

where w is the Fast-AGMS sketch width, d is the number of record attributes, 

s is the given similarity threshold, r is the sampling factor, gs is the true value 

of the similarity self-join size, and Gs is the estimated value.

Proof. Since both offline SelfJoinPairCount and Fast-AGMS provides unbiased 

estimates, it is not hard to see the estimates from online SelfJoinPairCount 

are also unbiased.

Let Yj. denote the variance of the self-join size estimate of the super-value 

stream using the Fast-AGMS algorithm, and Yjt denote the variance of the 

self-join size estimate using the offline SelfJoinPairCount algorithm as before, 

according to the law of total variance, we have

VAR[Yl\ =E[V AR[Y(\Yk}} + V  AR[E[Yl\Yk]\

< E [^Y k2} +  VAR[Yk\

=(1 + - )V A R [ Y k] + - E [ Y k]2. 
w w
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Similar to  the proof of Theorem 7, we have

VAR[G.) = lMBEXnl < I j )  QfvARK]
4<i+i)sC)Wj+i|E(i)Vj*

w r \ s j  \  a — s J

k=s N '  j —k N '  v '

+ Ê(!) Q (’•V + nr)2
f c = s  v  '  v  '

' 2 .1  ( d \ * ( 2 ( d - s ) \
=  !  +  - -  \  '  }9sw r \ s  J \  a — s J

( t i ' )  ,r9' + n )!

Therefore, the claim of the standard deviation of ^  is true. □
’ 9s

Remarks. This theorem shows tha t as long as n  is not much larger than 

rga, and w is reasonably large, the standard deviation of the online SelfJoin

PairCount algorithm is very close to the offline one. Furthermore, to bound 

the standard deviation to a certain threshold, the value of w does not have to 

increase when n  increases as long as gs increases proportionally.

T h eo rem  10. (Space and time cost to bound the selectivity estimation er

ror) The online SelfJoinPairCount algorithm guarantees that the estimated 

selectivity of the similarity self-join deviates from the true value by at most
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e with probability at least 1 — A, more precisely, Pr[\9s — 0S| <  e] > 1 — A, 

where 9S is the estimated selectivity and d3 is the true value, and the to

tal space cost is 0 ( lo g ( l/\)d w ) , and the time for processing each record is 

0(log(

Proof. Similar to the proof in Theorem 8, we have

Pr[\Gs -  gs| > en2] <  VA? } f 'e r r

s)) « i + - ) + - ( - + - ) 2) e2n 2r \ s j \ d  — s j  w w n  r

1 f d \ 2{ 2 ( d - s ) \  ]_ 2 2 2
J n2 w w nre2r \ s l  V d — s

Again, let the above term  be then we have

e2 \ s  J \  d — s J n 2 w w 
264 f d V  ( 2 ( d - s )

e2w \ s j  V d — s

assuming nr > 1. Again, similar to  the proof in Theorem 8, online Pair-Count 

repeat the same process 2log(l/X) times to increase the success probability. □

Although r does not appear in the theorem, it is implicitly determined 

by other parameters. For example, a larger w would allow a smaller r while 

providing the same accuracy and confidence. Again, this bound is not as tight 

as the previous one, but it provides a bound tha t does not depend on the 

unknown statistics of the input data.
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5.3 Result Set Size Estimation for Similarity

Join and Search

In the previous section, we discuss our solutions for the similarity self-join 

size problem. Next, we will study how to estimate the result set size of other 

queries: similar join and search. Our solutions for these problems are exten

sions of the SelfJoinPairCount algorithm presented in Section 5.2.4.

5.3.1 Similarity Join Size Estim ation

D efin ition  5. (Join size). For two streams with N \ and N 2 items, the join  

size is the number of exact matches among all N 1N 2 item pairs. An item  

paip, consists of items from different streams. Formally, the join size F  = 

S v i  where / l j  and f  2* are the frequency of a distinct item  i in the

first and the second stream.

D efin itio n  6. (Similarity join size and selectivity). For two sets with n \ and 

712 d-dimensional vectors, the s-similarity join size is the number of vector pairs 

that are at least s-similar; the selectivity of s-similarity join is the fraction of 

vector pairs that are at least s-similar among all possible n\U2 pairs. A vector 

pair consists o f two vectors from different data sets.

P ro b le m  2. (Similarity jo in  size estimation). Given two sets, with n \ and ri2 

d-dimensional vectors, each coordinate of the vectors is a non-negative value 

between 0 and m  — 1, our goal is to efficiently estimate the size and the se

lectivity o f an s-similarity join, where s is a given parameter. The similarity 

metric is the same as the one we used in defining the similarity self-join. The 

problem can be also defined similarly fo r two relations with n \ and ri2 records 

and d attributes. Again, we do not distinguish the two cases in this chapter.
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5.3.2 Our JoinPairCount Algorithm

The main idea of our algorithm for solving the similarity join size estimation 

is the same the one for similarity self-join size estimation. T hat is, if a pair 

of records are similar, they should have a good chance to have a matching 

super-value when we randomly pick some attribute values from both records, 

and thus similar pairs are expected to  contribute certain numbers to the super

value stream. Next, we will describe our JoinPairCount algorithms solving the 

similarity join size problem.

P ro cess in g  th e  d a ta  sets. In the first step, JoinPairCount processes the 

two data sets independently, using the same algorithm as SelfJoinPairCount 

uses. The parameters for processing the data sets are the also same. This 

process generates two sets of super-value streams, one for each input data set. 

Each stream set has ( d - s  +  l)-super-value streams. The streams can be either 

stored exactly as a list or approximately using sketches, as we discussed in the 

SelfJoinPairCount algorithm.

F in d in g  th e  jo in  size o f th e  tw o d a ta  s tream s in  th e  offline sce

nario . In this step, JoinPairCount finds the join sizes of the fc-super-value 

stream pairs, k  G [s,d]. In the offline scenario, obtaining the join size for two 

data streams can be done as follows. If one of the streams, let us call it the 

first stream, fits in memory 6 , a hash index for this stream can be created to 

speed up the process of detecting duplicates and counting the frequencies of 

each distinct item . Accordingly, the join size can be computed by checking 

the corresponding frequency in the second stream for each item in the first 

stream. Having a proper size hash index, this process can be done in constant 

time for each checking. Thus, the time cost for finding the join size is linear 

in the longer stream size. If neither of the two streams fit in memory, one can 

sort both streams on disks. External sorting needs 0(fogf^_1) passes to sort a 

data stream, where M  is the number of memory pages available, and R  is the 

number of blocks occupied by the data stream. Having two sorted streams,

6This can be known before processing the data set provided that the input data set size 
is known, since the number of super-values each record generates is known.
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computing the join size is straightforward.

E s tim a tin g  th e  s im ila rity  jo in  size. After finding the d —s+ 1  join sizes 

of the super-value stream pairs, JoinPairCount computes the s-similarity join 

size in the same way as in the similarity self-join estimation. Let Yk denote 

the join size of the &-super-value stream pair, the number of fc-similar record 

pairs among the two input data sets, denoted by Xk can be estimated using 

Eq. 5.1. Similarly, X k  denotes the estimated value of Xk. as defined in Section 

5.2.4.

A lg o rith m  analysis . Since most of the analysis is similar to th a t of 

SelfJoinPairCount, we only list the result, and omit the proof.

C o ro lla ry  6. (Unbiased similarity join size estimate and standard deviation of 

offline JoinPairCount) The offline JoinPairCount algorithm gives an unbiased 

estimate o f the s-similarity join size, i.e. E[GS] — gs, and the standard devi

ation of is at most (f) \ J \  {2̂ I ^ ) /9 s ,  where Gs is the estimated similarity 

join size, and gs is the true value.

C o ro lla ry  7. (Space and time cost) The offline JoinPairCount algorithm 

guarantees that the estimated selectivity o f the similarity join deviates from the 

true value by at most e with probability at least 1 — A. More precisely, P r[ |0 s —

6s | <  e] >  1 — A, where 8S is the estimated selectivity and 9S is the true value.

The space cost for processing the data sets is 0(log( 1/A)(^) (2̂ r/^)2d(ni 4- 

rc2)/(e2nira2)); and the time for processing each record is 0(log( 1/A) (^)2 2d/ (e2n in 2));

where n \ and n 2 are the number of records in the two input data sets, d is the 

number of attributes, and s is the given similarity threshold.

Remarks. It is not hard to see tha t these two claims are very similar to 

the ones for SelfJoinPairCount. The only difference is the data  set sizes. In 

the statements above, Gs and gs represent different values. Also, ni and n2 

replace n. But the analysis is still similar to those for SelfJoinPairCount, so 

we do not repeat them here.

F in d in g  th e  jo in  size o f th e  tw o d a ta  s tre a m s  in  th e  on line  sce

n ario . Similar to  the discussion in Section 5.2.5, finding the join sizes of large 

data  stream pairs can be costly for certain applications. In this case, online
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JoinPairCount can also use sketching techniques to  approximate the join size 

efficiently. Fast-AGMS sketches can also be used to efficiently approximate 

join sizes. The sketch construction is the same for each of the two streams, 

using the same sets of hash functions and same sketch widths, but the pro

cess of generating the results is slightly different: JoinPairCount sequentially 

checks each pair of corresponding counters of the two sketches, one for each 

data set, and computes the sum of the products of all counter value pairs.

Corollary 8. (Unbiased similarity join estimate and standard deviation from  

online JoinPairCount) The online JoinPairCount algorithm gives an unbiased 

estimate for the s-similarity join size, i.e. E[GS] = gs, and the standard 

deviation o f — is at most
J  9*

(d) ,/I (2(j* -  ((1 + )̂/ + 2
\ sJ  v r \  d — s )  w w rgs

where w is the Fast-AGMS sketch width, d is the number of attributes of 

records, s is the given similarity threshold, r is the sampling rate, gs is the 

true value o f the similarity join size, and Gs is the estimated value.

Corollary 9. (Space and time cost for bounding the selectivity estimation 

error) The online JoinPairCount algorithm guarantees that the estimated se

lectivity o f the similarity jo in  deviates from the true value by at most e with 

probability at least 1 — A, more precisely, Pr[\6s — 6s\ <  e] >  1 — A, where 6S 

is the estimated selectivity and 9a is the true value, and the total space cost is 

0(log(l/X )dw ), and the time for processing each record isO (log(l/A )2d(j)2(2̂ “ŝ ) /(e

5.3.3 Result Set Size Estim ation for Similarity Search

In the previous section, we discuss our solutions for the similarity join size 

problem. Next, we will show tha t our PairCount algorithm can also be applied 

to the selectivity estimation for similarity search.

Definition 7. (Similarity search, result set size and selectivity). Given a set
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of n  d-dimensional vectors and a query vector, a similarity search is a query 

for finding the vectors that are at least s-similar to the given vector in the 

given data set. The result set size is the number of vectors in the query result. 

The selectivity is the ratio between result set size and the data set size. These 

terms can be defined similarly for relations and records.

P ro b le m  3. (Result set size and selectivity estimation for similarity searches). 

Given a set o f n d-dimensional vectors and a query vector, the goal is to 

efficiently estimate the result set size and selectivity o f an s-similarity search.

O ur offline S ea rch P a irC o u n t so lu tio n . In fact, a similarity search 

query can be considered as a special similarity join query, where one side of 

the join is the given relation, and the other side is another special relation with 

only one record, which is the given query record. Therefore, the JoinPairCount 

algorithm can be directly applied to estimate the selectivity of a similarity 

search. The results are listed below, and the proofs are omitted since they can 

be directly adapted from the those of JoinPairCount.

C oro lla ry  10. (Unbiased estimate and standard deviation of offline Search

PairCount) The offline SearchPairCount algorithm gives an unbiased estimate 

for an s-similarity search, i.e. E[GS\ = gs, and the standard deviation of 

is at most Q  y f ^ ^ ] / 9 a ,  where Gs is the estimated result set size o f the 

similarity search, and gs is the true value.

C o ro lla ry  11. (Space and time cost) The offline SearchPairCount algorithm 

guarantees that the estimated selectivity of the similarity search deviates from  

the true value by at most e with probability at least 1 — A. More precisely, 

Pr[\0s — 6s\ <  e] >  1 — A, where 6S is the estimated selectivity and 6S is the true 

value. The space cost fo r processing the data sets is 0(log( 1/A) ( j)2 (2̂ ~ŝ )2 d/e2), 

and the time fo r  processing the query is 0 (lo g (l/X )(^ )2^ ~ ^ ) 2 d/e2n), where 

d is the number of attributes, n  is the number of records in the given data set, 

and s is the given similarity threshold.

O u r on line  S ea rch P a irC o u n t S o lu tion . Similar to the self-join and 

join query, we also provide an online version of our SearchPairCount algorithm,
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which applies Fast-AGMS to estimate the frequency of a given item in a data 

stream.

C o ro lla ry  12. (Unbiased estimate and standard deviation of online Search

PairCount) The online SearchPairCount algorithm gives an unbiased estimate 

fo r the s-similarity size, i.e. E[GS\ =  gs, and the standard deviation of is 

at most
I f 2 ( d - S) \  i + 2  /  2  _jj_

— s J  w w rgs

where w is the Fast-AGMS sketch width, n is the number of records in the 

given data set, d is the number of attributes of records, s is the given similarity 

threshold, r is the sampling rate, gs is the true value o f the result set size of 

the similarity search, and Gs is the estimated value.

C o ro lla ry  13. (Space and time cost) The online SearchPairCount algorithm 

guarantees that the estimated selectivity of the similarity search deviates from  

the true value by at most e with probability at least 1 — A, more precisely, 

Pr[\§a — 6S\ < e] >  1 — A, where 9S is the estimated selectivity and 6S is the true 

value, and the total space cost is 0 ( lo g ( l/\)d w ), and the time fo r  processing 

each record is 0 ( lo g ( l / \ )2 d(d) 2 /  (e2w)).

5.4 Extensions and Applications

F rom  v e c to r  s im ila rity  to  se t s im ila rity  In the previous sections we have 

mentioned tha t min-wise independent hashing can be used to  convert sets 

into vectors such th a t the s-similarity of a vector pair is expected to give the 

Jaccard similarity of two sets. In addition to min-wise independent hashing, 

sets can also be converted into vectors using random projection such tha t 

the s-similarity of a vector pair is expected to give a function of the Cosine 

similarity of the original pair of sets.

In addition to Jaccard and Cosine similarities, our PairCount algorithm 

actually can be adapted to  handle set similarities provided tha t the users are
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interested in the number of common items between two item sets. Assuming 

the maximum number of items among all sets, d, is known, the algorithm 

processing input data  sets can be adapted as follows: for each item sets with 

less than d items, the algorithm pads the item set with distinct items such 

tha t each item set has d items. For example, strings consisting of the item 

set number and distinct indices in the set can be padded. Having the padded 

item sets, PairCount can process each item set as a vector.

P a irC o u n t in  p ara lle l. One nice property of our PairCount algorithms 

is tha t they can be easily used in distributed environments, which is im portant 

for processing large da ta  sets. One can cut a huge data set or a data stream 

into many smaller pieces and distribute them to multiple machines. Each ma

chine can run the PairCount algorithm using the same parameters, generating 

multiple super-value streams or sketches. After processing the whole data set, 

each machine can sort much smaller super-value streams if needed, and sent 

the  processed super-value streams or sketches to a centralized server and let 

the server compute the final estimates. In fact, in many data intensive ap

plications such as Web crawling, the web pages are collected in a distributed 

fashion; our PairCount algorithms can be readily applied in these cases.

S im ila rity  q u e ry  o p tim iza tio n . As similarity queries becoming more 

popular and im portant, DBMS needs to consider optimizing the similarity 

queries, especially similarity joins. One im portant statistic for helping opti

mizer pick a better query plan is the selectivity of each intermediate step. 

Using the online PairCount algorithms, those statistics can be efficiently esti

mated in one pass over the data.

S im ila rity  q u e ry  refinem en t. In the similarity search applications, it 

is normal th a t the users are not able to write a perfect query in the first 

time; they may issue a query generating a large result set. In this case, it 

would be desired if the system can efficiently estimate the result set size when 

receiving the query, and quickly let the users know when the result set is too 

large. Having sorted super-value streams or sketches stored on disk as an 

auxiliary data  structure and using the SearchPairCount algorithm, the system 

can return an estimate efficiently.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.5 Experiments

In this section, we will provide experimental results verifying the effectiveness 

and efficiency of our algorithms. Since the self-join size estimation is the core of 

our algorithms, we focus on the offline and online SelfJoinPairCount algorithm 

in this section.

5.5.1 Experim ental Setup

D a ta  se ts . The data  set we used was a set of paper titles in computer sci

ence obtained from DBLP. After some standard text preprocessing, such as 

removing stop words and stemming, we fingerprinted each paper title into 6 

super-shingles using min-wise independent hashing to simulate the experimen

tal settings in the works of Henzinger [77] and Broder et al. [18, 23], where 

their goal was to list all similar web document pairs. In both our and their 

experiments, each super-shingle is a 64-bit fingerprint. At the end, we had 

467,468 records, each with 6 attributes (super-shingles). Next, we report the 

experimental result of Offline SelfJoinPairCount.

Im p le m e n ta tio n  de ta ils . All experiments were run on an AMD64/4000 

Scientific Linux machine, with 2G memory, implemented in C. The Fast- 

AMGS implementation was adapted from MassDal [95].

5.5.2 Offline SelfJoinPairCount

First, we show the performance of our SelfJoinPairCount algorithm in an offline 

scenario, which means we store the super-value stream exactly rather than 

using a sketch summary.

E ffec tiveness o f  S e lfJo in P a irC o u n t. In this experiment, we set the 

sample factor to 0.5, which means SelfJoinPairCount randomly picked 32 

super-values. We ran our SelfJoinPairCount on the first 200AT rows of the 

data set. The estimated number of /c-similar pairs, the true number and the 

relative errors are listed in Table 5.1. These numbers are consistent with the
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Table 5.1: SelfJoinPairCount relative errors (estimate-truth)/truth.
k TVueValue Estimate Relative error
6 219356 219356 0
5 191310 188720 -1.35%
4 1690036 1701575 0.68%
3 14706402 14822275 0.79%
2 87385874 87504347 0.14%
1 417430350 417105860 -0.08%
0 39478376672 39478457866 0.0002%

Table 5.2: Sell JoinPair Count relative erro
D ata set size TVueValue Relative error

25K 46970 8.76%
50K 126762 5.11%
100K 473408 1.3%
200K 1690036 0.68%
400K 6117538 -1.15%

s with different data  set sizes.

result in Theorem 7 and show the effectiveness of SelfJoinPairCount. Note 

tha t when k  =  6, the result was actually the self-join size of the 6-super-value 

stream. Thus, there was no error in it.

V ary in g  th e  d a ta  s e t size. To see the scalability of our algorithm, we 

varied the size of the data  sets from 10K  to 400K  records, still with sampling 

factor 0.5. The results are shown in Table 5.2 for the number of record pairs 

tha t are 4-similar. Prom the table we can see tha t in general, the relative error 

drops when the data  set is larger, and the true value is also larger.

V ary in g  th e  sam p lin g  fac to r. In this set of experiments we varied the 

sampling factor while fixing the data set size to 100K. The relative errors are 

shown in Table 5.3. The results show tha t the error rate decreases when the 

sampling factor increases in general.

Table 5.3: SelfJ oinPairCount relative errors with different sampling factors.
Sampling factor k=5 k=4 k=3

0.75 -3.89% 2.47% -1.08%
0.5 -2.6% 1.3% 1.3 %
0.25 6.97% 3.93% -2.20%
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Table 5.4: SelfJoinPairCount relative errors (estim ate-truth)/truth with dif
ferent dimensionality.___________________________________

d TrueValue Estimate Relative error
8 44980 47704 6.06%
7 17756.67 18480 -3.91%
6 54442 53028 -2.60%
5 239282 240552.5 0.53%
4 1273288 1286976 1.08%

V ary ing  th e  n u m b e r o f a t t r ib u te s .  In this set pf experiments, we fixed 

the query to  finding the number of pairs tha t are (0.8d)-similar, and increased 

the number of attributes d. The data sets were generated by using different 

number of min-hashes for each record in the min-wise independent hashing 

process. There were 100AT records in each data set. The sampling factors 

were set to 0.5. The results listed in Table 5.4 shows tha t the relative error 

increased exponentially with d. Therefore, JoinPairCount may not work well 

in high-dimensional cases.

5.5.3 Online SelfJoinPairCount

The previous experiments show the performance of offline SelfJoinPairCount; 

ngxt we show how the estimation:*aecuracy changes by using the Fast-AGMS 

sketches to find the self-join- size of super-value streams with only a very small 

amount of space.

E ffectiveness o f  S e lfJo in P a irC o u n t. Similar to the offline SelfJoinPair

Count experiments, we set the sample factor to 0.5, and ran our SelfJoinPair

Count on the first 200AT rows of the data set. The sketch width (number of 

counters) was set to 1000, and the sketch depth was 3. The estimated number 

of fc-similar pairs, the true numbers and the relative errors are listed in Table 

5.5. The results were less accurate than those from offline estimates, but con

sidering the small amount of space costs and the online property, we consider 

them reasonably good.

V ary in g  th e  d a ta  se t size. Next, we report the results of online Self-
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Table 5.5: Online SelfJoinPairCount relative errors (estimate-truth)/truth.
k TrueValue Estimate PairCount error
6 219356 220866 0.69%
5 191310 223620 16.89%
4 1690036 1405057 -16.86%
3 14706402 16455032 11.89%
2 87385874 81663188 -6.55%
1 417430350 389797943 -6.62%
0 39478376672 39510234292 0.08%

Table 5.6: Online SelfJoinPairCount relative errors with different data  set 
sizes.

D ata set size TrueValue Relative error
100K 473408 47.77%
200K 1690036 -16.86%
300K 2557746 -27.56%
400K 6117538 -2.94 %

JoinPairCount on data  sets of different sizes while keeping other parameters 

the same. The results are shown in Table 5.6 for the number of record pairs 

tha t are 4-similar. In general, the error rates decreased the input size was 

increased, except for the 50K  and 100/C data sets.

C o m p ariso n  w ith  ra n d o m  sam pling . In this set of experiments, we 

compared our online SelfJoinPairCount with random sampling by keeping their 

space costs the same. As before, we set the similarity threshold to  4, sampling 

factor to 0.5, and sketch width and depth to  1000 and 3 respectively. Ac

cordingly, our online SelfJoinPairCount used 9000 counters in total. Since 

each input data  record is 6 64-bit fingerprints, assuming each counter needs 

32 bits, we set the sample size to 750. i.e. 750 records in the sample. We 

ran both algorithms on data sets with different sizes: the first 200/C, 300/C 

and 400K  records. The results reported in Table 5.7 show th a t our online 

SelfJoinPairCount is significantly more accurate than random sampling.

In terms of time comparison, we consider two stages: data  summarization 

stage and query answering stage. At the data summarization stage, random 

sampling took R  operations; online SelfJoinPairCount took nhr Y l t = s i t )  °P" 

erations, where R  is the sample size, and h is the sketch depth. In our ex-
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Table 5.7: Online SelfJoinPairCount and random sample relative errors.
k TrueValue Random sample error PairCount error

200K data
6 219356 56.00% 0.69%
5 191310 -25.47% 16.89%
4 1690036 -66.25% -16.86%

300K data
6 336668 -10.89% 1.28 %
5 380318 68.28% 34.06%
4 3530756 63.14% -27.56%

400K data
6 457466 -12.56% 1.59 %
5 618036 83.87% 2.91%
4 6117538 -53.56% -2.94%

perimental settings, random sampling is clearly faster at this stage. However, 

the difference will become smaller when the data set is larger, since the time 

complexity of SelfJoinPairCount is linear in the data set size, while random 

sampling is quadratic in the sample size and is expected to become slow with 

large sample sizes.

At the second stage, having the data summary, our online SelfJoinPair

Count needed (d — s +  1 )wh  +  (d — s +  1) operations, which basically is the 

time for scanning the data summary once, while random sampling needed 

S (S  — l) /2  operations. Thus, online SelfJoinPairCount is much faster a t this 

stage. This is an im portant advantage for our method when the data summary 

can be constructed in advance before queries arrive.

5.6 Related Work

This work is related to multiple areas including similarity search, streaming 

algorithms, selectivity estimation for different types of queries, data cleaning, 

fuzzy/near duplicate detection and se t/tex t join.

S im ila rity  sea rch  a n d  locality  sensitive  h ash ing . Our algorithms are 

closely related to locality sensitive hashing (LSH) [73, 80], where the main
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idea is: two multidimensional points tha t are “close” have higher chance to 

be mapped to the same hash value than those points th a t are “far” from each 

other using LSH. “Closeness” is measured by different distance functions such 

as Hamming and Euclidean distances; For LSH, there are different types of 

hash functions. Charikar [29] considers min-wise independent hashing [21, 20] 

as a special LSH, and also proposes new LSHs, one of which can map sets 

into vectors such tha t the cosine similarity between sets can be estimated 

by checking the number of vector coordinates in common. Although related, 

our work is different from LSH since our algorithms use sampling rather than 

hashing.

S tream in g  a lg o rith m s  a n d  sk e tch in g  te ch n iq u e . In their seminal 

work [4], Alon et al. propose AMS sketching techniques to  estimate self- 

join sizes of data streams using a small amount of space. This sketching 

technique has been widely extended and applied. For example, it can be 

used to  answer different types of frequency related queries on data  streams 

such as join size estimation [3] and frequent item tracking [31]. Another 

popular data structure th a t can be used for data streams is Bloom filters [17]. 

Deng and Rafiei extend Bloom filters to detect exact duplicates in a streaming 

environment. Cormode and Muthukrishnan [48] show tha t Bloom filters can 

be extended to answer different types of frequency related queries such as 

join/self-join size estimation and item frequency query; they call their data 

structure Count-min. Deng and Rafiei [55] further extend Count-min and 

show tha t Count-min can perform as well as Fast-AGMS [31], an extension of 

AMS sketch tha t is suitable for data streams, while Count-min provides more 

flexible and powerful functionalities.

S e lec tiv ity  e s tim a tio n . This topic has been widely studied in different 

scenarios such as substring queries [39, 33], relational queries [70, 109], Con

tainment Join [117], and spatial join [53, 65]. Their query types or similarity 

measures are different from those in our work. Jin and Li [83] studied the 

selectivity estimation problem of fuzzy string queries where the similarity is 

measured by edit distance. They also show tha t their work can be extended 

to Jaccard similarity, but they only consider selectivity estimation for fuzzy
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string predicates while our work is applicable to selectivity estimations for 

both join/self-join and similarity search.

D a ta  c lean ing , fu z z y /n e a r  d u p lic a te  d e te c tio n  a n d  s e t / t e x t  jo in . 

Another active research area related to our work is data cleaning [32, 36, 34, 

7, 77, 18]. Elmagarmid et al. [60] recently give a survey of the work on 

the fuzzy/near duplicate detection problem. More work related to this topic 

can be found there. As discussed in the introduction section, one important 

goal of data cleaning is finding all near/fuzzy duplicate pairs based on certain 

similarity measures. Although different prunings may improve the efficiency, 

the nature of this problem determines th a t it can be a very expensive operation 

for large data set even if the pruning is perfect, since the true answer set can 

increase quadratically with the data set size, which motivates our work.

5.7 Summary and Possible Extension

In this chapter, we present a set of algorithms converting or summarizing mul

tidimensional vectors or records such tha t frequency related similarity queries 

can be efficiently answered. Specifically, our PairCount algorithms focus on 

estimating the result set sizes of similarity self-join, join and search queries 

on multidimensional vectors, and give efficient and effective approximate an

swers. The main idea of our algorithms are mapping multidimensional vectors 

into multiple one-dimensional data streams; this transforms the result set size 

estimation problem for multidimensional vetoes to frequency related query es

timation problem for data  streams, where efficient sketching techniques can 

be applied. The effectiveness and efficiency of the algorithms are theoretically 

analyzed and experimentally evaluated. Several extensions and applications 

are also described.

Our current similarity measures are mainly based on Hamming distance. 

Extending the main idea of this work to  other metrics such as Euclidean dis

tance is being considered. Also, future research may study the connection 

between our work and containment and spatial join.
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Chapter 6

Conclusions and Future Work

This thesis studies the problem of efficiently answering frequency related queries 

on streaming data  using a  small amount of space. The queries include mem- 

.bership query, frequency query, join/self-join size estimation and their sim

ilarity versions. The algorithms proposed in this thesis are extended from 

or based on well-known sketching or sampling techniques. Both theoretical 

and experimental evidence show tha t the proposed methods improve upon 

the-state-of-the- a r t .

Direct extensions of our work have been discussed in the previous chapters. 

Here we present several related directions in a broad sense for future research.

Efficiently finding certain statistics for a large data set can be very useful 

in many different scenarios. For example, efficiently approximating pairwise 

distance distributions of a large data set may be helpful in selecting an in

dexing strategy or a better clustering algorithm, or even showing th a t some 

clustering/indexing algorithms may not work at all. Also, in detecting outliers, 

quickly estimating the number of outliers under different outlier definitions can 

be helpful to users when they are formulating their queries. One may define 

an outlier as a data  point tha t has no neighbors within a certain distance 

threshold; others may define an outlier as a data point tha t has less than  5 

neighbors. Knowing the result set size in advance may help user reformulating
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their queries before starting a relatively expensive outlier detection. However, 

efficiently and accurately estimating aforementioned statistics may not be easy.

A more general research direction is: given an expensive operation on a 

large data  set, find out if knowing certain statistics of the data set can help 

to improve the efficiency of the expensive operation. If yes, then how can we 

obtain the statistics efficiently, possibly using approximation algorithms.

We may also want to estimate statistics of large data sets, not for the sake 

of a particular task, but for exploratory purposes and to enlarge our knowledge 

about the world.
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