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Abstract

As the modern industrial process is becoming increasingly complex, it is
difficult to operate the process effectively. Accordingly, the importance of inte-

grating different tools within a package for intelligent process operation has been

realized.

This thesis study primarily consists of two part. A unique feature of this
research is the utilization of the meta-system concept for the integration issues

both in Al systems and in conventional programs.

In the first part of this study, a multilayer feedforward Backpropagation
(BP) neural network has been developed for inferential process modelling, then
integrated to an Integrated Distributed Intelligent System (IDIS). To demonstrate
the ability of Artificial Neural Network (ANN) in process modelling, ANN was
applied to the maximization of the desired product yield by predicting its volatility
in refinery plants. Two case studies have been carried out for different refinery
processes using the BP network. Due to major drawbacks in the Generalized
Descent (GD) method, which is a typical optimization algorithm in BP, the Con-
jugate Gradient (CG) method was also considered in training ANN. In the first
case study, the ANN and Regression Analysis (RA) models were compared in

representing the relation between the plant stream data and the product volatility.



In the second case study, ANN model was also applied to demonstrate its ability
to fit noisy plant data. The ANN model can then be used for inferred volatility

control.

The second part of the thesis is regarding the development of an interactive
Computer-Aided Control System Design (CACSD) environment for chemical proc-
esses by applying the meta-system concept to the integration of several independ-
ently developed conventional programs. Its result is an interactive graphical soft-
ware package PCET (Process Control Engineering Teachware). PCET has a
hierarchical structure of several independently developed subprograms which are
integrated under the control of a supervising system, meta-system. It covers a
wide spectrum of process control engineering applications, including Time Domain
Auialysis (TDA), Routh Stability Criterion (RSC), Root Locus Technique (RLT),
Frequency Domain Analysis (FDA), Discrete-time System Analysis (DSA), Linear
State Space Analysis (LSA) and Industrial Application Case (IAC). This package
can be used to design and analyze control systems. It can also improve under-
standing of the basics of process control engineering, and help users gain experi-

ence on simulation and computer-aided design.
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Chapter 1

Introduction

This chapter describes the motivation and scope of this research as well as

the organization of the thesis.

1.1 Motivation

Many existing symbolic reasoning systems are developed for specific pur-
poses, and production rules are used to represent domain expertise. These systems
can only process symbolic information and make heuristic inferences. The lack of
numerical computation and coordination between single applications limits their
capability to solve real engineering problems. Solving engineering problems as

shown in Figure 1.1, however, normally requires qualitative and quantitative analy-
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ses together. Usually, qualitative decisions are mainly based on symbolic and
graphical information, while quantitative analysis is more conveniently performed

using numerical information. Both methods often complement each other.

Any numerical solution, no matter how perfect it is, is always an approxi-
mation to the true solution. The true solution is always represented analytically.
Analytical solutions car only be obtained by symbolic processing. Meanwhile, a
main disadvantage of the existing symbolic reasoning systems is their inability to
handle numerical computation. This makes these systems less useful for many
complicated engineering problems. Moreover, as a part of the accumulated knowl-
edge of human expertise, many practical and successful numerical computation
packages have been made available. Even if Artificial Intelligence (Al) emphasizes
symbolic processing and non-algorithmic inference (Buchanan, 1985), it should be
noted that the utilization of numerical computation will make intelligent systems
more powerful in dealing with engineering problems. Like many modern devel-
opments, Al and its applications should be viewed as a welcome addition to the

technology, but they cannot be used as a substitute for numerical computation.

The coordination of symbolic reasoning and numerical computation is essen-
tial in developing intelligent systems. More and more, the importance of coordi-
nating symbolic reasoning and numerical computing in knowledge-based systems
is being recognized. It has been realized that if applied separately, neither symbolic

reasoning nor numeric computing can successfully address all engineering prob-
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lems. Complicated problems cannot be solved by purely symbolic or numerical

techniques (Jacobstein et al., 1988, Wong et al., 1988).

Close coordination between symbolic reasoning and numerical computation
is required in the intelligent manufacturing environment. Figure 1.2 distinguishes
the coupling intelligent system from the symbolic reasoning system from the view-
point of software architecture. So far, many coupling intelligent systems have been
developed in various engineering fields to enhance the problem-solving capacity of
the existing symbolic reasoning systems (Kitzmiller and Kowalik, 1987). In the
intelligent decisionmaker for problem-solving strategy of optimal control (IDSOC),
a set of numerical algorithms to compute certainty factors is coupled in the process
of symbolic reasoning (Rao et al.,, 1988). Another coupling intelligent system
SFPACK incorporates expert system techniques in design package then supports
more functions to designers (Pang et al., 1990). Written in Franz Lisp, CACE-
III can control the startup of several numerical routines programmed in FOR-
TRAN (James et al, 1985). Similar consideration was taken into account by
Astrom's group (Astrom et al., 1986). More and more, the coordination of
symbolic reasoning and numerical computing in knowledge-based systems attracts

much attention.

The methods of integrating single symbolic reasoning systems and numerical
computation packages were proposed by Kitzmiller and Kowalik (1987). A few

developers tried to develop coupling intelligent systems with conventional lan-
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guages, such as FORTRAN, so that these symbolic reasoning systems could be
used as subroutines in a FORTRAN main program. Others suggested developing
coupling intelligent systems in conventional languages in order to achieve the
integration of numerical algorithms and symbolic inference. However, these meth-
ods prohibit developing and using the individual programs separately. This makes

acquiring new programs very difficult, and is not cost-effective.

Numerical languages often have a procedural flavor, in which the program
control is command-driven. They are very inefficient when dealing with processing
strings. Symbolic languages are more declarative and data-driven. However,
symbolic languages are very slow to execute numerical computations. Coupling
of symbolic processing with numerical computing is desirable to use numerical and

symbolic languages in different portions of a software system.
Currently, not all of the expert system tools or environments provide pro-
gramming techniques for developing coupling intelligent systems. However, many

software engineers are now building the general-purpose tools for coupling intel-

ligent systems that will be beneficial to Al applications to engineering domains.

1.2 Objectives and Scope

In order to solve the problems mentioned above, concepts of Integrated
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Distributed Intelligent System (IDIS) were proposed by Rao et al. (1987). In the
past several years, the Intelligence Engineering Laboratory at the University of
Alberta has been engaged in studying and developing a new architecture to control
and manage large-scale intelligent systems for industrial applications. So far, a

prototype IDIS platform has been implemented.

IDIS is a large knowledge integration environment, which consists of several
symbolic reasoning systems, numerical computation programs, a database manage-
ment subsystem, computer graphics packages, multimedia interfaces, as well as a
meta-system. It makes use of the advanced object-oriented programming tech-
nique in C++ language. The integrated software environment allows the running
of programs written in different languages, communication among programs, as
well as the exchange of data between programs and databases. These isolated
expert systems, numerical packages and programs are under the control of a
supervising expert system, namely the meta-system. The meta-system manages the

selection, coordination, operation and communication of these programs.

The thesis research is divided primarily into two parts. The first part of this
study is regarding the integration of Al tools by the meta-system described above.

The specific objectives of the first part of the study are

Integrated Process Modelling using Neural Network

- to deveiop a neural network system for inferential process modelling;
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- to integrate the neural network into IDIS under the control of the supervi-

sory intelligent system, namely, meta-system;

The second part of this study is regarding the integration of conventional pro-
grams. Even though the meta-system concept was originally developed for the
IDIS, it can be still applied to the integration of conventional programs for the
development of an integrated Computer-Aided Control System Design (CACSD)

package. The specific objectives of the sencond part of the study are

Integrated Control System Design

- to develop several subprograms dealing with different aspects of process
control system design,
- to develop an interactive CACSD environment by applying the meta-system

concept to the integration of coventional programs.
A unique feature of these two different integrated environments is the utilization

of the meta-system concept for the integration issues both in Al systems and in

conventional programs.

1.3 Organization

This thesis consists of six chapters. The first is this introductory chapter,

which covers the motivation and general objectives of the thesis. The thesis
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research is divided primarily into two parts.

The first part of this thesis is covered in Chapters 2 and 3. Chapter 2
describes the application of a multilayer feedforward ANN with backpropagation
learning paradigm for inferential process modelling. To verify its performance,
two case studies have been carried out to predict the desired product volatility in
refineries. Chapter 4 is regarding the integration of the neural network developed
in this study, as a subsystem, into IDIS by utilizing a new meta-system structure,

Meta-COOP.

The second part of this thesis, described in Chapters 4 and 5, involves
developing several subprograms dealing with different aspects of process control
system design and integrating them in an interactive environment under the control
of supervisory system. Chapter 4 describes the general integration strategy to
develop an integrated interactive computer-aided control system design environment
for chemical processes. Chapter 5 contains details functions of Process Control
Engineering Teachware (PCET), developed in this study, as well as illustrative

examples.

Chapter 6 contains some general concluding remarks, and provides suggestions

for future research.
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Chapter 2

Inferential Process Modelling via

Artificial Neural Network”

In this chapter, an Artificial Neural Network (ANN) is applied to predict the
volatility of the product for the maximization of the product yield in refinery
plants. Two case studies are carried out for different refinery processes using the
multilayer feedforward Backpropagation (BP) network. Due to major drawbacks
in the Generalized Descent (GD) method, which is a typical optimization algorithm
in BP, the Conjugated Gradient (CG) method is also considered in training ANN.
In the first case study, the ANN and Regression Analysis (RA) models are compared

in representing the relation between the plant stream data and the product volatility.

* Two versions of this chapter have been presented at the 2nd IFAC Workshop on Algorithms
and Architectures for Real-Time Control, August 31 - September 2, 1992 in Scoul, Korca and
at the 42nd Annual Canadian Chemical Engineering Conference, October 18-21, 1992 in

Toronto, Ontario, Canada.



Page 11

In the second case study, the ANN model is also applied to demonstrate its ability

to fit noisy plant data.

2.1 Introduction

Since the early 1980's, there has been an explosive growth in pure and
applied research related to ANNs. In recent years, ANN technology has attracted
attention in the control community because there are many systems, for which
rigorous mathematical models do not exist or are not sufficient to meet a full-scale
identification requirement, such as highly nonlinear chemical processes or very
complex industrial plants. In fact, there exist very complex systems with unknown
characteristics and uncertainties that are difficult to identify using mathematical

models. To model such systems, ANNs may be able to provide some promising

solutions.

ANNs have proven effective at solving pattern recognition problems in a
wide variety of areas including image processing, speech recognition, sensor inter-
pretation, motor control, and system identification (Haesloop and Holt, 1990).

Several factors motivate the use of ANN models:

1. general mapping capabilities

2. reliance on the knowledge specified through learning instead of a pre-

specified algorithm
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ability to use vast amounts sensory information
3. capability to respond at high speed to sensory inputs due to its parallel
4. structure

greater degree of robustness and fault tolerance due to their distributed

5. representation.

Many areas of chemical engineering such as fault detection and diagnosis (Watanabe
et al., 1989), process control (Cooper et al., 1992, Donat et al, 1990, and
Hernandez and Arkun, 1990), process design, and process modeling and simulation
can take advantage of these factors to organize and detect features from unpredictable
and/or imprecise process data. For many chemical engineering systems that are
difficult to model, a large amount of process measurement data is usually stored
in the database. Thus, these stored historical data can be used to develop an ANN
model that describes the input and output behavior of the process. ANN can learn
and adapt themselves to inputs from actual processes, thus allowing representation
of complex engineering systems that are difficult to model with traditional physical
engineering relations. In addition to the self-organizing capability of ANN, another
advantage is the parallelism inherent in the neurocomputing architecture. This
allows ANN system to be implemented using highly parallel hardware to achieve

real-time performance.

It is common to model a process prior to implement a modern centrol

algorithm (Haesloop and Holt, 1990). Process modelling can be done by applying
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first principles, such as mass and energy balance, which represent process variable
interactions from physical consideration. For complex chemical process systems
or industrial processes, however, it is often done by applying an identification
technique. The identified model is usually a linearized one around a chosen
operating condition even for a nonlinear process. Therefore, if the operating
condition is altered, the discrepancy between linearized model and true nonlinear
system behavior would be significant. ANNs offer the opportunity to directly
model nonlinear processes. With a more accurate nonlinear model, the plant-
model divergence mentioned above may be reduced. ANN modelling is such an
area with a non-programmed adaptive approach to processing engineering data
systems. ANNs can adaptively develop transformations in response to their en-
vironment. In contrast to programmed computing, ANNs are able to develop a

mapping function from examples of that function’s operation.

2.2 Background on Artificial Neural Network

This section provides fundamentals of ANNs including the multilayer

feedforward backpropagation learning paradigm.

2.2.1 What is an Artificial Neural Network?

ANN is nothing more than a computational system that performs brainlike
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functions simply because it was modelled similar to the human brain. It is com-
posed of highly interconnected simple processing elements, called artificial neu-
rons, in parallel. They are organized in patterns similar to biological neural
network. Due to its structural and functional resemblance to biological neural
network, it exhibits a number of characteristics of the human brain, for examples,
learning from experience by modifying its behavior in response to its environment,
generalizing from previous examples to new ones as a result of its structure and

abstracting essential characteristics of a set of inputs containing irrelevant data.

2.2,2 History

The idea of an ANN was originally conceived as an attempt to model the
biophysiology of the human brain, in other words, to understand and explain how
the human brain operates and functions. Along with the progress in neuroanatomy
and neurophysiology, psychologists were developing models of human learning in

order to produce computational systems that perform brainlike function.
In 1949, Hebb proposed a learning law that proved to be the most successful
model and became the starting point for ANN training algorithms. It showed

scientists how a network of neurons could exhibit learning behavior.

In the 1950s and 1960s, a group of researchers combined these biological
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and psychological insights to produce the first ANN, which was initially imple-
mented as an electronic circuit. Later it was converted to the more flexible
medium of computer simulation. Then many researchers including Marvin Minsky
developed networks consisting of a single layer of artificial neurons call perceptrons
and applied them to such diverse problems as weather prediction, electrocardio-
gram analysis, artificial vision, etc. At that time, they thought that reproducing the
human brain was only a matter of constructing a large enough network. However,
networks failed to solve problems superficially similar to those they had been
successful in solving. So Minsky, who is a respected senior scientist in this field,
carefully applied mathematical techniques and developed rigorous theorems re-

garding network operation.

In 1969, Minsky published a book titled PERCEPTRONS. In this book, he
proved that the single-layer networks can not theoretically solve many simple
problems, including the function performed by a simple exclusive-or gate. Even
he was not optimistic about the potential for progress. So discouraged researchers
left the field for areas of great promise. Government agencies redirected their
funding and ANN lapsed into obscurity for nearly two decades. Nevertheless, a
few dedicated scientists continued their efforts. Gradually, a theoretical foundation

emerged, upon which the more powerful multilayer networks of today are being

constructed.

In 1987, Rumelhart and other researchers invented backpropagation which
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provides a systematic means for training muitilayer network, thereby overcoming
limitations presented by Minsky. Although a broad range of ANN architectures
and learning paradigms are available, the backpropagation algorithm for multilayer
feedforward network is the most popular approach for current engineering prob-

lems because it is a simple and powerful method.

2.2.3 Biological and Artificial Neural Network

A human brain is known to contain over a hundred billion neurons which are
considered to be computing elements. These neurons communicate throughout the
body by way of nerve fibers that make perhaps one hundred trillion connections.
Figure 2.2.3.1 shows the structure of a pair of typical biological neurons. A
neurcn is the fundamental building block of the nervous system. It is called a cell
similar to all cells in the body; however, certain critical specializations allow it to
perform all of the computational and communicational functions within the brain.
The neuron consists of three sections: the cell body, the dendrites, and the axon,
each with separate but complementary functions. Dendrites extend from the cell
body to other neurons where they receive signals at a connection point called a
synapse. On the receiving side of the synapse, these inputs are conducted to the
cell body. There they are summed, some inputs tending to excite the cell, others
tending to inhibit its firing. When the cumulative excitation in the cell body
exceeds a thresh hold, the cell fires, sending a signal down the axon to other

neurons. Even though this basic functional outline has many complexities and
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exceptions, most ANNs model only these simple characteristics.

The artificial neuron was designed to mimic the first-order characteristics of
the biological neuron. Figure 2.2.3.2 represents an artificial neuron model. In
essence, a set of inputs labeled X, X,, ..., X is applied to the artificial neuron.
Each input represents the output of another neuron. Each signal is multiplied by
a corresponding weight W, W, ..., W, before it is applied to the summation
block, labeled £. Each weight corresponds to the strength of a single biological
synaptic connection. The summation block, corresponding roughly to the biological
cell body, adds all of the weighted inputs algebraically to determine the activation
level of the neuron. The summed signal S is usually further processed by an
activation function F to produce the neuron's output signal Y. If the activation
function F compresses the range of S, so that Y never exceeds some low limits
regardless of the value of S, F is called a squashing function. The squashing
function is often chosen to be sigmoidal function that is continuous and strictly
monotonic as shown in Figure 2.2.3.3. This function can be expressed
mathematically as F(S)=1/(1+e®). Another commonly used activation function is

the hyperbolic tangent, F(S)=tanh(S).

2.2.4 Architecture

A typical representation of the three-layer feedforward network is shown in

Figure 2.2.4.1. It is composed of many interconnected processing units or neurons
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Figure 2.2.3.2 Artificial neuron
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(N, neurons in the input layer, N, neurons in the hidden layer and N, neurons in
the output layer) organized in successive layers. The analysis and design of any
multilayer neural networks can be done similarly. The neuron j in the layer k first

computes the weighted sum of the N, | inputs,
Ny
Si,j,k = ;“/i.j.kxi 224.1)

where X's and W's represent the given input and its associated weight, respectively.

Then it outputs a nonlinear function of the sum in (2.2.4.1), which serves as an

input to the next layer.
Y,=F(,) (2242

Every neurons except those in the input layer functions in the same way. In the
first or input layer, neurons do not perform any computation but simply distribute

their inputs to all neurons in the next layer.

Only unknowns in this representation are these associated weights between
layers. So, in order to use the neural network model, these weights should be
estimated first. The evaluation of appropriate weights is called learning or training.
The objective of learning is to train the network so that application of a set of

inputs produces the desired or at least consistent set of outputs.
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2.2.S Backpropagation Learning Paradigm

Even though a broad range of ANN architectures and learning paradigms are
crrently available, the BP algorithm for multilayer feedforward ANNs is the most
common approach for current engineering applications mainly because it is a

simple and powerful method.

In the BP learning paradigm, estimation of weights is accomplished by
sequentially applying a set of inputs and desired outputs to the network, while
adjusting network weights according to a predetermined procedure. During train-
ing, the network weights gradually converge to values such that each input data

set produces the desired output.

The objective of the BP learning paradigm is to minimize the overall error,

E, between the desired and actual output:

N

1 P
—_ ( 1 D(l)
2% ] ) (2.2.5.1)

v

3
il

where D's and Y's represent the desired outputs and the actual outputs, respectively.
p represent the number of data set used to train the network. The sum of errors
between the desired outputs and actual outputs is required to be smaller than the
given error tolerance for the network to identify the system using the input-output

data.
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BP is known as a supervised synchronous learning paradigm. It is supervised
because for every input presented for learning, the expected or correct corresponding
output is available so the network can modify its weights accordingly by applying
the gradient descent method. It is synchronous because all the weights are modified
at each learning step. The network is expected to learn a number of data patterns

composed of inputs and associated outputs.
2.2.6 Generalized Descent (GD) Method

The basic strategy behind the standard BP algorithm is to perform gradient
descent in parameter space based on the individual errors between a set of network

mappings and the corresponding set of desired mapping examples.

1%
Eop =5 2. (%i2=D,)’ (2.2.6.1)

Before starting the training process, all of the weights are initialized at small
random values. This ensures that ths network is not saturated by large values of
the weights, and prevents certain other training pathologies. The first pattern is
then presented to the network. Figure 2.2.6.1 shows the training process. Learning

takes place in two successive steps: forward and backward passes.

During the forward pass, as described in the previous section, each neuron
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i in layer j computes the weighted sum of its inputs S and outputs Y, as in
(2.2.4.1) and (2.2.4.2), respectively. This process is czalled forward because it
takes place in layer j-1 before layer j and therefore propagates from the input layer
to the output layer. At this point the activations or outputs of all the neurons of

the network are available.

During the backward pass, the output error is backpropagated in the reverse

direction to minimize the error, E ,, between the desired and actual output,

E,=(Y,-D)F(S, for 1 <i <N, (output layer) (2.2.6.2)

where F' denotes the derivative of the activation function. For each of the N,

hidden units the error is computed as,
N.
E,=F (Sl-')gEk-lwﬂ-l for 1 <i<N, (hidden layer) (2.2.6.3)
Once the errors has been computed, the weights are modified as,
kaj =W L tn Ekd Yu (22.6.9)

where n is the step size of the gradient method and is sometimes called the

learning rate. Therefore, the weight matrix between the output and hidden layers
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can be updated from the output layer to the hidden layer. The next pattern is then

presented and the calculations are repeated.

The training procedures are iteratively carried out until the ANN can rep-
resent the relationships of these data within the given error tolerance. The
non-parametric model is obtained by the fully connected structure and values of
the weights. If well trained, the neural network can identify the system in terms

of the input-output data.

2.3 Case Studies for Refinery Process

From an engineering point of view, ANN modelling involves unknown pa-
rameters (the weight values) and given network topology (units, layers and
connections). It can be referred to as a non-parametric model that is totally
different from conventional mathematical models. By this definitions, ANNs can
be used to represent the input-output data and relationships of any physical system,
as long as sufficient input-output system data are collected. It is also assumed that
ANN modelling would only be used for systems whose mathematical models
cannot be obtained. Otherwise, conventional identification methods are probably

superior.

The new concept of non-parametric identification is based on the properties

of ANNSs using the given topology and adjustable weights. The main advantages
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from introducing ANNs are derived from the utilization of their learning ability,

associative memory, pattern classification and other such features.

2.3.1 Process Background

Refinery units usually process a combination of several different kinds of
crudes, to produce several products at different stages. Figure 2.3.1.1 is a schematic
diagram of a typical refinery unit. The objective of process control on these
processes is to maximize the desired product yield while its volatility is kept within
specification. Stage temperature, which has its primary impact on the desired
product volatility, is adjusted on a basis of the desired product viscosity, on the
other hand, laboratory measurement of the desired product vclatility is used as a
basis to adjust the drawoff rate or yield of the desired product, which primarily
affects its viscosity. However, since the processes are very complex ahd exhibit
high nonlinearity, in which there exist a large number of variables affecting the
desired product yields, the desired product yield is maximized by monitoring its
volatility. In other word, maximum desired product yield is achieved by maximizing

its volatility within specification.

In practice, to maximize the desired product yield, its volatility is controlled

by the following control strategy:

1. fixing the desired product yield by operator entered target
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2. controlling the desired product viscosity by manipulating the other product
draw rate
3. resetting the desired product yield target on the basis of laboratory

measurement of the desired product volatility

There are several problems in this control strategy. The first is that the yield
target is reset on the basis of the desired product volatility normally once a day.
It almost always results in volatility giveaway (below or above specification).
Volatility below specification indicates a lost opportunity for higher yield. Volatility
above specification is off-specification product: hence a deterrent to raising the
yield target, then the controller tends to operate with the conservative yield target
of the desired product, which may also result in volatility giveaway. Another
problem is that since the desired product volatility is measured infrequently via off-
line methods in the quality control laboratory, it takes a long time to understand
the full impact of manipulated variables on the volatility. Therefore, maximization

of the desired product yield can not be entirely satisfied by this control strategy.

2.3.2 Case Study I

To reduce the volatility giveaway, an on-line volatility analyzer can be used.
The use of the volatility analyzer, however, requires a high maintenance, for
examples, frequent recalibration, regular decoking, etc. The alternative is control-

ling the volatility as inferred from tower data. The operator can then enter a
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volatility target directly. While satisfactory performance can be expected from a
very well maintained volatility analyzer, the inferred volatility scheme is easily
justified based on the low development cost. Therefore, use of a volatility analyzer

could be avoided if the volatility can be predicted reliably from stream quality data.

From the distillation curve shown in Figure 2.3.1.2, where viscosity can be
seen to depict the midpoint of the cut, a few observations can be made. First,
some inverse relationship exists between viscosity of the cut and its volatility. For
a given cut width, an increase in viscosity implies a decrease in volatility (case B).
Second, for a given midpoint of the cut, a varying cut width affects volatility: a
wider cut will have higher volatility and vice versa (case C). Third, the shape of
cut’s light end tail affects the cut’s volatility. From these observations, the fol-

lowing empirical relationship can be postulated:

Volatility = Function ( viscosity, stage temperature, distillation )

where the stage temperature is chosen to indicate the cut width and distillation is

factored in as an internal reflux ratio.

2.3.2.1 Regression Model

In the Sarnia Refinery, laboratory measurements of the desired product have

been correlated to stream quality data by the linear regression technique. Because
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of difficulty in correlating a time-stamped laboratory result to noisy plant data
(error in the dependent variable plays havoc with traditional statistical methods),
they used the data from an ASPECT simulation of the process to determine the
functional relationship. The real data was then used to adjust the parameters of
the regression equation. The viscosity measurement in real data was the same as

in the simulation.

Because of significant cross-correlation between two independent variables
(stage temperature and viscosity), normalization of stage temperature vs viscosity
was made. The final correlation was established between the desired product

volatility and its viscosity, stage temperature and the internal reflux ratio above the

desired prodiict draw tray.

Y=a +a X +a X a X +a X +a X +ta X (23.21.1)

where

= the volatility of the desired product

Y

X, = the 'quality A’ of the desired product
X, = (a,-B)/,

X, = (aB,),

o, = the 'variable 1'

B, = the 'variable 2'
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1 = a7+a8Xl
b2 = a9+a10xl

a, a, a, a, a, &, 3, a, 3, a, 3, = constants
2.3.2.2 Artificial Neural Network Model

As pointed out in Section 2.2.6, standard backpropagation based on steepest
descent algorithm is very slow to converge because of the constant learning rate.
In order to increase the learning speed of the ANN, a new learning rate function

n(t) can be introduced as

N fawf e (2322.1)

nv= A+Age™ ”AWLLk ”2 <6

where A and A, are parameters to be chosen, and are very small (A>A>0, p and
8 > 0). They are system dependent and usually determined by experience and

knowledge on neural networks.

In the initial stage, n(t) has a relatively larger value because A is chosen
bigger, A >A, in order to promote a fast learning convergence. When the connec-
tion weight matrix is convergent to a certain degree (”AWiJ'kll2 < §), n(t) starts
decreasing until n(t) = A, and A is selected relatively small for better convergence

in the final stage.
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The ANN selected for the prediction of the desired product volatility from
the stream data has 3 neurons in the input layer (N =3) with 5 neurons in the single
hidden layer (N,=5) and 1 neuron in the output layer (N,=1). The data set used
for learning is the same as that used for regression analysis at the Sarnia refinery.

Ay A, and p were 0.5, 0.09 and 1, respectively.

2.3.2.3 Results and Discussion

A comparison of the performance between the RA model and the ANN
model for fitting the data is shown in Figure 2.3.2.3(a). The results show that the
ANN model clearly outperforms the regression model for all points. With the data
set not used for ANN learning, the ability of the ANN model to predict volatility
is also investigated. Figure 2.3.2.3(b) shows a comparison of RA model and ANN
model predictions for the desired product volatility from the tower stream data.
The results show that the ANN model also accommodates all 9 points much better

than the RA model.

Long term changes in operating conditions or change crude composition will
affect the accuracy of the ANN model as well as the regression model. Some
maintenance of the correlation is expected (i.e. periodically retraining ANN for
more accurate prediction of volatility or including crude composition changes in

ANN learning input variables).
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2.3.3 Case Study II

With the experience described in Case Study I, neural network approach for
inferential modelling has been applied to ESSO Strathcona Refinery. They also
process several other kinds of crudes. In this case study, more variables were
considered to cope with reality. For example, feed composition may vary from
time to time. Again, due to difficulty in dealing with noisy plant data by regression

analysis, only neural network model has been evaluated

2.3.3.1 Conjugate Gradient Method

The standard GD method, in minimizing the objective function, is known to
have several major drawbacks. First, it adapts the weights based on the error
from a single pattern representation instead of the overall error E which is the truc
objective function to be minimized. Secondly, the rates of convergence of this
algorithm are extremely slow and the improvement per iteration falls sharply.

Third drawback is that this method often leads to a local minimum.

To overcome the deficiencies of GD method mentioned above, Conjugate
Gradient (CG) method can be used to train the network. This method adapts the
v.eights based on the overall error which is the true objective function to be
minimized. Therefore it is more robust and has better convergence properties than

GD method.
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To minimize the overall error E, the CG method updates the weights at

n+1th iteration as:

Wl = w4 o gm (23.3.1.1)

where w is the vector of weights and a is found by carrying out a unidimensional

line minimization in the given search direction s. The new search direction at each

iteration is found by

’ m?
s(n) = —p 4+ A5 s(n-l)
g ”g("'l)”z (23312)
with s = . g The elements of the steepest descent vector g are given by
Hidden to output layer:
5 vy _p® Y(l) (l) vy
= M _phyy®g -
E( 12 = Di)Y (1- Y)Y (2.3.3.1.3)
Input to hidden layer:
5= 3 S X0, - DY, (1= Y)Y - YO WX (233.1.4)

I=1 m=l

2.3.3.2 Results and Discussion

The ANN selected for the prediction of the desired product volatility from



Page 38

the stream data has 11 units in the input layer (N,=11) with 13 neurons in the
single hidden layer (N =13) and 1 neuron in the output layer (N,=1). The learning
data set was collected from the real operating data used for last threc years at
ESSO Strathcona Refinery. The ability of the ANN model for fitting the real plant
data is shown in Figure 2.3.3.2(a). The results show that, to a degree, the ANN
model is able to fit even noisy plant data. Figure 2.3.3.2(b) shows the prediction
of the desired product volatility from the plant stream data by the ANN model.
It also shows that the ANN model can predict the volatility to a certain degree

of accuracy.

2.4 Conclusions

In this chapter, it has been demonstrated that ANN can model the product
volatility at refinery plants. The ANN model matches the data much better than
the RA model. In addition, the ANN model has the ability to fit noisy plant data

and to predict the product volatility.

Although ANNSs have the capability to cope with the nonlinearity, complex-
ity and uncertainty of dynamic systems in terms of their numerical characteristics
in identifying the relationshipe and features of the system input-output data, there
are some of the crucial ANNs problems to be overcome:

ANN needs too much learning time (usually, the smaller acceptable error,
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1. the longe¢r :-aining time). ANNs may not be a good choice for time-varying
systems.
Convergence and stability cannot be guaranteed.
2. Due to lack of robustness, some initial parameters(weights, learning rate,
3 etc.) may strongly influence the ANNs’ performance: global assurance is

needed.
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Chapter 3

Integrating Neural Network to IDIS

This chapter first introduces fundamental concepts and methodology of
Integrated Distributed Intelligent System (IDIS) as well as the meta-system
environment, Meta-COOP, then discusses the integration of neural network, as a

subsystem for numerical computational tool, into IDIS.

3.1 Integrated Distributed Intelligent Systems (IDIS)

As indicated in Chapter 1, the existing intelligent systems can only be used
alone and inflexibly for a special purpose. It is difficult to integrate the isolated
intelligent systems that have been available, even though each of them is well

developed for a specific task. In general, the best way to solve this complicated
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problem by intelligent system techniques is to distribute knowledge and to separate
domain expertise. In such a case, several intelligent systems may be used together,
each of them being developed to solve a particular sub-domain problem. How-
ever, conventional technology prohibits us from integrating several knowledge-

based systems that have been successfully developed.

It is not difficult to find industrial problems that can not be solved by using
the existing expert systems or numerical computation techniques. Many process
variables that affect process operation and product quality and quantity are only
partially understood, and sometimes may not be directly measurable. For example,
some empirical data from industry cannot be effectively processed using existing
expert systems or numerical computation packages alon. A new methodology
integrating neural networks, symbolic reasoning systems, numerical computation
packages as well as graphic simulation tools may be suitable to deal with such kind

of data.

In the chemical industry, a vast amount of operation data and information
from various sensors will be processed in time. So far, database technology zni
numerical computation methods have been used to deal with operation data.
However, how to acquire knowledge effectively from the data source still remains

a difficult issue.

Conflicts usually arise because different domain expert systems may make
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different decisions on the same issues based on different criteria. Most intelligent
systems for industrial processes work in an interdisciplinary field, and often deal
with conflicting requirements. These intelligent systems may produce conflicting
decisions based on even the same information. One of the bottlenecks for applying
intelligent systems commercially is to integrate different quantitative and qualita-

tive methods.

Distributed intelligent system technology is a very practical method for
improving the ability of knowledge base management and maintenance (Bridgeland
and Huhns, 1990; Conry et al, 1990). Since most industrial problems need
knowledge and experience from different areas, the integration of distributed in-
telligent systems is a significant factor in solving more complicated industrial

problems.

The modern industrial process is becoming increasingly difficult for opera-
tors to understand and operate effectively. Due to the importance of the operator's
role in the systems, the quality of interaction between human operators and com-
puters is crucial. Thus, developing an inteiligent multimedia interface, which
communicates with operators through multiple media and modes such as'language,
graphics, animation and video (Maybury, 1992), will facilitate human operators

interaction with complex real-time monitoring and control systems.

Besides the above applications, the following drawbacks often arise in ex-



Page 44

isting intelligent systems:

1. lack of efficient search methods to process different knowledge in a large
decision-making space;

2. lack of coordination of symbolic reasoning, neural networks and numeric
computation as well as graphics representation;

3. lack of integration of different intelligent systems, software packages and
commercial Al tools;

4. lack of efficient management of intelligent systems,

5. lack of capability to handle conflicts among intelligent systems;,

6. lack of a parallel configuration to deal with a multiplicity of knowledge
representation and problem solving strategies;

7. difficulty in modifying knowledge bases by end-users rather than the original

developers.

In solving the problems mentioned above, the key issue is how to develop
a meta-system and implement multiple media integration. Concepts of integrated
distributed intelligent system were proposed by Rao et al. (1987). So far, a

prototype IDIS platform is available.

IDIS is a large knowledge integration environment, which consists of several
symbolic reasoning systems, numerical computation programs, database manage-

ment subsystem, computer graphics packages, multimedia interfaces, as well as a
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meta-system. It makes use of the advanced object-oriented programming tech-
nique in C++ language. The integrated software environment allows the running
of programs written in different languages, communication among subprograms, as
well as the exchange of data between subprograms and databases. These isolated
expert systems, numerical packages and programs are under the control of a
supervising expert system, namely the meta-system. The meta-system manages the
selection, coordination, operation and communication of these programs. The
structure of the integrated distributed intelligent system is illustrated in Figure 3.1.

An integrated distributed intelligent system has the following advantages:

1. provides an open architecture to help users protect their investment when
intrcducing new computer technology;

2. coordinates all symbolic reasoning systems, numerical computation routines,
neural networks, and computer graphics programs in an integrated environ-
ment;

3. distributes knowledge into separate expert systems, numeric routines and
neural networks so that the knowledge bases of these systems are easier to
change by commercial users other than their original developers;

4. acquires new knowledge efficiently;

5. finds a near optimal solution for conflicts and facts among different intelli-
gent systems;

6. provides the capability of parallel processing in an integrated distributed

intelligent system;
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7. communicates with measuring devices and final control elements in the
control systems, and transforms various input/output signals into the stand-

ard communication formats.

IDIS is a key technology to the industrial automation at the knowledge-
intensive stage. This new software integration platform can utilize different knowl-
edge (analytical and heuristic knowledge), process different information (symbolic,

numerical, and graphic information), and integrate different computer languages.

3.2 Meta-system

So far, many intelligent systems have been developed. However, their ca-
pability of dealing with complicated problems is very limited. The main disadvan-
tages of the existing intelligent systems have been summarized in the previous
section. The two most urgent problems to be solved are how to coordinate
symbolic reasoning, numerical computation, neural networks, as well as computer

graphics, and how to integrate heterogeneous intelligent systems.

It has been realized that integrating different intelligent systems into a large-
scale knowledge environment is often necessary but difficult. In such an environ-
men:, a supervisory system that controls and manages the heterogeneous intelli-
gent subsystems is required. The supervisory system has to provide integration

functions in the following phases:
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1. integration of knowledge of different disciplinary domains;

N

. integration of empirical expertise and analytical knowledge;

3. integration of various objectives, such as research and development, system
design and implementation, process operation and control,

4. integration of different symbolic processing systems (expert systems);

5. integration of different numerical computation packages;

6. integration of symbolic processing systems, numerical computation systems,
neural networks, and computer graphics packages

7. integration of multimedia information, such as symbolic, numerical and graphic

information.

Phases 1 and 2 are at the knowledge level. Phase 1 also indicates the
characteristics of modern engineering techniques. Phase 3 functions at both the
knowledge and the functional levels. Phases 4 through 7 perform their integration
functions at the functional level, through the problem-solving level to the program

level.

3.2.1 Functions

The key issue in constructing an integrated distributed intelligent system is
to organize a meta-system. The meta-systein can thus be referred to as a 'control
mechanism of meta-level knowledge' (Rao, et al, 1987b). This new high-level

supervisory intelligent system, that is, a meta-system, is available to control IDIS.
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The main functions of a meta-system are described as follows:

1. Coordination function; The meta-system is the coordinator to manage all
symbolic reasoning systems, numeric computation routines, neural networks,

and computer graphics programs in an integrated distributed intelligent sys-

tem.
2. Distribution flinction: The meta-s: rit.utes knowledge to separate
expert systems, numeric routis, ri - .cztworks, and computer graphics

programs so that the integrated distritut=d intelligent sysiem can be man-
aged effectively. Such modularity makes the knowledge bases of these
intelligent systems easier to change by commercial users rather than their
original developers.

3. Integration function: The meta-system is the integrator which can help us
easily acquire new knowledge.

4. Conflicting reasoning function: The meta-system can provide a near optimal
solution: for conflicting solutions and facts among different intelligent sys-
tems.

5. Parallel processing function: The meta-system provides the possibility of
parallel processing in an integrated distributed intelligent system.

6. Communication function: The meta-system can communicate with the meas-
uring devices and the final control elements in the control systems and
transform various non-standard input/cutput signals into standard communi-

cation formats.
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3.2.2 Configuration

Like the common expert systems, the meta-system has its own database,
knowledge-base and inference engine, but it distributes its activities into the sepa-
rated, strictly ordered phases of information gathering and processing. The meta-
system configuration as shown in Figure 3.2, includes the following six main
components: an interface to the external environment, an interface to internal
subsystems, a meta-knowledge base, a global database, a static blackboard, and an

inference mechanism.

3.2.2.1 Interface to External Environment

The interface to the external environment builds the communication between
the users and internal sofiware systems as well as among the external software
systems. The interface plays a key role in an open structured software system in
communicating with other intelligent software systems to extend the system into

a much larger scale for more complicated tasks.

3.2.2.2 Meta-knowledge Base

The meta-knowledge base is the intelligence resource of the meta-system. It
serves as the foundation for the meta-system to carry out the managerial tasks.

The meta-knowledge base consists of a compiler and a structured frame knowl-



Databasc

Man-machine interface

Page 51

E(nowlcdgc acquisitioa [Explanation modulej

1 l
[I\Ieta-knowledge basejz( Inference engine J

Dynamic database

Figure 3.2 Meta-system configuration

Static
blackboard




Page 52

edge representation facility. The compiler converts the external knowledge rep-
resentation, which is obtained through the editor and is easy to understand by
users, into internal representation forms available in the inference mechanism. The
structure of knowledge representation can be production rule or frame or their
combination. Characterized by diversity and variety in nature, the meta-knowledge

may be better represented in object-oriented frame structures.

There are several modules in the frame to represent different components of
meta-knowledge. These components are functioned for specific purposes. For
example, the communication standardization module for heterogeneous subsys-
tems and the conflicting resolution module are formed for a general management
purpose at supervisory level. The module for knowledge about subsystems an4
the task assignment module have to be built according to each specific problem.
The meta-knowledge base employs an open organization structure. It allows new
intelligent functionality to enter the meta-knowledge base to engage more duties

in decision-making.

3.2.2.3 Global Database

The database in the meta-system functions as a global database for the
integrated distributed intelligent system, distinguished from the databases in the
subsystems, which are attached only to their individual subsystems. The interface

converts the external data representation form into an internal form. The data flow
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in the global database is controlled either by the inference engine, depending on

the corresponding module in the meta-knowledge base, or by users of certain

security classes.

3.2.2.4 Inference Mechanism

Due to the diversity of the meta-knowledge and the variety of its represen-
tation forms, the inference mechanism in the meta-system adopts various inference
methods, such as forward chaining, backward chaining, certain reasoning, uncer-
tain reasoning, conflict reasoning, and so on. The inference mechanism performs
operations and processing on the meta-knowledge. Additionally, it al<o carries out
various actions based on the reasoning results; that is, passing data between any
two subsystems, or storing new data in the database. Therefore, there are some

functional modules in the mechanism, which furtter extends the functionality of the

inference mechanism.

3.2.2.5 Static Blackboard

The static blackboard is an external memory for temporary storage of infor-
mation that is needed when the system is running. Limited by the on-board
mema:y space, the subsystems in IDIS are unable to execute at the same time. In
fact, it is unnceessary to run the entire system simultaneously. Very often, the

meta-system and all subsystems are run on the distributed hardware environment
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so that there must be a buffer area in the external memory for any two subsystems
to exchange information. Besides data storage, the conversion of data in hetero-
geneous languages into exchangeable standard form is also completed in the static

hlackboard.

1.2.2.6 dnterface to Internal Subsystems

This component of the mcra-system is established based on each specific
applicaiion. The internai ‘aterface connects any individual subsystems which are
used in problein-solving and under the control and management of the meta-
system. Each module of the interface converts a nonstandard data form from a
specific subsystem into a standard form in the integrated distributed intelligence
environment. Conversion among the standard forms of different languages is

carried out by the meta-system.

3.3 Meta-COOP

To successfully implement the functions of the meta-system, a new structure
of the meta-system, namely Meta-COOP, is currently available. Meta-COOP
coded in C++ utilizes the objective-oriented programming technique and runs
under UNIX™, VMS™ and DOS™ operating systems for the SUN workstation,
VAX and PC 486 machines. Meta-COOP p: svides such distinct characteristics as

the integration of various kncwledge representations and inference methods.
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The process to solve a complicated problem is actually a synthesizing proc-
ess, which employs various knowledges and problem-solving strategies. In Meta-
COOP, the organization structure of the knowledge-base can be divided into
several componeni... Meta-COOP adopts the object- -~ ~ed programming tech-
nique and frame-based knowledge representation to implement the organization,

management, maintenance and applications as a complex knowledge base system.

Meta-COOP distributes its meta-knowledge into many knowledge bases.
Each knowledge base can be viewed as a fundamentai knowledge unit (this may
be a set of rules, a set of operation commands, or numerical models) tol deal with
an industrial problem and attached to a frame or an object that represents the
problem. Frame-based or object-based knowledge representation not only de-
scribes in detail the attributes of an object but also hierarchically constructs the
general knowledge base system, thus expressing the internal relationship among

the knowledge bases. Such a hierarchy often has the two structures: classification

structure and decomposition structure.

The decomposition structure stands for the organizational characteristics ~f
an object in nature. Each part to be decomposed is always an organic part of the
whole object. If some parts in the decomposition structure are ignored, the whole
system may lose its original characteristics. Such a decomposition structure can

hierarchically represent the organizational construction and interrelations of knowl-

edge bases.
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The procedure to solve a complicated industrial problem consists of two
stages: the first stage is to decompose a complicated problem into many basic sub-
problems (from general to particular or from top to bottom). At the second stage,
the sub-problems are solved individually. Meta-COOP provides the intelligent
facilities for implementing this procedure. It resolves a complicated problem using
a frame-based hierarchical structure and accomplishes communication and conflict-
ing coordination between sub-problems through message sending. Each sub-
problem or subsystem (it is always viewed as an object in Meta-COOP) and the
interrelations can be described by the frame-based structure, while a knowledge
unit to handle the sub-problem is closely attached to a slot in a frame. A knowl-
edge unit may be constructed by a set of production rules, a set of operation
commands, analysis methods, external procedures written in any other languages,

and internal subroutines written in C™.

The classification structure describes the characteristics selection of a sub-
system or sub-problem. The classification relationship can be expressed by a

Superclass-Class-Subclass hierarchical structure in Meta-COOP.

With Object Oriented Programming (OOP) technique, users can effectively
design a hierarchical knowledge structure that makes the knowledge base systema-
tized, modularized, and easier to understand, maintain and manage. Using the
decomposition and classification structures, the meta-system can be expressed as

a complicated tree structure available to represent a real problem.
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Meta-COOP supports a variety of knowledge representations such as frame-
based, rule-based and method-based representations. Different from other expert
systems, the communication among the representations is the most important
characteristic. Since Meta-COOP uses various knowledge representations and
problem-solving strategies, its inference mechanisms and information exchange in
problem-solving are more complicated than those in conventional intelligent sys-

tems. Figure 3.3 demonstrates the fundamental control stricture

1. Method base: A method base is a specific procedural knowledge that is
attached to the frame. It consists of two parts: an information filter (a group
of keywords) and a method body. The information filter determines if a
method can be triggered or called when the sending message goes through
the filter. The method body can perform symbolic reasoning and numerical
computation, control the problem-solving process, and send a message to
other frames.

2. Frame-rule base: A frame is a fundamental unit in the meta-knowledge base.
It expresses the natural attributes of an object with slots and facets. It also
clearly represents the topological relationship among objects with the de-
composition and classification structures. A set of rules as a slot value is
stored in a slot of the current frame. This slot is named as the rule slot.

3. Database: The meta-svstem has a miniature relational database to record the
intermediate resultc

4. Method-based inference: The inference engine is used to perform a method
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body, to implement numerical computation, and to select search paths. In
addition, it can also invoke complex external procedures.

. Frame-based inference: This performs an evaluation manipulation on the
current frame, and inherits information from other frames. The frame-based
inference accomplishes data processing, and implements the evaluation on a
method or a set of rules, that is, it can find the specified rules set or methods,
then call the corresponding method-based inference or rule-based inference
to process.

. Rule-based in“:rence: Meta-COOP includes the production iuie reasoning
mechanism with a forward chaining control strategy to manipulate the rule-
based knowledge unit attached to a rule slot in the current frame. It can load
a conclusion through inference into any slot in other frames, but cannot
trigger the frames. The task to activate other frames is performed by the
method-based inference.

. Core inference: The core inference engine can invoke the low-level infer-
ence engines and coordinate the conflicts among them in terms of the op-
erational requirements. It also performs the communication between sub-
tasks and message sending.

. Global fact base: The global fact base stores the intermediate facts and
results shared by all inference engines. These facts are often generated by
the rule-based inference engine and called by other inference engines.

. Local fact bases: In order to satisfy the software engineering requirements

(information hiding and modularized knowledge base), Meta-COOP uses the
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local fact bases to store the local facts that are hidden in a frame or an
object. These local facts are derived from the method-based inference and
only used in evaluating methods.

10. External interface: Meta-COOP is an open system to help users extend
software functions. The external interface allows users to define some
functicns or procedures written in C as the internal functions of Meta-
COOP. The functions are called by the method-based inference engine. The
external interface also sets up the communication facility for message send-
ing and result returning.

11. Knowledge acquisition: The module facilitates editing and compiling a
knowledge base. The source codes of the knowledge base can be generated
by common editors such as VI™, PE2™, etc., then stored as ASCII files.
After the files are compiled, the ASCI! file is transferred into the binary file
that is directly referred to the inference engines.

12. Man-machine interface: This receives the input information from users and
provides the problem-solving results and interpretation of reasoning proc-

€S§S8€s.

3.4 Integration of Neural Network into IDIS

As illustrated in Chapter 2, ANNs can be often used to predict an output on

the basis of several inputs. In the application of ANN to the inferential modelling
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for the prediction of the desired product volaltility in the Sarnia Refinery (Case
Study I), a comparison of the performance has been made between the RA model
and the ANN model in predicting the desired product volatility with process
stream data. However, the relative importance of the input variables in the
inferential model have not been explained. Due to difficulties in explaining how
ANN can reach its result, it is normally regarded as a kind of black box. It has
been pointed out that physical meanings about the process modelled by ANN can

not be extracted from the training results containing connection weight wvalues.

It is obvious that every input variable can be dropped out from the model
only if its associated connection weights between the input and output layers are
all zeros. Even when those weights approach zero, removing that input variable
from the model can be also considered because it may have very little impact on
the output predictions. Hinton's diagram analysis a good example. In real situ-

ations, howev: - it really never happens.

An alternative approach for thc evaluation of ANN inferences is using the
connection weights between layers to partition the relative share of the output
prediction associated with each input variable (Garson, 1991). Then the partition
can be used to make judgments about the relative importance of input variables
in a model. For the development of an integrated process modelling environment,
the connection weight interpretation tool has been also integrated into IDIS along

with the neural network.
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3.4.1 Interpreting Connection Weights

ANN can be trained to model the process with the provided learning data
set (input and desired output) by the chosen learning paradigm. The connections
and their weights in an ANN can be regarded as the knowledgebase in an expert
system. It is essential to analyze its content, in order to understand the relative
causal importance and order of the input variables, by the use of the input-layer

connection weight partition (Garson, 1991).

In partitioning connection weights between the hidden and output layers into
input node shares, it is necessary to have an approach that focuses on the output
rather than input-layer connection weight. The value of the hidden nodes is a
function of the weights of the paths from the input nodes, and the output node’s
value is a function of the weights of the paths from the hidden nodes. The weight
along the paths from the input to the output node indicate the relative predictive
importance of the independents. These weights can be used to partition the sum

of effects on the output layer, as followed, while uvsing absolute values of all

weights.
3 Nlowi,k_,l Wi
. o 1Y Wi (3.4.1.1)
% contribution of ith input  _ i=1
on jth output
No N, I\Vl |
22 N, = Iwk,j.2|
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Since ANN doesn’t incorporate this procedure, Connection Weight Interpretor
(CWI), a tool to evaluate the percent contribution of input variables in the ANN
model on the basis of connection weights, has been independently deveoped in this
study. Then, it has been also integrated into IDIS via Meta-COOP. This inte-
grated process modelling approach using ANN and CWI can provide a systematic

way of using neural networking for modeling as well as for prediction.

3.4.2 Implementation

IDIS faces two barricades for integrating the neural network and connection
weight interpretator on a single computer. First, due to the limitation of the on-
board memory space, the whole system may not be able to be loaded at the same
time. Secondly, due to the heterogeneity of the subsystems developed in different
languages, the system may not be linked together as a whole and loaded in at the
same time. Therefore, a technique, namely covered-structure, can be adopted to
solve these problems. The basic strategy of the technique is to invoke the sub-
systems in turn by an order, controlied by the meta-system, in accordance with the
memory space and the nature of the subsystems, then find some way to allow

information exchange between the invoked subsystem and the ones at rest.

Shown in Figure 3.4.2.1, there are two ways for communication, namely,
direct communication and indirect communication. The direct communication

method is preferred for those subprograms which are used frequently and require
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quick access to the meta-system in order to transform data quickly. Under the
conditions of enough memory and compatibility of the languages, the subprograms
may be compiled and linked with the meta-system and reside in the memory for

the whole process. In this way, the meta-system can communicate with the

subprograms directly.

Indirect communication is realized through a 'transformation station', namely
a static blackboard. The meta-system can invoke some executable subprograms
by using system call. The results from the running subprograms are then sent to
the static blackboard, and processed there into the standard forms for calling by
other subsystcms through the meta-system such a manner. The procedure of

indirect comm: ~ication is illustrated in Figure 3.4.2.2 and takes several steps, as

follows:

1. Based on the meta-knowledge, the inference engine sends program P1 the
instruction. Program P2 obtains data from the instruction, then passes the
language type of P2 to the instruction.

2. The inference engine invokes P1, and P1 starts to run.

3. The running results of P1 are written in SB with a file name, such as 1.DAT.
The data file informs the meta-system.

4. The meta-system identifies the data file by the name 1.DAT and standardizes
it, then saves the results in S1.DAT.

5. The meta-system sends S1.DAT to program P2.
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For the integration of neural network as well as connection weight interpre-
tation tool int¢ IDIS, Meta-COOP has been utilized to develop the indirect com-
munication interface that allows each subprogram swap data interactively. The
data flow diagram for neural network, connection weight interpretator and expert
system under the supervision of meta-system is shown in Figure 3.4.2.3. The
knowledge base source cede is shown in Appendix B. Rules 1 and 2 check
whether the user want to train the neural network or to predict the product quality.
Based on the user response, the meta-system transmits the appropriate information
to the neural network. Once the neural network has completed training or predict
ing the product quality, the meta-system extracts the required data from the neural
network output. If training is the case, the meta-system send the training result
to the connection weight interpretator. Then, the interpretator partition the con-
nection weight, as explained in the previous section, to find the significant variable
contributions in the model. The meta-system takes the percent contribution of
each independent variable and suggests which variable can be dropped out. If
prediction is the case, the meta-system sends the predicted product quality to any
other subsystem, for example, other expert systems for intelligent process opera-

tion.
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Chapter 4

Integrated Process Control System

Design’

This chapter describes the integration strategy to develop an interactive
Computer-Aid=d Control System Design (CACSD) environment for ¢harical proc-
esses. An interactive graphics software package PCET (Process Control Engi-
neering Teachware) developed in this study is also presented. PCET has a hier-
archical structure of several independently developed subprograms which are in-
tegrated under the control of a supervising system, meta-system. It covers a wide

spectrum of process control engineering applications, including Time Domain

Analysis (TDA), Routh Stability Criterion (RSC), Root Locus Technique (RLT),

" A version of this chapter has been presented at the 1992 IEEE Symposium on Computcer-
Aided Contro} System Design, Niarch 17-19, 1992 in Napa, California.
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Frequency Domain Analysis (FDA), Linear State Space Analysis (LSA), Discrete
-time System Analysis (DSA) and Industrial /pplication Case (IAC).

4.1 Introduction

The design of control system is by it: very nature an itc.ative process.
Usually, several trials have to be made unti! a reasonable contro} .ystem design is
found. The design by pencil and paper requires much work, for . 2mr7. . drawing
irequency responses and root locus, calculating dominant pole response, etc.
However, the results obtained a:> only approximate ones. In many cases, the
exact analytical solutions 2re not even available. Such an example is the closed-
loop response of a linear system with dead time. In fact, the design can be
considerably improved bv the use of computers. Methods that are not important
for the understanding of the subject matter, such as the manual drawing of root
locus curves, can be removed, giving users the time to address additiona! control
concepts. Moreover, many problems arising in control theory are s.i.able only by
numerical me:huds. Thereby, th . ssential facets of control engineering can be

brought to bear over a shorter time-span.

During the last decade, with the advent of microcomputer technology,
there has been a rapid growth of interest in the use of computers for the design

of control systems. It has been widely recognized that a comprehensive CACSD
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software must have the following essential characteristics:

1. interactivity

modularity and flexibilitv
graphical capabilities

reliable computational methods

broad spectrum of control engineering

o v oA W N

iniegrated environment

A 'arge number of CACSD packages have been already developed by
universities and industry. However, most existing CACSD packages arc ~ften
specific and inflexible such that they deal with particular aspects of the overall
contr: + , -tem design problem. These problems can be sol* :d by utilizing a meta-
system concept in the integration of several programs, dealing with the different
stages in the design proczss. The meta-system concept was proposed by Rao et
al. in 1987, which was developed to handle the integration issue for distiibuted
intelligent systems. In this study, the meta-system concept is applied to conven-
tional control system design. Current CACSD packages are also difficult to use
effectively, and unhandy in their man-machine interface. Since these packages are
mostly in command-driven environments, their users are expected to be familiar
with many commands, and to know their correct sequence in the right syntax. One
of the main advantages of CACSD systems is that the sophisticated methods can

be more eacily understood, accepted and applied by users. For this reason, the
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program packages must be easy to learn and to use. Based on this point of view,
the CACSD package PCET, developed in this study with the BASIC programming
language for IBM PC's and compatibles, is programmed as a very user-friendly
software environment. Hence, its users can run the program without the knowl-

edge of the contents of the package, commands and the language.

4.2 System Construction

The following sections present the integration strategy, the implementation
philosophy and “e integrated control system design environment. Overall system

structure of PCET and its functions are briefly de~cribed.

4.2.1 Integration and Management of CACSD

As mentioned previously, current CACSD packages normally suffer from the
limitation of their modularity and flexibility since they are often specific and inflex-
ible such that they deal with particular aspects of the overall control system design
problem without unifying them in a comprehensive design environment. Thus
there is a need to develop a more general CACSD software which would integrate
a wide spectrum of process control engineering within a powerful conceptual

framework. The development of such an integrated CACSD environment can be
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approached by combining severa! existing control packages into a comprehensive
design environment. The mair: disadvantages of this approach is that the end users
have to know several different systems. Especially, v-} en they use the command
language communication method as a man-machine interaction interface, the number
of commands, which the end users have to remember, become enormous. And the
users may often confuse which command belongs to which system. In order to
solve these problems, an integration strategy to coordinate several independently
developed subprograms and to deal with the different stages in the desigr: process,
is implemented in PCET. These indepen:lently developed subprograms are inte-
grated under the control of a supervisory system, meia-system. This approach

originated from the integrated distributed intelligent system concept.

Even though the meta-system concept was originally developed for the
integrated distributed intelligent system (i.e. the integration of expert systen:s and
numerical computation packages), this study aims at extending the meta-system
concept application to conventional control system design. When using meta-
system concept in CACSD environment, individual subprograms can be developed
and applied for the specific purpose at different times. Such a configuration allows
us to write, debug and modify each program separately so that the overall inte-
grated design environment can be managed efficiently. This approach makes the
integrated design environment much easier to be modified. The meta-system also
provides us a free hand in integrating and utilizing new subprograms. Any com-

munication between two programs must rely on the translation of the meta-system.



Page 73

Such a configuration enables us to add or delete subprograms easily. When a new
subprogram is to be integrated into the integrated CACSD environment, we just

have to modify the interface of meta-systern, while other subprograms are remain

unchanged.

4.2.2 Intecrated Co:ztrol System Design Environment

In this section, advantages of the integrated control system design environ-

m:nt developed in this study are discussed. The overall structure of the interactive

control sy: .oftware package PCET is alsc described.

4.2.2.1 User-friendly Interface

When designing an interactive system, the first step is to cecide the form of
the man-machine interaction to take place. Although the man-machine interface
is not the main part of any CACSD system, this decision is very important because

the mode of interaction determines the user-friendliness and the user acceptance

of the system.

There are four basically different ways for interactive input commonly used:
question-and-answer method, menu-driven operation, command-language commu-

nication, and graphical input. The first three methods with alphanumeric informa-
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tion at least in principle can work on any alp..anumerical terminal, whereas the
graphical input requires special hardware in form of a graphical terminal for the
graphic echo and some graphical input device. For CACSD packages primarily
designed to solve numerical problems, the first three alphanumeric input modes are
of interest. Of these first three, the command language communication mode lets
the user be in charge of the conversation. With command-language communica-
tion interaction, the user is expected to be familiar with over a hundred commands,
and to know the correct sequence of them in the right syntax. For example, the
user must know how to form a transfer function, and how to specify a variable
as parameter for a function, and so on. Even this low level of complexity can be
still frustrating to the non-espert users. Whereas, !+ menu-driven and the ques-
tion-and-answer methods, which are somewhat le . . ibi: but very user-friendly,
give the computer almost total control. Menu-driven interactive programs are
extremely handy and speedy for dexterous users, and the question-and-answer
method may be the best choice for minimal learning time and maximum accessi-

bility by non-experts.

For a maximum efficiency in CACSD environment, PCET uses the combi-
nations of the question-and-answer and the menu-driven interaction methods so
that it provides a manual-free operation environnient. Thus, it requires neither
commands nor a manual to use PCET. With this very user-friendly interactive
interface, specially advantageous for users who are not familiar with the system,

the application can be learned in a few hours without special knowledge of the
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detailed contents of the software and the language.

A user-friendly environment also appears in model selection. A polynomial
model or a pole-zero model can be chosen to represent the transfer tunction of a
process. It is convenient for users to use the different models to analyze a system
or to understand concepts. For instance, pole-zero model is more suitable to
understand the concept of root locus, while a polynomial model is more appro-

priate for studying Routh stability criterion.

4.2.2.2 Graphic Display Capability

The use of graphical outputs (step response, root locus, Bode diagram, etc.)
has becc:ne an indispensable part of many modern CACSD packages. In the
analysis and design of control system, diagrams or graphs generated by PCET can
give the users an intuitive feeling for the quantitative and qualitative aspects of
system behavior. When this software is used for education, students can gain a
clear insight into theoretical concepts and practical computer simulation experi-

ence.

The required graphical facilities, together with the needed computational
power, dictate the hardware requirements for CACSD applications. Modern
workstations, which may be an ideal environment for the dedicated control scien-

tists, provide excellent graphics as well as enough computing power. However,
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the price per cci ;:.i.x.-connection is rather high for the workstations and compa-
rable to that multi-user inicomputer environment which is another very common
configuration in CACSD application. Since in the educational process hundreds
of students have to use computers for their exercises, mor. economical solutions
have to be found so that students can access the software package easily. Thanks
to the rapid develo;.ment of microelectronics technology, modern personal com-
puters can provide the user with decent graphical capabilities and enough comput-
ing power for introductory to intermediate contro! exercises. Moreover, packages
usable in control exercises have already emerged for the PC’s (e.g. PC-MATLAB,
Program CC, TUTSIM, etc.). For these reasons, PCET was developed for modern
personal computer usage (e.g. IBM-PC’s or compatibles). 1t is given on a diskette
and can be distributed to users in order to solve many ;:.c*cal proces. .ntrol

problems (Rao and Qiu, 1993).

4.2.2.3 Integrated Distributed System Configuration

As discussed in Section 4.2.1, independently developed subprograms are
integrated under the control of a supervisory system, meta-system. This approach
originated from the integrated distributed intelligent system (IDIS) concept, which
was proposed by Rao et al. in 1987 in order tc handle the integration issue for

distributed intelligent systems.

The IDIS is a large knowledge integration environment, which consists of
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scveral symbolic reasoning systems and numerical computation packages. These
sofiware programs may be written in different languages and be used independ-
ently. They are under the control of a supervising intelligent system, meta-system.
The meta-syste manages the selection, operation and communication of these
programs. By integrating different intelligent systems, the efficiency as well as
conceptual and structural advantages can be achieved (Rao et al., 1987). This new
cc:ceptual design framework can serve as a universal configuration to develop
high-performance intelligent systems for complicated applications. The key issue
to construct the IDIS is to organize a meta-system. The meta-system controls the
selection and application of all programs in IDIS and executes the translation

between different data or programs.

Even though the meta-system concept was originally developed for the IDIS,
it can: be still applied to the integration issue of CACSD packages. By integrating
several independently developed subprograms under the control of a supervising
system, meta-system, PCET has a hierarchical structure as shown in Figure 4.2.1.
In TCET, the meta-system serves as an interface mechanism to control and coni-
municate individual subprograms developed for difzrent purposes, and to build a
man-machine interface. The advantage of this approach for the development of
CACSD environment is that any other subprogram can be added to the system
very easily. Wher a new subprogram is to be integrated into PCET, only the
interface of the meta-system need to be modified witliout interrupting othei

subprograms. It also allows each subprogram to be modified without affecting
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others, and to be executed separately as a stand-alone system.

A global data base is set up in the meta-system, which is a common data
resource for subprograms. The process model can be put in at any subprogram
and shared with other subprograms. With this configuration, only one-time data
input is necessary to analyze the same model in differenc . nains or with different

methods. The model can also oe ~aved for later use.

4.2.2.4 Indusi«iai Process Control Application Case

Chemical processes are very complicated, with a high concentration of ad-
vanced technology and < .ration automation. It is important for engineering
students to have basic practical experience before they start their professional
careers. Industry welcomes studeiis who have more practical experience. Unfor-
wnately, no such application cases have been implemented in an education-ori-

ented confrel system software.

g . oo itrol is an application-oriented area. When real industrial proc-
esscs or appropiiate laboratory equipments are not accessible, computer simulation
can give the users the practical knowledge about industrial applications. For
example, pulp and paper industry is one of the most important industry in Canada.
Pulp and paper production is a very complicated process. However university

students do not have any idea about the process and the control system. Intro-
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ducing a pulp and paper process in PCET can benefit both the pulp and paper

industry and university.

A paper machine headbox is chosen as a typical industrial case study in order
to combine theory with practice, and to link abstrzct mathematical models with the
real industrial process. A paper machine headbox control system is widely used
in pulp and paper mills to control basis weight and moisture of the products. The
main problems encountered with headb.-x - ntrol are the ability to maintain the
totai pressure and level in the headbo:.. and to maintain the rush/drag ratio when
wire speed changes. Different headbox control schemes should be chosen accord-
ing to the different headbox types and stock delivery systems. With a model of
the paper machine headbox control system, several typical industrial process con-
trol configurations, such as siigle-loop control and cascade control, are also
incorporated in PCET. Under every control configuration, several subprograms
are linked. They currently includes Time Domain Analysis (TDA) and Routh
Stability Criterion (RSC). The introduction to the process and the schematic flow

diagrams of the control systems are included in PCET.

4.3 Functions of PCET

As shown in Figure 4.3.1 which is a hardcopy of program menu screen,
PCET covers a wide spectrum of process control engineering applications, includ-

ing Time Domain Analysis (TDA), Routh Stability Criterion (RSC), Root Locus
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PCET ‘q
Process Control Engineering Teachuare Version 1.88 1942
Intelligence Engineering Laboratovy
Department of Chenical Engineering
Univarsity of Albarta

All Rights Reserved.

PCET -]

1.
2.
3.
4.

[ Main Menu J

RSC - Routh Stability Criterion
RLT - Root Locus Technique

FDA - Prequency Domain Analysis

DSA - Discrete-time System Analysis
LSA - Lincar State Space Analysis
IAC - Industrial Applicativn Case
Quit

Figure 4.3.1 Main menu of PCET
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Technique (RLT), Frequency Domain Analysis (FDA), Discrete-time System
Analysis (DSA), Linear State Space Analysis (LSA), and paper machine headbox
control as a Industrial Application Case (IAC). Besides design applications, this
software can be also used to improve understanding of the basics of process
control engineering, and helps users or students to gain practical experience on

simulation and computer-aided design.

Functions of PCET are summarized in Table 4.3.1 and the details of system
functions will be discussed in Chapter 5. For example, TDA includes the open-
loop and closed loop transient responses for a linear, time invariant system with
or without time delay, analysis of control algorithms and controller action, param-
eter tuning of PID controllers. In this program, students can learn not only
fundamental knowledge such as open-loop, closed-loop and feedback, but also
additional important concepts such as process gain, time constant and dead time.
Time delay is an important characteristic in chemical processes, as it is often
encountered in many industrial processes, such as reactors and heat exchangers.
Most control laws applied to the present industrial environment are PID control
algorithms. Therefore, the analysis of PID control algorithms and PID controller's

action are incorporated in TDA.

4.4 System Evaluation

PCET, developed in this study, has been used in the process control courses,



Page 83

Acronym Explanation

Functions Applications

TDA Time Open-loop system responsec  Controller analysis
Domain Clsosed-loop system response System dynamic analysis
Analysis PID control algorithms System design

Controller tumng

RSC Routh Stability testing Stability analysis
Stability Routh array computation
Criterion Pole calculation

RLT Root Root locus plots System dynamic analysis
Locus Characteristic roots Stability analysis
Technique  Critical points Pole assignment

FDA Frequency  Nyquist plots System dynamic analysis
Domain Bode diagrams Stability analysis
Analysis Gain and phase margin Controller design

DSA Discrete- Open-loop system response  Controller analysis
time Clsosed-loop system response System dynamic analysis
System PID control algorithms System design
Analysis Controller tuning

LSA Linear Controllability matrix Controllability analysis
State Observability matrix Observability anz.,'sis
Space Eigenvalue and eigenvector  Eigenstructure analysis
Analysis Matrix manipulation

IAC Industrial Pulp and paper machine Single loop control
Application Cascade control
Case

Table 4.3.1 PCET functions
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ChE 546 'Process Dynamics and Control' (Springs of 1991, 1992 and 1993) for
senior undergraduate students and ChE 646 'Process Dynamics and Computer
Process Control' (Falls of 1991 and 1992) for graduate students, offered by the
Department of Chemical Engineering at the University of Alberta. Using PCET,
students directly perceived the theoretical concepts and gained practical experi-
ence. At the end of courses, the PCET evaluation forms (Appendix C) were

distributed to students for the improvement on this software package.

This software also attracted the industry's attention. Several companies
provided financial supports and their knowledge for the development of this soft-
ware package. It has been used in ihe both university and industrial plants. The
old version of PCET was demonstrated in the International Federation of Auto-
matic Control (IFAC) Conference on Advances in Control Education held at

Boston in June 1991.

4.5 Conclusions

The integration strategy to design an interactive computer-aided control
system design environment for chemical processes is presented, in which several
independently developed subprograms are coordinated by a meta-system. By this
kind of integration approach, each subprogram can be easily modified without

affecting other subprograms. It also allows any other subprograms to be added
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to the system easily. Moreover, individual subprograms can be executed sepa-
rately as a stand-alone system. The interactive graphics software package, PCET,
has a hierarchical structure of several independently developed subprograms which
are integrated by a meta-system. In the software package PCET, the meta-system
serves as an interface mechanism to communicate individual software programs,
and to build man-machine interface. Currently, PCET, written in the BASIC
programming language for IBM PC's and compatibles, covers a wide spectrum of
process control engineering, including Time Domain Analysis (TDA), Routh
Stability Criteria (RSC), Root Locus Technique (RLT), Frequency Domain Analysis
(FDA), Discrete System Analysis (DSA), Linear State Space Analysis (LSA) and
Industrial Application Case (IAC). This sofiware can be used to design control
systems. It can also improve understanding of the basics of process control
engineering, and helps users to gain practical experience on simulation and com-

puter-aided design.
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Chapter 5

Process Control Engineering Teachware

This chapter briefly describes the basic concepts and theoretical fundamen-
tals of process control systems, on which the interactive software package PCET
is based. Illustrative examples solved by using the subprograms in PCET are also

included in the respective sections.

5.1 Time Domain Analysis (TDA)

5.1.1 Step Input

When designing process control systems, the engineer requires an objective
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means of evaluating the performance of the control schemes under consideration
Performance criteria are quantitative measures of the system response to a specitic
input or test signals. In the subprogram TDA, the step function is used in

evaluating the performance of control systems for the following reasons:

1. It is simple and easy to produce.

2. It is by far the most common form of test signal used in practice.

3. It is considered to be a serious disturbance, since it is capable of changing
the mean level of the process. Many other kinds of bounded disturbances
can be overcome if a step disturbance can be overcome.

4. The response of the system to other types of disturbances can be inferred
from the process step response.

5. The step response is easy to measure, and thus get an approximated transfer

function of the system.

A step input is a sudden and sustained change in input defined mathemati-

cally as

u(t)={h(;1 :ig (5.1.1.1)

The constant M is known as the magnitude or size of the step function. wu(t) is

called a unit step function if M=1. The Laplace transform of a step function is

M

U(s) = .

(5.1.1.2)
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The response of a system tu a step input is referred to as its step response, and

conveys information regarding the dynamic and steady state behavior of the sys-

tem.

5.1.2 Transfer Function

A transfer function is an s-domain algebraic representation of the relationship
between the input and output variables of a system. It is typically obtained by
taking Laplace transform of a system differential equation with zero initial condi-
tions. A transfer function completely determines both the dynamic and steady state

behaviors of the process output when the input signal is specified.

For physically realizable systems, the degree of the denominator polynomial
of the corresponding transfer function always exceeds that of the numerator. If
“he zider of the numerator is larger than that of the denominator, the transfer

-

function is said to be unrealizable.

The roots of the numerator polynomials are called the zeros of the transfer
function. If s assumes the value of any zero, the trarsfer function vanishes. The
roots of the denominator are known as the poles ¢f the transfer function. When
s approaches a pole, the transfer function becomes infinite. The poles and zeros
of the process transfer function play an important role in the analysis and design

of control systems.
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The PCET software package developed in this research enables the user to
examine the dynamics of up to Sth order systems using the subprogram TDA The

process/system models can be in three types as follows:

1. Model 1 (n <5, m <4). A polynomial model:

a,5" +a, S""'+--+a,5+a, ot
b,s" + b, s" '+ +bs+b, (5.1.2.10

G(s) =

2. Model 2 (n €5, m <4): A zero-pole model:

v (-2 )s=2,,)(s-2)
G = Ko (o= pe) (5= p0) © (5.122

3. Model 3: A typical process model:

K, -5
= T3 €
(Ts+1)(T’s" +2Txs +1) (5.1.2.3)

G(s)

5.1.3 PID Controller

Most control laws applied to the present industrial environment are PID
control algorithms. Therefore, the analysis of PID control algorithms and PID
controller's action are incorporated in TDA. A PID controller includes three

modes: proportional, integral and derivative actions. Therefor, the PID controller
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equation is formed by summing the contributions of the three basic control modes,

and its Laplace transform is

1
Ge(s) = Kc(H-t—s-Hns) (5.1.3.1)

!

The response of a PID controller to a unit step change in actuating error can be

simulated with the subprogram TDA in PCET.

5.1.4 Time Delay

Time delay is an important characteristic in chemical processes, as it is often
encountered in many industrial processes, such as reactors and heat exchangers,
where transport time is always required for material or energy to move in a process

or a plant. It is represented by an e* element in a transfer function, where t is

a time delay.
In simulation, time delay is usually approximated by a rational function, e.g.,

I-2s (5.1.4.1)

which is known as a st order Pade approximation. Higher order Pade approxi-

mation up to 3rd order in numerater and fourth order in denominator can be used.
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Pade approximation has played an important role in time delay simulation, and in

most simulation cases, it gives a good approximation.

Mathematically, the precision of the Pade approximation depends on its
order and the amount of time delay. The smaller the time delay is, the better the
approximation will be. And the higher the order of Pade approximation is, the
more precise mathematically the approximation will be. Usually, more precise

mathematical approximation gives more correct simulation resultz.

In order to analyze the system performance and to design the ideal PID
controller parameters, the closed loop response of the system to a unit step input
can be obtained, as described below, by solving the closed loop system differential

equation with the Pade approximation for time delay.

—

. Replace e* by the Pade approximation.

N

. Develop the closed loop transfer function.

W

. Rearrange the closed loop differential equation for easy use.

H

. Solve the differential equation with Runge-Kuiwia method.

L

. Plot the system output response to a unit step input.

For the convenience of discussion, consider a typical process model (Model
3). Then the open loop transfer function of PID controller and the process with

the 1st order Pade approximation for time delay can be found as
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N, (s) KK (2-ts)(ts+] +1,1,8") (51.4.2)
D, (s) [Ts+I1)T's +2Trs+1)(2+1ts)]t;s

G, (s) =

The closed loop transfer function can be denoted as

- N(‘l.(s) — N(,lv(S)
"Dy (s) D, (s)+N,(s) (5.1.4.3)

G (s)

However, it can be found that the system always becomes unstable if any
integral action is added for a system with the Pade approximation of time delay.
The smaller the time delay is, more unstable the system is (faster divergence).
Even though higher order Pade approximations are used, the simulation results are
not improved The reason for this system unstability can be explained by the root
locus of the system. A zero in the right-hand-side s-plane is introduced to the
open loop transfer function by the st order Pade approximation and the integral
action of a PID controller introduces a zero at the origin in the s-plane. Conse-
quently, there is a root locus on the real axis from the origin to the zero in the

right-hand-side s-plane as the open loop gain K increases from O to infinity.

In order to solve the system unstability problem, the subprogram TDA
solve the open loop system differential equation, as described below, with a

feedback calculation instead of the Pade approximation of time delay.
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1. Develop the open looptranster function without time delay

2. Rearrauge the no-time-delay open loop difterential equation for case use.

3. Solve the no-time-delay open loop difterential equation for one step with
Runge-Kutta method.

4. Caculate the system output on the step by a time delay, and then error on
the step.

5. Go back to step 3 for the next step if all computation does not finish

6. Plot the system output response to a unit step input

The open loop transfer function of PID controller and the process without time

delay is

N .(s) _ KK (ts+1+1t,57)

Gaw(s) = Do (s)  [(Tis+1(T*s* +2Txs+ )]s (5.1.4.4)
It is easy to find that
N, (s)=Ns + N3+ N (5.1.4.5)

where

N, =K K.t,
N,=K K.
N=K K./,
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and

D,(s)=Dgs'+D;s’+Ds* +s (5.14.6)

where

=TT

4 |

D
D, =T (T+2xT,)
D

3

2xT + Tl

2

By applying the chain rule to the relationship between output C and input U as

C(s) _ C(s) X(s) _ No.(9) 5147
E(s) X(s) E(s) Dg(s) 14,

the relationship can be separated into two part:
C(s) = X(s) N, (s) (5.1.4.8)
X(s) = E(s) / D, (s) (5.14.9)
It follows that

(Ds'+D,s*+D,s +5) X(s) = E(s) (5.1.4.10)



dx d’x a’x  dx
e(t)=D, X p dX p UX I .
=D Dy * Dy (L4110

which may be expressed as

[ x = X,
dx _ X
ddt - :
{_E’*tz_z X, (5.1.4.12)
dx; _
dt X4
(dt ~ D,”° D, D,*'D,
Also,
C(s)=(Ns+Ns+N ) X(s) (5.1.4.13)
or
c(t) =Nx, + Nx, + Nx, (5.1.4.14)

Choosing step width h in such a way that the time delay is integer times of h, then
u(t)=e(t) while t is less than time delay. Assigning the unit step input u(t)=1 (t>0),
c(h), c(2h),..., c(t), can be obtained by solving the equation (5.1.4.12) with Runge-

Kutta method. The output y(kh) can be also obtained by
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y(kh) = c(kh-t) (5.14.14)
and the error e(kh) is then
e(kh) = u(kh) - v(kh) = u(kh) - c(kh-t) (5.14.15)

Using Runge-Kutta formulas together with the above feedback relationships, the
system response to a step input can be obtained and would be stable for suitable

parameters of PID controller to the process.

PCET subprogram TDA was mainly developed by M. Rao and R. Dong,
is used to obtain the unit step response of the process, coniroller and closed loop
system. The keystroke sequences required to execute each of these options are

summarized in Table 5.1.1.

Example 5.1

Consider a 1st order system with time delay,

G(s) = ——

5.2s+1

A PI controller can be designed with TDA by means of trial and error method to

make the closed loop system response satisfy the following performance:
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Step  User input Function
1 Type PCET Start program
2 Select TDA Time domain analysis

[

3 Press 1, 2 or 3 for model . Polynoriial model

selection or load a saved 2. Pole-zero model
file by F3 3. A typical process model
4 Press1,2,30r4 1. Analysis of open loop process
2. Analysis of controller action
3. Analysis of closed loop response
4. Change setpoint/disturbance

5 Input system model and/or Specify system dynamics.
controller parameters

6  Reviseinput if necessary  Verify input data

7 Select autoscaling, or Autoscaling computes axis dimension from
input figure dimension response data
8 Desired response is displayed on the screen
9 Press a function key to F1-Exit, back to main menu
continue F2-Restart, restart TDA

F3-Load, load a saved data file

F4-Save, save the data in a file

F5-Scale, change the dimension
F6-Modify, change the model
F7-Tuning, change controller parameters

Table 5.1.1 Functions of TDA in PCET.
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overshoot < 0.3

settling time < 10 seconds

One of the most popular semi-empirical controller tuning method is the trial and
error tuning method. First, an ultimate gain K, at which the system response
is a sustained oscillation with a constant amplitude, can be found by making a small
proportional gain increment each time with a P controller. Then, take K to be
0.5K.,. To find a critical integral time at which the sustained oscillation comes
again with the selected K_, make a small integral time decrement each time with
a PI controller. Then, take integral time t, equal to 3 times of the critical integral
time. Now, small adjustment of parameters can be made to satisfy the given
performance. The executions for this example using TDA are illustrated by
Figures 5.1.1(a), 5.1.1(b) and 5.1.1(c). The closed loop system response with the

designed PI controller is shown in Figure 5.1.1(d).

5.2 Routh Stability Criterion (RSC)

A very important characteristic of a system is its stability. A dynamic
system is stable if the system output iesponse is bounded for all bounded inputs,
regardless of the initial conditions of the system. Otherwise, the system is unsta-

ble.



— - FCET -
D
k E (o +4/ ¥
—9(:}——4 Kcn(1+1/T8/S+Td=S) PROCESS TRANSFER FUNCTION, G 2
+ A

Press 1, 2 or 3 for G.

Z(n)nS Iml+. . . +Z2(1)8S+2(8)
1. 6 = EXP(~Tau*S)
P(n)#S~I[nl+.. . +P{1)#S+P(B)

[(S-Z2(1))=,, . #(S-2(n))]
2. C = Ko EXP(-Tau»S)
C(S~-P(1))%,, . .#(S-P(n))]

EXP(-Tau#*3S)

3. 6 = Ko
(T1#S+1) (T 20S"2+28TuxnS+1)

F1-Exit F2-Restart F3~Load

Figure 5.1.1(a) Process model selection of Example 5.1

PCET ME
Analysis of Closed Loop System and Controller Tuning

T UEXP(-TausS)
(T1S+1) (T*2xS*2+2a TaxnS+ 1)

| Kex(1+1/T1/5+Td=S)

1. order of the system (1,2 or 3) = 1
2. Process Gain, Ko =1
3. Process Time Constant, T1 = 5.2

S. Time Delay, Tau = 1

Is the above information correct (Y/N) ?

Figure 5.1.1(b) Process parameters input of Example 5.1
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Analysis of Closed Loop System and Controller Tuning b
EXP(-Taus=S) +~J¢ Y
Ko —?( )
(T1nS+1)(T 208 242uTuxuS+1)

1. Controller Gain, Kc = 2.5

2. Integral Time, 1/Ti = .3
3. Derivative Time, Td = 8
Do you want autoscaling ? (y/n)
Figure 5.1.1(c) PID controller parameters input of Example 5.1
PCET e
1.6 NY
1.4} P+
1.2
1 e
B
.6 |
4 |
2 |
'l'irj
8 L 4.
] S 18 15 (sec)
Ko= 1 Il= 5.2 = 8 x= @ Tau= 1 Ke= 2.5 1/Ti= .3 Td= 8

F1-Exit F2-Restart F3-Load F4-Save F5-Scale F6-Modify F7-Tuning

Figure 5.1.1(d) Time domain response of Example 5.1
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5.2.1 Characteristic equation and stability

The response of the system is primarily characterizea hy the denominator
of the transfer function. Therefore, the denominator of the system transfer func-
tion is referred to as the characteristic polynomial of the system. By setting the
characteristic polynomial equal to zero, the characteristic equation can be ob-
tained. The roots of the characteristic equation are referred to as poles of the
system. The characteristic equation plays a decisive role in determining system

stability.

In general, the system poles are represented by a real part and an imaginary
part. The real part affects system stability, while imaginary part determines whether
the system response to a step input is oscillatory or not. With respect to stability
then, the s-plane can be divided into two regions: stable region (left half s-plane)
and unstable region (right half s-plane, including the imaginary axis). The stability
of an open loop system is determined by open loop poles, while the stability of

a closed loop system is determined by closed loop poles.

5.2.2 Routh Array

If the poles of a system are known, the stability of the system can be easily
determined. However, it is often difficult to find the poles by solving a high order

algebraic equation. With the Routh criterion, also called the Routh-Hurwitz
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criterion, it is not necessary tc calculate actual values of the characteristic roots
to determine system stability. The criterion provides a way to investigate how
many poles of the system are located in the right half s-plane without solving

algebraic equations.
For the characteristic equation of a system,
as"ta sv'+... +as+a =0 (5.2.2.1)

the necessary condition for this system to be stable is that all the coefficients of
the system characteristic equation must be positive (have the same sign as a ). It
follows that if any coefficients of the characteristic equation are negative or zero,
then at least one root of the characteristic equation lies to the right of, or on, the
imaginary axis, and thus the system is unstable. However, it must be noted that
it is just a necessary but not sufficient condition. In other words, if all the

coefficients of the characteristic equation are positive, stability is not guaranteed.

If all the coefficients of characteristic equation are positive, a Routh array
can be constructed as
s an an»: an~4

sn—l ay) Ap-3 an-S
b by by (52.2.2)
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where
b _ an_]an-2 _anan_3 _ '-] an an—l
l -— =
A an|8p Ao
b, = a,.13,.4 — 8,85 _ -1]a, a,,
2 - =
Ay An.y |8 Apos
C = D, —a,.b; _:l a,, a,3
‘ b, bbb,
. = ba,  —a, b, _—Haa ags
- ——
) bl b| b] b3

and so on. A Routh array has n + 1 rows. The Routh stability criierion says that
the number of roots of a polynomial on the right half s-plane is equal to the number
of changes in sign of the first column of the Routh array, i.e., the signs of a , a_

p b€, b Tt follows that a necessary and sufficient condition for a stable

-
system is that all the elements in the first column of the Routh array, constructed

by the coefficients of its characteristic equation, are positive.

The Routh criterion is valid only for linear systems The characteristic

equation must be a linear algebraic one, and ali the coefficients must be real. The



Page 104

equation must be a linear algebraic one, and all the coefficients must be real. The
Routh criterion is generally qualitatively used to determine only the absolute
stability of a system. For two stable systems, the criterion does not indicate which

one is more stable, or which one has better dynamic characteristics.

The Routh criterion is also programmed into the software PCET. The sub-
program RSC (Routh Stability Criterion) was mainly developed by Y. Ying, and
determines Routh array, the roots of the systera characteristic equation and then
the system stability. The procedure for running this program is shown in Table
5.2.1. If any process transfer finction used in other subprograms is loaded by F3,

it is automatically find the characteristic equation in this subprogram.

For Step 6 in the procedure of Table 5.2.1, selection of F6, or F7, will
display the Routh array, or the roots of the characteristic equation. When a zero
appears in the first column of the Routh array, it is replaced by a small positive
number epsilon to continue the Routh array. Epsilon is a very small positive
number. The value used in RSC is epsilon = 106, but this value can be changed

by selecting F8.

Example 5.2

If the characteristic equation of a system is
s+ s+ 287+ 25 +5 =0

its parameters are input into RSC (Figure 5.2.1(a)), the Routh array can be
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Step

User input
Type PCET
Select RSC

Select F3 to input system data or F4 to load
a saved file

Input system characteristic equation
Confirm the correctness of the data
Select F6 to get the Routh array or F7 to

obtain the characteristic equation roots or
F8 to change the epsilon value

Function
Start program
Routh stability criterion

F1-Main menu
F2-Restart
F3-Data
F4-Load

Specify system dynamics
Verify input data

F1-Main
F2-Restart
F3-Data
F4-Load
F5-Save
F6-Routh
F7-Root
F8-Epsilon

Table 5.2.1 Functions of RSC in PCET.
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= PCET ﬂq

Tha Characteristic Eguation of the Systen

aln)S*nsa(nv-1)S*(n-1)+. . .+a(1)S*a(@)=8
Order of the Characteristic Equation, n = 4
Coafficients of the Equation.

4. a( 4 )= 1
3. a( 3 )= 1
2. a( 2= 2
1. aC 1 )= 2
8. at 8 )= 5

F1-Exit F2-Restart F3-Data F4-Load F5-Save F6-Routh F7-Root F8-Epsilon

Figure 5.2.1(a) Characteristic equation parameters of Example 5.2

g PCET Eq

The Routh Array is:

1 2 5
1 2 8
Epsilon S 8
-SE+16 2] a
S 2] ]

The epsilon in the first column is a very snall positive number.
Too big epsilon value may cause the confliction betuween resuits.
The epsilon value can be modifiead by the function key F8.
Current Epsilon = 1E-16

F1-Exit F2-Restart F3-Data F4-Load F5-Save F6-Routh F7-Root FB-Epsi lon

Figure 5.2.1(b) Routh array of Example 5.2
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<= PCET - 12|

The roots of the equation are:

5753 - 1.354 |
5753 + 1.354 i
-1.875 - 1.874 i
-1.875 + 1.874 i

n

-~

w
s
[ B A |

fl-ExIt F2-Restart F3-Data F4-load F5-Save F6-Routh F7-Root FB-Epsition

Figure 5.2.1(c) Roots of the characteristic equation of Example 5.2
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rewritten by the repiacement of zero with epsilon in the first column as shown in
Figure 5.2.1(b). Since epsilon is a small positive number, 2-5/epsilon is negative,
and the number of changes in sign of the first column of the array is 2. Thus, as
shown in Figure 5.2.1(c), there are two poles with positive real parts, and the

system is unstable.

5.3 Root Locus Technique (RLT)

The stability of a system is of prime consideration for control engineers.
The degree of stability, called relative stability, provides information about not
only how stable the system is, but also to some extent what dynamics the system
exhibits. The relative stability and transient performance of a closed loop control
system are directly related to the location of its poles in the s-plane, i.e., the roots
of the closed loop characteristic equation. It is useful to determine the locus of
the characteristic equation roots in the s-plane as a parameter varies. Root locus
is the locus or path of the closed loop roots traced out in the s-plane as a system

parameter is changed.

The root locus technique is a graphical method for drawing the root locus.
The root locus method provides an approximate sketch of closed loop poles that
can be used to obtain qualitative information concerning the stability and perform-

ance of the system.
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5.3.1 Starting and End Points of the Root Locus

The root locus is usually determined as the open loop gain K varies from
zero to infinity. When K = 0, the roots of the characteristic equation arc simply
the poles of open loop transfer function. When K approaches infinity, the roots
of the characteristic equation tend to the zeros cf open loop transfer function.
This means that the root locus starts at the poles of the open loop transfer function
(K = 0) and moves to its zeros as K approaches to infinity. For most common
open loop transfer functions, there may be several zeros at infinity in the s-plane.
Usually we mark each pole of an open loop transfer function in a root locus as

X, and each zero as O.

5.3.2 Points at Imaginary Axis

It is useful to calculate the cross points of the root loci on the imaginary
axis. These cross points can indicate when the system will be unstable as the
parameter K changes from zero to infinity, and how the system behaves as the

system becomes critical.

On the imaginary axis, s = jo. The cross points of root loci to the
imaginary axis must satisfy the closed loop characteristic equation since they are
on the loci, and satisfy s = jo since they are on the imaginary axis. By substituting

s = jo into the closed loop characteristic equation, and separating the real and
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imaginary parts, two equations can be obtained. The cross points and the corre-

sponding parameter K can be obtained by solving these two equations.

If only the parameter K of the cross points is needed, the Routh criterion
is an easy method. The characteristic equation of the system includes the open
loop parameter K. The range of values of K that make the system stable can be

found by the Routh criterion. The critical value corresponds to the cross points.

In the subprogram RLT, the closed loop roots are directly calculated from
the closed loop characteristic equation without usinh the conventional root locus

technique that was developed for hand drawing.

5.3.3 System Analysis and Design with Root Locus

For a single loop feedback control system, the selection of an open loop
gain is essentially a P controller design. Thus, the root locus may be used for the
analysis and design of a system with a P controller. In fact, the root locus can
also be used in the analysis and design of the system with other controllers, such

as a PD controller, PI controller and so on.

The root locus of a system can be plotted with the subprogram RLT in the
software package PCET. The subprogram RLT was mainly developed by H.

Zhou. The open loop transfer function may be written in the polynomial form or
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zero-pole form, both of which are acceptable for the software. The procedure for

plotting the root locus on the screen with PCET is shown in Table 5.3.1.

Example 5.3
The open loop transfer function of a system is given by

Ko

Gow(8) = 530.2)(s50.4)

With a PI controller, the equivalent transfer function may be found to be

K/t

G(s) = 4570 2)(s+0.4) *K]

where K = K K...

When the controller has only a proportional action, the root locus of the
open loop transfer function is shown in Figure 5.3.1(b). With a decay ratio of
0.25, K may be obtained as 1.86. Then, the equivalent transfer function becomes

. 1.86/1,
G0) = {(5+02)(s+0.4) 7 1.86]

The root locus with respect to the integral time is shown in Fig. 5.3.1(d), where
it should be noted that the root locus traces to infinity as the integral time

decreases to zero rather than going to infinity.
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Step

User input
Type PCET
Select RLT

Press 1,2 or 3 for model se-
lection

Input maximum gain Kmax

Input system model param-
eters

Revise input if necessary

Select F1 or F2 to change
Kmax, F3 or F4 to get gain
or frequency at imaginary
axis, F5 or F6 to obtain
closed loop roots or open
loop zeros, or F7 to finish
analysis and be ready for an-
other system.

Function
Start program
Root locus technique

1. Polynomial model
2. Pole-zero model
3. A typical process model

Theroot locus willbedrawn asthe open
loop gain K varies from 0 to the maxi-
mum gain Kmax.

The order and parameters of the system
model are determined.

Verify input data.
Root locus is displayed on the screen.

F1-Decrease maximum K
F2-Increase maximum K
F3-Gain at Imag. Axis
F4-Frequency at Imag. Axis
F5-Closed Loop Roots
F6-Open Loop Zeros
F7-End

Table 5.3.1 Functions of RLT in PCET.
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PCETY
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Kp»L

(S-2(1))»(S-2(2))=,.. .n(S-Z(n))]

(S-P(1))#(S-P(2))»,

.. %($-P(n))

Maximum Gain, Kmax = 188

Mode! Parameters (Numerator)

Process Gain, Xo = 1
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Model Order (Numerator) m ({(=4)7 8

Is the above information correct? (Y/N)}

Model Order (Denominator) n ({=5)7 2
Model Parameters (Denominator)
RelP(C 1 )17 -.2 InfPC 1 1317 B
RelPC 2 )17 -.4 In[PC 2 317 B

Figure 5.3.1(a) Open loop transfer function without controller of Example 5.3
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-5.08

-19.68
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-8.66 -98.48 0.2 0.68

F i~Decrease Maxinun K Fi-Gain
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f4-Frequency at Inage Axis

8.2 8.49 9.6 B.60 1.88 1.20

Fo~Closed Loop Poots
Fii~-Open Loop Z2eros

at Image fxis
i"A'-'Em.‘

Figure 5.3.1(b) Root locus with respect to proportional gain of Example 5.3
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Mode! Order (Denomimnator) n ({=5)7 3
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RelP( 2 )17 ~.3 InCP( Z )17 -1.36
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Figure 5.3.1(c) Equivalent transfer function with PI controller of Example 5.3
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Figure 5.3.1(d) Root locus with respect to t of Example 5.3
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5.4 Frequency Domain Analysis (FDA)

In reality, a system rarely incurs a single disturbance but rather a series of
disturbances. To simulate those disturbances, sinusoidal signals with specified
frequencies can be applied. In other words, they can be analyze in the frequency
domain. The Nyquist plot and Bode diagram are two basic frequency responses
of a system, and both are means of analyzing the stability and dynamics of a system

in the frequency domain.
5.4.1 Sinusoidal Signals

When a linear system is subjected to a sinusoidal input, its ultimate re-
sponse is also a sustained wave. This important fact forms the basis of frequency

response analysis. The sinusoidal input is generated by the expression

vy JAsinwt  t20 (5.4.1.1)

f)= {o t<0
The parameters A and o fix the amplitude and angular frequency of the oscillation.
The period T of a sine wave is related to its angular frequency by T = 2n/w. The
Laplace transform of a sinusoidal function is

Ao

s’ + o’

F(s)= (5.42.2)
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5.4.2 Frequency Response

The frequency response of a system is defined as the ultimate response of
the system to a sinusoidal input signal. Frequency response is easy to determine.
For a linear system, the ultimate state of any signal in the system is sinusoidal with
the identical frequency as the sinusoidal input. For a sinusoidal signal, there are
three elements: frequency, amplitude and phase angle. As a matter of fact, if the
response is determined by experiment, only the amplitude and phase shift of the
output need to be measured for every designated frequency. If the transfer
function G(s) of the system is known, the frequency response can be determined

simply by calculating the amplitude ratio and phase shift of G(jo).

Both frequency response and transient response reflect the performance of
a system, but except for some special cases the correlation between them is not
straightforward. However, a system that has a satisfactory frequency response will

normally have a satisfactory transient response, or vice versa.

5.4.3 Nyquist Plot

A Nyquist plot is the polar plot of frequency response G(jw) as the angular
frequency o varies from O to infinity. This plot is used to represent the system
characteristics in the frequency domain. Wyquist plots use the imaginary part of

G(jo), denoted Im[G(jw)], as the ordinate, and the real part of G(jw), denoted



Page 117

Re[G(jw)], as the abscissa. The shape and location of a Nyquist plot reflect the

characteristics of the system.

Nyquist plots can be drawn on the screen or printed out with the sub-
program FDA (Frequency Domain Analysis) of the software package PCET. Three
different input transfer function models can be selected: the polynomial model, the
factored polynomial model and the zero-pole model. Afier typing the order and
parameters of the model as well as the maximum and minimum frequency of the
plot, the Nyquist plot is obtained by assuming that a P controller is used with

Kc=1.

5.4.4 Bode Diagram

The Bode diagram or Bode plot is a plot of amplitude ratio (AR) and phase

shift (¢) of G(jw) with respect to the angular frequency o.

The phase shift is usually plotted against the logarithm of frequency on
semilog coordinates, i.e., the abscissa is dimensioned by log(w). With such a
dimension, the distance between 0.1 and 1 is equal to that between 1 and 10, or
between 10 and 100, and so on. The distance between 1 and 10, or an equiva-

lence, is called a decade.

The amplitude ratio is also plotted against the logarithm of angular fre-
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quency in semilog coordinates. For convenience, the amplitude ratio is usually

converted to log modulus (logarithmic modulus) defined by the equation

L = log modulus = 20 log|G(jo)| (544.1)

The units of log modulus are decibels (dB), a term originally used in communi-
cation engineering to indicate the ratio of two values of power. However, some
control engineers plot the amplitude ratio in log-log coordinates, with dimensions
in real values instcad of log modulus. In fact, it is just the same plot with a

different scale.

The stability of a system is of prime consideration for control engincers.
Also important is the relative stability, which gives the degree of stability and to
some extent, system dynarmnics. The root locus or frequency response can be used

to investigate the relative stability of a system.

The gain and phase margins of a system can be easily evaluated from its
Bode diagram. The unit circle in a polar plot corresponds to the 0 dB line in the
log modulus plot of a Bode diagram, and the negative real axis corresponds to the
-180 degree line in a phase shift plot. Since the gain margin is defined as

20l0gGM = 0 dB - 20log|G(jo )| dB (5.4.4.2)

the gain margin on a Bode diagram is the distance in dB between the 0 dB line
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and the point on the log modulus curve at critical frequency @, If the 0 dB line
is above the point on the log modulus at critical frequency, the gain margin is
positive, and the closed loop system is stable. However, for a stable system, the
log modulus at critical frequency is negative, while the gain margin is positive as
mentioned above. The phase margin on a Bode diagram is the distance in degrees
between the -180 degree line and the point on the phase shift curve at gain
crossover frequency. If the -180 degree line is above the point on the phase shift
curve, the phase margin is negative, and the closed loop system is unstable.
Otherwise, the phase margin is positive, and the system is stable. However, it
should be noted that the critical frequency may not exist, e.g., for a first order

system.

For a single loop feedback control system, the open loop transfer function
is G(s), whereas the closed loop transfer function is G(s)/[1 + G(s)]. In the time
domain, the system stability is investigated by checking the closed loop character-
istic equation to find whether or not all the poles are located on the left half s-
plane. In the frequency domain, however, the closed loop system stability can be
determined on the basis of the open loop frequency response G(jw) rather than the
closed loop one. The gain margin and phase margin are checked on the open loop

frequency response to determine the stability of the closed loop system.

Bode diagrams can also be drawn on the screen or printed out with the
subprogram FDA in the software package PCET. Since the first several steps for

drawing a Bode diagram on screen are the same as those for drawing a Nyquist
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diagram, the procedure for plotting both Bode diagrams and Nyquist plots can be
found in Table 5.4.1. Since the computer screen is limited, the log modulus and
the phase shift are overlapped on the screen. The left side dimension is for log
modulus, and the right side for phase shift. The stability margin can be displayed

on the screen after the Bode diagram is drawn.

Gain margin and phase margin are two important measures of relative
stability to be obtained from the frequency response of a system. They can also
be taken as performance criteria of a system for analysis and design, since they
affect not only the relative stability but also the dynamics of the closed loop
system. Several Bode diagrams should be drawn when designing a controller.
Furthermore, the proposed controller may not satisfy the design requirement, and
may need to be adjusted to achieve the best performance. The subprogram FDA
of PCET can easily draw the frequency response and simulate the controller
tuning. First, a Bode diagram of the open loop transfer function can be obtained
on the screen. Then, through trial and error, a satisfactory PID controller can be

found by tuning controller parameters with FS.

Example 5.4

Consider a single loop feedback control system with the process transfer

function of

e-OSs

GO = s+ D)
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Step

User input
Type PCET
Select FDA

Press 1,2 or 3 for model
selection or load a saved
file by F3

Input system model pa-
rameters

Select F6 for the Nyquist
plot or F7 for the Bode
diagram

If the Nyquist plot is on
screen, F8 changes the
display demension. Ifthe
Bode diagram is on, F8
displays gain and phase
margin.

Select F9 to tune PID
controller parameters.

Function
Start program
Frequency domain analysis

1. Polynomial mcdel
2. Factored polynomial model
3. Zero-pole model.

Define the system and and determine
the frequency range.

F1-Exit
F2-Restart
F3-Load
F4-Save
F5-Modify
F6-Nyquist
F7-Bode

F1-Exit

F2-Restart
F3-Load

F4-Save
F5-Modify
F6-Nyquist
F7-Bode

F8-Scale or Margin
F9-PID

Table 5.4.1 Functions of FDA in PCET.
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To design P, PI and PID controllers respectively with the same 10dB gain
margin, using the subprogram FDA in PCET, the open loop Nyquist plot and Bode
diagram of the system, as shown in Figure 5.4.1(b) and 5.4.1(c) respectively, can
be obtained with a proportional controller K, = 1. User input screen is shown in
Figure 5.4.1(a). The critical frequency w_can be found as about 1.8. Tuning the
P controller to get gain margin 10dB, Figure 5.4.1(d), Bode diagram of the system
with phase margin 69.23 can be obtained. The P controller parameter is K =2.136.
With the empirical formula t =(3-6)/0_, 1/t=0.5 can be chosen. With trial and error
method and using FDA to get 10 dB for a PI controller, Figure 5.4.1(e), the Bode
diagram of the system with the PI controller can be obtained, where a phase
margin 42.8 can be found. The parameters of the PI controller are K_ = 1.36 and
1/t=0.5. With the empirical ‘ormula t=(3-6)/0_and t,=(0.25-0.35)t,, 1/t=0.5 and
t,=0.5 can be chosen. With trial and error method and using FDA to get 10dB
for a PID controller, Figure 5.4.1(f), the Bode diagram of the system with the PID
controller can be obtained, where a phase margin 41.61 can be found. The

parameters of the PID controller are K _=3.4, 1/t=0.5 and t_=0.5

In this example, the gain margin are the same 10dB. The system with PID
controller has the smallest phase margin, while the system with a P controller has
the largest one. The response of the system with three different controliers are
shown in Figure 5.4.1(g), which is obtained by using the subprogram TDA. It can
be realized that the system with PID controller has a better dynamics while the

system with a P controller has steady state error.
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Figure 5.4.1(a) Process model and its parameters of Example 5.4
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Figure 5.4.1(b) Nyquist plot without controller of Example 5.4
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5.5 Discrete-time System Analysis (DSA)

With the dramatic development of digital computers in the past few dec-
ades, computer control systems have been used in many applications. In digital

computers, digital signals, rather than continuous ones, are used.

5.5.1 Zero-order Hold

Discrete time systems, or sampled data systems, are dynamic systems in
which one or more signals are discontinuous or discrete, and can change only at
discrete instants of time. Usually, conversion between continuous signals and

discrete signals is necessary in a discrete time system.

The conversion from a discrete signal to a continuous signal is made by a
holding device. The simplest holding device is a zero order hold, which holds the
discrete signal constant at r(kt) until a new sample occurs at t = (k+I). The

resulting signal is a staircase approximation of the input signal r(t).

By the definition of a zero order hold, its transfer function is the Laplace

transform of impulse response and is formulated as

—_e s
H,(s) = - : (55.1.1)



Page 128

The precision of conversion is limited, and related to the sampling period. The
output c(t) of the zero order hold approaches the system input r(t) as the sampling

period t approaches zero.

5.5.2 Discrete-time System Responses

Before analyzing the responses of discrete systems, the discrete system
models must be determined. Discrete systems can be described by difference

equations in the time domain or by transfer functions in the z-domain.

For discrete systems, the values of signals at sampling instants are only
important. While differential equations are used to describe continuous system
dynamics, difference equations are used for discrete systems. The difference

equation has a general form

y(t) +ay(t-1)+ .. +a y(t-m) = br(t) + b r(t-1) + .. + b r(t-k) (5.5.2.1)

where k is less than m. Taking z-transform on both sides and rearranging it yields

Y(z) b, +bz'+--+bz™*
R(z) 1+az'+---+a z"

(k<m) (5.2.2)

This is the transfer function of a discrete system, which represents the relationship

between the input and output of the system, and is referred to as a pulse transfer
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function. The transfer function in the z-domain is analogous to that used in the
s-domain. This input-output model can be used to determine the response of a

discrete system to a specified input.

The responses of a sampled system to a specified input can be calculated
from the difference equation of the system, which can be obtained from the output
in the z-domain. Usually, z-transforms are more complicated than their corre-
sponding Laplace transforms. Fortunately, there are some relatively simple tech-
niques for obtaining inverse z-transforms. The long division method is an easier
way to find an inverse z-transform than partial fraction expansion. However, the

result is usually in series form, which is not as useful as an analytical expression.

5.5.3 Digital PID Controller

Both continuous and discrete controllers can be used in discrete control
systems. In the case of a continuous controller used in a discrete system, the
discrete transfer functicn of the controller is meaningless. The continuous transfer
function of the controller should be combined with the process transfer function.
Only the discrete transfer function of their combination is meaningful. Therefore,
in most discrete systems, discrete rather than continuous controllers are used. In
a computer controlled system, the digital contioller is an algorithm implemented

in the computer.

Through numerical approximations of the integral and derivative parts in
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the transfer function of a continuous PID controller, the digital PID controller

transfer finction can be found as

G.(z)= KC|:1+&( ! _|)+£’l(l-—z")] (5.53.1)
t\l-z te
where t, is the sampling period. This is also referred to as the position form of

the PID control algorithm since the actual controller output is calculated.

Incorporated in the software package PCET is the subprogram DSA, which
will enable the user to examine the dynamics of a unit feedback discrete time
system. In this subprogram, only typical process model is considered. The system
configuration is shown in Figure 5.5.1, where a digital PID controller and a zero

order hold are used.

The sampling period can be assigned by the user. The selection of the
sampling period is an important but complicated issue. A number of empirical
rules for this selection have been reported. For example, Shannon's sampling
theorem can be used to determine the sampling period. However, it is more of
an art than a science. The response of a system may react unfavorably to an
unsuitably selected sampling period. When an integral action or a derivative action
is included in the system, the selection of a sampling period becomes more com-
plicated. Adjusting the parameters of a PID controller may require adjusting the
sampling period. One must be aware that if the sampling period is too small, or

the dimension scaled is too large, simulation error may happen, since too many
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calculation steps produce a large accumulated error.

Similar to TDA for time domain analysis, the subprogram DSA used in the
z-domain can be applied for open loop process analysis, controller analysis, closed
loop system analysis and controller tuning. The discrete time response of the
process or closed loop system to a unit step input or disturbance can be drawn
on the screen or with a printer. The keystroke sequences required to obtain the

responses are illustrated in Table 5.5.1.
Example 5.5
Consider a discrete system with the third order transfer function

4
T (3s+1)(48 +4s+1)

G(s)

A digital PID controller is to be designed so that the closed loop system satisties

the time domain performance criteria:

Overshoot < 0.25

Setiling Time < 50 seconds

The sampling period, t,, is assumed to be 1 second. With the trial and error
method by using the subprogram DSA in PCET, a digital PID controller can be
found to satisfy the requirement. The parameters of the controller are K. = 0.01,

I, = 2.5 and t, = 7 (Figure 5.5.2(a), (b) and (c)).
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Step User input Function
1 Type PCET Start program
2 Select DSA Discrete-time system analysis
3 Press 1,2,3 0r 4 1. Analysis of open loop process

2. Analysis of controller action
3. Analysis of closed loop response
4. Change setpoint/disturbance

4 Input system model, sam-  Specify system dynamics.
pling time and/or controller
parameters

5 Revise input if necessary  Verify input data

6 Select autoscaling, or Autoscaling computes axis dimension from
input figure dimension response data
7 Desired response is displayed on the screen
8 Press a function key to F1-Exit, back to main menu
continue F2-Restart, restart DSA

F3-Load, load a saved data file

F4-Save, save the data in a file

F5-Scale, change the dimension
F6-Modify, change the model
F7-Tuning, change controller parameters

Table 5.5.1 Functions of DSA in PCET.
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Ko*EXP(-n«Tg»S)

(T1eS+1) (T 20S"2+2eTuxuS+1)

L T P

Press 1 for Analysis of the Process (Open Loap)

Press 2 for Analysis of the Controller’s Rction

Press 3 for Analysis of the Closed Loop System and Controller Tuning
Press 4 for Modification of Setpoint or Disturbance

f'i-Exit {’-Restart i~Load

Figure 5.5.1 Discrete-time system configuration in DSA

oo o BCEY. BT
d Loty Sustes snd Contrallier Tawing

¥

" KOREXP(-neTs®S) |

1. Order of the system (1,2 or 3) = 3
2. Process Gain, Ko = 4

3. Process Time Constant, T1 = 3
T=2

4. Process Damping Factor, x = 1
. Sampling Period, Is = 1
6. Number of Sampling Pariods in Time Delay, n = @

Is the above information correct (Y/N) ?

Figure 5.5.2(a) Discrete-time system parameters of Example 5.5
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L . | Zero { Cowtinuous

o
e ¢+ wi¢ Order N 3rd Order
Pon i Hold i Process |

......................................................

1. Controller Gain, Kc = .01
2. Integra! Time, 1/1i = 2.5
3. Derivative Time, Id = 7

Do you want autoscaling 7 (y/n)

Figure 5.5.2(b) Digital PID controller parameters of Example 5.5

[
Y
T

.8
.6
4
2 }
IlTj
8 L 1 'l .- i )
. ] 18 28 39 48 58 68 (Sec)
Ko= 4 T1= 3 T= 2 x= 1 Kc= .01 1/Ti= 2.5 Td= 7

Si-Exit  F7~Restart U-Load Y4+-Save #i-Scale Yi~-Modify +¥-Tuning

Figure 5.5.2(c) Discrete-time response of Example 5.5
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The resulting response is shown in Figure 5.5.2(c). According to the em-
pirical formula for the choice of sampling period, 0.1t <t <0.5t_ and t >0.001t,

the choice of the sampling time of 1 second is reasonable.

5.6 Linear State Space Analysis (LSA)

Conventional control theory is generally applicable only to linear time-invari-
ant systems having a single input and a single cutput. The state space control
theory is a useful tool for studying systems with multiple inputs and multiple
outputs and/or time-variant systems. For classification, throughout this Section 5§,
capital bold letters and lowercase bold letters represent matrices and vectors

respectively.
5.6.1 State Space

In conventional control theory, only the inputs, outputs and actuating errors
are considered important. Besides inputs, outputs and actuating errors, there are
other variables in a control system which can also reflect the system behavior or

states, and which may be described in a system model.

The state of a dynamic system is the smallest set of system variables that,

together with the inputs, can completely determine the system behavior. With this
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definition, the state of the system at time t is determined by the system state at
time t, and the input for t >t The variables that determine the system state are
referred to as state variables. All the state variables of a dynamic system, which
can completely describe the system behavior, can construct a vector that is called

a state vector.

If a system can be completely described by n state variables, the n-dimen-
sional space whose n coordinate axes represent the n state variables is called a
state space. The state of the system at any time can be represented by a point (a
state vector) in the state space. The system state will trace a trajectory in the state

space while time t varies.

5.6.2 State space representation

A linear time-invariant system may be described by a linear constant differ-
ential equation. Defining n new state variables and rearranging the sets of equa-

tions in vector form, the state space representation of the system takes the form

x = Ax+Bu

y:Cx+Du (5.6.2.1)

where x, y and u are state, output and input vectors, respectively. A, B, C and

D are compatible constant matrices.
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5.6.3 Controllability and Observability

There are two basic problems to consider. The first one is the coupling
between the input and the state: Can any state be controlled by the input? This
is a controllability problem. Another is the relationship between the state and the
output: Can all the information about the state be observed from the output? This

is an observability problem.
5.6.3.1 Controllability Criterion

A system is said to be controllable at time t if it is possible to find an
unconstrained control vector to transfer any initial state to the origin in a finite
time interval. Stated mathematically, the system is controllable at t_ if for any x(t,),
there exists uft, t,] that gives x(t,) = 0 (t>t)). If this is true for all initial time

t, and all initial states x(t ), the system is completely controliable.

With the above definition and the Cayley-Hamilton theorem, the necessary
and sufficient condition for the system to have complete controllability is that the
controllability matrix,

P = [B|AB|A%B| ... |A"'B] (5.63.1.1)

is of full rank.



Page 138

5.6.3.2 Observability Criterion

A system is said to be observable at time t, if it is possible to determine the
state x(t,) from the output function over a finite time interval. In mathematical
terms, the system is observable at t, if any x(t,) can be estimated by the observation
of yft,, t] (t>t)). If this is true for all time t, and all states x(t), the system is

completely observable.

Since observability is the coupling between the state variables and the output
of a system, for observability discussion, the system input can be assumed to be
zero. For the general system, the necessary and sufficient condition of a linear

system for complete observability is that the observability matrix,

Q = [CIATCI(ATY)C] ... (AT C]” (5.6.3.2.1)
is of full rank.
5.6.4 Diagonalization of matrices

If an n x n matrix A has n distinct eigenvalues, n distinct eigenvectors can
be found. A modal matrix of matrix A consists of the eigenvectors of A. If the

eigenvectors of an n x n matrix A are m,, m,, ..., m, then, the modal matrix M

is
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A matrix A can be diagonalized by the modal matrix and its inverse:
J=M'AM
where the diagonal matrix J has the eigenvalues of A on the diagonal.

If B'AB = C, the relationship between A and C is called a similarity
transformation, and A and C are similar matrices. Two similar matrices have the
same eigenvalues. If a square matrix A has multiple eigenvalues, a Jordan canoni-
cal form matrix instead of a diagonal matrix can be obtained. The modal matrix
M consists of the eigenvectors and the general eigenvectors that can be obtained

from the formulas
(/11.1 - A)xi] =0

and

X = (ZI.I— A)xi(j ~1)

where x, is the eigenvector associated with the eigenvalue 4,

If the eigenvalues of system matrix A are distinct, the system can be

diagonalized by similarity transformation ihrough the relations
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2= M~ 1AMz+ M~ 1Bu
y=CM

where x = Mz, M is the modal matrix of A, and M'AM is a diagonal matrix.
When the system matrix becomes diagonal, all the states are decoupled. If one
row in M"'B is zero, the corresponding state variable cannot be changed by the
input. In other words, for a linear system with distinct eigenvalues, the system is
completely controllable if and only if no row of M'B has all zero elements. If
any column in CM is zero, then it is impossible to get any information about the
corresponding state variable from the output. This means that for a linear system
with distinct eigenvalues, the system is completely observable if and only if no
column of CM has all zero elements. If the eigenvalues of matrix A are not

distinct, diagonalization may be impossible. By similarity transform, a Jordan

canonical form can be obtained.

The PCET software package will enable the user to examine the controlla-
bility and observability of a linear system with state space representation by using
the subprogram LSA. The subprogram LSA was mainly developed by M. Sardaga.
Detail functions in LSA are described in Table 5.6.1.

Example 5.6

Consider a linear system
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Step User input Function
1 Type PCET Start program
2 Select LSA Linear state space analysis

3 Define system dimension  Database file name
and options Title of case study
Number of state variables
Number of input variables
Number of output variables
Field width for data input
Initial guess for eigenvalue
Tolerance for convergence

4 Enter data for matrices A, Input data of matrices A, B, C and D.
B, C and D or load a case
study from the database.

5 Display results on screen.  Controllability matrix
Observability matrix
Rank of controllability matrix
Rank of observability matrix
Conclusion
Eigenvalues of A
Modal matrix
Inverse of modal matrix
Transformed matrices A, B, C and D

6  Print results All items in step 5 are printed on printer.

7 Return to main menu.

Table 5.6.1 Functions of LSA in PCET.
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y=[1 0 1]x

Controllability and observability matrices are shown in Figure 5.6.1(c) and Figure
5.6.1(d). The modal matrix and its inverse can been found by LSA as shown in
Figure 5.6.1(f). The transferred system is also shown in Figure 5.6.1(g). Thus,

the system is completely controllable, but not completely observable.

5.7 Industrial Application Case (IAC)

A paper machine headbox is chosen as a typical industrial case study in order
to combine theory with practice, and to link abstract mathematical models with the
real industrial process. Paper machine headbox control system is widely used in
pulp and paper mills to control basis weight and moisture of the products. The
main problems encountered with headbox control are the ability to maintain the
total pressure and level in the headbox, and to maintain the rush/drag ratio when

wire speed changes. The benefits from implementation of a good headbox control

system would include (Figure 5.7.1(a)):

1. improvement of wet end stability

2. better and more uniform formation



=] PCET 1]

I Define System Dimensions I

Database File Nane = LSA.DAT
Title of the Case Study .....
Number of State Uariables =n = 3
Number of Input Uariables = mn = 1
Number of Output Uariables= » =1
Pield Width for Data Input 4
Initilal Guoss for Eigenvalue = 1
(]

Tolerance for Convergence

- PCET N S ME

' Data Entry Tor Hatrices [P F T

Figure 5.6.1(b) System parameters of Example 5.6



ntrollability]atrix

ROV1 1.80E+80 -~5.08E+H0 2.58E+81
ROW 2 ©.GDE+80 1.0D8E+80 -6.DEE+EO
ROV 3 D.BOE+80 B.08E+B0 1.00E+80

Figure 5.6.1(c) Controllability matrix of Example 5.6

Euroabxlity Hatrix

ROV 1 -DAE+38 B BGE+08 1.8BE+HO
goy 2 6 .IE*@B 1.20E+0{ 6.80E+P8
ROV 3 ~2.40E+B1 -6.BGE+01 ~3.60DE+B1

Figure 5.6.1(d) Observability matrix of Example 5.6
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Rank of Controllability Mateix = 3

Rank of Obsarvahility Hatrix = 2
{Determinant of Observability Matrix = B

Therefore:
System is controllable.
System is not observable.

Figure 5.6.1(¢) Controllability anf obserbability analysis of Example 5.6

..... TPCET T i-i¢

. . Results fOIl“‘ the Diagonalizatmn 'l’ransfornation
EBigenvalues: -3.9B0E+88 -2.800E+03 -1.B80E+08

Modal Matrix .
1.D00E+B8 1.0OBE+HG 1.PGRE+DO
~3.333E-81 -5.GOSE-01 -1.DGUE+H@
1.111F-p1 2.S688E-B1 1.PGOE+bE

Inverse Hodal Matrix
4.500E+088 1.358E+G%1 ¢.BAGE+08
-4.060E+B8 -1.600E+B1 -1.206E+p1
5.000E~61 2.506E+GB 3.8GCE+DA

S R e RIS

Figure 5.6.1(f) Modal matrix of Example 5.6
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R v 3 e s
Rasults Tor the Current Case Study (LORC..)

Irangformed Matrix A

-3.060E+P@ 0.GDEE+OG @.BOOE+DA
§.660E+08 ~2.GDOE+B 8.800E+08
8.D00E+D8 D.BOREID -~1.3GBE+DA

Iransformed Matrix B
4.500E+00

Transformed Matrix C
-8.889E-91 ~-7.508E-GX 9.060E+08

Al R i B AR R A

Figure 5.6.1(g) Diagonalized system of Example 5.6
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3. automatic wet end speed change capability
4. automatic wet end start-up capability
5. reduction of variations in final sheet quality variables such as tensile and tear

ratio in machine direction (MD) and cross direction (CD), stretch, etc.

Different headbox control schemes should be chosen according to the different

headbox types and stock delivery systems.

With a model of the paper machine headbox control system, several typical
industrial process control configurations, such as single-loop control and cascade
control, are also incorporated in PCET. Under each control configuration, several
subprograms are linked. They currently includes Time Domain Analysis (TDA)

and Routh Stability Criterion (RSC).

5.7.1 Cascade Control

In order to eliminate the effect of disturbances and improve control sys-
tem's dynamic performance, a common control configuration is taken with two
controllers. When the output of one controller is used to manipulate the setpoint
of another controller, the two controllers are said to be cascaded, and the system

is referred to as a cascade control system (Figure 5.7.1(b)).

The block diagram of a general cascade system is shown in Figure 5.7.1(c),

where the number 1 stands for the primary loop, 2 for the secondary loop, p for
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process, v for valve, ¢ for controller, m for measurement,
The transfer function of the secondary closed loop is

_ Gu(9G,()Gy(5)
1+ G, ()G, (s)G,, (s)G,, (5)

G,(s)

Note that if G_,(s) = 0 and G(s) = 1, the transfer functions of G,(s) is reduced

to G(s)G,,(s) for the corresponding simple feedback system, respectively.

Subprogram IAC (Industrial Application Case) in PCET deals with indus-
trial processes. A paper machine headbox process is typically incorporated. With
this package, single loop control and cascade control systems can be analyzed.
The procedure for analyzing the cascade control systems is described in Table
5.7.1. The subprogram TDA is incorporated with IAC. The secondary loop
response is obtained first. The secondary (closed) loop is automatically dealt with
as an element tiock in the primary loop, when the primary loop response is drawn.
When the same procedure used for closed loop analysis in TDA described before,
the system responses for both secondary loop and primary loop can be obtained.
The input can be selected as a setpoint or disturbance by pressing "4" in Step 4
of Table 5.7.1. The default values are R(setpoint) = 1 and D(disturbance) = 0.
When observing the responses to the disturbance in the secondary loop, the setpoint
should be set to zero and disturbance can be set to 1 for secondary loop analysis,

and both the setpoint and disturbance in the primary loop should be set to zero
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Step  User input Function
1 Type PCET Start program
2 Select IAC Industrial application case
3 Headbox control system introduction

4  Select F2 for single loop  F1-Exit
control or F3 for cascade  F2-Single
control F3-Cascade

F4-Next

5 Schematic diagram of cascade control
system for paper machine headbox

6 Select F4 to display the F1-Exit
block diagram or F2 to link F2-Response
TDA for secondary loop  F3-Help
response. F4-Block

7  Described in Table 5.1 1 to Tune the seconday controller, and then exit
use TDA from TDA.
Information for primary loop control

8 Described in Table 5.1.1 to Tune the primary controller and get the
use TDA overall system response.

9  If necessary, repeat step 6
through step 8.

Table 5.7.1 Functions of IAC in PCET.
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for primary loop analysis.

Example 5.7

A paper machine headbox control system is an industrial application case
incorporaied in PCET. A pressurized headbox control system usually contains
total head control and level control loops. The total head is controlled by adjust-
ing thin stock flow rate while the level is controlled by adjusting air pad pressure.
The fluctuations in stock flow rate may be caused by many factors including
underdamped pulsation from pumps, rotating screens, etc. Therefore, cascade

control may be used to eliminate or to minimize the disturbances before they re-ch

the headbox

A schematic diagram for cascade control configuration, as shown in Figure
5.7 1(b), is provided in the subprogram IAC in PCET. Its block diagram can also
be obtained as shown in Figure 5.7.1(c). The tuning of the two controllers in the

cascade control system proceeds in two steps.

In the first step, to determine the settings for the secondary controller, the
tuning metinods Zor cingle loop control system can be used. In pulp and paper
industries, proportional controller is generally applied for secondary loop. The
proportional gair for flow rate system is usually at range of 1-3. Assuming the

secondary loup model has the first order transfer function G,(s) as
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G, (s)=
" 8s+1

with the proportional controller of G_(s) = 3, the second leop response to a unit

ste: change . setpoint can be obtained as shown in Figure 5.7.1(e). Since tr.

sec.:odary controller is a proportional controller, the offset exists in the response.

In the second step, tc determne the settings for the primary controller, the
closed secondary loop is considered as a block in the primary loop, and then the
primary controller can be tuned. In practice, PI or PID controller is generally used
to eliminate the offset in the control system. Assuming the transfer function of

the primary process G, (s) as

2
G, (s)=—
(8) 2s+1
with a PI controller G_(s) for the primary loop, the primary loop response to a
unit step change in setpoint can be obtained as shown in Figure 5.7 1(g), where
the offset no longer exists. The parameters of the primary controller 1s K. = 2

and 1/t = 0.25. If the response is not satisfactory, the controller pararaeters can

be easily tuned to get the satisfactory response.
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Headbox Control System (page 1 of 2)

Paper machine headbox control system is widely used in
pu lp/paper ‘ils to control basis usight and ~oisture of
the product: The benafits from implementat: f a good
hesadbox control system would include:

. improvement of wet end stability,

. better and more unifora formatiom,

. automatic wet end speed change capability,

. automatic wet end start-up capabflity, and

. reduction of variations in final sheet quality
variables such as tensiie and tear ratio in
machine direction (MD) and cross direction (CD),
stretch, etc.

Different headbox control schemes should be chosen according
to the different headbox types and stock delivery systenms.

“i=Exit

ii-Single {3~Cascade {i-Next

Figure 5.7.1(a) Headbox control system information in IAC
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Cascade Control Systen
fou Paper Machive Haadhox

Tokat head | 8ir Lo
conlrel s conbyol Tae
Flow L b e

contbrol bene

Thin sgbck

T-Exit

fi-Response +-Help ¥4=Blochk

Figure 5.7.1(b) Cascade control system configuration in IAC
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PCET

86-27-1993 084 :03:60

Y2 .
——ﬁGpl(S)

Cascade Control System Biock Diagram

fi-Exit ©

.—Response tli-Help H4-Schematic

Figure 5.7.1(c) Cascade control system block diagram in IAC

PCET _ Mg

Sacondary Loop Cantyaller Taning

To determine the settings for the secondary controller,
the tuning methods for single loop control systems can be
used. Generally, a proportional controller is applied to
the secondary loop. The proportional gain for flow rate
loop will be at range of 1-3.

Press apace bar to continue

Figure 5.7.1(d) Primary loop controller tuning information
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—_PCEY e

1.2 pY
P
1 ----------------------------------------------------------------------------------------------------
.8 |
6 T
.4
.2 |
Tim
@ R 1 . L ) . .
8 2 4 6 8 18 12 14 (sec)
Ko= 1 I1=- 8 I- 8 x= 0 Tau= B8 Kc= 3 1/Ti= @ Td= @
~Exit .. -Restart i.i-Load ii-Save ¥#4-Scale ii-Modify i“-Tuning

Figure 5.7.1(¢e) Secondary loop response of Example 5.7

Prinsry Loop Contrallier Taning

To determine the settings for the primary controller,
the closed secondary loop can be considerad as a block
in the prisary loop while tuning contreller. Usually,
Pl or PID controller is used for primary loop.

Figure 5.7.1(f) Secondary loop controller tuning information
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Figure 5.7.1(g) Primary loop response of Example 5.7
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Chapter 6

General Discussion and Conclusions

This chapter contains some general concluding remarks. Conclusions spe-

cific to each project are given at the end of its respective chapter.

6.1 Results

In the project of process modelling by using the industrial sample data and
historical information from ESSO Strathcona Refinery, an Artificial Neural Net-
work (ANN) has been applied to predict the refinery product volatility. In addition,
a Connection Weight Interpretor (CWT) has been also built to evaluate the relative
significant contribution of input variables in the process model. For the integration

of ANN as well as CW], as subsystems for numerica! computation, into Intelligent
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Distributed Intelligent System (IDIS), Meta-COOP, a new architecture for a meta-
system implementation, has been utilized. Through the indirect communication
interface, ANN, CWI and/or other expert systems can swap their data interactively,
for intelligent process modelling or operatien, under the control of the meta-
system. As the rzsult of applying a multilayer feedforward Backpropagation (BP)
neural network to inferential process modelling, it has been demonstrated that the
ANN can model the product volatility at refinery plants. The ANN model can then
be used for inferred volatility control. In this study, a couple of case studies has
been carried out for two different processes using the BP network. In the first
case study, inferential model for the volatility of Light Lube Oil (LLO) was
developed by ANN with simulation data for Vacuum Pipe Still (VPS) in ESSO's
Sarnia Refinery. Then, the ANN and Regression Analysis (RA) models were
compared in representing the relation between the process stream data and the
LLO volatility. The results showed that the ANN model matches the data much
better than the RA model. Consequently, the ANN model was superior to the RA
model at predicting the LLO volatility. In the second case study, ANN was applied
to Atmospheric Pipe Still (APS) unit at ESSO's Strathcona Refinery for the pre-
diction of Bottom Atmospheric Gas Oil (BAGO) volatility from noisy plant stream
data. Thc results showed the ANN model to be able to fit even noisy plant data

and to predict the BAGO volatility with a certain degree of accuracy.

The integration strategy to design an interactive computer-aided control

system design environment for chemical processes was also presented, in which
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several independently developed subprograms are coordinated by a meta-system.
By this kind of integration approach, each subprogram can be easily modified
without affecting other subprograms. It also allows other subprograms to be
added to the system easily. Moreover, individual subprograms can be executed
separately as a stand-alone system. The interactive graphics software package,
PCET, has a hierarchical structure of several independently developed subpro-
grams which are integrated by a meta-system. In the software package PCET, the
meta-system serves as an interface mechanism to communicate individual software
programs, and to build man-machine interface. Currently, PCET, written in the
BASIC programming language for IBM PC's and compatibles, covers a wide
spectrum of process control engineering tasks including Time Domain Analysis
(TDA), Routh Stability Criterion (RSC), Root Locus Technique (RLT), Fre-
quency Domain Analysis (FDA), Discrete-time System Analysis (DSA), Linear
State Space Ana.ysis (LSA) and Industrial Application Case (IAC). This software
can be used to design control systems. It can also improve understanding of the
basics of process control engineering, and can help users to gain practical expe-

rience on simulation and computer-aided design.

6.2 Contributions

The author feels that the following contributions were made both in aca-

demic research and industrial applications during my thesis research project.
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1. The process modelling via ANN was developed for a real industrial process.
All the data and knowledge about the industrial process were collected from
ESSO's Strathcona Refinery. Evaluation by the ESSO Strathcona Refinery
personnel was satisfactory, and the project was appreciated by industrial
engineers. Such a project aims at narrowing the gap between academic

research and real industrial applications.

2. PCET (Process Control Engineering Teachware) was developed for educa-
tion purpose. The objective of PCET is to provide users with better under-
standing of process control system and design, as well as to train them. It
is a menu-driven system running under a user-friendly and manual-free en-

vironment.

3. Through this thesis research, the meta-system, a new technology for integra-
tion issue, was investigated and utilized to integrate each independently
developed susbsystem as a stand-alone system. This meta-system concept

will pave the way for a new research direction for constructing IDIS.
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Appendix A

Source Code for ANN

O 0O 00 0

BACKPROPAGATION NEURAL NETWOK
WITH CONJUGATE GRADIE!.T IN TRAINING
BY HEON CHiNG KIM

PROGRAM ANNCG

REAL X(420),WI(20,20),WJ(1,20),G(420),W(10000)
REAL XN(300,20), YM(300,20),YP(300,1).YD(300,1)
CHARACTER A72(8)*10,FNAME*50
CHARACTER*16 CPN(30),PCN(30)

COMMON IPMY,NX,WI,WJ,IN,XN,YM,YP,YD
COMMON /STAT/ SSTO,RVALUE

EXTERNAL FUNCT

OPEN(7,FILE="EXNET.DAT’,STATUS="OLD’)
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READ(7,*)ID
CLOSE(7)

WRITE(*,1)

100 WRITE(*,2)
READ(*,’(A)’) FN; ME
ICH = INDEX(FNAME,’ *)-1
IP' = INDEX(FNAME,"’)-1
IF (ICH .GT. 0) THEN
IF (IPT .LT. 0) THEN
WRITE(A72(1)(1:12),3) ICH
N = JTH
WRSTL:(FNAME,A72) FNAME
ENDIF
OPEN(S5,FILE=FNAME,STATUS="OLD’,ERR=110)
WRITE(A72(1)(1:5),4) IPT
WRITE(PCN(1)(1:50),A72) FNAME
CPN(1)=FNAME
GO TO 120
10 WRITE(A72(1)(1:33),5)INDEX(FNAML" > )
WRITE{*,.472) FNAME
ENDIF
GO TO 100

120 WRITE(A72(1)(1:36),6) IPT
WRITE(*,A72) PCN(1)
READ(*,’(A)’) FNAME
IF NDEX(FNAME,” ") LT. 1) THEN
ICH = INDEX(FNAME," *)-1
IF (ICH .LE. 0) THEN
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ICH = IPT
WRITE(A72(1)(1:5).4) IPT
WRITE(FNAME,A72) PCN(1)
ENDIF
WRITE(A72(1)(1:12),7) ICH
WRITE(FNAME,A72) FNAME
ENDIF
CPN(10)=FNAME
OPEN(6,FILE=FNAME,STATUS="NEW’ ERR=130)
GO TO 140
130 WRITE(A72(1)(1:51),8)INDEX{FNAME," *)
WRITE(*,A72) FNAME
READ(*,’(A)’) A72(1)
IF (A72¢1).EQ’Y’ .OR. A72(1).EQ.’Y") THEN
OPEN(6,FILE=FNAME,MODE="WX : 17}’
ELSE{F(A72(1).EQ.’'N’ .OR. A72{1).EQ.’N’) THEN
WRITE(*,*)
GO TO 120
ELSE
GO TO 130
ENDIF

140 WRITE(A72(1)(1:12),9) ICH
WRITE(FNAME,A72) PCN(1)
CALL GETDAT(IYR,IMON,IDAY)

WRITE(A72(1)(1:29),10) INDEX(CPN(1),” *),INDEX(CPN(10)," )
WRITE(6,A72) CPN(1),CPN(10)

1 FORMAT{/,10X,’+",22("-"),’+’,
& /,10X, | BACKPROPAGATION NEURAL NETWORK VERSION 1.00, 1992



& /,10X,’| BY HEON CHANG KIM v,
& /,10X,°+°,52(*-),’+°./)

2 FORMAT(1X, INPUT FILE [NET]: *,\)

3 FORMAT(‘(A’,12,”,’,7H’ NET’))

4 FORMAT(“(A,12,’)")

5 FORMAT(*(/, 29X,A’,12,21H’ DOES NOT EXIST.’,))

6 FORMAT(21H(1X,’OUTPUT FILE [,AI2,13H,”.0UT]: *,\))

7 FORMAT(‘(A’,12,’,”,7H’.OUT"))

8 FORMAT(‘(/,29X,A’,12,38H’ ALREADY EXISTS. OVERWRITE ? (Y/N) *,
& VD)

9 ' AR SHLWY))

10 J1H(* DRN: “,A12,131/ PRN: “,AI2,’))

11 " T(8A10)

12 FOKMAT(/,40X,’DATE  12,°/°,12.2,°/,12.2,/)

READ(5,*)IN,NX,MY,IP,ACC,DFPRED
READ(S,*)((XN(J.1),]1=1,NX),(YD(J,1),I=1,IP),J=1,IN)

COD=0

SSTO=0

SUM=0

DO 987 J=1,IN

DO 987 I=1,IP
SSTO=SSTO+YD(J,I)*YD(J,])
SUM=SUM+YD(J,I)
987 CONTINUE
SSTO=SSTO-SUM*SUM/IN
SUM=0



150

200

1000

300
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TR=0

IF(ID .EQ. 2) THEN
OPEN(7,FILE='EXNET.DAT' ' MODE=WRITE')
WRITE(7,'(A))FNAME
CLOSE(7)

ENDIF

IF(ID NE. 0) THEN
OPEN(7,FILE=FNAME,STATUS="OLD")
READ(7,*)((WI(LK),K=1,NX),I=1 MY)
READ(7,*)((WI(LJ),J=1,MY),I=1,IP)
CLOSE(7)

GOTO 1000

ENDIF

DO 150 I=1,IP
DO 150 J=1,MY
S$=3.141592/(1+]-1)
WI(I,1)=SIN(S)
CONTINUE

DO 200 I=1,MY
DO 200 J=1,NX
$=3.141592/(1+]-1)
WI(1,J)=COS(S)
CONTINUE

DO 300 I=1,IP
DO 300 J=1,MY
X()=WI(LJ)
CONTINUE
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DO 400 1=1,MY
DO 400 J=1,NX
X(MY+J+NX*(I-1))=WI(1J)
400 CONTINUE

IF(ID .EQ. 1) GOTO 850

N=(NX+1)*MY
MAXFN=0

999 CALL ZXCGR(FUNCTN,ACC,MAXFN,DFPRED,X,G,F,W,IER NCALLS)

1100 CALL XW(X)

WRITE(6,*)’ TRAINING TIME =", NCALLS
WRITE(6,*)IN,NX MY,IP ACC,DFPRED,F

OPEN(7,FILE=FNAME,MODE="WRITE’)
WRITE(7,*)NX,MY,IP
WRITE(7,*)((WI(LK),K=1,NX),I=1, MY)
WRITE(7,*)
WRITE(7,*)((WX(LJ),J=1,MY),I=1,IP)

WRITE(G,*) *¥***#x%xx TRAINING ******kxkkx’
600 SSE=0

IF(ID .EQ. 1) OPEN(7,FILE='EXNET DAT' MODE="WRITE')
DO 700 I1=1,IN
CALL XNYP3(Il)
WRITE(6,*)I,(YD(IL 1), YP(ILI), YP(IL)-YD(IL I),I=1,IP)
IF(ID .EQ. 1) WRITE(7,*)YP(L])
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DO 700 I=1,IP
SS:~SSE+(YP(ILI)-YD(ILI))**2.
700 CONTINUE
RVALUE=1-SSE/SSTO
WRITE(6,*) ********xx R SQUARE =",RVALUE,’ RMS =" SSE/IN

STOP

READ(S,*)NP
READ(S,*)((XN(@,1),I=1,NX),(YD(J.1),I=1,IP),J=1,NP)

SSTO=0
SUM=0
DO 800 J=1,NP
DO 800 I=1,IP
SSTO=SSTO+YD(.[)*YD(J,I)
SUM=SUM+YD(J,I)

800 CONTINUE
SSTO=SSTO-SUM*SUM/NP
IN=NP
COD=1
WRITE(6,*) *******xx PREDICTION *****kkxkxt
GOTO 600

STOP
END

SUBROUTINE FUNCT(N,X,F,G)

REAL X(420),WI1:20,20),WJ(1,20),G(420)



10

10
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REAL XN(300,20),YM(300,20),YP(300,1),YD(300,1)
COMMON IPMY,NX, WLWIJIN,XN,YM,YP YD

CALL XW(X)

F=0.
DO 10 Ii=1,IN
CALL XNYP3(II)
F=F+.5*(YD(IL,1)-YP(II, 1))**2.
CONTINUE

CALL DFDX(X,G)

RETURN
END

SUBROUTINE DFDX(X,G)

REAL X(420),W1(20,20),WJ(1,20),G(420)
REAL XN(300,20), YM(300,20),YP(30¢.1),YD(300,1)
COMMON IPMY,NX,WL,WJIN,XN,YM,YP,YD

DO 10 J=1,MY
G(J)=0.
DO ;0 K=1,IN
G(U)=G(J)+(YP(K,1)-YD(K,1))*YP(K,1)*(1-YP(K, 1))
*YM(K,J)
CONTINUE

DO 20 I=1, MY



120

20

10

100

20

DO 20 J=1,NX
SUM=0,
DO 120 K=1,IN
SUM=SUM+(YP(K,1)-YD(K, ))*YP(K,1)*(i-
YP(K, 1)*YM(K,)*(1-YM(K,))*WI(1,1)* XN(K.J)
CONTINUE
G(MY+J+NX*(I-1))=SUM
CONTINUE

RETURN
END

SUBROUTINE XNYP3(II)

REAL WI(20,20),WJ(1,20)
REAL XN(300,20), YM(300,20),YP(300,1),YD(300,1)
COMMON IPMY,NX,WI,WJ,IN,XN,YM,YP,YD

DO 100 I=1, MY
SUM=0.
DO 10 J=1,NX
SUM=SUM+WI(I,J)*XN(ILJ)
YM(ILI)=1/(1+EXP(-SUM))
CONTINUE

DO 200 I=1,IP
SUM=0.
DO 20 J=1 MY
SUM=SUM+WI(1.3)*YM(ILJ)
YP(ILD)=1/(1+EXP(-SUM))
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200 CONTINUE

RETURN
END

SYUBRCUTINE XW(X,

REAL. X(420),W1(20,20),W](1,20)
COMN.ON IPMY,NX,WL,WJ

DO 300 I=1,IP
DO 300 J- - “jY
WI(LI) * 5
300 CONTINUE

DO 400 I=1,MY
DO 400 J=1NX
WI(LI=X(MY+J+NX*(I-1))
4 . 'TINUE

RETURN
END

SUBROUTINE ZXCGR(FUNCT,N,ACC,MAXFN,DFPRED,X,G,F,W,IJER,NCALLS)

INTEGER N,MAXFN,IER
REAL  ACC,DFPRED,X(N),G(N),FW(1)
INTEGER MAXLIN,MXFCON,LIGINIT,IGOPT,IRETRY,IRSDG,
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IRSDX,ITERC,ITERFM,ITERRS,IXOPT,NCALLS NFBEG,
NFOPT
REAL BETA,DDSPLN,DFPR,FCH,FINIT,FMIN,GAMDEN,GAMA,
GINIT,GMIN,GNEW,GSPLN,GSQRD,SBOUND,STEP,STEPCH,
STMIN,SUM,WORK
COMMON /STAT/ SSTO,RVALUE
DATA MAXLIN/5/ MXFCON/2/

IER =0

IRSDX = N

IRSDG = IRSDX+N
IGINIT = IRSDG+N
IXOPT = IGINIT+N
IGOPT = IXOPT+N
ITERC =0
NCALLS =0
ITERFM = ITERC

NCALLS = NCALLS+1

CALL FUNCT (N, X,E,G)

IF (NCALLS.GE.2) GO TO 20

DO 15 I=1,N
w(1) = -G(b)

ITERRS = 0

IF (ITERC.GT.0) GO TO 80

GNEW = 0.0



30

35

40

45

50

SUM = 0.0
DO 25 I=1,N

GNEW = GNEW+W(1)*G(])
SUM = SUM+G(I)**2
RVALUE=1-2*F/SSTO
WRITE(*,*)NCALLS,F,SUM,RVALUE
IF (NCALLS.EQ.1) GO TO 35

FCH = F-FMIN

IF (FCH) 35,30,50
IF (GNEW/GMIN.LT.-1.0) GO TO 45

FMIN = F
GSQRD = SUM
NFOPT = NCALLS
DO 40 I=1 N
W(IXOPT+]) = X()
W(IGOPT-+) = G(l)
IF (SUM.LE.ACC) GO TO 9005
IF (NCALLS.NE.MAXFN) GO TO 55

IER = 131

GO TO 9000
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80

85

90

IF (NCALLS.GT.1) GO TO 100

DFPR = DFPRED
STMIN = DFPRED/GSQRD

ITERC = ITERC+1

FINIT = F
GINIT = 0.0

DO 85 I=1,N
W(IGINIT+I) = G(I)
GINIT = GINIT+W(I)*G(I)

IF (GINIT.GE.0.0) GO TO 165

GMIN = GINIT
SBOUND = -1.0
NFBEG = NCALLS
IRETRY = -1

STEPCH = AMINI1(STMIN,ABS(DFPR/GINIT))

STMIN = 0.0

STEP = STMIN+STEPCH
WORK = 0.0

DO 95 I=1.N

X(I) = W(IXOPT+)+STEPCH*W(I)
WORK = AMAX1(WORK,ABS(X(I)-W(IXOPT+I)))
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105

110

115

120
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IF (WORK.GT.0.0) GO TO S
IF (NCALLS.GT.NFBEG+1) GO TO 115
IF (ABS(GMIN/GINIT)-0.2) 170,170,115

WORK = (FCH+FCH)/STEPCH-GNEW-GMIN
DDSPLN = (GNEW-GMIN)/STEPCH

IF (NCALLS.GT.NFOPT) SBOUND = STEP
IF (NCALLS.GT.NFOPT) GO TO 105
IF (GMIN*GNEW.LE.0.0) SBOUND = STMIN

STMIN = STEP

GMIN = GNEW

STEPCH = -STEPCH

IF (FCH.NE.0.0) DDSPLN = DDSPLN+(WORK+WORK)/STEPCH
IF (GMIN.EQ.0.0) GO TO 170

IF (NCALLS.LE.NFBEG+1) GO TO 120

IF (ABS(GMIN/GINIT).LE.0.2) GO TO 170

IF (NCALLS LT.NFOPT+MAXLIN) GO TO 120

IER = 129
GO TO 170

STEPCH = 0.5*(SBOUND-STMIN)
IF (SBOUND.LT.-0.5) STEPCH = 9.0*STMIN
GSPLN = GMIN+STEPCH*DDSPLN

IF (GMIN*GSPLN.LT.0.0) STEPCH = STEPCH*GMIN/(GMIN-GSPLN)
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GO TO 90
125 SUM = 0.0
DO 130 I=I,N
130 SUM = SUM+G(I)*W(IGINIT+I)

BETA = (GSQRD-SUM)/(GMIN-GINIT)
IF (ABS(BETA*GMIN).LE.0.2*GSQRD) GO TO 135
IRETRY = IRETRY+]
IF (IRETRY.LE.O) GO TO 110
135 IF (FLT.FINIT) ITERFM = ITERC

IF (ITERC.LT.ITERFM+MXFCON) GO TO 140

IER = 132
GO TO 9000

140 DFPR = STMIN*GINIT

IF (IRETRY.GT.0) GO TO 10
IF (ITERRS.EQ.0) GO TO 155

IF (ITERC-ITERRS.GE.N) GO TO 155

IF (ABS(SUM).GE.0.2*GSQRD) GO TO 155

GAMA = 0.0
SUM = 0.0

DO 145 I=1,N
GAMA = GAMA+G(I)*W(IRSDGI)



145

150

155

160

165

170

175

180
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SUM = SUM+G(I)*W(IRSDX+])
GAMA = GAMA/GAMDEN
IF (ABS(BETA*GMIN+GAMA*SUM).GE.0.2*GSQRD) GO TO 155

DO 150 I=1,N
W(I) = -G(I)+BETA*W(I)*GAMA*W(IRSDX+1)

GO TO 80
GAMDEN = GMIN-GINIT
DO 160 I=1,N
W(IRSDX+I) = W(I)
W(IRSDG+I) = G(I)-W(IGINIT+I)

W(I) = -G(I)+BETA*W(I)

ITERRS = ITERC
GO TO 80

IER = 130
IF (NCALLS.EQ.NFOPT) GO TO 180
F = FMIN
DO 175 I=1,N

X(1) = W(IXOPT+I)

G(I) = W(IGOPT+])

IF (IER.EQ.0) GO TO 125
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9000 CONTINUE

9005 RETURN
END
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Appendix B

Meta-knowledgebase Source code for

Integration of ANN and CWI into IDIS

/
**************************************************************************#/
/* Module . Answer.fra */
/* Function . Design Answer Unit */
/* */

/

************************************************#**************************/

globe

Answerl: Answer;
instance: ANN;
procedure: String;
End

Unit: Answer in_knowledge_base Answer.kbs
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Memberslot: index from Answer
Inheritance: Override. Values
Valueclass: integer
Cardinality.Min: 1
Cardinality. Max: 1
Values: Unknown

/
**************"“***********************************************************/
/* Module . ANN fra */

* Function . Design ANN Unit */
/# */

/

***************************************************************************/

Unit: ANN in_knowledge base Answer.kbs

Memberslot: procedure from ANN
Inheritance: Override. Values
Valueclass: string
Cardinality.Min: 1
Cardinality.Max: 1
Values: Unknown

Memberslot: question from ANN
Inheritance: Override. Values
Valueclass: RULES
Cardinality. Min: 1
Cardinality. Max: 1
Values: {

rule 1
fact Answerl.index=2



then _FRAME procedure:=""train"’
rule 2

fact Answerl.index=1

then _FRAME procedure:=""predict”

}

Memberslot: prediction from ANN
Inheritance: Override.Values
Valueclass: real
Cardinality. Min: 1
Cardinality Max: 1
Values: Unknown

Memberslot: decide from ANN
Inheritance: METHOD
Valueclass: METHODS
Cardinality.Min: 1
Cardinality. Max: 1
Values: decision

METHOD decision(design:keyword)
VAR
design: keyword,
xchar: string;
yout:real;
nxin:integer;
w,r: file;
BEGIN
writeln(**"’);
writeln(**™’);
write(‘ ‘Please enter’’);
writeln(** 1 or 2.”);
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writeln(** 1. Prediction’’),
writeln(* 2. Training”);
writeln(**”’),
writeln(**”’),
reason(_FRAME, ’question’’),
open(w, exnet.dat”,”w”);
writeln(w,Answer.index),
close(w);
system(*‘ann-conj’’),
if _FRAME procedure=""train’’ then
begin
system('ann-cwi');
end;
if (_ FRAME procedure=""predict’’) then
begin
open(r,xchar,”r”);
readIn(r,yout);
_FRAME prediction=yout,
write(*‘The predicted *‘);
write(*‘quality is **);
writeln(yout),
end;

END.
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Appendix C

PCET Evaluation Form

||' EVALUATION OF PCET |

Please provide us with your thoughtful responses to the following questions. We
wish to improve the quality of our Computer-Aided Control System Design
package, PCET, by monitoring your valuable opinion.

USER CHARACTERISTICS

1. What is your university year?

1. Ist 2. 2nd 3. 3rd 4. 4th 5. Post-degrec

2. What is your age?

1. under 25 2. between 25 and 30

3. between 30 and 35 4. over 35
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3. What is your major? If your choice is 5, please specify.

1. Process Control 2. Chemical Engineering
3. Electrical Engineering 4. Mechanical Engineering
5. Others :

4. Have you any industrial experience? If yes, please provide job description?

1. no 2. less than 2 years

3. between 2 and 5 years 4. more than § years

5. What kind of computer are you familiar with? If your choice is 5, please
specify.

1. IBMPC 2. Machintoshi 3. workstation 4. mainframe
5. others

6. What kind of programming language are you familiar with? If your choice is 7,
please specify.

1. Assembly 2. Basic 3. Fortran
4. C 5. C++ 6. LISP
7. others

7. How often did you meet with instructor or TA regarding to PCET?
1. never 2. onetime 3. two times 4. more than three times

8. Have you ever used other control system design packages? If your choice is 5,
please specify.

1. no 2. PCMATLAB

3. PROGRAM CC 4. TUTSIM
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S. others

LEARNING

9. How long did it take for you to get used to PCET?
1. less than 10 minutes 2. between 10 and 30 minutes
3. between 30 and 60 minutes 4. more than 1 hour

10. Did you gain a good understanding of concepts/principles/skilis in designing
control system by using PCET?

1. completely 2. much 3. some 4 little 5. notatall

11. Did you gaine practical experiences on simulation and computer-aided design
of control system by using PCET?

1. completely 2. much 3. some 4. litt'e 5. not at all

SATISFACTION

12. Did you like independent study?

1. absolutely 2. much 3. some 4 little 5. not at all

13. Have you had any difficulty in using PCET? If yes, nlease specify.

14. Was PCET helpful for designing control system?

1. absolutely 2. much 3. some 4 little 5. not at all
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15. If you are to make an improvement on PCET, what function would you like to

add?

16. Please comment on the strength/weakness of PCET.

OVERALL

17. Are you going to keep using PCET? Please provide reasons.

18. Are you going to recommend PCET to other colleagues? Please provide
reasons.

19. How do you like to rate the Computer-Aided Control System Design
package, PCET?

1. excellent 2. good 3. fair 4. poor 5. terrible



