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Abstract
In marine systems, adult populations confined to isolated habitat patches can be
connected by larval dispersal. Source–sink theory provides effective tools to quan-
tify the effect of specific habitat patches on the dynamics of connected populations.
In this paper, we construct the next-generation matrix for a marine metapopulation
and demonstrate how it can be used to calculate the source–sink dynamics of habi-
tat patches. We investigate the effect of environmental variables on the source–sink
dynamics and demonstrate how the next-generation matrix can provide useful biolog-
ical insight into transient as well as asymptotic dynamics of the model.

Keywords Source–sink dynamics · Next-generation matrix · Metapopulation model ·
Marine systems

1 Introduction

Source–sink theory was developed to better understand population dynamics in con-
nected populations. Originating from work by Levins (1969) using metapopulation
models, source–sink theory attempts to explain how certain population patches in
poor environments can be sustained by population patches in more favourable envi-
ronments. Population patches in poor environments are labelled “sinks”, because these
populations could not be sustained in the absence of dispersal. “Sources” are then pop-
ulation patches that can sustain themselves in the absence of dispersal. Levins used
metapopulation models to study source–sink dynamics, with patch occupancy as the
state variable. These models as well as other types of related models have greatly
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contributed to the rich body of work on source–sink theory (Amarasekare and Nisbet
2001; Figueira and Crowder 2006; Hanski 1998; Pulliam 1988).

Critical to the theory of source–sink dynamics is the concept of dispersal. Dispersal
is themechanismbywhich source populations can rescue sinkpopulations fromextinc-
tion. Some theoreticalmodels havemodelled dispersal implicitly and have investigated
how dispersal rates can change the source–sink dynamics of a population (Gyllenberg
and Hanski 1997). Others have modelled dispersal explicitly (Hastings 1982), which
is important when the rates or mechanisms of dispersal are understood. The rates and
mechanisms of dispersal also differ largely between terrestrial and marine systems. In
terrestrial systems, it is often adults that are capable of dispersing between population
patches. In many marine systems, adults are confined to habitat patches, and dispersal
occurs through the release of pelagic larvae, which spread through the ocean to other
patches (Cowen and Sponaugle 2009).

Formarine species,modelling dispersal explicitly has led to advancements in under-
standing the degree of connectivity between different marine subpopulations (Figueira
and Crowder 2006). While there is evidence that some larval populations are well
mixed in an ocean environment (Cowen et al. 2000), both theoretical advection–
diffusion models for larval movement between patches (Alexander and Roughgarden
1996; Botsford et al. 1994) and computational hydrodynamic models (Cowen and
Sponaugle 2009; Watson et al. 2012), have been successful at reproducing patterns of
connectivity observed in marine systems.While hydrodynamic models are very useful
in understanding connectivity in the specific systems for which they are parameter-
ized, advection–diffusion models can be applied more generally to give insights into
the connectivity of subpopulations. In either framework, modelling dispersal explic-
itly can illuminate the level of connectivity between marine subpopulations of several
species.

Corals and coral reef fish (Cowen et al. 2006; Jones et al. 2009), barnacles (Rough-
garden et al. 1988), Dungeness crabs (Botsford et al. 1994), sea urchins (Botsford et al.
1994), and many benthic marine species (Cowen and Sponaugle 2009) have relatively
sedentary adult stages that are confined to habitat patches, with larvae that disperse
between patches. In fact, it is estimated that up to 70% of benthic invertebrates have
a pelagic larval phase, capable of dispersal (Mileikovsky 1971). Adult subpopula-
tions for these meroplanktonic species, species with a planktonic larval stage, then
act as connected metapopulations which are connected through larval dispersal (Bots-
ford et al. 1994). For these marine metapopulations, local environmental conditions
determine survival and productivity of adult population patches, and regional environ-
mental conditions determine the degree of pelagic larval dispersal, as environmental
conditions between patches affect the growth and survival of larvae. Both local and
regional environmental conditions will then affect the source–sink distribution of the
different marine habitat patches. Accurately, modelling the source–sink distribution
of marine metapopulations is especially important when this information is used to
design conservation management actions, such as marine protected areas. When cre-
ating marine protected areas, determining the level of dispersal between population
patches, as well as the productivity of local patches, is critical. Protecting productive
source patches which are capable of dispersing to sink patches may be essential in
sustaining the connected metapopulations (Planes et al. 2009).
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However, for certain parasitic or invasive marine species, we may be interested in
controlling the spread of the species, rather than conserving the existing population.
One such species of importance on which we focus specifically in the Applications
section is Lepeophtheirus salmonis, also known as sea lice. Sea lice are a marine
ectoparasite that feed on the epidermal tissues of salmon (Costello 2006).When sea lice
are present in high densities, their salmonid hosts can experience additional morbidity
and mortality (Costello 2006; Krkošek et al. 2011), as well as reduced foraging ability
(Godwin et al. 2017). Salmon farms in coastal ecosystems present stationary hosts for
sea lice, on which sea lice can survive year round (Rogers et al. 2013). Sea lice are
a large economic issue facing salmon farms worldwide and have previously cost the
global aquaculture industry 6%of its product value a year (Costello 2009). These farms
act as population patches on which sea lice can grow until maturity. Adult females
exude egg strings and release larvaewhich can spreadbetween salmon farmsvia coastal
currents and ocean mixing. This larval dispersal between farms can connect sea lice
populations on different farms within a specific region (Aldrin et al. 2017). The larval
dispersal also transmits sea lice between farmed salmon and wild salmon migrating
past farms (Krkošek et al. 2006) and has been shown to lead to population declines
in Pacific pink salmon populations (Krkošek et al. 2007). To protect both farmed and
wild salmon populations from the effects of sea lice, salmon farms now use a variety
of treatment measures to reduce sea lice levels when populations outbreak (Aaen et al.
2015). However, in many regions sea lice have developed resistance to some of the
most effective chemical treatments (Aaen et al. 2015), and even in regions without
resistance sea lice continue to pose a threat to wild salmon (Bateman et al. 2016). Due
to the economic and ecological importance of controlling sea lice on salmon farms,
we use salmon farms as an example to study the source–sink distribution of habitat
patches under different environmental conditions, as well as the effect of treatment.

To study source–sink distributions in sea lice and other meroplanktonic marine
populations on habitat patches, we use a next-generation approach. Next-generation
operators have a rich history in epidemiology (Diekmann et al. 1990; van den Driess-
che and Watmough 2002; Diekmann et al. 2010) and are often used to determine
whether an infectious epidemic will occur in a population, by calculating the basic
reproduction number, R0. Recently, next-generation operators have been used to anal-
yse heterogeneous aquatic populations (Huang and Lewis 2015; Huang et al. 2016b;
Krkošek and Lewis 2010; McKenzie et al. 2012). The next-generation operator can
be used to map the current number of individuals at each life stage in a heterogeneous
environment to the new number of individuals at each life stage after one generation. If
populations exist in discrete patches, then this next-generation operator can be formu-
lated as a next-generation matrix. The next-generation approach distils the complex
process of dispersal between patches and stage-structured survival and growth on a
patch into a single operator. In ecological systems, the next-generation operator has
been used to determine population persistence, but has also been used to determine
the source–sink distribution of a population (Huang et al. 2016b; Krkošek and Lewis
2010; McKenzie et al. 2012).

Specifically, new measures of persistence, Rδ(x), Rloc(x), Ru and Rl have been
defined using next-generation operators. Rloc(x) is the number of new individuals
produced at location x in the absence of dispersal and thus can be used to measure
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the fundamental niche of a population (Huang et al. 2016b). Rδ(x) is the number
of new individuals produced over the entire population from one individual starting
at spatial position x (Huang et al. 2016b). It takes into account both growth and
survival at location x and dispersal from location x . If one individual at x produces
less than one individual over the entire landscape, then Rδ(x) < 1, and the location
x is defined as a sink. If Rδ(x) > 1, then x is defined as a source. Pulliam (1988)
originally defined a source habitat as a habitat that can sustain itself in isolation and
a sink habitat as one that cannot sustain itself in isolation, assuming low population
density. However, this definition can give rise to connected patches of sink habitats
that persist (Armsworth 2002). A benefit of the Rδ(x)measure is that it does not allow
for connected patches of sinks to persist. Lastly, Ru and Rl are then defined as the
maximum and minimum Rδ taken over all possible locations, respectively, and are
shown to be the intergenerational growth rate under the best and worst possible initial
conditions (Huang and Lewis 2015). They can therefore be useful in determining
bounds for intergenerational growth, as well as R0.

Another method of measuring the contribution that each patch provides to the total
population is to look at the contribution of each patch to R0 (Hurford et al. 2010).
This approach uses the left and right eigenvectors associated with R0 to determine
the contribution of each patch if the population were distributed according the right
eigenvector. In the Applications section, we build on and apply all of these persistence
measures and next-generation theory to determine the source–sink distribution on the
discrete population patches in our system under different environmental conditions.

The final concept in this paper borrowed fromepidemiology is the type reproduction
number (Heesterbeek and Roberts 2007; Lewis et al. 2019; Roberts and Heesterbeek
2003). The type reproduction number is a measure of the control effort needed when
control is targeted at a certain type of individual in a heterogeneous population. For
patch models, this is often the control effort required on a certain patch so that the total
population cannot grow. Type reproduction numbers need not only be used to deter-
mine control, they can also determine the amount of enhancement effort required on a
patch so that the entire population will grow. We use the concept of type reproduction
number in the Applications section to determine the treatment level required for sea
lice on a salmon farm so that the entire sea lice population is controlled.

In this paper, we use a next-generation approach to quantify the source–sink dis-
tribution of marine meroplanktonic populations where subpopulations are confined to
local habitat patches and are connected via larval dispersal. First, we present a stage-
structured model for a general marine population, composed of several sessile stages
which survive and reproduce on a population patch. The final adult sessile stage gives
birth to planktonic larvae, which disperse between patches. The dispersal of larvae
is modelled explicitly by approximating hydrodynamic ocean movement using the
Fokker–Planck equation. Next, we construct a next-generation matrix for this model
and prove that the spectral radius of the next-generation matrix determines whether or
not the species can persist. Lastly, we apply different persistence measures to sea lice
populations on salmon farms, to answer several key questions around the source–sink
dynamics of sea lice on salmon farms:

1. What is the source–sink distribution of salmon farms in a channel?
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2. How does the source–sink distribution change with respect to environmental vari-
ables?

3. Are there certain parameter regions in which local outbreaks can occur, but not
global outbreaks?

4. What is the effect of treating a single salmon farm for sea lice control on the
transient and asymptotic dynamics?

5. What is the effect of an environmental gradient on patch contributions to R0 and
the source–sink distribution?

2 The Stage-Structured PatchModel

To study the source–sink distribution of amarinemetapopulation,we consider amarine
species withm life stages that is spreading between n spatial patches.We are interested
in identifyingwhich habitat patches are acting as sources andwhich are acting as sinks.
Our focus is populations at low densities, typically near the extinction equilibrium.
Determining the source–sink distribution can also uncover transient dynamics that
may be substantially different than the long-term asymptotic dynamics of the pop-
ulation. To investigate the source–sink distribution, we construct a next-generation
matrix for our model, and we show in a later section on applications (Sect. 4.2) how
to use the column sums of the next-generation matrix to determine the source–sink
distribution.

We are interested in modelling a marine meroplanktonic species where the larval
(first) stage is the only stage capable of dispersing between population patches. The
remaining juvenile and adult stages are confined to a single population patch. We
call these stages confined to a patch sessile stages, though in reality they could be
motile but restricted to the habitat patch; such is the case for sea lice or reef fish. We
assume that the last adult stage is the only stage capable of reproduction. This is the
case for sea lice, on which we focus specifically in the Applications section, but is
also the case for other marine species mentioned in the introduction, depending on
how stages are grouped. During the larval stage, we assume there is a latent period
during which the newly released larva cannot attach to a new patch. Here, we define
larvae not capable of attaching to a new patch as latent and larvae capable of attaching
to a new patch as active. Larvae are therefore first released from a patch as latent
larvae and then mature into active larvae, at which time they are capable of attaching
to a new patch. Some marine species have larval stages that are active directly after
release (Mileikovsky 1971), and so for these species, we can ignore the latent larval
stage.

In both larval and sessile stages, an individual will either die or mature to the next
stage, with the exception of the last sessile stage where individuals give birth instead of
maturing. We choose to model the number of individuals in each stage using density
equations, so that we are tracking the density of individuals in a given stage that
have spent a time units in the stage at time t . Modelling the population using density
equations allows for the probability of survival in a stage, as well as the probability
of maturing to the next stage, to depend on a, the amount of time already spent in the
stage. When modelling populations using ordinary differential equations (ODEs), it is
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Fig. 1 The structure of the life cycle graph for a marine species with m stages on two patches. The top row
shows the stages associated with patch i , and the bottom row shows the stages associated with patch j . The
larval stages on the left have just left their respective patches, and the recruitment onto a patch occurs as
the larval stage n1 arrives on a patch as a sessile individual in stage n2

assumed that stage durations are always exponentially distributed (Feng et al. 2007).
However, this assumption is oversimplistic for manymarine populations including sea
lice.

While modelling using density equations allows for more generality in the survival
and maturation of an individual, it is more difficult to include density dependence in
this framework. However, source and sink populations are typically categorized in
the context of low population densities, especially when calculated through a next-
generation operator (Krkošek and Lewis 2010), and thus, we do not expect density
dependence to play a crucial role in the context of source–sink dynamics for the
problems considered. Our metapopulation model will therefore ignore the density
dependent effects that could influence survival and maturation at both high and low
densities. This model is then most useful for investigating the impact of connectivity
amonghabitat patches at lowpopulation densities, in populationswhere habitat patches
are not resource limited, or where populations are artificially managed to remain at
low densities. It is in this context of negligible density dependence that we ask the five
questions given at the end of the introduction.

2.1 Derivation of the Stage-Structured Patch PopulationModel

In this section, we derive a system of density equations that model the change in
population density on each habitat patch in our connectedmetapopulation. The general
structure of themodel, consisting of sessile stages confined to a habitat patch connected
by larval dispersal, can be seen from the life cycle graph for two subpopulations
(Fig. 1). To mathematically describe our model, we first give the general structure for
the density of sessile individuals in stage k on patch i .

Let nik(t, a) be the density of individuals with stage age a at time t , in stage k on
patch i . Then,
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nik(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

Bi
k(t − a)Sik(a)Mi

k(a) t > a

nik,0(a − t)
Sik (a)Mi

k (a)

Sik(a−t)Mi
k(a−t)

0 < t < a

nik,0(a) t = 0

(1)

for k = 2, . . . ,m − 1. Here, Bi
k(t) is the rate at which individuals are entering stage

k on patch i at time t , Sik(a) is the probability that an individual survives longer than
a time units in a stage, given that they have not yet matured, Mi

k(a) is the probability
that an individual takes longer than a time units to mature to the next stage, given
that they have survived, and nik,0(a) is the initial density of individuals with age a. We

assume that both Sik(a) andMi
k(a) are non-negative and non-increasing functions, with

Sik(0) = Mi
k(0) = 1, and that Sik(a) and Mi

k(a) are L1 functions, so
∫∞
0 Sik(a)da < ∞

and
∫∞
0 Mi

k(a)da < ∞. We also assume that survival and maturation in a given stage
are independent. A selection ofMi

k(a) functions that have been used for sea licemodels
is shown in Fig. 2.

Individuals with stage age a > t must have entered the stage at time t − a, with
rate Bi

k(t − a), and then survived until stage age a with probability Sik(a)Mi
k(a); the

density of these individuals is given by the first line of Eq. 1. If individuals have stage
age a < t , then they were already in the stage at t = 0, with density nik,0(a − t),
and the probability that they survive to stage age a, given that they were present at
stage age a − t , is Sik(a)Mi

k(a)/Sik(a − t)Mi
k(a − t); the density of these individuals

is given by the second line of Eq. 1. This formula for nik(t, a) is also the solution to
the McKendrick–von Foerster partial differential equation (Keyfitz and Keyfitz 1997;
McKendrick 1925):

∂nik(t, a)

∂t
+ ∂nik(t, a)

∂a
= −μi

k(a)nik(t, a)

nik(t, 0) = Bi
k(t)

nik(0, a) = nik,0(a)

μi
k(a) = −

(
Mi

k(a)Sik(a)
)′

Mi
k(a)Sik(a)

,

which can be found by integrating along the characteristic curves, as shown in
Appendix A.

The larval (first) stage, which is capable of spreading between patches, includes
both a latent and active stage. During the latent larval stage, individuals spread away
from a patch, but are not capable of attaching to another patch. They then enter the
active stage, where they are capable of attaching to another patch. To distinguish
between the two stages, let n̄i1(t, a) be the density of latent larvae released from patch
i with stage age a, and ni1(t, a) be the density of active larvae. Let S̄i1(a) be the survival
function for the latent stage, and let Mi

1(a) the maturation function for the larval stage,
so that Mi

1(a) is the probability that a latent larva has not yet matured into an active
larva, given it has survived.
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Fig. 2 A selection of Mi
k (a) functions that have been used in sea lice population models. When a constant

maturation rate is assumed, as in Krkošek et al. (2012a), Mi
k (a) is represented as an exponential function,

shown in (a). b The Weibull survival function was used by Aldrin et al. (2017) to avoid strict minimum
development times and constant maturation rates. c The step function was used by Revie et al. (2005), where
it is assumed that all sea lice in a stage mature at the same time. d A combination of a step function and
exponential function was used by Stien et al. (2005), where the step function is used to enforce a minimum
development time, after which the exponential is used to capture a constant maturation rate

During the active stage, instead of maturing, active larvae will be removed from
this stage when they arrive on another patch. Let f i j (a) be the arrival time density
function for an active larva spreading from patch j to patch i , where

∫ a2
a1

f i j (a)da
is the probability that the active larva arrives on patch i between stage age a1 and
a2. Let Fi j (a) = ∫ a0 f i j (τ )dτ , then 1 − Fi j (a) is the probability that the larva has
not yet arrived on a patch i by stage age a, given that it has not died. The physical
process underlying the arrival time density function is shown in detail in Sect. 2.4, and
a typical f i j (a) is shown in Fig. 3. In Sect. 2.4, we also show that if we define f j (a)

as the arrival time density for an active larvae leaving patch j to arrive on any patch,
then f j (a) =∑n

i=1 f i j (a), and F j (a) =∑n
i=1 F

i j (a).
Let Si1(a) be the survival function for the active larvae leaving patch i . The density

of latent larvae in stage k = 1 leaving patch i is:
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Fig. 3 The arrival time density, f i j (t), as a function of time, t , for larvae leaving patch j and arriving on
patch i . Movement from patch j to patch i is described in Sect. 2.4. Here, patch j was located at x = 0,
patch i at x = 15, with additional parameters v = 1, D = 5, α = 0.1,Δ = 0.8. A one-dimensional domain
was used, with no other patches present

n̄i1(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

B̄i
1(t − a)S̄i1(a)Mi

1(a) t > a

n̄i1,0(a − t)
S̄i1(a)Mi

1(a)

S̄i1(a−t)Mi
1(a−t)

0 < t < a

n̄i1,0(a) t = 0

,

and the density of active larvae is:

ni1(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

Bi
1(t − a)Si1(a)(1 − Fi (a)) t > a

ni1,0(a − t)
Si1(a)(1−Fi (a))

Si1(a−t)(1−Fi (a−t))
0 < t < a

ni1,0(a) t = 0

.

The last sessile adult stage also requires a different density equation from the rest
of the sessile stages; for during this stage, individuals cannot mature any longer and
they can only survive. For k = m, the density of individuals on a patch i is:

nim(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

Bi
m(t − a)Sim(a) t > a

nim,0(a − t) Sim (a)

S j
m(a−t)

0 < t < a

nim,0(a) t = 0

.

To complete our model, we need to define Bi
k(t), which is the rate that individuals

enter each stage. For stages 3, . . . ,m, Bi
k(t) will be the rate at which individuals from

stage i − 1 are maturing to stage i :
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Bi
k(t) =

∫ ∞

0
nik−1(t, a)mi

k−1(a)da,

where mi
k(a) = −Mi

k
′
(a)/Mi

k(a) is the instantaneous maturation rate for individuals
in stage k with stage age a. Multiplying the current density by mi

k(a) and integrating
across all stage ages gives the total density of individuals maturing at time t .

Individuals in the last stage give birth to latent larvae in the first stage. Let bi (a) be
the stage age dependent birth rate in patch i , then B̄i

1(t) is given by:

B̄i
1(t) =

∫ ∞

0
nim(t, a)bi (a)da.

The latent larvae then mature into active larvae in the first stage with rate:

Bi
1(t) =

∫ ∞

0
n̄i1(t, a)mi

1(a)da.

Individuals enter the second stage on patch i by arriving as active larvae, which are
spreading from all patches. The instantaneous rate that an active larva, travelling from
patch j to patch i , arrives onpatch i as a larva in the second stage, is f i j (a)/(1−F j (a)).
Therefore, we have

Bi
2(t) =

n∑

j=1

∫ ∞

0
ni j1 (t, a) f i j (a)/(1 − F j (a))da.

Combining all of these equations, the age density of individuals is

n̄i1(t, a) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B̄i
1(t − a)S̄i1(a)Mi

1(a)
︸ ︷︷ ︸
entered at t − a, survived to a

t > a

n̄i1,0(a − t)
S̄i1(a)Mi

1(a)

S̄i1(a − t)Mi
1(a − t)

︸ ︷︷ ︸
present at a-t, survived to a

0 < t < a

n̄i1,0(a)
︸ ︷︷ ︸

initial density

t = 0

k = 1,

(2)

ni1(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

Bi
1(t − a)Si1(a)(1 − Fi (a)) t > a

ni1,0(a − t)
Si j1 (a)(1−Fi (a))

Si1(a−t)(1−Fi (a−t))
0 < t < a

ni1,0(a) t = 0

k = 1,
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nik(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

Bi
k(t − a)Sik(a)Mi

k(a) t > a

nik,0(a − t)
Sik (a)Mi

k(a)

Sik(a−t)Mi
k(a−t)

0 < t < a

nik,0(a) t = 0

k = 2, . . . ,m − 1,

nim(t, a) =

⎧
⎪⎪⎨

⎪⎪⎩

Bi
m(t − a)Sim(a) t > a

nim,0(a − t) Sim (a)

Sim(a−t)
0 < t < a

nim,0(a) t = 0

k = m,

B̄i
1(t) =

∫ ∞

0
nim(t, a)bi (a)da,

Bi
1(t) =

∫ ∞

0
n̄i1(t, a)mi

1(a)da,

Bi
2(t) =

n∑

j=1

∫ ∞

0
n j
1(t, a) f i j (a)/(1 − F j (a))da,

Bi
k(t) = ∫∞

0 nik−1(t, a)mi
k−1(a)da k = 3, . . . ,m,

These equations can also be expressed in an integral form, by substituting the
equations for nik(t, a) into Bi

k(t), and tracking the total number of parasites in each
patch at each stage, Ni

k(t) = ∫∞
0 nik(t, a)da. System 2 then becomes:

N̄ i
1(t) =

∫ t

0
B̄i
1(t − a)S̄i1(a)Mi

1(a)da
︸ ︷︷ ︸

entered at t−a, survived to a

+
∫ ∞

t
n̄i1,0(a − t)

S̄i1(a)Mi
1(a)

S̄i1(a − t)Mi
1(a − t)

da

︸ ︷︷ ︸
present at a-t, survived to a

Ni
1(t) =

∫ t

0
Bi
1(t − a)Si1(a)(1 − Fi (a))da

+
∫ ∞

t
ni1,0(a − t)

Si1(a)(1 − Fi (a))

Si1(a − t)(1 − Fi (a − t))
da

Ni
k(t) =

∫ ∞

0
Bi
k(t − a)Sik(a)Mi

k(a)da

+
∫ ∞

t
nik,0(a − t)

Sik(a)Mi
k(a)

Sik(a − t)Mi
k(a − t)

da, k = 2, . . . ,m − 1

Ni
m(t) =

∫ t

0
Bi
m(t − a)Sim(a)da +

∫ ∞

t
nim,0(a − t)

Sim(a)

Sim(a − t)
da

B̄i
1(t) =

∫ t

0
Bi
m(t − a)Sim(a)bi (a)da +

∫ ∞

t
nim,0(a − t)

Sim(a)bi (a)

Sim(a − t)
da

Bi
1(t) =

∫ t

0
B̄i
1(t − a)S̄i1M

i
1(a)mi

1(a)da
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+
∫ ∞

t
n̄i1,0(a − t)

S̄i1(a)Mi
1(a)mi

1(a)

S̄i1(a − t)Mi
1(a − t)

da

Bi
2(t) =

n∑

j=1

∫ t

0
B j
1 (t − a)S j

1 f i j (a)da

+
n∑

j=1

∫ ∞

t
ni j1,0(a − t)

S j
1 (a) f i j (a)

S j
1 (a − t)(1 − F j (a − t))

da

Bi
k(t) =

∫ t

0
Bi
k−1(t − a)Sik−1(a)Mi

k−1(a)mi
k−1(a)da

+
∫ ∞

t
nik−1,0(a − t)

Sik−1(a)Mi
k−1(a)mi

k−1(a)

Sik−1(a − t)Mi
k−1(a − t)

da, k = 3, . . . ,m (3)

Here, we have constructed an stage-structured model for a marine population with
several sessile stages on local habitat patches connected by larval dispersal. We have
formulated our model as both a system of age density equations (system 2), which we
find most intuitive, as well as a system of integral equations (system 3).

2.2 Reduction to a System of ODEs

It is also possible to reduce Eq. 2 to a system of ODEs under some strong assump-
tions. We do not believe that these assumptions are sufficiently realistic for benthic
marine species with dispersing larvae. However, we include this reduction here as an
illustrative example of how Eq. 2 can be connected to the more familiar ODE model
structure. We start by assuming that time till maturation and time to death are both
exponential waiting times. We also need to make this assumption for the arrival time.
This arrival time distribution is no longer be directly solved through the more realistic
advection–diffusion equation (7), given in Sect. 2.4 and shown in Fig. 3. However,
the new exponential rate could be an approximation by using the average arrival time
generated by the advection–diffusion equation.

Here, we will use the lower case letter as the exponential rate associated with the
survival or maturation function. For example, Mi

k(a) = e−mi
ka , and Sik(a) = e−sika .

For the arrival time, we now assume that there is a constant rate of arrival of larvae,
f i j , from a source patch j to a receiving patch i . We can then formulate f j (a), the
distribution of arrival times for a larva leaving patch j to arrive on any other patch, as
the exponential function f j (a) = ∑n

i=1 f i j e−∑n
i=1 f i j a . By formulating the arrival

times using constant rates, we lose the spatial structure of the system, so that patches
are now only distinguished by their arrival time rates, f i j .

To reduce the system of density equations to a system of ODEs, it is easiest to use
the McKendrick–von Foerster formulation of the model (Appendix A). We simply
integrate the different versions of Eq. 14 of equations over all ages, so Ni

k(t) =
∫∞
0 nik(t, a)da. The resulting model is as follows:
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d

dt
N̄ i
1(t) = bi N i

m(t) − (s̄ j1 + m j
1)N̄

j
1 (t) k = 1

d

dt
N j
1 (t) = m j

1 N̄
j
1 − (s j1 +

n∑

i=1

f i j )N j
1 (t) k = 1

d

dt
N i
2(t) =

n∑

j=1

f i j N j
1 (t) − (si2 + mi

2)N
i
2(t) k = 2

d

dt
N i
k(t) = mi

k−1N
i
k−1(t) − (sik + mi

k)N
i
k(t) k = 3, . . . ,m − 1

d

dt
N i
m(t) = mi

m−1N
i
m−1(t) − simN

i
m(t) k = m (4)

Here, we have also assumed the birth rate of latent larvae on each patch is constant.
The reduction of our full system of equations (2) to a system of ODEs results in
the loss of the age structure present in our original model as well as stronger model
assumptions. However, formulating the model as a system of ODEs allows for a more
familiar comparison between our model and other population models.

2.3 The Next-GenerationMatrix for the Patch Model

In this section, we define the next-generation matrix for our model. In the Applications
section, we show how this next-generation matrix can be used to identify source and
sink habitat patches, using the column sums of this matrix. We also show how the
source–sink distribution can be used to determine transient dynamics in our model.
Next-generation matrices are often used to describe new infections in compartmental
diseasemodels (Diekmann et al. 1990, 2010; van denDriessche andWatmough 2002),
though here we use the next-generation matrix to describe the growth and spread of
marine organisms between patches. In the classic formulation of a next-generation
matrix, the (i, j) entry describes the number of new infections in the i th compartment
produced by one new infection in the j th compartment. In our model, since we are
tracking individuals and not infections, we need to define “new” individuals. We
choose to define “new” individuals as those first entering a patch at stage k = 2. We
choose k = 2 as the first stage because this is the first sessile stage where individuals
arrive on a patch and can be counted.

In our model, we have n patches and m stages, so in total we have n ×m compart-
ments. However, the only new individuals are produced in stage k = 2.We could create
a next-generation matrix of size nm × nm, but it would only have n nonzero rows,
as there is only one stage on every patch where new individuals are produced. This
next-generation matrix is referred to the next-generation matrix with large domain,
KL , by Diekmann et al. (2010). Instead, we can group all stages together for a single
patch, so that the (i, j) entries of our next-generation matrix are the number of new
individuals (stage k = 2) produced on patch i , from one new individual on patch j .
This is referred to as the next-generation matrix K by Diekmann et al. (2010), as we
have removed all compartments which cannot have “new” individuals, and are only
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tracking the production of “new” individuals in compartments that start with “new”
individuals. We will elaborate on the details of this process in Sect. 3.1.

For our system (2), the (i, j) entry of the next-generation matrix, K is

K (i, j) =
m−1∏

k=2

(∫ ∞

0
S j
2 (t)M j

2 (t)m j
2(t)dt

)(∫ ∞

0
S j
m(t)b j (t)dt

)

(∫ ∞

0
S̄ j
1 (t)M j

1 (t)m j
1(t)dt

)(∫ ∞

0
S j
1 (t) f i j (t)dt

)

. (5)

In order to understand which patches may be acting as sources or sinks, we can
look at the column sums of the different spatial patches. The sum of column j is
the total number of new individuals (stage k = 2) produced on all patches from
one new individual on patch j . If the sum of column j is larger than one, then each
new individual on patch j is producing more than one new individual on all patches.
Therefore, patch j is a source. Similarly, if the sum of column j is less than one, then
patch j is a sink. We will expand on and formalize this quantification of source–sink
dynamics in Sect. 4.2.

The general structure of ourmodel and next-generationmatrix allows it to be readily
applied to a number of systems. However, in order to examine the effect of changing
biological environments on the next-generation matrix, it is useful to look at specific
survival and maturation functions, S j

k (t) and M j
k (t), for each stage k, and on each

patch j . Suppose we let S j
k (t) be the survival function associated with the exponential

distribution: S j
k (t) = e−μ

j
k t . This means that in each stage and on each patch the

instantaneous death rate, μ
j
k is constant and does not depend on the time spent in

the stage. This is a common biological assumption, as mortality is often governed
primarily the external environment and is often independent of age. For sea lice, this
is assumed formost populationmodels (Adams et al. 2015; Aldrin et al. 2017; Krkošek
et al. 2006; Revie et al. 2005).

Next, we consider a simplifying case where the maturation probability density
function (p.d.f.), −M j

k (t)′, is the gamma distribution. There are several reasons for
this choice. First, the gamma distribution can be unimodal, and therefore biologically
represents a situation in which the highest probability of maturing to the next stage is
at some intermediate age. This is the case for sea lice, which have a minimum required
development time before they canmature through a stage (Johnson andAlbright 1991).
Second, the gamma distribution can reduce to the exponential distribution and, in a
limiting case, to the delta distribution. Exponential and delta maturation p.d.f.s have
both been used to model sea lice (Krkošek et al. 2012a; Revie et al. 2005), and their
maturation functions M j

k (t) are shown in Fig. 2. When the gamma distribution is
reduced to an exponential distribution, our system of density equations (2) can be
reduced to an ODE system (Sect. 2.2). When the gamma distribution is reduced to a
Dirac delta distribution, our system could be formulated as a system of discrete delay
differential equations. The gamma distribution is also similar to the Weibull distribu-
tion, which has been used to model sea lice (Aldrin et al. 2017), as both distributions
are continuous, unimodal, and can be reduced to exponential distributions. Lastly,
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the integration of the gamma distribution multiplied by the exponential distribution is
simple to evaluate analytically, and thus, our expression for the next-generation matrix
does not become overly complicated. If we use β

j
k as the rate parameter and a j

k as the
shape parameter, then the maturation function becomes

− d

dt
M j

k (t) = M j
k (t)m j

k (t) = β
j
k

a j
k xa

j
k −1e−β

j
k x

Γ (a j
k )

.

The last function to define explicitly is the age dependant birth rate, b(t). Here, we
assume that the birth rate is constant, b(t) = b, so larvae are produced at a constant
rate as soon as an individual enters their final stage of maturation. This is a biologically
reasonable assumption and again simplifies our calculations analytically. Our arrival
time function, f i j (t), is derived in Sect. 2.4 and thus cannot be assumed to have any
particular form.

Under all the stated assumptions, the next-generation matrix simplifies to:

K (i, j) =
m−1∏

k=2

⎛

⎜
⎝

β
j
k

a j
k

(β
j
k + μ

j
k )

a j
k

⎞

⎟
⎠

(
b

μ
j
m

)
⎛

⎜
⎝

β
j
1
a j
1

(β
j
1 + μ̄

j
1)

a j
1

⎞

⎟
⎠

(∫ ∞

0
e−μ

j
1 t f i j (t)dt

)

.

(6)
Here, we have shown that the next-generation matrix distils the essential quanti-

ties of larval dispersal between population patches as well as growth and survival on
local patches into a single operator. From the next-generation matrix, we can calcu-
late the source–sink distribution of our connected metapopulation. By approximating
the maturation functions as gamma distributions and survival functions as exponen-
tial functions the form of the matrix can be simplified, while maintaining sufficient
generality to approximate several realistic biological systems.

2.4 The Arrival Time of LarvaeMoving Between Patches

In this section, we formally define and demonstrate the calculation of the arrival time
density, f i j (t). In previous sections, we have focused on stages that grow on distinct
patches and now we turn our attention to the first, or larval stage, which is spreading
between patches. We allow the larval stage to have a latent period, where the larvae
cannot arrive at the second patch even if it passes by. The larvae then mature into an
active larvae and during the active phase may arrive on a new patch. We include this
latent period to allow our model to be applicable to various marine organisms where
the first larval stage is not capable of attaching to a habitat patch, though the latency
period can also easily be removed.

To formally define the arrival time distribution, let T be a random variable which
describes the time from maturation that an active larva arrives on any patch, after
it is released as a latent larva from patch j . If the larva does not arrive on a patch,
then we say T is infinite. Then,

∫ t2
t1

f j (t)dt = Pr(t1 < T < t2), so that f j (t) is
the distribution of arrival times for larvae leaving patch j . We will also show that
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f j (t) = ∑n
i=1 f i j (t), where f i j (t) is the distribution of arrival times for an active

larvae from patch j arriving on patch i . In order to determine f j (t) and f i j (t), we
will first solve an equation governing the movement of the larvae between patches,
for both the latent and active larval stages.

We are interested in approximating themovement of larvae between habitat patches
in amarine environment, sowe approximatemovement using the Fokker–Planck equa-
tion, or advection–diffusion equation in the case of constant diffusion. This equation
has previously been used to model the dispersal of sea lice larvae away from salmon
farms (Krkošek et al. 2006), as well as barnacle and crab larvae along the California
coast (Alexander and Roughgarden 1996; Botsford et al. 1994). The diffusion term
represents the effect of tides and ocean mixing, and the advection term represents any
flow due to constant currents, potentially generated by river outflow, or other sources.

To allow for local hydrodynamic movement in a protected patch, we divide the
total larvae produced at a patch into a fraction r that remain locally around the patch,
and the remaining fraction q that enter the larger ocean environment and are then
influenced by advection and diffusion. The fraction q that enter the channel are still
able to rearrive on their natal patch.

To determine movement between patches and subsequently arrival on habitat
patches in ourmodel,weuse theFokker–Planck equation in aone-dimensional domain.
We use a one-dimensional domain because coastlines can typically be approximated
by a one-dimensional domain, and in the Applications section, we apply our model to
salmon farms located in a channel. However, the advection–diffusion equation could
easily be structured in its two-dimensional form, if the model was to be used to analyse
marine species where patches did not simply lie in a channel or along a coastline.

Let p̄ j (x, t) be the probability density function for the location of the latent larvae
leaving patch j into the channel environment as a function of time. The larvae are
released from patch j , and then, we assume the movement of the larvae between
patches is governed by the Fokker–Planck equation:

∂

∂t
p̄ j (x, t) = − ∂

∂x

(
v(x) p̄ j (x, t)

)
+ ∂2

∂x2

(
D(x) p̄ j (x, t)

)

p̄ j (x, 0) = qh(x − x j )/Δ, (7)

where Δ is the size of the patch, and h(x) = 1 when x ∈ [−Δ/2,Δ/2] and h(x) = 0
otherwise. D(x) is the diffusion coefficient and v(x) is the advection coefficient of
the environment.

Latent larvae then mature into active larvae. In Sect. 2, we defined M j
1 (a) as the

probability that a latent larvae released from patch j has not yet matured into an active
larva, and m j

1(a) as the instantaneous rate of maturation. Using these two previously

defined functions,M j
1 (a)m j

1(a) is therefore the probability density function associated
withmaturation. If T̄ is the time it takes for the latent larva tomature into an active larva
after it is released, then

∫ t2
t1

M j
1 (t)m j

1(t)dt = Pr(t1 < T̄ < t2). Once larvae mature
into active larvae, they continue to move according to the Fokker–Planck equation, but
now they arrive on patch i with rate αi as they pass by. Let p j (x, t) be the probability
density function of the active larvae travelling from patch j , then p j (x, t) is given by:

123



A Next-Generation Approach to Calculate Source–Sink... Page 17 of 44 9

∂

∂t
p j (x, t) = − ∂

∂x

(
v(x)p j (x, t)

)
+ ∂2

∂x2

(
D(x)p j (x, t)

)

−
n∑

i=1

αi h(x − xi )p
j (x, t)

p j (x, 0) =
∫ ∞

0
M j

1 (τ )m j
1(τ ) p̄ j (x, t)dτ. (8)

Local larvae that remain at a patch also mature according to the same maturation
function. As they do not spread between patches, the density of active larvae that are in
local water column around patch j , P j , can be described by the ordinary differential
equation:

d

dt
P j (t) = −αr

j P
j (t)

P(0) = r
∫ ∞

0
M j

1 (τ )m j
1(τ )dτ, (9)

where αr
j , is the rate of arrival of the local larvae. We allow αr

j to differ from α j , the
rate of arrival of larvae moving between patches.

We now consider the arrival time of an active larva. Let T be the time of arrival of the
active larva on any patch, starting from the time it became active. Let the probability
that the larva has not yet arrived on a patch at time t , Pr(T > t) be given by A(t).
Eq. 8 also describes the density of parasites that have not yet arrived on any patch,
and so A(t) = ∫∞

−∞ p j (x, t)dx + P j (t). To determine the relationship between f j (t)

and A(t), we can see that
∫ t
0 f j (τ )dτ = Pr(T < t), and A(t) = Pr(T > t), thus

∫ t
0 f j (τ )dτ = 1 − A(t), or alternatively f j (t) = −dA(t)/dt .
Integrating Eq. 8 over all space, adding Eq. 9, and substituting f j (t) = −dA/dt

we find

f j (t) =
n∑

i=1

αi

∫ xi+Δ/2

xi−Δ/2
p j (x, t)dx + αr

j P
j (t),

as we require limx→±∞ p j (x, t) = 0 and limx→±∞ ∂
∂x p

j (x, t) = 0 for Eq. 8 to be
unique and well defined. We can then split the distribution for arrival time onto any
patch, f j (t), into a sum of the arrival time distributions for each patch i . Let

f i j (t) = αi

∫ xi+Δ/2

xi−Δ/2
p j (x, t)dx

be the distribution of arrival time for an active larvae produced from patch j arriving
on patch i , for i �= j . For i = j ,

f j j (t) = α j

∫ x j+Δ/2

x j−Δ/2
p j (x, t)dx + α

j
r P

j (t).
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Then, we can rewrite f j (t) as

f j (t) =
n∑

i=1

f i j (t).

Therefore, if we can solve for p j (x, t), we can solve for f j (t) and f i j (t). In
the Applications section, we solve for the arrival time numerically. The approximate
analytical solution of f i j (t) is the subject of a forthcoming paper.

Calculating the arrival time density function for larvae leaving one patch and arriv-
ing on another allows us to characterize the larval movement between a transmitting
and receiving patch using a single function. This arrival time density function is incor-
porated into our full model to characterize larval dispersal between patches. In this
section, we have presented the derivation for our full model (system 2) and demon-
strated how larval dispersal between patches and growth and survival on patches
determine metapopulation dynamics. We have also constructed a next-generation
matrix for our model, which distils the essential information required to determine
the source–sink distribution of our system.

3 Mathematical Analysis of theModel and Next-GenerationMatrix

In this section, we present the details of the construction of the next-generation matrix,
as well as proofs detailing the relationship between the stability of our model and the
spectral radius of the next-generation matrix.

3.1 Constructing the Next-GenerationMatrix

The next-generationmatrix extracts the essential information of ourmodel into a single
operator. The elements of the matrix quantify the effect of an individual from one
patch on other patches, and the column sums identify source and sink patches. Here,
we present the details of the construction of the next-generation matrix, beginning
with one patch and then abstracting to multiple patches.

3.1.1 The Next-Generation Matrix for a One-Patch System

To construct the next-generation matrix for a single patch, we need to calculate the
number of new individuals produced on patch i from one initial individual on patch
i in each stage. To calculate the number of new (stage k = 2) individuals produced
on patch i by an initial individual at t = 0 starting on that same patch, we calculate
the rate of production of new individuals at time t . We call this rate γ (t). We then
integrate γ (t) over all t to calculate the total number of individuals produced.

For one initial individual in stage k = 2 to be producing new offspring, it must
survive and mature through each stage and produce larvae which spread back to the
patch. Let rk be the time that the individual spends in stage k. For stages k = 2, . . . ,m−
1 the probability that the individual survives to rk in stage k is Sik(rk)M

i
k(rk) and the
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rate at which they mature to the next stage is mi
k(rk). For stage k = m, the probability

that they survive to rm is Sim(rm) and the rate at which they are producing larvae is
bi (rm). The probability that latent larvae survive to r̄1 is S̄i1(r̄1)M

i
1(r̄1) and the rate

at which they mature into active larvae is mi
1(r̄1). The probability that active larvae

(k = 1) survive to r1 is Si1(r1)(1 − Fi (r1)) and the rate at which they attach as k = 2
individuals is f ii (r1)/(1 − Fi (r1)).

To calculate the rate of production at time t , γ (t), we multiply the survival proba-
bilities and maturation rates in each of the stages and integrate over all possible rk . At
time t , we must have 0 ≤ r̄1 +∑m

1 rk ≤ t , so we can rewrite rm = t −∑m−1
1 rk − r̄1

before integrating over all other possible rk . We calculate

γ (t) =
∫ t

0

∫ t−rm−1

0

∫ t−rm−1−rm−2

0
. . .

∫ t−∑m−1
2 rk

0
Si2(r2)M

i
2(r2)m

i
2(r2) . . .

Sim−1(rm−1)M
i
m−1(rm−1)m

i
m−1(rm−1)S

i
m(t −

m−1∑

1

rk−r̄1)b
i (t−

m−1∑

1

rk − r̄1)

× S̄i1(r̄1)M
i
1(r̄1)m

i
1(r̄1)S

i
1(r1) f

ii (r1)dr̄1dr1 . . . drm−1.

Then, integrating γ (t) over all t and using the convolution theorem,

∫ ∞

0
f (t) ∗ g(t)dt =

∫ ∞

0
f (t)dt

∫ ∞

0
g(t)dt

we calculate the number of new individuals on patch i produced from an initial indi-
vidual in stage k = 2 on patch i to be:

(
m−1∏

k=2

∫ ∞

0
Sik(t)M

i
k(t)m

i
k(t)

)(∫ ∞

0
Sim(t)bi (t)dt

)

(∫ ∞

0
S̄i1(t)M

i
1(t)m

i
1(t)

)(∫ ∞

0
Si1(t) f

ii (t)dt

)

.

To calculate the next-generation matrix with large domain, KL , (Diekmann et al.
2010), we can also calculate the number of new individuals (k = 2) produced on
patch i , from initial individuals in the other stages. Repeating the process described
above, we find that the number of new individuals produced on patch i from an initial
individual in stage k = l, for 2 ≤ l ≤ m, is

(
m−1∏

k=l

∫ ∞

0
Sik(t)M

i
k(t)m

i
k(t)

)(∫ ∞

0
Sim(t)bi (t)dt

)

(∫ ∞

0
S̄i1(t)M

i
1(t)m

i
1(t)

)(∫ ∞

0
Si1(t) f

ii (t)dt

)

.

We can repeat the same process for k = 1 (where now we group the latent and
active larval stages for simplicity). The (i, j) entries of the next-generation matrix
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with large domain, KL , are the number of new (stage k = 2) individuals in stage i
produced from an initial individual in stage j . Therefore,

KL(2, l) =
(
m−1∏

k=l

∫ ∞

0
Sik(t)M

i
k(t)m

i
k(t)

)(∫ ∞

0
Sim(t)bi (t)dt

)

(∫ ∞

0
S̄i1(t)M

i
1(t)m

i
1(t)

)(∫ ∞

0
Si1(t) f

ii (t)dt

)

2 ≤ l ≤ m − 1,

KL(2,m) =
(∫ ∞

0
Sim(t)bi (t)dt

)(∫ ∞

0
S̄i1(t)M

i
1(t)m

i
1(t)

)

(∫ ∞

0
Si1(t) f

ii (t)dt

)

,

KL(2, 1) =
(∫ ∞

0
S̄i1(t)M

i
1(t)m

i
1(t)

)(∫ ∞

0
Si1(t) f

ii (t)dt

)

,

KL(i, j) = 0 i �= 2.

The next-generation matrix with large domain, KL , can then be reduced to the
next-generation matrix, K , through the process described by Diekmann et al. (2010).
Essentially, we multiply KL from the left and right by matrices which isolate the
relevant entries where new individuals are produced from other new individuals. In
this case, let E be an n × 1 matrix with a 1 in row 2, and zeros elsewhere. Then,
K = ET KL E . The entries of the next-generation matrix are the number of new
individuals (k = 2) in stage i produced by an individual in stage j , though here we
only include stages where new individuals can be produced. In our one patch example,
because new individuals can only be produced in stage k = 2, our next-generation
matrix, K , for one patch is simply the scalar:

K =
(
m−1∏

k=2

∫ ∞

0
Sik(t)M

i
k(t)m

i
k(t)

)(∫ ∞

0
Sim(t)bi (t)dt

)

(∫ ∞

0
S̄i1(t)M

i
1(t)m

i
1(t)

)(∫ ∞

0
Si1(t) f

ii (t)dt

)

.

While the next-generation matrix, K , and next-generation matrix with large domain,
KL , have different sizes and different entries, their spectral radii are equal (Diekmann
et al. 2010).

3.1.2 The Next-Generation Matrix for the Multiple-Patch System

Calculating the remaining entries of the next-generation matrix, K , for the multiple-
patch model, using the same process as in the previous subsection, is relatively
straightforward. In this case, we restrict ourselves to calculating K , and no longer
KL , though KL can also easily be calculated in the same way as in the previous sec-
tion. We want to calculate the number of new individuals produced on patch i from an
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initial individual on patch j . In order for an individual to produce new individuals on
patch i , it must first survive and mature on patch j and then produce larvae that suc-
cessfully travel to patch i . The majority of K (i, j) will be the same as K ( j, j), as the
individual must mature on patch j before producing larvae. Only now, instead of the
larvae travelling back to j , they must successfully spread to i . Therefore, the last mul-
tiplication factor which will now be

∫∞
0 S j

1 (t) f i j (t)dt , instead of
∫∞
0 S j

1 (t) f j j (t)dt .
With this replacement, we can see that we have the same formula for K (i, j) as given
by (5). In the following sections we will also make the assumption that K is irre-
ducible. Physically, this means that larvae have a positive probability of arriving on
any patch when leaving from a given patch. Recall that f i j (t) = αi

∫∞
−∞ p j (x, t)dx ,

where p j (x, t) is the solution to the advection–diffusion equation from Sect. 2.4. The
solution to the advection–diffusion equation is positive everywhere, so p(x, t) > 0,
and thus f i j (t) > 0 for all (i, j).

Here,wehavepresented the constructionof the next-generationmatrix for our stage-
structuredmodel on one patch aswell as onmultiple patches.We have explicitly shown
how to reduce the next-generation matrix with large domain to the next-generation
matrix on one patch, and we have demonstrated the process for multiple patches.

3.2 Model Stability Analysis

In this section, we will demonstrate that R0 = ρ(K ) determines the stability of the
zero equilibrium for the system (2).

3.2.1 Calculating the Model Equilibrium

First, we show that the zero equilibrium is the only equilibrium in our system. It
should be noted here that system (2) is the solution to a linear system of age structured
PDEs, and so we expect the zero equilibrium to be the only equilibrium. However,
we include the details for completeness. Assume the system is at equilibrium, so that
nik(t, a) = nik(a)∗, and Bi

k(t) = Bi
k
∗
. Now we solve for Bi

1
∗
using system (1):

Bi
1
∗ =
∫ ∞

0
n̄1(a)∗mi

1(a)da

=
∫ ∞

0
B̄i
1
∗
S̄i1(a)Mi

1(a)mi
1(a)da

=
∫ ∞

0
nim(a)∗bi (a)da

∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

=
∫ ∞

0
Bi
m

∗
Sim(a)bi (a)da

∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

=
∫ ∞

0
nim−1(a)∗mi

m−1(a)da
∫ ∞

0
Sim(a)bi (a)da

∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

=
∫ ∞

0
Bi
m−1

∗
Sim−1(a)Mi

m−1(a)mi
m−1(a)da

∫ ∞

0
Sim(a)bi (a)da
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∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

= Bi
2
∗
(
m−1∏

k=2

∫ ∞

0
Sik(a)Mi

k(a)mi
k(a)da

)(∫ ∞

0
Sim(a)bi (a)da

)

(∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

)

=
n∑

j=1

∫ ∞

0
n j
1(a)∗ f i j (a)/(1 − F j (a))da

(
m−1∏

k=2

∫ ∞

0
Sik(a)Mi

k(a)mi
k(a)da

)

(∫ ∞

0
Sim(a)bi (a)da

)(∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

)

=
n∑

j=1

B j
1

∗ (∫ ∞

0
S j
1 (a) f i j (a)da

)(m−1∏

k=2

∫ ∞

0
Sik(a)Mi

k(a)mi
k(a)da

)

(∫ ∞

0
Sim(a)bi (a)da

)(∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

)

.

Let us define a matrix S entry-wise such that

S(i, j) =
(∫ ∞

0
S j
1 (a) f i j (a)da

)(m−1∏

k=2

∫ ∞

0
Sik(a)Mi

k(a)mi
k(a)da

)

(∫ ∞

0
Sim(a)bi (a)da

)(∫ ∞

0
S̄i1(a)Mi

1(a)mi
1(a)da

)

.

Then, we can write the equations for Bi
1
∗
for each farm i in matrix notation as

B1
∗ = SB1

∗.

This equation can only have a solution if det(S− I) = 0. However, as we have general
functions f i j (a), Sik(a), and Mi

k(a), we therefore require B∗
1 = 0, from which we can

recursively deduce that B∗
k = 0 for all k. Therefore, the zero equilibrium is the only

equilibrium for this system.

3.2.2 Determining the Stability of the Equilibrium Using R0

Next we prove that the spectral radius of the next-generation operator, R0 = ρ(K ),
determines the stability of the zero equilibrium of the full system (2). Again the result
would be generally expected, based on the theory in Diekmann et al. (2010), but we
include the details here for completeness.

Theorem 1 Assume the next-generation matrix, K , is irreducible. Then,

1. if R0 < 1, then the zero equilibrium of system 2 is globally stable.
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2. if R0 > 1, then the zero equilibrium of system 2 is unstable.

Proof To analyse the stability of the zero equilibrium, we consider small perturbations
to the equilibrium and examine their growth or decay. At the equilibrium, we have

Bi
k(t) = 0 for all k, i . Consider a small perturbation of the form Bi

k(t) = B̄i
ke

λt to
each of the Bi

k(t). Similar to the calculation of the equilibrium, we will construct a
recursive equation for B̄i

1 and then reformulate as a matrix equation for all patches.
Using the equation for Bi

k(t) in system (2), we find

B̄i
1 = e−λt Bi

1(t)

= e−λt
∫ ∞

0
n̄i1(t, a)mi

1(a)da

= e−λt
∫ ∞

0
B̄i
1(t − a)S̄i1(a)Mi

1(a)mi
1(a)da

= e−λt
∫ ∞

0

¯̄Bi
1e

λ(t−a) S̄i1(a)Mi
1(a)mi

1(a)da

= ¯̄Bi
1

∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

= e−λt B̄i
1(t)
∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

= e−λt
∫ ∞

0
nim(t, a)bi (a)da

∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

= e−λt
∫ ∞

0
Bi
m(t − a)Sim(a)bi (a)da

∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

= e−λt
∫ ∞

0
B̄i
me

λ(t−a)Sim(a)bi (a)da
∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

= B̄i
m

∫ ∞

0
e−λa Sim(a)bi (a)da

∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

= B̄i
2

(
m−1∏

k=2

∫ ∞

0
e−λa Sik(a)Mi

k(a)mi
k(a)da

)

(∫ ∞

0
e−λa Sim(a)bi (a)da

)(∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

)

=
n∑

j=1

B̄ j
1

(∫ ∞

0
e−λa S j

1 (a) f i j (a)da

)(m−1∏

k=2

∫ ∞

0
e−λa Sik(a)Mi

k(a)mi
k(a)da

)

(∫ ∞

0
e−λa Sim(a)bi (a)da

)(∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

)

.
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Define

L(λ) =
⎡

⎢
⎣

L11
1 (λ)L̄1

1(λ)
∏m

k=2 L
1
k(λ) . . . L1n

1 (λ)L̄1
1(λ)

∏m
k=2 L

1
k(λ)

...
. . .

...

Ln1
1 (λ)L̄n

1(λ)
∏m

k=2 L
n
k (λ) . . . Lnn

1 (λ)L̄n
1(λ)

∏m
k=2 L

n
k (λ)

⎤

⎥
⎦

with

Li
k(λ) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∫

0
e−λa Sik(a)Mi

k(a)mi
k(a)da k = 2, . . . ,m − 1

∞∫

0
e−λa Sim(a)bi (a)da k = m

L̄i
1(λ) =

∫ ∞

0
e−λa S̄i1(a)Mi

1(a)mi
1(a)da

Li j
1 (λ) =

∫ ∞

0
e−λa Si j1 (a) f i j (a)da.

Then, again we can write the equations for each B̄i
1 for each patch i in matrix notation

as

(L(λ) − I)B̄1 = 0.

We are looking for non-trivial solutions where B̄1 �= 0, and therefore require

det(L(λ) − I) = 0. (10)

This is the characteristic equation for our system. If the root λ satisfies 	(λ) < 0,
then the zero equilibrium is stable, and if 	(λ) > 0, then the zero equilibrium is
unstable. Furthermore, as our system 2 is linear, if the equilibrium is locally stable, it
will be globally stable.

We know that because λ is a root of (10), then 1 ∈ σ(L(λ)), where σ(L(λ)) is
the spectrum of L(λ). We also know from the definition of system 2 that B̄1 must be
non-negative, and from (10) that B̄1 is the eigenvector associated with an eigenvalue
of 1. L(λ) is irreducible, because K is irreducible, and the eigenvalue associated with
a non-negative eigenvector of an irreducible matrix is the spectral radius of the matrix
(Theorem 2.1, Li and Schneider (2002)). Thus, ρ(L(λ)) = 1.

(1) If R0 < 1, then ρ(L(0)) = ρ(K ) = R0 < 1. If 	(λ) > 0, then L(0) ≥ L(λ)

entry-wise, and so ρ(L(λ)) ≤ ρ(L(0)) < 1 (Corollary 8.1.19, Horn and Johnson
(2012)). Therefore, in order for ρ(L(λ)) = 1 we require 	(λ) < 0.

(2) If R0 > 1, then ρ(L(0)) > 1. If 	(λ) < 0, then L(0) ≤ L(λ) entry-wise and
so ρ(L(λ)) ≥ ρ(L(0)) > 1. Therefore, in order for ρ(L(λ)) = 1 we require
	(λ) > 0. ��

Corollary 1 If the number of new individuals produced on a given patch k, from an
initial individual starting on patch k, is greater than one, so K (k, k) > 1, then R0 > 1.
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Proof If K (k, k) > 1, then we can decompose K = A + B, where

B(i, j) =
{
1 i = j = k

0 otherwise,

and A is still non-negative. Because A is non-negative, we can see that K > B, and
so by Corollary 8.1.19 Horn and Johnson (2012), ρ(K ) > ρ(B) = 1. ��

Here, we have demonstrated that R0 = ρ(K ) determines the stability of the zero
equilibrium for system 2. Earlier in this section, we presented the details of the con-
struction of the next-generation matrix, K , for the stage-structured population on both
one and multiple habitat patches.

4 Applications

In this section, we discuss applications of the next-generation matrix and the effect of
different environmental variables on the next-generation matrix. The next-generation
matrix is a useful tool to quantify the effect of individuals from one patch on other
patches. Here, we will show how to use the column sums in the matrix to determine
the source–sink dynamics of the network and how this relates to R0.Wewill also show
how the column sums can be used to investigate the transient dynamics of the system
and how these may differ from the asymptotic dynamics. We then investigate how
the left and right eigenvectors can provide insight into the contributions of each patch
to R0. Using salmon farms as a motivating example, we structure the Applications
section to answer the key questions posed at the end of the introduction.

4.1 Salmon Farms Distributed in a Channel

Here, we present an example of patches in a linear array and in the following sec-
tions will demonstrate how both the source–sink distribution and persistencemeasures
change as a function of the distance between patches. This example is motivated by
sea lice spreading between salmon farms in a channel. Salmon farms act as habitat
patches for sea lice, as the non-larval sea lice stages require a salmonid host on which
to feed, and the salmon are themselves confined to the net pens in the farms. The
larval sea lice stages are released into the water column and are capable of spreading
between salmon farms in a given region. In both Norway and Canada, many salmon
farms are located in sheltered coastal channels or fjords (Aldrin et al. 2017; Krkošek
et al. 2006). We therefore use a one-dimensional domain to calculate the arrival time
of sea lice spreading between farms.

In the following examples, we consider 5 patches or farms of width Δ, each sepa-
rated by some distance x0 (Fig. 4). We consider systems where there is no maturation
delay from the latent to active larval stage, and where all larvae enter the channel, so
that none remain locally. The absorption rate for larvae when they pass by a patch
is small, and in most examples, diffusion is larger than advection. This represents a
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Patch 1 Patch 2 Patch 3 Patch 4 Patch 5

Δ

x0

Fig. 4 Patches or salmon farms arranged in a channel. The width of each patch is Δ, and the distance
between the centre of each patch is x0. The arrow above the patches indicates the direction of advection

coastal channel environment in which ocean mixing is more prevalent than any con-
stant currents generated by river outflow. It is in this environment that we answer the
five questions posed at the end of the introduction.

4.2 What Is the Source–Sink Distribution of Salmon Farms in a Channel?

First, we show how to use the next-generation matrix to determine the source–sink
distribution of farms. Recent work has used R0 theory to define two measures of
persistence of a species on a continuous landscape, Rloc(x) and Rδ(x), using the next-
generation operator (Huang et al. 2016b; Krkošek and Lewis 2010; McKenzie et al.
2012). Rloc(x) is the number of new individuals produced at location x in the absence
of dispersal and can be used as ameasure of the fundamental niche in certain scenarios.
In our model, dispersal is a key environmental feature for the larval stage of the marine
organism, and while we allow some percentage of larvae to remain at a patch, it is
not realistic that any large percentage would remain and avoid dispersal. Therefore,
Rloc(x) is not relevant for our model.

The second persistence measure, Rδ(x), is the number of new individuals produced
over the entire network from one individual at location x . It takes into account both
growth and survival at location x , and dispersal from location x . If one individual at x
produces less than one individual over the entire landscape, then Rδ(x) < 1, and the
location x is defined as a sink. If Rδ(x) > 1, then x is defined as a source. The spectral
radius of the next-generation operator, R0, determines species persistence over the
entire landscape. When using this measure, it is not possible for connected patches
of sinks to persist. In this section, we build on and apply this theory to determine the
source–sink distribution on the discrete population patches in our system using the
next-generation matrix.

In our system of n patches, let Rδ( j) be the number of new individuals on all patches
produced from one individual on patch j . In terms of our next-generation matrix K
(Eq. 5),

Rδ( j) =
n∑

i=1

K (i, j).

If for patch j , Rδ( j) > 1, then j is a source, and if Rδ( j) < 1, then j is a sink.
R0 = ρ(K ) is still needed to determine if the populations on the connected patches
will persist or perish, however there are some nice persistence results that follow
directly from Rδ( j).
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First, a connected network consisting only of sinks cannot persist. Using this new
measure, for a connected network of sinks, we have Rδ( j) < 1 for all j . There is a
nice result concerning R0 for non-negative irreducible matrices (Horn and Johnson
2012) which states that

min
1≤ j≤n

n∑

i=1

K (i, j) ≤ ρ(K ) ≤ max
1≤ j≤n

n∑

i=1

K (i, j).

Substituting the definition of Rδ and R0 this can be restated as

min
1≤ j≤n

Rδ( j) ≤ R0 ≤ max
1≤ j≤n

Rδ( j). (11)

Therefore, if Rδ( j) < 1 for all j , then R0 < 1 as well. Secondly, a connected network
consisting only of sources cannot perish. Here, Rδ( j) > 1 for all j , and so R0 > 1 as
well. Similarly, if any diagonal entry of the next-generation matrix is greater than one,
K ( j, j) > 1, then R0 > 1. This can be seen from Corollary 1. Biologically, this result
means a population on a network will persist if the network contains at least one patch
which is self-sustaining in the absence of dispersal from other patches. However, there
are also other situations in which the network can persist. In summary, Rδ( j), the j th
column sum of the next-generation matrix, is necessary to determine whether a patch
j is a source or a sink, and R0, the spectral radius of the next-generation matrix, is
necessary to determine the persistence of the total population.

4.3 HowDoes the Source–Sink Distribution Change with Respect to
Environmental Variables?

In this section, we examine the effect of advection and diffusion on R0 and Rδ , using
the example of 5 patches in a channel, shown in Fig. 4. First, we study the effect of
varying diffusion on R0 across different interfarm separation distances, x0. In Fig. 5,
the diffusion coefficient, D, is decreased from 5 to 1 and the change in R0 is shown
as a function of x0. For small values of x0, R0 is larger when there is less diffusion.
When there is less diffusion, each patch has a greater probability of self-infecting,
because there is less immediate dispersal away from the patch. When the patches
are overlapping, they act as one patch, which is why R0 is larger at small x0 when
there is less diffusion. This is also why the horizontal asymptote for R0 is larger for
smaller diffusion. For intermediate values of x0, an interesting phenomenon occurs.
As the separation distance, x0 increases, R0 for low diffusion drops below R0 for high
diffusion. When diffusion is low, it is more difficult for individuals to disperse against
the direction of advection, and so as x0 increases, individuals from Patch 5 begin to
only contribute to other individuals on Patch 5. As will be shown when examining the
effect of advection, Patch 5 becomes a sink for small values of x0, and so the other
patches are contributing individuals to Patch 5, which cannot sustain them.

Next, we study the effect that advection has on R0 and Rδ across different interfarm
distances, x0. For different values of advection, both R0 and Rδ , as functions of x0,
have the same shape as R0 shown in Fig. 5. Therefore, we find it most illuminating
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0 10 20 30 40
0.5

1

1.5

2

2.5

3

Fig. 5 R0 as a function of x0, for D = 5, v = 1, solid line; D = 1, v = 1, dashed line. The remaining param-
eter values areα = 0.1, gi j (t) = 0,Δ = 0.8, Si j (t) = e−0.05t . The survival,maturation, andbirth functions

for the sessile stages were combined so that
∏m−1

k=2

(∫∞
0 S j

2 (t)M j
2 (t)m j

2(t)dt
) (∫∞

0 S j
m (t)b j (t)dt

)
= 10

to examine the effect of advection on the ratio of Rδ/R0. Biologically, R0 is the
number of new individuals produced in the population, from one typical individual,
and Rδ( j) is the number of new individuals produced in the population, from one
individual starting on patch j . Therefore, the ratio Rδ( j)/R0 can be seen as the relative
multiplication factor of the number of new individuals in the population produced by
one individual starting on patch j , compared to one typical individual. If Rδ( j)/R0 >

1, then an individual on patch j is contributing more than the typical individual, and
if Rδ( j)/R0 < 1, then it is contributing less. Of course, it is also important to also
track if each Rδ and R0 are greater or less than one, so that it is known which patches
are sources, which are sinks, and whether or not the total population is growing.

In Fig. 6, Rδ/R0 is plotted as a function of the interfarm separation distance, x0,
for different values of v. The switch in each curve from black to grey marks where
Rδ ≤ 1. Using the Rδ measure, we can see that for low x0 all patches are sources. As x0
increases, Patch 5 becomes a sink, with R0 > 1, and then as x0 continues to increase,
R0 falls below 1. Therefore, in this linear array, there is some critical separation
distance, beyond which the population patches are not sufficiently connected for the
total population to persist. Even after this critical distance, some patches are still
sources with Rδ > 1, and it takes a larger separation distance x0 for all patches to
become sinks.

Both R0 and Rδ change when v increases from 0.1 to 1. As v increases, it takes
a much smaller separation distance, x0, for R0 to fall below 1. Increasing v not only
reduces retention of individuals on each patch, but also inhibits individuals from better
dispersing against the direction of advection. Therefore, when v is lowered, there is
greater dispersal among neighbouring patches, but less long distance dispersal in
the direction of advection, from Patch 1 to Patch 5. There are two other interesting
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(a) Low advection (v = 0.1)

(b) Medium advection (v = 0.4)

(c) High advection (v = 1)

Fig. 6 Rδ/R0 for each patch when D = 5. When each curve is black Rδ > 1, and when the curve is grey
Rδ ≤ 1. The switch from black to grey on the solid line indicates when R0 = 1. The remaining parameters
are the same as in Fig. 5
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behaviours that should also be highlighted. First is that max1≤i≤n Rδ(i) is achieved
at Patch 3 when advection is low, compared to Patch 1 when advection is high. We
can see the transition as Patch 1 becomes a larger source as v increases. Second, the
critical separation distances, for which each Rδ falls below one and becomes a sink,
come closer together, as the decrease in advection makes the behaviour on all patches
more similar.

In both examples where diffusion and advection were changed, for large separation
distances, R0 < 1.However, this is due to the parameters controlling the birth, survival,
andmaturation functions for these examples. For other parameter values, certain values
of v and D could result in R0 > 1 for large x0 and some could result in R0 < 1. Here,
we have shown how R0 and the source–sink distribution, quantified by Rδ , change
as a function of the diffusion and advection in the system, as well as the interfarm
separation distance, x0.

4.4 Are There Certain Parameter Regions inWhich Local Outbreaks Can Occur, But
Not Global Outbreaks?

Interesting transient dynamics can occur if we consider networks of patches with
R0 < 1, but where some patches are sources, and networks with R0 > 1, but where
some patches are sinks. In these network arrangements, the value of R0 still determines
the global persistence of the total population, but the initial conditions determine
whether the population will begin by increasing or decreasing. To consider these
dynamics,we let N (g) be the vector of sea lice populations on each patch, in generation
g. Then, in terms of generational time, the population will update according to

N (g + 1) = K N (g),

with the initial condition N0, which is a vector of the initial sea lice populations on
each patch. For example, consider the next-generationmatrix K with parameter values
that are the same as for Fig. 6c. At x0 = 8, R0 > 1, but Rδ(5) < 1. Therefore, the
total population (

∑
i Ni (g)) will increase eventually, but will start by decreasing if

our initial population is all in Patch 5 (N0 = [0 0 0 0 1]T ). In fact, for x0 = 8, if we
begin with 1 individual in Patch 5, it takes 23 generations before the total population
increases above 1, as shown in Fig. 7. Similarly, for x0 = 10, R0 < 1 but Rδ(1) > 1.
In this case, the population will eventually decrease, but will begin by increasing if
the initial population is in Patch 1 (N0 = [1 0 0 0 0]T ). If we start with 1 individual
in Patch 1, it takes 41 generations before the total population falls below 1. In this
configuration, this means that there would be a local outbreak, but not a global sea
lice outbreak.

To attempt to quantify the effect of the source and sink patches on transient dynamics
more formally, we use notation from Huang and Lewis (2015). They define

Rl = min
1≤ j≤n

n∑

i=1

K (i, j) = min
1≤ j≤n

Rδ( j),
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Fig. 7 The population of sea lice
(Ni (g)) on each patch i in each
generation (g) after one initial
individual is released on a patch.
Let N (g) be a vector of patch
populations, then in generational
time the population updates
according to
N (g + 1) = K N (g), with the
initial condition N0, which is a
vector of the initial sea lice
populations on each patch. The
black line shows the total
population size (

∑
i Ni (g)).

Parameter values are the same as
Fig. 6. In a), we fix x0 = 8, so
that R0 > 1, and release the
initial individual on patch 5
(N0 = [0 0 0 0 1]T ). In b), we
fix x0 = 10, so that R0 < 1, and
release the initial individual on
patch 1 (N0 = [1 0 0 0 0]T )
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which is shown to be the intergenerational growth rate under the worst possible initial
conditions, and

Ru = max
1≤ j≤n

n∑

i=1

K (i, j) = max
1≤ j≤n

Rδ( j),

which is shown to be the intergenerational growth rate under the best possible initial
conditions (Huang and Lewis 2015). Eq. 11 can then be restated using Rl and Ru as

Rl ≤ R0 ≤ Ru .

In essence, Rl is the growth rate in the first generation if our population is initially
at the worst sink patch, and Ru is the growth rate if we are at the best source patch.
Therefore, Rl and Ru are useful measures to quantify potential transient dynamics and
also retain key information about the source–sink distribution. If Rl < 1, then there
is at least one patch acting as a sink, and if Ru > 1, then there is at least one patch
acting as a source. In the following section, we examine how Rl , Ru , and R0 change
with different variables, instead of considering Rδ for every patch.
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Fig. 8 The change in Rl , R0, and Ru when the output from the First Patch (Patch 1), Middle Patch (Patch 3)
or Last Patch (Patch 5) is reduced from 10 to 1. Parameter values for this figure are α = 0.1, D = 5, v = 1,
gi j (t) = 0, Δ = 0.8, Si j (t) = e−0.05t , x0 = 8.4. The survival, maturation, and birth functions for the

sessile stages were combined so that O = ∏m−1
k=2

(∫∞
0 S j

2 (t)M j
2 (t)m j

2(t)dt
) (∫∞

0 S j
m (t)b j (t)dt

)
= 10,

and for the reduced patch O =∏m−1
k=2

(∫∞
0 S j

2 (t)M j
2 (t)m j

2(t)dt
) (∫∞

0 S j
m (t)b j (t)dt

)
= 1

4.5 What Is the Effect of Treating a Single Farm on the Transient and Asymptotic
Dynamics?

In this section,we examine the effect that treating specific farmshaveon Rl , Ru , and R0.
We define treatment as reduced survival and maturation on a patch or farm, affecting
stages k through m, but not affecting the larval stage. On salmon farms, treatment is
used to reduce sea lice levels and is typically administered orally to farmed salmon
(Rogers et al. 2013). Reduced survival and maturation could also be the result of poor
environmental conditions at a patch, such as low salinity and temperature in the case
of sea lice. We also view treatment through the lens of type reproduction numbers,
and the effort required for control on a patch to reduce R0 = 1.

To first examine the effect of treatment on the transient and asymptotic dynamics,
we treat Patch 1, Patch 3, and Patch 5 separately. In the direction of advection, these
patches are the first, middle, and last patches, respectively (Fig. 4). Figure 8 shows
the change in Rl , Ru , and R0 for the system when either the first, middle, or last patch
has a reduced output (ΔO), from treatment. Perhaps the most interesting result is that
if either the first or last patch has reduced output, the change in the R0 value remains
same. The first patch is the patch that produces the most individuals on other patches,
and the last patch is the patch that receives the most individuals from other patches.
If we consider the reduced output as treatment, then if we treat either the patch that
produces the most individuals, or the patch that receives the most individuals, the
effect on R0 will be the same. However, if we treat the middle patch, we have a larger
change in R0. Therefore, treating the middle patch is more effective if we want to
reduce long-term population growth.
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If treating the first or last patch has the same effect on R0, then howmight it change
the transient dynamics of the system? We can see that if we treat the first patch, then
the change in Ru is larger than if we treat either the middle or last patch, where there
is no change. Therefore, if we treat the first patch, the maximum possible growth rate
is reduced, and thus, we can reduce the severity of a local outbreak. However, if we
treat the first patch, the change in Rl is less than if we treat either the middle or last
patch. Therefore, treating the first patch results in a larger minimum possible growth
rate.

We can also examine the effect of treatment using the type reproduction number
(Heesterbeek and Roberts 2007; Lewis et al. 2019; Roberts and Heesterbeek 2003).
The type reproduction number measures the control effort required to control a certain
patch to reduce R0 = 1 . The type reproduction number can also been generalized
to the target reproduction number, if control is not applied to an entire patch, but to
specific inter patch infections. To define the type reproduction number, we divide the
next-generation matrix K = [ki j ] into two matrices, K = B + C , where C is the
target matrix associated with control and B is the residual matrix. If we are interested
in controlling patch i , then Ci = [ci j ], with ci j = ki j for 1 ≤ i ≤ n and j = i , and
ci j = 0 otherwise. Then, B = K − C . To control patch i such that we can reduce
R0 = 1, we require ρ(B) < 1. The type reproduction number TCi is then defined
by ρ(Ci (I − B)−1), and 1 − 1/TCi is the fraction that output from patch i must be
reduced in order for R0 = 1. The controlled next-generation matrix would then be
1
TCi

Ci + (K − Ci ) and would have ρ(K ) = 1.

Consider the patch arrangement and parameter values as shown in Fig. 8. In this
case R0 > 1, but when we are considering control of either the first, middle, or last
patch, and creating target matrices C , we still have ρ(B) < 1. To create the target
matrix C1 associated with control on the first patch, we take the first column of K as
the first column of C1, and put zeros in all other entries. Likewise to treat the middle
patch, we take the third column of K as the third column of C3, with zeros elsewhere,
and to treat the last patch we take the last column of K as the last column of C5 with
zeros elsewhere. Using the formula for the type reproduction number given above,
we calculate TC1 = TC5 = 3.6, and TC3 = 1.2. This demonstrates that it requires a
greater control effort to treat the first or last patch, to reduce R0 = 1, than is required
if treating the middle patch.

Here, we have shown that either using the type reproduction number or directly
examining the effect of treatment, that more treatment is required to control the first
or last patch than the middle patch. Moreover, treating the first patch produces the
largest change in Ru , the largest intergeneration growth rate, and treating the last
patch produces the largest change in Rl , the minimum intergenerational growth rate.

4.6 What Is the Effect of an Environmental Gradient on Patch Contributions to R0
and the Source–Sink Distribution?

A different approach to measuring the contribution that each can patch have on the
population is to use the right and left eigenvectors associated with R0 (Hurford et al.
2010). This approach measures the contributions that each patch has on R0 if the
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population is proportioned relative to the right eigenvector of the next-generation
matrix.

First, from the Perron–Frobenius theorem, we know that the eigenvalue for which
the spectral radius of K is achieved is real. Then, we can write this eigenvalue, R0,
using the left eigenvector, w, and the right eigenvector, v, as

R0 = wT Kv

wT u
.

If we rescale w and v so that wT v = 1, then we can rewrite R0 as

R0 = v1

n∑

i=1

K (i, 1)wi + v2

n∑

i=1

K (i, 2)wi + · · · + vn

n∑

i=1

K (i, n)wi . (12)

Equation 12 can then be interpreted as the sum of the contributions of each patch to
R0, when the population is proportioned relative to the right eigenvector (Hurford et al.
2010). If we look at the first term in this sum, which is the contribution of patch 1, v1 is
the relative proportion of the population that is in patch 1. This proportion, v1, is then
multiplied by

∑n
i=1 K (i, 1)wi , where each K (i, 1) is the number of new individuals

produced on patch i from one individual on patch 1, and wi is the reproductive value
of patch i . Therefore, the first term in Eq. 12 measures the proportion of the population
that is in patch 1 multiplied by the effect that individuals from patch 1 will have on
future growth after they give birth to larvae which disperse to other patches. For the
ease of future reference, we define

Rc( j) = v j

n∑

i=1

K (i, j)wi

as the contribution of patch j to R0. We can therefore rewrite Eq. 12 as

R0 =
n∑

j=1

Rc( j) (13)

Interestingly, the relative source–sink measure of a patch, Rδ( j), can be very dif-
ferent from the relative contribution measure, Rc( j). In certain instances, for a given
patch j , we can have Rδ( j) = min1≤i≤n Rδ(i) < 1, so that patch j is the largest sink in
the population. However, that same patch j , may have Rc( j) = max1≤i≤n Rc(i), with
R0 > 1, so that if the population is distributed according to v, patch j has the largest
contribution to R0. R0 is greater than 1, so the population is growing. This means that
in one generation, one individual from patch j is contributing the least to the total
population, but over several generations, patch j is having the largest contribution to
the total growth of the population.

As an example, we examine how the intergenerational growth measures change
if we put the patches in an environmental gradient. Salmon farms are often located
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along ocean channels, where rivers feed into the source of these channels. This creates
a salinity gradient along the channel, where farms located closest to the river have
the lowest salinity and farms furthest from the river have the highest salinity. Lower
salinity results in a reduction in sea lice survival at each stage (Johnson and Albright
1991). Often the river output at the source of the channel is also the source of advection
in the channel, though there may be systems in which the average advection is in the
opposite direction due to strong ocean currents. First, we consider the less likely case,
where the first patch (or farm) has the largest output, and the last patch has the least.
In this case, output decreases in the direction of advection. Next we will consider the
more realistic case where output increases in the direction of advection. This would be
the common case for salmon farms in a channel where the first farm is located closest
to the river output, which is where salinity is lowest and so the patch output is also
the lowest, and the river is the source of advection in the system. For reference, the
average output from all patches is the same as the output for a single patch when there
is no gradient.

We use Rδ/R0 and Rc/R0 as the intergenerational growth measures, for which we
examine the effect of an environmental gradient. While Rδ/R0 can be thought of as
the relative multiplication factor of the number of new individuals in the population
produced by one individual on patch j , compared to a typical individual, Rc/R0 is
simply the relative contribution of the patch to R0, within the framework of left and
right eigenvectors. In Fig. 9, both Rδ/R0 and Rc/R0 are plotted as a function of x0,
for an environmental gradient in the direction of advection and for a gradient in the
opposite direction.

First, what cannot be seen easily fromFig. 9 is that R0 is the samewhen patch output
increases or decreases in the direction of advection. Interestingly, both of these R0
values are larger than for patcheswithout anygradient.When comparing Rδ/R0 values,
the relative spread of Rδ/R0 is larger when patch output decreases in the direction of
advection. Here, Patch 1 has the largest Rδ/R0 value. Interestingly, when we look at
Rc/R0, the relative contribution to R0, we can see that there is an intermediate distance
x0 where if the population is distributed relative to the right eigenvector, Patch 2 would
be contributing more to R0 than Patch 1, even though Patch 1 is the larger source.

We observe even more interesting behaviour when we look at Rδ/R0 and Rc/R0
when patch output increases in the direction of advection. Here, the relative ordering
of Rδ( j)/R0 values changes for different values of x0. Patches 3 and 4 are the largest
sources for most x0, until they become sinks (when numbers switch from black to
grey). Patch 5 starts as the largest source when x0 = 0, but is the first to become a
sink (along with Patch 1), around x0 = 9. However, if we look at the plot of Rc/R0,
then for some x0, Patch 5 is the largest contributor to R0. In fact, at x0 = 9, Patch 5 is
a sink with the smallest Rδ , Rδ(5) = min1≤i≤5 Rδ(i) < 1. Therefore, in the absence
of dispersal from other patches, the population on Patch 5 would perish. However, for
x0 = 9, R0 > 1 and Rc(5) = max1≤i≤5 Rc(i). Therefore, the population is growing,
and moreover, Patch 5 would be the largest contributor to growth if the population
was distributed according the right eigenvector.

What we can also see from Fig. 9a, b is that when the patch output decreases in the
direction of advection, the relative ordering of the Rδ/R0 values of the patches is the
same as when there is no gradient (Fig. 6c). However, when patch output increases
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Fig. 9 Rδ/R0 and Rc/R0 are shown as a function of x0. a, c are when the output decreases in the direction
of advection, and b, d are when output increases. For a, b, when each curve is black Rδ > 1, and when the
curve is grey Rδ ≤ 1. The switch from black to grey on the solid line indicates when R0 = 1. Parameter
values for this figure are α = 0.1, D = 5, v = 1, gi j (t) = 0, Δ = 0.8, Si j (t) = e−0.05t . The survival,
maturation, and birth functions for the sessile stages were combined so that in the case of constant patch

output, the output is O = ∏m−1
k=2

(∫∞
0 S j

2 (t)M j
2 (t)m j

2(t)dt
) (∫∞

0 S j
m (t)b j (t)dt

)
= 10. To construct the

environmental gradient, the largest output was 1.4 × O , then 1.2 × O , then O , then 0.8 × O , and then
0.6 × O

in the direction of advection, the relative ordering of Rδ depends on the interfarm
separation distance x0. In this case, the farm with the largest output is not the largest
source, nor is the farm with the lowest output the largest sink. Here, knowing the local
environmental conditions that determine sessile output does not directly inform the
source–sink distribution of the patch network.

In the Applications section, we have demonstrated how the next-generation matrix
can be used to determine the source–sink distribution of a metapopulation, as well as
other persistencemeasures, eachofwhichquantifies someuseful information about our
population. We applied these different persistence measures to examine populations
of sea lice on salmon farms and to answer the five questions posed at the end of the
introduction.
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5 Discussion

In this paper,we constructed amodel for ameroplanktonicmarine species, inwhich the
larval stage is capable of dispersing between habitat patches, and the later sessile stages
remain confined to a single habitat patch. This type of model is applicable to corals
and coral reef fish (Cowen et al. 2006; Jones et al. 2009), barnacles (Roughgarden
et al. 1988), Dungeness crabs (Botsford et al. 1994), sea urchins (Botsford et al.
1994), and many benthic marine species (Cowen and Sponaugle 2009). We modelled
the growth and survival of sessile stages on a habitat patch using arbitrary survival
and maturation functions so that our model is applicable to a breadth of different
systems. To model the dispersal between patches in the larval stage, we approximated
hydrodynamic movement, so that rates of larval movement between patches have an
underlying mechanistic model. We then constructed the next-generation matrix, K ,
for this model. The next-generation matrix distils the key elements of the model into
a matrix from which we can determine the source–sink distribution among patches
using the column sums. We denote the j th column sum by Rδ( j) and showed that if
Rδ( j) < 1, then patch j is a sink and if Rδ( j) > 1 then patch j is a source. We also
proved that the basic reproduction number R0 = ρ(K ) determines the stability of the
zero equilibrium of our model, so that if R0 > 1, then the population grows, and if
R0 < 1, then the population goes extinct.

Using salmon farms as an example, we investigated how the source–sink distribu-
tion can change as a function of patch separation distance and how often there is a
critical separation distance for each patch, at which point a patch changes from a source
to a sink. We demonstrated that increasing the ratio of advection to diffusion between
patches increases the difference in critical separation distance between patches. We
also demonstrate how Rδ( j) can be used to determine the transient dynamics of the
salmon farm system and how these transient dynamics can persist over several gener-
ations, and differ from the asymptotic dynamics determined by R0 (Sect. 4.4, Fig. 7).
We investigated the effect of treatment of a single patch on the patch dynamics using
the concept of type reproduction numbers and found that treating the middle patch
in a channel results in the greatest reduction in R0, but that treating the first patch
results in the greatest reduction in the maximum Rδ . Lastly, we looked at differing
local productivity on patch dynamics, determined the contribution that each patch has
to R0, and demonstrated how this can also differ from Rδ( j).

Next-generationmatrices have a long history in epidemiology,where they have been
used to calculate the number of new infections produced in one compartment when
a newly infectious individual is introduced in another compartment (Diekmann et al.
1990, 2010; van den Driessche and Watmough 2002). Our approach in constructing a
next-generation matrix for a stage-structured model with arbitrary stage durations and
larval flow between patches extends recent use of next-generation operators in ecology
(Huang et al. 2016a; Huang and Lewis 2015; Krkošek and Lewis 2010; McKenzie
et al. 2012). Much of the previous work has used continuous space next-generation
operators to determine the source–sink distribution of populations in streams or lakes.
There, the movement of individuals through the water is also described by partial
differential equations, though individuals can be produced at any point in space. In our
work, we describe the movement of larvae between patches using advection–diffusion
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equations, though as larvae can only be produced on certain population patches, our
linear operator can be formulated as a matrix. Our work also extends work of Huang
andLewis (2015),where the next-generationmatrixwas used to determine the transient
dynamics in a system and how they differ from the asymptotic dynamics determined
by R0 in a model of salmonids. The minimum Rδ was shown to determine whether
it is possible for the population to initially decline, even if it eventually grows, and
the maximum Rδ was shown to determine whether it is possible for the population to
initially grow, even if it declines.We re-emphasize the finding thatwhile R0 determines
the long-term dynamics of a system, it cannot also characterize the transient dynamics.
We also advocate for further use of the next-generation approach in ecology, as the
next-generation operators are often able to distil relevant ecological information into
a simple operator.

Our model formulation as a set of age density equations, rather than a set of dis-
tributed delay equations, or partial differential equations, follows the work of Feng
and Thieme (2000). There, arbitrary survival and maturation functions were used to
model the progression of an infection with a finite number of infections stages, all of
which have general length distributions. The generality of the survival and maturation
functions used in our model allow us to calculate the next-generation matrix for a
wide breadth of model formulations. For example, in models of sea lice populations
on salmon, studies have used a variety of different maturation functions. When dis-
crete differential equations are used (Adams et al. 2015; Revie et al. 2005), all lice of a
given stage mature at the same age. The maturation function, Mi

k(a), can then be for-
mulated using step functions, as Mi

k(a) = 1− H(a− τ). Here, H(a) is the Heaviside
function and τ is the development time. When linear delay differential equations are
used to model sea lice development (Stien et al. 2005), there is some minimum devel-
opment time, after which sea lice mature at a constant rate. The maturation function
for our model could then be written as Mi

k(a) = 1− H(a − τ)(1− e−m(a−τ)), where
τ is now the minimum development time, and m is the constant rate of maturation.
Weibull functions have the nice property that the probability of maturing is largest at
some intermediate age and have thus also been used to describe maturation functions,
without requiring a fixedminimum development time or fixedmaturation time (Aldrin
et al. 2017). Here, the maturation function can be written asMi

k(a) = e(−λa)p , where λ

is the scale parameter, and p is the shape parameter for the Weibull distribution. Even
though all of these models are formulated using different equations, by identifying the
maturation and survival functions used, we can reformulate these models as age den-
sity equations, given by system 2 and therefore calculate the next-generation matrix
for all these different types of models using Eq. 5. However, our model explicitly cal-
culates rates of larval movement using the Fokker–Planck equation, and therefore, the
arrival time component of our model and next-generation matrix will remain different
from the above-mentioned models.

While the general structure of our model allows us to calculate the next-generation
matrix for a variety of survival and maturation functions, one of the limitations
of our model is that we do not include density dependence. To include density
dependence in our model, the partial differential equation formulation of the model
would no longer be set a of McKendrick–von Foerster equations (Keyfitz and Key-
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fitz 1997; McKendrick 1925), as shown in Appendix A. They could, however, be
reformulated as a series of Gurtin–McCamy equations (Gurtin and MacCamy 1974),
where now μi

k(a) = μi
k(a, Ni

1, . . . , N
i
m), and Bi

k(t) = Bi
k(t, N

i
1, . . . , N

i
m) where

Ni
k = ∫∞

0 nik(t, a)da. Most of the sea lice population models previously mentioned
(Adams et al. 2015; Aldrin et al. 2017; Revie et al. 2005; Stien et al. 2005) do not
include density dependence in their model formulations, as the assumption is that sea
lice are regulated before they reach high enough densities to exhibit negative den-
sity dependence and that there is no Allee affect at low densities. However, using
Anderson–May host parasite equations, Krkošek et al. (2012b), demonstrated evi-
dence of an Allee effect of sea lice on wild salmon, so that at low densities there is
mate limitation, and thus a reduced birth rate. Modifying the birth rate of larvae to
include mate limitation at low densities would be interesting future work. In mod-
elling the populations of other marine species on habitat patches, it has been shown
that if external recruitment to populations is much larger than self-recruitment, then it
is not necessary to include negative density dependence at high population densities
to control for unbounded growth (Armsworth 2002). However, the inclusion of neg-
ative density dependence is necessary to prevent unbounded growth of populations
when self-recruitment to a population is large. The addition of density dependence
to our model would therefore allow it to be applicable to a broader set of species at
equilibrium densities.

With respect to sea lice on salmon farms, we use the advection–diffusion equa-
tion to approximate hydrodynamic ocean flow between farms due to the success of
modelling the transmission of nauplii onto wild salmon with the same advection–
diffusion equation. In the Broughton Archipelago, a region at the centre of the debate
of the effect of salmon farms on wild salmon, advection–diffusion equations were
used to model nauplii and copepodid movement, where nauplii were released as point
sources from salmon farms (Krkošek et al. 2006). Copepodids could then attach to
wild salmon migrating past these salmon farms, and Krkošek et al. (2006) were able
to correlate the spatial distribution of sea lice on wild salmon with the spatial posi-
tion of salmon farms. The accuracy of the approximation of ocean current using an
advection–diffusion equation in the Broughton Archipelago has been debated (Brooks
2005), as well as the use of a constant maturation rate from nauplii to copepodids. We
believe that the advection–diffusion equation is a useful approximation to ocean cir-
culation in channels, especially when hydrodynamic models are not available, though
we include a general maturation delay in our model, so that the maturation of larvae
can parameterized accurately to different species.

In the context of sea lice on salmon farms, we also estimated the effect of sea lice
treatment on a salmon farm network using measures of both transient and asymptotic
dynamics. In the next-generation framework,we defined treatment as a reduction in the
survival and/ormaturation in the sessile stages on a farm. Salmon farms typically apply
a parasiticide, emamectin benzoate, into the salmon feed to treat sea lice infestations
(Rogers et al. 2013). We assumed that treating a salmon farm is therefore equivalent to
reducing the survival through the different sessile stages on farm. We investigated the
effect of treating the first, middle, and last farm in a channel. We found that treating
the middle farm resulted in the greatest reduction in R0 and that if either the first or last
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farm where treated, then the reduction in R0 was the same. However, treating the first
farm resulted in the greatest reduction in Ru , the maximum intergenerational growth
rate, and treating the last farm resulted in the greatest reduction in Rl , the minimum
intergenerational growth rate.

If we are interested in preventing long-term outbreaks, reducing R0 is important.
However, in the case of the salmon aquaculture industry, frequent sea lice treatments
prevent long-term growth of sea lice. In this case, it may be more important to prevent
local outbreaks, as even local outbreaks of sea lice on salmon farms can have negative
effects on migrating wild salmon (Bateman et al. 2016). Treating the first farm would
thus most reduce the magnitude of a local outbreak. This result contradicts simulation
studies of salmon farm dynamics in Scotland (Adams et al. 2015). This study found the
farm influx (number of lice coming into a farm) was a better predictor of management
impact than farm outflux (number of lice coming from a farm), even though when
unmanaged lice density was accounted for, influx and management impact were only
weakly correlated. In our work, relative influx can be calculated using the difference
in row sums, and relative outflux could be calculated using relative column sums.
In our model, the first farm has the highest outflux, and the last farm in the channel
has the highest influx. Perhaps this difference is due to the fact that the farm with
the highest influx is most likely to outbreak, and thus, treating that farm will be the
most effective at reducing the total sea lice population. If the farm with the highest
outflux is treated, then the worst possible initial outbreak decreases, even if this initial
outbreak is less likely to happen. The difference between the results found in this
paper and from Adams et al. (2015) highlights the complexity of designing effective
management actions to control sea lice.

The largest limitation of our model, if applied to specific biological systems, is the
use of the advection–diffusion equation to approximate oceanmovement, rather than a
hydrodynamic model. While the advection–diffusion equation may be a good approx-
imation in a channel environment (Krkošek et al. 2006), the use of a hydrodynamic
model to approximate larval movement between patches rather than an advection–
diffusion equation would greatly improve the accuracy and relevance of the model to
a specific region. Recently, there have been several studies which have used hydro-
dynamic models to accurately model the transmission of sea lice between salmon
farms (Adams et al. 2015; Cantrell et al. 2018; Foreman et al. 2009), as well as the
transmission of other marine larvae between population patches. These studies often
quantify the amount of larval connectivity between patches by pairing particle tracking
models with ocean circulation models, such as FVCOM (Chen et al. 2006). Connec-
tivity matrices can then be constructed by tracking the number of particles released
from one patch that pass by another patches. Most recently, Cantrell et al. (2018) have
used kernel density estimation on the output of the particle tracking model to quantify
infection pressure of sea lice from a particular salmon farm. Depending on the method
that these models use to estimate larval connectivity between patches, the arrival time
that we calculate in our paper from the advection–diffusion equation, could easily
be calculated from these detailed hydrodynamic models. The connectivity matrices
often calculated in these papers could then be reformulated as next-generation matri-
ces using survival and maturation functions specific to the species studied, so that
the source–sink distribution of populations can be directly calculated, and so that the
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entries have a more relevant biological meaning. We believe that the combination
of connectivity matrices from hydrodynamic models with next-generation matrices
is an exciting area of future work to understand the population dynamics of specific
systems.
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A Derivation fromMcKendrick–von Foerster PDE

Here, we derive Eq. 1 by solving the McKendrick–von Foerster PDE:

∂nik(t, a)

∂t
+ ∂nik(t, a)

∂a
= −μi

k(a)nik(t, a)

nik(t, 0) = Bi
k(t)

nik(0, a) = ñik(a)

μi
k(a) = −

(
Mi

k(a)Sik(a)
)′

Mi
k(a)Sik(a)

. (14)

First, for simplicity we drop the indexes k and i so that nik(t, a) = n(t, a). Then,
we solve this linear partial differential equation using the method of characteristics.
The goal is to reduce the partial differential equation into an ordinary differential
equation of one variable along certain characteristic curves in a and t . To do this, we
parameterize a = a(s) and t = t(s), so that n(t(s), a(s)) is now a function of the
single variable s. Differentiating n(t(s), a(s)) with respect to s:

dn

ds
= ∂n

∂t

dt

ds
+ ∂n

∂a

da

ds
. (15)

Now we choose the characteristic curves a(s) and t(s) such that

da

ds
= 1 and

dt

ds
= 1.

Then, substituting Eq. 14 into Eq. 15 we arrive at the ordinary differential equation:

d

ds
n(t(s), a(s)) = −μ(a(s))n(t(s), a(s)). (16)

Solving for the characteristic curves, t(s) and a(s), we find

t(s) = s + t0 and a(s) = s + a0.
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Then, solving for n(t(s), a(s)) in Eq. 16 we find:

n(t(s), a(s)) = n(t(0), a(0))e− ∫ s0 μ(x+a0)dxdx

= n(t(0), a(0))e− ∫ a0+s
a0

μ(y)dy

= n(t(0), a(0))e
∫ a0+s
a0

(M(y)S(y))′
M(y)S(y) dy

= n(t(0), a(0))e
∫ a0+s
a0

d
dy log(M(y)S(y))dy

= n(t(0), a(0))
M(a0 + s)S(a0 + s)

M(a0)S(a0)
. (17)

Now we have two boundary conditions to impose, one at t = 0 and one at a = 0.
Together, the two boundaries intersect all characteristic curves, and so Eq. 17 is the
unique solution to Eq. 14 for all a ≥, t ≥ 0. From the form of our characteristic
equations for a(s) and t(s), it is clear that all characteristics are lines t = a + b in
the a-t plane. The line t = a divides the a-t plane into two regions: t ≤ a and t > a.
Characteristic curves for which t ≤ a intersect the boundary t = 0 at some point
(t, a) = (0, a0). Substituting t = s and a = s + a0 into Eq. 17, we find

n(t, a) = n(0, a − t)
M(a)S(a)

M(a − t)S(a − t)

= n0(a − t)
M(a)S(a)

M(a − t)S(a − t)
.

Similarly, characteristic curves for which t > a intersect the a = 0 boundary at some
point (t, a) = (t0, 0). Substituting t = s + t0 and a = s into Eq. 17, we find

n(t, a) = n(t − a, 0)M(a)S(a)

= B(t − a)M(a)S(a).

Therefore, together we have

n(t, a) =
⎧
⎨

⎩

B(t − a)M(a)S(a) t > a
n0(a − t) M(a)S(a)

M(at)S(a−t) 0 < t < a.

n0(a) t = 0
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