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Abstract

The mountain pine beetle (Dendroctonus ponderosae, Hopkins 1902), an invasive

bark beetle native to North America, has expanded its habitat from central British

Columbia to Northern Alberta. This expansion poses an immediate threat to jack

pine forests, which extend from Alberta to Nova Scotia. Past studies have revealed

the beetle’s successful attacks on jack pines, and laboratory research has indicated

that jack pine possesses limited defensive capabilities. These findings have heightened

concerns about the potential range expansion of the beetle and underscore the need to

quantify potential risks in jack pine forests. Additionally, lodgepole pine, the primary

host of the beetle, has been substantially infested in Alberta. The impacts of climate

change could increase the frequency and severity of these infestations in lodgepole pine

forests, leading to significant economic and ecological losses. Therefore, studying the

effects of climate change on beetle’s dynamics is imperative.

In this thesis, we addressed concerns regarding the susceptibility of jack pine

and the potential impacts of climate-related covariates on infestations in lodgepole

pine forests under climate change. In Chapter 2, we discussed the environmental

and ecological covariates significant for mountain pine beetle population dynamics

in Alberta and selected a suitable model using these covariates to examine these

biological questions. Our results indicated that the hierarchical model outperforms

others. Employing this model, Chapter 3 discussed the risk of infestations in jack pine

and compared the reproduction rate of jack pine to that of lodgepole pine. The model

revealed a low likelihood of infestations in jack pine forests, accompanied by a weaker

reproduction rate. Chapter 4 introduced the influence of climate-related covariates
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on the presence and abundance of infestations in lodgepole pine forests under climate

change. We analyzed the potential influence of each covariate individually and their

combined impact on the overall trends in the presence and abundance of infestations.

The results underscored the significant role of degree days and overwinter survival

rate, indicating an increase in the frequency and severity of infestations.
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Chapter 1

Introduction

1.1 Ecology of the mountain pine beetle

The mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is widely rec-

ognized as the most destructive bark beetle in North America, killing more than 50%

of lodgepole pines in British Columbia during the 2000s (Government of Canada,

2021). While the primary host of mountain pine beetle is the lodgepole pine (Pinus

contorta, Douglas ex Loudon), it inhabits most species of pines such as western white

pine (P.monticola D.Don) and sugar pine (P. lambertiana Douglas) (Amman, 1978;

Safranyik & Carroll, 2007).

Mountain pine beetle spends most of its lifetime within the phloem tissues of its

host tree (Safranyik & Carroll, 2007). It has four life stages: egg, larva, pupa, and

adult. Under optimal conditions, the beetles typically have a one-year life cycle,

although at higher elevations in Alberta, a two-year life cycle has also been observed

(Government of Alberta, 2023). During the summer, they lay eggs that hatch into

larvae, which then spend the winter and spring under the bark until emerging as

adults the following summer. Upon emergence, the adults leave the infested trees

in search of new hosts. Once a suitable host is found, mountain pine beetles can

carry up to three species of blue stain fungi, boring through the bark and mining the

phloem, thereby cutting off the nutrient supply to the host tree. This action results in

the killed tree turning red (known as a red-top tree) in the following year (Safranyik,

1



1989). MPB can cause massive mortality in large trees, with lodgepole pines greater

than 10 cm in diameter at breast height (DBH) experiencing mortality rates of up to

100% as the DBH reaches 40 cm (Björklund & Lindgren, 2009).

Additionally, the behavior of MPB varies across different population stages, which

include endemic, incipient epidemic, epidemic, and post-epidemic (Carroll et al.,

2006). During the endemic stage, the beetles primarily attack weakened trees (Bleiker

et al., 2014). In the incipient epidemic stage, they begin to successfully attack trees

of average DBH, marking the onset of an epidemic. As the beetle population grows,

they increasingly attack and reproduce in larger trees. Once most suitable pines are

killed, beetles migrate and the local population enter the last stage post-epidemic

(Safranyik & Carroll, 2007).

The range expansion by MPB increases the vulnerability of pine species not pre-

viously within the beetle’s range (Safranyik & Wilson, 2006). In the late 1990s, the

beetle population, previously at the endemic level, grew rapidly and caused a large

outbreak in central British Columbia (Aukema et al., 2006). This outbreak was then

exacerbated by forest fires and global warming (Kurz et al., 2008; Raffa et al., 2008),

leading to the beetle’s expansion into the northern Canadian Rocky Mountains (Nealis

& Peter, 2008; Robertson et al., 2009a). Moreover, this invasion posed an immediate

threat to jack pine (Pinus banksiana Lamb.), a species genetically closely related to

lodgepole pine. Subsequent research has shown that MPB has successfully attacked

jack pine, highlighting the potential risk of further spread across the boreal forest in

Canada (Cullingham et al., 2011). Along with the invasion into Alberta, jack pine, a

major component of Canada’s boreal forests with habitats extending from northern

Alberta to eastern Canada, is exposed to the risk of infestation (Cullingham et al.,

2011; Lusebrink et al., 2013).

In addition to concerns about new host trees caused by the past range shift, climate

change could continue range expansion (Sauchyn et al., 2003). According to Hayhoe

and Stoner (2019), we can expect an increase in the number of days with summer
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temperatures above 25◦C and a decrease in cold days below −30◦C. These summer

changes will likely increase beetle activity, encouraging dispersal, while the milder

winters could increase larval overwinter survival rates (Safranyik & Wilson, 2006).

Moreover, climate change is expected to alter forest composition. Projections indicate

that lodgepole pine habitats in Alberta will diminish by 2080, yet the quality of

lodgepole pine is predicted to be higher (Monserud et al., 2008).

We explored the effects of jack pine and the impact of various climate factors under

different climate change scenarios by constructing models that integrate environmen-

tal and ecological covariates. We chose our covariates based on the understanding

of biology. Prior to emergence, beetles develop within the inner bark of trees, where

their survival rates are notably affected by external temperatures and the thickness

of the phloem (Safranyik & Wilson, 2006). Upon emergence, temperature largely

impacts the dispersal patterns of the beetles. A warm and dry environment tends

to benefit the beetle population, while a warm and humid environment increases the

likelihood of flight (Safranyik, 1974; Safranyik et al., 1975; Shepherd, 1966). Further-

more, wind speed plays a crucial role in flight. Wind can assist beetles in sustaining

flight for extended periods, although they typically do not fly if wind speeds exceed

their maximum flight speeds (Seybert & Gara, 1970). Additionally, the resistance

of pine trees influences infestation levels. The more resistant trees are often able to

successfully defend against attacks.

We completed all analyses in the managed area classified by Alberta Environment.

The annual aerial surveys conducted by Alberta Environment, which utilize heli-GPS

technology to identify the numbers of the red-top trees, are based on the management

zone. The whole province is divided into three zones: the leading-edge zone, the

holding zone, and the salvage zone. The leading-edge zone is actively monitored and

managed, while the holding zone is reserved for future management. The salvage

zone, which rarely occurs, represents locations where immediate actions are required.

Within the leading-edge zone, Alberta Environment conducts a costly exhaustive
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search for red-top trees, ensuring that all infestations are monitored (Sustainable

Resource Development, 2007). In this thesis, we made use of the comprehensive data

in the leading-edge zone spanning the years from 2007 to 2020. We chose a 500m

grid cell size, considering that the distance between two helicopter flight lines in the

aerial surveys is approximately 500-1000 m.

1.2 Thesis Objectives

We addressed two biological questions related to infestations in Alberta. The first

question concerns the potential range expansion of mountain pine beetle infestations

into jack pine forests. The second explores the influence of climatic factors on the

outbreak under climate change. The forest composition of lodgepole pine and jack

pine presents an excellent opportunity to compare the behaviors of beetles in different

pine environments and to discuss the likelihood of their continued eastward movement.

Our goal was to provide insights into the interactions between pine species and beetle

dynamics, and to assess how climatic factors influence these processes.

1.3 Thesis Outline

This thesis is presented across three content chapters. In the first content chapter, we

tested the significance of the environmental and ecological covariates and conducted

regression analyses to identify models with the best fit and performance. The sub-

sequent chapter aimed to measure the impact of dominant pine species in Alberta,

specifically lodgepole pine, lodgepole-jack hybrid pine, and jack pine, on the bee-

tle’s host selection. In the final chapter, we projected potential future outbreak risks

considering varying climate change scenarios using the best-performing model from

the first chapter. Following the three chapters, we concluded with a synthesis of our

findings and reflected on the implications for MPB outbreaks in Alberta.
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Chapter 2

A hierarchical model for mountain
pine beetle dynamics

2.1 Introduction

The mountain pine beetle (MPB) is an invasive species, native to western North

America, killing millions of lodgepole pines in British Columbia (Westfall & Ebata,

2007). While the primary host of mountain pine beetle is the lodgepole pine, it

inhabits most species of pines within its range (Amman, 1978; Safranyik & Carroll,

2007). The range of mountain pine beetle is mainly governed by temperature and

seasonal suitability (Jenkins et al., 2001; Logan & Bentz, 1999; Logan & Powell, 2001;

Taylor & Safranyik, 2003). The outbreak in the late 1990s and 2000s has expanded

its range, enabling the beetle to invade new territories east of the Rocky Mountains in

northeastern British Columbia and northern Alberta (Nealis & Peter, 2008; Safranyik

et al., 2010).

The study of MPB has been ongoing for a long time, with a primary focus on

the development of mechanistic models like the age structure models highlighted in

the works of Heavilin and Powell (2008) and Goodsman et al. (2016). These models

provide valuable perspectives on the beetle’s long-term dynamics. However, their

precision diminishes in short-term analyses. This issue is particularly relevant for

forest managers, who focus on short-term dynamics when planning. To address the

need for accurate short-term predictions, advancements in computing power have
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led researchers to adopt data-driven statistical models. Studies such as those by

Kunegel-Lion and Lewis (2020), Preisler et al. (2012), and Wulder et al. (2006) have

implemented logistic regression models to estimate the presence of infestations. Ad-

ditionally, a zero-augmented beta regression model was developed to quantify infesta-

tion rates in Colorado (Kaufeld et al., 2014). Each of these models has demonstrated

effectiveness in providing short-term predictive visualizations, aligning more closely

with the planning needs of forest managers.

Contrasting with datasets in previous studies, our dataset from Alberta Environ-

ment stands out by quantifying the number of infested trees across an area that

spans approximately half of Alberta. Using heli-GPS technology, Alberta Environ-

ment conducts annual aerial surveys within the managed areas, aimed at thoroughly

identifying trees that were infested and killed in the previous year, commonly known

as ’red-top trees’. Furthermore, these red-top trees, identified in September, will

turn grey in the following year. Subsequent ground surveys and control programs

are implemented in October and November. The ground survey detects the trees

killed in the current year, known as ’green-dead trees’, which look similar to healthy

trees. These green-dead trees are identified by counting the number of tubes on the

pine, with more than 40 tubes indicating infestation. The control program involves

cutting and burning the green-dead trees (Government of Alberta, 2023; Sustainable

Resource Development, 2007). These surveys are costly and thus maintain a high

level of detection accuracy. In order to maximize the potential of this dataset, we

have selected the number of infested trees in each cell as our response variable.

With an emphasis on biological interpretability, we selected Poisson-like regression

models over machine learning models. The cold temperatures in Alberta, combined

with active management operations, have led to a low level of infestations in the

province’s pine forests (Taylor & Safranyik, 2003; Wulder et al., 2009). The exhibited

excess of cells without infestations further indicates the suitability of hierarchical

models, which incorporate a Bernoulli distribution to classify zeros before applying
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Poisson-like models.

The objective of this chapter was to establish links between environmental covari-

ates and mountain pine beetle dynamics in the newly expanded range in Alberta

and select a suitable model. We started with the covariates used in Kunegel-Lion

and Lewis (2020). Our investigation was mainly guided by the following biological

hypotheses:

1. Geographical covariates (elevation, northness, eastness, and slope) affect whether

beetles are able to infest the stand and the number of trees that succumb to

the beetle.

2. Climate related covariates (maximum temperature in summer, minimum tem-

perature in summer, relative humidity, wind speed, soil moisture index, degree

days, and overwinter survival rate) affect whether beetles are able to infest the

stand and the number of trees that succumb to the beetle.

3. Ecological covariates (pine age, age2, pine height, last year infestations within

a cell, within the adjacent cells, the neighborhood of cells adjacent to those

adjacent cells, and weighted influence within a 4 km radius) affect whether

beetles are able to infest the stand and the number of trees that succumb to

the beetle.

4. There is a quadratic relationship between pine age and resistance (Safranyik

et al., 1975).

5. The height derived from an age-height model is significant (see Appendix A.2).

6. The influences of dispersal at local and non-local distances differ.

Additionally, past work demonstrated by Kunegel-Lion and Lewis (2020) revealed

that covariates at epidemic and post-epidemic phases can present opposing influences

on infestations. We divided our data into outbreak and peak growth declining stages
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for analysis, using Ridge penalty and Smoothly Clipped Absolute Deviance penalty

(SCAD).

To select the most appropriate model, we evaluated models based on two key crite-

ria: their fit to the current distribution of infestations and their efficacy in predicting

future infestations. To assess fitness, we made use of log-likelihood, Bayesian In-

formation Criteria (BIC), and randomized quantile residuals (RQR). For comparing

predictive performance, we used accuracy and root-mean-square error (RMSE). The

presence of numerous cells without infestations and the allowed difference between the

mean and variance in the Negative Binomial distribution lead us to expect that the

more complex hierarchical Zero-Inflated Negative Binomial (ZINB) model may more

accurately reflect the true distribution of infestations and present higher predicting

accuracy.

2.2 Methods

2.2.1 Study area and data preparation

The MPB heli-GPS survey is considered the current best practice for conducting

accurate and detailed aerial surveys. In Alberta, these surveys are conducted to ex-

haustively search for red-top trees within managed areas (Agriculture and Forestry,

2020; Sustainable Resource Development, 2007). The distance between flight lines

is determined based on the helicopter’s altitude. Along with the goal of minimizing

travel distance between the survey blocks, a spacing of 300-500 m between two flight

lines is generally suggested (Agriculture and Forestry, 2020). Considering that the

distance between flight lines in the selected area shown in the Arcmap is approx-

imately 500-1000 m, we have chosen a 500 m grid cell size for our analysis. The

geographic scope of the selected area is illustrated in Figure 2.1, and an example of

the track-log within this area is shown in Figure 2.2.
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Figure 2.1: Position of the selected area in Alberta map (the yellow rectangle) along
with pine density of lodgepole pine and jack pine (stems/hectare).

Figure 2.2: Example of the track-log of the selected area (yellow) described in Figure
2.1 (2019 track-log).

Our response variable (the number of infestations) is accounted by the detected

red-top trees (aerial survey), green-dead trees (aerial survey and ground survey),

and the controlled trees (control program). The number of infestations in year t
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is calculated by adding the number of green-dead trees (current year dead trees;

aerial survey and ground survey) in year t and the number of detected red-top trees

(aerial survey) in year t + 1 to the number of controlled trees (current year cut and

burned trees; control program) in year t. Our covariates, which include geographical,

climatic, and ecological data, are sourced from Alberta Environment (Agriculture

and Forestry, 2020), Alberta Vegetation Inventory (AVI) (Agriculture, Forestry and

Rural Economic Development, 2022), and National Forest Inventory (NFI) (Beaudoin

et al., 2014). For covariates not sourced from these three specified places, we used

BioSIM to generate the necessary information. BioSIM calculates this by using a

distance-based weighted average derived from the four nearest weather stations.

For the geographical covariates, we included aspect and slope. Elevation is ex-

cluded because it is a mere proxy for temperature and has shown a correlation with

degree days with a value up to -0.79 in the selected area. Aspect is represented by two

covariates: one indicating north-facing slopes, calculated using the cosine function,

and the other for east-facing slopes, determined using the sine function. Two covari-

ates reflect the orientation of slopes, which significantly influence sunlight availability,

a critical factor in tree growth as highlighted in a previous study Stage (1976).

The climate-related covariates contain temperature, water availability and wind

speed. The growth and development of MPB are highly sensitive to temperature,

with summer and winter temperatures playing crucial roles. The beetle’s develop-

ment thrive in warm and dry summers, and for successful dispersal, the temperature

range of 19◦C to 41◦C is required (Mccambridge, 1971). Summer temperatures also

significantly influence beetle emergence, with the most emergences occurring when

temperatures are above 20◦C(Safranyik & Carroll, 2007). Winter temperatures affect

the survival rates of egg, larvae, pupae, and adults during the overwintering period,

as noted by Rosenberger et al. (2017b). Additionally, the accumulation of degree days

is essential for the beetle’s development, requiring at least 833 degrees above 5.6◦C

for a one-year life cycle completion (Safranyik & Wilson, 2006). To account for these
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factors, our covariates specifically included the minimum and maximum temperatures

in summer and degree days. We also introduced the overwinter survival rate as a co-

variate, which assesses the probability of larval survival over the winter (Régnière &

Bentz, 2007). Furthermore, we considered relative humidity and soil moisture index.

Soil moisture index reflects the moisture content of the land, which can influence

tree health and, consequently, resistance to infestation (Hogg et al., 2013). Relative

humidity accounts for the moisture content in the air, impacting both beetle and tree

physiology.

The ecological covariates include pine attributes, and past infestations. The at-

tributes of pine trees encompass age, height, and density of lodgepole pine, which is

predominant in our research area. As discussed in Safranyik et al. (1975), researchers

found that there is an upward quadratic relationship between age and beetle attacks

during an outbreak. Thus, we hypothesized a parabolic pattern and included the

square of age as a covariate. Since Alberta Vegetation Inventory provides only one

year of height data, we used the age-height model depicted in Appendix A.2 to sim-

ulate height data. Moreover, we did not have explicit data of stems per cell. We had

2011 total volume of all trees measured in volume per hectare, lodgepole pine abun-

dance percentage, and jack pine abundance percentage (Beaudoin et al., 2014). We

estimated the pine stems per cell using the developed volume-numbers model from

the appendix S1 of Goodsman et al. (2016). The procedure of estimating expected

stems per cells is as follows :

1. volume per hectare of lodgepole pine and jack pine = total volume per hectare

× (lodgepole pine abundance percentage + jack pine abundance percentage)

2. the expected number per hectare = 17.6 × volume per hectare of lodgepole pine

and jack pine× exp(-0.00527 × volume per hectare)

3. the expected number per cell = the expected number per hectare × 25
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Since we only had one year of volume per hectare values, we then adjusted the pine

number by subtracting or adding the number of current year dead trees from the

recorded year.

To evaluate the impact of beetles at various distances, we established four co-

variates. The observed annual expansion of red-top trees over kilometers leads us to

hypothesize that the beetles disperse over intermediate distances (Carroll et al., 2017;

Robertson et al., 2009b). However, the exact impact of past infestations at different

spatial scales on the adjacent cell is not known. Based on Carroll et al. (2017), we

proposed that the influence of one infested tree extends up to 4 km. The first three

covariates consider the total number of last year dead trees within 1.25 km around

the target cell. Meanwhile, the fourth covariate examines the influence of last year

infested trees within a 4 km radius, excluding the impacts accounted for by the first

three covariates. To calculate the fourth covariate, we summed the weighted influ-

ence of green-dead trees within 4 km of the target cell excluding the previous counted

neighborhoods. Let Dt,j represent the number of green-dead trees in cell j in year t

where cell j is within the 4 km radius but is out of the grid of 1.25 km, λ represent

the reproduction rate of females per stem, and fij represent the flying influence from

cell j to cell i. The flying influence is from the empirical cumulative density function

shown in the Chapter 3 of Carroll et al. (2017). The beetle pressure Bt,i at time t in

cell i is calculated :

Bt,i =
∑︂
j

Dt−1,j ∗ λj ∗ fij (2.1)

where we fix the reproduction rate λ to 166.7 (females/stem) (Cole, 1969). The

predictors and response variable are summarized in Table 2.1.
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Variables Description

Northness Face north (1) and south (-1) (cosine of aspect).

Eastness Face east (1) and west (-1) (sine of aspect).

Slope Slope of the cell (Burrough et al., 2015).

Pine density Pine density (stems/cell; composing of lodgepole pine and jack pine) (Beau-
doin et al., 2014).

Age Average age of the leading pines in each cell (Beaudoin et al., 2014).

Age2 Squared age (Beaudoin et al., 2014).

Pine Height Average height of the leading pines in the cell (depicted in Appendix A.2).

Maximum tempera-
ture in summer

Highest daily temperature in summer in the current year.

Minimum tempera-
ture in summer

Minimum daily temperature in summer in the current year.

Relative Humidity Average relative humidity from March to May in the current year.

Wind Speed Average wind speed at 2 meters in July and August in the current year.

Soil Moisture Index Average soil moisture index from May to July, estimating the water supply
for tree growth; current year (%) (Hogg et al., 2013).

Degree Days Cumulative degree days above 5.5◦C from September of the previous year
to August in the current year (Safranyik et al., 1975).

Overwinter Survival
Rate

Probability of survival over the winter; the winter before the current year
summer (%) (Régnière & Bentz, 2007).

Last year infesta-
tions within cell

Red-top trees (aerial survey) in the current year + green-dead trees (aerial
survey and ground survey) in the previous year.

Last year infesta-
tions within 0.75
km

Red-top trees (aerial survey) in the current year in the adjacent cells +
green-dead trees (aerial survey and ground survey) in the previous year in
the adjacent cells excluding the center cell (as shown in Figure 2.3).

Last year infesta-
tions within 1.25
km

Red-top trees (aerial survey) in the current year adjacent to the adjacent
cells + green-dead trees (aerial survey and ground survey) in the previous
year adjacent to the adjacent cells excluding the center cell and adjacent
cells (as shown in Figure 2.4).

Dispersal influence
within 4 km

Expected number of beetles flying from all directions to the center cell
excluding the center cell, adjacent cells of the center cells and cells adjacent
to the adjacent cells (Carroll et al., 2017).

Infestations (Re-
sponse variable)

Red-top trees (aerial survey) in the cell in the next year + green-dead
trees (aerial survey and ground survey) +current year control trees (control
program).

Table 2.1: Descriptions of the covariates and response variable used in this study.
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Figure 2.3: Description of the method we used to count the last year infestations
within 0.75 km.

Figure 2.4: Description of the method we used to count the last year infestations
within 1.25 km.

2.2.2 Hypothesis Testing

Our dataset featured a significant number of locations without infestations, suggesting

the appropriateness of hierarchical models that initially employ a Bernoulli distribu-

tion to ascertain presence, followed by assessing the abundance through Poisson-like

models. Accordingly, we examined four regression models: Poisson (P), Negative

Binomial (NB), Zero-Inflated Poisson (ZIP), and Zero-Inflated Negative Binomial

(ZINB). However, during our analysis, we faced convergence challenges with the pa-
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rameters in the Negative Binomial model. This subsection focused on the tests of the

three models that did not exhibit convergence issues. Let Y be the response variable.

Let X be the covariate matrix for the abundance models, specifically Poisson and

Negative Binomial models, and let Z represent the covariate matrix for the presence

model, which follows the Bernoulli distribution. The probability density functions

for Poisson, Zero-Inflated Poisson, and Zero-Inflated Negative Binomial models were

presented in equations 2.2, 2.3, and 2.4, respectively. In these models, µ denotes the

expected value for the abundance model, π is the expected value for the presence

model, β represents the vector of coefficients for the abundance model, γ indicates

the vector of coefficients for the presence model, and ϕ is identified as the dispersion

parameter in the Negative Binomial distribution.

Pr(Y = y|X) =
µy · e−µ

y!
, y = 0, 1, 2, . . .

log(µ) = Xβ

(2.2)

Pr(Y = y|X,Z) =

⎧⎨⎩ π + (1− π) · e−µ, y = 0

(1− π) · e−µ·µy

y!
, y = 1, 2, 3, . . .

π = fBernoulli(0;Z, γ)

logit(π) = Zγ

log(µ) = Xβ

(2.3)

Pr(Y = y|X,Z) =

⎧⎨⎩ π + (1− π) · ϕϕ

(µ+ϕ)ϕ
, y = 0

(1− π) · Γ(y+ϕ)
y!·Γ(ϕ) ·

µy ·ϕϕ

(µ+ϕ)y+ϕ , y = 1, 2, 3, . . .

π = fBernoulli(0;Z, γ)

logit(π) = Zγ

log(µ) = Xβ

(2.4)

In this subsection we focused on testing the biological hypothesis inherent in our

covariates using three models. Our covariates addressed several hypotheses, includ-

ing the significance of geographical, climatic, and ecological factors, the quadratic

relationship between pine age and its resistance to beetle attacks (Safranyik et al.,
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1975), the significance of pine height derived from an age-height model (see Appendix

A.2), and the varying effects of dispersal at local and non-local distances. Specifi-

cally, we expected an upward quadratic relationship between pine age and resistance

in the outbreak and a downward quadratic relationship in the growth peak declining

(Safranyik et al., 1975; Safranyik &Wilson, 2006). We utilized data from 2007 to 2020

in the area depicted in Figure 2.1. We divided 14 years of data into two stages: out-

break and growth peak declining, as shown in Figure 2.5. We tested these hypotheses

by employing regularization techniques and incorporating the covariates presented

in Table 2.2 across three models. We described the regularization techniques in the

subsequent paragraphs and presented the test results in the result section.
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Figure 2.5: Histogram of the total number of infestations in the selected area (see
Figure 2.1) that is separated into two stages: outbreak and growth peak declining.

In our analysis, we encountered difficulties due to the high correlation between

covariates sourced directly from environmental data and those generated through

models that use these environmental data as input. The presence of multicollinearity

raised concerns regarding overdispersion and model instability. To address these is-

sues, we incorporated regularization techniques to automatically handle multicollinear-
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ity and perform variable selection.

Penalty techniques offer a fast and effective solution for handling multicollinearity

and variable selection (Fan & Li, 2001; Hoerl & Kennard, 1970). Multicollinearity

can significantly impact prediction accuracy, while variable selection helps reduce

model complexity. In our dataset, we encountered both data-based multicollinearity,

resulting from pure observations, and structural multicollinearity, where covariates

use other covariates as input covariates. One of our objectives was to minimize these

collinearities, ensuring that the covariates provide unique information in the regression

model. To achieve this, we used the ridge regression (Hoerl & Kennard, 1970).

Let θT represent the parameter vector (β, γ, ξ), where β contains coefficients of the

abundance model, γ contains coefficients of the presence model, and ξ encompasses

all other parameters. Additionally, let ℓ(θ) denote the log-likelihood function. The

estimator for Ridge regression, as described in Hoerl and Kennard (1970), is defined

as:

θ̂ = argminθ(−ℓ(θ) + λ1

n∑︂
i=1

θ2i ) (2.5)

where λ1 is the tuning parameter and n represents the number of non-intercept co-

efficients. The Ridge estimator effectively reduces multicollinearity by decreasing

variance. For sufficiently small values of λ1, the Ridge estimator yields a mean square

error smaller than the maximum likelihood estimator (Hoerl & Kennard, 1970). The

mean square error (MSE) is composed of the variance and the squared bias of our

estimators, which can be expressed as:

MSE = variance(θ) + bias2(θ) (2.6)

In this context, by minimizing MSE, the Ridge estimator effectively reduces the vari-

ance of θ while introducing a controlled amount of bias. This trade-off is a key char-

acteristic of Ridge Regression, where the increase in bias is compensated by a signifi-

cant reduction in variance, particularly beneficial in the presence of multicollinearity

among covariates.
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While Ridge Regression effectively mitigates multicollinearity in the model, there

remains a need to simplify the model complexity and concentrate specifically on the

most significant covariates. However, the exhaustive best subset selection method

employed in Kunegel-Lion and Lewis (2020) is computationally expensive, as the

model with n covariates would result in 2n subsets. To overcome this limitation, we

employed a lasso-type penalty known as the Smoothly Clipped Absolute Deviation

(SCAD) penalty for variable selection. A lasso-type penalty prunes small coefficients,

effectively setting them to zero (Tibshirani, 1996). Initially, we considered three

popular lasso-type penalties: Adaptive Lasso, Smoothly Clipped Absolute Deviation

(SCAD), and Minimax Concave Penalty (MCP) (Fan & Li, 2001; Zhang, 2010; Zou,

2006). Among these options, we chose the SCAD penalty based on the findings of

Z. Wang et al. (2016), who demonstrated that SCAD produces less biased estimators

while maintaining continuity in model prediction. H. Wang et al. (2007) also noted

that theoretically, BIC serves as a better information criterion when using the SCAD

penalty. Compared to the lasso penalty, the SCAD penalty introduces smaller bias by

employing boundary conditions. It assigns greater penalization to small coefficients

while still considering the impact of larger coefficients. The SCAD penalty is defined

as follows (Fan & Li, 2001):

pλ2(|θ|) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ2|θ|, if |θ| ≤ λ2

2γ1λ2|θ|−θ2−λ2
2

2(γ1−1)
, if λ2 < |θ| < γ1λ2

λ2
2(γ1+1)

2
, if |θ| ≥ γ1λ2

(2.7)

where γ1 is a free parameter greater than 2 and λ2 is the tuning parameter. In our

analysis, we used the recommended value of 3.7 for λ1 (Fan & Li, 2001). Furthermore,

the smoothness of the estimators is ensured by the definition of the SCAD penalty,

specifically through its first derivative:

p′λ2
(|θ|) = λ2{1(|θ| < λ2) +

(γ1λ2 − |θ|)+
(γ1 − 1)λ2

1(|θ| ≥ λ2)} (2.8)

In order to incorporate the Ridge and SCAD penalties into our model, we as-
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signed distinct weights to each penalty and these weights were set in such a way

that their sum equals 1. The objective was to find the optimal balance between the

two penalties, leveraging the variance-reducing property of Ridge Regression and the

variable selection capability of the SCAD penalty within a single model framework.

We estimated the parameters by minimizing the following equation (Z. Wang et al.,

2016):

θ̂ = argminθ − ℓ(θ) +
1

2
(1− α1)λ1

b1∑︂
i=1

β2
i +

1

2
(1− α2)λ2

b2∑︂
j=1

γ2
j

+ α1 pλ∗
1
(β) + α2 pλ∗

2
(γ) (2.9)

Here, α1 represents the weight of the SCAD penalty in P or NB, while α2 represents

the weight of the SCAD penalty in the binomial model. λ1 is the tuning parameter

of the Ridge regression in P or NB, whereas λ2 is the tuning parameter of the Ridge

regression in the binomial model. λ∗
1 is the tuning parameter of the SCAD penalty in P

or NB and λ∗
2 is the tuning parameter in binomial model. The variable b1 represents

the number of coefficients in the P or NB models excluding the intercept, and b2

represents the number of coefficients in the binomial model excluding the intercept.

We set the threshold parameters γ in the SCAD penalty to be the suggested number

3.7 (Fan & Li, 2001).

To implement the regularization, we utilized the R package mpath (Z. Wang et

al., 2016). However, the zipath() function in R does not provide automatic support

searching for different weights. Therefore, we conducted a grid search to determine

the optimal weights. The optimal weights and the tuning parameters were selected

based on the smallest Bayesian Information Criterion (BIC) value when allowing the

function to conduct 100 values for each weight. The tuning parameters are assigned

automatically by the zipath() function.
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2.2.3 Model Selection

We employed various criteria to assess the quality of fit for two stages, including log-

likelihood, Bayesian Information Criterion (BIC), and Randomized Quantile Residual

(RQR). The log-likelihood estimates the probability that the response variable follows

the assumed distribution given the input covariates. A higher log-likelihood suggests

that the data is more likely to originate from the model being fitted. BIC, on the other

hand, increases as the error variance and number of parameters increase. Considering

our large dataset, we selected BIC rather than Akaike Information Criterion (AIC) as

it tends to converge towards the best model with a probability of 1 when the sample

size approaches infinity. The final criterion, Randomized Quantile Residual (RQR),

is a residual method specifically developed for regression models with independent

responses (Dunn & Smyth, 1996). Its purpose is to evaluate the consistency between

the assumed distribution and the observed data, providing a visual indication of fitness

through plots. Detailed explanations regarding RQR will follow in the subsequent

paragraphs.

A study by Feng et al. (2020) demonstrated that RQR provides a more straight-

forward evaluation of model fit compared to Pearson and Deviance Residuals, par-

ticularly in the context of P, NB, ZIP, and ZINB models. Their study indicated that

when P, NB, ZIP, and ZINB models are well-fitted, RQR generally adhere to a nor-

mal distribution. This conformity leads to a scenario where the values of RQR closely

match those of the standard normal quantile, aligning neatly with the y=x line in

the quantile-quantile (q-q) plot. By using their method, we calculated the RQR for

the response variable, which is the number of infestations in cell i, denoted as yi. We

also computed the standard normal quantile represented as qk. The standard normal

quantile qk was calculated by Φ−1( k−3/8
n+1/4

) and k is the kth order statistic, 1≤ k ≤n

and n is the sample size (McCullagh, 1985). We calculated RQR following specific
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transformations (Dunn & Smyth, 1996; Klar & Meintanis, 2012):

F∗(yi; µ̂i, ϕ) = F(yi − 1; µ̂i, ϕ) + ui · p(yi; µ̂i, ϕ)

zi = Φ−1(F ∗(yi; µ̂i, ϕ))

rQi =
zi −mean(z)

sd(z)

(2.10)

In the above equations, F(yi; µ̂i, ϕ) represents the cumulative distribution function

(CDF) for a response variable yi given the vector of covariates xi, with estimated mean

(µ̂i) and dispersion parameter (ϕ), while p(yi; µ̂i, ϕ) corresponds to the associated

marginal probability function. Additionally, ui denotes a random number generated

from a uniform distribution with an interval of (0,1), and Φ follows a standard normal

distribution. The vector z contains all zi values, which are used in the calculations.

Furthermore, we implemented a procedure to visualize the 95% Monte Carlo simu-

lated intervals for the RQRs. This procedure, described in Feng et al. (2020), involves

the following steps:

1. generate 100 sets of random numbers that follow the target distribution,

2. re-fit the model using the generated random numbers as the response variable,

3. estimate the RQRs for the generated random numbers using the refitted model

and arranging them in ascending order,

4. identify the values corresponding to the 2.5% and 97.5% percentiles of the RQRs

for each distribution.

2.2.4 Model Validation

In this chapter, we validated model performance for a single period: the infestation

growing period from 2007 to 2013. We did not validate the model using the data

from the infestation declining period of 2014 to 2020, as most of the beetles died out

during the cold winters of 2019 and 2020. Given the limited number of years available
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in this period, we used a straight-forward validation method: we fit the model using

data from 2007 to 2011 and validate the outcomes in 2012 and 2013.

Additionally, accurately predicting the exact number of infestations poses a chal-

lenge due to the response variable’s extensive range, spanning from zero to hundreds

in a cell. This broad spectrum adds considerable difficulty in precisely forecasting

infestation counts. Therefore, our focus was on assessing the ability of our penalized

models to accurately predict the severity classes of beetle infestations. These classes

are outlined in Table 2.2, which is derived from the Gibson (2004). The procedures

for model validation are depicted in Figure 2.6.

Alberta Vegetation 
Inventory (AVI) 

BioSIM

Other sources

• Pine age 
• Pine height
• Pine 

density

Yearly Environmental and 
Ecological Data

Last year infestation and 
dispersal within a radius 

of 4km

Data cleaning and 
transformation

Response variable: MPB Aerial Survey
(The number of current year killed pines) 

extract data within a grid cell of 
500m in a selected area

Validate data : year 
n+1 and n+2

Train Data : 
first n years

Count models Validate model

Final model

• Poisson
• Zero-inflated 

Poisson
• Zero-inflated 

Negative 
Binomial

National Forest 
Inventory (NFI)

Climate 
related 

covariates

Geographical 
covariates

Figure 2.6: The modeling flow used to create the Poisson, Zero-Inflated Poisson, and
Zero-Inflated Negative Binomial models incorporated yearly geographical, climatic,
and ecological covariates to select the model with the best predictive performance.

Severity Number of infested trees in a 500m grid cell

no infestation (0) 0

light (1) 1-3

moderate (2) 4-25

very severe (3) >25

Table 2.2: Severity Categories used to evaluate the severity of infestations in Alberta.
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The model performance was evaluated using two indices: accuracy and root-mean-

square error (RMSE). Let Iij be the severity level at the cell i in the year j and Î ij

be the predicted severity. The predicted severity class was identified as the one with

the highest probability. Accuracy represents the correction rate and is computed

by dividing the number of correct predictions by the total number of predictions.

RMSE measures the difference between the predictions and the observations, which

is defined as

√︂∑︁n
i=1(Iij−Îij)2

n
and n is the number of observations. We also presented

the confusion matrix showing the number of correct predictions in each severity class.

2.3 Results

2.3.1 Hypothesis Testing

The optimal weights of penalties for three models over two stages were shown in Table

2.3. We presented covariates including age, age2, height, last year infestations within

cell, within 0.75 km, 1.25 km and dispersal influence within 4 km separately from other

covariates. The non-zero coefficients of the standardized covariates corresponding to

the hypotheses, along with their 95% confidence intervals were shown in Figures 2.7

through 2.12.

Model Outbreak Growth Peak Declining

P 1 0.99

ZIP (Presence model: 1, Abun-
dance model: 0.75)

(Presence model: 0.96,
Abundance model: 0.72)

ZINB Presence model: 1, Abun-
dance model: 1)

(Presence model: 0.9,
Abundance model: 1)

Table 2.3: Optimal weights of the penalties of P, ZIP, and ZINB for the outbreak and
growth peak declining stages. Poisson model is an abundance model and does not
contain a presence model.

In Figure 2.7, we observed that during the outbreak stage, all of the covariates are

significant in the Poisson model. Additionally, the coefficients for last year infestations
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within 1.25 km were small, with confidence intervals nearing zero. Given that spatial

autocorrelation typically leads to underestimated confidence intervals, we can assert

with greater certainty that last year infestations within 0.75 km and 1.25 km are of

minor importance. The model in the peak growth declining stage identified several

insignificant covariates, such as height, last year infestations within 1.25 km, and age.

For the remaining covariates, as depicted in Figure 2.8, eastness and soil moisture

index were of lesser importance during the outbreak stage, while northness, eastness,

and soil moisture index were less significant during the growth peak declining stage.

The ZIP model also yielded many insignificant covariates. As depicted in Figure

2.9, during the outbreak stage, the presence model had only two non-zero coefficients.

The abundance model’s confidence intervals revealed that the square of age, height,

last year infestations within 1.25 km, and age were not significant. During the other

stage, the presence model identified one additional significant covariate: the influence

of dispersal within 4 km. The abundance model identified only three significant

covariates: last year infestations within cell, within 0.75 km and dispersal influence

within 4 km. For the remaining covariates, as shown in Figure 2.10, ZIP model

only identified four significant covariates in the presence model in the outbreak stage

including wind speed, overwinter survival rate, minimum temperature in summer,

and maximum temperature in summer. For the abundance model in the same stage,

covariates including slope, pine density, northness, eastness, soil moisture index, and

degree days were less significant. During the growth peak declining stage, both the

presence and abundance models exhibited fewer significant covariates compared to

the outbreak stage.

The results of the ZINB models were close to those of the ZIP models. As shown in

Figure 2.11, during the outbreak stage, both height and age had coefficients of zero,

while age square and dispersal influence within 4 km had confidence intervals closing

to zero in the presence model. The abundance model showed non-zero coefficients for

age square, height, dispersal influence within 4 km, and last year’s infestations within
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1.25 km, albeit with confidence intervals that included or were close to zero. In the

subsequent stage, the ZINB model exhibited fewer significant covariates. Regarding

the additional covariates in Figure 2.12, northness and eastness lacked significance,

and the soil moisture index had a coefficient of zero in the presence model during

the outbreak stage. In the same stage’s abundance model, northness, slope, soil

moisture index, degree days, eastness, and pine density were of lesser importance. In

the growth peak declining stage, northness and pine density became less significant,

while eastness, maximum temperature in summer, and slope showed coefficients of

zero in the presence model. In this stage’s abundance model, northness, soil moisture

index, degree days, eastness, pine density, and relative humidity were also deemed

less significant.

The covariates with non-zero coefficients in the Poisson model were different from

those in the ZIP and ZINB models. In the Poisson model, the age square covariate

was significant with contrasting signs across the outbreak and growth peak declin-

ing stages, while this covariate was found to be insignificant in both ZIP and ZINB

models. As suggested by previous studies Safranyik et al. (1975), one signal of an

outbreak is the mass-attacks to the older and stronger mature trees. However, the

Poisson model suggested that in an outbreak, the beetle attacks young and old weak-

ened trees, causing the least infestations in the strong mature trees. Thus, we decided

to omit age square from subsequent analyses. Moreover, in the Poisson model, pine

height was found to be significant during the outbreak phase, but this was not sig-

nificant in the ZIP and ZINB models for two stages. Since two zero-inflated models

better accounted for the excessive zero infestation in our data, we opted to exclude

height from our analysis.

A similar pattern was observed with four covariates related to local and non-local

dispersal. The last year infestations within cell, last year infestations within 0.75 km,

and the dispersal influence within 4 km were significant in both stages for the Poisson

model. However, in the ZIP and ZINB models, these covariates had less significance,
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with last year’s infestations within cell showing consistent importance across both

stages. To align the three models, we decided to integrate covariates that include last

year’s infestations within 0.75 km and 1.25 km, as well as dispersal influence within

4 km, to be one covariate in our analysis.

Age

Last year infestations within 1.25 km

Last year infestations within 0.75 km

Disperal influence within 4 km

Last year infestations within cell

Height

Age square

−1.0 −0.5 0.0 0.5

Outbreak

(a)

Age

Last year infestations within 1.25 km

Last year infestations within 0.75 km

Disperal influence within 4 km

Last year infestations within cell

Height

Age square

0.0 0.1 0.2

Growth Peak Declining

(b)

Figure 2.7: Coefficients of age, age2, height, last year infestations within cell, within
0.75 km, 1.25 km and dispersal impacts within 4 km and their 95% confidence intervals
in the (a) Poisson model in the outbreak, (b)Poisson model in the endemic. Covariates
not shown in the plots indicate zero values.

Relative humidity
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Northness

Degree days
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Wind speed

Overwinter survival rate

−0.5 0.0 0.5 1.0

Outbreak

(a)
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Northness
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(b)

Figure 2.8: Coefficients of covariates not presented in Figure 2.7 and their 95% con-
fidence intervals in the (a) Poisson model in the outbreak stage, (b)Poisson model
in the growth peak declining stage. Covariates not shown in the plots indicate zero
values.
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Figure 2.9: Coefficients of age, age2, height, last year infestations within cell, within
0.75 km, 1.25 km and dispersal impacts within 4 km and their 95% confidence intervals
in the (a) Presence model in the ZIP model in the outbreak stage (b) Abundance
model in the ZIP model in the outbreak stage (c)Presence model in the ZIP model in
the growth peak declining stage (d)Abundance model in the ZIP model in the growth
peak declining stage. Covariates not shown in the plots indicate zero values.
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Figure 2.10: Coefficients of covariates not presented in Figure 2.9 and their 95%
confidence intervals in the (a) Presence model in the ZIP model in the outbreak stage
(b) Abundance model in the ZIP model in the outbreak stage (c)Presence model in
the ZIP model in the growth peak declining stage (d)Abundance model in the ZIP
model in the growth peak declining stage. Covariates not shown in the plots indicate
zero values.
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Figure 2.11: Coefficients of age, age2, height, last year infestations within cell, within
0.75 km, 1.25 km and dispersal impacts within 4 km and their 95% confidence intervals
in the (a) Presence model in the ZINB model in the outbreak stage (b) Abundance
model in the ZINB model in the outbreak stage (c) Presence model in the ZINB
model in the growth peak declining stage (d)Abundance model in the ZINB model
in the growth peak declining stage. Covariates not shown in the plots indicate zero
values.
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Figure 2.12: Coefficients of covariates not presented in Figure 2.11 and their 95%
confidence intervals in the (a) Presence model in the ZINB model in the outbreak
stage (b) Abundance model in the ZINB model in the outbreak stage (c) Presence
model in the ZINB model in the growth peak declining stage (d)Abundance model
in the ZINB model in the growth peak declining stage. Covariates not shown in the
plots indicate zero values.

2.3.2 Model Selection

Based on the findings presented in Section 2.4.1, we have revised our covariates. This

revision involved excluding the age square and height from our analysis. Additionally,

we have consolidated the covariates representing last year’s infestations within 0.75

km and 1.25 km, along with the dispersal influence within 4 km, into one covariate.

This new covariate encapsulated the dispersal influence within 4 km but specifically

excluded the area within the cell. The estimation method for this updated covariate

remained similar to the previously used approach for calculating the dispersal influ-
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ence within 4 km, albeit without considering last year’s infestations within cell, 0.75

km, and 1.25 km.

The ZINB model exhibited the highest likelihood and the lowest BIC value for

both stages, as shown in Table 2.4 and 2.5. Furthermore, the residual plots depicted

in Figure 2.13 demonstrated that the ZINB model better fitted the data and had

more consistent variance, although the dense patterns still suggested the presence of

spatial autocorrelation. Similarly, as illustrated in Figure 2.14, the Q-Q plots for the

ZINB model displayed a better fit within the 95% confidence interval and showed

improved alignment with the y = x line. Consequently, we have decided to select the

ZINB model for further analysis.

Model log-likelihood(∆ log-likelihood) BIC(∆BIC)

P -350775.7(0) 701713.7(558661.1)

ZIP -179733.8(171041.9) 359705.7(216653.1)

ZINB -71364.05(279411.7) 143052.6(0)

Table 2.4: Table of log-likelihood and BIC of P, ZIP, and ZINB in the outbreak stage.

Model log-likelihood(∆ log-likelihood) BIC(∆BIC)

P -117683.5(0) 235507.6(176056.4)

ZIP -57662.2(60021.3) 115562.4(56111.22)

ZINB -29579.56(88103.94) 59451.18 (0)

Table 2.5: Table of log-likelihood and BIC of P, ZIP, and ZINB in the growth peak
declining stage.
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Model Outbreak Growth Peak Declining

P 0.99 0.99

ZIP (Presence model: 1, Abun-
dance model: 0.65)

(Presence model: 0.95,
Abundance model: 0.43)

ZINB (Presence model: 1, Abun-
dance model: 0.79)

(Presence model: 1, Abun-
dance model: 1)

Table 2.6: The optimal weights of the penalties in P, ZIP, and ZINB models (weights
in the model with the smallest BIC).
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Figure 2.13: (a) Residual plot of Poisson model in the outbreak stage (b) Residual
plot of Poisson model in the growth peak declining stage (c) Residual plot of ZIP in
the outbreak stage (d) Residual plot of ZIP in the growth peak declining stage (e)
Residual plot of ZINB in the outbreak stage (f) Residual plot of ZINB in the growth
peak declining stage.
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Figure 2.14: (a) QQ-plot of Poisson model in the outbreak stage (b) QQ-plot of
Poisson model in the growth peak declining stage (c) QQ-plot of ZIP in the outbreak
stage (d) QQ-plot of ZIP in the growth peak declining stage (e) QQ-plot of ZINB
in the outbreak stage (f) QQ-plot of ZINB in the growth peak declining stage (the
yellow line is y=x).
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2.3.3 Model Validation

The optimal weights for the penalties were detailed in Table 2.7. We have reported

the accuracy and RMSE in Table 2.8, where a good model is characterized by high

accuracy and low RMSE. These two statistical indices showed marked improvements

when using the ZINB model. The confusion matrices for predictions in 2012 and

2013, as seen in Tables 2.9, 2.10, and 2.11, further demonstrated that the ZINB

model achieves higher accuracy, particularly in predicting zero infestation cases.

The prediction plots for 2012 and 2013, when compared to the actual severity,

were illustrated in Figures 2.15 and 2.16. It is important to note that due to the

fluctuation of the coverage of aerial surveys across different years, the exact number

of cells represented in the plots varies slightly. These plots revealed that the ZINB

model outperformed the other two models in predicting infestations for 2012. For

2013, its predictions closely aligned with those of the ZIP model.

(a)

α

0.99

(b)

αabundance αpresence

1 0.99

(c)

αabundance αpresence

0.68 1

Table 2.7: The optimal weights for the two penalties have been identified for (a) P,
(b) ZIP, and (c) ZINB.

Statistical index Poisson ZIP ZINB

Accuracy 0.21 0.64 0.73

RMSE 1.54 1.18 1.07

Table 2.8: The estimated statistical indexes of the three models .
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Table 2.9: Confusion matrix of the Poisson model (containing 2012 and 2013)

predicted 0 predicted 1 predicted 2 predicted 3 Row Sum

observed 0 466 3271 8471 303 12511

observed 1 0 60 444 72 576

observed 2 0 122 2510 523 3155

observed 3 0 5 707 731 1443

Table 2.10: Confusion matrix of the ZIP model (containing 2012 and 2013)

predicted 0 predicted 1 predicted 2 predicted 3 row sum

observed 0 9428 0 2918 165 12511

observed 1 336 0 213 27 576

observed 2 1719 0 1117 319 3155

observed 3 372 0 350 721 1443

Table 2.11: Confusion matrix of the ZINB model (containing 2012 and 2013)

predicted 0 predicted 1 predicted 2 predicted 3 row sum

observed 0 11970 0 480 61 12511

observed 1 496 0 72 8 576

observed 2 2608 0 445 102 3155

observed 3 693 0 283 467 1443
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Figure 2.15: Comparisons of Real and Predicted Severity for the P, ZIP and ZINB
models in 2012
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Figure 2.16: Comparisons of Real and Predicted Severity for the P, ZIP and ZINB
models in 2013

2.4 Discussion

In this chapter, we have established the biological factors and models that are fur-

ther explored in the subsequent two chapters. Our results demonstrated that the

hierarchical Zero-Inflated Negative Binomial (ZINB) model better fits the infestation

distribution, outperforming both Poisson (P) and Zero-Inflated Poisson (ZIP) mod-

els. However, our hypothesis testing revealed that the Poisson model identified more

significant covariates compared to ZIP and ZINB models, likely due to its inadequate
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fit for our data.

Focusing on the two hierarchical models, the hypothesis testing suggested that

variables such as the square of the pine’s age and its height were less critical. The

expected quadratic relationship between pine age and resistance to infestations was

not evident. We attempted to compute height information from a sigmoid age-height

model using limited pine height data from the AVI dataset. However, we found that

the simulated height did not show significance in the hierarchical models. For beetle

pressure, only last year infestations within cells was consistently significant in both

ZIP and ZINB models. We faced challenges in distinguishing the significance levels of

the other three covariates related to dispersal at various distances. To address this,

we combined three variables – last year infestations within 0.75 km and 1.25 km, and

the dispersal influence within 4 km excluding neighboring counts within 1.25 km –

into a single covariate. This was achieved using an estimation approach similar to

the one previously employed for assessing dispersal influence within 4 km.

During model selection, ZINB demonstrated the best fit, as indicated by the highest

log-likelihood, the lowest BIC, and the RQR plots that confirmed ZINB’s better fit

to the data. In the model validation section, the ZINB model demonstrated the

highest accuracy, with the lowest RMSE. Its confusion matrix further illustrated its

predictive ability compared to the other two models. Prediction maps also provided

a clear comparison of the performances of all three models. Overall, the modified

covariates and the ZINB model are employed in the next two chapters, building on

these findings.

The model employed in this study differs from those used in previous studies,

such as those by Kunegel-Lion and Lewis (2020), Preisler et al. (2012), Srivastava

and Carroll (2023), and Wulder et al. (2006), as it estimates both the presence and

abundance of infestations. Due to the wide range of infestation numbers, from zero

to hundreds, the accuracy of our models was considerably limited. For example,

the Zero-Inflated Negative Binomial (ZINB) model showed a maximum accuracy of
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73% when predicting 2012 and 2013 across four severity classes. However, despite

this trade-off in accuracy, our model provided a more comprehensive overview of the

impacts of covariates on both the presence and abundance of infestations, thereby

offering enhanced interpretability.

Additionally, our approach to handling multicollinearity and variable selection dif-

fers from previous methods. Unlike the use of the variance inflation factor (VIF) and

best subset selection method in Kunegel-Lion and Lewis (2020), and the consider-

ation of fewer covariates to avoid multicollinearity issues in Srivastava and Carroll

(2023), our study employed penalties. This method allows for a faster process while

still retaining comprehensive information.

Besides, as detailed in Appendix A.1, hypothesis testing revealed a significant

level of spatial autocorrelation within the study area. The residual plots in Figure

2.9 showed patterns grouping together, indicative of spatial autocorrelation present

across all three models. This finding underscored the need for cautious interpretation

of our results, particularly regarding the significance of covariates, as spatial autocor-

relation can lead to an underestimation of their confidence intervals (Legendre, 1993).

Furthermore, standard regression models are limited in their ability to capture pop-

ulation dynamics, posing challenges in predicting future trends and applicability to

different areas. The development of new spatial regression models could yield more

realistic covariates and higher prediction accuracy (Chi & Zhu, 2008).

Overall, we have focused on testing our covariates and selecting the most suitable

model for the subsequent chapters. The hierarchical model, incorporating a Bernoulli

distribution to classify the presence of zero infestations, has demonstrated higher

suitability compared to the other two models. In the following two chapters, we

employ the ZINB model to examine the impacts of different covariates on mountain

pine beetle population dynamics.
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Chapter 3

The influence of pine host on
beetle’s attack

3.1 Introduction

The Mountain Pine Beetle (MPB), considered one of North America’s most destruc-

tive native insects, has caused the death of millions of lodgepole pines in British

Columbia (Government of Canada, 2021; Westfall & Ebata, 2007). While the pri-

mary host of mountain pine beetle is the lodgepole pine, it inhabits most species of

pines within its range (Amman, 1978; Safranyik & Carroll, 2007). The range of moun-

tain pine beetle is mainly governed by temperature and seasonal suitability (Jenkins

et al., 2001; Logan & Bentz, 1999; Logan & Powell, 2001; Taylor & Safranyik, 2003).

Further exacerbated by global warming, suitable habitats for MPB have expanded

eastward and northward, enabling these beetles to infest pine species in regions where

they had not previously been present (Safranyik & Wilson, 2006; Taylor & Safranyik,

2003). The outbreak in the late 1990s and 2000s enabled them to breach the Rocky

Mountains into Alberta, thereby posing a threat to the boreal forest in Saskatchewan

and beyond (Nealis & Peter, 2008; Robertson et al., 2009a; Safranyik et al., 2010).

In central and northwestern Alberta, lodgepole pine hybridizes with jack pine, a

major component of Canada’s boreal forests, with habitats extending from northern

Alberta to eastern Canada (Rudolph & Laidly, 1990). Jack pine is commonly regarded

as closely related to lodgepole pine (Moss, 1949; Rice et al., 2007b). However, in
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regions where their ranges overlap, there exists a distinct elevation separation between

jack pine and both lodgepole and hybrid pine (Rweyongeza et al., 2007). Hybrid pine

is distinguished from jack pine as it is more similar to lodgepole pine than jack pine

(Rweyongeza et al., 2007; Yang et al., 1999).

Although the range of lodgepole pine overlaps with that of jack pine, different pines

prefer different habitats (Critchfield, 1985). Jack pine thrives in excessively drained,

nutrient-poor lands and is most commonly found on soils of the podzolic order, rang-

ing from coarse to fine sands and gravels (Kenkel et al., 1997). In comparison to

lodgepole pine, jack pine typically has a shorter lifespan, about 80-100 years for a

medium-sized tree. It also grows shorter, reaching heights of 15-25 m, and is thinner,

with a diameter at breast height of approximately 20-30 cm (Kenkel et al., 1997).

Previous studies have indicated that jack pine could be a suitable host with limited

defensive capabilities (Clark et al., 2014; Cullingham et al., 2011). However, cold

winter temperatures can hinder brood development, significantly limiting the range

of beetles (Taylor & Safranyik, 2003). The colder climate in jack pine forests, com-

bined with the trees’ thinner phloem, can lead to high winter mortality rates among

beetles (Amman, 1976; Chang, 1954; Rosenberger et al., 2017a). The similarities

and differences between lodgepole pine forests and jack pine forests raise questions

about how population dynamics of MPB in jack pine forests may differ from those in

lodgepole pine forests.

In this chapter, our goal was to measure the comparative performance of the moun-

tain pine beetle in lodgepole and jack pines. For this goal, we made use of a hierarchi-

cal model with selection process detailed in Chapter 2. We estimated the likelihood of

jack pine infestation and the reproduction rate in infested jack pines, in comparison

to lodgepole pine. This estimation took into account the physical environment, as

well as the biology of both the beetle and the trees. Based on the limitations inherent

in the natural environment of jack pine forests and the findings reported in Bleiker

et al. (2023), we anticipated a lower likelihood and reproduction rate of beetles in
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jack pine compared to lodgepole pine.

We assessed the risk of infestation using relative risk, which is derived from absolute

risk. Absolute risk is defined as the probability of an event occurring (Nelson et al.,

2008; Suter II, 2016), whereas relative risk is the ratio of the absolute risk of one

event over another (Nelson et al., 2008). In our study, the ’event’ is the occurrence

of infestations: the first event being infestation in a cell with lodgepole pine, and the

second in a cell with jack pine. We focused on relative risk rather than absolute risk,

due to the varying precision levels of environmental and ecological covariates as well

as our less precise model. Let y represent the response variable being the number of

infested trees and θ the vector of parameters in the model. We calculated absolute

risk as Pr(y > 0|θ). The relative risk is then Pr(y > 0|θ&lodgepole pine)/Pr(y >

0|θ&jack pine). Furthermore, the reproduction rate was analyzed as the average

productivity of jack pine relative to lodgepole pine, assessed by quantifying the impact

of past infested jack pine on the new host tree.

Our analyses were done by a hierarchical model, using the number of pines killed

in the current year as the response variable, and incorporating both geographical,

climatic and ecological covariates. In addition to the set of covariates used in the

model selection and validation in the previous chapter, we included a covariate ’pine

identity’ that differentiates between lodgepole and jack pine (Burns et al., 2019). We

selected an area in central Alberta, where we can observe the genetic transition from

lodgepole pine to jack pine with similar numbers of cells dominated by lodgepole

pine, lodgepole× jack hybrid pine and jack pine as shown in Figure 3.1. We further

segmented population in this area into different stages, aligning with the dynamics ob-

served, and created distinct models for each stage (Kunegel-Lion & Lewis, 2020). We

trained our models on a dataset that covers a 14-year period from 2007 to 2020. The

outbreak stage was modeled using data from 2007 to 2014, while the endemic stage

was based on data from 2015 onwards, as depicted in Figure 3.2. We only focused on

the outbreak stage because we did not get significant results in the endemic stage.
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Similar to the approach in the second chapter, we utilized the Ridge regression and

the Smoothly Clipped Absolute Deviation (SCAD) penalty to mitigate multicollinear-

ity and facilitate variable selection (Fan & Li, 2001; Hoerl & Kennard, 1970). The

analysis was conducted in the R programming language using the package-mpath and

package-pscl. In line with the penalties applied, our null hypothesis posits that all

coefficients except intercept are negligible. The covariates conform to the null hy-

pothesis if their coefficients prune to 0 or if their 95% confidence intervals encompass

0.

Overall, this study conducted a quantitative analysis of the impacts of different

pine species on infestations, focusing particularly on the potential differences between

lodgepole pine and jack pine forests. We explored the possibility of range expansion

of mountain pine beetles into jack pine forests by assessing relative risk and the

reproduction rate. To facilitate this, we incorporated a range of geographical, climatic

and ecological covariates into our model.
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Figure 3.2: The infestations observed from 2007 to 2020 in a selected area in central
Alberta.
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3.2 Method

3.2.1 Study area and data preparation

To assess the risk associated with infestations in lodgepole pine versus jack pine, our

focus area differed from that of Chapter 2. We have selected a region within the

central forests where a clear transition in tree composition from lodgepole pine to

jack pine is observable when traveling from south to north. Moreover, the northern

extent of this area was determined by the locations of infestations identified in aerial

surveys. The southern extent was established to ensure that the number of cells for

the three pine species, as identified by pine identity, is closely balanced across the

cells. Pine identity, an index ranging from 0 to 1, was developed through a logistic

model incorporating environmental covariates (Burns et al., 2019). If its value ranges

from 0 to 0.1, the cell is jack pines. When its value is greater than 0.9, the cell is

lodgepole pine. All other covariates remained consistent with those used in the model

selection and validation sections of Chapter 2. Similar to Chapter 2, our covariates,

which include geographical, climatic, and ecological data, were sourced from Alberta

Environment (Agriculture and Forestry, 2020), Alberta Vegetation Inventory (AVI)

(Agriculture, Forestry and Rural Economic Development, 2022), and National Forest

Inventory (NFI) (Beaudoin et al., 2014), as summarized in Table 3.1. Our research

spanned the period from 2007 to 2020, employing a grid consisting of 196587 cells

measuring 500 m × 500 m, as depicted in Figure 3.1.
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Variables Description

Northness Face north (1) and south (-1) (cosine of aspect).

Eastness Face east (1) and west (-1) (sine of aspect).

Slope Slope of the cell (Burrough et al., 2015).

Pine Identity (Q) Genetic score used to identify pine type. It identifies trees as jack pine if Q <
0.1, as lodgepole pine if >0.9, and between is hybrid pine (Burns et al., 2019).

Pine density Pine density (stems/cell; including jack pine, hybrid pine and lodgepole pine)
(Beaudoin et al., 2014). The method is described in Chapter 2.

Age Average age of the leading pines in each cell (Beaudoin et al., 2014).

Maximum tempera-
ture in summer

Highest daily temperature in summer in the current year.

Minimum tempera-
ture in summer

Minimum daily temperature in summer in the current year.

Relative Humidity Average relative humidity from March to May in the current year.

Wind Speed Average wind speed at 2 meters in July and August in the current year.

Soil Moisture Index Average soil moisture index from May to July, estimating the water supply for
tree growth; current year (Hogg et al., 2013).

Degree Days Cumulative degree days above 5.5◦C from September of the previous year to
August in the current year (Safranyik et al., 1975).

Overwinter Survival
Rate

Probability of survival over the winter; the winter before the current year summer
(%) (Régnière & Bentz, 2007).

Last year infesta-
tions

Number of pines killed last year within the cell.

Dispersal impacts
within 4 km

Expected number of beetles flying from all directions to the center cell excluding
the counted within cell infestations (Carroll et al., 2017).

Infestations (re-
sponse variable)

Number of pines killed this year.

Table 3.1: The covariates and response variable considered in Chapter 3.

3.2.2 Fitting and Analysis

In Chapter 2, we identified that the Zero-inflated Negative Binomial (ZINB) model

provides the best fit for the distribution of infested trees. We defined β and γ as the

coefficient vectors for the abundance (following Negative Binomial distribution) and

presence (following Bernoulli distribution) models, respectively. We considered the

same covariates in two submodels and used the pine identity value (Q) to determine

the pine species in the cell. We further defined µ and π as the mean for the abundance

model and the probability of zero infestation in the presence model. We used Ridge

regression to handle multicollinearity (Hoerl & Kennard, 1970) and SCAD penalty

to simplify the model complexity and concentrate specifically on the most significant
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covariates (Fan & Li, 2001). Two penalties were simultaneously applied, with their

respective influences weighted such that their combined weights sum to 1. We did

a grid search for the optimal weights that minimize Bayesian Information Criteria

(BIC) (H. Wang et al., 2007). We assigned weights to one penalty ranging from 0.01

to 1 in increments of 0.01, while the weight of the other penalty was set to be 1 minus

the first penalty’s weight. The ZINB model comprises two sub-models: a logistic

model and a Negative Binomial model, with each model having two penalties applied

to it. When incorporating covariates into the model, we standardized their values.

In the outbreak stage, we had 890504 observations and the endemic stage contained

1123473 observations. The fewer cells in the outbreak stage was because, within the

chosen area, the extent of the aerial survey coverage fluctuates annually. The aerial

survey data showed that the number of cells detected within the survey range was

lower from 2007 to 2011 compared to the higher detection rates observed from 2012

onwards.

In order to evaluate the likelihood of infesting a jack pine as compared to a lodge-

pole pine, we examined both the hypothesized absolute and relative risks. Let yi be

the number of infested trees in the cell i. Let xi be the vector containing all xij val-

ues, each representing a value of covariate j in cell i. We calculated the hypothesized

absolute risk through varying the value of the covariate pine identity, while keeping

all other covariates at their original values. We used Q to represent pine identity

in the following equations. The absolute risk in cell i, assuming the pines to be

jack pine, hybrid pine, and lodgepole pine, is represented by the following equations

respectively:

P(yi > 0|0 ≤ xiQ ≤ 0.1) (3.1)

P(yi > 0|0.1 < xiQ < 0.9) (3.2)

P(yi > 0|0.9 ≤ xiQ ≤ 1) (3.3)

We further estimated the hypothesized relative risk, which is derived from the absolute
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risks. The relative risk of a cell containing lodgepole pine relative to jack pine is

represented as:

P(yi > 0|0.9 ≤ xiQ ≤ 1)

P(yi > 0|0 ≤ xiQ ≤ 0.1)
(3.4)

We also calculated the reproduction rate of jack pine relative to lodgepole pine. We

added an additional parameter s into our hierarchical model, measuring the influence

of the past jack pine infestations to the nearby new host tree while using the influence

of past infestations in non-jack pine as the benchmark. We assumed that the influence

of past infested non-jack pines is 1 and estimated the influence of past infested jack

pine by multiplying the parameter s with the observed jack pine trees and dispersal

influence. We assumed that the influence of one infestation, regardless of the pine

species, extends only up to 4 kilometers. The new introduced parameter s ranging

from 0 to ∞ specifically affected two covariates: last year infestations and dispersal

impacts within 4 km.

Let the first m+1 covariates, numbered from 0 to m, be those that are not affected

by the new parameter s. The subscript 0 indicates the intercept. We defined last

year infestations and dispersal impacts within 4 km as the m+1 and m+2 covariates,

respectively. We divided these two covariates, into two categories using superscripts:

’not jack’ for infested non-jack pine and ’jack’ for infested jack pine. We also denoted

1 as an indicator function with a bracket indicating the condition for having a value

1. For the cell i, we estimated µi and πi by

log(µi) = β0 +
m∑︂
j=1

xijβj + 1(Q ≤ 0.1) · s · xim+1βm+1

+ 1(Q > 0.1)xim+1βm+1 + (xnot jack
im+2 + xjack

im+2 · s)βm+2

logit(πi) = γ0 +
m∑︂
j=1

xijγj + 1(Q ≤ 0.1) · s · xim+1γm+1

+ 1(Q > 0.1)xim+1γm+1 + (xnot jack
im+2 + xjack

im+2 · s)γm+2

(3.5)

For simplicity, when estimating this new parameter s, we did not employ two penal-

ties. The estimation of the parameter s was carried out by minimizing the negative
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log-likelihood function, utilizing the ’BFGS’ gradient function specified within the

optim() function in R.

3.3 Results

The coefficients in the presence and abundance models correspond to the probability

of infestations and the number of infested trees if present, respectively. Positive

coefficients indicate that an increase in the value of a covariate is associated with

an increased likelihood of infestations and a higher number of infested trees. In this

section, we focused solely on the results from the outbreak stage. The reason for this

is that the results in the endemic stage were insignificant for both the presence model

(modeled with a Bernoulli distribution) and the abundance model (modeled with a

Negative Binomial distribution), as detailed in Appendix B. The optimal weights for

the penalties applied in these models in the outbreak stage were detailed in Table 3.2.

The values of the standardized coefficients were presented in Table 3.3, and we

also displayed these coefficients along with their 95% confidence intervals in Figures

3.3 and 3.4. In both models, the coefficient values and confidence intervals for pine

identity underscored its significance during an outbreak. Its values suggested a higher

likelihood and number of infestations in lodgepole pine forest.

The presence model revealed more insignificant covariates: Pine density, north-

ness, and easternness appear to have minimal importance. In the abundance model,

the coefficients and their 95% confidence intervals suggested that tree age is not a

significant factor, and northness has a lesser impact. This interpretation considered

the potential underestimation of confidence intervals due to spatial autocorrelation

(Legendre, 1993). The coefficient of wind speed in the abundance model indicated

the importance of flight for new infestations in the central forest. In both models, the

minimum temperature in summer, maximum temperature in summer and overwinter

survival rate provided results that are less straight-forward to interpret.

The absolute and relative risks presented in Figures 3.5, 3.6, and 3.7 offered addi-
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tional insights. As depicted in Figures 3.5 and 3.6, the probability of having at least

one infested tree in both lodgepole and jack pine species was low, with the majority

of cells having values less than 0.025. Compared to the absolute risk of jack pine

shown in Figure 3.5, the risk for lodgepole pine was higher. Moreover, the relative

risk illustrated in Figure 3.7 suggested that more than half of the cells are more likely

to be infested if they contain lodgepole pine. The relative risk of lodgepole pine

compared to jack pine had an average of 1.89 indicating that, on average, each cell

is 1.89 times more likely to be infested if it contains lodgepole pine. It also had a

median of 1.67 meaning that for 50% cells, lodgepole pine is 1.67 times more likely to

be infested. Additionally, the parameter s had a value of 0.558 during the outbreak

stage, demonstrating that infested jack pine has a lesser influence on the spread to

nearby new host trees. It meant that the reproduction rate in jack pine is only 0.558

times that of lodgepole pine. Together, our findings suggested a lower likelihood of

infestations in jack pine compared to lodgepole pine.

weight in presence model weight in abundance model

outbreak stage 0.93 1

Table 3.2: The optimal weights of SCAD penalty for the outbreak stage.
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Covariates Presence
Model

Abundance
Model

Northness -0.07 0.091

Eastness -0.102 -0.192

Slope -0.332 0.183

Pine identity 3.089 0.691

Pine density 0.142 0.317

Age 1.096 0.042

Minimum temperature in
summer

1.899 -1.35

Maximum temperature in
summer

-2.192 0.394

Relative Humidity -5.424 0.303

Wind Speed 0.696 0.863

Soil Moisture Index -2.458 0.608

Degree Days -2.331 0.51

Overwinter Survival Rate -2.474 -0.609

Last year infestations -28.138 1.05

Dispersal impacts within 4 km 1449.039 0.257

Table 3.3: The coefficients of the standardized covariates in the outbreak data model.
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Figure 3.3: The 95% confidence intervals of the standardized non-zero coefficients of
our covariates in the presence model in the outbreak stage.
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Figure 3.4: The 95% confidence intervals of the standardized non-zero coefficients of
our covariates in the abundance model in the outbreak stage.
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Figure 3.5: The histogram of the absolute risk showing the likelihood of jack pine
infestation corresponding to equation 3.1 during the outbreak stage.
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Figure 3.6: The histogram of the absolute risk showing the likelihood of lodgepole
pine infestation corresponding to equation 3.3 during the outbreak stage.
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Figure 3.7: Histogram of the relative risk showing the ratio of the likelihood of lodge-
pole pine infestation to jack pine infestation corresponding to equation 3.4 during the
outbreak stage.

3.4 Discussion

This study’s findings suggested that the new host, jack pine, is a less suitable host

compared to lodgepole pine. Our results confirmed the initial hypothesis that jack

pine has a lower probability of infestation and rate of reproduction. This supported

the findings reported in Bleiker et al. (2023), which state that the likelihood of in-

festing a jack pine is lower than lodgepole pine.

The newly introduced covariate, pine identity, played a significant role in our hier-

archical model, exhibiting positive signs in both the presence and abundance models.

It had the second largest coefficient value in the presence model and the third largest

in the abundance model. These values highlighted the importance of pine species

in the host selection process, indicating a strong preference for lodgepole pine. For

other covariates, such as the minimum temperature in summer, maximum tempera-

57



ture in summer, and overwinter survival rate, the results were less interpretable. This

discrepancy is likely a result of the inconsistent impacts before and after the peak

infestation, coupled with the scarcity of data available prior to the peak.

Previous studies in tree biology have shown that jack pine is susceptible and can

be poorly defended (Cullingham et al., 2011; Moss, 1949; Rice et al., 2007a, 2007b).

Incorporating environmental and ecological covariates, our study further examined

and quantified the relative susceptibility of jack pine compared to lodgepole pine. The

findings indicated that jack pine has a lower probability of infestation and reduced

productivity. Specifically, during an outbreak, lodgepole pine is on average 1.89

times more likely to be infested. Additionally, the reproduction rate of jack pine is

only 0.558 times that of lodgepole pine. These rates implied a potentially reduced

severity of infestation in jack pine forests compared to lodgepole pine forests, which

mitigated concerns about their spread into the boreal forests in Canada, as discussed

in Nealis and Peter (2008), Robertson et al. (2009a), Safranyik et al. (2010), and

Taylor and Safranyik (2003). In conclusion, our results indicated the possibility of

further invasion into the boreal forest, with jack pine serving as a bridge. However,

the severity of infestations was expected to be lower compared to those in lodgepole

pine.

While our results aligned with our expectations, their accuracy was constrained

by the limited reports of jack pine infestations in aerial surveys. The current focus

of these surveys is primarily on lodgepole pine forests (Agriculture and Forestry,

2020; Sustainable Resource Development, 2007). Aerial surveys conducted in 2009,

2010, and 2011 indicated a potential threat to jack pine forests in northwest Alberta.

However, detailed information about the actual conditions is scant, as aerial surveys

did not include the northern areas after 2011. Additionally, ongoing climate change

could influence our findings. The anticipated rise in winter temperatures in Alberta

(Hayhoe & Stoner, 2019) might decrease beetle mortality during winter (Safranyik

& Wilson, 2006), and changes in forest compositions due to climate change could
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increase uncertainty in beetle migration patterns (Monserud et al., 2008).

Furthermore, the accuracy of our results was limited by the precision of our co-

variates. These covariates were detected and estimated at varying levels of precision.

For instance, elevation, aspect, and slope maps had a resolution of 100 m, while pine

density was estimated by using maps with a resolution of 250 m (Beaudoin et al.,

2014; Goodsman et al., 2016), and the pine identity value was estimated from a logis-

tic model presented in a map with a resolution of 1000 m (Burns et al., 2019). Given

these limitations in both the aerial surveys and the covariates, the reliability of the

absolute risk of infestations was reduced. This suggested a need to shift our focus

towards the relative risk, which compares the absolute risk between lodgepole pine

and jack pine.

Our results was also constrained by the inherent limitations of the hierarchical

model we selected. Our regression model did not account for spatial autocorrelation,

which could lead to an underestimation of the significance of the covariates (Legendre,

1993). Consequently, it is essential to collect more comprehensive data on jack pine

and acquire covariate maps with finer resolution. Additionally, adopting a more

advanced modeling approach will be crucial for enhancing the accuracy of future

evaluations concerning the beetle’s impact on jack pine forests.
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Chapter 4

Impact of climate factors on
infestations under climate change

4.1 Introduction

Climate change has been seen as the central factor in many species’ invasions (Iverson

& Prasad, 1998). It affects temperature and precipitation allowing more locations to

become suitable habitat for invasive species. The past three decades (1980-2010) have

been recorded as the warmest in history, featuring carbon dioxide (CO2) levels 40%

higher than those in 1750 (Hartmann et al., 2013). As reported in Hayhoe and Stoner

(2019), Alberta has experienced a rise in summer temperatures ranging from +0.1

to +0.3◦C per decade. This change is accompanied by a significant increase in the

number of days with temperatures above 25◦C and a decrease in the frequency of

cold days. The report also highlights a projected change in precipitation patterns,

anticipating a 5-10% increase in precipitation from September to April in the future.

More specifically, the study of Jiang et al. (2017) shows that the seasonal precipitation

could change from -25 to 36%.

The Mountain Pine Beetle (MPB), a native and destructive insect of North Amer-

ica, has a developmental cycle that is highly dependent on temperature (B. J. Bentz

et al., 1991). Typically, it completes its life cycle in one year, progressing through four

life stages: egg, larva, pupa, and adult (Safranyik & Wilson, 2006). In the summer,

MPBs lay eggs that hatch into larvae. These larvae spend winter and spring beneath
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the bark, emerging as adults in the following summer. The adults then leave their

hosts to find new trees to infest. For a one-year life cycle, beetles typically require

a cumulative temperature of at least 833 degrees above 5.6◦C (Safranyik & Wilson,

2006). Most beetles emerge when temperatures exceed 20◦C (Safranyik & Carroll,

2007), and a range of 19◦C to 41◦C is necessary for successful dispersal in summer

(Mccambridge, 1971). Additionally, overwintering success is crucial for maintaining

MPB populations (aukema2008movement; Safranyik, 1978). The larval stage of

the mountain pine beetle, typically occurring in winter, is recognized as the stage with

the most cold tolerance (B. Bentz & Mullins, 1999; Safranyik & Wilson, 2006). The

commonly accepted lower lethal temperature (LLT) for this stage is around −40◦C

(B. Bentz & Mullins, 1999; Cooke, 2009). Other life stages have lower cold tolerance.

The egg and pupal stages reach 50% mortality at around −20◦C (Bleiker & Smith,

2019; Bleiker et al., 2017), and adult beetles rarely survive the winter.

Climate change exerts a multifaceted impact on both beetles and lodgepole pines,

affecting various aspects of their biology. Rising temperatures across all seasons lessen

the challenge of accumulating the minimum degree-days required for the beetle’s life

stage development, leading to more beetles in the following summer (Jiang et al.,

2017). An increase in the number of days with temperatures above 25◦C during

summer leads to heightened beetle activity, facilitating greater dispersal (Safranyik &

Wilson, 2006). The decrease in the frequency of cold days during winter significantly

increases the overwinter survival rate for all beetle life stages, resulting in more beetles

emerging in the subsequent summer (Régnière & Bentz, 2007).

Rising temperatures also have the potential to directly increase forest productivity

by providing extra heat and lengthening the growing season. However, this benefit

could be negated if the increase in warmth is not accompanied by a sufficient rise

in precipitation, potentially exacerbating drought conditions and adversely affecting

tree growth (Chhin et al., 2008; Monserud et al., 2008; Sauchyn et al., 2003). In

Alberta, the dryness index is expected to rise by 20% to 30%, suggesting a more
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pronounced drying trend (Barrow & Yu, n.d.). This increased dryness could diminish

pine trees’ resistance to beetle attacks. Additional research by Monserud et al. (2008)

predicts an increase in the site index value, indicating that dominant tree heights in

areas with adequate precipitation could grow by up to 5 meters. The same study

also underscores the potential decrease in lodgepole pine habitats, forecasting a loss

of 59% by the 2080s. Such changes in forest composition could further complicate

the prediction of beetle migration patterns. Given the potential changes in temper-

ature and precipitation and the conclusion of Sambaraju et al. (2012), which posits

a continuing increase in habitat suitability in Alberta, we anticipated an increase in

both the frequency and number of infestations in lodgepole pine forests.

To accurately project beetle dynamics under climate change, we employed the

hierarchical Zero-inflated Negative Binomial (ZINB) model discussed in the second

and third chapters. Unlike the models in aukema2008movement; Kunegel-Lion

and Lewis (2020) and Srivastava and Carroll (2023), which estimate only the pres-

ence/absence, our regression model assessed both presence/absence and abundance,

utilizing comprehensive biological information to describe the habitat and beetle ac-

tivity. Our model was more sensitive to variations in infestations and offered a more

comprehensive understanding of the MPB population dynamics.

By utilizing the number of infestations as our response variable, we incorporated

a range of environmental and ecological covariates. To analyze the impact of climate

change, we projected two risks: the likelihood and the numbers of infestations. These

two risks were estimated using two components within the Zero-inflated Negative Bi-

nomial (ZINB) model: the presence model, which is based on a Bernoulli distribution,

and the abundance model, which employs a Negative Binomial distribution.

In this chapter, we concentrated on areas with pure lodgepole pine, as most infesta-

tions in Alberta have occurred in such forests. Pine identity is an index developed to

distinguish between lodgepole and jack pine, with values ranging from 0 to 1 (Burns

et al., 2019). Values less than 0.1 typically represent stands containing jack pine,
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while those greater than 0.9 indicate lodgepole pine. A value of 1 is indicative of a

pure lodgepole pine stand. For our analysis, the selected area is characterized as pure

lodgepole pine, denoted by a pine identity value of 1.

Our objective was to create risk maps that visually represent both the likelihood

of occurrence and the projected expected number of infestations. To achieve this,

we utilized similar data sources as in the previous two chapters. These included

aerial survey data from Alberta Environment (Agriculture and Forestry, 2020), pine

attribute information from the National Forestry Inventory (NFI) (Beaudoin et al.,

2014), and climate data sourced from BioSIM. Our study encompassed a 14-year

dataset spanning from 2007 to 2020. Following a similar approach to Kunegel-Lion

and Lewis (2020), we have divided the data for the selected area to separate the

outbreak infestation period from the subsequent declining stage. As illustrated in

Figure 4.2, the outbreak period included the years from 2007 to 2014, while the

growth peak declining stage comprised the years from 2015 onwards. The selected

area was depicted in Figures 4.1, while the observed dynamics were presented in

Figures 4.2.
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Figure 4.2: Histogram of the observed infestations in the selected area as shown in
Figure 4.1.

4.2 Method

4.2.1 Study area and data preparation

As illustrated in Figures 4.1, this chapter focused on the study of lodgepole pine

stands located in the western part of Alberta. The selected area, shown in Figure

4.1, corresponded to the area selected in Chapter 2 containing pure lodgepole pines.

We have chosen this area due to the clear outbreak observed as shown in Figure 4.2.

In this chapter, we focused on the dynamics of the MPB in relation to climate-

related variables such as relative humidity, soil moisture index, degree days, and

overwinter survival rate. Our emphasis on broad-scale patterns arising from climate

meant that we did not include the more detailed topographic variables listed in Table

3.1. To avoid complexities arising from mixed pine genetics (as discussed in Chapter

3), our analysis was concentrated on regions where the predominant pine species is
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consistently lodgepole pine. The maximum temperature in summer was excluded

from the analysis due to its strong correlation with degree days, and the minimum

temperature in summer was excluded due to interpretability issues.

We have established three climate change scenarios: Representative Concentration

Pathway (RCP) 2.6, 4.5, and 8.5. A higher RCP value indicates a scenario of more se-

vere global warming, reflecting greater greenhouse gas emissions. For these scenarios,

we substituted the asterisk-marked covariates listed in Table 4.1 with corresponding

climate change values. These values were generated using BioSIM, based on projec-

tions from the HadGEM2 model with a 10 km resolution (Martin et al., 2006; Ringer

et al., 2006). In BioSIM, we produced 10 replications for each covariate under each

RCP scenario and then used the mean of these 10 replicates to replace the original

covariates. Following the approach in Chapters 2 and 3, we utilized grid cells with

a resolution of 500 m for our analysis. The selected area, as depicted in Figure 4.1,

comprised 9810 cells.
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Variables Description

Pine density Pine density (stems/cell; including jack pine, hybrid pine and lodgepole pine)
(Beaudoin et al., 2014). The computing method is mentioned in Chapter 2.

Age Average age of the leading pines in each cell (Beaudoin et al., 2014).

*Relative Humidity Average relative humidity from March to May in the current year.

Wind Speed Average wind speed at 2 meters in July and August in the current year.

*Soil Moisture In-
dex

Average soil moisture index from May to July, estimating the water supply for
tree growth; current year (Hogg et al., 2013).

*Degree Days Cumulative degree days above 5.5◦C from the September of the previous year
to the August in the current year (Safranyik et al., 1975).

*Overwinter sur-
vival rate

Probability of survival over the winter; the winter before the current year summer
(%) (Régnière & Bentz, 2007).

Last year infesta-
tions within cell

Number of pines killed last year within the cell.

Dispersal influence
within 4 km

Expected number of beetles flying from all directions to the center cell excluding
the counted within cell infestations (Carroll et al., 2017).

Infestation (Re-
sponse variable)

Number of trees killed this year.

Table 4.1: The description of covariates and response variable considered in this
chapter.

4.2.2 Comparative analysis

Since we only selected covariates that have been shown to be significant in the previ-

ous two chapters, we fitted the hierarchical ZINB model without penalties. Our aim

was to analyze the influence of key climatic covariates, including relative humidity,

soil moisture index, degree days, and overwinter survival rate, on infestations under

climate change. We defined risks differently from those in Chapter 3. We assessed the

risk of infestations and the number of infestations through the presence and abun-

dance models, following Bernoulli and Negative Binomial distributions, respectively.

We employed three RCP levels: 2.6, 4.5, and 8.5. Within each RCP scenario, we

estimated the probability of infestations from the presence model and the expected

number of infestations using the abundance model. We set the value of last year’s in-

festations within a cell and the dispersal influence within 4 km to be the 10% quantile

of the non-negative values, which are 3 and 0.05, respectively. The asterisk covariates
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in Table 4.1 were replaced by the mean values of 10 replications generated in BioSIM

using the inherent HadGEM2 model (Martin et al., 2006; Ringer et al., 2006). We

replaced the non-asterisk covariates with the median values for each cell during the

outbreak and peak growth decline periods to mitigate the influence of extreme val-

ues. Five maps were created under each RCP level for both presence and abundance

models. Four maps were generated by altering one asterisk covariate at a time, and

in the fifth map, all asterisk covariates were changed. The general procedure was

presented in Figure 4.3.

Predict Presence
(predicted infestation count if 

present)

Predict Abundance

Predict under climate 
scenarios

(probability of infestation)

Fit hierarchical 
models for MPB 

presence/abundance

• Yearly infestation data 2007-20
• Covariates (pine, previous 

infestation and climatic)

• Fix beetle pressure to moderate level 
• Choose climate covariates (2100 RCP 

2.6, 2100 RCP 4.5, 2100 RCP 8.5)

MPB presence
(logistic regression)

MPB abundance 
if present

(negative binomial 
regression)

Hierarchical model

Figure 4.3: The modeling flow used to create risk maps incorporated yearly climatic,
and ecological covariates.

4.3 Results

We fitted two hierarchical models for two different stages in the selected area shown

in Figure 4.1. We have included the plots from the growth peak declining stage in

Appendix C. As shown in Figures 4.4 and 4.5, our covariates indicated that during

an outbreak, the soil moisture index was less important in both models and pine

density was not significant in the abundance model. In the presence model, overwinter

survival rate and degree days positively impacted the probability of occurrence, while

a higher relative humidity was associated with a reduced likelihood. The abundance

model showed that degree days and overwinter survival rate positively affect beetles,
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whereas relative humidity has a negative impact.

We also showed the predicted value of four climatic covariates from BioSIM under

climate change scenarios. As shown in Figure 4.6, as the temperature goes up, rela-

tive humidity rose with the south area showing more significant difference of moisture.

Figure 4.7 illustrated that soil moisture decreases as global temperatures rise, poten-

tially resulting in diminished pine resistance to beetle attacks. Figures 4.8 indicated

that degree days increase with rising global temperatures and were much higher than

the mean of the historical values. Additionally, Figure 4.9 showed that compared to

the mean of historical values in the outbreak, the overwinter survival rate increases,

while the rate under RCP 2.6 is higher than under RCP 4.5 and the rate under RCP

8.5 is higher than two other RCPs’.

By substituting four climate covariates simultaneously, we observed that the prob-

ability of infestation and the number of infestations increase as the global mean

temperature rises. The probability of occurrence and the log scale of the expected

infestations were estimated using the median value of each cell over years for all co-

variates, except the last year infestations and dispersal influence within 4 km, which

are fixed at 3 and 0.05.

Our results showed that changes in relative humidity lead to a decrease in both the

probability of occurrence and the number of infestations, as illustrated in Figures 4.10

and 4.11. The influence of soil moisture index under climate change on beetles was

minimal. Figures 4.12 and 4.13 did not present significantly different results under

various climate scenarios. Figures 4.14 and 4.15 demonstrated that an increase in

degree days significantly raises both the likelihood of beetle presence and the number

of infestations. Conversely, the impact of the overwinter survival rate under climate

change was relatively minor. Figures 4.16 (b, c) and 4.17 (b, c) showed a slight

decrease in both likelihood and number of infestations as the overwinter survival rate

decreases when transitioning from RCP 2.6 to RCP 4.5. However, moving from RCP

4.5 to 8.5, we saw an increase in both values, due to the increased cold tolerance, as
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shown in Figures 4.16 (c, d) and 4.17 (c, d). As depicted in Figures 4.18 and 4.19,

both the probability of occurrence and the number of infestations were higher than

those estimated using the median of historical values during outbreaks, suggesting an

overall positive impact of climate change on the MPB.

Relative Humidity

Soil Moisture Index

Degree Days

Overwinter Survival Rate

−0.25 0.00 0.25 0.50

Presence Model

(a) The coefficients of the four standardized
climate covariates in the presence model in
the outbreak stage.

Age

Pine Density

Dispersal Influence Within 4km

Wind Speed

Last Year Infestations

0 1 2 3

Presence Model

(b) The coefficients of the five standard-
ized non-climate covariates in the presence
model in the outbreak stage.

Figure 4.4: Presence model coefficients for the selected area (Figure 4.1) in the out-
break stage.

Relative Humidity

Soil Moisture Index

Degree Days

Overwinter Survival Rate

−0.2 −0.1 0.0 0.1

Abundance Model

(a) The coefficients of the four standardized
climate covariates in the abundance model
in the outbreak stage.

Age

Pine Density

Dispersal Influence Within 4km

Wind Speed

Last Year Infestations

0.0 0.1 0.2

Abundance Model

(b) The coefficients of the five standard-
ized non-climate covariates in the abun-
dance model in the outbreak stage.

Figure 4.5: Abundance model coefficients for the selected area (shown in Figure 4.1)
in the outbreak stage.
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(a) Mean of the relative humidity from 2007
to 2014 from BioSIM in the selected area
(shown in Figure 4.1).
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(b) Projected relative humidity from
BioSIM in the selected area (shown in
Figure 4.1) under RCP 2.6 in 2100.
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(c) Projected relative humidity from
BioSIM in the selected area (shown in
Figure 4.1) under RCP 4.5 in 2100.
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(d) Projected relative humidity from
BioSIM in the selected area (shown in
Figure 4.1) under RCP 8.5 in 2100.

Figure 4.6: Relative humidity in the selected area (shown in Figure 4.1): Current and
projected values under different RCP scenarios.
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(a) Mean of the soil moisture index from
2007 to 2014 from BioSIM in the selected
area (shown in Figure 4.1).
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(b) Projected soil moisture index from
BioSIM in the selected area (shown in Fig-
ure 4.1) under RCP 2.6 in 2100.
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(c) Projected soil moisture index from
BioSIM in the selected area (shown in Fig-
ure 4.1) under RCP 4.5 in 2100.
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(d) Projected soil moisture index from
BioSIM in the selected area (shown in Fig-
ure 4.1) under RCP 8.5 in 2100.

Figure 4.7: Soil moisture index in the selected area (shown in Figure 4.1): Current
mean and projected values under different RCP scenarios.
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(a) Mean of the degree days from 2007 to
2014 in the selected area (shown in Figure
4.1).
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(b) Projected degree days from BioSIM in
the selected area (shown in Figure 4.1) un-
der RCP 2.6 in 2100.
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(c) Projected degree days from BioSIM in
the selected area (shown in Figure 4.1) un-
der RCP 4.5 in 2100.
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(d) Projected degree days from BioSIM in
the selected area (shown in Figure 4.1) un-
der RCP 8.5 in 2100.

Figure 4.8: Degree days in the selected area (shown in Figure 4.1): Current mean
and projected values under different RCP scenarios.
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(a) Mean of the overwinter survival rate
from 2007 to 2014 in the selected area
(shown in Figure 4.1).
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(b) Projected overwinter survival rate from
BioSIM in the selected area (shown in Fig-
ure 4.1) under RCP 2.6 in 2100.
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(c) Projected overwinter survival rate from
BioSIM in the selected area (shown in Fig-
ure 4.1) under RCP 4.5 in 2100.
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(d) Projected overwinter survival rate from
BioSIM in the selected area (shown in Fig-
ure 4.1) under RCP 8.5 in 2100.

Figure 4.9: Overwinter survival rate in the selected area (shown in Figure 4.1): Cur-
rent and projected values under different RCP scenarios.

74



0.00

0.25

0.50

0.75

1.00

(a) Probability of occurrence estimated in
the presence model in the selected area
(shown in Figure 4.1) using outbreak model
and fixing all covariates except beetle pres-
sure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except relative humidity in the selected
area (shown in Figure 4.1) using outbreak
model under RCP 2.6 in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except relative humidity in the selected
area (shown in Figure 4.1) using outbreak
model under RCP 4.5 in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except relative humidity in the selected
area (shown in Figure 4.1) using outbreak
model under RCP 8.5 in 2100.

Figure 4.10: Comparative analysis of current and future presence under three RCP
scenarios, illustrating a decreasing of probability of occurrence as temperatures in-
crease when varying relative humidity. Only relative humidity is varied under four
scenarios.
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(a) log scale of the expected infestations es-
timated in the abundance model in the se-
lected area (shown in Figure 4.1) using out-
break model and fixing all covariates except
beetle pressure by median for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except relative humidity in
the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 2.6 in 2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except relative humidity in
the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 4.5 in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except relative humidity in
the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 8.5 in 2100.

Figure 4.11: Comparative analysis of current and future abundance under RCP sce-
narios, illustrating a decreasing of number of infestations from current to RCP 2.6, an
increasing from RCP 2.6 to 4.5 and a decreasing from RCP 4.5 to 8.5. Only relative
humidity is varied under four scenarios.
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(a) Probability of occurrence estimated in
the presence model in the selected area
(shown in Figure 4.1) using outbreak model
and fixing all covariates except beetle pres-
sure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except soil moisture index in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 2.6 in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except soil moisture index in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 4.5 in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except soil moisture index in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 8.5 in 2100.

Figure 4.12: Comparative analysis of current and future presence under three RCP
scenarios, illustrating an increasing of probability of occurrence as temperatures in-
crease when varying soil moisture index. Only soil moisture index is varied under
four scenarios.
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(a) log scale of the expected infestations es-
timated in the abundance model in the se-
lected area (shown in Figure 4.1) using out-
break model and fixing all covariates except
beetle pressure by median for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except soil moisture index in
the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 2.6 in 2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except soil moisture index in
the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 4.5 in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except soil moisture index in
the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 8.5 in 2100.

Figure 4.13: Comparative analysis of current and future abundance under three RCP
scenarios, illustrating no significant difference as temperatures increase when varying
soil moisture index. Only soil moisture index is varied under four scenarios.
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(a) Probability of occurrence estimated in
the presence model in selected area (shown
in Figure 4.1) using outbreak model and fix-
ing all covariates except beetle pressure by
median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except degree days in the selected area
(shown in Figure 4.1) using outbreak model
under RCP 2.6 in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except degree days in the selected area
(shown in Figure 4.1) using outbreak model
under RCP 4.5 in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except degree days in the selected area
(shown in Figure 4.1) using outbreak model
under RCP 8.5 in 2100.

Figure 4.14: Comparative analysis of current and future presence under three RCP
scenarios, illustrating an increasing of probability of occurrence as temperature in-
crease when varying degree days. Only degree days is varied under four scenarios.
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(a) log scale of the expected infestations es-
timated in the abundance model in the se-
lected area (shown in Figure 4.1) using out-
break model and fixing all covariates except
beetle pressure by median for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except degree days in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 2.6 in 2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except degree days in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 4.5 in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except degree days in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 8.5 in 2100.

Figure 4.15: Comparative analysis of current and future abundance under three RCP
scenarios, illustrating an increasing of numbers of infestations as temperatures in-
crease when varying degree days. Only degree days is varied under four scenarios.
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(a) Probability of occurrence estimated in
the presence model in the selected area
(shown in Figure 4.1) using outbreak model
and fixing all covariates except beetle pres-
sure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except overwinter survival rate in the
selected area (shown in Figure 4.1) using
outbreak model under RCP 2.6 in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except overwinter survival rate in the
selected area (shown in Figure 4.1) using
outbreak model under RCP 4.5 in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except overwinter survival rate in the
selected area (shown in Figure 4.1) using
outbreak model under RCP 8.5 in 2100.

Figure 4.16: Comparative analysis of current and future presence under three RCP
scenarios, illustrating an increasing of probability of occurrence as temperature in-
crease when varying overwinter survival rate. Only overwinter survival rate is varied
under four scenarios.
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(a) log scale of the expected infestations es-
timated in the abundance model in the se-
lected area (shown in Figure 4.1) using out-
break model and fixing all covariates except
beetle pressure by median for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except overwinter survival rate
value in the selected area (shown in Figure
4.1) using outbreak model under RCP 2.6 in
2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except overwinter survival
rate in the selected area (shown in Figure
4.1) using outbreak model under RCP 4.5
in 2100.

1

2

3

(d) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except overwinter survival
rate in the selected area (shown in Figure
4.1) using outbreak model under RCP 8.5
in 2100.

Figure 4.17: Comparative analysis of current and future abundance under three RCP
scenarios, illustrating an increasing of the number of infestations as temperatures
increase when varying overwinter survival rate. Only overwinter survival rate is varied
under four scenarios.

82



0.00

0.25

0.50

0.75

1.00

(a) Probability of occurrence estimated in
the presence model in the selected area
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sure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except four climate covariates in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 2.6 in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except four climate covariates in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 4.5 in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except four climate covariates in the se-
lected area (shown in Figure 4.1) using out-
break model under RCP 8.5 in 2100.

Figure 4.18: Comparative analysis of current and future presence under three RCP
scenarios, illustrating an increasing of probability of occurrence as temperature in-
crease when varying four covariates. Only four climate covariates are varied under
four scenarios.
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(a) log scale of the expected infestations es-
timated in the abundance model in the se-
lected area (shown in Figure 4.1) using out-
break model and fixing all covariates except
beetle pressure by median for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except four climate covariates
in the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 2.6 in 2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except four climate covariates
in the selected area (shown in Figure 4.1) us-
ing outbreak model under RCP 4.5 in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except four climate covariates
in the selected area (shown in Figure 4.1)
using outbreak model under RCP 8.5.

Figure 4.19: Comparative analysis of current and future abundance under three RCP
scenarios, illustrating an increasing of the number of infestations as temperatures
increase when varying four covariates simultaneously. Only four climate covariates
are varied under four scenarios.
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4.4 Discussion

Our results suggested that climate change could benefit beetles, leading to a higher

probability and number of infestations in lodgepole pine forests. In our model, degree

days were a crucial factor, guiding our projections of infestation probability and

numbers under climate change scenarios. With rising temperatures, degree days could

increase the egg hatch successful rate, encourage more dispersal and increase adult

emergence (Bleiker & Van Hezewijk, 2016; Safranyik & Wilson, 2006; Sambaraju

et al., 2012). Winter temperature was also a crucial factor showing less impacts

on infestations compared to degree days. As global mean temperatures rise, the

resulting milder winters lead to increased beetle survival rates, subsequently resulting

in larger beetle populations in the following summer (Régnière & Bentz, 2007; Taylor

& Safranyik, 2003). According to the projections from BioSIM, relative humidity

was expected to show an overall increasing trend, albeit with local variations. This

increase in relative humidity, when combined with its negative impact on beetles, led

to a general reduction in both the probability and number of infestations. The soil

moisture index’s impact remained ambiguous in our model, as its confidence intervals

in both presence and abundance models included zero, indicating insignificance. This

result could be attributed to the minimal variation in soil moisture within the selected

study area.

Our findings were consistent with previous studies suggesting an increased likeli-

hood of outbreak under climate change scenarios (Pacific Forestry Centre & Carroll,

Allan L, 2006; Sambaraju et al., 2012; Srivastava & Carroll, 2023; Taylor & Safranyik,

2003). These studies primarily focused on how climate change could reshape MPB

habitats and extend their range. Our research specifically examined the impact of

key climate-related covariates on MPB dynamics in lodgepole pine forests. Our re-

sults showed that future infestations are largely driven by degree days and overwinter

survival rates. Seasonal temperatures were expected to increase by approximately
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0.048◦C annually (Jiang et al., 2017), with the annual mean minimum temperature

projected to rise from around −5◦C to 0◦C by 2100 (Eum et al., 2023). These trends

suggested that the degree days and overwinter survival rates of the beetle will inten-

sify, leading to more suitable habitats at higher latitudes. While Chapter 3 indicated

that jack pine is less susceptible to infestation and supports fewer reproductions, the

evolving climate - characterized by changing temperatures and precipitation patterns

– still poses a risk of future infestations.

Additionally, our results should be primarily interpreted as indicative of general

trends under climate change, owing to inherent uncertainties in our covariates and

model. The reliability of estimates from BioSIM heavily depends on the proximity to

the nearest weather stations. The absence of weather stations north of the study area

introduced significant uncertainties, particularly affecting the patterns of relative hu-

midity, soil moisture index, and overwinter survival rate. Moreover, the applicability

of our regression model was limited to the scope of the available data and as demon-

strated in Chapter 2, prediction accuracy was sacrificed for greater interpretability

of MPB population dynamics. Therefore, our findings lacked precision and should

be regarded as indicative rather than definitive. Additionally, the HadGEM2 model,

known for its conservative projections, suggested that the actual future impact of

climate change could be more severe than our projections indicated (Collins et al.,

2011).
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Chapter 5

Conclusion

The potential range expansion of the mountain pine beetle has raised concerns among

people, particularly following the outbreak in the late 1990s and 2000s. This outbreak

enabled the beetles to breach the barrier of the Rocky Mountains, reaching North-

west Alberta (Nealis & Peter, 2008; Robertson et al., 2009a; Safranyik et al., 2010;

Sambaraju et al., 2012; Taylor & Safranyik, 2003). As a consequence, this expansion

directly exposed jack pine, a predominant species in Canada’s boreal forests extending

from Northern Alberta to Nova Scotia, to the risk of infestation (Rudolph & Laidly,

1990). Furthermore, the study by Cullingham et al. (2011) demonstrated the suc-

cessful attack of beetles on jack pine, heightening concerns about potential outbreaks

in jack pine forests.

Additionally, climate change has been seen as a crucial factor in past expansions

(Taylor & Safranyik, 2003). Warmer summer temperatures could enhance the beetles’

dispersal (Safranyik & Wilson, 2006), while milder winters could significantly increase

their survival rates (Régnière & Bentz, 2007; Taylor & Safranyik, 2003). Although

beetle activity will be suppressed if the temperature is excessively high, particularly

above 41◦C, the colder climate of Alberta provides sufficient opportunity for beetles

to reproduce before reaching the temperature threshold (Safranyik & Carroll, 2007;

Safranyik & Wilson, 2006).

In this thesis, we discussed the infestation in jack pine and the overall trend of in-
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festations in lodgepole pine forests under climate change, utilizing data from Alberta.

We will briefly summarize the related results and initiate a discussion for future work

in the following paragraphs.

5.1 Model for mountain pine beetle dynamics

Before examining two biological questions, our initial step involved variable and model

selection to identify covariates and a model that best match the population dynamics

of mountain pine beetle in Alberta. Through statistical hypothesis testing, we con-

cluded that our study should include geographical covariates (such as northness, east-

ness, and slope), climate-related covariates (maximum and minimum temperatures in

summer, overwinter survival rate, degree days, relative humidity, soil moisture index,

wind speed), and ecological covariates (pine age, pine density, last year infestations,

and dispersal influence within 4 km).

Employing this revised set of covariates, we discovered that the Zero-Inflated Neg-

ative Binomial (ZINB) model offered a better fit for the dynamics in Alberta and

demonstrated higher accuracy in predicting infestations during 2012 and 2013. Al-

though the Zero-Inflated Negative Binomial (ZINB) model outperformed the Poisson

and Zero-inflated Poisson models, its limitations were evident in the residual plots. A

perfectly fitting model would produce a residual plot without any dense patterns or

clear increasing or decreasing trends in the residuals, as noted by Feng et al. (2020).

Such a plot would also exhibit homogeneity. Unfortunately, our data displayed pat-

terns of residuals grouping together and showed heterogeneity, which was likely due

to the model’s failure to account for spatial autocorrelations.

The standard regression model always has lower accuracy when predicting the

future compared with machine learning models. Our hierarchical model exhibited low

accuracy, despite predicting only four severity classes rather than the exact number

of infestations in the near future. However, our hierarchical model offered stronger

interpretability, aiding in a better understanding of the dynamics of the mountain
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pine beetle. It allowed us to analyze separately the impacts of covariates on the

presence and abundance of infestations.

The application of penalties in our model also merited mention. They allowed for

the inclusion of comprehensive information when mitigating concerns about multi-

collinearity (Hoerl & Kennard, 1970). The integration of variable selection within the

model fitting process offered a time-efficient approach, particularly beneficial consid-

ering 18 covariates, which would otherwise result in 218 subsets using the best subset

selection method (Fan & Li, 2001; Hocking & Leslie, 1967). A potential solution to

the current model’s drawbacks could be the utilization of a spatial hierarchical model

with penalties (Chi & Zhu, 2008).

5.2 Mountain pine beetle in jack pine forest

A key conclusion of this thesis, which supported the findings of Bleiker et al. (2023),

was the lower likelihood of an outbreak in jack pine compared with lodgepole pine.

Utilizing the best model selected in Chapter 2, our analysis revealed that lodgepole

pine is, on average, 1.89 times more likely to be infested compared to jack pine.

Jack pine exhibited a lower reproduction rate, with a value only 0.558 times that

of lodgepole pine. By considering the complex physical environment, our outcome

contrasted with previous suggestion based on the examination of tree biology, which

showed that jack pine can be poorly defended (Clark et al., 2014). Our results,

from the perspective of spatial ecology, provide an overview of the beetle’s behavior,

indicating that, given past climate and precipitation patterns, it might be challenging

for beetles to establish themselves in jack pine forests.

However, these dynamics could shift under the influence of climate change. The

range of the mountain pine beetle is largely determined by weather patterns and

seasonal suitability (Jenkins et al., 2001; Logan & Bentz, 1999; Logan & Powell,

2001). Among the climate covariates, cold winters play a crucial role in restricting

the mountain pine beetle population (aukema2008movement; Taylor & Safranyik,
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2003). As illustrated in Chapter 4, climate change could lead to a significant increase

in degree days and overwinter survival rates, potentially expanding suitable habitats

for the mountain pine beetle. Tree availability is also a key factor influencing beetle

behavior (Safranyik et al., 2010; Safranyik & Wilson, 2006). Projections suggest that

by the 2080s, the lodgepole pine forests in Alberta could face a reduction of 59%

(Monserud et al., 2008). This decrease in lodgepole pine forests may reduce food

sources for the mountain pine beetle, potentially driving them to infest jack pine

forests. Although our findings indicated a low likelihood of infestations in jack pine

forests, ongoing climate change still poses a risk of future infestations.

5.3 Impacts of climate factors under climate change

In Chapter 4, we analyzed the impact of four climate-related covariates - degree days,

overwinter survival rate, soil moisture index, and relative humidity - on mountain pine

beetle population dynamics in lodgepole pine forests under the influence of climate

change. Our findings indicated that degree days plays the most significant role,

exhibiting a strong positive effect on the mountain pine beetle population. The

overall trend suggested an increase in both the probability and number of infestations,

pointing to more frequent outbreaks approaching 2100.

It is important to note that our results should be considered indicative of potential

future scenarios rather than definitive predictions. As outlined in Chapter 2, the

accuracy of our hierarchical model was limited to 73% when predicting peak years

infestations in the near future. Moreover, the covariates used in our analysis contained

inherent uncertainties. The four climate-related covariates, generated using BioSIM,

were based on simulations from the four nearest weather stations, and their precision

was closely linked to the distance to these stations. This was evident in Figures 4.6,

4.7, 4.8, and 4.9, where edges can be observed due to the uneven distances to the

weather stations. Additionally, the relatively small size of the selected study area

may obscure certain insights related to climate change. The area’s limited extent
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resulted in more uniformity in temperature, soil moisture, and relative humidity.

This uniformity could potentially explain the ambiguous role of the soil moisture

index in our model and the less pronounced impacts of the overwinter survival rate on

infestations. Furthermore, the HadGEM2 model, known for its conservative climate

change projections (Collins et al., 2011), suggested that future trends could be more

severe than our current projections. Future studies with more representative area

could provide more insights on climate change.

5.4 Conclusion

This thesis examined two key biological questions: the dynamics of the mountain pine

beetle population in jack pine forests and the impact of climate change on lodgepole

pine forests. By incorporating environmental and ecological covariates, our study

shed light on the interactions among the physical environment, forests, and beetles.

These covariates enhanced the realism of our estimates regarding the relative risk of

infestations in jack pine compared to lodgepole pine, as well as the reproduction rate.

The indicative trends in lodgepole pine forests under climate change suggested that

temperature is a primary driver of beetle dynamics. Furthermore, the local variations

projected for relative humidity indicated an increase in the spatial variability of future

infestations. Although our results based on past data showed a low probability of

infestations in jack pine forests, the potential consequences of climate change implied

that the risk of infestations in these forests should remain a concern.
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Appendix A: Appendices to
chapter 2

A.1 Spatial Auto-correlation

Spatial autocorrelation is a common phenomenon in ecological data. In the context

of the mountain pine beetle, the influence of dispersal on infestations cannot be

neglected. Although utilizing grid cells of 500m in size leads us to expect reduced

spatial autocorrelation, it remains essential to examine how spatial autocorrelation

manifests in each year’s data. We employ the Moran’s I statistic along with hypothesis

tests to reveal the autocorrelation in each year’s data within the area depicted in

Figure A.1. Based on Carroll et al. (2017), we assume that the influence of an

infestation is up to 4 km. We conduct two-sided tests with the null hypothesis stating

that there are no spatial autocorrelations in the adjacent cells. As shown in Table

A.6, the value of Moran’s I statistic is relatively small. However, the hypothesis tests

have a value 0 indicating that spatial auto-correlation plays a significant role in this

area.
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Figure A.1: The position of the selected area in Alberta map along with pine density
of lodgepole pine and jack pine (stems/hectare).

Year Moran’s I P(I>Z)

2007 0.14 0

2008 0.16 0

2009 0.32 0

2010 0.42 0

2011 0.42 0

2012 0.27 0

2013 0.27 0

2014 0.3 0

2015 0.28 0

2016 0.28 0

2017 0.27 0

2018 0.16 0

2019 0.14 0

2020 0.11 0

Table A.1: Moran’s I statistic with p-value
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A.2 Age-height model
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Figure A.2: Selected area in the eastern Alberta

To develop age-height models, we utilize the available age and height data from AVI,

with a specific focus on the geographical area discussed in the chapter 3 as shown

in Figure A.2. In this region, we can observe the genetic transition of the dominant

pine species in Alberta, shifting from lodgepole pine to jack pine as we move from

south to north. We conduct hypothesis testing to ascertain if there are any important

differences among the pattern of pine growth among three species. The population-

averaged age-height model we considered is (Meng et al., 2009) :

Height =
b1

1 + eb2+b3 log(Age+1)
(A.1)

Based on the pine distributions shown in Burns et al. (2019), we group the pines

into three species: lodgepole pine, lodgepole-jack hybrid pine, and jack pine. We then

calculate the average height for each age group within each species and fit the logistic

model to analyze the relationship between age and mean height. Plotting age against
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mean height, we observe that the variance of height tends to increase with the age

of the pine trees across all three species as depicted in Figure A.3. Thus, to make

reliable estimation, we try the following two assumptions :

heighti ∼ N(
b1

1 + eb2+b3 log(Agei+1)
, σ2 = b4 + b5Agei) (A.2)

log (heighti) ∼ N(log(b1)− log(1 + exp(b2 + b3 ∗ x)), σ2 = b4) (A.3)
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Figure A.3: Age-Height plots for three species ((a)lodgepole pine, (b)hybrid pine and
(c)jack pine).

The coefficients obtained from the models fitted to the three individual species show

no important differences compared to the model fitted to all the pines (presented in

Table A.2, Table A.3, Table A.4, and Table A.5). Additionally, all of the coefficients

fall within the 95% confidence interval, as illustrated in Figure A.4 and Figure A.5.

The R-Squared value indicates that combining all the species into a single model only
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slightly reduced the model’s performance, as shown in Table A.6. Although the R-

Squared value is slightly lower than that of the lodgepole pine model, it still exceeds

0.7. Therefore, we use the model fitted to all pines to estimate height.

Hypothesis b1 b2 b3 b4 b5 log-Lik

equation(2.13) 22.5972114 7.2104013 -1.9434286 1.2073589 0.1191352 -369.7866

equation(2.14) 22.0838185 7.1539065 -1.9202749 0.1433188 0 -427.197

Table A.2: Table of Parameters fitted to lodgepole pine models.

Hypothesis b1 b2 b3 b4 b5 log-Lik

equation(2.13) 21.62706194 6.61550130 -1.84729303 1.34628243 0.04048958 -373.9831

equation(2.14) 22.1312733 5.9732666 -1.6034224 0.4086919 0 -412.5634

Table A.3: Table of Parameters fitted to the hybrid pine models.

Hypothesis b1 b2 b3 b4 b5 log-Lik

equation(2.13) 22.70865440 5.53890111 -1.53347438 0.96496813 0.04969931 -396.9747

equation(2.14) 18.0504509 7.4675307 -2.2637383 0.5157982 0 -454.1574

Table A.4: Table of Parameters fitted to the jack pine models.

Hypothesis b1 b2 b3 b4 b5 log-Lik

equation(2.13) 23.30350240 6.38320129 -1.69921327 0.39726618 0.03541758 -439.2946

equation(2.14) 23.0833140 5.9968450 -1.5804953 0.2607932 0 -507.2572

Table A.5: Table of Parameters for the models fitted to all pines in this area.
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Figure A.4: Coefficients with 95% confidence interval under hypothesis equa-
tion(2.13)((a)lodgepole pine, (b)hybrid pine and (c)jack pine).
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Figure A.5: Coefficients with 95% confidence interval under hypothesis equation(2.14)
((a)lodgepole pine, (b)hybrid pine and (c)jack pine).

Model R Square

lodgepole pine 0.7409338

hybrid pine 0.6271369

jack pine 0.6271369

all three pines 0.7122566

Table A.6: R-Squared value of four fitted models.
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Appendix B: Appendices to
chapter 3

B.1 Results of the endemic stage

The endemic stage presents less significant covariates, with most of the confidence

intervals including zero in both models. The confidence intervals for pine identity

also include zero, suggesting a minimal influence of pine species on infestations. This

minimal influence leads us not to estimate the absolute and relative risks, as well as

the reproduction rate. The optimal penalties, coefficients, and their 95% confidence

intervals are shown below.

αabundance αpresence

endemic stage 0.25 1

Table B.1: The optimal weights of penalties for the outbreak stage and endemic stage.
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Covariates Presence
Model

Abundance
Model

Northness 0 -0.074

Easterness 0 -0.019

Slope 1.09 -0.008

Pine identity 2.4 0.539

Pine density 0.053 0.155

Age 0.264 0.326

Minimum temperature in
summer

0 -0.056

Maximum temperature in
summer

0 0.93

Relative Humidity 0 0.191

Wind Speed 0 -0.394

Soil Moisture Index 0 0.302

Degree Days 0.521 -1.014

Overwinter Survival Rate 0 0.805

Last year infestations 0 16.311

Dispersal impacts within 4 km 0 11.718

Table B.2: The coefficients of the standardized covariates in the endemic data model.
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Figure B.1: The 95% confidence intervals of the standardized non-zero coefficients of
our covariates in the presence model in the endemic stage. Last year infestations and
dispersal impacts within 4 km are 0 in the presence model.
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Figure B.2: The 95% confidence intervals of the standardized non-zero coefficients of
our covariates in the abundance model in the endemic stage.
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Appendix C: Appendices to
chapter 4

C.1 Plots of the growth peak declining stage in

the selected area

The results in the growth peak declining stage differ from those in the outbreak stage,

showing that the soil moisture index is significant in the presence model, and degree

days exhibit a negative sign in the abundance model, as shown in Figures C.1 and

C.2. We also present the historical values of four climate-related covariates during the

growth peak declining stage in Figure C.3. The overall trends under climate change

also show differences. As temperature rises, relative humidity negatively impacts the

probability of occurrence but increases the number of infestations, as demonstrated

in Figures C.4 and C.5. A similar trend is observed for the soil moisture index and

degree days. As illustrated in Figures C.6, C.7, C.8, and C.9, these covariates decrease

the probability of infestation and increase the numbers. The overwinter survival rate

positively affects infestations by increasing the probability of occurrence, although its

impact on abundance is minimal, as shown in Figures C.10 and C.11. Overall, the

trend in the growth peak declining stage indicates a decrease in probability and an

increase in numbers, with local variations depicted in Figures C.12 and C.13.
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(a) The coefficients of the four standardized
climate covariates in the presence model in
the growth peak declining stage.
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(b) The coefficients of the five standard-
ized non-climate covariates in the presence
model in the growth peak declining stage.

Figure C.1: Presence model coefficients for the selected area (Figure 4.1) in the growth
peak declining stage.
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(a) The coefficients of the four standardized
climate covariates in the abundance model
in the growth peak declining stage.
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(b) The coefficients of the five standard-
ized non-climate covariates in the abun-
dance model in the growth peak declining
stage.

Figure C.2: Abundance model coefficients for the selected area (shown in Figure 4.1)
in the outbreak stage.
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(b) Mean of the soil moisture index from
2015 to 2020 in the selected area (shown in
Figure 4.1).
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(c) Mean of the degree days from 2015 to
2020 in the selected area (shown in Figure
4.1).
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(d) Mean of the overwinter survival rate
from 2015 to 2020 in the selected area
(shown in Figure 4.1).

Figure C.3: Historical values of four climate-related covariates in the growth peak
declining stage.
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(a) Probability of occurrence estimated in
the presence model in the selected area
(shown in Figure 4.1) using growth peak de-
clining model and fixing all covariates ex-
cept beetle pressure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except relative humidity in the selected
area (shown in Figure 4.1) using growth
peak declining model under RCP 2.6 in
2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except relative humidity in the selected
area (shown in Figure 4.1) using growth
peak declining model under RCP 4.5 in
2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except relative humidity in the selected
area (shown in Figure 4.1) using growth
peak declining model under RCP 8.5 in
2100.

Figure C.4: Comparative analysis of current and future presence under three RCP
scenarios, illustrating a decreasing of probability of occurrence as temperatures in-
crease when varying relative humidity. Only relative humidity is varied under four
scenes.
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(a) log scale of the expected infestations
estimated in the abundance model in the
selected area (shown in Figure 4.1) using
growth peak declining model and fixing all
covariates except beetle pressure by median
for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except relative humidity in
the selected area (shown in Figure 4.1) using
growth peak declining model under RCP 2.6
in 2100.

−5

0

5

10

(c) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except relative humidity in
the selected area (shown in Figure 4.1) using
growth peak declining model under RCP 4.5
in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except relative humidity in
the selected area (shown in Figure 4.1) using
growth peak declining model under RCP 8.5
in 2100.

Figure C.5: Comparative analysis of current and future abundance under RCP sce-
narios, illustrating an increasing of number of infestations as temperatures increase
when varying relative humidity. Only relative humidity is varied under four scenes.
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(a) Probability of occurrence estimated in
the presence model in the selected area
(shown in Figure 4.1) using growth peak de-
clining model and fixing all covariates ex-
cept beetle pressure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except soil moisture index in the se-
lected area (shown in Figure 4.1) using
growth peak declining model under RCP 2.6
in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except soil moisture index in the se-
lected area (shown in Figure 4.1) using
growth peak declining model under RCP 4.5
in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except soil moisture index in the se-
lected area (shown in Figure 4.1) using
growth peak declining model under RCP 8.5
in 2100.

Figure C.6: Comparative analysis of current and future presence under three RCP
scenarios, illustrating a decreasing of probability of occurrence as temperatures in-
crease when varying soil moisture index. Only soil moisture index is varied under
four scenes.
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(a) log scale of the expected infestations
estimated in the abundance model in the
selected area (shown in Figure 4.1) using
growth peak declining model and fixing all
covariates except beetle pressure by median
for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except soil moisture index in
the selected area (shown in Figure 4.1) using
growth peak declining model under RCP 2.6
in 2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except soil moisture index in
the selected area (shown in Figure 4.1) using
growth peak declining model under RCP 4.5
in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except soil moisture index in
the selected area (shown in Figure 4.1) using
growth peak declining model under RCP 8.5
in 2100.

Figure C.7: Comparative analysis of current and future abundance under three RCP
scenarios, illustrating an increasing of number of infestations as temperatures increase
when varying soil moisture index. Only soil moisture index is varied under four scenes.
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(a) Probability of occurrence estimated in
the presence model in selected area (shown
in Figure 4.1) using growth peak declining
model and fixing all covariates except beetle
pressure by median for cells.

0.00

0.25

0.50

0.75

1.00

(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except degree days in the selected area
(shown in Figure 4.1) using growth peak de-
clining model under RCP 2.6 in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except degree days in the selected area
(shown in Figure 4.1) using growth peak de-
clining model under RCP 4.5 in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except degree days in the selected area
(shown in Figure 4.1) using growth peak de-
clining model under RCP 8.5 in 2100.

Figure C.8: Comparative analysis of current and future presence under three RCP
scenarios, illustrating an increasing of probability of occurrence as temperature in-
crease when varying degree days. Only degree days is varied under four scenes.
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(a) log scale of the expected infestations
estimated in the abundance model in the
selected area (shown in Figure 4.1) using
growth peak declining model and fixing all
covariates except beetle pressure by median
for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except degree days in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 2.6
in 2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except degree days in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 4.5
in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except degree days in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 8.5
in 2100.

Figure C.9: Comparative analysis of current and future abundance under three RCP
scenarios, illustrating a decreasing of numbers of infestations as temperatures increase
when varying degree days. Only degree days is varied under four scenes.
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(a) Probability of occurrence estimated in
the presence model in the selected area
(shown in Figure 4.1) using growth peak de-
clining model and fixing all covariates ex-
cept beetle pressure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except overwinter survival rate in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 2.6
in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except overwinter survival rate in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 4.5
in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except overwinter survival rate in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 8.5
in 2100.

Figure C.10: Comparative analysis of current and future presence under three RCP
scenarios, illustrating an increasing of probability of occurrence as temperature in-
crease when varying overwinter survival rate. Only overwinter survival rate is varied
under four scenes.
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(a) log scale of the expected infestations
estimated in the abundance model in the
selected area (shown in Figure 4.1) using
growth peak declining model and fixing all
covariates except beetle pressure by median
for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except overwinter survival rate
value in the selected area (shown in Figure
4.1) using growth peak declining model un-
der RCP 2.6 in 2100.

−5

0

5

10

(c) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except overwinter survival
rate in the selected area (shown in Figure
4.1) using growth peak declining model un-
der RCP 4.5 in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fix-
ing all covariates except overwinter survival
rate in the selected area (shown in Figure
4.1) using growth peak declining model un-
der RCP 8.5 in 2100.

Figure C.11: Comparative analysis of current and future abundance under three
RCP scenarios, illustrating a decreasing of the number of infestations as temperatures
increase when varying overwinter survival rate. Only overwinter survival rate is varied
under four scenes.
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(a) Probability of occurrence estimated in
the presence model in the selected area
(shown in Figure 4.1) using growth peak de-
clining model and fixing all covariates ex-
cept beetle pressure by median for cells.
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(b) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except four climate covariates in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 2.6
in 2100.
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(c) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except four climate covariates in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 4.5
in 2100.
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(d) Probability of occurrence estimated in
the presence model while fixing all covari-
ates except four climate covariates in the
selected area (shown in Figure 4.1) using
growth peak declining model under RCP 8.5
in 2100.

Figure C.12: Comparative analysis of current and future presence under three RCP
scenarios, illustrating a decreasing of probability of occurrence with local variations
as temperature increase when varying four covariates. Only four climate covariates
are varied under four scenes.
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(a) log scale of the expected infestations
estimated in the abundance model in the
selected area (shown in Figure 4.1) using
growth peak declining model and fixing all
covariates except beetle pressure by median
for cells.
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(b) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except four climate covariates
in the selected area (shown in Figure 4.1) us-
ing growth peak declining model under RCP
2.6 in 2100.
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(c) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except four climate covariates
in the selected area (shown in Figure 4.1) us-
ing growth peak declining model under RCP
4.5 in 2100.
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(d) log scale of the expected infestations es-
timated in the abundance model while fixing
all covariates except four climate covariates
in the selected area (shown in Figure 4.1) us-
ing growth peak declining model under RCP
8.5.

Figure C.13: Comparative analysis of current and future abundance under three RCP
scenarios, illustrating an increasing of the number of infestations with local variations
as temperatures increase when varying four covariates simultaneously. Only four
climate covariates are varied under four scenes.
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