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Abstract

Mosasaurs (family Mosasauridae) are a diverse group of secondarily aquatic lizards that radiated into marine environments
during the Late Cretaceous (98–65 million years ago). For the most part, they have been considered to be simple
anguilliform swimmers – i.e., their propulsive force was generated by means of lateral undulations incorporating the greater
part of the body – with unremarkable, dorsoventrally narrow tails and long, lizard-like bodies. Convergence with the
specialized fusiform body shape and inferred carangiform locomotory style (in which only a portion of the posterior body
participates in the thrust-producing flexure) of ichthyosaurs and metriorhynchid crocodyliform reptiles, along with
cetaceans, has so far only been recognized in Plotosaurus, the most highly derived member of the Mosasauridae. Here we
report on an exceptionally complete specimen (LACM 128319) of the moderately derived genus Platecarpus that preserves
soft tissues and anatomical details (e.g., large portions of integument, a partial body outline, putative skin color markings, a
downturned tail, branching bronchial tubes, and probable visceral traces) to an extent that has never been seen previously
in any mosasaur. Our study demonstrates that a streamlined body plan and crescent-shaped caudal fin were already well
established in Platecarpus, a taxon that preceded Plotosaurus by 20 million years. These new data expand our understanding
of convergent evolution among marine reptiles, and provide insights into their evolution’s tempo and mode.
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Introduction

Mosasaur skeletal remains are fairly abundant in marine

deposits of Late Cretaceous age, but the direct fossil record of

their soft parts is hitherto confined to a small number of specimens

preserving patches of skin [1–5], sternal cartilage [3,6], and

portions of the respiratory tube (calcified tracheal rings were

initially mistakenly identified as a nuchal fringe [3]) [6].

Consequently, we have a limited understanding of how the

mosasaur body plan, tail, and internal organs transformed as these

reptiles evolved from semiaquatic dwellers to pelagic cruisers.

The middle Coniacian–early Campanian (,88–80 million years

ago) russellosaurine Platecarpus is one of the most common

mosasaur genera known from the Western Interior Basin of North

America, and arguably a model taxon for understanding mosasaur

paleobiology [7]. Much of what we know about Platecarpus, and

mosasaurs in general, is based on material recovered from the

Smoky Hill Chalk Member of the Niobrara Chalk Formation in

western Kansas, USA. It was in Logan County, in the upper

Santonian to lowermost Campanian part of the stratigraphic

column [8], that an exceptional mosasaur specimen (LACM

128319; Natural History Museum of Los Angeles County) was

discovered by Marion C. Bonner (unfortunately, there is no date

listed for when the fossil was collected; however, it was accessioned

to the museum in April 1969). Preserving a wide range of soft

tissue structures, LACM 128319 is referred to as Platecarpus

tympaniticus based on the following suite of distinguishing

characters: (1) presence of well-developed median dorsal keel on

frontal; (2) presence of narrowly spaced anterolateral processes on

frontal; (3) lack of posteromedian flanges on frontal; and (4) distal

end of suprastapedial process (of quadrate) transversally expanded

[9,10].

Results

The largely intact skeleton of LACM 128319, 5.67 m long, has

been prepared in oblique left lateral to dorsolateral view (Figure 1).

The pelvic girdle and basal part of the tail are somewhat disturbed

and some elements in these areas have suffered slight crushing;

otherwise, the skeleton is in nearly perfect articulation, preserving

the gently curved neck, the broadly hunched back, and the acutely

downturned distal half of the tail. Because the skeletal anatomy of

Platecarpus is reasonably well known [7,9], the osteology of LACM

128319 will be dealt with elsewhere, and the exceptionally

preserved soft tissue morphology and overall body outline are

the focus of this report.
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In the head region of LACM 128319, purplish matter in the

sclerotic ring aperture of the left eye may represent remnants of

the retina, as this tissue was presumably pressed down against the

inner surface of the underlying scleral ossicles when the head

collapsed during the decay of the carcass (Figure 2A–C). This

interpretation is corroborated by the presence of loosely packed,

aligned bodies, about 2 mm long, with a morphology that is

comparable to that of retinal melanosomes (i.e., lysosome-related

organelles of pigment cells) in the eyes of extant tetrapods

(Figure 2D) [11,12]. We refute the possibility that the oblate

microstructures represent replacement bacteria because they are

embedded inside the fossilized tissues (probably representing their

in situ position) rather than forming a superficial coating, as would

be expected had they instead been part of a microbial biofilm [13].

Moreover, melanosome-like microstructures were not found in

any other part of the mosasaur examined under scanning electron

microspectroscopy (SEM), including scales, visceral traces, intes-

tinal content, surrounding matrix, and the film that defines the

former body outline. Energy dispersive X-ray (EDX) analysis

showed that phosphate predominates in the diagenetically

mineralized tissue, and hence it is possible that the micrometer-

sized bodies are simple microcrystalline apatite aggregates [14].

However, calcium phosphate crystallites often nucleate on already

existing soft structures [14,15], which, in this case, may have been

Figure 1. Platecarpus tympaniticus, LACM 128319, upper Santonian–lowermost Campanian, Kansas, USA. Specimen photographed
under normal light. Scale bar equals 0.5 m.
doi:10.1371/journal.pone.0011998.g001

Figure 2. The left eye of LACM 128319. (A) Orbit and scleral ossicles photographed under ultraviolet light. (B) Orbit and scleral ossicles
photographed under normal light. (C) Close-up of phosphatized soft tissues (purplish matter, partially obscured by yellow-whitish matrix) pressed
against the sclerotic ring aperture, possibly representing remnants of the retina. The area sampled for SEM-EDX analysis is marked with a circle. (D)
SEM image of putative melanosomes within the phosphatized soft tissues of the eye. Scale bars represent 3 cm (A, B), 1 cm (C), and 5 mm (D),
respectively.
doi:10.1371/journal.pone.0011998.g002
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melanosomes. Additionally, apatite aggregates are normally either

spherical or cubic in shape [15], not oblate with rounded termini,

and, again, would be expected to be found in other phosphatized

tissues of LACM 128319 (although we acknowledge the possibility

that various types of phosphatization may occur within the same

fossil [14]).

Portions of the respiratory tube, as represented by its reinforcing

cartilaginous rings, are visible in the temporal region of the skull

through the posterior portion of the neck, immediately anterior to

the pectoral girdle. Tracheal rings [diameter = 26.2–34.4 mm

(taphonomic compression gives widely varying measurements)]

first appear along the lower half of the lateral temporal fenestra

(Figure 3D). They are concealed under the left quadrate, but

reappear between the retroarticular processes of the lower jaws.

Following an abrupt upward turn suggesting dislocation prior to

burial, another section of the trachea occurs some distance ventral

to cervical vertebrae four and five (Figure 3E). Unfortunately, the

segment in which the trachea bifurcates into right and left

bronchus was lost during quarrying. Nonetheless, two sub-parallel

strings of bronchial rings (average diameter about 20 mm) situated

below the first dorsal vertebra suggest that mosasaurs, similar to

extant limbed squamates, had two functional lungs (Figure 3F).

Snakes, on the other hand, only have one functional lung (the left

one is either vestigial or absent altogether) because their tubular

bodies require their internal organs to be reduced in thickness

and/or in number [16]. Apparently, the tracheal bifurcation

occurs anterior to the forelimbs in mosasaurs, unlike the condition

in terrestrial lizards in which the bifurcation occurs in the chest

region at the level of the forelimbs [17]. Among mammals, whales

also exhibit a short trachea (due to their abbreviated neck)

supported by heavy cartilaginous rings, followed by paired bronchi

that in some taxa extend sub-parallel to each other rather than

diverging from one another [18,19].

In the area of the lower rib cage, a reddish stain extends from

the third to fifth thoracic rib (Figure 4A). The colored area is

bounded anteriorly by the third rib, which, in turn, is located

posterior to a thin sheet of mineralized tissue (possibly the remains

of an intercostal plate; ‘pl’ in Figure 4A). Consequently, it is

possible that the trace continues forward some distance inside the

rock. Ventrally, the pigmentation disappears underneath the

Figure 3. Selected soft tissue structures in the head and neck region of LACM 128319. (A) Close up of the left narial opening under UV
light showing skin impressions (scales) covering large parts of the osseous nasal aperture. Arrows indicate the inferred relationship of the fleshy
nostril (area without skin covering) to the bony nostril. (B) Scale impressions on the frontal under UV light. (C) Scale impressions on the prefrontal
under UV light. (D) Tracheal rings exposed in the left lateral temporal fenestra. (E) Tracheal rings below the cervical vertebral column. (F) Two parallel
strings of bronchial rings located below the anteriormost dorsal vertebra. Scale bars equal 3 cm (A, C) and 2 cm (B, D–F), respectively.
doi:10.1371/journal.pone.0011998.g003
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calcified cartilage of the sternal ribs to suggest that it was

something inside the body cavity that remained within the rib cage

as the animal decomposed (thus excluding the possibility that the

red matter is a residual of microbial mats that grew on the

underside of the body). Its present dorsal margin, however, is an

artifact produced by plaster-filling in the space between the long

ribs. Likewise, it is currently not possible to confidently determine

the original posterior edge of the stained area due to cement infill,

although a reddish coloration on the succeeding long ribs would

suggest that it may have been at the level of the eighth thoracic rib.

Another ruddy patch is located ventromedial to the second and

third lumbar vertebra, lining the medial surface of the left rib head

of the second lumbar (Figure 4B). The colored layer is bounded

above by the vertebral centra, and is interrupted anteroventrally

by the left rib of the first lumbar (presumably an artificial

perimeter because there is cement infill in the area immediately

anterior to this rib). Ventroposteriorly, the colored matter

gradually thins out and fades away; hence, there are no precise

edges.

A previous chemical analysis of the aforementioned pigmen-

tations, using mass spectrometry and X-ray diffraction tech-

niques, detected sufficient amounts of iron and porphyrin-derived

compounds suggestive of the presence of hemoglobin decompo-

sition products, and thus indicative that the traces may represent

residues of visceral organs derived from the decaying animal [20].

The heavily pigmented matter does have a substance and

consistency that are noticeably different from those of the

surrounding bones and matrix. Our SEM-EDX analysis

demonstrated that the stained areas contain iron, oxygen and

carbon, to suggest a partial replacement of the organic matter

with either siderite or pyrite (which, in turn, may have altered to

iron oxyhydroxides [21]), i.e., diagenetic minerals commonly

associated with exceptional soft tissue preservation [22]. Decom-

position and subsequent compaction during burial may have

displaced the organic residues toward the lower part of the body

wall, thereby explaining the discoloration of the adjacent ribs

(Figure 4A).

High in the abdomen, well in front of the pelvis, lie the contents

of the gastrointestinal tract. These consist of partially digested

remains of moderate-sized fish packed into a dense mass with an

outline that appears to follow the course of the digestive tract

(Figure 4C). It is possible that the ingested bones derive from the

anterior portion of the digestive system (they would then represent

displaced stomach contents); however, given that the longitudinal

axis of the well-delimited skeletal accumulation runs dorsally

beneath and parallel to the vertebrae in the lumbar region, it is

more likely that the residues represent processed food from within

the colon. Given this, the incompletely digested bones would

suggest that mosasaurs, similar to e.g., tyrannosaurid theropod

dinosaurs [23], had short gut-residence times and/or low

gastrointestinal absorption rates (which would then also explain

the sporadic finds of massed bivalve shell pieces in gastric residues

and alleged coprolites of the durophagous mosasaur Globidens [24]).

Alternatively, the resistant skeletal elements were rapidly trans-

ported through the digestive system as waste material poor in

nutrients [25].

Figure 4. Putative visceral traces in the thoracic and abdominal cavities of LACM 128319 (arrows indicate preserved body margin).
(A) A large, reddish pigmentation within the lower rib cage. pl = intercostal plate. (B) Another smaller discoloration located high in the anterior
portion of the abdomen. (C) Gastrointestinal content in the form of densely packed and partially digested fish bones. Scale bars represent 5 cm.
doi:10.1371/journal.pone.0011998.g004
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The most remarkable features of LACM 128319 are the

preservation of skin structures from all parts of the body and the

undistorted posture of the caudal fin. The squamation is preserved

as articulated sections of phosphatized matter and faint impres-

sions along the neck, abdomen, and upper and lower surfaces of

the tail (Figures 5A, B, D, E, 6A, D), and as a reticulated

pigmentation on the bone surfaces (Figures 3A–C, 5C). Some parts

of the integument, particularly on the head, are poorly discernable

in normal light but fluoresce under ultraviolet light (e.g.,

Figure 3A–C).

The scales covering the tip of the snout are large (approxi-

mately 10 mm when measured transversely), non-imbricated, and

Figure 5. Integumentary structures of LACM 128319. (A) Articulated three-dimensionally preserved scales above the fifth cervical vertebra. (B)
Two-dimensionally preserved scales above the third cervical vertebra. (C) Scale impressions on the left rib head of the sixth cervical vertebra. (D)
Three-dimensional scale impressions in the gular region. (E) SEM image showing flattened and phosphatized remains of a two-dimensionally
preserved scale on top of matrix. (F) Putative color markings on the third cervical vertebra, or, alternatively, differential preservation of the skin
impressions. Scale bars equal 5 mm (A), 10 mm (B–D, F), and 100 mm (E), respectively.
doi:10.1371/journal.pone.0011998.g005
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sub-hexagonal in outline. Along the upper and lower jaws the

scales are longitudinally rhomboidal (measuring up to 20 mm in

length), and they are obliquely arrayed into an alternating pattern

where neighboring scales overlap one another. Large, rhomboi-

dal scales also cover the posterior, gently domed portion of the

left osseous nasal aperture (Figure 3A), to suggest that the fleshy

nostrils were situated far anteriorly, as well as somewhat

peripherally in mosasaurs, as they are in most extant squamates

and archosaurs [26]. The scales in front of the orbit are

longitudinally oval in shape (Figure 3C), whereas those bordering

this cranial concavity from above and below have more-or-less

rhomboidal outlines (Figure 3C). At the top of the skull the scales

appear as shallow, hexagonal depressions (Figure 3B). The scales

covering the anterior end of the frontal are reasonably large

(about 7 mm when measured diagonally); however, they diminish

in size posteriorly and gradually attain the dimensions of the body

scales.

Whereas the head scales include a blend of morphologies, the

body scales are all rhomboidal, well imbricated, and arranged in

an alternating pattern where adjacent rows are diagonally offset

from one another. As in the advanced mosasaurine Plotosaurus [5],

the posterior scale margin appears to be acutely medially angled

(Figure 5A); yet there are no apparent keels or other external

surface ornamentations. The body scales measure about 3.663.3

(width6length) to 4.464.4 mm along the dorsal surface of the

neck, 5.565.2 mm above the anterior tracheal rings, 4.463.0 to

4.863.1 mm along the ventral margin of the rib cage, 4.363.9 to

4.764.3 mm over the posterior dorsal region, and 4.464.6 to

5.564.0 mm at the tail base; hence not showing any significant

size gradation across the body. The size (up to 10.564.7 mm) and

morphology (tall, almost columnar) of the caudal scales in the

hypaxial region of the tail fin differ somewhat from those of the

body scales (Figure 6D), whereas the epaxial caudal scales are

comparable in size (about 3.063.4 mm) and morphology (regular

Figure 6. Fluke area of the tail of LACM 128319. (A) Scale impressions (arrows) above the last intermediate caudal vertebra at the base of the
caudal fin. (B) Natural tailbend as indicated by the presence of wedge-shaped vertebrae (see also Figure 7A). Note the horizontal inclination of the
haemal arch-spine complexes on the left side of the image, signaling the presence of a narrow caudal peduncle, and how these complexes gradually
become more ventroposteriorly directed down the tail. Also note transition from procumbent to recumbent neural spine orientation, matching that
of the axial support in Plotosaurus and, albeit inverted, modern selachians with semilunate caudal fins [28]. It is also evident that the neural spines and
vestigial prezygapophyses are evenly spaced throughout the tail when it is bent downwards; consequently, aligning the vertebrae in a horizontal line
would require these vertebral processes to overlap with each other. (C) Longitudinal and transverse grooves on a neural spine (inset in B), probably
representing insertion points for the interspinalis ligament [7] and connective tissues associated with a dorsal plate that may have contributed to a
more streamlined cross-section of the ventral lobe (a similar structure of connective tissue is found in extant aquatic monitor lizards [40]), (D)
Columnar scales below the fourth terminal caudal vertebra under UV light. Scale bars represent 1 cm (A), 10 cm (B), 3 cm (C), and 2 cm (D),
respectively.
doi:10.1371/journal.pone.0011998.g006
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rhomboidal) to the body scales (Figure 6A). Paddle scales are also

comparable in morphology and organization to the body scales

but appear to become progressively larger distally. Putative color

markings, in the form of darkly pigmented, irregular stains and

narrowly spaced, oblique stripes (Figure 5F), are found on the

premaxilla, third cervical vertebra, and along the gum line.

A dark, phosphatic film defines the fleshy outline of the neck

(Figure 3 – black arrows) and right body margin (Figure 4 –

arrows). Unfortunately, most skin structures surrounding the tail

fin were lost during collecting and/or initial preparation of the

specimen before the recognition that soft tissues were preserved. It

is noteworthy, however, that scale impressions above the neural

spines extend to the edge of the block that contains the posterior

tail portion of LACM 128319 (Figure 6A). Additionally, the

terminal caudal segment is structurally downturned due to the

presence of wedge-shaped vertebrae (i.e., vertebrae where the

dorsal centrum edge is longer than the ventral centrum edge;

Figures 6B, 7A) [27,28], preserving the original configuration of

the arcuate fringe formed by the neural spines in the anterior

terminal caudal series near the bend (Figure 6B).

Discussion

The anatomy of the tail of LACM 128319 provides compelling

evidence to suggest that the posterior caudal segment of Platecarpus

was modified to form a hypocercal caudal fluke (i.e., an

asymmetric tail fin where the axial support is bent downwards),

and provided the main propulsive forces during swimming

(Figure 8).

The presence of a deep caudal fin in Platecarpus is corroborated

by meristic changes in vertebral centrum dimensions along the tail

segment of LACM 128319 (Figure 7B). Modern anguilliform

swimmers equipped with oar-like tail flukes, such as the wolf eel

Anarrhichthys, have vertebral centra that increase progressively in

length posteriorly to amplify the thrust-producing flexure of the

tail (Figure 7B). This is in stark contrast to sharks with epicercal

(two-lobed) tail fins, where the relative length of the caudal centra

decreases distally to a point a short distance posterior to the

greatest depth of the caudal fluke (i.e., at the level of the

unsupported ventral lobe). Beyond this point the centra become

progressively longer, resulting in a centrum length/centrum height

(CL/CH) ratio curve with a pronounced dip at its center

(Figure 7B – Squalus). In LACM 128319, the relatively shortest

centra are situated at the level of the tailbend below the fan-shaped

structure formed by the elongate neural spines; a condition that

compares well with that of extant sharks (Figure 7B). Presumably,

the short, disk-shaped centra contributed to enhanced stability at

the crest of the fluke, a portion of the tail that must have been

under great stress when the animal was swimming.

As demonstrated by Lindgren et al. [28], the tails of derived

mosasaurs can be subdivided into four discrete subregions (stable

proximal tail base, mid-sectional displacement unit, narrow caudal

peduncle, and distal propulsive surface or fluke) based on regional

variations in vertebral centrum dimensions and discrepancies in

vertebral process length and spine orientation (Figure 8A).

Building on this functional model, and with additional observa-

tions from LACM 128319, it is inferred that fluke displacement

was accomplished by sideways excursions of the intermediate

caudal segment where the neural spines are elongate and

consistently posteriorly inclined (Figure 8), and originally were

probably interconnected to adjacent neural spines by collagenous

fibers (i.e., interspinalis ligaments; Figure 6C) [7]. This arrange-

ment would have acted as a series of springs, storing energy, and

returning the tail to the rest position. A similar arrangement is

found in modern fish [29], where it presumably conserves energy

during rhythmic bending movements. It is further assumed that

the preceding tail base (formed by the tallest and widest column

centra in the caudal vertebral series, i.e., the pygals; Figure 8A)

acted as a reinforced foundation upon which the undulations took

place [28]. Moreover, judging from the preserved ventral outline

impression and changes in the orientation of the haemal spines

(Figure 6B), the distal tail blade was hinged upon a relatively

narrow caudal peduncle, and thus offset from the anterior,

somewhat deeper portion of the tail (Figure 8).

A hypocercal tail fin also occurs in other derived pelagic reptiles,

notably ichthyosaurs [30] and metriorhynchid crocodyliforms

[31], and strongly implies a common pattern of adaptation

towards an obligate marine existence. In cetaceans, ichthyosaurs,

and metriorhynchid crocodyliforms, the stringent hydrodynamic

constraints imposed by the surrounding water provided important

selections that, with time, optimized their body plans for effective

axial undulatory locomotion (i.e., they changed from being

anguilliform/sub-carangiform to carangiform, and, in some

derived taxa, even thunniform swimmers) [32–34]. Accordingly,

early members of these groups radically modified their tails,

stiffened their backbones, and reduced their rear limbs (though not

in crocodyliforms) to meet the demands of marine life [30–34].

When compared to modern terrestrial lizards (Figure 9A), the

position of the large reddish stain within the lower rib cage

(Figure 4A) correspond well with that of the heart and/or liver, to

Figure 7. Morphometric data for LACM 128319, an extant
shark (Squalus), and the wolf eel Anarrhichthys. (A) The ratio of
dorsal centrum length to ventral centrum length at the tailbend of
LACM 128319, in thirteen caudals that precede the bend, and in
thirteen vertebrae that succeed it (see Table S1 for measurements).
Even though the differences in dorsal versus ventral centrum length are
not readily visible in individual vertebrae, the cumulative effect
accounts for a considerable ventral flexure given the length of the
downturned segment. (B) Relative vertebral centrum length (CL/CH)
and change in vertebral dimensions along the caudal segment of the
vertebral column of Platecarpus (LACM 128319), Squalus (UCMP 136063;
University of California Museum of Paleontology, Berkeley), and
Anarrhichthys (UCMP 136779). Polynominal order of the regression
curves = 3. R2 values = 0.782 (LACM 128319), 0.826 (UCMP 136063), and
0.799 (UCMP 136779), respectively. See main body of text for
interpretations.
doi:10.1371/journal.pone.0011998.g007
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suggest that it may be a trace of one, or both, of these organs.

Additionally, the second pigmentation, i.e., the one located high in

the abdomen (Figure 4B), could potentially be the residual of a

kidney, as has previously [20] been suggested. This would,

however, require an anterior migration of this organ compared

to its position in extant monitors (Figure 9A). Interestingly, the

kidneys are located immediately behind the diaphragm in

cetaceans, near the transition from the thoracic to lumbar

vertebral series (Figure 9B) [35,36]. Thus, the more anterior

locations of the inferred kidney and intestinal content in LACM

128319 would indicate a forward migration of the rib cage, a

condition common to derived mosasaurs [7]. We suggest that

transformation produced a similar body profile in mosasaurs to

that of cetaceans [35,36], in which the abdominal viscera is

situated anteriorly in order to contribute to a more streamlined

body profile.

We hypothesize that the small-sized and morphologically

homogenous body scales of LACM 128319 may have served to

stiffen the body and to resist axial compression during rhythmic

bending movements, thereby providing a hydrostatic structure

that maintained the shape of the animal when it was swimming

[29,37]. Moreover, judging from the preserved squamation in

LACM 128319, the primitively-limbed mosasauroid Vallecillosaurus

[4], and highly piscine mosasaurine Plotosaurus [5], there was a

gradual reduction in both relative and absolute body scale size

with increased marine specializations in mosasaurs, to suggest an

adaptation for improved hydrodynamic efficiency by minimizing

friction drag when water flowed past the body [29].

Figure 8. Skeletal reconstruction and inferred body outline of the plioplatecarpine mosasaur Platecarpus. (A) New reconstruction based
on LACM 128319. Note the regionalized caudal vertebral column resulting in four discrete structural units: proximal tail stock or base, mid-sectional
displacement unit, narrow caudal peduncle, and distal fluke or propulsive surface. Also note the change in inclination of the neural and haemal spines
along the caudal segment and the distinct tailbend formed by wedge-shaped vertebrae. The caudal terminology follows that of [28]. (B) Inferred
body form of Platecarpus. The precise shape and depth of the dorsal lobe of the caudal fin is unknown.
doi:10.1371/journal.pone.0011998.g008

Figure 9. Visceral positions within the thoracic and abdominal cavities of a monitor lizard and a cetacean. (A) Dissection photograph
showing the location of the internal organs within the body cavity of the extant monitor Varanus exanthematicus (LO 10298). (B) Longitudinal section
through the abdomen of a cetacean showing the location of the kidneys (modified from [36]).
doi:10.1371/journal.pone.0011998.g009
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While a precise tempo of secondary aquatic evolution among

reptiles remains elusive, the fossil record clearly shows an exciting

and important correlate between mode (convergent evolution) and

tempo (time to achieve a fusiform body shape): ichthyosaurs,

metriorhynchid crocodyliforms, and mosasaurs (as well as whales

among mammals) all achieved their variants on a streamlined

body form early in their evolutionary history [32–34]. Given that

Platecarpus occupies an intermediate phylogenetic position within

derived mosasaurs [38] and that its first stratigraphic occurrence is

about 10 million years after the earliest record of the family [39],

the discovery of LACM 128319 indicates that the advanced

aquatic adaptations of mosasaurs (i.e., flipper-shaped limbs, a

streamlined body, and demarcated caudal fin functioning as an

oscillating foil), as in the other secondarily aquatic tetrapod

lineages [30–34], are likely to have originated within less than 10

million years after the evolutionary divergence from their

terrestrial sister clade (Figure 10).

Materials and Methods

We directly examined LACM 128319 at the Dinosaur Institute,

Natural History Museum of Los Angeles County and photo-

graphed the entire specimen using a Nikon D300 camera with an

AF-S Nikkor 24–70 mm lens, using softbox lighting and white

reflectors. Additional photographs were taken under ultraviolet

light using UV-A lamps with a wavelength of 400–320 nm.

Measurements were made with calipers. The measurements of

vertebral centrum size used herein are condyle (or rear end) height

(CH) and centrum length (CL), respectively. In order to document

the presence of wedge-shaped vertebral centra, the vertebrae at

the tailbend and adjacent caudals were measured along their

dorsal and ventral surfaces, respectively.

Samples selected for SEM analysis were mounted on glass slides

using double-sided carbon tape and examined using a Hitachi S-

3400N scanning electron microscope. Initial screening was per-

formed on uncoated samples under low vacuum, and their elemental

composition was determined via EDX analysis. The samples were

subsequently sputter-coated with gold to allow better resolution.

A gross dissection of an adult individual of Varanus exanthematicus

(LO 10298; Department of Earth and Ecosystem Sciences, Lund

University) was performed in order to examine the morphology of

the respiratory tube, as well as the shape, positions, and relations of

various internal organs.

Supporting Information

Table S1 Measurements of dorsal and ventral centrum length

(in mm) at the tailbend, in thirteen caudals that precede the bend

and in thirteen caudals that succeed it.

Found at: doi:10.1371/journal.pone.0011998.s001 (0.01 MB

XLS)
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