
U n iv e rs ity o f A lb e r ta

A pp r o x im a t io n A lg o r ith m s f o r F r e q u e n c y R e l a t e d Q u er y

P r o c e ssin g on S t r e a m in g D ata

by

F an D en g

A thesis subm itted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of D o c to r o f P h ilo so p h y .

Departm ent of Computing Science

Edmonton, Alberta

Fall 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 978-0-494-32950-4
Our file Notre reference
ISBN: 978-0-494-32950-4

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

i * i

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my wife, Yina Liu, and to m y parents, Rugang Deng and Anruo Li.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

W ith the emergence of more and more data stream applications, such as In

ternet traffic measurement, sensor network data monitoring, Web click and

crawling stream analysis, financial data alert and so on, researchers realize

tha t many data processing models and algorithms well-suited for traditional

database applications are not applicable in those new streaming scenarios. To

address the problem, novel data stream processing systems and algorithms

have been proposed within database, theory and computer networking com

munities. Some of the work has led to commercial systems or algorithms which

have been applied in industry. Streaming algorithms also have found their way

into non-streaming environments where massive data processing is needed.

This thesis focuses on the algorithmic aspect of da ta stream processing,

more specifically, approximation algorithms for answering frequency related

queries on streaming data. Example-queries are “find the number of similar

record pairs in a very large relational table” , “identify URLs th a t appear for

the first time in the crawling stream of a search engine” and “give a list of IDs

which appear more frequently in a web click stream” . Efficiently answering

these queries with bounds on time and space costs is both im portant and chal

lenging, because fast response is either required or desirable in many scenarios,

and the available computing and fast storage resources are often very limited

compared with the massive streaming data volume. Thus, approximation al

gorithms trading accuracy for computing or storage resources is a valuable

option in these cases.

In this thesis, two types of data reduction techniques, namely sketching

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and sampling, are studied. Both techniques are suitable not only for answer

ing frequency related queries over streaming data, but also have a wide range

of other application areas. This thesis focuses on exploring these powerful

techniques to answer frequency related queries under data stream scenarios.

More precisely, based on well-known sketching and sampling techniques, this

thesis proposes new data structures and one-pass approximation algorithms to

answer membership queries, frequency queries, join/self-join size estimations,

similarity join/self-join size estimations and result set size estimations for sim

ilarity searches. Both theoretical and experimental analysis show th a t our new

techniques improve the state-of-the-art.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgement s

First, I have to thank my supervisor, Dr. Davood Raifei. He has spent so

much time on my research, not only giving high level research advices, but

also discussed detailed technical issues with me. From those meetings, which

often takes several hours each, I’ve learned a lot about how to do research, from

general methodology to specific knowledge. Especially in the beginning years

of my Ph.D. program, he was so patient of my naiveness and unconfidence

of research, which was crucial for me to grow up. More importantly, I really

appreciate the freedom he gives me, which makes me can experience the joy of

research during the thinking and learning process. I believe these experiences

will affect my whole life.

I would like to thank Dr. Mario A. Nascimento, Dr. M.H. MacGregor,

Dr. Marek Reformat for their constructive comments and precious time on

my research. Also, thanks Dr. Joerg Sander, Dr. Mario A. Nascimento, Dr.

Li-yan Yuan for their cooperation and tolerance in my teaching assistant work

so tha t I can efficiently schedule my time between research and teaching. And

I feel lucky th a t I have work with several great partners in CMPUT391: Varun

Grover, Chihoon Lee, Hongyu Zhang, Yunping Wang.

Also, I am really glad to have known so many great friends during my

Ph.D. program. Reza Sherkat and I had numerous discussions over the past

five years on different topics including our research, lives and future. Thanks

Qiang Ye and Tao Wang, my officemates, for giving me lots of advices and

help in getting used to Edmonton and the department when I just came to

Canada. Thanks to my great lab mates, Chonghai Wang, Pirooz Chubak,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Amit Satsangi, Pouria Pirzadeh and Vahid Jazayeri, made our DB lab a very

pleasing working space. Although Alexandru Coman, Jianjun Zhou, Catalina

Maria-Luiza Antonie, Gabriela Moise, Stanley Oliveira, Mohammad El-Hajj,

Samer Nassar, either came to the lab less often or have already left Edmonton,

I really enjoyed the communication with them.

Last, thanks the Department of Computing Science and th e University of

Alberta for providing me an excellent research environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 D ata Stream A p p lic a tio n s .. 1

1.1.1 Network Traffic Monitoring and M easu rem en t............. 2
1.1.2 Real-time Financial D ata Analysis 4
1.1.3 Streams from the W e b .. 4

1.2 Traditional D ata Processing V.S. D ata Stream Applications . 5
1.3 D ata Stream M o d el... 7

1.3.1 Tuple-based and Time-based S t r e a m 7
1.3.2 One-time Query and Continuous Q u ery 7
1.3.3 Query Windows .. 7

1.4 D ata Stream Research S k e tc h 8
1.4.1 D ata Stream Systems . 8
1.4.2 D ata Stream A lgo rithm s...................... 10

1.5 Thesis Overview .. 10
1.5.1 Thesis Scope .. 10
1.5.2 C o n trib u tio n s .. 11

2 Sketching and Sampling 13
2.1 Sketching .. 13

2.1.1 Bloom Filters and their e x te n s io n s 14
2.1.2 FM Sketches and their ex ten sio n s.................................... 17
2.1.3 AMS Sketches and e x te n s io n s ... 19

2.2 Sam pling.................................... 20
2.2.1 Random Sampling .. 20
2.2.2 Distinct Sam pling.. 21
2.2.3 Count sample and sticky sam p le 21

3 Approximate Membership Query Processing 23
3.1 Approximate Membership Query ... 24

3.1.1 Motivating E x am p les ... 25
3.2 Preliminaries .. 26

3.2.1 Problem S ta te m e n t... 27
3.2.2 The Buffering M e th o d .. 27

3.3 Stable Bloom F i l t e r s .. 28
3.3.1 The Challenge to Bloom F i l t e r s .. 28
3.3.2 Our A pproach ... 28
3.3.3 The Stable P r o p e r ty .. 30
3.3.4 The Stable P o i n t .. 34
3.3.5 False Positive R a te s ... 39
3.3.6 False Negative R a t e s .. 40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Prom Theory to P ra c tic e .. 42
3.4.1 Setting P a ra m e te rs ... 42
3.4.2 Time C om plex ity .. 49

3.5 E xperim ents... 50
3.5.1 D ata S e t s ... 50
3.5.2 Implementation I s s u e s .. 52
3.5.3 Theory V erification ... 54
3.5.4 Error Rates C o m p a riso n ... 54
3.5.5 Time C om parison.. 59
3.5.6 Methods Comparison S u m m a ry .. 61

3.6 Related W o r k ... 62
3.7 Summary and Possible E x te n s io n ... 63

4 A p p ro x im a te F req u en cy Q u ery P ro cess in g 65
4.1 Frequency Queries and Multipurpose Sketching............................ 66
4.2 Unbiased Estimates for Multiplicity Queries using Count-min

S k e tc h e s ... 68
4.2.1 Basic I d e a .. 68
4.2.2 Our Estimation A lg o rith m .. 69
4.2.3 Analyses of Our A lgorithm .. 70
4.2.4 Experiments for Multiplicity Queries 74
4.2.5 Summary of C o m p a riso n s .. 79

4.3 Unbiased Self-join Size Estimates from Count-min Sketches . . 80
4.3.1. Our Estimation A lg o rith m 81
4.3.2 Analyses of Our Algorithm 81
4.3.3 Experiments for Self-join Size E s tim a tio n s 85

4.4 Related W o r k 86
4.5 Summary and Potential Extension............... 87

5 E fficient R e su lt S e t Size E s tim a tio n fo r S im ila rity Q u eries o n
L arge D a ta S ets 91
5.1 Similarity Join/Self-join and Selectivity E s t im a t io n 91
5.2 Similarity Self-join Size E s tim a t io n .. 95

5.2.1 Problem S ta te m e n t... 96
5.2.2 A Straightforward Solution.. 96
5.2.3 Random sam pling .. 97
5.2.4 Our SelfJoinPairCount Algorithm (Offline Scenario) . . 97
5.2.5 Our SelfJoinPairCount Algorithm (Online Scenario) . . 104

5.3 Result Set Size Estimation for Similarity Join and Search . . . 109
5.3.1 Similarity Join Size E s t im a t io n .. 109
5.3.2 Our JoinPairCount A lg o rith m .. 110
5.3.3 Result Set Size Estimation for Similarity Search 112

5.4 Extensions and A pplications... 114
5.5 E xperim ents... 116

5.5.1 Experimental S e tu p .. 116
5.5.2 Offline SelfJoinPairCount .. 116
5.5.3 Online SelfJoinPairCount .. 118

5.6 Related W o r k .. 120
5.7 Summary and Possible E x te n s io n ... 122

6 C onclusions a n d F u tu re W o rk 123

B ib lio g rap h y 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.1 The Symbol List .. 30

5.1 SelfJoinPairCount relative errors (estim ate-truth)/truth. . . . 117
5.2 SelfJoinPairCount relative errors with different data set sizes. 117
5.3 SelfJoinPairCount relative errors with different sampling factors. 117
5.4 SelfJoinPairCount relative errors (estim ate-tru th)/tru th with

different dimensionality. .. 118
5.5 Online SelfJoinPairCount relative errors (estim ate-truth)/truth. 119
5.6 Online SelfJoinPairCount relative errors with different da ta set

sizes. . .. 119
5.7 Online SelfJoinPairCount and random sample relative errors. . 120'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

3.1 FN rates vs. K ... 44
3.2 FN rates difference between M a x — 3 and M ax = 1 {M ax3 —

M a x 1) vs. gaps. K is set to the optimal value respectively
under different settings.. 48

3.3 Fraction of zeros changed with time on the whole real da ta set
(M ax=l, K=2, P=4, FPS=10%), space u n it= 6 4 b its 55

3.4 Error rates comparison between SBF, FPBuffering, Buffering
and BF .. 56

3.5 FN rate differences between FPBuffering and SBF varying al
lowable FP rate(695M elements) .. 58

3.6 F N 'ra te comparisons between SBF and FPBuffering on syn
thetic data sets (FP rates < 10%, in the SBF method M a x = 1,
K = 2 and P = 4)....................................... ' 60

4.1 Average absolute errors vs. data set skew, comparing Fast-
AGMS, CM, MI and our CMM; queries are all elements in the
domain. The sketch width and depth are 64 and 3 respectively. 75

4.2 Average absolute errors vs. data set skew, for top-100 frequent
element queries using Fast-AGMS, CM, CMM and MI. The
sketch width and depth are 256 and 5 respectively. 76

4.3 Average absolute errors vs. sketch width, for top-100 frequent
element queries using Fast-AGMS, CM, CMM and MI on the
1M URL data set. The sketch depth is 5.. 77

4.4 Average absolute errors vs. sketch depth, for top-100 frequent
element queries using Fast-AGMS, CM, CMM and MI on the
1M URL data set. The sketch width is 256................................... 78

4.5 Self-join size estimation errors vs. data set skew, comparing
Fast-AGMS, CM and CMM. The sketch width and depth are
16 and 5 respectively. (The 2nd sub-figure zooms in the 1st
one). The stream sizes are all 1 million... 88

4.6 Self-join size estimation error vs. sketch width, comparing Fast-
AGMS, CM and CMM on the 1M URL data set. The sketch
depth is 3. The 2nd sub-figure zooms in the 1st one................... 89

4.7 Self-join size estimation error vs. sketch depth, comparing Fast-
AGMS, CM and CMM on the 1M URL data set. The sketch
width is 16.. 90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

In this chapter, we present a few data stream processing applications, review

some background and related works, and discuss the outline of our .research

and its contributions.

1.1 Data Stream Applications

A number of applications sharing certain common properties such as the one

pass requirement and fast data arrival rates can be classified into data stream

applications. These applications include IP traffic monitoring and measure

ment, real-time stock analysis, Web click stream processing, telephone call

record analysis, sensor network monitoring, real-time server workload mea

surement, XML streams filtering, online auction bid stream monitoring and so

on. While these applications have some properties in common, they also have

some distinct characteristics in terms of data arrival rates, processing speed

requirements, query types, accuracy requirements and so on. Next, we discuss

some of these applications in detail.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.1.1 Network Traffic M onitoring and M easurement

The Internet is becoming increasingly im portant and ubiquitous in today’s

business, science, education and entertainment, almost touching every aspect

of our daily lives. It is also growing and changing: new applications emerge

everyday, and technologies and users push the Internet to new territories.

To better understand the dynamics of a network and to react to changes,

there is an increasing demand for network traffic monitoring and measurement.

Following are some examples [74, 57, 26].

• Network engineering. Internet Service Providers (ISP) can monitor the

network traffic and alleviate network congestions based on the gathered

information. For example, network operators can change the routing

configuration and reroute part of traffic away from congested areas.

• Network usage-based billing. When an ISP charge customers, network

traffic to or from customers can directly or indirectly affect the billing

policy.

• Network intrusion detection. Network attacks often lead to changes in

traffic patterns. For example, there will be a large number of small flows

from different IP addresses forwarded to a host under a DDos attack.

• Network topology and capacity planning. After monitoring or measuring

the network for weeks or months, ISPs may consider upgrading their

devices to eliminate the bottlenecks or change their network topology to

improve the performance.

C hallenges for In te rn e t tra ffic m o n ito rin g an d m e asu re m en t. First,

with the improvement of hardware devices, the volume and speed of Internet

traffic keep growing. Routers tha t can forward gigabits of IP packets per

second are common nowadays. A large ISP may collect data from tens of

thousands of network interfaces [57]. A single high speed network interface

could generate hundreds of gigabytes of unsampled flow statistics per day if

fully utilized.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

It has been reported tha t ordinary memory (DRAM) is sometimes too slow

for per packet processing, while fast memory (SRAM) is quite expensive [63,

12]. For example, to process a 40-byte packet a t a 40Gbps speed , a router has

only 8 nanoseconds. DRAM access time (40 nanosecond) is obviously too slow.

On-chip(l-2 nanoseconds access time) and off-chip SRAM (2-5 nanoseconds

access time) are faster. But on-chip SRAM is limited (say 4 megabytes) and

off-chip SRAM is very expensive [63].

Second, the current mechanisms provided for Internet measurements are

very limited. The main task of a network is to deliver messages. In the original

design of the Internet, only highly aggregated measurements were considered,

and today only aggregate loss and utilization statistics are ubiquitously re

ported by router interfaces [57]. Obtaining detailed measurement information

without incurring too much overhead is not easy.

Third, the resources th a t can be allocated for Internet measurements are

also limited. Due to the huge data volume and high forwarding rates, very few

CP-U cycles and fast memory can be used for traffic measurement at routers.

Usually, a portion of IP packet headers are collected and sent to a remote

machine to be further analyzed. The required network bandwidth to transm it

data from a collecting point to an analyzing machine is also high. Even at

the remote data analyzing point, processing the transm itted data stream is

not easy: it may need large amount of memory, huge secondary storage and

powerful CPU.

C u rre n t In te rn e t m e asu re m en t te ch n iq u es . Due to the speed con

straints in data gathering and processing, different aggregation granularities

including packet level, flow level and SNMP level aggregations may be ap

plied [100]. At the finest level, IP packet headers such as source/destination

IP addresses, source/destination port numbers, protocol types and so on are

extracted. A higher level aggregation may be applied to flows, where a flow is

a sequence of packets sharing some common properties such as IP addresses,

port numbers or protocol types during a period of time [25, 106]. Flow mea

surements include flow identifiers, s tart time, end time, number of packets and

bytes and so on. At the highest level, SNMP collects traffic volume statistics

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

over links every few minutes. For packet and flow level aggregation, sampling is

widely used in network measurement and accounting applications. Although

sampling is already accepted as a standard solution for flow measurement

[106, 105], it does not mean tha t it cannot be improved. Currently, active

research is conducted on this topic in the network community [61, 62].

1.1.2 R eal-tim e Financial D ata Analysis

Another data stream application is monitoring real-time financial data such

as stock ticks and foreign exchange rates. There are about 50,000 securities

trading in the United States. Although the data generation rate is not as fast

as tha t of IP packets, every second up to 100,000 quotes and trades (ticks) are

generated based on a 2002 figure [121].

Real-time financial data analysis is becoming important. W ith the increase

of trading speed, in addition to long-term trading, intra-day trading strategy is

also widely used to make small profits in a short period, especially in electronic

trading markets such as the NASDAQ. Uncovering momentary opportunities

are crucial in this trading policy [90]. Therefore, real-time financial data mon

itoring tools are becoming more and more im portant for short term traders.

Some sample queries on real-time financial data are posted a t [113]. One ex

ample is “Find all stocks between $20 and $600 where the spread between the

high tick and the low tick over the past 30 minutes is greater than 3% of the

last price and in the last 5 minutes the average volume has surged by more

than 300%.”

1.1.3 Stream s from the Web

U R L a n d D o cu m en t S tream s o f a W eb C raw ler. Search engines reg

ularly crawl the Web to enlarge their collections of Web pages. During the

crawling, some processing may be performed over the streams of crawled URLs

and Web documents. For example, given the URL of a page which is extracted

from the content of a crawled page, a search engine must probe its archive to

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

find out if the URL is in the engine collection and if the fetching of the URL

can be avoided [24, 78]. If the URL is not found in the archive, the crawler

has to download this page from the Web.

W eb C lick S tream s. Many individuals or companies who put their infor

mation on the Web care about the popularity of their web pages. Sometimes

they are even willing to pay for the clicks to gain popularities [96]. In these

cases, monitoring the web page clicks is quite important. Such statistics can

be generated from the stream of source addresses of the users who click the

web page address.

1.2 Traditional Data Processing V.S. Data Stream

Applications

In the past few decades, many data processing techniques have been developed

in the database community, but most of them are not suitable in a streaming

environment for the following reasons.

First, traditional database applications store data on disks before queries

arrive. The users assume tha t all data is available. The problem is how to

find the information and answer the queries efficiently, and how to maintain

the data. In contrast, most data stream applications do not require storing all

the data, and sometimes it is hard to record the whole data stream because

of the data arrival rate. For example, in Internet measurement applications,

monitoring devices may not be able to keep up with the high speed IP packet

forwarding rate using ordinary RAM. It is hard to store the whole packet

streams even just with the header portion [62].

Second, the volume of data is relatively limited in most traditional database

applications. This is unlike streaming data tha t can be potentially infinite in

terms of its size, because new streaming data keeps arriving.

Third, multiple passes of data is possible in most traditional database

applications. Since it is assumed th a t all data is stored on disks, DBMSs can

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

load the data as many times as they want to evaluate a query. In data stream

applications, the full data stream can be only processed once; queries can be

answered either based on current stream information in memory or a partial

archived stream or sketch on disks.

Fourth, random access to the data is possible in most traditional database

applications. Since all data is available on disks, DBMS can access any part

of the data to answer a query, whereas in data stream applications, the data

stream can only be accessed sequentially. The order of which data is processed

is not controllable and is determined by the source generating the stream.

When a partial stream is archived, it is possible to gain random access to the

partial data. But it is only useful in the offline query case, and the query

answer may not be precise.

Fifth, precise query answers are usually required in most traditional database

applications. Again, since all data is available, query answers in most tradi

tional database applications are usually precise. In comparison, due to the

high arrival rate of streaming data, some queries are hard to be answered

precisely and timely. For example, if users are interested in finding the num

ber of distinct elements in the stream, for a precise answer a large amount

of fast memory needs to be used to store all the distinct elements. Since the

stream can be potentially unbounded, the available memory may not always

be sufficient to evaluate this query effectively.

Finally, in most traditional database applications, time information (trans

action or valid time) is not kept or is not important. If time needs to be

included, it is usually organized as a separate attribute, and many queries do

not include time. However, in data stream applications, timing information

is much more im portant because data keeps arriving and changing. W ithout

specifying the time, the query would be ambiguous and incomplete.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.3 Data Stream Model

For the kind of applications discussed here, a data stream can be modeled as a

sequence of records S — e\ . . . ejv ordered by their arrival time t \ . . . t ^ , where

N is the size of the stream, and epj is the most recent record seen so far. Each

record may contain one or more attributes such as record identifier, arrival

time, record size, etc.

1.3.1 Tuple-based and Tim e-based Stream

We can further classify data streams into tuple-based, and time-based. In tuple-

based model, the record arrival time is represented simply by the subscripts

of the record. For example, the arrival time of ejv is N. In time-based model,

the record arrival time is represented by a separate timestamp attribute.

1.3.2 O ne-tim e Query and Continuous Query

D ata stream queries can be classified into one-time queries and continuous

queries [9]. One-time queries are issued occasionally like traditional DBMS

queries, while continuous queries are issued and evaluated frequently and reg

ularly with the arrival of streaming data. For example, in tuple-based query

model, a continuous query should be evaluated whenever a record arrives; in

time-based query model, the query should be evaluated after every fixed time

interval.

1.3.3 Query W indows

Based on the temporal span of the queries, we can classify query windows

into landmark windows, sliding windows and damped windows[121]. In the

landmark window model, user queries are answered based on the data arrived

between a particular timepoint (called landmark) and present. The landmark

does not shift when the current timepoint keeps moving towards the future,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

unless a new landmark is redefined explicitly later. In the sliding window

model, user queries are answered based on the data arrived between a starting

timepoint and the current timepoint. In contrast to the landmark window

model, the starting timepoint shifts accordingly when the current timepoint

keeps moving towards the future, and the time span between them is always

fixed. In the damped window model, the data under consideration are weighted

differently. Users can specify a data importance function which affects the

query results. For example, one can specify an exponential decay function

indicating tha t recent data is much more important than the old ones. Damped

windows are considered in some past work [93, 103, 38] where applications are

also provided.

1.4 Data Stream Research Sketch

In this section, a brief summary of current data stream research is provided.

The work can be classified into two categories: data stream systems and data

stream algorithms.

1.4.1 D ata Stream System s

Some of the d a ta stream research focus on building general-purpose data

stream systems, while others specialize in a particular application domain.

Examples of general-purpose data stream systems are STREAM [9, 6], AU

RORA [27, 2, 13], and TelegraphCQ [28, 87]. Examples of specialized data

stream systems include Gigascope [51, 52], NIAGARA [101, 37], and Tribeca

[H O]-

S T R E A M . Mainly motivated by the Internet traffic monitoring and mea

surement, the STREAM project a t the Stanford University aims a t implement

ing a general-purpose data stream system, which may be applied to financial

data analyses, telecommunication data management and click stream moni

toring as well as IP traffic monitoring. STREAM focuses on online continuous

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queries, processing data streams in real-time and producing continuous output

streams. In addition to generating a live output stream mainly based on data

in memory, STREAM can archive the input streams on disks for offline analy

ses and sometimes stores the output results as relations on disks. Furthermore,

the real-time input streams can be combined with static stored relations to

generate the output. Registered continuous queries in STREAM are expressed

using a declarative language which is an extension of SQL.

A u ro ra . The joint project, Aurora [27], from the Brandeis University,

Brown University and MIT is another example of general-purpose data stream

systems. Based on user-specified queries (continuous or ad-hoc), the input

streams are processed by a centralized stream engine, and the output streams

are provided to applications. W ithin the stream engine, there are a set of

operators (“boxes” in their terminology), including “windowed” operators,

Filter, Drop, Map, GroupBy and Join operators. In addition to on-the-fly

processing of the input streams, Aurora can archive input streams to disks

especially for answering ad-hoc queries. Another feature of Aurora is that

an application can specify Quality of Service (QoS), and the system can make

run-time optimizations to provide the service. For example, when the system is

overloaded, load shedding can be done based on user-provided QoS description

rather than randomly dropping data.

Aurora* [40] is the distributed version of Aurora. More recently, Borealis

[1] supersedes Aurora*.

T eleg rap h C Q . TelegraphCQ is an extension of Telegraph [108] for con

tinuous queries. The features of TelegraphCQ are as follows. First, different

types of queries axe considered, including snapshot queries (one-time queries),

landmark window queries and sliding window queries. Second, disks are used

to archive historical data. Third, QoS is considered in managing the limited

resources.

A T & T G igascope. Gigascope [51, 52] is a data stream system dedicated

to Internet monitoring. More precisely, Gigascope can be used for TCP, IP or

higher level traffic measurements and identifications.

T ribeca . Tribeca [110] is another data stream system designed for network

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

traffic analysis. Besides basic operators such as qualifications (filters), projec

tions and aggregates, Tribeca also provides demultiplexing and remultiplexing

which partitions and combines data streams. Another features of Tribeca is

the support of secondary indices on sorted fields of the data stream records

(e.g. timestamp) since the network traffic can be stored on tapes and analyzed

in an offline manner.

N iag ara . Niagara [101, 37] is a data stream system focusing on XML

documents. In collaboration with an XML search engine, Niagara processes

XML document streams from the search engine, possibly with different arrival

rates.

1.4.2 D ata Stream Algorithms

In the previous subsection, we briefly describe some of the data stream systems

and their features. Another research direction is on data stream algorithms.

This is a subject th a t has drawn great interest not only from the database

community, but also from the theory community. Since there are too many

papers on this area, we just review those closely related to our work in the

next chapter. More work in this area can be found in the surveys by Babcock

et al. [9] and Muthukrishnan [100].

1.5 Thesis Overview

This section briefly discusses the scope of this thesis and its contributions.

1.5.1 Thesis Scope

In this thesis, we focus on a particular class of data stream algorithms for ap

proximately answering a few im portant frequency related queries: membership

queries, iceberg queries, join/self-join size estimations, similarity join/self-join

size estimation and selectivity estimation for similarity searches. The main

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

techniques we explore are sketching and sampling; both techniques are based

on probabilistic analysis, and can be considered as lossy compression of streams

to answer particular queries.

S ketch ing . Sketching is a summarization technique where each data

stream element contributes to the summary. This method usually takes ad

vantage of hash functions to transform stream elements and construct a sum

mary. For example, an IP packet header consisting of several fields can be

transformed into a bit in the summary, thus saving space. Of course, certain

information such as IP source and destination addresses are lost. For certain

queries where those lost information is not relevant or im portant, sketching

techniques can be quite useful.

Sam pling . Sampling is also a summarization technique where a subset of

the elements of the original stream is obtained. Sampled stream elements or

records are exactly the same as the ones in the original stream, and not every

stream element contributes to the sample. One nice property of sampling is

tha t it keeps the entire record in the sample, which can be useful for different

purposes. Based on the queries to be answered, there can be many different

sampling strategies.

More details about sketching and sampling are discussed in Chapter 2.

1.5.2 Contributions

A summary of the contributions of this thesis is as follows:

• For approximate membership query, this thesis extends and generalizes

a well known sketching technique, Bloom filters, to be applicable to data

stream scenario, and accordingly, present a novel algorithm which dy

namically updates the sketch to represent recent data in a data stream.

Some im portant properties of this new sketching technique are investi

gated and proved. Experiments on both real-world and synthetic data

show tha t this technique improves upon some of the best known algo

rithms.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• For frequency related queries, this thesis describes a new sketching tech

nique CMM, whose estimation accuracy is very similar to a well known

sketching technique, AMS sketch, but CMM is more flexible and pow

erful because the new technique can be combined with another query

answering method, Count-min, using exactly the same sketch. Analyti

cal and experimental results are both provided, showing CMM is indeed

a more flexible and powerful method.

• For similarity join and self-join size estimations and similarity search

selectivity estimations, this thesis presents efficient one-pass algorithms,

approximately answering the queries with provable accuracy and high

probability using only small amount of space. The key idea is to map a

stream of multi-dimensional objects into one-dimensional data streams

via sampling such th a t efficient data stream sketches can be used for the

transformed stream.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Sketching and Sampling

This chapter gives background knowledge about two data reduction tech

niques, namely, sketching and sampling. A review of more data reduction

techniques including singular value decomposition (SVD), wavelets, regres

sion, histograms and so on can be found in the New Jersey da ta reduction

report [15].

2.1 Sketching

In general, sketching techniques use hash functions to map each data stream

element into a hash value, and update a space efficient data structure (some

times called a sketch) based on the hash value. After processing the whole

stream, certain queries can be answered based on the sketch content. Usually

all stream elements contribute to the sketch, unlike in the sampling techniques.

Note th a t sketching is not a strictly defined term, and it may have different

interpretations in other places.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.1.1 Bloom Filters and their extensions

B loom filters. Bloom [17] proposes a synopsis data structure, known as the

Bloom filter, to approximately answer membership queries. A Bloom filter,

B F , is a bit array of size m, all of which are initially set to 0. For each element,

K bits in BF are set to 1 by a set of hash functions { h i (x) , h x (x) } , all

of which are assumed to be independent perfect random hash functions. It is

possible tha t one bit in BF is set multiple times, while only the first setting

operation changes 0 into 1, and the rest has no effect on th a t bit. To know

whether a newly arrived element Xi has been seen before, we can check the bits

{ h i (x i) , h , K { x i) } . If any one of these bits is zero, with 100% confidence we

know Xi is a distinct element. Otherwise, it is regarded as a duplicate with a

certain probability of error. An error may occur because it is likely tha t the

cells {h i(x i) , . . . , h x ix i)} are set before by elements other than Xi.

The probability of a false positive (false positive rate) F P = (1 — p)K,

where p = (1 — l / m) Kn is the probability th a t a particular cell is still zero

after seeing n distinct elements. It is shown tha t when the number of hash

functions K = ln (2)(m /n), this probability will be minimized to (\ /2) ln^ m/n\

where m is the number of bits in BF and n is the number of distinct elements

seen so far [98].

C o u n tin g B loom filte rs . Elementscan be inserted into a BF, but cannot

be deleted. To handle deletions, Fan et al. [66] extend BF to Counting Bloom

Filters (CBF), in which each bit of a Bloom filter is changed to a counter.

Whenever an element is inserted, all counters the element is mapped to are

incremented by one. To delete the element, those counters are decremented

by one. Even though CBF is originally proposed for membership queries, it

can be used to answer multiplicity queries as well.

S p e c tra l B loom filte rs . Cohen and Matias [42] propose Spectral Bloom

Filters (SBF) to answer multiplicity queries. An SBF is a 1-dimensional array

of counters, initially all set to 0. To insert an element into the SBF, k hash

functions are used to pick k counters uniformly at random, and those counters

are incremented by 1. To answer a query, the k counters the query element has

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

touched are checked, and the minimum value of those k counters is returned

as the approximate query answer.

To increase the accuracy, they propose two independent (but incompat

ible) heuristics: Minimal Increase (MI) and Recurring Minimum (RM). To

insert an element x into the SBF in the MI heuristic, only the minimum

counter/counters rather than all of the counters x touches is increased by

1. This heuristics decreases the error because it makes the counters increase

slower. However, the error reduction depends on data distribution and the

order of element insertions. Therefore, analyses become hard and are given in

[42] only in the case tha t element frequencies are uniformly distributed. Also

MI does not support element deletions, unlike the basic SBF.

The other heuristic, RM, uses a secondary data structure, which is the same

as the main data structure, to store certain elements th a t have higher chance

of being wrongly estimated. The following observation is used to find such

elements: of the counters an element touches, if there are multiple counters

tha t share the minimum value,, this element has less chance of being wrongly -

estimated; otherwise, RM stores this element in a separate secondary data

structure. RM is less accurate than MI, but RM supports element deletions.

C o u n t-m in Sketches. A count-min sketch CM[i , j] is a 2-dimensional

array of counters, with d (sketch depth) rows and w (sketch width) columns.

All counters are initially set to 0. To insert an element x into the sketch, d

hash functions hi(x) € {0, . . . , w — 1} with * = 0 , . . . , d —1, picked uniformly at

random, are used to determine which counters to be updated. For each row i,

counter CM[i , hi(x)} is incremented by 1. The procedure to delete an element

x is similar: for each row i, counter CM[i , h i(x)] is decremented by 1.

To find the number of occurrences of an element x, all the d counters tha t

x has touched, i.e. CM[i , hi(x)\ with (i = 0 , . . . , d — 1), are checked, and the

m inim um counter value is returned as the estimated frequency of x. Clearly,

the estimate is an upper bound of the true frequency.

Having a count-min sketch, the self-join size can be estimated as follows:

For each row i of the sketch, sum up the square of each counter value in tha t

row, and return the minimum sum of all d rows as the estimate. T hat is, the

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

estimate = min{sumJ~o (CM[i, j])2, i = 0 , . . . , d — 1}. This estimate is an

upper bound of the true value as well.

D is tin c t c o u n tin g using B loom filters. In addition to aforementioned

membership queries, multiplicity queries, self-join size, Bloom filters can be

used to approximate the number of distinct elements in a data stream. By

counting the fraction of zero bits in a Bloom filter, Whang et al. [119] estimate

the number of distinct elements using space linear in the number of distinct

elements, and constant time for updating each element. To have a reason

able estimation accuracy, one has to know a rough estimate of the number

of distincts so as to allocate a proper amount of space handling the stream.

However, this may not always be possible in practice. To tackle this, Estan

et al. [64] propose multi-resolution Bloom filters where stream elements are

partitioned into multiple groups based on their hash values. The number of

distinct elements hashed to different groups are exponentially decreasing. For

each group, they use a fixed size Bloom filter to represent the elements as in a

regular Bloom filter. In the end, they estimate the final results based on those

Bloom filters which are not full (i.e. there are a certain fraction of zeros in the

bitmap).

S p ace-C ode B loom filte rs (S C B F) an d flow size d is tr ib u tio n es

tim a tio n u sin g B loom filters. Kumar et al. [89] extend Bloom filters to

estimate element multiplicities. For each Bloom filter, they use multiple groups

of hash functions instead of one group as in the regular Bloom filters. When

inserting an element into the Bloom filter, they pick a group of hash functions

uniformly at random and use them to hash the element into the SCBF as in a

regular Bloom filter. By checking the number of bits set by an element after

the whole data stream has been processed, one can estimate the multiplicity of

the element. However, if the multiplicity of an element is more than a thresh

old, this approach will not work anymore because after all bits th a t can be

possibly touched by the element have been set, any more occurrences will not

change the SCBF. Thus, a multi-resolution SCBF which consists of multiple

SCBFs is proposed by Kumar et al. [89]. Whenever an element arrives, it is

hashed to each of the multiple SCBFs with a different probability. Accord-

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ingly, only a fraction of the stream elements (random sample) will touch each

SCBF. By probing the SCBF with a high sampling rate, the multiplicities of

frequent elements can also be estimated. Since in their paper there are no

comparisons with other methods such as Fast-AGMS sketching [31], which

will be discussed later in this chapter, it is not clear how well this technique

performs.

Kumar et al. [88] also use Counting Bloom filters to estimate flow size

distributions, where the flow size can be considered as the multiplicity of an

element. In the network community, a flow usually refers to a number of

IP packets sharing certain common properties, e.g. source and destination

IP addresses. Thus, estimating the flow size distribution is to find out the

number of distinct elements which occur a certain number of times. Kumar

et al. summarize the stream using a Counting Bloom filter. By guessing the

.combinations of each counter value, they find the combinations maximizing

the likelihood of the counter value distribution. They compare their approach

with the results from a random sampling [58], but it is not clear how their

approach performs compared with distinct sampling [54, 50].

2.1.2 FM Sketches and their extensions

Another well-known sketching technique was proposed by Flajolet and Martin

[67], to approximate the number of distinct elements in a data stream.

F M S ketch ing . The basic idea of FM sketching is as follows. The sketch

consists of a set of bitmaps. Whenever an element arrives, it is hashed to

one bit in a bitmap, and the probability th a t the element is hashed to a more

significant bit is exponentially decreasing. For example, the probability tha t an

element touches the least significant bit is 1/2, and the probability of touching

the next bit is 1/4, and the probability of touching the third least significant

b it is 1/8. One way of implementing the hash function is to hash the element

uniformly a t random to a binary string with the same size as the bitmap; then

find the least significant 1 bit and return the position of tha t bit as the hash

value. One advantage of this technique is the space efficiency. However, it

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

may not be suitable for real-time applications where per element processing

time is critical because its per element processing time is proportional to the

number of bitmaps used and thus proportional to the size of allocated space.

A M S v aria tio n . In Flajolet and M artin’s paper, the authors assume the

hash function is truly random; since it is not known how it can be implemented

in practice, Alon et al. [4] modified FM sketches to the case tha t only pairwise

independent hash functions are needed. Another change is th a t they only keep

track of the most significant position in the sketch tha t has been touched after

processing the whole stream rather than the whole sketch. But this approach

does not improve FM sketch’s time efficiency.

M in h ash value ap p ro ach . Bar-Yossef et al. [14] extend the idea of

Alon et al. and propose another algorithm for counting distinct elements. The

algorithm works as follows: whenever an element arrives, hash it to a large

universe (to avoid hash collisions) uniformly at random; meanwhile maintain

the k smallest hash values seen so far; after processing the whole stream, one

can estimate the number of distinct elements based on the largest value of the

k hash values stored. This method has a space bound similar to the above

two techniques, and has a much better per element processing time, which is

0(log(l/e) • loglogm • log(1/5) • logm), where e is the relative error, m is the

universe size, and 5 is the confidence probability. Although this method is

both space and time efficient, it is no t clear how accurate it would perform, in

practice especially compared with a Bloom filter based approach.

Space b o u n d s . One im portant property of all above algorithms is tha t

they all need only 1 /e2(0(logn) + 0(logm)) bits space to bound the relative

error within e factor and with a constant probability, where m and n are the

universe of stream elements and stream size respectively. It means th a t a

small amount of space is enough to accurately estimate the number of distinct

elements in a massive data stream. Moreover, Woodruff [120] showed tha t 1/e2

is the space lower bound needed for any approximation algorithm in terms of

e. Note tha t e must be no less than 1 / y/rn since otherwise a straightforward

deterministic algorithm is applicable when the space is large enough. This

lower bound is im portant because it indicates tha t the space complexity of

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

above algorithms is already optimal in terms of e.

2.1.3 AM S Sketches and extensions

A M S sketches. Alon et al. [4] proposed sketching techniques, to approximate

A;-th frequency moment of a data stream. The fc-th frequency moment, Fk, is

f t where D is the universe or the domain from which the element values

are drawn, and /* is the frequency of value i in the stream. In particular, the

well-known sketching technique, referred to as AMS sketch, is developed for

approximating F^. The basic idea is as follows: for each data stream element,

use a 4-wise independent hash function to hash it into either —1 or 1, and

store the sum of the hash values of all stream elements into a counter; this is

one instance of the sketch; by using a set of independent hash functions, one

can obtain a set of counters. After processing the whole stream, the median

of all these counters turns out to be an unbiased estimate for F2 .

F ast-A G M S Sketches. Based on the AMS sketching technique[4], Charikar,

Chen and Farach-Colton [31] propose Count-sketches to estimate element mul

tiplicities. The same sketches are also called Fast-AGMS sketches [46] in self-

join size estimation scenarios. For the ease of presentation, we only use the

term Fast-AGMS sketches, to refer to this data structure in the rest of the

paper.

The Fast-AGMS sketches are organized as a 2-dimensional array of coun

ters. To insert an element into the sketch, for each row of the sketch, a hash

function is used to determine which counter should be updated according to

the hash value of the element, and another independent hash function maps

the element to either —1 or 1 uniformly a t random, indicating the value to

be added to the counter. To delete an element from the sketch, based on the

same hash functions either —1 or 1 is deducted from the counters the element

is hashed to.

To check the multiplicity of a query element, for each row of the sketch,

map the element into a counter and a value (either —1 or 1), using the same

two hash functions as in the sketch construction process. Obtain the product

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

between the hash value (—1 or 1) and the value of the counter the element

is mapped to, then report the median of those products from all rows as the

multiplicity estimate. This estimate is shown [31] to be unbiased.

To estimate the self-join size, for each row of the sketch, sum up the squares

of all counter values, and return the median of those sums from all rows as the

self-join size estimate. Again, this is also an unbiased estimate.

2.2 Sampling

Sampling has been used in many areas and has been studied for many years.

As a data reduction technique, sampling has also a wide range of applications

including traditional database systems [102]. Here we just focus on using

sampling to answer frequency related queries for streaming data.

2.2.1 Random Sampling

Among different types of sampling, random sampling probably is the most

widely studied topic since it has lots of applications and can be used to answer

different types of queries. For example, a random sample can be used to answer

queries on the number of distinct elements [30], the total number of elements,

average data element value and so on.

In the database area, several work have been focusing on how to maintain

a random sample. V itter [115] studied the problem of obtaining a fixed size

random sample for a data set in one pass. Babcock et al. [10] proposed

algorithms to maintain a random sample of streaming data within a sliding

window. Jermaine et al. [82] studied how to efficiently maintain a large random

sample on disks.

Random samples can be used to answer many types of queries. However,

for many frequency related queries, the results from a random sample may

not be accurate. For example, Charikar et al. [10] showed negative results for

counting distinct elements using random sampling. For inverse distribution

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

estimation [50], where the goal is to find the numbers of distinct elements

with different frequencies (e.g. the number of elements only appear once in

the stream), it is not hard to see th a t random sampling is not proper since

high frequency elements will dominate the sample, and a large fraction of low

frequency elements will not be sampled. In many of those scenarios, distinct

sampling may be a better option.

2.2.2 D istinct Sampling

Another sampling technique tha t has many applications is distinct sampling.

The main difference between random sampling and distinct sampling is tha t

in distinct sampling, once a distinct element is included in the sample, all its

duplicates will be sampled. This is because the sampling process often involves

hashing the streaming element into a hash value; based on the hash value, the

element either is kept in the sample or discarded. Thus, the chance th a t an

element stays in the sample is irrelevant to its frequency unlike in the random

sampling case.

Gibbons [71] studied the problem of finding the number of distinct values

of one attribute while some other attributes of the records satisfy certain pred

icates. An example query can be: “How many distinct source IP addresses

have sent TCP packets in the IP packet stream?” In this query, the goal is to

find the number of distinct source IP addresses, bu t only those packets whose

protocol type is TCP are under consideration, so sketching methods are not

applicable in this case.

2.2.3 Count sample and sticky sample

Another type of sampling technique in the data streaming area is count sam

pling or sticky sampling, which focus on answering frequent element queries.

Gibbons and Matias [72] proposed count sampling technique, where the main

idea is as follows. Whenever an streaming element arrives, they check the

current sample; if the element is found, increment its frequency counter by 1;

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if not found, add the element to the current sample with probability p. When

the sample size bound is reached, for each element in the sample, they flip

biased coins until a head appears, and they decrement the number of coin

tosses from the frequency counter of tha t element. Meanwhile, they decrease

the probability p to p' to set a smaller probability of inserting a new element

into the sample. Manku and Motwani [94] used a similar idea to answer ice

berg queries rather than top-k frequent element queries, with different detailed

analysis.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Approximate Membership

Query Processing

In this chpater, we propose Stable Bloom Filter (SBF) [56], which extends and

generalizes the regular Bloom filter, and accordingly, a novel algorithm which

dynamically updates the sketch to represent recent data. We find and prove

the stable properties of an SBF including stability, exponential convergence

rate and monotonicity, based on which we show th a t using constant space

the chance of a false positive can be bounded to a constant independent of

the stream size, and this constant is explicitly derived. Furthermore, we show

tha t the processing time of SBF for each element in the stream is also constant

independent of the stream size. To make our algorithm readily applicable in

practice, we provide detailed discussions of the parameter setting issues both

in theory and in experiments. And we compare our method to alternative

methods using both real and synthetic data. The result shows th a t our method

is superior in terms of both accuracy and time efficiency when a fixed small

space and an acceptable false positive rate are given.

Section 3.1 describes the membership query and its importance. In Sec

tion 3.2, we present the problem statement and some background on existing

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

approaches. Our solution is presented and discussed in Section 3.3. In Section

3.4, we discuss how our algorithm can be used in practice. In Section 3.5, we

verify our theoretical findings, experimentally evaluate our method and report

the results of our comparisons to those from alternative methods. Related

work is reviewed in Section 3.6, and conclusions and future work are discussed

in Section 3.7.

3.1 Approximate Membership Query

A membership query is to answer if a given element belongs to a set or not.

From another angle, this query can be described as “if the given element has

a non-zero frequency or multiplicity” . It is also known as duplicate detec

tion or duplicate elimination problem. Eliminating duplicates is an im portant

operation in traditional query processing, and many algorithms have been de

veloped [69]. A common characteristic of these algorithms is the underlying

assumption th a t the whole data set is stored and can be accessed if needed.

Thus, multiple passes over data are possible, which is the case in a traditional

database scenario. However, this assumption does not hold in the streaming

applications, which are becoming increasingly important. Consequently, de

tecting duplicates precisely is not always possible. Instead, it may suffice to

identify duplicates with errors which will be discussed later.

While it is useful to have duplicate elimination in a D ata Stream Man

agement System (DSMS)[9], some new properties of these systems make the

duplicate detection problem more challenging and to some degree different

from the one in a traditional DBMS. First, the timely response property of

data stream applications requires the system to respond quickly in real-time.

There is no choice but to store the data in limited main memory rather than

in huge secondary storage. Sometimes even main memory is not fast enough.

For example, for network traffic measurement and accounting, ordinary mem

ory (DRAM) is too slow to process each IP packet in time, and fast memory

(on-chip SRAM) is small and expensive [63, 12].

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Second, the potentially unbounded property of data streams indicates tha t

it is not possible to store the whole stream in a limited space. As a result,

exact duplicate detection is infeasible in such data stream applications.

On the other hand, there are cases where efficiency is more im portant than

accuracy, and therefore a quick answer with an allowable error rate is better

than a precise one th a t is slow. Sometimes there is no way to have a precise

answer a t all. Therefore, load shedding is an im portant topic in data stream

system research [111, 11]. Next, we provide some motivating examples.

3.1.1 M otivating Examples

U R L C raw ling . Search engines regularly crawl the Web to enlarge their

collections of Web pages. Given the URL of a page, which is often extracted

from the content of a crawled page, a search engine must probe its archive to

find out if the URL is in the engine collection and if the fetching of the URL

can be avoided [24, 78].

One way to solve the problem is to store all crawled URLs in main memory

and search for a newly encountered URL in it. However, the set of URLs can

be too large to fit in memory. Partially storing URLs in the secondary storage

is also not perfect because of the large volume of searches tha t is expected to

be performed within a time unit.

In practice, detecting duplicates precisely may not be indispensable. The

consequence of an imprecise duplicate detection is th a t some already-crawled

pages will be crawled again, or some new URLs which should be crawled are

missed. The first kind of error may lead the crawler to do some redundant

crawling. This may not have a great influence on performance as long as the

error rate is not high. For the second kind of errors, since a search engine

can archive only a small portion of the entire web, a small miss rate is usually

acceptable. In addition, if a missed URL refers to a high quality page, it is

quite likely th a t the URL will be listed in the content of more than one crawled

page, and there is less chance of missing it again. The solution adopted by the

Internet Archive crawler introduces the second kind of errors [78].

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S electing d is tin c t I P addresses. In network monitoring and account

ing, it is often im portant to understand the traffic and users on the network

[79]. The following two queries, for example, may be interesting to network

monitors: who are the users on the network within past one hour? Where do

they go? The query may be written as:

SELECT DISTINCT source ip, destination ip

FROM ip.packetsstream

WITHIN PAST 1 hour

The result could be helpful for further analyzing the user profiles, interests

and the network traffic. Because of the high throughput of Internet routers

and limited amount of fast memory, currently it is hard to capture per packet

information precisely, and sampling is often used as a compromise [61]. We are

not aware of any work using sampling for this duplicate elimination problem.

D u p lic a te d e te c tio n in click s tre a m s. Recently, Metwally et al. pro

pose another application for approximate duplicate detection in a streaming

environment [96]. In a Web advertising scenario, advertisers pay web site pub

lishers for clicks on their advertises (or links). For the sake of profit, it is

possible tha t a publisher fakes some clicks (using scripts), hence a third party,

called an advertising commissioner, may want to detect those false clicks by

monitoring duplicate user IDs. We discuss more about their work in the related

work section.

3.2 Preliminaries

This section presents the problem statement in a data stream model and some

possible solutions.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.1 Problem Statem ent

We consider a data stream as a sequence of numbers, denoted by S n =

x i , . . . , Xi, . . . , xjv, where N is the size of the stream. The value of N can

be infinite, which means tha t the stream is not bounded. In general, a stream

can be a sequence of records, but it is not hard to transform each record to a

number (e.g., using hashing or fingerprinting) and use this stream model.

Our problem can be stated as follows: given a data stream S n and a

certain amount of space, M, estimate whether each element Xi in S n appears

in x i , . . . , Xi-i or not. Since our assumption is th a t M is not large enough to

store all distinct elements in x \ , . . . , Xj_i, there is no way to solve the problem

precisely. Our goal is to approximate the answer and minimize the number of

errors, including both false positives and false negatives , where a false positive

is a distinct element wrongly reported as duplicate, and a false negative is a

duplicate element wrongly reported as distinct.

To address this problem, we examine two techniques tha t have been pre

viously used in different contexts.

3.2.2 The Buffering M ethod

A straightforward solution is to allocate a buffer and fill the buffer with enough

elements of the stream. For each new element, the buffer can be checked, and

the element may be identified as distinct if it is not found in the buffer, and

duplicate otherwise. When the buffer is full, a newly arrived element may

evict another element out of the buffer before it is stored. There are many

replacement policies for choosing an element to be dropped out (e.g. [69]).

Clearly, buffering introduces no false positives. We will use this method in our

experiments and compare its performance to th a t of our method.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Stable Bloom Filters

The Bloom filter is shown to be useful for representing the presence of a set of

elements and answering membership queries, provided tha t a proper amount

of space is allocated according to the number of distinct elements in the set.

3.3.1 The Challenge to Bloom Filters

However, in many data stream applications, the allocated space is rather small

compared to the size of the stream. When more and more elements arrive, the

fraction of zeros in the Bloom filter will decrease continuously, and the false

positive rate will increase accordingly, finally reaching the limit, 1, where every

distinct element will be reported as a duplicate, indicating tha t the Bloom filter

is useless.

Our general solution is to avoid the state where the Bloom filter is full

by evicting some “elements” from it before the error rate reaches a prede

fined threshold. This is similar to the replacement operation in the buffering

method, in which there are several possible policies for choosing a past element

to drop. In many real world data stream applications, often the recent data is

more im portant than the older data [41, 104]. However, for the regular Bloom

filter, there is no way to distinguish the recent elements from the past ones,

since no time information is kept. Accordingly, we add a random deletion op

eration into the Bloom filter so th a t it does not exceed its capacity in a data

stream scenario.

3.3.2 Our Approach

To solve this problem, we introduce the Stable Bloom Filter, an extension of

the regular Bloom filter.

D efin ition 1 (S tab le B loom F ilte r (S B F)). An SBF is defined as an array

of integer 5 B F [1],. . . , SBF[m] whose minimum value is 0 and maximum value

is Max. The update process follows Algorithm 1. Each element of the array

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is allocated d bits; the relation between M ax and d is then M a x = 2d — 1 .

Compared to bits in a regular Bloom filter, each element of the S B F is called

a cell.

Concretely speaking, we change bits in the regular Bloom filter into cells,

each consisting of one or more bits. The initial value of the cells is still zero.

Each newly arrived element in the stream is mapped to K cells by uniform

and independent hash functions. As in a regular Bloom filter, we can check if

a new element is duplicate or not by probing whether all the cells the element

is hashed to are non-zero. This is the duplicate detection process.

After detecting duplicates, we need to update the SBF. We first randomly

decrement P cells by 1 so as to make room for fresh elements; we then set the

same K cells as in the detection process to M ax. Our symbol list is shown in

Table 3.1, and the detailed algorithm is described in Algorithm 1.

A lg o rith m 1 : Approximately Detect Duplicates using SBF
' D a ta : A sequence of numbers S = x i , . . . , Xi, . . . , x ^ .
R esu lt: A sequence of “Yes/No” corresponding to each input number.
beg in

initialize SBF[1]. . . SBF[m] — 0
for each x t E S do

Probe K cells SB F [h i(x i)] . . . SB F [hK(Xi)]
if none of the above K cells is 0 th e n
| DuplicateFlag = “Yes”

else
|_ DuplicateFlag = “No”

Select P different cells uniformly at random
S B F \ jx] . . . S B F \ j P) ,P
for each cell SBF[j] € { S B F [j i } , S B F [j P]} do

if SBF[j] > 1 th e n
[L SBF\j] = SBF[j\ - 1

for each cell € {SB F [h i(x i)},. . . , SBF[hi((xi)} do
L SBF[h(xi)] = M ax

[_ O utput DuplicateFlag
en d

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1: The Symbol List

Symbols Meanings
N Number of elements in the input stream
M Total space available in bits
m Number of cells in the SBF

M ax The value a cell is set to
d Number of bits allocated per cell
K Number of hash functions
k The probability tha t a cell is set

in each iteration
P Number of cells we pick to decrement by 1

in each iteration
P The probability that a cell is picked

to be decremented by 1 in each iteration
hi The ith hash function

3.3.3 The Stable Property

Based on the algorithm, we find an im portant property of SBF both in theory

and in experiments: after a number of iterations, the fraction of zeros in the

SBF will become fixed no m atter what parameters we set at the beginning.

We call this the stable property of SBF and deem it im portant to our

problem because the false positive rate is dependent on the fraction of zeros

in SBF.

T h eo re m 1. Given an SBF with m cells, i f in each iteration, a cell is decre

mented by 1 with a probability p and set to M a x with a probability k, the

probability that the cell becomes zero after N iterations is a constant, provided

that N is large enough, i. e.

lim P r(S B F N = 0)
N - * oo

exists, where SBFpj is the value of the cell at the end of iteration N .

In our formal discussion, we assume tha t the underlying distribution of the

input data does not change over time. Our experiments on the real world data

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

show th a t this is not a very strong assumption, and the experimental results

verify our theory.

Proof. W ithin each iteration, there are three operations: detecting duplicates,

decreasing cell values and setting cells to M ax. Since the first operation does

not change the values of the cells, we just focus on the other two operations.

W ithin the process of iterations from 1 to N , the cell could be set 0,..., (N —

1) or even N times. Since the newest setting operation clears the impact of

any previous operations, we can just focus on the process after the newest

setting operation.

Let Ai denote the event tha t within the N iterations the most recent setting

operation applied to the cell occured at iteration N — I, which means tha t

no setting happened within the most recent I iterations (i.e. from iteration

N — I + 1 to iteration N , I < N), and let A m denotes the event th a t the cell

has never been set within the whole N iterations. Hence, the probability tha t

the cell is zero after N iterations is as follows: '

N - 1

P r (S B F N = 0) = £ [Pr{SBFN = 0 | A)P r(A ,)]
l=Max (3 . 1)

+ P r (S B F N = 0 \ A N)Pr{AN),

where ^

Pr(SBFM — 0 | Ai) = J 2 (l \ p f (l - p) l- j (3.2)
j - - M a x ^

Pr(Ai) = (1 - k)lk (3.3)

P r(S B F N = 0 | A n) = 1 (3.4)

P r(A N) = { l - k) N. (3.5)

We have Eq 3.2 because during those I iterations, there is no setting operation,

and the cell becomes zero if and only if it is decremented by 1 no less than M ax

times. Clearly when I < M a x , the cell is impossible to be decreased to 0, and

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I = N means A n happens, so we just consider the cases of M a x < I < (N — 1)

in Eq 3.2. When A n happens, the cell is 0 with a probability 1 because the

initial value of the cell is 0 and it has never been set, therefore we have Eq

3.4. Having the above equations, we can prove tha t limjv-*oo P t (SB F n = 0)

exists.

From Eq 3.4 and Eq 3.5 we can clearly see the limit of the second part of

P t{SBF n = 0) (when N goes to infinity)

which is denoted by P rparti{0) in the rest of this proof. Now let us look at

the first part of Prparti(0)-

P r (S B F N = 0 | A n) * P t {An)

is 0. So we just need to focus on the first paxt of Eq 3.1, i.e.

N - 1

J 2 (P r(SB F N = 0 \ A l)* P r { A l)),
I—Max

P r(S B F N = 0 | A{) =
1 = M n.'T '

m a x —± / 1 \

= i ~ s
j =o V /

M ax—1

0 (o)
= 1 - (1 - p) 1

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JV—1

Prpartli0) < (1 - (1 - p)l)(1 - k)lk
l=Max

= x ; « i - *) <) - f ; (t (i - *) ‘(i - p)1)
I—Max l=Max

= (i _ Q M a x _ ^ _ fc)JV

“ T + p ^ k p 1'1'1 -

(l - k f (l - p) N)

lim P r p arti {0)iv—*oo

< (1 _ jfc)Wo* _ ------ —---— ((1 - k)MaX{ 1 - p) Mq:c
k “4“

V PfParti(o) monotonically increases when N 6 [Max, oo) increases limAr-.oo Prparti(0)

exists. •/ The limit of the second part of Pr(SBFpf — 0) also exists. The

limit of Pr(SBFpj = 0) exists. □

Having Theorem 1, now we can prove our stable property statement.

Corollary 1 (Stable Property). The expected fraction of zeros in an SBF

after N iterations is a constant, provided that N is large enough.

Proof. In each iteration, each cell of the SBF has a certain probability of

being set to M a x by the element hashed to tha t cell. Since the underlying

distribution of the input data does not change, the probability tha t a particular

element appears in each iteration is fixed. Therefore, the probability of each

cell being set is fixed.

Meanwhile, the probability tha t an arbitrary cell is decremented by 1 is

also a constant. According to Theorem 1, the probabilities of all cells in the

SBF becoming 0 after N iterations are constants, provided th a t N is large

enough. Therefore, the expected fraction of 0 in an SBF after N iterations is

a constant, provided tha t N is large enough. □

Now we know an SBF converges. In fact this convergence is like the pro-

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cess tha t a buffer is filled by items continually. SBF is stable means th a t its

maximum capacity is reached, similar to the case tha t a buffer is full of items.

Another im portant property is the convergence rate.

C oro lla ry 2 (C onvergence R a te) . The expected fraction of Os in the SBF

converges at an exponential rate.

Proof. From Equations 3.1, 3.4 and 3.5, we can derive

P r(S B F N - 0) - P r(S B F N-1 = 0)

= P r(S B F N = 0 | A jv-i)Fr(A jv-i)
(3.6)

+ P r (A N) - P r(A jv-i)

=k{ 1 - k)N~1(P r (S B F ^ = 0 | Ajv-i) - 1)

Clearly, Eq. 3.6 exponentially converges to 0. i.e. Pr(SBFpf[c}= 0) converges

at an exponential rate, and this is true for all cells in the SBF. Therefore, the

expected fraction of Os in the SBF converges a t an exponential rate. □

L em m a 1 (M o n o to n ic ity). The expected fraction of Os in an SBF is mono-

tonically non-increasing.

Proof. Since the value of Eq. 3.6 is always no greater than 0, the probability

that a cell becomes zero is always decreasing or remains the same. Combining

the proof of Corollary 2, we can draw the conclusion. □

This lemma will be used to prove our general upper bound of the false

positive rate where the number of iterations needs not to be infinity.

3.3.4 The Stable Point

Currently we know the fraction of 0s in an SBF will be a constant a t some

point, but we do not know the value of this constant. We call this constant

the stable point.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D efin ition 2 (S tab le P o in t) . The stable point is defined as the limit of the

expected fraction of Os in an SBF when the number of iterations goes to infinity.

When this limit is reached, we call SBF stable.

From Eq 3.1, we are unable to obtain the limit directly. However, we can

derive it indirectly.

T h eo rem 2. Given an SBF with m cells, i f a cell is decremented by 1 with

a constant probability p and set to M ax with a constant probability k in each

iteration, and if the probability that the cell becomes 0 at the end of iteration

N is denoted by P r (S B F jy = 0),

lim P r{S B F N = 0) = (3.7)
1 + RT7^i)

Proof. The basic idea is to make use of the fact th a t SBF is stable, the expected

fraction of 0,1 ,...,Max in SBF should be all constant.

Similar to the proof of Theorem 1, we can prove tha t

lim P r (S B F 'n — v)
N ~~»oo

exists, where 0 < v < Max. In other words, when N is large enough, the

probability th a t the cell becomes v is a constant. To simplify our notation, we

will refer to limjv->oo P r (S B F ^ = v) as Pr(v) in this proof.

The key idea of this proof is as follows: since Pr(v) is a constant, when

the SBF is stable, the probability th a t the cell changes to v from some other

values (e.g. v + 1) in each iteration must be the same as the probability

tha t the cell changes from v to other values. Otherwise, P r(v) will either

increase or decrease. Note tha t the probabilities of those changes caused by

the decrementing and setting operations are all constants {p and k).

For example, we can consider the case of M ax = 3 and P r(1). In each

iteration, we decrement 1 from the cell with a constant probability p, and set

the cell to M a x with a constant probability k. Since P r(1) is a constant after

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the SBF becomes stable, the probability tha t the cell changes from 2 to 1

should be the same as the probability tha t the cell changes from 1 to 0 and

Max. This can be expressed as

P r (2 -» 1 | S B F = 2) * P r(2)

= P r (l -» 0 | S B F = 1) * P r (l)

+ Pr{ 1 -» M ax | S B F = 1) * P r '(l)) (3.8)

Note tha t P r '(l) is the probability of S B F — 1 after the decrementing but

before the setting operation. Accordingly, we have

p * P r(2) — p * Pr{ 1) + k * (p* Pr{ 2) — p * Pr{ 1) + P r (l)) .

The left hand side of the above equation is the probability of gaining Is from

the decrementing operation, and right hand side is the probability of losing Is

from both the decrementing and setting operations.

Using the same idea, the relationship among P r(0) ,P r(l) , ..., P r(M ax)

can be expressed as follows(when M ax > 3) : when v — 0,

p * P r(v + 1) = k * (p * Pr{v + 1) + Pr(v)), (3.9)

when 0 < v < M a x ,

p * P r(v + 1) = p * Pr{v) + k * (p* Pr(v + 1) — p * Pr(v) + Pr(v)), (3.10)

when v = M ax,

k * (1 — Pr(v) + p * P r (v)) —p * Pr(v). (3-11)

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From the above equations, we can derive

) " “ ■
1 + p (l / f c - l)

Currently this equation only holds when M a x > = 3 since we have this as

sumption earlier. But it is not hard to verify tha t it holds when M ax = 1,2

as well using the same idea. □

The theorem can be verified by replacing the parameters in Eq. 3.1 with

some testing values.

From Theorem 2 we know the probability tha t a cell becomes 0 when

SBF is stable. If all cells have the same probability of being set, we can

obtain the stable point easily. However, tha t requires the data stream to be

uniformly distributed. W ithout this uniform distribution assumption, we have

the following statement.

Theorem 3 (SBF Stable Point). When an SBF is stable, the expected

fraction of Os in the SBF is no less than

f _________ ^_________ \ M a x
4 + ____ i ' ’

where K is the number of cells being set to Max and P is the number of cells

decremented by 1 within each iteration.

Proof. The basic idea is to prove the case of m — 2 first, and generalize it to

rn > 2 .

To simplify our notation, we refer to limjv_+00 Pr(SBFN[ci\ = 0) as Pr^O),

(i = 1, . . . ,m) and (— fy)Max as LBound in this proof.
1 + P (l / K - l / m)

We know tha t when all cells have the same probability of being set, the

expected fraction of Os in the SBF is LBound.

Now we prove tha t when cells have different probabilities of being set, the

expected fraction of Os in the SBF is no less than LBound. In other words,

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we need to prove when ki = k2 = . . . = km = K /m , the average probability

771 - 771 -|

- g P r,(0) = ~ E < X + - lp (1/jfc, - !)) " “ '

reaches the minimum value, where ki is the probability that 5BF[cj] is set.

Note tha t = K-

To simplify the problem, we first prove when m = 2, k\ + ki = ck,(0 < a <

K), the above statement holds, i.e. when k\ = k2 — a /2 , ,, 11 ■+ -—— —

is minimized. If F (k i) denote the above formula and /(&i) denote the first

part, F(k{) — f (k \) + f (a — k\). For f (k \) , we can verify tha t the derivative

of f (k i) w.r.t. ki, d f /d k i < 0, and d ? f/dk \ > 0 when k\ € [0, a]. Because of

the symmetric property between f (k i) and f (a — ki), the decreasing rate of

f (k \) is faster than the increasing rate of / (a — k\) when k\ G [0 , a / 2), thus

F (k i) monotonically decreases within this period. When k\ = a /2 , those two

rates are equal. Symmetrically it increases monotonically when k\ G (a /2 , a].

Therefore, when k\ = a /2 , F(ki) is minimized.

Now we prove when m > 2, this conclusion also holds. First we assume

m = 2j , where j is an integer greater than zero. Later we will discuss the

general case without this assumption. Since we have proved the case of two

cells, we can group all cells into m /2 pairs arbitrarily. For each pair, we know

if those two cells are set with an equal probability, the sum of Pri{0) will

decrease. For example, if we group 5BF[1] and SB F [2] together, we can

minimize P r,i(0) + P i?2(0) simply by changing both Aq and k2 into (k\ + k2)/2.

This is the case for all other pairs. After the first grouping, we have at most

m /2 different fc;S. We then group those m /2 cells into pairs and minimized

their sums again by balance those pairs. We can keep doing this until all cells

are all balanced, i.e. all of them have the same probability being set. Now the

sum is minimized because in each step the partial sum is minimized.

When the assumption m = 2J does not hold, we can divide one cell into

two, where both have a same kx and the sum does not change. For example,

when m = 3, we can pick one cell arbitrarily, say 5BF[3], whose probability of

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

being set is k3. We can find a proper kx, such tha t f (k f) — 2f (k x). Therefore,

we can transform all cases into what we have proved, i.e. m = 2J . □

3.3.5 False Positive Rates

In our method, there could be two kinds of errors: false positives (FP) and false

negatives (FN). A false positive happens when a distinct element is wrongly

reported as duplicate; a false negative happens when a duplicate element is

wrongly reported as distinct. We call their probabilities false positive rates

and false negative rates.

Corollary 3 (FP Bound when Stable). When an SBF is stable, the FP

rate is a constant no greater than F P S ,

F P S = (1 - (— ---------) " “)* (3.12)
* + P (l / K - \ / m)

Proof. If P rj(0) denotes the probability tha t the cell SBF[j) — 0 when the

SBF is stable, the FP rate is

(i (l - F r,(0)) + . . . + 1 (1 - P r m(0))K

= (l - i (F r 1(0) + - - - + F r m(0))) 'c
m

Please note tha t T (p r i (o) -\ b P rm(0)) is the expected fraction of Os in

the SBF. According to Theorems 1 and 3, the FP rate is a constant and Eq.

3.12 is an upper bound of the FP rate. □

This upper bound can be reached when the stream elements are uniformly

distributed.

Corollary 4 (The case of reaching the FP B ound). Given an SBF with m

cells, i f the stream elements are uniformly distributed when the SBF is stable,

the FP rate is F P S (Eq. 3.12).

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Because elements in the input data stream are uniformly distributed,

each cell in the SBF will have the same probability to be set to Max. According

to Theorem 1 and the proof of Theorem 3 we can derive this statement. □

C oro lla ry 5 (G en era l F P B o u n d). Given an SBF w ithm cells, F P S (Eq.

3.12) is an upper bound for FP rates at all time points, i.e. before and after

the SBF becomes stable.

Proof. This can be easily derived from Lemma 1 and Corollary 3. □

Therefore, the upper bound for FP rates is valid no m atter the SBF is

stable or not.

From Eq. 3.12 we can see th a t m has little impact on F P S , since 1/m is

negligible compared to 1 / K (m S> K). This means the amount of space has

little impact on the FP bound once the other parameters are fixed. The value

of P has a direct impact on F P S: the larger the value of P, the smaller the

value of F P S . This can be seen intuitively: the faster the cells are cleared,

the more Os the SBF has, thus the smaller the value of F P S is. Oppositely,

increasing the value of M a x results in the increase of F P S . In contrast to P

and Max, from the formula we can see the impact of the value of K on F P S

is twofold: intuitively, using more hash functions increases the distinguishing

power for duplicates (decreases F P S) , but “fills” the SBF faster (increases

F P S).

3.3.6 False N egative Rates

A false negative(FN) is an error when a duplicate element is wrongly reported

as distinct. It is generated only by duplicate elements, and is related to the in

put data distribution, especially the distribution of gaps. A gap is the number

of elements between a duplicate and its nearest predecessor.

Suppose a duplicate element Xi whose nearest predecessor is Xi-s^Xi =

XiSi) is hashed to K cells, SBF[Ca\ . . . SBF[Cnc]- An FN happens if any of

those K cells is decremented to 0 during the 5t iterations when Xi arrives. Let

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PR0(5i, kij) be the probability th a t cell Cy (j = 1. . . K) is decremented to 0

within the 8i iterations. This probability can be computed as in Eq 3.1:

S t -1

P R D fa k i j) = £ [Pr(SBFSi = 0 | A)P r(A)]
l=Max (3.13)

+ P r (S B F 6i= 0 \ A Si)P r (A Si),

where

P r(S B F Sj = 0 1.4;) = £ (‘. W - p) ' - ' , (3.14)
j —Max

P r(A ,) - (1 - %)*% , (3.15)

/ r \
P r(S B F Si = 0 | = Y . P y i l - v t - * , (3.16)

j —Max '

■Pr(A54) = (l - f c y) ^ . (3.17)

and is the probability tha t cell Cy is set to M a x in each iteration. The

meanings of the other symbols are the same as those in the proof of Theorem

1. Also, most of above equations are similar, except th a t Eq. 3.16 is different,

from Eq. 3.4. This is because the initial value of the cell in the case of Theorem

1 is 0, but it is M ax here.

Furthermore, the probability tha t an FN occurs when Xi arrives can be

expressed as follows:

K

P r(FN i) = 1 - J J (1 - PR0(6i, %)). (3.18)
J = 1

When 8i < Max, PR0(8i, fcy) is 0, which means the FN rate is 0. Besides, for

distinct elements who have no predecessors, the FN rates are 0. The value of

8i depends on the input data stream. In the next section, we discuss how to

adjust the parameters to minimize the FN rate under the condition th a t the

FP rate is bounded within a user-specified threshold.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 From Theory to Practice

In the previous section we proposed the SBF method and analytically studied

some of its properties: stability, convergence rate, monotonicity, stable point,

FP rates (upper bound) and FN rates. In this section, we discuss how SBF

can be used in practice and how our analytical results can be applied.

3.4.1 Setting Parameters

Since FP rates can be bounded regardless of the input data but FN rates

cannot, given a fixed amount of space, we can choose a combination of M ax, K

and P tha t minimizes the number of FNs under the condition tha t the FP rate

is within a user-specified threshold. Meanwhile we take into account the time

spent on each element, which is crucial in many data stream applications.

T h e ex p e c te d n u m b e r o f F N s. Since our goal is to minimize the number

of FNs, we can compute the expected number of FNs, E (# F N) , as the sum of

FN rates for each duplicate element in the stream: E (# F N) — Y i L 1 P r (FNi),

where N is the number of duplicates in the stream. Combining it with Eq. 3.18

we have
N K

f?(#FiV) = ^ [1 - n (1 - i , ^ . f e t f))] , (3-19)
i=l j=1

where 5i is the number of elements between and its predecessor, and fcy is

the probability th a t cell Cy is set to M ax in each iteration. Cy is the cell

element Xi is hashed to by the j t h hash function. Since the function PRO(6, k)

is continuous, for each x t there must be a fcj such tha t

K

(1 - PR0{Sh h)) K = I ^ 1 - ™ (^ » M) -
3=1

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For the same reason, there must be an “average” 5 and an “average” k such

tha t

N

N[1 - (1 - PR0(5, k))K] = £ [1 - (1 - PR0(Si, h)) K] = E (# F N) .
i= 1

Let f(5, k) be the average FN rate, i.e.

/(? , k) = 1 - (1 - PRQ(5, k))K . (3.20)

Our task then becomes setting the parameters to minimize this average FN

rate, f (8, k), while bounding the FP rate within an acceptable threshold.

The setting of P . Suppose users specify a threshold F P S , indicating

the acceptable FP rate. This threshold establishes a constraint between the

parameters: M ax, K , P, m and F P S according to Corollary 5. Thus, users

can set P based on the other parameters:

P _______________________________ 1_______________ 13.211
((1 -FPS^/K)1/Max ~ ~ V m)

Since m is usually much larger than K , 1 j m is negligible in the above equation,

which means th a t the setting of P is dominated only by F P S , M ax, K , and

is independent of the amount of space.

The setting of K . Since the FP constraint can be satisfied by properly

choosing P , we can set K such tha t it minimizes the number of FNs. From

the above discussions we know the relationship between the expected number

of FNs and the probabilities tha t cells are set to M ax. Next, we connect these

probabilities with our parameters K , m and the input stream.

Suppose there are N elements in the stream of which n are distinct, and the

frequency for each distinct element Xi is // . Clearly / / — N. Assuming

tha t the hash functions are uniformly at random, for a cell th a t element X{

is hashed to, the number of times the cell is set to M a x after seeing all N

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

§.0015

Max=1, FPS»0.1, ma=10A5, delta*200, Phl«10

K

Legend
fxn ss0 .5

° fxn —0.1
♦ fxn=*0.01
° fx n = 0 .0 0 0 0 0 1

Max=1, FPS=0.1, m=10A7, delta=200, fxn=0.00001

0.0005 -I

0.0004

0.0002 A

0.0001 A

10

Legend

S3.00015

p h i= —0 .0 1« = D a o phi=o.oi
* - - - - * phi=1
o o e> o o o p h ls s io
o o o o o o . p h l= 2 0 0

M a x = 1 , F P S s= 0 .1 , m » 1 0 A7 , p h i= 1 0 , f x n * 0 .0 0 0 0 1

K
Legend

delta»10
delta=50
delta* 100
delta=200
delta* 10^7

Figure 3.1: FN rates vs. K

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

elements is a random variable, /* + Y a=i f lh , where fo is the frequency of £;

in the stream, and each Ii(l = 1 .. . n — 1) is an independent random variable

following the Bernoulli distribution, i.e.

1. Pr(/, = 1) = £ ,

0, P r (/ , = 0) = l - £

Thus, ki = j f f i + j f E 7=i f'ih is also a random variable. For the K cells an

element Xi is hashed to, the probabilities tha t those cells are set to M a x in

each iteration can be considered as K trials of ki. Since the mean and the

variance of each Ii are p./, = ^ and a \ = ^ (1 — respectively, it is not

hard to derive tha t the mean and variance of ki. /ifc. = Ty. + TIC Y^i=i f'l

= j f h + mf i ~ Jjh) and ali = w ̂ (1 - i / / - Let

(j,. = ^ ~ ^ ki _ ^ ~ ^ ~ ~ Tift) 22)
j £ (l - £)y m ' m ' y mv m >

be a transformation on fcj. Then fa € [—] is a
Vmd-m)

random variable whose mean and variance are: /i^ = 0 and <r̂ . = ^ Y a = 1 f ' 2-

Note th a t aj. < ■fo' Ei =i (f l f Lx) < W E " = i(//fmax) = where ?max is

the frequency of the most frequent element in the stream. Since the mean and

the variance of the random variable fa are independent of K and m, we may

consider fa independent of K and m in practice. In other words, fa can be

seen as a property of the input stream. Similar to ki we can obtain a fa such

tha t

K

1 — (1 — PR0(5i, fa))K = 1 — n o - PR0(5i, faj)) = Pr{FNi) (3.23)
3 = 1

where fa € [Min(faj), Max(faj)], and f a j are K trials of fa(j — 1 . . . K) . Since

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the standard deviation of fa is very small compared to the range of its possible

values, and fa is considered independent of K and m, fa can be approximately

considered independent of K and m as well. For example, when = 0.01,

N = 15* ’ 7? = 106, the value range of fa is approximately [0 , 1000], while

0-* < 0. 1.

To set K, keeping all other parameters fixed we vary the values of K

and compute the FN rate based on Equations 3.23, 3.13, 3.21 and 3.22. By

trying different combinations of parameter settings (M ax = 1,3,7,15, F P S =

0 .2, 0 . 1, 0 .01 , 0 .001; m = 1000, 105, 107, 109 ; 6, = 10, 100, 1000, 105, 107, 109 ;

= 0.5,0.1; 0.01,0.0001,0.000001 and fa = 0.001,0.1, 1,10,100,1000, . . .),

we find tha t once the values of F P S and M ax are fixed, the value of the

optimal or near optimal K is independent of the values of Si, f o / N, fa and m.

O bserv a tio n 1. The value of the optimal or near optimal K is dominated by

M ax and F P S . The input data and the amount of the space have little impact

on it. Furthermore, the value is small (<10 in all of our testing).

For example, when F P S — 0.2 and M ax = 1, the value of the optimal or

near optimal K is always between 1 and 2; when F P S = 0.1 and M ax — 3,

it is always between 2 and 3; when F P S = 0.01 and M ax = 3, it is always

between 4 and 5. Therefore, without considering the input data stream we

can pre-compute the FN rates for different values of K based on M ax and

F P S and choose the optimal one. Our experimental results reported in the

next section are consistent with this observation.

Figure 3.1 shows an example of how the FN rates change with different

values of K under different parameter settings based in Eq. 3.23 and Eq. 3.13.

From the figure we can see th a t in the case of M ax — 1 and F P S = 0.1,

we can set K to 2 regardless of the input stream and the amount of space.

Therefore, in practice we can set fa, 5, and fa /N to some testing values (e.g.

0,200,0.00001 respectively) and find the optimal or near optimal K using the

formulas.

T h e se tt in g o f M ax. Based on the above discussion, we can set K

regardless of the input data, bu t to choose a proper value of Max, we need

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to consider the input. More specifically, to minimize the expected number of

FNs, we need to know the distributions of gaps in the stream to try different

possible values of M ax on Eq. 3.20 and 3.13. Since the expected value of <fii

is 0 and its standard deviation is very small compared to its value domain, we

set <j> to 0 in the formulas.

To effectively use the space we only set M ax to 2d — 1 (d is the number

of bits/cell), otherwise the bits allocated for each cells are just wasted. Fur

thermore, in terms of the time cost, M ax should be set as small as possible,

because the larger M a x is set, the larger P will be (see Eq.3.21, assuming K

is a constant). For example, when M ax = 1, F P S = 0.01 and K = 3(the

optimal K), the computed value of P is 10; while M a x = 15, F P S = 0.01,

and K = 6 (the optimal K), the value of P computed is 141 (the value of P is

not sensitive to m). In practice, we limit our choice of M ax to 1, 3 and 7 (if

higher time cost can be tolerated, larger values of M ax can be tried similarly).

To choose a M a x from these candidates, we try each value on Eq. 3.20 and

Eq. 3.13, and find the one minimizing the average FN rate.

Figure 3.2 depicts the difference of average FN rates between M ax = 3

and M ax = 1 based on Eq.3.20 and Eq.3.13. We set ^ — 0 because we are

considering the entire stream rather than a particular element in this case.

The figure shows tha t if the values of gaps(<5) are smaller than a threshold,

M ax = 3 is a better choice. When the gaps become larger, M ax = 1 is better.

If the gaps are large enough, there is not much difference between the two

options. The figure shows the cases under different settings of <j>, space sizes

and acceptable FP rates.

We also tested the FN rate difference between M ax = 7 and M ax — 3, and

observe the same general rule: a larger value of M ax is better for smaller gaps,

and a smaller F P S suggests a larger setting of M ax. Similarly, we find no

exceptions under other combinations of settings: F P S — 0.2,0.1,0.01,0.001

and m = 1000 , 105, 107, 109.

Trying different value of M ax on Eq. 3.20 and Eq. 3.13, we set ^ to 0 and

assume tha t the distribution of the gaps are known. If the assumption cannot

be satisfied in practice, we suggest setting M ax to 1, because this setting

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0 .2 -

-BTHP d no n □ □ □DaoaaDoaSBSSDBeeBB
ft » » » oo1m> oo<jTp-o<o ftftftg io f to ioft > o » o -»
600000* * 800000* * *1*e+Q6 * -1 .SeH-06

delta
,200000 400000

- 0.1

-0.2 -I

Legend
------------------- Space=10A7, FPS=0.1, phi=0
o o o □ a a Space=10A7, FPS=0.1, phi=0.001
* * * * * * Space=10A7, FPS=0.1 ,phi=—0.001
o o o o o o space=2*10A7, FPS=0.1, phi=0
o o o o o o Space=10A7, FPS=0.01, phi=0

Figure 3.2: FN rates difference between M ax = 3 and M ax = 1 (M ax3 —
M ax 1) vs. gaps. K is set to the optimal value respectively under different
settings.

often benefits a larger range of gaps in the stream. And our experiments also

show tha t in most cases setting M ax to 1 achieves better improvements in

terms of error rates compared to the alternative method, LRU buffering. In

fact, buffering performs well when gaps are small, which is similar to the cases

that M ax is larger. The behavior of our SBF becomes closer to the buffering

method when the value of M ax is set larger.

S u m m ary o f p a ra m e te rs s e tt in g a n d F P /F N tradeo ff. In practice,

given an F P S , the amount of available space and the gap distribution of the

input data, to set the parameters properly, we first establish a constraint for

P, which means P can be computed based on F P S , m, M ax and K; then

find the optimal values of K for each case of M ax(1,3,7) by trying limited

number(< 10) of values of K on the FN rate formulas; Last, we estimate the

expected number of FNs for each candidate value of M ax using its correspond

ing optimal K and some prior knowledge of the stream, and thus choose the

optimal value of M ax. In the case tha t no prior knowledge of the input data is

available, we suggest setting M ax = 1. The described parameter setting pro

cess can be implemented within a few lines of codes. In addition, based on the

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

above analysis, we obtain a constraint function between FN rates, F P S and

other parameters, where the tradeoff between FPs and FNs can be clearly seen:

when the other parameters are fixed, the larger the FP bound, the smaller the

FN rate is.

3.4.2 Tim e Complexity

Since our goal is to minimize the error rates given a fixed amount of space

and an acceptable FP rate, we do not discuss space complexity, and just focus

on time complexity. There are several parameters to be set in our method:

K ,M a x and P. W ithin each iteration, we firstly need to probe K cells to

detect duplicates. After tha t we pick P cells and decrement 1 from them.

Last we set the same K cells as probed in the first step to M ax.

Therefore, the time cost of our algorithm for handling each element is

dominated by K and P.

T h eo re m 4 (T im e C om plex ity). Given that K and M ax are constants,

processing each data stream element needs 0 (1) time, independent of the size

of the space and the stream.

Proof. From Eq.3.21 we know the constraint among K , P , m , M ax and

F P S (the user-specified upper bound of false positive rates). If K , M ax and

F P S are constants, the relationship between P and m is inversely propor

tional, which means m has no impact on the processing time. Since M ax, K

and F P S are all constants, the time complexity is 0(1). □

Based on the discussion of parameter settings, we know tha t the selection

of K is insensitive to m. Furthermore, the value of m and the stream size

have little impact on the selection of M ax based on our testing on Eq. 3.20.

Therefore, our algorithm needs 0 (1) time per element, independent of the size

of space.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 Experiments

In this section, we first describe our data set and the implementation details

of 4 methods: SBF, Bloom Filter(BF), Buffering and FPBuffering (a variation

of buffering which can be fairly compared to SBF). We then report some of

the results on both real and synthetic data sets. Last, we summarize the

comparison between different methods.

3.5.1 D ata Sets

R eal W o rld D a ta . We simulated a web crawling scenario [24] as discussed in

Section 3.1.1, using a Web crawl data set obtained from the Internet archive[8].

We hashed each URL in this collection to a 64-bit fingerprint using Rabin’s

method [107], as was done earlier [24]. W ith this fingerprinting technique,

there is a very small chance tha t two different URLs are mapped to the same

fingerprint. We verified the data set and did not find any collisions between

the URLs. In the end, we obtained a 28GB data file th a t contained about 700

million fingerprints of links, representing a stream of URLs encountered in a

Web crawling process.

S y n th e tic D a ta . We used 2 steps in generating the synthetic data.

First, we generated a sequence of positive integers in which there was only one

frequent integer appearing multiple times, and all others were distinct integers.

Second, we scanned through the integer sequence generated in the first step,

and randomly converted the only frequent integer into another integer with

certain probability. We describe the details next.

In the first step, we used 2 different models to simulate the arrival positions

of the only frequent integer in the sequence: the Poisson model and the b-

model. The Poisson model is widely used in modeling real world traffic [43];

it is also shown tha t when the traffic has a bursty or a self-similar property,

the b-model is more accurate [116].

The Poisson model had a parameter A(< 1), indicating the number of

arrivals of the frequent integer within a unit time interval. Since we used a

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tuple-based stream model, there were no explicit timestamps for elements in

our case. Instead, we used the element arrival positions as timestamps. As a

result, when the arrivals of the only frequent integer followed a Poisson process

with a parameter A, the fraction of the frequent integer among an arbitrary

number of elements is A on average. It was also shown tha t the inter-arrival

time (the number of elements in our case) between two consecutive arrivals

followed an exponential distribution with a parameter 1/A [43].

To simulate bursty traffics we used the b-model. The b-model had 3 pa

rameters: bias b(> 0.5), aggregation level 2, and to tal volume v. W hen b = 0.7

and 2 = 1, the entire time interval under consideration was divided into 2 equal

sub-intervals: v*b traffic volume in the first sub-interval, and v * (l — b) in the

second sub-interval. In other words, 70% of the total volume v was in the first

sub-interval and 30% in the second sub-interval (or 30% in the first and 70%

in the second, but we assumed the former case for the ease of presentation).

If I = 2, we could further divide the first sub-interval into two equal finer

sub-intervals, and allocate 70% of the volume in the higher level sub-interval

into the first finer sub-interval and the remaining 30% into the second finer

sub-interval. This process could be continued recursively for a larger 2.

The traffic volume v in our case was the fraction of duplicates. As an

example, b — 0.7 and 2 = 1 meant tha t 70% of the arrivals of the frequent

integer were in the first half of the sequence, and 30% in the second half.

However, it was possible th a t the predicted number of arrivals of the frequent

integer in the first half was greater than the to tal number of arrivals in the

first half. For example, if v = 0.9, the number of duplicates in the first half

of the sequence was 0.9 * 0.7 = 0.63, which meant th a t 63% of the total

number of elements in the sequence should be allocated in the first half of

the sequence. This was obviously infeasible. Observing this, we obtained a

constraint between v, b and 2: 2 < ln (v)/ln (^) . This constraint indicated tha t

to obtain a larger aggregation levels 2, the value of v and b should be smaller.

For example, when v = 0.1 and b = 0.7, 2 < 6 . But when v = 0.5 and b = 0.8,

2 < 1. When b = 0.5, there was no constraint because the recursive division

process was always possible.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the second step, we scanned through the integer sequence generated in

the first step using the Poisson model or the b-model, and randomly converted

the only frequent integer into another number i with a probability which

followed an exponential distribution with a parameter u. After the second

step, there were more than one frequent integer in the sequence, and the new

arrival process of any frequent number i still followed the Poisson model or

b-model, with a new parameter different from the old one by a factor of Qi

(the Poisson case) or with the same parameter (the b-model case). By varying

the parameters of the Poisson model or b-model in the first step, we were

able to tune the arrival rate or the burstiness of duplicates. By varying the

parameters of the exponential distribution in the second step, we were able to

tune the fraction of distinct integers in the set of duplicates and the frequency

distribution of those duplicates.

3.5.2 Im plem entation Issues

SB F Im p lem en ta tio n . Our algorithm is simple and straightforward to im

plement: 1) hash each incoming stream element into K numbers using multi

plication hash [44], and check the corresponding K cells; 2) generate a random

number, decrement the corresponding cell and (P -l) cells adjacent to it by 1;

3) set those K cells checked in step 1 to Max. One issue we have to deal with

is setting the parameters Max, K and P.

Based on the previous discussion, we can find some typical settings for

different FPS regardless of different data sets. For example, for FPS=10%, we

set M ax=l, K=2 and P=4, which worked well for different data sets in our

experiments. To evaluate our work, we implemented 3 alternative methods:

Bloom Filters(BF), buffering and FPBuffering.

B loom F ilte rs Im p lem en ta tio n . In our implementation, BF becomes

a special case of SBF where Max—1 and P=0. Knowing the number of distinct

elements and the amount of space, we can compute the optimal K (see the

discussion in Section 2.3).

B uffering Im p le m e n ta tio n . Implementing buffering needs more work.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

First, to detect duplicates we need to search the buffer. To speed up the

searching process, we used a hash table, as was done by Broder et al. [24].

Second, when the buffer is full, we have to choose a policy to evict an old

element and make room for the newly coming one. Broder et al. [24] compared

5 replacement policies for caching Web crawls. They showed tha t LRU and

Clock, the la tter of which is used as an approximation of LRU, were the best

practical choices for the URL data set (there were some ideal but impractical

ones as well); in terms of miss rate (FN rate in our case), there was almost

no difference between these two though. We chose LRU in our experiments.

Both LRU and clock need a separate data structure for buffering elements, so

tha t we can choose one for eviction [24], For simplicity of the implementation,

we used a double linked list, while Broder et al. chose a heap. This difference

should not affect our experimental results since our error rate comparison did

not account for the extra space we used in buffering.

F P b u ffe rin g Im p lem en ta tio n . To fairly and effectively compare our

method to buffering method, we introduced a variation of buffering called

FPbuffering. There are two reasons for this. First, SBF has both FPs and

FNs while buffering has only FNs. In different applications the importance

of FPs and FNs may be different. So it is hard to compare SBF to buffering

directly. Second, the fraction of duplicates in the data stream is a dominant

factor affecting the error rates, because FNs are only generated by duplicates

and FPs by distincts. For buffering, a data stream full of duplicates will cause

many FNs, while a stream consisting of all distincts cause no errors a t all.

FPbuffering works as follows: when a new data stream element arrives, we

search it in the buffer. If found, report duplicate as in the original buffering;

if not found, we report it as a duplicate with a probability q, and as a distinct

with probability (1 — q). In the original buffering, if an element is not found in

the buffer, it is always reported as a distinct. This vaxiation can increase the

overall error rates of buffering when there are more distincts in the stream,

but can decrease the error rates when there are more duplicates in the stream.

Clearly, FPbuffering has both FPs and FNs. In fact, q is the FP rate since a

distinct element will be reported as duplicate with a probability q. By setting

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a common FP rate with SBF, we can fairly compare their FN rates, and this

comparison will not be affected by the fraction of duplicates in the stream.

In our experiments, we assumed tha t buffering and FPbuffering required

64 bits per URL fingerprint on the Web data (same as [24]) , and 32 bits

per element on the synthetic data simulating the size of an IP address. In

other words, each element occupies 64 bits for the real data and 32 bits for

the synthetic data.

3.5.3 Theory Verification

In an experiment to verify some of our theoretical results, we tested the stable

properties of our SBF and the convergence rate. The results are shown in

Figures 3.3. From the graph we can see tha t the fraction of zeros in the

SBF decreases until it becomes stable. When the allocated space is small,

the convergence rate is higher. This is because when the space is larger, the

probability a cell being set is smaller. From Corollary 2 and Eq 3.6 we know

the convergence rate should be lower in this case. Also, we can see tha t when

the SBF is stable, the fraction of zeros is still fluctuating slightly. This can

be caused by the input data stream whose underlying distributions is varying.

Furthermore, the fraction of Os keeps decreasing in general before being stable;

at this point, the FP rate should reach its maximum, and our theoretical upper

bound for FP rates is also valid before the SBF become stable in this case. Our

next experiments show the effectiveness of our theoretical FP bound. When

the space is relatively small, the real FP rate is close to the bound.

3.5.4 Error R ates Comparison

This experiment compared the error rates between SBF, FPbuffering, buffering

and BF on the real data by varying the size of the space. The real data set

contained 694,984,445 URL fingerprints, of which 14.75% were distinct. To

do the comparison under different fractions of distinct elements, we built two

more real data sets by using the first 100,000 and 10 million elements of the

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

}-2A12 «-Spacs=2A16 Space=2A2Q

100%

80%

60%

40%

20%

0%

Number of lterations(Log scale)

Figure 3.3: Fraction of zeros changed with time on the whole real data set
(M ax=l, K=2, P=4, FPS=10%), space unit=64bits

original data file. The fractions of distinct elements for these two data set

respectively were 75.66% and 48.51%. For SBF, we set the acceptable FP rate

(number of FPs/num ber of distincts), FPS, to 10%, and Max, K,P to 1, 2,

4 respectively. The results under different FPS settings will be shown in the

next experiment. For FPbuffering, we set the FP rates to the same number

as SBF so tha t both generated exactly the same number of FPs, and we can

just compare their FN rates. Please note tha t buffering and BF only generate

FNs and FPs respectively, and FPbuffering reduces the FN rates of buffering

substantially in most cases by introducing a certain amount of FPs.

C o m p ariso n b e tw ee n d ifferen t m e th o d s . The tables in Figure 3.4

show th a t when the space is relatively small, SBF is better. SBF beats FP

buffering by 3-13% in terms of FN rate on different data sets, when their FP

rates are the same. For the problem we are studying, we think this amount of

improvement is nontrivial for 2 reasons. First, Broder et al. [24] implemented

a theoretically optimal buffering algorithm called MIN, where they assume

“the entire sequence of requests is known in advance” , and accordingly choose

the best replacement strategy. Even this obviously impractical and ideal al

gorithm can only reduce the miss rates (FN rates in our case) of the LRU

buffering, by no more than 5% in about 2/3 region (different buffer sizes).

Second, from the tables we can see tha t even increasing the amount of the

space by a factor of 4, the FN rates for buffering can be decreased by around

10-20%, which means the improvement from SBF may be equivalent of tha t

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76% Distinct(100K elements)
Space FPBuffering SBF SBF&FPBuffering Buffering BF
(bits) FN Rate FN Rate FP Rate FN Rate FP Rate

16384 46% 35% 8.4% 50% 83.8%
65536 35% 23% 6.7% 37% 43.4%

262144 24% 11% 3.0% 25% 7.2%
1048576 9% 4% 0.4% 9% 0.6%
4194304 0.1% 1% 0.1% 0.1% 0.1%

49% Distinc (10M elements)
Space FPBuffering SBF SBF&FPBuffering Buffering BF
(bits) FN Rate FN Rate FP Rate FN Rate FP Rate

16384 60% 54% 8.1% 65.7% 99.7%
262144 48% 40% 6.6% 51.5% 95.9%

4194304 30% 23% 4.5% 31.7% 43.5%
67108864 11% 5% 0.5% 11.0% 0.7%

1073741824 0.0% 0.4% 0.1% (only SBF) 0.0% 0.1%
15% Distinct (695M elements

Space FPBuffering SBF SBF&FPBuffering Buffering BF
(bits) FN Rate FN Rate FP Rate FN Rate FP Rate

16384 71% 68% 8.2% 78% 99.99%
262144 65% 60% 7.0% 70% 99.81%

4194304 55% 50% 5.7% 58% 96.93%
67108864 43% 36% 3.5% 45% 54.08%

1073741824 17% 13% 1.6% 17% 2.65%
4294967296 2% 5% 1.6% 2% 1.87%

Figure 3.4: Error rates comparison between SBF, FPBuffering, Buffering and
BF

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

from doubling the amount of space. The FP rates of BF is much higher than

the acceptable FP rates in the first 2-3 rows of each table. Since buffering only

generates FNs, it is not comparable to SBF here. But we can see tha t the FN

rates of FPbuffering also decrease by introducing FPs into it.

However, we also notice tha t when the space is relatively large (the last row

of each table), SBF performs not as good as buffering and BF. This is because

when the space is large, BF might be able to hold all the distincts and keep a

reasonable FP rates. We can directly compute the amount of space required

based on the FP rates desired and the number of distincts in the data set

according to the formula in Section 2.3. In this case, there is no need to evict

elements out of the BF, which means SBF is not applicable. If we can afford

even more space, which is large enough to hold all the distincts in the data set

using a buffer, there will be no errors at all. The last row of the second table

shows this scenario. But in many data stream applications, a fast storage is

needed to satisfy real time constraints and the size of this storage is typically

less than the universe of the stream elements as discussed in Introduction.

Another fact is tha t in both SBF and buffering, we can refresh the storage

and bias it towards recent data; they both evict stale elements continuously

and keep those fresh ones. While BF is not applicable in this case since BF

can be only used to represent a static data set. Thus, it is not useful in many

data stream scenarios th a t require dynamic updates.

V ary ing a cc ep tab le F P ra te s . Another experiment we ran was to

test the effect of changing the acceptable FP rates. The results are shown

in Figure 3.5. In this experiments, we set Max=3, K =4 when acceptable FP

rates are set to 0.5% and 1%, and set M ax=l, K =2 when acceptable FP rates

are set to 10% and 20%. The bar chart depicts the FN rate difference between

FPbuffering and SBF. Again, the FP rates of both methods are set to the

same number. Clearly, it shows tha t the more FPs are allow, the better SBF

performs.

C om parison o n d ifferen t d a ta se ts . To see the impact of different data

sets on both the SBF and FPBuffering methods, we ran similar experiments

on the synthetic data. In general, the results were consistent with those from

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14% T • -

■ FP<0.5%
□ FP<1%
0FP<1O%
■ FP<20%

Space(blts)

Figure 3.5: FN rate differences between FPBuffering and SBF varying allow
able FP rate(695M elements)

the real data.

The acceptable FP rate was set to 10%, and the parameters for SBF were

as follows: M ax = 1, K = 2 and P = 4. In these data sets, the stream

sizes were all fixed to 224 (about 16 million elements). The parameters used

to generate the data sets are shown in Figure 3.6.

Between the two data sets shown in Figure 3.6(a) and 3.6(b), the only

difference is the bias parameter 6, which indicates the burstiness of the data

sets. These two sub-figures show tha t the FN rate difference between SBF

and FPBuffering becomes smaller when the data set has the bursty property

(b = 0.7) compared to the case tha t the data set is not bursty (b = 0.5). But

the impact of this burstiness is not significant.

We also set b to 0.7 and change the exponential distribution parameter

u. which controls the frequency distribution of duplicates, from 103 to 106.

In the data set generated under this setting, the gaps between duplicates are

increased in general, because increasing u means tha t the exponential distri

bution becomes less skewed, and the number of distinct elements in the set

of frequent elements is increased (we consider the first time tha t a frequent

element appears as a distinct element), and thus the probability of generating

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

two identical integers within a short period becomes smaller. Figure 3.6(c)

shows the results obtained from experiments run on this data set. It demon

strates tha t both SBF and FPBuffering need more space to reach a particular

FN rate when the gaps are increased. In the region with the FN rate 90%, the

space allocated to both methods is too small and does not help much, because

without any space cost one can obtain similar results by randomly predicting

each element as a duplicate at a probability 0 .1.

Figure 3.6(d) depicts the results from the experiments run on the Poisson

data set. u is set to the same value as in the previous sub-figure. Since there

are more duplicates in this data set, the gaps in general are smaller compared

to the previous data set. As a result, to reach a certain FN rate, both methods

need less space. From this and some others experiments whose results are not

shown here we find tha t SBF consistently outperforms FPBuffering on datasets

generated using both the Poisson and the b- models.

Besides, all sub-figures in Figure 3.6 also show tha t SBF can beat FP-

Buffering up to 30% in terms of FN rates when both methods have exactly

the same FP rate (< 10%). When the allocated space is large (but not large

enough to store all distinct elements), FPBuffering may be more accurate than

SBF. But in this case, as discussed in the comparison on the real world data,

the original BF method (which is also a special case of SBF) is usually the

best since it only generates FPs under the acceptable threshold and no FNs.

Of course, if the available space is large enough to store all distinct elements,

buffering is the best in terms of accuracy, since it is precise.

3.5.5 Tim e Comparison

As discussed in the implementation section, SBF and BF need 0(1) time to

process each element. The exact time depends on the the param eter settings.

For example, when K—2 and P=4, SBF needs less than 10 operations within

each iteration.

For buffering and FPbuffering, their processing time is the same. I t de

pends on 2 processes: element searching and element evicting. Searching can

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2*24 elements{90% distinct), b=0.5, u=10A3

—•■•'ZS-....”—
...........................

^ \
S 50% Y ' -*-SBF

-•-FPBuffering\ \
.......... \ \ "

\ v
10%
0%

4 6 8 10 12 14 16 18 20 22
Log2 space size (bits)

2*24 elements(90% distinct), b»0.7, u=10A3

100%
90%
80%
70%

| 60%
e so%

90%

10%
0%

Log2 space size (bits)

(a) B-model dataset
level 1 = 6).

1 (aggregation (b) B-model dataset 2 (aggregation
level 1 = 6).

2*24 elements(66% distinct), b=0.7, u=10*6

100%
90%
80%
70%

| 60%
C 50%
£ 40%

30%
20%
10%
0%

Log2 space size (bits)

2*24 elements(32% distinct), LambdasO.8, u=10A6

100%
90%
80%
70%

| 60%
e 50%
£ 40%

30%

10%
0%

Log2 space size (bits)

(c) B-model dataset 3 (aggregation
level 1 = 6).

(d) Poisson dataset

Figure 3.6: FN rate comparisons between SBF and FPBuffering on synthetic
data sets (FP rates < 10%, in the SBF method M ax = 1, K — 2 and P = 4).

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be quite expensive without an index structure. Both our experiments and

those of Broder et al.[24] used a hash table to accelerate the search process.

The extra space th a t is needed for a hash table to keep the search time con

stant is linear in the number of elements stored. The process of maintaining

the LRU replacement policy(finding the least recently used element) is also

costly, and extra space is needed to make it faster. This extra space can be

quite large for LRU. However, this cost can be reduced to 2 bits per elements

by using the Clock approximation of LRU [24].

Therefore, buffering and FPbuffering need extra space linear in the number

of buffer entries to reach a similar 0(1) processing time. But in our error rate

comparison, we did not count this extra space for buffering and FPbuffering.

3.5.6 M ethods Comparison Summary

We compared 4 methods in this section: SBF, BF, FPbuffering and buffering.

Among them, BF and buffering have only FPs and FNs respectively, and SBF

and FPbuffering have errors of both sides.

BF is a space efficient data structure which has been studied in the past and

is widely used. It is good for representing a static set of data provided tha t the

number of distinct elements is known. However, in data stream environments,

the data is not static and it keeps changing. Usually it is hard to know the

number of distinct elements in advance. Moreover, BF is not applicable in

cases where dynamic updates are needed since elements can only be inserted

into BF, but cannot be dropped out. Consequently, BF is not suitable for

many data stream applications.

SBF, buffering and FPBuffering can be all applied to data stream scenarios.

SBF is better in terms of accuracy and time when certain amount of FP rates

are acceptable and the space is relatively small, which is the case in many

data stream applications due to the real-time constraint. When the space is

relatively large or only small FP rates are allowed, buffering is better.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Related Work

The recent work of Metwally et al.[96] also study the duplicate detection prob

lem in a streaming environment based on Bloom filters(BF) [17]. They consider

different window models: Landmark windows, sliding windows and jumping

windows. For the landmark window model, which is the scenario we consider,

they apply the original Bloom filters without variations to detect duplicates,

and thus do not consider the case tha t the BFs become “full” . For the sliding

window model, they use counting BFs [66] (change bits into counters) to allow

removing old information out of the Bloom filter. However, this can be done

only when the element to be removed is known, which is not possible in many

streaming cases. For example, if the oldest element needs to be removed, one

has to know tha t which counters are touched by the oldest element, but this

information cannot be found in counting BFs, and maintaining this knowl

edge can be quite expensive. For the jumping window model, they cut a large

jumping window into multiple sub-windows, and represent both the jumping

window and the sub-windows with counting BFs of the same size. Thus, the

jumping window can “jum p” forward by adding and removing sub-window

BFs.

Another solution for detecting duplicates in a streaming environment is

the buffering or the caching method, which has been studied in many areas

such as database systems [69], computer architecture [76], operating systems

[112], and more recently URL caching in Web crawling [24]. We compare our

method with those of Broder et al.[24] in the experiments.

The problem of exact duplicate elimination is well studied, and there are

many efficient algorithms(e.g. see [69] for details and references). For the

problem of approximate membership testing in a non-streaming environment,

the Bloom filter has been frequently used (e.g. [92, 91]) and occasionally

extended [66 , 98]. Cohen and Matias[42] extend the Bloom filter to answer

multiplicity queries. Counting distinct elements using the Bloom filter is pro

posed by Whang et al. [119]. Another branch of duplicate detection focus on

fuzzy duplicates [35, 5, 16, 118], where the distinction between elements is not

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

straightforward to see.

A related problem to duplicate detection is counting the number of dis

tinct elements. Flajolet and Martin[67] propose a bitmap sketch to address

this problem in a large data set. The same problem is also studied by Cormode

et al. [45], and a sketch based on stable random variables is introduced. Be

sides, the sticky sampling algorithm of Manku and Motwani [94] also randomly

increment and decrement counters storing the frequencies of stream elements,

but the decrement frequency is varying and not for each incoming element.

Their goal is to find the frequent items in a data stream.

As for data stream systems [9, 27, 114, 28, 51, 37], as far as we know, most

of them divide the potentially unbounded data stream into windows with lim

ited size and solve the problem precisely within the window. For example,

Tucker et al. introduce punctuations into data streams, and thus duplicate

eliminations could be implemented within data stream windows using tradi

tional methods[114]. “ ■

Since there is no way to store the entire history of an infinite data stream

using limited space, our SBF essentially represents the most recent information

by discarding those stale information continuously. This is useful in many

scenarios where the recent data is more im portant and this importance decays

over time. A number of such kinds of applications are provided in [41] and

[104]. Our motivating example of web crawling also has this property, since it

may not m atter tha t much to redundantly fetch a Web page tha t have been

crawled a long time ago compared to fetching a page tha t have been crawled

more recently.

3.7 Summary and Possible Extension

In this chapter, we propose the SBF method to approximately detect dupli

cates for streaming data. SBF extends the Bloom filter to allow outdated infor

mation to be removed from the summary structure so as to have enough space

to represent fresh data. We formally and experimentally study the properties

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of our algorithm including stability, exponential convergence rates, monotonic

ity, stable points, bounded FP rates, FN rates dependent on input data stream,

0 (1) time independent of the stream size and space.

We empirically evaluate SBF and report the conditions under which our

method outperforms the alternative methods, in particular buffering and FP-

Buffering methods using LRU replacement policy, both of which need extra

space linear in the buffer size to obtain constant or nearly constant processing

time.

Our SBF method works in a “landmark” window environment where the

starting point of the window is fixed. Since an element arrives recently has less

chance being “kicked out” , SBF implicitly favors recent data. But no explicit

sliding windows can be specified by users to indicate the “recentness” range.

We are working on the sliding version now.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Approximate Frequency Query

Processing

In this chapter, after introducing frequency queries and multipurpose sketch

ing techniques, we first propose a new unbiased estimation algorithm, referred

to as CMM, based on Count-min sketches [48] to approximately answer mul

tiplicity queries of data streams. Our experiments on both synthetic and real

data sets show th a t the new algorithm gives much more accurate results (e.g.

orders of magnitude improvement on the real data set) than the CM estimation

algorithm on a wide range of data sets except when data is highly skewed.

Second, we show through theoretical analyses and experimental evaluations

tha t CMM performs very similarly to the algorithms based on Fast-AGMS

sketches [31, 46], and all the analytical results reported for Fast-AGMS [31]

also hold for Count-min with our CMM algorithm. Hence, Count-min can be

also applied to the cases where Fast-AGMS is used as a building block without

losing accuracy, time and space efficiency (e.g. [81] and [68]).

Having two estimation options with different properties, Count-min can do

more than Fast-AGMS. For example, the CM estimation approach provides

one-sided error approximations, which can be very useful in some cases. In

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

finding frequent elements in a data stream, all candidates whose multiplicities

exceed a given threshold are guaranteed to be returned using the CM estima

tion. Multiplicity estimates for all qualified candidates can be obtained using

our CMM approach since it is usually much more accurate in practice. In

contrast, Fast-AGMS fails to provide this deterministic guarantee no m atter

how much space is given. In addition, Count-min with the CM estimation is

more accurate than Fast-AGMS when the data set is highly skewed, and CM

has a better space bound, meaning tha t given an error bound and a confidence

interval, Count-min using CM needs less space than Fast-AGMS.

Third, we propose a new unbiased algorithm for self-join size estimations

based on Count-min sketches. Unless there is a confusion, we will also refer

to this algorithm as CMM. Similarly, the accuracy of this algorithm is much

better than the previous Count-min estimation algorithm (also referred to as

CM) in practice on a wide range of data sets except when the data set is

highly skewed. Through our analytical and empirical evaluations we show

that CMM performs very similarly to Fast-AGMS in terms of self-join size

estimations. Again, having two estimation approaches with different properties

makes Count-min a more powerful and flexible data stream summary.

The rest of this chapter is organized as follows. Section 4.1 describes the

queries to be answered and the importance of those queries. Then we introduce

our CMM estimation algorithm for multiplicity queries in Section 4.2, where

analyses and experimental results are also provided. Section 4.3 discusses our

CMM algorithm for self-join size estimations. In Section 4.4 we describe the

research work closely related to CMM. Section 4.5 summarize this chapter.

4.1 Frequency Queries and Multipurpose Sketch

ing.

As discussed in the previous chapters, different time and space efficient sketch

ing techniques have been proposed, some dedicated to one type of query, and

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a few others such as Count-min [48] and Fast-AGMS sketch (a.k.a Count-

sketch) [31] can be used to answer multiple queries. Two im portant queries

th a t can be answered using Count-min or Fast-AGMS sketches are multiplicity

queries and self-join size estimations. Although our estimation algorithms can

be extended to answering other queries, in this chapter we focus on these two

queries.

A multiplicity query, also called a point query or a frequency query, is to

find the number of times a given element appears in a data stream. This is

an important query because the techniques for answering multiplicity queries

can be often applied to answer other frequency related queries such as iceberg

queries [42] (where the goal is to find the elements whose frequencies exceed a

threshold), finding top-K frequent elements [31], range queries [48] (where the

goal is to find the sum of frequencies of elements within a range), and approx

imating quantiles [48]. Multiplicity queries are also im portant in traditional

non-streaming settings (see [42] for more examples).

The self-join size, also known as the second frequency moment, of a multi

set is YlieD f i t where D is the domain from which the values are drawn, and

f i is the frequency of value i. The self-join size indicates the degree of skew

of a data set. For data distributions such as Zipfian and exponential, the

self-join size uniquely determines the parameter of the distribution [3]. Know

ing the parameter of a distribution can improve the accuracy of estimations.

For instance, in answering multiplicity queries, we can compute the Zipfian

parameter of the input data stream (assuming it follows the Zipfian model),

and accordingly choose an algorithm between the new one we propose in this

chapter and the one previously proposed since both algorithms are based on

the same sketch. As another example, the self-join size can be also useful

in selecting an optimal sampling strategy to estimate the number of distinct

values [75]. More applications of the self-join size can be found in [4] and [3].

To answer multiplicity queries and self-join size estimations, we focus on

Count-min sketches [48], which have been implemented on an operational data

stream monitoring systems, AT&T’s Gigascope [51, 47], for real-time IP traffic

analyses (including multiplicity queries and self-join size estimations) and for

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

other operational reasons [85]. Count-min has some nice properties such as

one-sided errors and better space bounds (smaller by a factor of 1/e, where e

is the relative error) in comparison with the best known alternative sketching

techniques. However, better space bounds may not always guarantee better

performance in practice. Based on our experiments, we find th a t the pre

vious estimation algorithms using Count-min, referred to as CM, are not as

accurate as those using Fast-AGMS [31] on a wide range of da ta sets. On

slightly skewed or uniformly distributed data sets, in particular, Fast-AGMS

performs significantly better. In this chapter, we demonstrate th a t Count-min

sketches can actually do as well as Fast-AGMS both in theory and in practice

regardless of the data distributions using our new estimation algorithms. Fur

thermore, our new estimation algorithms can be combined with those previous

algorithms without conflicts, hence making Count-min a more powerful and

flexible sketch.

Next, we introduce our new estimation algorithms for multiplicity queries

based on Count-min sketches.

4.2 Unbiased Estimates for M ultiplicity Queries

using Count-min Sketches

The estimation procedures described in Section 2.1.1 give upper bounds of the

true values. We propose our estimation methods, count-mean-min (CMM)

, which gives unbiased estimates for both multiplicity queries and self-join

size estimations using exactly the same count-min sketch. We discuss the

multiplicity query case in this section.

4.2.1 Basic Idea

Recall the estimation procedure of CM: given a query element q and hash

functions hi (i — 0 , . . . , d — 1), the frequency estimate f q is the minimum value

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the counters q has touched (i.e. CM[i, hi(q)}, i — 0 , . . . , d — 1). Usually the

counters q touches are also touched by other elements, thus even the minimal

counter value is expected to be larger than the true value f q. The source of the

error is the contributions of other elements to the counters CM [i, hi(q)}. We

characterize the contributions made by elements other than q to the counters

CM \i, hi(q)] as noise. The CM algorithm returns the counter value with the

least noise. Our CMM algorithm tries to estimate the noise in each counter,

removes the noise and returns the residue.

Of course we do not know exactly the value of the noise since the noise

is a random variable, but we can estimate its expected value. For a counter

C M \i, hi(q)], the noise can be estimated from the values of all other counters

not touched by q in tha t row i. The value of each counter not touched by

q can be considered as an independent random variable following the same

distribution as the noise, assuming th a t the hash functions map each element

i to the range [0, d — 1] uniformly at random (pair-wise independence [99] is

sufficiently for our theoretical results in this section). In fact, for a multiplicity

query, the values of the counters tha t are not touched by the query element

q in row i demonstrate the probability distribution of the noise in counter

CM[iMq)]-

4.2.2 Our Estim ation Algorithm

Given a query element q, we use the same set of hash functions hi (i =

0 , . . . , d — 1) as used in constructing the Count-min sketch, and check the

d counters q is mapped to, i.e. CM[i, hi(q)] (i = 0 , . . . , d — 1). Instead of

returning the minimum value of the d counters, we deduct the value of esti

mated noise from each of those d counters, and return the median of the d

residues. The estimated noise in each counter CM[i, hi(q)\ can be computed

as the average value of all counters in row i except counter CM[i, hi(q)] itself.

That is, the noise is estimated to be (N — CM[i, — 1), where N is

the stream size and w is the sketch width.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^

4.2.3 Analyses of Our Algorithm

Since for each row of the sketch, the analysis is the same, we just discuss the

case for a particular row i. Let X x be a Bernoulli random variable indicating

if element x is hashed to the same counter tha t the query element q is hashed

to, i.e.

Assuming tha t the hash function maps each element to one of the w counters

uniformly at random, the probabilities of the above two cases are as follows:

Pr[Xx = 1] = 1/w and P r[X x = 0] = 1 — l /w . The value of the counter q is

hashed to is also a random variable, f q + Y lx^ q fx X x, where f q and f x are the

true frequencies of q and x respectively.

L em m a 2 . Given a hash function picked uniformly at random from a pairwise

independent family, fo r a multiplicity query of element q and each row of

the sketch, our CMM estimate f q is expected to be f q, and the variance is

Yhx^q fx> where w is the sketch width.

Proof. We only discuss the case for row i of the sketch here since the analysis

for other rows is exactly the same. Recall tha t our estimation procedure

described in Section 4.2.2 is to deduct an estimated noise, the average value

of other counters, from the counter q is hashed to. Thus, the estimate

0 , otherwise.

1 , a; is hashed to the same counter as q is;

xqtq

x^q

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The expectation of fq

B lA] = / , + r - r r E A M W - 1)
x̂ tq

= fq + —^—r fx (w - - !) = Uw — 1 wx^q

Therefore, f q is an unbiased estimate.

The variance of f q

VAR{f,\ = E[(f, - B[/,]f]

x^q

To simplify the formula, let Z x — w X x — 1, then

Thus,

E[ZX] = 0

E \Z l\ = E[w2X 2x - 2w Xi + !] = « / - ! .

v m t i = T ^ w E { (£ f , z ,) 2]

T^jl^E Hzl + 2 Y, E U,2,2,\
x j i q x j t q y ^ q

y<x

(•_■ Z x, Z y pairwise independent)

s#? y#g
y<x

z t E ^ -u; Xytq

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C o m p ariso n w ith F ast-A G M S . Fast-AGMS [31] can be used to answer

multiplicity queries as well. It is not hard to show the following statement.

L em m a 3. Given sketches of the same width and depth and using independent

hash functions, the expectation and variance of the estimates from Fast-AGMS

are the same as those from our CMM algorithm.

Proof. Similar to the proof of Lemma 2, we can obtain the expected value and

the variance of the Fast-AGMS estimate; the expectation is the same as tha t

of CMM’s, and the variance is ^ ^2x^ q f x - For a given element q, let f q be

the frequency estimate from a Fast-AGMS sketch with width w and depth d.

X x is still defined as the same indicator variable, indicating whether element

x is hashed to the same counter as q is. Let Yx be another random variable

indicating x is hashed to either —1 or 1 with the same probability 1/2 by

another independent hash function. That is

1, Pr[Yx = 1]
Y~

-1 , Pr[Yx = —1]

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

then we have

f q = f q + J 2 f * x *Y*>
xjtqE[fq] = fq + E fxE[Xx}E[Yx] = fq,x̂qVAR[fq] = E[(fq - fq)2} = £[(£ fxXxYx)2}

= £ [£ + E{2 Y i £ f ,/y X ,X tY,Yv]
x ^ q x ^ q yjiq

y<x

('.• XxXy, Y^y^pairwise independent)

= £ / j £ [j r „ W , 2] +x̂q2 E E fxfyE[Xx}E[Xy\E[Yx]E[Yy\
x+q y^q

y<x

= - Y f .w 2-^ x
xjzq

Recall tha t the variance of our CMM estimate is ^2x^ qf x , meaning th a t

if CMM is given one more counter in each row, the variances of these two

methods will be exactly the same. Given tha t CMM needs one less hash

function in each row, and this can lead to some saving in the storage of the

hash functions, we consider the two variances the same. Even if there is any,

the difference is negligible especially when the depth of the sketch is small due

to the time cost. □

T h eo rem 5. The analytical results reported for Fast-AGMS [31] are all ap

plicable to the Count-min sketch using the CMM algorithm.

Proof. Because the expectations and variances of the two methods are the

same, all proofs in [31] can be adapted to our CMM estimation. See [31] for

the detailed proof. Note th a t the presentation style and some of the notations

in [31] are different from ours. □

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.4 Experim ents for M ultiplicity Queries

In this section, we experimentally compare CMM to the related estimation

algorithms: CM, Fast-AGMS and SBF with the MI heuristic (see the Spectral

Bloom filters part in Section 2.1.1).

Im p le m e n ta tio n issues. In our CMM algorithm for answering multi

plicity queries, we also use the median of all counters in a sketch row as the

estimated noise besides using the mean as described in the algorithm, because

median is less sensitive to outliers in data values. Computing the median of

the counters not touched by the query element for each query is costly. To

improve the time efficiency, we consider the median of all counters as the noise,

which can be obtained once and used for all queries. This estimate is still ac

curate because the median of all counters in one sketch row is approximately

the same as the median of tha t row with one less counter.

To further increase accuracy for both CMM and Fast-AGMS, we return 0

if CMM or Fast-AGMS gives a negative estimate since the estimate is clearly

wrong. Similarly, if CMM gives an estimate larger than the one from CM,

we return the latter instead since an estimate above the upper bound is also

obviously wrong. Having multiple estimates from multiple sketch rows, we

return the median as the final estimate for both CMM and Fast-AGMS. The

hash functions we use are obtained from MassDal [95].

S y n th e tic a n d re a l d a ta se ts . We generated synthetic data sets whose

element frequencies followed Zipfian distributions with different Zipfian pa

rameters between 0 and 2. Each data set had 1 million elements, where the

elements were integers drawn from the domain from 1 to 1 million. The code

used for generating the data sets were also obtained from MassDal [95]. We

also ran experiments on a Web crawl data set, originally obtained from In

ternet Archive [8], containing a stream of URLs sequentially extracting from

the crawled pages. We hashed each URL in this collection to a 64-bit finger

print, verified the data set and found no hash collisions between the URLs.

The stream size (number of URL fingerprints) we used was 1 million. Using

the second frequency moment of this URL stream, we approximately com-

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

puted the Zipfian parameter assuming the URL frequencies follow the Zipfian

model, and found tha t the Zipfian parameter were between 0.8 and 0.9. We

also used longer and shorter stream sizes, but found similar Zipfian parameters

and experimental results.

E x p e rim e n ta l se ttin g s . In the experiments, we queried the multiplicities

of all elements in the domain and the multiplicities of the top-100 frequent

elements appeared in the data set using different sketching techniques. We

obtained true frequencies of the elements using a sufficiently large buffer, and

computed the absolute values of the differences between the estimates and the

true frequencies as the error measurement.

16384
Fast-AGMS — i—

CM — x—
CMM

Ml ...
CMM-mean — b —

8192

4096

2048

1024

512

256

128

64

32

16
21 1.50.50

Skew

Figure 4.1: Average absolute errors vs. data set skew, comparing Fast-AGMS,
CM, MI and our CMM; queries are all elements in the domain. The sketch
width and depth are 64 and 3 respectively.

V ary ing th e skew o f th e sy n th e tic d a ta se ts . In our first experiment,

we query each element in the domain once and return the average of the

absolute errors of all queries. The result from data sets with different Zipfian

parameters is shown in Figure 4.1. CMM-mean represents the algorithm using

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4096
Fast-AMGS

CM — x—
CMM

Ml
1024

256

g

DO(0
§

1.5 20 0.5 1

Skew

Figure 4.2: Average absolute errors vs. data set skew, for top-100 frequent
element queries using Fast-AGMS, CM, CMM and MI. The sketch width and
depth are 256 and 5 respectively.

the mean value of counters as the noise, while CMM represents the algorithm

using the median of all counter values in a row as the noise. From the figure

we can see th a t when the data set is less skewed, CMM-mean, Fast-AGMS

and CMM all perform significantly better than CM and MI, while CM and MI

become more accurate than Fast-AGMS when the data set is highly skewed.

Among CMM-mean, Fast-AGMS and CMM we also see some differences:

CMM-mean and CMM both perform better than Fast-AGMS when the data

set is highly skewed because of the CM bound applied to both CMM-mean

and CMM; when the data set is less skewed, the performance of Fast-AGMS is

between those of CMM-mean and CMM. Actually, CMM-mean performs well

mainly because of the 0 bound we used. When the data set is skewed, it is very

likely tha t there are some large outliers in row counters, which make CMM-

mean significantly overestimate the noise, and accordingly return a negative

estimate. This is good for those 0-frequency elements which do not appear

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16384
Fast-AGMS

CM — x -
CMM

4096

1024

e
£a

256

■Q<

16384 6553664 256 1024 4096
Sketch width

Figure 4.3: Average absolute errors vs. sketch width, for top-100 frequent
element queries using Fast-AGMS, CM, CMM and MI on the 1M URL data
set. The sketch depth is 5.

in the data set, because the final CMM-mean estimate will be 0 whenever

CMM-mean returns a negative estimate. In contrast, CMM has less chance of

overestimating the noise, thus CMM is less likely to take advantage of the 0

bound. Regarding Fast-AGMS, the chance of returning a negative estimate is

one half for those 0-frequency elements. Given tha t a large fraction of query

elements in the domain have frequency 0 in the synthetic data sets, which

makes the 0 bound a dominant factor, in the rest of our experiments we focus

on finding the multiplicities of frequent elements, where the 0 bound has much

less impact on the experimental results.

In our second experiment, we query the multiplicities of the top-100 fre

quent elements. The average of the absolute errors of the 100 query answers

on the data sets with different skew is shown in Figure 4.2. Some general

trends observed from the figure are as follows. First, the accuracy difference

between CMM and Fast-AGMS is small. Second, CMM and Fast-AGMS sig-

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4000
Fast-AGMS — f-

CM — x-
CMM - * ■

3500

3000

2500

2 2000

1500

1000

500

120 2 6 8 10 144
Sketch depth

Figure 4.4: Average absolute errors vs. sketch depth, for top-100 frequent
element queries using Fast-AGMS, CM, CMM and MI on the 1M URL data
set. The sketch width is 256.

nificantly outperform CM when the data set is less skewed; the difference

becomes smaller when the skew increases; when the data set is highly skewed,

CM becomes more accurate than CMM and Fast-AGMS. Third, the MI heuris

tic consistently outperforms CM; but it is still much less accurate than CMM

and Fast-AGMS for less skewed data; in the high skew cases, MI is much

better.

One clear inconsistency between Figure 4.1 and 4.2 is the performance of

MI. In the high skew cases, when query elements are the frequent ones, MI

performs much better than all others, while MI performs much worse in Fig

ure 4.1. This is because when the data set is highly skewed, there are less

high frequent elements. The counters those elements are mapped to are very

likely to be increased to a high value by the frequent elements themselves.

When a non-frequent element arrives, it will only increase the minimum coun

ters it is mapped to, which are less likely to be the ones frequent elements

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have touched because the values of those counters are likely to be very large

already. Therefore, when the query elements are frequent ones, MI only gives

very small errors. As discussed in Section 2.1.1, The benefit of this method

depends on the frequency distribution and the order in which elements arrive.

So it is difficult to be further analyzed.

V ary ing th e sk e tch w id th on th e re a l d a ta se t. In this set of ex

periments, we fixed the sketch depth to 5 and varied the sketch width. The

results are shown in Figure 4.3. Similar to the results from the previous ex

periments, CMM performs very close to Fast-AGMS, and they both performs

significantly better than CM. MI does not perform well when the space is

small; but it becomes better when the space is large.

V ary ing th e sk e tch d e p th on th e rea l d a ta se t. In this set of exper

iments, we fixed the sketch width to 256 and varied the sketch depth. The

results are shown in Figure 4.4. Similar to the results from the previous exper

iments, CMM performs very similarly to Fast-AGMS, and they both performs

significantly better than CM. MI is better than CM, but not as good as CMM

and Fast-AGMS.

4.2.5 Summary of Comparisons

In this chapter, we discuss 4 algorithms for approximately answering multi

plicity queries: CM, Fast-AGMS, CMM and MI.

C M M , C M a n d F ast-A G M S . In general, CMM and Fast-AGMS give

better estimates over a larger range of data sets. They perform similarly

both in theory and in practice. But CM and CMM are 2 different estimation

algorithms using exactly the same sketch. Therefore, the Count-min sketches

can be more powerful than Fast-AGMS sketches as discussed in Section 4.1.

M I an d o th e r tech n iq u es . The MI heuristic consistently improves the

accuracy of CM estimates, especially when the queries are frequent elements.

In general, it may perform better than CMM and Fast-AGMS for highly

skewed data sets when querying frequent elements. When the data set is less

skewed, CMM and Fast-AGMS seem to perform better. But we are unable

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to reach a conclusion for our comparison because the results of MI may vary

greatly even for data sets with the same skew but different element arrival

orders. Furthermore, MI does not have certain nice properties, such as the

ability to handle element deletions and the ease of analysis, which CMM, CM

and Fast-AGMS all have. This is again because the arrival order of elements

will change the performance of MI, while this order has no effect on CM, CMM

and Fast-AGMS. In other words, the sketch will be the same for CM, CMM or

Fast-AGMS as long as the frequencies of elements do not change, and hence

the estimation will be the same regardless of the element order. Because MI

is hard to be analyzed, the space bound remains the same as tha t of CM.

T im e cost co m parisons. The time cost of per element update for CM,

CMM and Fast-AGMS is the same, i.e. 0(d) where d is the depth of the sketch.

The time cost for MI depends on the number of hash functions used, and we

are not sure how to set the number of hash functions properly to minimize the

error.

As for the query time cost, CM needs 0(d) time to find the minimum

counter. Both CMM and Fast-AGMS can find the median in 0 (d) time as

well using the SELECT algorithm [44], under the condition th a t the mean of

all counters except the one touched by the query element is used to estimate the

noise in CMM. But if CMM uses the median of each row for noise estimation,

as we did in our experiments, then CMM needs 0(w) preprocessing time to

find the median of counters for each sketch row. But those medians need to

be computed only once and can be used for all queries.

4.3 Unbiased Self-join Size Estimates from Count-

min Sketches

Count-min sketches can be also used to estimate the self-join size of a data

stream as discussed in Section 2 .1.1, where the estimate is an upper bound of

the true value. Similar to the case of multiplicity queries, we propose a new

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

estimation algorithm which gives an unbiased self-join size estimate of a data

stream.

4.3.1 Our Estim ation Algorithm

The CM algorithm [48] computes the sum of squares of all counters in each

sketch row, and returns the minimum sum of all rows as the self-join size

estimate. Our approach (CMM) use the same sketch with width w and depth

d, but the estimation procedure is different: for each counter in a sketch row,

we compute the average value of all other counters in the row except the

counter itself, and deduct the average from th a t counter; by doing this, w

residues are obtained, one for each counter. We then calculate the sum of the

squares of the w residues, and return the product of the sum and (w — l) / w

as the self-join size estimate from tha t row. The final estimate is the median

of the estimates from all d rows.

Formally, given a Count-min sketch CM[0 . . . d — 1 , 0 . . . to — 1] with d rows

and w columns, we return the median of the following d values as the estimate:

— 1 ul~ 1 1
- £ (C M [i J] - - f - (N - C M { i , j))) \

j=o

0 < i < d — 1,

where N is the stream size, i is the row index and j is the counter index within

a row. Next we show tha t this CMM algorithm gives an unbiased estimate for

the self-join size and the variance is the same as tha t of AMS and Fast-AGMS.

4.3.2 Analyses of Our Algorithm

L em m a 4. The estimate from each row of a Count-min sketch using the above

CMM algorithm is expected to be the true self-join size (under pairwise inde

pendent hash functions), and the variance is ^ i Y ^ x<y f xf y (under f-wise

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

independent hash functions), where (x , y) is an arbitrary pair of distinct ele

ments of the stream.

Proof. For a particular row of the sketch, let be the true self-join size, and

X Xtj be a Bernoulli random variable indicating if an element x is hashed to

counter j (j = 0 , . . . , w — 1). T hat is

1, x is hashed to the counter j, (j = 0 , . . . , w — 1);

0 , otherwise.

Then the self-join size estimate

w —l

j = 0 x x<y

w —l
x ' j=Q
w—l

j = 0 j = 0 xx

1 w—1

£ / . 2 + - u 2 + 2w ' £ u , ' £ x *j X , j).

The expected estimate

X X

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The variance

x<y j = 0

(v the hash function 2-wise independent,

••• E[X, j X , j] = i)

= E i 2 + ^ r i « E / -) 2 - Jv2) = E *
X X X

VAR[F2] = E[F2) - (E[F2])2

W x
w—l“• * j

+ 2u; f xf y ^ ^ . 2
x<i/ i= o ' '

w—l

e \(£ / 2 - A/'2 + 2w
x x<j/ j= 0

I _ E [(£ / ’ -ivY
' 'T.(w

w—l

+m£ /J - jv2)(E /*/» E
x x< y j = 0

tw—1

+ 4 » j (^ / , / „ E ^ * J ^) 2]
* < * / 3 = 0

(y ; _ l) 2 (2 S / ^) 2 -
' ' x<y v ' x<y

+ 5 ^ E (£ £ £ [E * 2 A
' ' x<y j=0

0<j<k<w—l

Q 2 lw“ 1+=Jrn5 E U l f ^ E i ^ x l j X ^ j X y . j
' ' yi<V2 j= o

x̂ vi¥=y2

+ ^ ^ ^ x , j Xy i , j XXtk Xy2<k}) + , ^ . 2
j#fc V ’

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X \ < X

f 2 f 2
(w — l) 2 ^ v
' ' x<y

yi<V2
v^yvfy?.

1 i w(w — 1) - -|- ~

x<y

□

Note tha t the variances of estimates from AMS [4, 3] and Fast-AGMS [46]

are both £ J 2 x <y f x f y given 4-wise independent hash functions. The difference

between the expression of this variance and tha t of our CMM is in the terms

w and w — l, meaning tha t CMM needs one more counter to reach the same

variance. Since our CMM only needs one hash function per sketch row, while

Fast-AGMS needs two per row and AMS needs w per row, CMM needs less

space in storing hash functions. Thus, we consider the CMM variance the

same as tha t of Fast-AGMS, and slightly smaller than tha t of AMS.

T h eo re m 6 . Let F2 be the self-join size estimate of a data stream using our

CMM algorithm, and F2 be the true self-join size. Given 0 (lo g (l/S)/e 2) coun

ters, with probability 1 — 5, the relative error \F2 — F2\/F2 < e.

Proof. This result is the same as tha t of AMS [4, 3] and Fast-AGMS [46] (the

result for Fast-AGMS is shown in the form of join size of two data streams).

Since in Lemma 4, we have shown th a t the variances of the estimates from these

algorithms are all the same, the rest of the proof is just applying Chebyshev’s

Inequality. Details can be found in [4]. □

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3.3 Experim ents for Self-join Size Estim ations

To verify the performance of CMM in estimating self-join sizes, we ran two

sets of experiments comparing CMM with CM and Fast-AGMS. Since AMS

needs to update all sketch counters for each element, which is too slow for

many real-time data stream applications, and Fast-AGMS is a much faster

but similar alternative with the same estimation expectation and variance, we

do not include AMS in our experiments.

E x p e rim e n ta l se ttin g s . For each sketch row, we computed a self-join

size estimate using CMM, Fast-AGMS and CM respectively. Then for CMM

and Fast-AGMS, we return the median of estimates obtained from all sketch

rows; for CM, we return the minimum value of estimates obtained from all

sketch rows.

The data sets used in this experiments and the sketch construction process

were the same as in the multiplicity query experiments described in Section

4.2.4. Cormode and Muthukrishnan [49] propose a variation of the CM algo

rithm, called CM-, for less skewed (Zipfian parameter < 1) and uniform data

sets. Their experiments on data sets similar to ours shows tha t CM and CM-

performs similarly, hence we did not include CM- in our experiments.

V ary ing d a ta s e t skew. In this experiment we fixed the sketch width and

depth and varied the skew of the synthetic data sets. The results are shown in

Figure 4.5. The two sub-figures are the same except tha t the second one shows

a small error range so tha t the difference between CMM and Fast-AGMS can

be seen.

From the figure we can see tha t when the data set is low skewed, CMM and

Fast-AGMS perform significantly better than CM; when the data set is more

skewed, the difference becomes smaller. Furthermore, the difference between

CMM and Fast-AGMS is always small.

V ary ing th e sk e tch w id th . In this experiment, we fixed the sketch depth

varying the sketch width and ran our experiments on the URL fingerprint data

set. The results are shown in Figure 4.6. From the sub-figures we can see th a t

CMM and Fast-AGMS always perform similarly, and they both outperform

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CM significantly especially when the space is small.

V ary ing th e sk e tch d e p th . In this experiment, we fixed the sketch width

varying the sketch depth and ran our experiments on the URL fingerprint data

set. The results are shown in Figure 4.7. Again, from the figure we can see

tha t CMM and Fast-AGMS perform similarly, and they both outperform CM

significantly. Furthermore, increasing the sketch depth within a small range

(e.g. from 1 to 10) has almost no impact on the estimation accuracy for

all tested algorithms. Because of the time cost, exponentially increasing the

sketch depth is infeasible in most real-time applications.

T im e cost co m parisons. The time efficiencies for CMM, CM and Fast-

AGMS are the same. In terms of per element update, CMM, CM and Fast-

AGMS all need 0 (d) time. Regarding the query answering time, the costs

of these methods are still the same: they all scan counters in a sketch row

linearly, i.e. 0 (w) time; in CMM and Fast-AGMS, finding the median of

estimates from all rows requires 0(d) time using the SELECT algorithm [44];

finding the minimum value of the counters in CM also requires the same time.

4.4 Related Work

There are many data stream summary techniques, each proposed for different

purposes. In this section, we only discuss the work closely related to ours and

not covered earlier in this thesis.

Krishnamurthy et al. independently proposed a technique called k-ary

sketch [86], which is similar to our CMM technique. But their goal is to detect

changes for IP packet streams, and they do not compare their technique with

Fast-AGMS or Count-min. Our explanation is also much simpler than theirs.

Most importantly, we proposed the median heuristic such tha t the estimation

errors are significantly decreased to a similar level to those from Fast-AGMS.

Accordingly, we can claim tha t our CMM method is more powerful and flexible

than Fast-AGMS.

F in d in g freq u en t e lem en ts. There are some work (e.g. [94, 84, 97])

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

focusing on finding frequent elements approximately in a data stream. These

algorithms also construct data summaries in one pass, bu t they are specialized

for finding frequent items and not for other queries.

R ecen t ap p lica tio n s o f C o u n t-m in a n d F ast-A G M S . Korn et al. [85]

use Count-min sketches as underlying data structures to answer multiplicity

queries, self-join size estimations, range sum queries, quantile approximations.

Cormode and Garofalakis [46] apply Fast-AGMS in a distributed environment

to answer multiple queries such as multiplicity queries, iceberg queries, range

queries, join and self-join size estimations. Indyk and Woodruff [81] use Fast-

AGMS as a building block to find the A;-th (k > 2) frequency moments.

4.5 Summary and Potential Extension

In this chapter, we propose new estimation algorithms, CMM, for multiplicity

queries and self-join size estimations based on a data stream summary tech

nique, Count-min. Compared to the previous estimation algorithms based on

Count-min, our new methods significantly improve the estimation accuracy

on a wide range of data sets. In contrast with another influential general-

purpose data stream summary technique Fast-AGMS, Count-min sketches can

give estimates with the same accuracy, time and space efficiency using CMM.

Moreover, there are other attractive estimation options and error bounds for

Count-min, which are not applicable to Fast-AGMS; with our new estimation

algorithms, we make a case th a t Count-min is more flexible and powerful.

In addition to the applications of finding the top-k frequent elements and

answering iceberg queries, CMM can be potentially extended to answer other

queries such as SUM aggregates (i.e. a generalization of multiplicity queries

where frequency updates are not limited to 1 and -1), range queries, quantiles

approximations and join size estimations, as shown by Cormode and Muthukr-

ishnan [48] for CM. Some of these extensions are straightforward, but others

need further research.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35000

30000 -

25000 -

■5̂ 20000
2
S
13
E

Fast-AGMS

nUi
aa

CM — x—
CMM

15000 -

10000 -

5000 ■

0.5 1

Skew
1.5

CM — x-
CMM -* -■

0)3
13>o
2
0)
13
E
I nUJ
'35'na

0.5

0 0.5 1.5 21

Skew

Figure 4.5: Self-join size estimation errors vs. data set skew, comparing Fast-
AGMS, CM and CMM. The sketch width and depth are 16 and 5 respectively.
(The 2nd sub-figure zooms in the 1st one). The stream sizes are all 1 million.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2500
Fast-AGMS — i—

CM — x -
CMM

2000

« 1500 -
©3
§c5|
« 1000 -

500 -

(0>
©E
I(0I
<0
IU

'K—.

16 64 256 1024
Sketch width

4096 16384 65536

2
Fast-AGMS

CM — x -
CMM - * - ■

1.5

0.5

0
16 64 256 1024

Sketch width
4096 16384 65536

Figure 4.6: Self-join size estimation error vs. sketch width, comparing Fast-
AGMS, CM and CMM on the 1M URL data set. The sketch depth is 3. The
2nd sub-figure zooms in the 1st one.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1024

256

d)D
©3
In!
E
■a
*0)an

0.25

0.0625
Fast-AGMS

CM — x—
CMM

0.015625
1 3 5 6 7 8 9 102 4

Sketch depth

Figure 4.7: Self-join size estimation error vs. sketch depth, comparing Fast-
AGMS, CM and CMM on the 1M URL data set. The sketch width is 16.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Efficient Result Set Size

Estimation for Similarity

Queries on Large Data Sets

5.1 Similarity Join/Self-join and Selectivity Es

timation

Similarity queries are applied to a wide range of domains with applications

ranging from finding near-duplicate Web pages, filtering approximately dupli

cate records, detecting possible plagiarism, detection of similar protein struc

tures, etc. In many of these applications, data must be self-joined before

near-duplicates can be listed. Consider for instance cleaning and filtering in a

data integration environment where data records are gathered from multiple

different sources and the same entity can be described differently, leading to

both redundancies and inconsistencies. For example, multiple records can re

fer to the same person, address, product description, etc. Inconsistencies may

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

also arise due to misspellings and encoding differences. Similarity join is con

sidered as a key operation in reconciling many of these inconsistencies and has

received more attention recently. The work includes efficient near-duplicate

detection [77, 19, 59], set similarity join [7, 34] and finding fuzzy duplicates

[36, 32].

Efficiently evaluating similarity join and self-join on large datasets can be

computationally challenging. For example, in a Web document clustering ap

plication, Broder et al. [22] spent more than 10 CPU days to find all 50%

similar pairs among 30 million documents; the memory requirement of the

work was 20GB. Although hardware is getting faster and memory is becoming

larger, the Web is also growing in the same or even larger scale. A similar

experiment was run more recently by Henzinger on 1.6 billion pages but the

running time of the experiment was not reported [77]. A reason for this be

haviour is th a t their near-duplicate detection algorithms have a few key steps

which are not parallelizable [22], hence their powerful distributed cluster is not

fully utilized. Despite these and other algorithmic research work in the area,

the nature of the problem determines tha t it can be very expensive both in

time and space cost when the result set is large, no m atter how good the al

gorithms are. In many cases, knowing an estimate of the result set size before

actually executing the potentially expensive operation is important.

In this chapter, we study the problem of estimating the result set sizes of

two types of queries: similarity self-join/join and similarity search. Here are a

few motivating examples for this work.

• Estimating result set is im portant in building more interactive and user-

friendly systems. W ith an estimate of the result set and the portion of

work done so far, one may predict the approximate remaining work and

the expected wait time, and pass this information to users (e.g. in the

form of a progress bar).

• W ith the current and expected level of support for similarity queries

in DBMSs, estimating the selectivity of similarity predicates is impor

tan t for estimating the costs of query plans and generally for optimizing

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

queries.

• In data cleaning and filtering over large datasets, knowing the result

set sizes before the actual operations is desired and can be helpful. For

example, if there are hundreds or thousands of tables, the data cleaner

should know which one is ‘dirty’ and which one is ‘clean’. This is par

ticularly im portant for very large tables; if the estimates show tha t a

table is clean, meaning tha t it doesn’t have many near-duplicates, an

expensive data cleaning task may be avoided.

Clearly, the techniques for estimating a query result set size should be

inexpensive and accurate. The estimation process should be much faster than

running the queries; otherwise it is not much useful. Often an approximate

fast answer is preferred over a slow exact answer. However, the approximate

estimates should be relatively accurate; fast but wrong estimates are useless

a t all. The inexpensiveness and accuracy requirements make the result set size

estimation a challenging problem for large d a ta sets.

In this chapter, we focus on estimating the result sizes of the aforemen

tioned queries (similarity self-join, join and similarity search) when the sim

ilarity measure is based on the Hamming distance. Specifically under this

distance, two vectors are similar if they have certain number of coordinates in

common, and a pair of records are similar if some fraction of their columns

are the same. This similarity measure has been useful in several different

applications.

For example, Broder et al. [19, 22] and Henzinger [77] fingerprint web doc

uments (or strings) into 6-dimensional vectors, which they call super-shingls,

by using min-wise independent hashing [21 , 20] on n-grams generated from

documents. One nice property of this technique is tha t the number of com

mon coordinates between the hashed vectors of two documents is expected

to give the Jaccard similarity 1 of the two documents. As another example,

1Jaccard similarity measure of two set of terms is the size of intersection of the two sets
divided by the size of the union of the two sets

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Charikar [29] shows th a t documents (or strings) can be sketched using a ran

dom projection into vectors such tha t the number of common coordinates is

proportional to the Cosine similarities 2 of the documents. Henzinger [77] also

uses this technique in her experiments for finding near-duplicate documents.

In data cleaning applications, the Hamming distance between, for example,

the records of a Person table with 6 attributes (First Name, Last Name, Da-

teOfBirth, Address, HomePhoneNumber, CellPhoneNumber) would indicate

how many record pairs share 1, 2, . . . , 6 attributes. If two records have certain

number of common attributes, it is very likely tha t they are duplicates.

O u r c o n tr ib u tio n s in th is C h a p te r . In this chapter, we propose effi

cient probabilistic algorithms for approximating the result set size of similar

ity queries: similarity self-join, join and search. To the best of our knowledge,

there is no prior work addressing the same issue, giving unbiased estimates and

tight error bounds, in one pass over data. We consider both offline and online

scenarios for processing the queries. By offline we mean the amount of space

available for storing the data summary is large; by online we mean only a small

amount of memory is available for the data summary. The basic idea of our

algorithms is as follows: if two vectors share certain number of coordinates,

when we randomly pick a few coordinates, which we call their concatenation

a super-value, from both vectors, the chance of'selecting the same super-value

is proportional to the similarity of the two vectors. By repeating this random

selection process for each vector in the data set and finding statistics of the

super-value streams, we can estimate the number of similar vector pairs. In

other words, we map the result set size estimation problems for multidimen

sional similarity queries to frequency estimation problems for one dimensional

data streams, where sketching techniques can be used to efficiently estimate

join/self-join sizes and frequency counts of the data streams using a very small

amount of space.

2 Cosine similarity of two documents is measured by the angle between the two attribute
vectors of the documents. In information retrieval, document attribute vectors are usually
TF-IDF vectors of the document, where TF indicates the frequency of a term in a document
and IDF indicates the popularity of the term in the document collection.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Both theoretical analysis and experimental evaluation show tha t our algo

rithm works well for large data sets. Specifically, the absolute errors for the

result set size estimates are only related to the true answer, independent of

the data set size (the number of vectors in the data set); the relative error is

inversely proportional to the true answer. As for the selectivity estimation,

errors generated from our algorithms are inversely proportional to the data set

size. Thus, our algorithms are efficient and accurate for large data sets.

We believe a linear scan of the data set is not a strict requirement even

for very large data sets. Our data summary structure can be incrementally

constructed whenever a vector or record is inserted into the data set. Also, our

algorithms are fully parallelizable. A large data set can be cut into small pieces

and distributed over multiple machines to speed up the process; a centralized

data summary can also be easily constructed from summary fragments on

different machines, thus estimates for the overall data set can be generated.

However, we have to point out tha t our algorithms may not be applicable to

high-dimensional vectors, although they work well in the kind of examples we

have mentioned here.

O u tlin e o f th is c h a p te r . Section 5.2 discuss our PairCount algorithm for

similarity self-join size estimations, which is the core of all other algorithms;

Section 5.3 extends PairCount to estimate the result set size of similarity join

and search; experimental results are reported in Section 5.5. Section 5.4 dis

cusses how our algorithms can be extended to handle other similarity measure,

and a few potential applications are list. Section 5.6 is related work. Last, we

summary this chapter and discuss possible extension of this work.

5.2 Similarity Self-join Size Estimation

This section presents the problem statements and our proposed algorithms in

both offline and online scenarios.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2.1 Problem Statem ent

We first give the definitions of some of the terms we use in this section.

D efin ition 3. (Similarity measure) A pair of d-dimensional vectors is s-

s im ila r if and only i f the two vectors have s coordinates in common. Clearly,

this similarity measure is based on Hamming distance.

D efin ition 4. (Similarity self-join size and selectivity) For a set of n vectors,

the s-similarity self-join size is the number of vector pairs that are at least

s-similar; the selectivity of s-similarity self-join is the fraction of vector pairs

that are at least s-similar among all possible pairs.

P ro b lem 1. (Similarity self-join size and selectivity estimation) Given n d-

dimensional vectors where each coordinate o f the vectors is a non-negative

number, our goal is to efficiently estimate the size and selectivity of an s-

similarity self-join, where s is a given parameter. The problem can be also

defined similarly fo r a relation with n records and d attributes; since each

attribute value can be fingerprinted into a non-negative number i f necessary,

we do not distinguish vectors or records in this chapter.

Based on different potential applications, we consider two scenarios: offline

and online. By offline we mean the application does not require an immediate

query answer right after the data processing; intermediate data summary can

be flushed to disks. By online we mean the application requires timely query

result on-the-fly once the input data has been processed. Usually data can be

processed in memory in a streaming fashion. We first discuss our proposed

algorithms for the offline case. The online algorithm is similar to the offline

one in general except th a t the space consumption must be bounded such tha t

the intermediate results can fit in memory.

5.2.2 A Straightforward Solution

For a relatively small data set (e.g. less than 100,000 records), the problem

can be solved precisely in the following way: store all n records into a list in

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

memory; compare each record i with all other records tha t appear after i in a

given ordering, and obtain their similarity by counting the number of common

attributes; for each pair of s-similar records, increase the counter C[s] by one.

The number of comparison is 0 (n 2), and the space cost is O(n). Clearly,

this algorithm is inefficient for large data sets. For example, it takes about 5

minutes to process 100,000 records with 6 attributes each on a AMD64/4000

machine, while processing 400,000 similar records takes more than one hour

on the same machine. For large data sets containing millions of records, this

algorithm is generally too slow. If the data set does not fit in memory, the

situation becomes even worse, and the algorithm may not be feasible a t all.

5.2.3 Random sampling

A widely used approximation technique is random sampling. For the similarity

self-join size estimation problem, random sampling is also applicable. One can

pick R different records from the input data set uniformly a t random (sam

pling without replacement); then use the straightforward algorithm to find the

similarity self-join size of the sample set; last, scale the similarity self-join size

of the sample set by a factor of • Alon et al. [3] used a similar random

sampling technique in their experiments for estimating the self-join sizes of

data streams. However, the results show tha t it is not as accurate as other

methods. Although random sampling has certain nice properties such as the

ability of handling different queries and the implementation easiness, it may

not be the best choice for specific tasks as a general-purpose data summary. We

compared random sampling with our method in our experiments and showed

tha t our method is significantly more accurate than random sampling in the

experiments section of this chapter.

5.2.4 Our SelfJoinPairCount Algorithm (Offline Scenario)

Given a data set with n records, each having d attributes, our offline Self-

JoinPairCount algorithm first scans the data set once and constructs data

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

summaries (a few data streams). Based on the self-join size of those streams,

SelfJoinPairCount estimates the similarity self-join size.

Step 1 - Transforming input data into super-value streams. Self

JoinPairCount scans the data set once. For each record and each k = s , . . . ,d,

SelfJoinPairCount picks k different attribute values uniformly a t random, tags

each attribute value with its attribute index, concatenates the k labeled val

ues into one k-super-value in their attribute index order 3 ; repeat this process

h — [r (fc)l times for 0 < r < 1, and store all fe-super-values as a stream of

items either in memory or on disks.

Step 2 - Finding the self-join size of super-value streams. In the

offline scenario, obtaining the precise self-join size for a data stream can be

done efficiently. If the stream fits in memory, a hash index can be used to

speed up the process of detecting duplicates and counting the frequency of

each distinct item. Accordingly, the self-join size can be computed easily. If

the stream does not fit in memory, external sorting needs 0 (Zog^_1) passes

to sort the data stream, where M is the number of memory pages available,

and R is the number of blocks occupied by the data stream. Having a sorted

stream, computing the self-join size is straightforward.

Step 3 - Estim ating the similarity self-join size. Let Yjt denote the

self-join size of the fc-super-value stream found in the previous step; let X k

be the estimated number of fc-similar record pairs, and Xk be the true value.

To find out the s-similarity self-join size, gs = Ylt=s x ki SelfJoinPairCount

computes each X k and accordingly Gs = Y^t=s Xk using the following formula:

d

Xk = (Yk IklT- ̂ ̂ t ĵfkXj)/fJ'kjki
j = k + 1

where fjt^k = i t) 2 the expected value tha t a j-similar pair contributes

to Yfc, k E [s,d \,j € [k,d\.

3If necessary, a fc-super-value can be fingerprinted into a fixed length hash value. Provided
a proper fingerprint size, the mapping can be guaranteed to have almost 0 hash collision.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A lg o rith m analysis. The basic idea of the algorithm is as follows: two

at least fc-similar; thus such record pairs are expected to contribute a certain

number of duplicates to the /c-super-value stream. By checking the self-join

size of those streams and estimating the contribution from record pairs with

different similarities, we can estimate the number of pairs tha t are (d , . . . , k)-

similar.

Next, we discuss the property and performance of this offline SelfJoinPair

Count algorithm including its accuracy, time and space costs.

T h eo re m 7. (Unbiased similarity self-join size estimate and the standard de

viation - offline case) The offline SelfJoinPairCount algorithm gives an un

biased estimate of the s-similarity self-join size, i.e. E[GS] — gs, and the

standard deviation of is at most J gs .

where Gs is the estimate and gs is the true value.

Proof. Let Z0j>k be the value th a t a j-similar record pair, denoted by Oj, con

tributes to Yfc, the self-join size of the fc-super-value stream.

The main structure of this proof is to find the expected values and variance

bounds of ZQjtk, Yk, Xk and Gs sequentially. In the middle of this process, we

use a simplified expression of Xk, which is a function of Yj (k < j < d) rather

than a function X j (k + 1 < j < d).

First, we have 4

Note th a t Xk, Yk and Z0j,k are all random variables. The expected value of

records have certain chance of generating the same fc-super-value if they are

(5.2)

4Since r{ f) may not be an integer, in practice SelfJoinPairCount picks Ik = [r (fc)l Re
combinations, but in our analysis we assume Ik = r(^), and this should not significantly
affect our results.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IUj7k is the expected value tha t a j-similar pair contributes to Y/.. From Eq. 5.1

we can see tha t SelfJoinPairCount removes the contributions of {k + l , k +

2 , . . . , d}-similar pairs from Yk, thus it is not hard to verify th a t Xk is an

unbiased estimate for Xk■ Next, we will focus on the proof of the standard

deviation part.

Let Pj,k,i be the probability tha t a j-similar record pair contributes i to Yk,

then the variance of Z Qjtk

Second, we prove by induction tha t (the simplified expression of Xk)

From Eq. 5.1, we can easily verify tha t Eq. 5.3 holds for k = d, d —1. Assuming

Eq. 5.3 holds for k, we need to prove it holds for k — 1 as well.

V A R [Z ^ k] = E {Z fa] - f a = XYpjjb.< - f a

d

(5.3)

where fee [1, d\, and Ck is a constant which is not important in our analysis.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From Eq. 5.1 we have

k - \ n -

d

-E
d

j= k

/

-Ei [k -

/

j= k
d

-Ei
j —k G -

j=k x '
i i d / . \ . d

-— y k - k~in
r 2 1 r2 A—' \ fc — i / 'r c 1’' 'j=k ' i=j v

d i

rs n - . - p g E (- « w (* L 0 G) r ‘ +

l=k N ' j —k '

t—k N '

i=fe—1 ' '

.'. Eq. 5.3 holds for k — 1, thus it holds for all k £ [1, d].

d ̂ d d / »\ d

G-=E ̂ ^ E Ef-1)’"* u) ̂ +E c‘
fc=s fc=s j= k ' ' fc=s

1 ̂ 3 / \

E E(-1>3_fc uV*+E c‘-
j = s k=s ' fe=s

Last, assuming the covariance between Z 0itkl and Z Q j is small, we have

VAR[Yk] « J] < r3 (f j Y ,
j= k ' ' j=fc

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.■.VAX[GJ < ^ E Q V A R W

v ' j=s k=.

\ (d \ 2 [2 (d - s Y
> U I d - s ^

Therefore, the standard deviation of — is a t most’ 9*

□

Remarks. This result shows tha t the estimation accuracy is dominated by

several factors: the true similarity self-join size gs, the number of attributes d,

the given similarity threshold s, and the sampling rate r. In general, a larger

data set has a larger gs. For fixed d, s and r , the relative error is expected to

decrease when n increases. Therefore, SelfJoinPairCounts is suitable for large

data sets.

In the expression of the standard deviation, s and d are also im portant

factors. When d and s are small, the standard deviation is small; but when d

increases, the expected error increases sharply. For example, when d = 5 and

s = 4> 0 \ / (2(<£s)) = 7; when d = 10 and s - 8 , = 110; when

d — 20 and s = 16, (f) ^ /(2(̂ }) = 40536.

Meanwhile, d also affects the selection of r. For each record, SelfJoinPair

Count generates r J2k=s i t) suP^r-values, which dominates the time and space

costs. To keep the time or space cost reasonably small, r should not be a

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

large value. In general, depending on the data set size and the given similarity

relatively small.

Next theorem shows the space and time costs to bound the selectivity error.

Note th a t we just discuss the time and space cost for processing the data set;

the cost for generating the result, e.g. finding the self-join size of super-value

streams, depends on if the data set fits in memory or not, and it is not hard

to see based on the description in our algorithm.

T h eo re m 8 . (Space and time cost to bound the selectivity error) The offline

SelfJoinPairCount algorithm guarantees that the estimated selectivity o f the

similarity self-join deviates from the true value by at most e with probability at

least 1 — A. More precisely, Pr[\ds — 9S\ < e] > 1 — A, where 0S is the estimated

selectivity and 6S is the true value. The space cost for processing the input data

set i , O (M 1/A) 0 e2n)), and the time fo r processing each record

is 0 { lo g { l/A) (^)2 (2^) 2d/e2n 2) 5, where n is the number of records, d is the

number o f attributes, and s is the given similarity threshold.

Proof. From Theorem 7 we know the variance of the similarity self-join size,

To increase the success probability, we can repeat the same algorithm indepen

dently 2/03 (1/ A) times, and take the median of the multiple results. Due to

When Ik = 1, the tim e and space cost is clear, and we do not discuss this case in the
following theroems.

threshold, SelfJoinPairCount work well only when the number of attributes is

VAR[G 3] < r (f) 2 (2d!-ŝ) 3s- By Chebyshev Inequality we have

Let the last term above be a constant, say | , we have

5when this term is smaller than 0 (1), the tim e bound is not valid because each i* > 1. We
have this result because we assume Ik = r{ff) in our analysis, while in practice Ik = •

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chernoff bound [99], we can guarantee the probability tha t SelfJoinPairCount

fails is at most A. Since SelfJoinPairCount picks 0 (r2 d) super-values for each

record, the time and space costs stated in the theorem can give the desired

result. □

Remarks. This theorem shows tha t a large n can help us bound the error

of the selectivity estimate within a small range. The larger the data set is, the

smaller the per record processing time cost will be. Actually, this bound is

not as tight as the one in the previous theorem because the bound is obtained

based on the previous theorem using more inequalities. Although the relative

error here is based on n 2, and the previous one is based on gs, which can be

significantly smaller than n 2, depending on the data set and the similarity

threshold, this is just because the two theorems measure two different values:

relative similarity self-join size and selectivity of similarity self-join. Besides,

the term 2 d is actually a bound coming from Y lk = s i t) > w^ich can be also much

smaller than 2d depending on d and s.

5.2.5 Our SelfJoinPairCount Algorithm (Online Scenario)

In the second step of our offline SelfJoinPairCount algorithm, we find the self

join size of the super-value streams by storing them either in memory or on

disks. In this sub-section we discuss how to obtain an approximate self-join

size more efficiently when the application requires a faster result while the

super-value streams are too large to fit in memory. Furthermore, we study

the performance changes after applying the faster but not precise self-join size

estimates in our SelfJoinPairCount algorithm.

T h e need for fa s te r self-jo in size e s tim a tes . When the data set is

large and the generated super-value stream does not fit in memory, the offline

SelfJoinPairCount algorithm stores the the super-value stream on disks. After

processing the whole data set, SelfJoinPairCount sorts the super-value streams

in a few passes to find their self-join sizes. Note tha t SelfJoinPairCounts

generates up to 0 (r 2 d) super-values for each record; depending on the value

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of r, the size of super-value streams can be larger than the size of the original

data set. For certain extremely large data sets or online data streams, even a

few passes on the super-value streams can be too expensive or infeasible. It

would be desired to process the data set in one pass and generate the result in

memory promptly. The key challenge is how to find out the self-join sizes of

the super-value streams efficiently in memory. Fortunately, there are existing

algorithms efficiently approximating the self-join size of data streams in one

pass using only a small amount of memory.

E s tim a tin g th e self-jo in size o f a d a ta s tre a m . A few sketching

techniques can be used to estimate the self-join size of a data stream. Fast-

AGMS or CountSketch, initially proposed by Charikar et al. [31] and used for

self-join size estimation by Cormode and Garofalakis [46] is a more recent one.

It has certain nice properties and theoretical guarantees, and we will use this

sketching technique in our work. Note th a t Fast-AGMS is not the only option

we have, other sketching techniques are also applicable to our algorithm. More

sketching techniques are discussed in the related work section, and the previous

chapter. For the ease of reading, we list the following result for Fast-AGMS;

the proof can be found in the related work.

L em m a 5. [55] Fast-AGMS gives an unbiased self-join size estimate fo r a

data stream; the standard deviation of the estimate is at most

V Va<b

where f a and fb are the frequencies o f two different items, a and b.

O nline S e lfJo in P a irC o u n t. Our Online SelfJoinPairCount algorithm is

similar to the offline one described in the previous sub-section. The difference

is online SelfJoinPairCount uses sketching techniques to approximate the self

join sizes of the super-value streams, while offline SelfJoinPairCount finds the

precise self-join sizes by storing the streams exactly, either in memory or on

disks. The next theorem shows the performance of our online SelfJoinPair-

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Count.

T h eo rem 9. (Unbiased estimate and standard deviation from online Self

JoinPairCount) The online SelfJoinPairCount algorithm gives an unbiased

estimate for the s-similarity self-join size, i.e. E[GS] — gs, and the standard

deviation of is at mostJ 9s

\ s j v r \ d — s J w w rgs

where w is the Fast-AGMS sketch width, d is the number of record attributes,

s is the given similarity threshold, r is the sampling factor, gs is the true value

of the similarity self-join size, and Gs is the estimated value.

Proof. Since both offline SelfJoinPairCount and Fast-AGMS provides unbiased

estimates, it is not hard to see the estimates from online SelfJoinPairCount

are also unbiased.

Let Yj. denote the variance of the self-join size estimate of the super-value

stream using the Fast-AGMS algorithm, and Yjt denote the variance of the

self-join size estimate using the offline SelfJoinPairCount algorithm as before,

according to the law of total variance, we have

VAR[Yl\ =E[V AR[Y(\Yk}} + V AR[E[Yl\Yk]\

< E [^Y k2} + VAR[Yk\

=(1 + -)V A R [Y k] + - E [Y k]2.
w w

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Similar to the proof of Theorem 7, we have

VAR[G.) = lMBEXnl < I j) QfvARK]
4<i+i)sC)Wj+i|E(i)Vj*

w r \ s j \ a — s J

k=s N ' j —k N ' v '

+ Ê(!) Q (’•V + nr)2
f c = s v ' v '

' 2 .1 (d \ * (2 (d - s) \
= ! + - - \ ' }9sw r \ s J \ a — s J

(t i ') ,r9' + n)!

Therefore, the claim of the standard deviation of ^ is true. □
’ 9s

Remarks. This theorem shows tha t as long as n is not much larger than

rga, and w is reasonably large, the standard deviation of the online SelfJoin

PairCount algorithm is very close to the offline one. Furthermore, to bound

the standard deviation to a certain threshold, the value of w does not have to

increase when n increases as long as gs increases proportionally.

T h eo rem 10. (Space and time cost to bound the selectivity estimation er

ror) The online SelfJoinPairCount algorithm guarantees that the estimated

selectivity of the similarity self-join deviates from the true value by at most

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e with probability at least 1 — A, more precisely, Pr[\9s — 0S| < e] > 1 — A,

where 9S is the estimated selectivity and d3 is the true value, and the to

tal space cost is 0 (lo g (l/\)d w) , and the time for processing each record is

0(log(

Proof. Similar to the proof in Theorem 8, we have

Pr[\Gs - gs| > en2] < VA? } f 'e r r

s)) « i + -) + - (- + -) 2) e2n 2r \ s j \ d — s j w w n r

1 f d \ 2{ 2 (d - s) \]_ 2 2 2
J n2 w w nre2r \ s l V d — s

Again, let the above term be then we have

e2 \ s J \ d — s J n 2 w w
264 f d V (2 (d - s)

e2w \ s j V d — s

assuming nr > 1. Again, similar to the proof in Theorem 8, online Pair-Count

repeat the same process 2log(l/X) times to increase the success probability. □

Although r does not appear in the theorem, it is implicitly determined

by other parameters. For example, a larger w would allow a smaller r while

providing the same accuracy and confidence. Again, this bound is not as tight

as the previous one, but it provides a bound tha t does not depend on the

unknown statistics of the input data.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 Result Set Size Estimation for Similarity

Join and Search

In the previous section, we discuss our solutions for the similarity self-join

size problem. Next, we will study how to estimate the result set size of other

queries: similar join and search. Our solutions for these problems are exten

sions of the SelfJoinPairCount algorithm presented in Section 5.2.4.

5.3.1 Similarity Join Size Estim ation

D efin ition 5. (Join size). For two streams with N \ and N 2 items, the join

size is the number of exact matches among all N 1N 2 item pairs. An item

paip, consists of items from different streams. Formally, the join size F =

S v i where / l j and f 2* are the frequency of a distinct item i in the

first and the second stream.

D efin itio n 6. (Similarity join size and selectivity). For two sets with n \ and

712 d-dimensional vectors, the s-similarity join size is the number of vector pairs

that are at least s-similar; the selectivity of s-similarity join is the fraction of

vector pairs that are at least s-similar among all possible n\U2 pairs. A vector

pair consists o f two vectors from different data sets.

P ro b le m 2. (Similarity jo in size estimation). Given two sets, with n \ and ri2

d-dimensional vectors, each coordinate of the vectors is a non-negative value

between 0 and m — 1, our goal is to efficiently estimate the size and the se

lectivity o f an s-similarity join, where s is a given parameter. The similarity

metric is the same as the one we used in defining the similarity self-join. The

problem can be also defined similarly fo r two relations with n \ and ri2 records

and d attributes. Again, we do not distinguish the two cases in this chapter.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3.2 Our JoinPairCount Algorithm

The main idea of our algorithm for solving the similarity join size estimation

is the same the one for similarity self-join size estimation. T hat is, if a pair

of records are similar, they should have a good chance to have a matching

super-value when we randomly pick some attribute values from both records,

and thus similar pairs are expected to contribute certain numbers to the super

value stream. Next, we will describe our JoinPairCount algorithms solving the

similarity join size problem.

P ro cess in g th e d a ta sets. In the first step, JoinPairCount processes the

two data sets independently, using the same algorithm as SelfJoinPairCount

uses. The parameters for processing the data sets are the also same. This

process generates two sets of super-value streams, one for each input data set.

Each stream set has (d - s + l)-super-value streams. The streams can be either

stored exactly as a list or approximately using sketches, as we discussed in the

SelfJoinPairCount algorithm.

F in d in g th e jo in size o f th e tw o d a ta s tream s in th e offline sce

nario . In this step, JoinPairCount finds the join sizes of the fc-super-value

stream pairs, k G [s,d]. In the offline scenario, obtaining the join size for two

data streams can be done as follows. If one of the streams, let us call it the

first stream, fits in memory 6 , a hash index for this stream can be created to

speed up the process of detecting duplicates and counting the frequencies of

each distinct item . Accordingly, the join size can be computed by checking

the corresponding frequency in the second stream for each item in the first

stream. Having a proper size hash index, this process can be done in constant

time for each checking. Thus, the time cost for finding the join size is linear

in the longer stream size. If neither of the two streams fit in memory, one can

sort both streams on disks. External sorting needs 0(fogf^_1) passes to sort a

data stream, where M is the number of memory pages available, and R is the

number of blocks occupied by the data stream. Having two sorted streams,

6This can be known before processing the data set provided that the input data set size
is known, since the number of super-values each record generates is known.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

computing the join size is straightforward.

E s tim a tin g th e s im ila rity jo in size. After finding the d —s+ 1 join sizes

of the super-value stream pairs, JoinPairCount computes the s-similarity join

size in the same way as in the similarity self-join estimation. Let Yk denote

the join size of the &-super-value stream pair, the number of fc-similar record

pairs among the two input data sets, denoted by Xk can be estimated using

Eq. 5.1. Similarly, X k denotes the estimated value of Xk. as defined in Section

5.2.4.

A lg o rith m analysis . Since most of the analysis is similar to th a t of

SelfJoinPairCount, we only list the result, and omit the proof.

C o ro lla ry 6. (Unbiased similarity join size estimate and standard deviation of

offline JoinPairCount) The offline JoinPairCount algorithm gives an unbiased

estimate o f the s-similarity join size, i.e. E[GS] — gs, and the standard devi

ation of is at most (f) \ J \ {2̂ I ^) /9 s , where Gs is the estimated similarity

join size, and gs is the true value.

C o ro lla ry 7. (Space and time cost) The offline JoinPairCount algorithm

guarantees that the estimated selectivity o f the similarity join deviates from the

true value by at most e with probability at least 1 — A. More precisely, P r[|0 s —

6s | < e] > 1 — A, where 8S is the estimated selectivity and 9S is the true value.

The space cost for processing the data sets is 0(log(1/A)(^) (2̂ r/^)2d(ni 4-

rc2)/(e2nira2)); and the time for processing each record is 0(log(1/A) (^)2 2d/ (e2n in 2));

where n \ and n 2 are the number of records in the two input data sets, d is the

number of attributes, and s is the given similarity threshold.

Remarks. It is not hard to see tha t these two claims are very similar to

the ones for SelfJoinPairCount. The only difference is the data set sizes. In

the statements above, Gs and gs represent different values. Also, ni and n2

replace n. But the analysis is still similar to those for SelfJoinPairCount, so

we do not repeat them here.

F in d in g th e jo in size o f th e tw o d a ta s tre a m s in th e on line sce

n ario . Similar to the discussion in Section 5.2.5, finding the join sizes of large

data stream pairs can be costly for certain applications. In this case, online

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

JoinPairCount can also use sketching techniques to approximate the join size

efficiently. Fast-AGMS sketches can also be used to efficiently approximate

join sizes. The sketch construction is the same for each of the two streams,

using the same sets of hash functions and same sketch widths, but the pro

cess of generating the results is slightly different: JoinPairCount sequentially

checks each pair of corresponding counters of the two sketches, one for each

data set, and computes the sum of the products of all counter value pairs.

Corollary 8. (Unbiased similarity join estimate and standard deviation from

online JoinPairCount) The online JoinPairCount algorithm gives an unbiased

estimate for the s-similarity join size, i.e. E[GS] = gs, and the standard

deviation o f — is at most
J 9*

(d) ,/I (2(j* - ((1 +)̂/ + 2
\ sJ v r \ d — s) w w rgs

where w is the Fast-AGMS sketch width, d is the number of attributes of

records, s is the given similarity threshold, r is the sampling rate, gs is the

true value o f the similarity join size, and Gs is the estimated value.

Corollary 9. (Space and time cost for bounding the selectivity estimation

error) The online JoinPairCount algorithm guarantees that the estimated se

lectivity o f the similarity jo in deviates from the true value by at most e with

probability at least 1 — A, more precisely, Pr[\6s — 6s\ < e] > 1 — A, where 6S

is the estimated selectivity and 9a is the true value, and the total space cost is

0(log(l/X)dw), and the time for processing each record isO (log(l/A)2d(j)2(2̂ “ŝ) /(e

5.3.3 Result Set Size Estim ation for Similarity Search

In the previous section, we discuss our solutions for the similarity join size

problem. Next, we will show tha t our PairCount algorithm can also be applied

to the selectivity estimation for similarity search.

Definition 7. (Similarity search, result set size and selectivity). Given a set

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of n d-dimensional vectors and a query vector, a similarity search is a query

for finding the vectors that are at least s-similar to the given vector in the

given data set. The result set size is the number of vectors in the query result.

The selectivity is the ratio between result set size and the data set size. These

terms can be defined similarly for relations and records.

P ro b le m 3. (Result set size and selectivity estimation for similarity searches).

Given a set o f n d-dimensional vectors and a query vector, the goal is to

efficiently estimate the result set size and selectivity o f an s-similarity search.

O ur offline S ea rch P a irC o u n t so lu tio n . In fact, a similarity search

query can be considered as a special similarity join query, where one side of

the join is the given relation, and the other side is another special relation with

only one record, which is the given query record. Therefore, the JoinPairCount

algorithm can be directly applied to estimate the selectivity of a similarity

search. The results are listed below, and the proofs are omitted since they can

be directly adapted from the those of JoinPairCount.

C oro lla ry 10. (Unbiased estimate and standard deviation of offline Search

PairCount) The offline SearchPairCount algorithm gives an unbiased estimate

for an s-similarity search, i.e. E[GS\ = gs, and the standard deviation of

is at most Q y f ^ ^] / 9 a , where Gs is the estimated result set size o f the

similarity search, and gs is the true value.

C o ro lla ry 11. (Space and time cost) The offline SearchPairCount algorithm

guarantees that the estimated selectivity of the similarity search deviates from

the true value by at most e with probability at least 1 — A. More precisely,

Pr[\0s — 6s\ < e] > 1 — A, where 6S is the estimated selectivity and 6S is the true

value. The space cost fo r processing the data sets is 0(log(1/A) (j)2 (2̂ ~ŝ)2 d/e2),

and the time fo r processing the query is 0 (lo g (l/X)(^)2^ ~ ^) 2 d/e2n), where

d is the number of attributes, n is the number of records in the given data set,

and s is the given similarity threshold.

O u r on line S ea rch P a irC o u n t S o lu tion . Similar to the self-join and

join query, we also provide an online version of our SearchPairCount algorithm,

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

which applies Fast-AGMS to estimate the frequency of a given item in a data

stream.

C o ro lla ry 12. (Unbiased estimate and standard deviation of online Search

PairCount) The online SearchPairCount algorithm gives an unbiased estimate

fo r the s-similarity size, i.e. E[GS\ = gs, and the standard deviation of is

at most
I f 2 (d - S) \ i + 2 / 2 _jj_

— s J w w rgs

where w is the Fast-AGMS sketch width, n is the number of records in the

given data set, d is the number of attributes of records, s is the given similarity

threshold, r is the sampling rate, gs is the true value o f the result set size of

the similarity search, and Gs is the estimated value.

C o ro lla ry 13. (Space and time cost) The online SearchPairCount algorithm

guarantees that the estimated selectivity of the similarity search deviates from

the true value by at most e with probability at least 1 — A, more precisely,

Pr[\§a — 6S\ < e] > 1 — A, where 9S is the estimated selectivity and 6S is the true

value, and the total space cost is 0 (lo g (l/\)d w), and the time fo r processing

each record is 0 (lo g (l / \)2 d(d) 2 / (e2w)).

5.4 Extensions and Applications

F rom v e c to r s im ila rity to se t s im ila rity In the previous sections we have

mentioned tha t min-wise independent hashing can be used to convert sets

into vectors such th a t the s-similarity of a vector pair is expected to give the

Jaccard similarity of two sets. In addition to min-wise independent hashing,

sets can also be converted into vectors using random projection such tha t

the s-similarity of a vector pair is expected to give a function of the Cosine

similarity of the original pair of sets.

In addition to Jaccard and Cosine similarities, our PairCount algorithm

actually can be adapted to handle set similarities provided tha t the users are

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interested in the number of common items between two item sets. Assuming

the maximum number of items among all sets, d, is known, the algorithm

processing input data sets can be adapted as follows: for each item sets with

less than d items, the algorithm pads the item set with distinct items such

tha t each item set has d items. For example, strings consisting of the item

set number and distinct indices in the set can be padded. Having the padded

item sets, PairCount can process each item set as a vector.

P a irC o u n t in p ara lle l. One nice property of our PairCount algorithms

is tha t they can be easily used in distributed environments, which is im portant

for processing large da ta sets. One can cut a huge data set or a data stream

into many smaller pieces and distribute them to multiple machines. Each ma

chine can run the PairCount algorithm using the same parameters, generating

multiple super-value streams or sketches. After processing the whole data set,

each machine can sort much smaller super-value streams if needed, and sent

the processed super-value streams or sketches to a centralized server and let

the server compute the final estimates. In fact, in many data intensive ap

plications such as Web crawling, the web pages are collected in a distributed

fashion; our PairCount algorithms can be readily applied in these cases.

S im ila rity q u e ry o p tim iza tio n . As similarity queries becoming more

popular and im portant, DBMS needs to consider optimizing the similarity

queries, especially similarity joins. One im portant statistic for helping opti

mizer pick a better query plan is the selectivity of each intermediate step.

Using the online PairCount algorithms, those statistics can be efficiently esti

mated in one pass over the data.

S im ila rity q u e ry refinem en t. In the similarity search applications, it

is normal th a t the users are not able to write a perfect query in the first

time; they may issue a query generating a large result set. In this case, it

would be desired if the system can efficiently estimate the result set size when

receiving the query, and quickly let the users know when the result set is too

large. Having sorted super-value streams or sketches stored on disk as an

auxiliary data structure and using the SearchPairCount algorithm, the system

can return an estimate efficiently.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Experiments

In this section, we will provide experimental results verifying the effectiveness

and efficiency of our algorithms. Since the self-join size estimation is the core of

our algorithms, we focus on the offline and online SelfJoinPairCount algorithm

in this section.

5.5.1 Experim ental Setup

D a ta se ts . The data set we used was a set of paper titles in computer sci

ence obtained from DBLP. After some standard text preprocessing, such as

removing stop words and stemming, we fingerprinted each paper title into 6

super-shingles using min-wise independent hashing to simulate the experimen

tal settings in the works of Henzinger [77] and Broder et al. [18, 23], where

their goal was to list all similar web document pairs. In both our and their

experiments, each super-shingle is a 64-bit fingerprint. At the end, we had

467,468 records, each with 6 attributes (super-shingles). Next, we report the

experimental result of Offline SelfJoinPairCount.

Im p le m e n ta tio n de ta ils . All experiments were run on an AMD64/4000

Scientific Linux machine, with 2G memory, implemented in C. The Fast-

AMGS implementation was adapted from MassDal [95].

5.5.2 Offline SelfJoinPairCount

First, we show the performance of our SelfJoinPairCount algorithm in an offline

scenario, which means we store the super-value stream exactly rather than

using a sketch summary.

E ffec tiveness o f S e lfJo in P a irC o u n t. In this experiment, we set the

sample factor to 0.5, which means SelfJoinPairCount randomly picked 32

super-values. We ran our SelfJoinPairCount on the first 200AT rows of the

data set. The estimated number of /c-similar pairs, the true number and the

relative errors are listed in Table 5.1. These numbers are consistent with the

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.1: SelfJoinPairCount relative errors (estimate-truth)/truth.
k TVueValue Estimate Relative error
6 219356 219356 0
5 191310 188720 -1.35%
4 1690036 1701575 0.68%
3 14706402 14822275 0.79%
2 87385874 87504347 0.14%
1 417430350 417105860 -0.08%
0 39478376672 39478457866 0.0002%

Table 5.2: Sell JoinPair Count relative erro
D ata set size TVueValue Relative error

25K 46970 8.76%
50K 126762 5.11%
100K 473408 1.3%
200K 1690036 0.68%
400K 6117538 -1.15%

s with different data set sizes.

result in Theorem 7 and show the effectiveness of SelfJoinPairCount. Note

tha t when k = 6, the result was actually the self-join size of the 6-super-value

stream. Thus, there was no error in it.

V ary in g th e d a ta s e t size. To see the scalability of our algorithm, we

varied the size of the data sets from 10K to 400K records, still with sampling

factor 0.5. The results are shown in Table 5.2 for the number of record pairs

tha t are 4-similar. Prom the table we can see tha t in general, the relative error

drops when the data set is larger, and the true value is also larger.

V ary in g th e sam p lin g fac to r. In this set of experiments we varied the

sampling factor while fixing the data set size to 100K. The relative errors are

shown in Table 5.3. The results show tha t the error rate decreases when the

sampling factor increases in general.

Table 5.3: SelfJ oinPairCount relative errors with different sampling factors.
Sampling factor k=5 k=4 k=3

0.75 -3.89% 2.47% -1.08%
0.5 -2.6% 1.3% 1.3 %
0.25 6.97% 3.93% -2.20%

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.4: SelfJoinPairCount relative errors (estim ate-truth)/truth with dif
ferent dimensionality.___________________________________

d TrueValue Estimate Relative error
8 44980 47704 6.06%
7 17756.67 18480 -3.91%
6 54442 53028 -2.60%
5 239282 240552.5 0.53%
4 1273288 1286976 1.08%

V ary ing th e n u m b e r o f a t t r ib u te s . In this set pf experiments, we fixed

the query to finding the number of pairs tha t are (0.8d)-similar, and increased

the number of attributes d. The data sets were generated by using different

number of min-hashes for each record in the min-wise independent hashing

process. There were 100AT records in each data set. The sampling factors

were set to 0.5. The results listed in Table 5.4 shows tha t the relative error

increased exponentially with d. Therefore, JoinPairCount may not work well

in high-dimensional cases.

5.5.3 Online SelfJoinPairCount

The previous experiments show the performance of offline SelfJoinPairCount;

ngxt we show how the estimation:*aecuracy changes by using the Fast-AGMS

sketches to find the self-join- size of super-value streams with only a very small

amount of space.

E ffectiveness o f S e lfJo in P a irC o u n t. Similar to the offline SelfJoinPair

Count experiments, we set the sample factor to 0.5, and ran our SelfJoinPair

Count on the first 200AT rows of the data set. The sketch width (number of

counters) was set to 1000, and the sketch depth was 3. The estimated number

of fc-similar pairs, the true numbers and the relative errors are listed in Table

5.5. The results were less accurate than those from offline estimates, but con

sidering the small amount of space costs and the online property, we consider

them reasonably good.

V ary in g th e d a ta se t size. Next, we report the results of online Self-

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.5: Online SelfJoinPairCount relative errors (estimate-truth)/truth.
k TrueValue Estimate PairCount error
6 219356 220866 0.69%
5 191310 223620 16.89%
4 1690036 1405057 -16.86%
3 14706402 16455032 11.89%
2 87385874 81663188 -6.55%
1 417430350 389797943 -6.62%
0 39478376672 39510234292 0.08%

Table 5.6: Online SelfJoinPairCount relative errors with different data set
sizes.

D ata set size TrueValue Relative error
100K 473408 47.77%
200K 1690036 -16.86%
300K 2557746 -27.56%
400K 6117538 -2.94 %

JoinPairCount on data sets of different sizes while keeping other parameters

the same. The results are shown in Table 5.6 for the number of record pairs

tha t are 4-similar. In general, the error rates decreased the input size was

increased, except for the 50K and 100/C data sets.

C o m p ariso n w ith ra n d o m sam pling . In this set of experiments, we

compared our online SelfJoinPairCount with random sampling by keeping their

space costs the same. As before, we set the similarity threshold to 4, sampling

factor to 0.5, and sketch width and depth to 1000 and 3 respectively. Ac

cordingly, our online SelfJoinPairCount used 9000 counters in total. Since

each input data record is 6 64-bit fingerprints, assuming each counter needs

32 bits, we set the sample size to 750. i.e. 750 records in the sample. We

ran both algorithms on data sets with different sizes: the first 200/C, 300/C

and 400K records. The results reported in Table 5.7 show th a t our online

SelfJoinPairCount is significantly more accurate than random sampling.

In terms of time comparison, we consider two stages: data summarization

stage and query answering stage. At the data summarization stage, random

sampling took R operations; online SelfJoinPairCount took nhr Y l t = s i t) °P"

erations, where R is the sample size, and h is the sketch depth. In our ex-

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5.7: Online SelfJoinPairCount and random sample relative errors.
k TrueValue Random sample error PairCount error

200K data
6 219356 56.00% 0.69%
5 191310 -25.47% 16.89%
4 1690036 -66.25% -16.86%

300K data
6 336668 -10.89% 1.28 %
5 380318 68.28% 34.06%
4 3530756 63.14% -27.56%

400K data
6 457466 -12.56% 1.59 %
5 618036 83.87% 2.91%
4 6117538 -53.56% -2.94%

perimental settings, random sampling is clearly faster at this stage. However,

the difference will become smaller when the data set is larger, since the time

complexity of SelfJoinPairCount is linear in the data set size, while random

sampling is quadratic in the sample size and is expected to become slow with

large sample sizes.

At the second stage, having the data summary, our online SelfJoinPair

Count needed (d — s + 1)wh + (d — s + 1) operations, which basically is the

time for scanning the data summary once, while random sampling needed

S (S — l) /2 operations. Thus, online SelfJoinPairCount is much faster a t this

stage. This is an im portant advantage for our method when the data summary

can be constructed in advance before queries arrive.

5.6 Related Work

This work is related to multiple areas including similarity search, streaming

algorithms, selectivity estimation for different types of queries, data cleaning,

fuzzy/near duplicate detection and se t/tex t join.

S im ila rity sea rch a n d locality sensitive h ash ing . Our algorithms are

closely related to locality sensitive hashing (LSH) [73, 80], where the main

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

idea is: two multidimensional points tha t are “close” have higher chance to

be mapped to the same hash value than those points th a t are “far” from each

other using LSH. “Closeness” is measured by different distance functions such

as Hamming and Euclidean distances; For LSH, there are different types of

hash functions. Charikar [29] considers min-wise independent hashing [21, 20]

as a special LSH, and also proposes new LSHs, one of which can map sets

into vectors such tha t the cosine similarity between sets can be estimated

by checking the number of vector coordinates in common. Although related,

our work is different from LSH since our algorithms use sampling rather than

hashing.

S tream in g a lg o rith m s a n d sk e tch in g te ch n iq u e . In their seminal

work [4], Alon et al. propose AMS sketching techniques to estimate self-

join sizes of data streams using a small amount of space. This sketching

technique has been widely extended and applied. For example, it can be

used to answer different types of frequency related queries on data streams

such as join size estimation [3] and frequent item tracking [31]. Another

popular data structure th a t can be used for data streams is Bloom filters [17].

Deng and Rafiei extend Bloom filters to detect exact duplicates in a streaming

environment. Cormode and Muthukrishnan [48] show tha t Bloom filters can

be extended to answer different types of frequency related queries such as

join/self-join size estimation and item frequency query; they call their data

structure Count-min. Deng and Rafiei [55] further extend Count-min and

show tha t Count-min can perform as well as Fast-AGMS [31], an extension of

AMS sketch tha t is suitable for data streams, while Count-min provides more

flexible and powerful functionalities.

S e lec tiv ity e s tim a tio n . This topic has been widely studied in different

scenarios such as substring queries [39, 33], relational queries [70, 109], Con

tainment Join [117], and spatial join [53, 65]. Their query types or similarity

measures are different from those in our work. Jin and Li [83] studied the

selectivity estimation problem of fuzzy string queries where the similarity is

measured by edit distance. They also show tha t their work can be extended

to Jaccard similarity, but they only consider selectivity estimation for fuzzy

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

string predicates while our work is applicable to selectivity estimations for

both join/self-join and similarity search.

D a ta c lean ing , fu z z y /n e a r d u p lic a te d e te c tio n a n d s e t / t e x t jo in .

Another active research area related to our work is data cleaning [32, 36, 34,

7, 77, 18]. Elmagarmid et al. [60] recently give a survey of the work on

the fuzzy/near duplicate detection problem. More work related to this topic

can be found there. As discussed in the introduction section, one important

goal of data cleaning is finding all near/fuzzy duplicate pairs based on certain

similarity measures. Although different prunings may improve the efficiency,

the nature of this problem determines th a t it can be a very expensive operation

for large data set even if the pruning is perfect, since the true answer set can

increase quadratically with the data set size, which motivates our work.

5.7 Summary and Possible Extension

In this chapter, we present a set of algorithms converting or summarizing mul

tidimensional vectors or records such tha t frequency related similarity queries

can be efficiently answered. Specifically, our PairCount algorithms focus on

estimating the result set sizes of similarity self-join, join and search queries

on multidimensional vectors, and give efficient and effective approximate an

swers. The main idea of our algorithms are mapping multidimensional vectors

into multiple one-dimensional data streams; this transforms the result set size

estimation problem for multidimensional vetoes to frequency related query es

timation problem for data streams, where efficient sketching techniques can

be applied. The effectiveness and efficiency of the algorithms are theoretically

analyzed and experimentally evaluated. Several extensions and applications

are also described.

Our current similarity measures are mainly based on Hamming distance.

Extending the main idea of this work to other metrics such as Euclidean dis

tance is being considered. Also, future research may study the connection

between our work and containment and spatial join.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions and Future Work

This thesis studies the problem of efficiently answering frequency related queries

on streaming data using a small amount of space. The queries include mem-

.bership query, frequency query, join/self-join size estimation and their sim

ilarity versions. The algorithms proposed in this thesis are extended from

or based on well-known sketching or sampling techniques. Both theoretical

and experimental evidence show tha t the proposed methods improve upon

the-state-of-the- a r t .

Direct extensions of our work have been discussed in the previous chapters.

Here we present several related directions in a broad sense for future research.

Efficiently finding certain statistics for a large data set can be very useful

in many different scenarios. For example, efficiently approximating pairwise

distance distributions of a large data set may be helpful in selecting an in

dexing strategy or a better clustering algorithm, or even showing th a t some

clustering/indexing algorithms may not work at all. Also, in detecting outliers,

quickly estimating the number of outliers under different outlier definitions can

be helpful to users when they are formulating their queries. One may define

an outlier as a data point tha t has no neighbors within a certain distance

threshold; others may define an outlier as a data point tha t has less than 5

neighbors. Knowing the result set size in advance may help user reformulating

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their queries before starting a relatively expensive outlier detection. However,

efficiently and accurately estimating aforementioned statistics may not be easy.

A more general research direction is: given an expensive operation on a

large data set, find out if knowing certain statistics of the data set can help

to improve the efficiency of the expensive operation. If yes, then how can we

obtain the statistics efficiently, possibly using approximation algorithms.

We may also want to estimate statistics of large data sets, not for the sake

of a particular task, but for exploratory purposes and to enlarge our knowledge

about the world.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. B. Zdonik. The design of the borealis stream process
ing engine. In First Biennial Conference on Innovative Data Systems
Research (CIDR), pages 277-289, 2005.

[2] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model and ar
chitecture for data stream management. The VLDB Journal, 12(2): 120-
139, 2003.

[3] N. Alon, P. B. Gibbons, Y. Matias, and M. Szegedy. Tracking join and
self-join sizes in limited storage. In PODS, 1999.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approx
imating the frequency moments. JCSS, 58(1), 1999. Also in: STOC,
1996.

[5] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy
duplicates in data warehouses. In Proc. of VLDB, 2002.

[6] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom.
Stream: The Stanford stream data manager. IEEE Data Eng. B u ll,
26(l):19-26, 2003.

[7] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins.
In Proc. of International Conference on Very Large Data Bases (VLDB),
pages 918-929, 2006.

[8] Internet Archive, h ttp ://w w w .a rc h iv e .o rg /.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models
and issues in data stream systems. In Proc. o f PODS, 2002.

[10] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving win
dow over streaming data. In SODA, pages 633-634, 2002.

[11] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation
queries over data streams. In Proc. o f ICDE, 2004.

[12] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core
routers: Is there an alternative to cams? In Proc. o f INFOCOMM, 2003.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.archive.org/

[13] H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, M. Cherni
ack, C. Convey, E. Galvez, J. Salz, M. Stonebraker, N. Tatbul, R. Tib
betts, and S. Zdonik. Retrospective on aurora. The VLDB Journal,
13(4):370-383, 2004.

[14] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.
Counting distinct elements in a data stream. In RANDOM, pages 1-10,
2002 .

[15] D. Barbara, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M. Hellerstein,
Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T. Ng, V. Poosala, K. A.
Ross, and K. C. Sevcik. The new jersey data reduction report. IEEE
Data Eng. B u ll, 20(4):3-45, 1997.

[16] M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learn-
able string similarity m easures. In Proc. of KDD, 2003.

[17] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
CACM, 13(7), 1970.

[18] A. Z. Broder. On the resemblance and containment of documents. In
Proc. o f Compression and Complexity of Sequences, 1997.

[19] A. Z. Broder. Identifying and filtering near-duplicate documents. In
Proc. o f Combinatorial Pattern Matching (CPM), pages 1-10, 2000.

[20] A. Z. Broder. Min-wise independent permutations: Theory and practice.
In Proc. o f the International Colloquium on Automata, Languages and
Programming (ICALP), page 808, 2000.

[21] A. Z. Broder, M. Charikar, A. M. Frieze, and M. Mitzenmacher. Min-
wise independent permutations. Journal o f Computer and System Sci
ences (JCSS), 60(3), 2000. Also in: Proc. o f the ACM Symposium on
Theory o f Computing (STOC), 1998.

[22] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the web. Computer Networks, 29(8-13):1157-1166, 1997.

[23] A. Z. Broder, S. C. Glassman, M. S. Manasse, and Geoffrey Zweig.
Syntactic clustering of the web. Computer Networks, 29(8-13):1157-
1166, 1997.

[24] A. Z. Broder, M. Najork, and J. L. Wiener. Efficient url caching for
world wide web crawling. In Proc. o f WWW, 2003.

[25] N. Brownlee, C. Mills, and G. Ruth. Traffic flow measurement: Archi
tecture. RFC 2722, October 1999.

[26] R. Caceres, N. G. Duflfield, A. Feldmann, J. Friedmann, A. Greenberg,
R. Greer, T. Johnson, C. Kalmanek, B. Krishnamurthy, D. Lavelle,
P. Mishra, K. K. Ramakrishnan, J. Rexford, F. True, and J. E. van der
Merwe. Measurement and analysis of IP network usage and behavior.
IEEE Communications, 38(5):144-151, 2000.

[27] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. B.Zdonik. Monitoring streams - a new
class of data management applications. In Proc. o f VLDB, 2002.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[28] S. Chandrasekaran, 0 . Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman,
F. Reiss, and M. A. Shah. Telegraphcq: Continuous dataflow processing
for an uncertain world. In Proc. o f CIDR, 2003.

[29] M. Charikar. Similarity estimation techniques from rounding algorithms.
In Proc. o f the AC M Symposium on Theory of Computing (STO C'), pages
380-388, 2002.

[30] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya. Towards
estimation error guarantees for distinct values. In PODS, pages 268-279,
2000 .

[31] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in
data streams. Theoretical Computer Science (TCS), 312(1), 2004. Also
in: ICALP, 2002.

[32] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Robust and
efficient fuzzy match for online data cleaning. In Proc. o f the ACM
SIGMOD International Conference on Management of Data (SIGMOD),
pages 313-324, 2003.

[33] S. Chaudhuri, V. Ganti, and L. Gravano. Selectivity estimation for string
predicates: Overcoming the underestimation problem. In Proc. o f the
International Conference on Data Engineering (ICDE), pages 227-238,
2004. . .

[34] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for sim
ilarity joins in data cleaning. In Proc. of the International Conference
on Data Engineering (ICDE), page 5, 2006.

[35] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy
duplicates. In Proc. of ICDE, 2005.

[36] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of fuzzy
duplicates. In Proc. o f the International Conference on Data Engineering
(ICDE), pages 865-876, 2005.

[37] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A scalable
continuous query system for internet databases. In Proc. o f SIGMOD,
2000 .

[38] Y. Chen, G. Dong, J. Han, B. W. Wah, and J. Wang. M ultidimensional
regression analysis of time-series data streams. In Proceedings o f the 28th
International Conference on Very Large Data Bases (VLDB), pages 323-
334, August 2002.

[39] Z. Chen, F. Korn, N. Koudas, and S. Muthukrishnan. Generalized sub
string selectivity estimation. Journal o f Computer and System Sciences
(JCSS), 66(1):98—132, 2003. Also in: PODS, 2000.

[40] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Cetintemel, Y. Xing, and S. B. Zdonik. Scalable distributed stream
processing. In First Biennial Conference on Innovative Data Systems
Research (CIDR), 2003.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[41] E. Cohen and M. Strauss. Maintaining time-decaying stream aggregates.
In Proc. o f PODS, 2003.

[42] S. Cohen and Y. Matias. Spectral bloom filters. In Proc. of SIGMOD,
2003.

[43] R. B. Cooper. Introduction to Queueing Theory (2nd edition). Elsevier,
1981.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms, 2nd Edition. The MIT Press, 2001.

[45] G. Cormode, M. Datar, P. Indyk, and S.Muthukrishnan. Comparing
data streams using hamming norms (how to zero in). IEEE Trans.
Knowl. Data Eng., 15(3):529-540, 2003.

[46] G. Cormode and M. N. Garofalakis. Sketching streams through the net:
Distributed approximate query tracking. In VLDB, 2005.

[47] G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, O. Spatscheck,
and D. Srivastava. Holistic udafs a t streaming speeds. In SIGMOD,
2004.

[48] G. Cormode and S. Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1),
2005. Also in: LATIN, 2004.

[49] G. Cormode and S. Muthukrishnan. Summarizing and mining skewed
data streams. In SIAM International Conference on Data Mining
(SDM), 2005.

[50] G. Cormode, S. Muthukrishnan, and I. Rozenbaum. Summarizing and
mining inverse distributions on data stseams via dynamic inverse sam
pling. In VLDB, pages 25-36, 2005.

[51] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope:
A stream database for network applications. In Proc. of SIGMOD, 2003.

[52] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. The gigas
cope stream database. IEEE Data Engineering Bulletin, 26(1):27—32,
2003.

[53] A. Das, J. Gehrke, and M. Riedewald. Approximation techniques for
spatial data. In Proc. of the ACM SIGMOD International Conference
on Management o f Data (SIGMOD), pages 695-706, 2004.

[54] M. D atar and S. Muthukrishnan. Estimating rarity and similarity over
data stream windows. In ESA, pages 323-334, 2002.

[55] F. Deng and D. Rafiei. New estimation algorithms for streaming data:
Count-min can do more, h ttp ://w w w .c s .u a lb e r ta .c a /~ fa n d e n g /
paper/cm m .pdf.

[56] F. Deng and D. Rafiei. Approximately detecting duplicates for streaming
data using stable bloom filters. In SIGMOD, 2006.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.ualberta.ca/~fandeng/

[57] N. G. Duffield. Sampling for passive internet measurement: A review.
Statistical Science, 19(3):472-498, 2004.

[58] N. G. Duffield, C. Lund, and M. Thorup. Estimating flow distributions
from sampled flow statistics. IE E E /A C M Trans. Netw., 13(5):933-946,
2005. also in -.SIGCOMM, 2003.

[59] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. IEEE Transactions on Knowledge and Data Engi
neering (TKDE), 19(1): 1-16, 2007.

[60] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record
detection: A survey. IEEE Transactions on Knowledge and Data Engi
neering (TKDE), 19(1):1—16, 2007.

[61] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a better netflow.
In Proc. o f SIGGOMM, 2004.

[62] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proc. of SIGCOMM, 2002.

[63] C. Estan and G. Varghese. D ata streaming in computer net
works. In Proc. o f Workshop on Management and Processing o f Data
Streams(MPDS) in cooperation with SIGMOD/PODS, 2003.

[64] C. Estan, G. Varghese, and M. Fisk. Bitmap algorithms for counting
active flows on high speed links. In Internet Measurement Comference,
pages 153-166, 2003.

[65] C. Faloutsos, B. Seeger, A. J. M. Traina, and C. Traina Jr. Spatial join
selectivity using power laws. In Proc. o f the ACM SIGMOD Interna
tional Conference on Management of Data (SIGMOD), pages 177-188,
2000 .

[66] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache: a
scalable wide-area web cache sharing protocol. IE E E /A C M Transactions
on Networking, 8(3), 2000. also in -.SIGCOMM, 1998.

[67] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data
base applications. J. Comput. Syst. S c i, 31(2):182—209, 1985.

[68] S. Ganguly, M. N. Garofalakis, and R. Rastogi. Processing data-stream
join aggregates using skimmed sketches. In EDBT, 2004.

[69] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database System Im
plementation. Prentice Hall, 2000.

[70] L. Getoor, B. Taskar, and D. Koller. Selectivity estimation using proba
bilistic models. In Proc. o f the ACM SIGMOD International Conference
on Management o f Data (SIGMOD), pages 461-472, 2001.

[71] P. B. Gibbons. Distinct sampling for highly-accurate answers to distinct
values queries and event reports. In VLDB, pages 541-550, 2001.

[72] P. B. Gibbons and Y. Matias. New sampling-based summary statis
tics for improving approximate query answers. In SIGMOD Conference,
pages 331-342, 1998.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[73] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimen
sions via hashing. In Proc. of International Conference on Very Large
Data Bases (VLDB), pages 518-529, 1999.

[74] M. Grossglauser and J. Rexford. Passive traffic measurement for ip
operations. In The Internet as a Large-Scale Complex System, pages
91-120. Oxford University Press, 2005.

[75] P. J. Haas, J. F. Naughton, S. Seshadri, and L. Stokes. Sampling-based
estimation of the number of distinct values of an attribute. In VLDB,
1995.

[76] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti
tative Approach, 3rd Edition. Morgan-Kaufmann, 2002.

[77] M. R. Henzinger. Finding near-duplicate web pages: a large-scale eval
uation of algorithms. In SIGIR, pages 284-291, 2006.

[78] A. Heydon and M. Najork. Mercator: A scalable, extensible web crawler.
World Wide Web, 2(4), 1999.

[79] Cisco System Inc. Cisco network accounting services. h ttp ://w w w .
c i s c o . com /w arp /p u b lic /cc /p d /io sw /p ro d lit/n w ac t_ w p .pdf, 2002.

[80] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proc. o f the ACM Symposium
on Theory of Computing (STOC), pages 604-613, 1998.

[81] P. Indyk and D. P. Woodruff. Optimal approximations of the frequency
moments of data streams. In STOC, 2005.

[82] C. Jermaine, A. Pol, and S. Arumugam. Online maintenance of very
large random samples. In SIGMOD Conference, pages 299-310, 2004.

[83] L. Jin and C. Li. Selectivity estimation for fuzzy string predicates in
large ’ data sets. In Proc. of International Conference on Very Large
Data Bases (VLDB), pages 397-408, 2005.

[84] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm
for finding frequent elements in streams and bags. TODS, 28(1), 2003.

[85] F. Korn, S. Muthukrishnan, and Y. Wu. Modeling skew in data streams.
In SIGMOD, 2006.

[86] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change
detection: methods, evaluation, and applications. In Proc. o f the Inter
net Measurement Conference(IMC), 2003.

[87] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Madden, F. Reiss, and M. A.
Shah. Telegraphcq: An architectural status report. IEEE Data Engi
neering Bulletin, 26(1):11-18, 2003.

[88] A. Kumar, M. Sung, J. Xu, and J. Wang. D ata streaming algorithms for
efficient and accurate estimation of flow size distribution. In SIGMET-
RICS, pages 177-188, 2004.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

[89] A. Kumar, J. Xu, J. Wang, 0 . Spatscheck, and L. Li. Space-code bloom
filter for efficient per-flow traffic measurement. In INFOCOM , 2004.

[90] A. Lerner and D. Shasha. The virtues and challenges of ad hoc +
streams querying in finance. IEEE Data Engineering Bulletin, 26(1) :49-
56, March 2003.

[91] L. F. Mackert and G. M. Lohman. R* optimizer validation and perfor
mance evaluation for distributed queries. In Proc. of VLDB, 1986.

[92] U. Manber and S. Wu. An algorithm for approximate membership check
ing with application to password security. Information Processing Let
ters, 50(4), 1994.

[93] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding
(recently) frequent items in distributed data streams. In Proceedings of
the 21st International Conference on Data Engineering, pages 754-765,
April 2005.

[94] G. S. Manku and R. Motwani. Approximate frequency counts over data
streams. In Proc. of VLDB, pages 346-357, September 2002.

[95] MassDal. Massdal public code bank, h ttp ://w w w .c s .ru tg e rs .e d u /
"m uthu /m assdal-code-index .html, 2006.

[96] A. Metwally, D. Agrawal, and A. E. Abbadi. Duplicate detection in click
streams. In Proc. o f WWW, 2005.

[97] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient computation of
frequent and top-k elements in data streams. In ICDT, 2005.

[98] M. Mitzenmacher. Compressed bloom filters. IE E E /A C M Trans. Netw.,
10(5):604-612, 2002.

[99] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni
versity Press, 1995.

[100] S. Muthukrishnan. D ata streams: Algorithms and applications. In
http://athos.rutgers.edu/ m uthu/stream -l-l.ps, 2003.

[101] J. F. Naughton, D. J. DeW itt, D. Maier, A. Aboulnaga, J. Chen, L. Gala-
nis, J. Kang, R. Krishnamurthy, Q. Luo, N. Prakash, R. Ramamurthy,
J. Shanmugasundaram, F. Tian, K. Tufte, S. Viglas, Y. Wang, C. Zhang,
B. Jackson, A. Gupta, and R. Chen. The niagara internet query system.
IEEE Data Engineering Bulletin, 24(2):27-33, 2001.

[102] F. Olken. Random sampling from databases. Ph.D. thesis, U.C. Berkeley,
1997.

[103] T. Palpanas, M. Vlachos, E. J. Keogh, D. Gunopulos, and W. Truppel.
Online amnesic approximation of streaming time series. In Proceedings
of the 20th International Conference on Data Engineering (ICDE), pages
338-349, March-April 2004.

[104] T. Palpanas, M. Vlachos, E. J. Keogh, D. Gunopulos, and W. Truppel.
Online amnesic approximation of streaming time series. In Proc. of
ICDE, 2004.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.rutgers.edu/
http://athos.rutgers.edu/

[105] P. Phaal, S. Panchen, and N. McKee. Inmon corporation’s sflow: A
method for monitoring traffic in switched and routed networks. RFC
3176, September 2001.

[106] J. Quittek, T. Zseby, B. Claise, and S. Zander. Requirements for ip flow
information export (ipfix). RFC 3917, October 2004.

[107] M. O. Rabin. Fingerprinting by random polynomials. Technical Re
port TR-15-81, Center for Research in Computing Technology, Harvard
University, 1981.

[108] M. A. Shah, S. Madden, M. J. Franklin, and J. M. Hellerstein. Java
support for data-intensive systems: Experiences building the telegraph
dataflow system. SIGMOD Record, 30(4):103-114, 2001.

[109] J. Spiegel and N. Polyzotis. Graph-based synopses for relational selectiv
ity estimation. In Proc. of the ACM SIGMOD International Conference
on Management o f Data (SIGMOD), pages 205-216, 2006.

[110] M. Sullivan and A. Heybey. Tribeca: A system for managing large
databases of network traffic. In USENIX Annual Technical Conference,
1998.

[111] N. Tatbul, U. Cetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker.
Load shedding in a data stream manager. In Proc. of VLDB, 2003.

[112] A. Tenenbaum. Modem Operating Systems, 2nd Edition. Prentice Hall,
2001.

[113] Traderbot. h ttp ://w w w .tra d e rb o t.co m /.

[114] P. A. Tucker, D. Maier, and T. Sheard. Applying punctuation schemes to
queries over continuous data streams. IEEE Data Eng. B u ll, 26(1):33-
40, 2003.

[115] J. S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., ll(l):3 7 -5 7 , 1985.

[116] M. Wang, N. H. Chan, S. Papadimitriou, and T. M. Madhyastha
C. Faloutsos. D ata mining meets performance evaluation: Fast algo
rithms for modeling bursty traffic. In Proc. o f ICDE, 2002.

[117] W. Wang, H. Jiang, H. Lu, and J. Xu Yu. Containment join size estima
tion: Models and methods. In Proc. of the ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 145-156, 2003.

[118] M. Weis and F. Naumann. Dogmatix tracks down duplicates in xml. In
Proc. of SIGMOD, June 2005.

[119] K. Whang, B. T. V. Zenden, and H. M.Taylor. A linear-time probabilistic
counting algorithm for database applications. ACM Trans. Database
S ys t, 15(2):208-229, 1990.

[120] David P. Woodruff. Optimal space lower bounds for all frequency mo
ments. In SODA, pages 167-175, 2004.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.traderbot.com/

[121] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands
of data streams in real time. In Proceedings of the 28th International
Conference on Very Large Data Bases (VLDB), pages 358-369, August

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

