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Abstract 

In theory, time-cost tradeoff (TCT) optimization is a classic planning problem 

appealing to construction management; yet, existing analytical methods are found 

inadequate to make a significant impact in practice. Heuristic methods lack a 

theoretical basis to ensure arriving at optimum solutions in solving specific 

problems; on the other hand, mathematical programming requires cumbersome, 

complicated formulation. This study proposes a new algorithm for TCT optimization 

that takes advantage of a path-float based scheduling technique and integer 

programming (IP). The project duration can be shortened in each iteration based on 

path lengths; while IP is nested to inform on which activities on the critical path(s) 

to shorten by how long duration. The new TCT optimization approach streamlines 

critical path analysis in each cycle by elimination of backward pass and finds 

optimal or near optimal solutions in terms of lowest project cost or shortest project 

duration. Since only a part of the network (critical paths) is modelled in IP 

formulation in each intermediate cycle, the complexity of IP formulation plus the 

search space is substantially reduced. Case studies are used to verify the proposed 

method and demonstrate its application. The proposed method can be automated to 

tackle large project networks commonly encountered in (1) project planning and 

scheduling and (2) acceleration planning and workface planning in construction 

management. 
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Chapter 1. Introduction 

1.1 General Introduction 

Project planning and scheduling is an important task that is required at almost all 

levels of an organization (Moussourakis and Haksever, 2009). Various scheduling 

techniques such as Gantt Bar Chart, Program Evaluation and Review Technique 

(PERT), and Critical Path Method (CPM) have been generally accepted in both 

knowledge and practice of construction management (Olawale and Sun, 2010). CPM 

has been widely used for scheduling during the past six decades and has become a 

standard practice. A project is broken down into distinct activities, which must be 

completed in a logical and technologically constrained sequence (precedence 

relationships) in order to finish the project. Activity-on-node (AON) diagram is the 

graphical presentation of these activities. Precedence relationships along with 

activity durations are used as structured problem definition for CPM to determine 

the shortest project duration. However, CPM is a duration-oriented technique 

(Hegazy, 2002) and suffers from several limitations. To a certain extent, CPM 

ignores project costs and is unbale to confine the schedule to a specified duration 

(Hegazy, 2002).  

In construction industry, the aim is to ensure that a project finishes both on time, 

and within a budget. Therefore, time and cost, among other objectives, are the most 

important decision-making parameters (Olawale and Sun, 2010). In order to survive 

the price competition in the current market, contractors must try to minimize 

project delivery costs as much as possible (Zheng and Ng, 2005). TCT is an 
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important tool for overcoming CPM’s limitations in terms of ignored cost and 

schedule compression (Hegazy, 2002).  

The cost of a project has two components: direct cost and indirect cost. Direct costs 

are generally attributed to specific activities in the project while indirect costs are 

accounted by the project as a whole. In general, indirect cost increases linearly with 

the increase of project duration (Ahuja, 1984). In addition, an owner may award a 

bonus for early completion or ask for liquidated damages for late completion (Ahuja 

et al., 1994). Several options (alternatives, or modes) for execution of an activity can 

be proposed, each having a different direct cost and duration. Generally, activity 

direct cost increases as duration of an activity decreases (Hegazy, 2002). As a result 

of these options, there can be numerous possible combinations to complete a project. 

A tradeoff between project time and project cost becomes apparent when comparing 

these combinations. If cutting project cost is of major concern, each activity can be 

performed at its lowest possible cost. If shortening project time is of primary 

concern, each activity can be performed at its shortest possible duration. Between 

these limits, there are two global optimums on the project’s time-cost curve. One is 

the minimum total project duration and the least project cost corresponding to that 

minimum total project duration. The other is the minimum total project cost and 

the least project duration from all durations corresponding to that minimum total 

project cost.  

In TCT, the main goal is to find these two global optimums. TCT is a combinatorial 

bi-objective optimization problem (Xiong and Kuang, 2008) and several techniques 

have been provided for it, each having their own advantages and limitations which 

will be comprehensively reviewed in Section 2.3. To summarize, when it comes to 

large-sized real project networks, existing methods suffer from one or more of the 

following limitations: 
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 Complex, error-prone, and time-consuming formulation and modelling, 

 Intensive computation. 

As a result, practicality of these methods is undermined and TCT implementation is 

extremely rare in the real world.  

In this study, an iterative methodology inspired by the classic cost slope method for 

TCT analysis has been developed. In particular, a path-based scheduling approach 

proposed by Lu et al. (2017) has been employed instead of traditional CPM for 

identifying critical activities in TCT, which considerably streamlines the scheduling 

analysis by eliminating the backward pass of classic CPM. Furthermore, integer 

programming is nested in each iteration to formulate activity selection and enable 

us to implement this method for large-sized networks. The proposed TCT 

framework results in optimal or near-optimal solutions, provides feasible 

alternative solutions, and can be readily implemented in practice. 

1.2 Research Motivation and Objectives 

There is a tradeoff regarding existing solutions for TCT, which is optimality versus 

formulation, computational effort, and ease of use, or in other words, practicality. 

As the methods become more oriented toward mathematical optimization, the 

amount of required effort in formulation substantially increases. Literature 

published in the field of operations research and industrial engineering often tend 

to focus on finding the absolute optimum solution to TCT. However, in construction, 

although optimality is valued, efficiency and practicality of the method have their 

own significance. Number of feasible crashing permutations increases exponentially 

in large projects (Bettemir and Birgönül, 2017), which is usually the case in real 

world construction projects. In construction, we must be able to perform TCT for 
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various types of projects with widely different characteristics and in some instances, 

under a limited time. Exact methods are complex for construction planners to 

perform (Bettemir and Birgönül, 2017) and typical project management teams may 

lack the expertise or time to implement exact optimal TCT algorithms 

(Moussourakis and Haksever, 2004). As a result, TCT is not widely accepted in 

practice and in many cases, the opportunity to save more cost is missed and 

experience-based rules of thumb are used for construction projects.  

On the other hand, methods that do not guarantee optimal solutions, e.g. heuristic 

methods (Liu et al., 1995), lack the mathematical rigor and can result in missing 

the optimal solution by a large margin. 

Therefore, having identified this tradeoff, the purpose of this thesis is to provide a 

practical algorithm that minimizes the amount of computational and modelling 

effort. At the same time, this algorithm must be “optimal enough” to ensure near 

optimal solutions. 

1.3 Thesis Organization 

The present thesis consists of five chapters. Chapter 1 provides an introduction and 

overview of the problem and identifies objectives of this research. In Chapter 2, a 

comprehensive literature review of TCT problem, categories of TCT, TCT history, 

and existing methods for TCT are presented. In Chapter 3, path finding methods 

required for the proposed methodology and the generic methodology proposed for 

curvilinear time-cost relationship is presented. Subsequently, the methodology is 

streamlined for linear and multilinear activity time-cost relationship. This is 

followed by analytical discussion of the algorithm and notes on the advantages. In 

Chapter 4, two case studies from various sources are solved by the proposed 
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algorithm and the results are compared with their existing solutions for cross-

validation. The first case is a small project and detailed solution is provided to 

clearly demonstrate the use of the proposed methodology. For the second case, the 

results will be compared with an exact method. Finally, in the third case, proposed 

algorithm is performed for a project network of practical complexity. Chapter 5 

concludes the thesis and summarizes advantages and limitations of the 

methodology along with future work. 
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Chapter 2. Literature Review 

This chapter is divided into three parts. In Section 2.1, terminology and description 

of TCT are provided to complete the problem statement in Chapter 1. Subsequently, 

various categories of TCT in literature are briefly identified in Section 2.2. Finally, 

a comprehensive review of the existing methods for TCT is provided in Section 2.3, 

with a focus on construction publications.   

2.1 Time-Cost Tradeoff 

Total cost of a project has two components. One is the direct costs that incur as a 

result from execution of specific activities (Hegazy, 2002). Therefore, direct costs can 

be attributed to particular activities. The other component is the indirect cost which 

cannot be attributed to specific activities. Indirect cost consists of project overhead 

and general overhead (Hegazy, 2002). Project overhead is the indirect costs that are 

specific to the project, such as wages and salaries of supervisors, safety, on site 

office expenses, etc. General overhead is the head office expenses that have been 

attributed to a particular project (Peurifoy and Oberlender, 2002). A method for 

division of general overhead is distributing it relative to total direct cost of projects.  

The least direct cost required for completing an activity is called the normal cost, 

and the corresponding duration is called the normal duration; while, the shortest 

possible duration for completing an activity is called the crash duration, and the 

corresponding cost is called the crash cost (Hegazy, 2002). Some examples for 

methods of crashing include implementing overtime hours, faster installed 

material, multiple shifts, more resources, or different technology (Hegazy, 2002). In 

general, the less expensive to complete an activity, the longer is the duration 
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(Hegazy, 2002). Additional cost incurred by crashing could be attributable to 

mobilization of additional equipment, overtime work, or reduced productivity 

resulting from nightshift work or congested work space (Ahuja et al., 1994). The 

opposite of crashing is relaxation. Sometimes it may be necessary to relax activities, 

particularly for non-critical activities, to make a project more economical (Ahuja et 

al., 1994). In this thesis, the assumption is that each activity is initialized at the 

most relaxed option (normal). 

Activity time-cost relationship can be categorized as continuous vs. discontinuous 

(Moussourakis and Haksever, 2004). Continuous time-cost relationship can be 

either linear, multilinear, or curvilinear (Ahuja et al., 1994). Discontinuous time-

cost relationship can be discrete points, or linear with gaps in between 

(Moussourakis and Haksever, 2004). Graphical representation of these 

relationships is shown in Figures 2.1, 2.2, 2.3, 2.4, and 2.5. For continuous 

curvilinear time-cost relationship, the cost curve can be divided into many small, 

straight line sections in order to improve practicality (Ahuja et al., 1994). Activity 

time-cost relationship can be both convex and concave (Falk and Horowitz, 1972). 

An example of continuous linear time-cost relationship is overtime work. As an 

example of continuous multilinear time-cost relationship, consider an earthwork 

job, where for the first few days, crashing may be done by using a loader of different 

capacity. Beyond that, the job may require two loaders instead of one. The 

mobilization cost of the second loader is not covered by the same slope. An example 

for discrete points is that for a tunneling project, either a drill jumbo or a mole 

(tunnel boring machine) may be used. By using a mole, duration is reduced and cost 

jumps up. For continuous curvilinear, consider a dike construction project using 

graders and dozers of certain capacities (one grader, or two graders, or two graders 

and one dozer, or three graders, or four graders) (Ahuja et al., 1994).  
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Figure 2.1 Linear continuous activity time-cost relationship 
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Figure 2.2 Multilinear continuous activity time-cost relationship 
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Figure 2.3 Curvilinear continuous activity time-cost relationship 
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Figure 2.4 Discrete point activity time-cost relationship 
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Figure 2.5 Discrete linear with gaps activity time-cost relationship 

Construction projects are seldom entirely identical (Zheng and Ng, 2005) and for 

each project, execution modes for activities are required to perform TCT. In the 

absence of a mature tool for recording and retrieving time-cost data of activities, it 

would be costly to establish a series of possible time-cost relationships for each 

activity (Zheng and Ng, 2005). 

The exercise of determining the most economical project duration proves to be the 

most economical on projects of repetitive type such as single-span bridges, 

multistory buildings, prefabricated buildings, or installation of equipment in 

process plants. Hence, once the most economical duration is determined, it can 

result in cumulative savings from similar projects to be done in the future (Ahuja et 

al., 1994).  

Discrete TCT is classified as NP-hard (non-deterministic polynomial time) with a 

large number of variables and constraints (De et al., 1997). There are many possible 
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permutations to perform construction activities. The number of combinations 

increases exponentially with the number of activities. Therefore, finding the optimal 

TCT solution is difficult and time-consuming (Hegazy, 2002). Evaluating each 

option requires recalculation of schedule using CPM (Hegazy, 2002). TCT is 

traditionally performed separate from resource allocation and levelling (Hegazy, 

2002). 

2.2 Categories of Time-Cost Tradeoff Problems 

Traditional TCT assumes all values are deterministic. However, in reality, time and 

cost are uncertain as a result of factors such as weather, resource availability, or 

productivity (Zheng and Ng, 2005). Hence, a category of TCT is stochastic TCT that 

assesses the risk in terms of time and cost (Feng et al., 2000). Feng et al. (2000) 

provided a stochastic approach for TCT. However, this approach relies on sampling 

statistical input models and a large number of Monte Carlo simulations. The lack of 

historical time and cost data to define inputs presents a challenge for its 

implementation. Moreover, the method heavily relies on computing experiments 

and analyzing observed system responses. The stochastic approach adds an 

additional dimension of complexity to the already hard to apply TCT. Apart from 

the integration of pareto front optimization with Monte Carlo simulation, the 

method is limited in terms of theoretical advance to TCT. El-Kholy (2013) 

introduced a linear programming model of stochastic TCT where the variability of 

funding and uncertainty of project duration were considered simultaneously. 

Another category of TCT considers resource planning in addition to time and cost. 

Robinson (1975) included resources into TCT and turned it into a dynamic 

programming problem. It proceeded to find the time-cost function of the project for 

different levels of resources. 
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Traditional TCT assumes constant value of money along the project span, 

regardless of direct or indirect costs. In reality, value of money decreases over time. 

As a result, another category of TCT problems is that to consider the time value of 

money. Ammar (2010) provided a method for TCT by accounting for discounted cash 

flows based on the net present value. Costs of activities were assumed to incur at 

their finish time. It subsequently used mathematical programming for optimization. 

Another aspect in TCT is the potential quality loss that results from crashing 

activities. If some activities are excessively crashed, it can result in rework, 

modifications, or even project failure (Kim et al.,2012). Kim et al. (2012) addressed 

this issue by proposing a mixed linear integer programming model that 

incorporated potential quality loss cost. This quality loss cost was the estimated 

direct cost of rework and modifications related to nonconformance of activities.  

2.3 Existing Methods 

There is a large body of knowledge regarding TCT analysis. We start by reviewing 

the earliest examples of TCT. Kelley and Walker (1959) formulated TCT as a linear 

program in their seminal paper. The cost of each job was defined as a linearly 

decreasing function of its duration. The objective function was to minimize project 

direct cost which was defined as the sum of all direct costs. Constraints included 

activity duration upper and lower limits (crash and normal durations) and 

precedence relationships. Kelley (1961) defined the concept of utility of an activity 

and tried to minimize or maximize it for a whole project. Utility could be cost, 

quality, or resources and was modelled as a linear function. It used primal-dual 

algorithm (Dantzig et al., 1956) and a network flow algorithm to solve TCT with 

linear programming.  
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Fulkerson (1961) provided a network flow method for TCT which assumed a linear 

activity time-cost relationship. The algorithm used was a labeling process which 

was a systematic search for a “path” with certain properties from start to finish. 

Note that the definition of “path” described here is different from the usual 

definition, as an arc can be traversed against its direction. Prager (1963) provided a 

structured interpretation of the method presented by Fulkerson (1961) for civil 

engineers to enable them (assuming they are not familiar with mathematical 

programming and flow theory) to better understand the problem. 

Most sources, such as Hegazy (2002), divide the existing methods into three groups, 

namely: heuristic methods, mathematical programming methods, and evolutionary 

algorithms. However, another branch of solutions is maximum flow and minimum 

cut theory (Jiang and Zhu, 2010). Methods that relate to our proposed algorithm 

will be discussed in depth. However, as numerous solutions for TCT exist, other 

methods will not be comprehensively discussed and will just be mentioned 

(especially highly cited publications).  

Since early 1960s, heuristic methods and mathematical programming 

(optimization) methods had been traditionally used as the two main categories of 

solutions for TCT (Ammar, 2018; Hegazy, 2002). With advances in the artificial 

intelligence branch of computer science and growth of computer technology, 

evolutionary algorithms had emerged and many recent TCT publications focused on 

the use of these algorithms (Hegazy and Ayed, 1999; Jiang and Zhu, 2010). 

Heuristic methods can be described as simple rules of thumb (Hegazy, 2002) that 

require less computational effort than mathematical programming (Liu et al., 1995). 

Ahuja et al. (1994) provided an example of an iterative heuristic method. 

Compression procedure outlined in Ahuja et al. (1994) used a relatively similar 



14 

 

method to ours, but without the IP formulization. At first, activities that would 

have never become critical were identified using the criticality theorem. Criticality 

theorem denotes that if the crash duration (all activities completely crashed) of path 

C1 is greater than the normal duration of path C2, activities that belong only to 

path C2 do not need to be considered for crashing and can be eliminated from the 

analysis. This method only crashed the activities on critical path(s). Hegazy (2002) 

provided a simple heuristic approach called the cost-slope method which assumed 

linear time-cost relationship. This method calculated the cost slope of each activity 

and in each iteration, critical paths were shortened by a manual choice of activities 

to crash (simply comparing the cost slope of a single activity on all critical paths to 

choose candidate activities). In addition, if float times were introduced, those 

activities would be relaxed to reduce the cost. 

Mathematical programming methods convert the problem into standard 

mathematical optimization models and use linear, integer, or dynamic 

programming to obtain the optimal solution (Ammar, 2018). Basically, most 

formulations minimize total cost as the objective function and apply certain time 

constraints and other resource constraints (Jiang and Zhu, 2010). 

Ahuja et al. (1994) presented a linear programming approach for TCT which 

provided exact solutions. In this approach, all activities were initialized at the crash 

level and would be relaxed. Objective function represented the total cost of the 

project, with activity durations as the variables in the optimization. Constraints 

included: 

 For each activity, duration must have been between crash and normal 

durations. 
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 For each activity, a constraint denoting that the start time of an activity plus 

activity duration should have been less than (allowing float time) or equal to 

the end time of activity.  

Formulation was then updated to handle multilinear or curvilinear time-cost 

relationships. Curvilinear was approximated by several linear parts. In this case, 

each linear part was represented by a constraint. 

Liu et al. (1995) used a combination of linear programming and integer 

programming to solve TCT. Continuous curvilinear relationships were converted 

into piecewise linear (multilinear). All activities could only take integer durations. 

It used convex hull to eliminate crash options that were feasible but incurred too 

much cost and used linear programming to identify a general pattern of the project’s 

overall time-cost relationship. From this curve, regions could be selected for the 

integer programming part to find the exact solutions. As a result, the methodology 

could produce nearly optimal solutions. 

Deckro et al. (1995) used a mathematical programming formulation by employing a 

quadratic time-cost relationship for each activity. Objective function represented 

the sum of cost of all activities while constraints included precedence relationships, 

upper and lower bounds for activity durations, and a target completion date for the 

project.  

Moussourakis and Haksever (2004) used a flexible mixed integer programming 

model that could handle a mix of continuous and discrete time-cost relationships 

with the assumption that continuous portions of cost curve were piecewise linear. 

Activity durations were selected as optimization variables and constraints included 

precedence relationships. 
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Jiang and Zhu (2010) proposed an integer linear programming model to calculate 

the normal project duration (all activities executed at normal duration and cost) 

with each precedence relationship and finish time of an activity presented as a 

constraint. For this part, the objective function was the project finish time. 

Subsequently, it proceeded to use a second formulation assuming all activities to be 

linear continuous. The objective function of this part was the project cost while each 

precedence relationship and activity finish time was imposed as a constraint. 

Finally, binary linear programming was used to adjust the solution obtained 

previously given nonlinear continuous activities.  

Moussourakis and Haksever (2009) provided three mixed integer linear 

programming models for TCT that could handle continuous time-cost relationships 

(both convex and concave). A piecewise linearization method that could approximate 

nonlinear cost functions was presented. Each model focused on a different objective 

(minimizing project completion date, minimizing project cost, or minimizing project 

cost under early completion bonus or late completion penalty).  

Reducing project duration results in reduction of total float of non-critical activities 

which limits the schedule flexibility and increases the risk of project delays (Al Haj 

and El-Sayegh, 2015). Al Haj and El-Sayegh (2015) proposed a nonlinear integer 

programming model which accounted for the impact of total float loss and 

considered a new type of tradeoff between time, cost, and flexibility. It introduced 

total float unit cost for non-critical activities. The objective function was to minimize 

total cost which included float unit cost as well. This would result in a solution with 

higher duration and cost but with lower risk. 
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Hegazy and Ayed (1999) developed an Excel model for discrete TCT by using 

nonlinear integer programming and designating the method index (each discrete 

mode of an activity was represented by a method index) as the variables. 

As a more recent example of mathematical programming in TCT, Zou et al. (2016) 

used mixed integer linear programming for TCT analysis of repetitive projects. 

Decision variables included start time of activities, idle time of activities, and a 

binary variable representing crews used by activities. The problem could be solved 

by either an exact model or an approximate one. 

Evolutionary methods are optimization search procedures that mimic natural 

evolution (Hegazy, 2002). Examples of evolutionary algorithms include genetic 

algorithms, particle swarm, and ant-colony systems (Elbeltagi et al., 2005). Feng et 

al. (2000) presented a hybrid approach that combined simulation technique and 

genetic algorithm to solve stochastic TCT. 

Zheng and Ng (2005) used fuzzy sets theory to model managers’ behavior in 

predicting time and cost of a certain option within an activity. It then used genetic 

algorithms to establish the optimal time-cost profile under different risk levels. 

Yang (2007) presented a particle swarm optimization algorithm for TCT that could 

handle nonlinear, discrete, or piecewise discontinuous activity time-cost 

relationships.  

Xiong and Kuang (2008) used ant colony optimization for TCT. It used modified 

adaptive weight approach (Zheng et al., 2004) that utilized useful information from 

current set of solutions to generate weight for each objective and apply a search 

pressure towards the ideal point. 
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Pathak and Srivastava (2014) presented an integrated artificial neural network and 

hybrid meta heuristic approach for nonlinear TCT. Hybrid meta heuristic is an 

evolutionary multi objective optimization technique.  

Togan and Eirgash (2019) used a multi-objective optimization model based on 

teaching-learning based optimization (TLBO) for TCT to find a set of Pareto front 

solutions. TLBO is a nature-inspired algorithm and uses a population of solutions to 

proceed to the global solution (Rao et al., 2011). 

Falk and Horowitz (1972) used an algorithm that solved a sequence of maximal flow 

subproblems which yielded a global solution. 

Liu and Rahbar (2004) used maximal flow and minimal cut theory. The maximum 

possible flow from start to finish on a path is equal to the minimum flow capacity of 

components on that path. If there are no connections between paths from start to 

finish, the minimum cut set capacity is defined as the sum of minimum flow of each 

path. This methodology modeled the cost slope of each activity as its flow capacity. 

It then started an iterative algorithm. In each cycle, each activity’s capacity was 

zero for non-critical activities, ∞ for activities without crashing options, and cost 

slope for activities on critical paths. Subsequently, the minimal cut set on the 

critical paths would be determined. This is similar to selection of a set of activities 

on critical paths that result in the least combined cost slope. Some other methods 

that have used maximal flow and minimal cut set in an iterative manner are 

Phillips and Dessouky (1977) and Hochbaum (2016). 

Project’s duration depends on the length of the critical path which needs to be 

crashed in TCT. In practice, only a small number of paths are dominant while 

others are redundant (Ammar, 2018). 
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Siemens (1971) proposed a path-based method that considered a desired project 

duration. It developed a time-cost matrix, with each row representing an activity 

and each column representing a path. It proceeded to manually select activities for 

crashing in an iterative crashing algorithm (in each step, one activity was crashed). 

This algorithm gave rules for choosing the paths and activities for crashing without 

providing a programming formulation. It defined an effective cost slope for each 

activity by dividing the actual cost slope of activities by the number of inadequately 

shortened paths. This effective cost slope had to be revised whenever any path had 

been adequately shortened. Activity with the lowest value of effective cost slope 

would have been selected in each step for crashing and the procedure would repeat 

until all paths were adequately shortened. This method might cause unnecessary 

crashing. Goyal (1975) provided a path-based method based on Siemens’ (1971) 

method with addition of de-shortening. Siemens and Gooding (1975) adjusted the 

methodology of Siemens (1971) for nonlinear convex cost slopes which included de-

shortening of activities [similar to Goyal (1975)]. Both algorithms are difficult to 

implement and require repeated calculations even for small networks (Goyal, 1996). 

Goyal (1996) combined the algorithms to take advantage of both. However, it 

resulted in unnecessary crashing and required de-shortening. 

Baker (1997) presented a path-based network flow approach for linear TCT. In each 

iteration, the project duration would be reduced by one time-unit. It used a linear 

programming formulation, minimizing the cost with a variable representing the 

duration of an activity. Subsequently, maximal flow and minimal cut set was 

employed. Duration of some activities might be increased in this method.  

Ammar (2018) proposed a path-based approach for discrete TCT. For each activity, 

several binary variables were defined, each representing one of the discrete crash 

options. The summation of these variables for each activity were constrained to be 
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equal to one, ensuring that only one mode had been selected. In addition, duration 

and cost of each activity were defined using these variables and cost or duration 

coefficients. Then, a mathematical programming formulation was used to minimize 

the total cost (which was the addition of costs of all activities). Path length of each 

existing path was defined as the sum of duration of all activities on that path. 

Therefore, as constraints, path lengths must have been less than the desired project 

duration. In addition, overlap was allowed as a fixed value or as a percentage of 

activity duration. Ammar (2018) also used the criticality theorem presented by 

Ahuja et al. (1994). An interpretation of this theorem is that if a path has a normal 

length less than or equal to the crash project duration (shortest possible duration), 

this path can never become critical and can be excluded from TCT optimization. In 

this way, a number of redundant paths could be removed from TCT. 

Su et al. (2015) introduced the concepts of safety float and interference float to CPM 

and calculated path lengths based on safety float and free float. It provided a 

mathematical programming approach for continuous time-cost relationship, 

minimizing total cost of all activities subject to typical constraints (precedence 

relationships, upper and lower bounds for activity duration, and limiting the project 

duration to a desired length). In addition, for discrete TCT, binary variables were 

selected for each execution mode of each activity. The summation of these variables 

for each activity were constrained to be equal to one [similar to Ammar (2018)]. 

However, for schedule constraints, each precedence relationship was required to be 

formulated [as opposed to Ammar (2018)]. 

Bettemir and Birgönül (2017) proposed a path-based iterative approach for discrete 

TCT that converged to optimum or near optimum solutions. Activity selection for 

crashing was performed manually and scheduling in each iteration required a 

backward pass. 
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Heuristic methods are easy to understand and can provide acceptable solutions 

(Hegazy, 2002). However, these methods lack mathematical rigor, assume linear 

time-cost relationship (Hegazy, 2002), and do not guarantee optimum solutions 

(Hegazy, 2002; Ammar, 2018). 

Regarding mathematical programming methods, formulating constraints and 

objective function is time-consuming and prone to errors. For large networks, the 

effort that is required to check and verify the program’s formulation could be 

substantial. Mathematical programming knowledge is necessary to formulate these 

models correctly. Few construction planners are trained to perform this type of 

formulation, especially for large networks (Liu et al., 1995). Exact solution 

algorithms for TCT are known to be exponential in the worst case and the solution 

time would increase exponentially as the problem size increases (Moussourakis and 

Haksever, 2004). Mathematical programming can be ineffective when dealing with 

a large number of variables or nonlinear objective functions (Jiang and Zhu, 2010). 

To summarize, programming models require complex formulation, are 

computationally intensive, can only be applied to small networks, can get stuck in 

local minimums, and mostly assume linear time-cost relationship (Hegazy, 2002). 

Evolutionary algorithms provide robust search algorithms, can handle discrete 

activity time-cost relationships, and are applicable to large problems. However, 

random search is time-consuming and non-deterministic [i.e. we  cannot tell when 

or if the optimal solution is obtained (Hegazy, 2002)]. Evolutionary algorithms are 

search-based and computing intensive, which generally ignores the structure of 

time-cost tradeoff (Jiang and Zhu, 2010). 
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Maximum flow and minimum cut methods are applicable to small project networks 

but they are ineffective while dealing with a large number of activities (Jiang and 

Zhu, 2010). 
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Chapter 3. Methodology 

The proposed TCT methodology is tailored for the most general alternative of 

continuous time-cost relationship, which is curvilinear. This scope can readily be 

modified to handle linear and multilinear cases with more efficiency. Adjusted 

methods for linear and multilinear time-cost relationships are presented in Sections 

3.3.1 and 3.3.2, respectively.  

Discrete time-cost relationship has a combinatorial nature as the search space is 

not continuous. However, one way to solve the discrete TCT is to convert it into 

multilinear. In this way, method presented for multilinear TCT can be used with a 

minor adjustment. The adjustment is that when a discrete activity is crashed, all of 

its available crash time (from the current activity duration to the next highest 

activity duration) is consumed at once. This may result in a suboptimal solution but 

still provides various alternative solutions and requires less effort. To arrive at the 

optimum solution in discrete TCT, pure mathematical programming methods may 

be more useful. The path-based integer programming solution presented by Ammar 

(2018) is recommended for optimal discrete TCT which has been elaborated in 

Section 2.3.  

A major difference in the proposed methodology and most of the existing methods in 

the literature is the path-based approach. Lu et al. (2017) proposed a simplified 

version of CPM, called path-float based critical path method (PFCPM). In this 

method, project duration was determined from calculation of all path lengths. 

Subsequently, path-floats could be identified and total float of each activity could be 

derived from path-floats. PFCPM circumvents the backward pass analysis of classic 

CPM. This is particularly advantageous as once all paths are identified, effect of 
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any change in the duration of any activity on the schedule can be easily determined. 

As our method relies on recalculation and updating of project schedule in each 

iteration, PFCPM is utilized in each step, which considerably reduces the effort 

required for scheduling. 

3.1 Assumptions and Inputs 

The following assumptions have been made for the proposed methodology: 

 Each activity is initialized at the most relaxed option (normal). 

 All redundant precedence relationships (arrows) in the AON have been 

removed. 

 All values (activity durations and costs) are deterministic. 

 Resource requirements are satisfied in each iteration on all the activities in 

the project. There are no resource availability constraints, and they are fully 

represented in input AON as per the method by Lu and Li (2003), elaborated 

in Appendix A. 

 Time-cost relationship of all activities is continuous curvilinear. This 

assumption is modified for linear and multilinear algorithms (Sections 3.3.1 

and 3.3.2). 

 Duration of each activity can only take integer values (for practical purposes). 

 Precedence relationships of activities are sufficiently specified prior to TCT 

analysis and remain unchanged during analysis. In other words, the AON 

network is defined and not subject to change in ensuing analysis. 

 AON network has only finish-to-start (FS) precedence relationships without 

lags. Schemes to transform non-FS relationships with lags into FS 

relationships without lags, by Lu and Lam (2009), are presented in Appendix 

B. 
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Many existing methods for TCT rely on the assumption of convex time-cost 

relationship. However, our proposed method is not limited to such an assumption 

and can handle both convex and concave or a curve with convex and concave parts. 

The following inputs are required: 

 Crashing data for activities, which include the time-cost relationships of all 

activities. 

 Precedence relationships of activities. 

3.2 Path Finding 

The first step in the proposed method is to find all possible paths from start to 

finish in the AON network. For small project networks, this task can be easily done 

manually, by visual inspection. However, for large-sized complex networks, 

identification of each existing path can become challenging, if not practically 

impossible. To find an automated solution, methods in graph theory can be used. If 

each node represents a vertex and each precedence relationship arrow represents a 

directed edge, an AON network can be interpreted as a directed acyclic graph (De et 

al., 1995). Therefore, the problem of finding all paths from start to finish in an AON 

network is equal to the problem of finding all simple paths between two vertices. A 

path is called simple if no vertex is traversed more than once (Danielson, 1968). 

Several algorithms have been proposed to tackle the path finding problem. It must 

be noted that some algorithms do not produce all of the possible paths and focus on 

finding minimum cost paths which are not useful for our problem.  

Two essentially different techniques exist for path finding: the matrix technique 

and the routing technique (Fratta and Montanari, 1975). An example of the routing 

technique is provided by Kroft (1967) where at first, a string of all vertices with 
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their neighbors denoted in parenthesis right next to them was constructed (with 

start vertex and finish vertex being the first and last vertices in the string). 

Subsequently, an algorithm which consists of backtracking was employed to find all 

the existing paths. An example of matrix technique is provided by Danielson (1968) 

where a modified adjacency matrix was introduced to find all possible paths. Rubin 

(1978) presented a basic and time-consuming algorithm which tested all the 

combinations of vertices comprising a path. If the edges connecting the vertices of a 

particular combination existed in AON, then that path was recorded as an existing 

path. It is obvious that this method is not particularly efficient. Fratta and 

Montanari (1975) provided another more efficient method which finds all simple 

paths by a vertex elimination technique based on matrix inversion.  

The routing technique is useful for enumerating all simple paths between a pair of 

vertices. On the other hand, the matrix technique can provide all existing paths in 

the network between any pair of vertices. Since in the proposed methodology, we 

are only interested in finding the paths between start and finish nodes (only a pair 

of vertices), it is recommended to use the routing technique (Kroft, 1967) for 

practical large-sized project networks (100 or more activities). It must be noted that 

the routing technique can become exhaustive if the graph contains non-simple paths 

(Fratta and Montanari, 1975), which is not the case for AON networks.   

3.3 Proposed Methodology 

To handle curvilinear time-cost relationships, the nonlinear curve is replaced by 

straight lines for all practical purposes (Ahuja et al., 1994). Each line represents 

one time-unit, i.e. day or hour (Figure 3.1). It can be argued that by this 

assumption, the optimality of the solution is lost. However, in practice, it does not 

make much difference, as time-unit can be adjusted.  
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Figure 3.1 Approximation of time-cost curve 

Consider an AON network having N activities and M paths. Let A be the set of all 

activities which includes a1, a2, …, aN.  Let P be the set of all paths which includes p1, 

p2, …, pM. A path consists of activities ordered from start to finish. For instance, if p1 

consists of activities a1, then a4, then a7, it is denoted as p1 = {a1, a4, a7}.  For each 

activity ai, let di be the variable representing the current duration of the activity. Ci 

(di) is defined as the direct cost function of the activity ai, which represents the cost 

of the activity for duration di. din and cin represent normal duration and normal cost 

of the activity and dic and cic represent crash duration and crash cost of the activity. 

In other words: 

 𝑐𝑖𝑛 = 𝐶𝑖(𝑑𝑖𝑛) (3.1) 

 𝑐𝑖𝑐 = 𝐶𝑖(𝑑𝑖𝑐) (3.2) 
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Note that the cost considered in Ci (di) includes any cost that can be attributed to a 

particular activity. Costs that cannot be attributed to a particular activity will be 

considered as indirect cost.  

The proposed method consists of several steps divided into two parts. The first part 

is the initialization of the problem (step 1) and the second part is the iterative 

crashing cycles (step 2 to 8). Steps include: 

1. Determine the number of paths (M), P and the set of activities on each path 

using methods explained in Section 3.2. 

2. Calculate the available crash time (AC) for each activity using Eq. 3.3. 

Calculate the cost slope (S) for each activity having available crash time 

using Eq. 3.4.  

 𝐴𝐶𝑖 = 𝑑𝑖 − 𝑑𝑖𝑐;  ∀𝑎𝑖 ∈ 𝐴 (3.3) 

 𝑆𝑖 = 𝐶𝑖(𝑑𝑖) − 𝐶𝑖(𝑑𝑖 − 1); ∀𝑎𝑖 ∈ 𝐴, 𝐴𝐶𝑖 ≠ 0 (3.4) 

3. Use current duration of activities (di) on each path to calculate the path 

length (PL) of each path using Eq. 3.5.  

 𝑃𝐿𝑗 = ∑ 𝑑𝑖

𝑎𝑖∈𝑝𝑗

; ∀𝑝𝑗 ∈ 𝑃 (3.5) 

4. Critical path length (PLcr) is equal to the largest path length (Eq. 3.6). Let Pcr 

be the set of critical path(s) which is defined by Eq. 3.7. 

 𝑃𝐿𝑐𝑟 = max (𝑃𝐿1, 𝑃𝐿2, … , 𝑃𝐿𝑀) (3.6) 

 𝑃𝑐𝑟 = {∀𝑝𝑗 ∈ 𝑃| 𝑃𝐿𝑗 = 𝑃𝐿𝑐𝑟} (3.7) 

5. Determine the project duration (which is equal to PLcr) and total cost. Total 

cost is the sum of direct costs of all activities plus indirect cost. 
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6. In this step, the set of activities for crashing in the current cycle must be 

selected. To ensure the minimum direct cost is added in the crashing cycle, 

the following IP formulation will be used. If no solution can be obtained, the 

crashing cycles must be terminated. xi is a binary variable representing if an 

activity should be crashed or not (1 for crashing, 0 for not crashing). 

Minimize ∑ 𝑆𝑖 × 𝑥𝑖

𝑎𝑖∈𝑃𝑐𝑟

; 𝐴𝐶𝑖 ≠ 0 (3.8) 

Subject to 𝑥𝑖 = 0,1; ∀𝑎𝑖 ∈ 𝑃𝑐𝑟 , 𝐴𝐶𝑖 ≠ 0 (3.9) 

 ∑ 𝑥𝑖

𝑎𝑖∈𝑝𝑗

≥ 1; ∀𝑝𝑗 ∈ 𝑃𝑐𝑟 , 𝐴𝐶𝑖 ≠ 0 (3.10) 

7. For activities that have been selected for crashing (xi=1), reduce the current 

duration (di) by one time-unit. 

8. Go to step 2 for the next cycle. 

Note that after the first cycle, available crash times and cost slopes will be updated 

in step 2 only for crashed activities. These values will remain the same for all other 

activities. In addition, only path length of critical path(s) requires updating in each 

iteration (step 3). Eq. 3.8 represents the combined cost slope of all activities that are 

chosen to be crashed. To reduce the total project duration, all critical paths must be 

crashed simultaneously. Eq. 3.10 ensures that at least one activity from each 

critical path is crashed. 

 Figure 3.2 shows the flowchart of the proposed algorithm. Each iteration of this 

algorithm provides a feasible solution, which is a project duration with a minimized 

corresponding total cost. After termination of algorithm, global optimums 

(minimum total cost and minimum total duration) can be selected from the set of 

feasible solutions. 
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Figure 3.2 Flowchart of proposed method for curvilinear time-cost relationship 
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3.3.1 Adjusted Method Subject to Linear Time-Cost Relationship 

The proposed algorithm can be streamlined to handle linear activity time-cost 

relationships (Figure 3.3). In this case, as the cost slope (S) of each activity is 

constant, it should only be calculated once and does not need to be updated in each 

iteration. Nomenclature and definitions are the same as before. 

Activity Duration

Activity 

Cost Crash

Normal

 

Figure 3.3 Linear time-cost relationship 

The proposed method consists of several steps divided into two parts. The first part 

is the initialization of the problem (step 1 and 2) and the second part is the iterative 

crashing cycles (step 3 to 9). Steps include: 

1. Determine the number of paths (M), P and the set of activities on each path 

using methods explained in Section 3.2. 
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2. Calculate the available crash time (AC) for each activity using Eq. 3.11. 

Calculate the cost slope (S) for each activity having available crash time 

using Eq. 3.12.  

 𝐴𝐶𝑖 = 𝑑𝑖𝑛 − 𝑑𝑖𝑐;  ∀𝑎𝑖 ∈ 𝐴 (3.11) 

 𝑆𝑖 =
𝑐𝑖𝑐 − 𝑐𝑖𝑛

𝐴𝐶𝑖
;  ∀𝑎𝑖 ∈ 𝐴, 𝐴𝐶𝑖 ≠ 0 (3.12) 

3. Use current duration of activities (di) on each path to calculate the path 

length (PL) of each path using Eq. 3.13.  

 𝑃𝐿𝑗 = ∑ 𝑑𝑖

𝑎𝑖∈𝑝𝑗

; ∀𝑝𝑗 ∈ 𝑃 (3.13) 

4. Critical path length (PLcr) is equal to the largest path length (Eq. 3.14). Let 

Pcr be the set of critical path(s) which is defined by Eq. 3.15. 

 𝑃𝐿𝑐𝑟 = max (𝑃𝐿1, 𝑃𝐿2, … , 𝑃𝐿𝑀) (3.14) 

 𝑃𝑐𝑟 = {∀𝑝𝑗 ∈ 𝑃| 𝑃𝐿𝑗 = 𝑃𝐿𝑐𝑟} (3.15) 

5. Let Pnc be the set of non-critical paths (Eq. 3.16). Determine next-to-critical 

path length (PLntc) using Eq. 3.17. Determine path-float of next-to-critical 

path (PFntc) using Eq. 3.18. 

 𝑃𝑛𝑐 = 𝑃 − 𝑃𝑐𝑟 (3.16) 

 𝑃𝐿𝑛𝑡𝑐 = max {𝑃𝐿𝑗| 𝑝𝑗 ∈ 𝑃𝑛𝑐} (3.17) 

 𝑃𝐹𝑛𝑡𝑐 = 𝑃𝐿𝑐𝑟 − 𝑃𝐿𝑛𝑡𝑐 (3.18) 

6. Determine the project duration (which is equal to PLcr) and total cost. Total 

cost is the sum of direct costs of all activities plus indirect cost. 
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7. In this step, the set of activities for crashing in the current cycle must be 

selected. To ensure the minimum direct cost is added in the crashing cycle, 

the following IP formulation will be used. If no solution can be obtained, the 

crashing cycles must be terminated. xi is a binary variable representing if an 

activity should be crashed or not (1 for crashing, 0 for not crashing). 

Minimize ∑ 𝑆𝑖 × 𝑥𝑖

𝑎𝑖∈𝑃𝑐𝑟

; 𝐴𝐶𝑖 ≠ 0 (3.19) 

Subject to 𝑥𝑖 = 0,1; ∀𝑎𝑖 ∈ 𝑃𝑐𝑟 , 𝐴𝐶𝑖 ≠ 0 (3.20) 

 ∑ 𝑥𝑖

𝑎𝑖∈𝑝𝑗

≥ 1; ∀𝑝𝑗 ∈ 𝑃𝑐𝑟 , 𝐴𝐶𝑖 ≠ 0 (3.21) 

8. Determine the crash duration (CD) using Eq. 3.22. For activities that have 

been selected for crashing (xi=1), reduce the current duration (di) by the 

amount of CD. Update AC for activities that have been crashed using Eq. 

3.23. 

 𝐶𝐷 = 𝑚𝑖𝑛 {
𝑃𝐹𝑛𝑡𝑐

𝑚𝑖𝑛 {𝐴𝐶𝑖| 𝑥𝑖 = 1}
 (3.22) 

 𝐴𝐶𝑖 = 𝑑𝑖 − 𝑑𝑖𝑐;  ∀𝑎𝑖 ∈ 𝐴, 𝑥𝑖 = 1 (3.23) 

9. Go to step 3 for the next cycle. 

Figure 3.4 shows the flowchart of the proposed algorithm. 
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Figure 3.4 Flowchart of proposed method for linear time-cost relationship 
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3.3.2 Adjusted Method Subject to Multilinear Time-Cost Relationship  

The proposed algorithm can be simplified to handle multilinear activity time-cost 

relationships. For each activity ai, time-cost curve is divided into several sections (Ki 

sections), each having a constant cost slope. Let Di be the set of durations for 

activity ai at which the cost slope changes and includes di0,di1, …,diKi (Figure 3.5). 

Note that di0 is the same as din and diKi is the same as dic.  

Activity Duration

Activity 

Cost Crash

Normal

di0di1di2diKi  

Figure 3.5 Multilinear time-cost relationship 

The proposed method consists of several steps divided into two parts. The first part 

is the initialization of the problem (step 1) and the second part is the iterative 

crashing cycles (step 2 to 9). Steps include: 

1. Determine the number of paths (M), P and the set of activities on each path 

using methods explained in Section 3.2. 
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2. dih is defined as the largest value in Di that is smaller than the current 

duration of activity (Eq. 3.24). Note that di is the current duration of activity 

ai. Calculate the available crash time (AC) for each activity using Eq. 3.25. 

Calculate the cost slope (S) for each activity having available crash time 

using Eq. 3.26.  

 𝑑𝑖ℎ =  max {𝑑𝑖𝑙| 𝑑𝑖𝑙 ∈ 𝐷𝑖 , 𝑑𝑖𝑙 < 𝑑𝑖} (3.24) 

 𝐴𝐶𝑖 = 𝑑𝑖 − 𝑑𝑖ℎ;  ∀𝑎𝑖 ∈ 𝐴 (3.25) 

 
𝑆𝑖 =

𝐶𝑖(𝑑𝑖) − 𝐶𝑖(𝑑𝑖ℎ)

𝐴𝐶𝑖
;  ∀𝑎𝑖 ∈ 𝐴, 𝐴𝐶𝑖 ≠ 0 

(3.26) 

3. Use current duration of activities (di)  on each path to calculate the path 

length (PL)  of each path using Eq. 3.27.  

 𝑃𝐿𝑗 = ∑ 𝑑𝑖

𝑎𝑖∈𝑝𝑗

; ∀𝑝𝑗 ∈ 𝑃 (3.27) 

4. Critical path length (PLcr) is equal to the largest path length (Eq. 3.28). Let 

Pcr be the set of critical path(s) which is defined by Eq. 3.29. 

 𝑃𝐿𝑐𝑟 = max (𝑃𝐿1, 𝑃𝐿2, … , 𝑃𝐿𝑀) (3.28) 

 𝑃𝑐𝑟 = {∀𝑝𝑗 ∈ 𝑃| 𝑃𝐿𝑗 = 𝑃𝐿𝑐𝑟} (3.29) 

5. Let Pnc be the set of non-critical paths (Eq. 3.30). Determine next-to-critical 

path length (PLntc) using Eq. 3.31. Determine path-float of next-to-critical 

path (PFntc) using Eq. 3.32. 

 𝑃𝑛𝑐 = 𝑃 − 𝑃𝑐𝑟 (3.30) 

 𝑃𝐿𝑛𝑡𝑐 = max {𝑃𝐿𝑗| 𝑝𝑗 ∈ 𝑃𝑛𝑐} (3.31) 
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 𝑃𝐹𝑛𝑡𝑐 = 𝑃𝐿𝑐𝑟 − 𝑃𝐿𝑛𝑡𝑐 (3.32) 

6. Determine the project duration (which is equal to PLcr) and total cost. Total 

cost is the sum of direct costs of all activities plus indirect cost. 

7. In this step, the set of activities for crashing in the current cycle must be 

selected. To ensure the minimum direct cost is added in the crashing cycle, 

the following IP formulation will be used. If no solution can be obtained, the 

crashing cycles must be terminated. xi is a binary variable representing if an 

activity should be crashed or not (1 for crashing, 0 for not crashing). 

Minimize ∑ 𝑆𝑖 × 𝑥𝑖

𝑎𝑖∈𝑃𝑐𝑟

; 𝐴𝐶𝑖 ≠ 0 (3.33) 

Subject to 𝑥𝑖 = 0,1; ∀𝑎𝑖 ∈ 𝑃𝑐𝑟 , 𝐴𝐶𝑖 ≠ 0 (3.34) 

 ∑ 𝑥𝑖

𝑎𝑖∈𝑝𝑗

≥ 1; ∀𝑝𝑗 ∈ 𝑃𝑐𝑟 , 𝐴𝐶𝑖 ≠ 0 (3.35) 

8. Determine the crash duration (CD) using Eq. 3.36. For activities that have 

been selected for crashing (xi=1), reduce the current duration (di) by the 

amount of CD. 

 𝐶𝐷 = 𝑚𝑖𝑛 {
𝑃𝐹𝑛𝑡𝑐

𝑚𝑖𝑛 {𝐴𝐶𝑖| 𝑥𝑖 = 1}
 (3.36) 

9. Go to step 2 for the next cycle. 

Figure 3.6 shows the flowchart of the proposed algorithm. Note that cost slope of a 

crashed activity in an iteration will only change if the activity has used all of the 

crash time available for its corresponding section. 
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Figure 3.6 Flowchart of proposed method for multilinear time-cost relationship  
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3.4 Analytical Discussion 

All concepts elaborated in this section apply to all three of the proposed 

methodologies (linear, multilinear, and curvilinear) unless stated otherwise. 

Suppose there are only two paths in the AON network named p1 and p2 with p1 

having the longer path length. We want to limit the project duration to γ such that 

p1>γ>p2 (Figure 3.7). In this case, any activity that is part of p2 but not a part of p1 

does not need to be considered for crashing. The obvious reason is that crashing 

such an activity reduces the path length of p2 but does not reduce the project 

duration (in this case, p1) and causes unnecessary added cost. 

Start Finish
p1

p2

γ

 

Figure 3.7 Unnecessary crashing 

The proposed algorithm extends this concept to a project network comprising of 

numerous paths by only considering critical path(s) in each iteration. As a result, 

unnecessary crashing and the resultant added cost are avoided on a general project-

wide scale, which contributes to optimality of the obtained results. In addition, 

search space is substantially reduced by considering only a part of the network as 

opposed to all of it.  
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To ensure that the best set of activities selected for crashing does not change during 

an iteration, search space (critical paths) and its characteristics (cost slopes) must 

remain stable during each cycle of crashing. Therefore, the amount of crashing 

duration is limited by (1) next-to-critical path-float and (2) the interval in which the 

cost slope of selected set of activities for crashing remains the same. Next-to-critical 

path is the path with the second largest path length after the critical path. Next-to-

critical path-float (PFntc) has been previously defined using Eq. 3.18 and is 

illustrated in Figure 3.8. 

Start Finish

Critical 

Paths

PFntc

Next-to-

Critical 

Path

 

Figure 3.8 Graphical representation of next-to-critical path 

The main difference between the three algorithms (curvilinear, linear, and 

multilinear) is due to how the aforementioned limits on the crashing duration are 

imposed. Regarding the curvilinear algorithm, the activity durations can only take 

integer values. Therefore, next-to-critical path-float cannot be less than one time-

unit. Furthermore, activities are approximated by one time-unit linear segments 

and in each iteration, selected activities are only crashed by one day. Hence, both 

limits are satisfied. In the linear algorithm, crashing duration is limited by the 

next-to-critical path-float. Note that in this case, the cost slopes of all activities are 

constant in all iterations. For the multilinear algorithms, crashing duration is 

limited by minimum of next-to-critical path-float and available crash duration of 
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activities until their respective cost slopes changes. Cost slope of linear and 

multilinear activities does not change for larger intervals, which enables us to take 

larger steps in each iteration without skipping the optimal solutions. 

The objective function of IP formulation represents the combined cost slope of all 

activities chosen to be crashed in each iteration. In other words, objective function is 

equal to added direct cost if we reduce the duration of the project by one time-unit. 

The proposed algorithm divides the TCT into several steps and in each step, added 

direct cost is minimized by use of IP formulation. Figure 3.9 is a simplified visual 

representation of this minimization with red lines showing non-optimal (i.e. having 

a larger combined cost slope) crashing alternatives in each iteration. Note that 

unnecessary crashing does not reduce the project duration and is not represented by 

the red lines. To summarize, the proposed algorithm searches for the lowest possible 

cost in a stepwise manner. The resultant project time-cost curve represents the 

lowest project cost corresponding to any project duration. The global optimums 

(lowest total cost and lowest total duration) can be selected from the time-cost 

curve. 

As a result of this minimization, the algorithm can achieve optimum or near-

optimum results (illustrated in Figure 3.10). The obtained optimum has coincided 

with the true theoretical optimum on the test bed cases (a linear case, and a 

curvilinear case) from literature (refer to Sections 4.1 and 4.2). For practical 

projects, theoretical optimum remains unknown, but we can infer that the obtained 

solution approaches the true optimum in a small margin thanks to the proposed 

algorithm and the nested IP. This is deemed sufficient for practical applications in 

construction project management.  
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Figure 3.9 Minimization in each iteration 

Project Duration

Project 

Direct 

Cost

Solution obtained by 
proposed algorithm

Theoretical 
optimum

Overlap or significantly 

small distance

 

Figure 3.10 Optimality of proposed algorithm (obtained solution and theoretical 

optimum are expected to overlap, or their distance will be significantly small) 
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Eq. 3.10 represents the number of activities that are being crashed on each critical 

path, in each iteration. The value of this constraint must be larger than zero for all 

current critical paths to ensure that the project duration is reduced. If the value of 

this constraint is equal to one for all critical paths, it can be deduced that the path 

length of each critical path is reduced by the same amount. It must be noted that in 

each iteration, all activities in the selected set must be crashed by the same 

amount. As a result, if Eq. 3.10 is equal to one for all critical paths in an iteration, 

all current critical paths will be critical in the next iteration as well. This is mostly 

the case but there is an exception to it. Consider the network illustrated in Figure 

3.11 with crash information presented in Table 3.1. In this network, path lengths of 

all three paths (AC, BC, and BD) is 8. Hence, all paths are critical and should be 

crashed. Based on Table 3.1, only activities B and C have non-zero available crash 

time. Therefore, activity C is the only option for path AC and activity B is the only 

option for path BD and both have to be crashed. After crashing, the new path 

lengths are updated as 7 days for AC, 6 days for BC, and 7 days for BD. It can be 

seen that path BC, which was critical at the initial stage is not critical anymore. Eq. 

3.10 will take a value of two or more for a certain path if two or more activities on it 

are the only options with non-zero crash times on respective critical paths. In this 

case, these activities will be crashed in all the next iterations and analysis will stop 

once any of them runs out of available crash time, as this will result in a critical 

path that has no further crash options. 
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(a) AON with activity durations at initial stage (activity durations are given in 

parentheses) 

ST

A(3)

B(2) D(5)

C(4)

FN

 

(b) AON with activity durations after crashing (activity durations are given in 

parentheses) 

Figure 3.11 Sample AON for analysis of Eq. 3.10  

Table 3.1 Crash data for Figure 3.11 

Activity 
Duration (d) AC 

(d) Initial After crash 

A 3 3 0 

B 3 2 2 

C 5 4 1 

D 5 5 0 

 

If the time-cost relationships of all activities are linear or convex (that is to say that 

cost slope of activity will remain the same or increase as the duration of activity 

decreases), the value of objective function can only increase or remain the same in 

each iteration. To assess this statement, we have to consider several different 
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scenarios. Assume C1 is a crashing cycle in the algorithm. C2 is defined as the 

crashing cycle right after C2. Note that there is no restriction on the two 

consecutive cycles of C1 and C2. In other words, C1 and C2 can be either the first, 

final, or intermediate crashing cycle. To compare the critical paths of these two 

consecutive iterations, two questions need to be answered: 

 Are all the paths that were critical in C1 still critical in C2? Note that it is 

possible for a critical path to become non-critical after an iteration. 

 Is there a critical path in C2 that was previously not critical in C1? 

Based on the comparison of critical paths in C1 and C2, the scenarios are defined as 

presented in Table 3.2.  Each scenario is examined and elaborated with an example 

having linear activity time-cost relationships. Note that linearity is only for 

simplicity and is not necessary. Examples with convex multilinear or convex 

curvilinear activity time-cost relationships can be readily provided. 

Table 3.2 Scenarios for increasing value of objective function 

Scenario Description 

1 
All paths that were critical in C1 are critical in C2 as well. 

There is no new critical path in C2 that was not critical in C1. 

2 
At least one path that was critical in C1 is not critical in C2. 

There is no new critical path in C2 that was not critical in C1. 

3 
All paths that were critical in C1 are critical in C2 as well. 

There is a new critical path in C2 that was not critical in C1 

4 
At least one path that was critical in C1 is not critical in C2. 

There is a new critical path in C2 that was not critical in C1 

 

For scenario one, the critical paths are the same in both C1 and C2. Therefore, the 

lowest value of objective function will be obtained in C1. For example, consider the 

AON network presented in Figure 3.12, with linear activity time-cost relationships 

and crash data of Table 3.3. Paths and path lengths are presented in Table 3.4. In 
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C1, paths AC and BD are critical and activities A and B will be crashed by one day 

with a combined cost slope of $500 per day. In C2, paths AC and BD are critical and 

activities A and D will be crashed by one day with a combined cost slope of $600 per 

day.   

ST

A(3)

B(5) D(3)

C(5)

FN

E(3) F(3)

ST

A(2)

B(4) D(3)

C(5)

FN

E(3) F(3)

C1 C2

Critical paths 

are highlighted

 

Figure 3.12 Sample AON for scenario 1 

Table 3.3 Example for scenario 1 based on Figure 3.12 

 Duration (d) S AC (d) 

Activity C1 C2 ($/d) C1 C2 

A 3 2 200 2 1 

B 5 4 300 1 0 

C 5 5 200 1 1 

D 3 3 400 1 1 

E 3 3 200 1 1 

F 3 3 250 1 1 

 

Table 3.4 Paths lengths for scenario 1 with (critical paths highlighted) 

Path 

Path Length 

(d) 

C1 C2 

AC 8 7 

BD 8 7 

EF 6 6 
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For scenario two, the activities that were crashed in C1 on the path that has become 

non-critical in C2 will have to be crashed again in C2 (previously explained) and are 

part of the value of objective function in both iterations. The rest of the analysis is 

similar to scenario one. For example, consider the AON network presented in 

Figure 3.13, with linear activity time-cost relationships and crash data of Table 3.5. 

Paths and path lengths are presented in Table 3.6. In C1, paths AC, BGC, BD, and 

EF are critical and activities B, C, and E will be crashed by one day with a 

combined cost slope of $700 per day. In C2, path BGC has become non-critical and 

paths AC, BD, and EF are critical. Therefore, in C2, activities B, C, and F will be 

crashed by one day with a combined cost slope of $750 per day.   
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Figure 3.13 Sample AON for scenario 2 
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Table 3.5 Example for scenario 2 based on Figure 3.13 

 
Duration (d) S AC (d) 

Activity C1 C2 ($/d) C1 C2 

A 5 5 - 0 0 

B 3 2 300 2 1 

C 3 2 200 2 1 

D 5 5 - 0 0 

E 4 3 200 1 0 

F 4 4 250 1 1 

G 2 2 100 1 1 

H 2 2 200 1 1 

I 2 2 300 1 1 

 

Table 3.6 Paths lengths for scenario 2 with (critical paths highlighted) 

Path 

Path Length 

(d) 

C1 C2 

AC 8 7 

BGC 8 6 

BD 8 7 

EF 8 7 

HI 4 4 

 

Scenario three needs to be examined in two situations. If the activity that is to be 

crashed on the newly formed critical path in C2 is part of the critical paths in C1, 

the objective function of C2 cannot be smaller than C1. Otherwise, that set of 

activities would have been selected in C1. If the activity that is to be crashed on the 

newly formed critical path in C2 is not part of the critical paths in C1, C1 critical 

paths still need to be crashed. Therefore, the part of C2’s objective function 

corresponding to C1 critical paths can only increase (similar to scenario 1). In 

addition, the selected activity that is not part of the C1 critical paths has a cost 
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slope which will be added to the objective function in C2. For example, consider the 

AON network presented in Figure 3.14, with linear activity time-cost relationships 

and crash data of Table 3.7. Paths and path lengths are presented in Table 3.8. In 

C1, paths AC and BD are critical and activities A and B will be crashed by one day 

with a combined cost slope of $500 per day. In C2, paths AC, BD, and EF are critical 

and activities A, D and E will be crashed by one day with a combined cost slope of 

$800 per day.   
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A(3)
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FN
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Figure 3.14 Sample AON for scenario 3 

Table 3.7 Example for scenario three based on Figure 3.14 

 
Duration (d) S AC (d) 

Activity C1 C2 ($/d) C1 C2 

A 3 2 200 2 1 

B 5 4 300 1 0 

C 5 5 200 1 1 

D 3 3 400 1 1 

E 3 3 200 1 1 

F 4 4 250 1 1 
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Table 3.8 Paths lengths for scenario 3 with (critical paths highlighted) 

Path 

Path Length 

(d) 

C1 C2 

AC 8 7 

BD 8 7 

EF 7 7 

 

For scenario four, the activities that were crashed in C1 on the path that has 

become non-critical in C2 will have to be crashed again in C2 (previously explained) 

and are part of the value of objective function in both iterations. The rest of the 

analysis is similar to scenario three. For example, consider the AON network 

presented in Figure 3.15, with linear activity time-cost relationships and crash data 

of Table 3.9. Paths and path lengths are presented in Table 3.10. In C1, paths AC, 

BGC, BD, and EF are critical and activities B, C, and E will be crashed by one day 

with a combined cost slope of $700 per day. In C2, path BGC has become non-

critical and paths AC, BD, EF and HI are critical. Therefore, in C2, activities B, C, 

F, and H will be crashed by one day with a combined cost slope of $950 per day.   
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Figure 3.15 Sample AON for scenario 4 
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Table 3.9 Example for scenario four based on Figure 3.15 

 
Duration (d) S AC (d) 

Activity C1 C2 ($/d) C1 C2 

A 5 5 - 0 0 

B 3 2 300 2 1 

C 3 2 200 2 1 

D 5 5 - 0 0 

E 4 3 200 1 0 

F 4 4 250 1 1 

G 2 2 100 1 1 

H 4 4 200 1 1 

I 3 3 300 1 1 

 

Table 3.10 Paths lengths for scenario 4 with (critical paths highlighted) 

Path 

Path Length 

(d) 

C1 C2 

AC 8 7 

BGC 8 6 

BD 8 7 

EF 8 7 

HI 7 7 

 

If the time-cost relationship of an activity is concave, it means that the cost slope of 

that activity can decrease in two consecutive iterations. In this case, increase in the 

value of objective function cannot be ensured.  

Indirect cost is defined as costs allocated to a project, which cannot be attributed to 

any certain activity. Indirect cost increases with the project duration (Bettemir and 

Birgönül, 2017). Indirect cost is divided into two parts; (1) a part that does not 

depend on the project duration (fixed) such as project office expenses and site 

installations, and (2) a part that increases with project duration (variable) such as 
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salaries of supervisors, medical, and safety personnel (Hegazy, 2002). Regarding 

TCT, most literature, such as Moussourakis and Haksever (2009) and Ahuja et al. 

(1994), ignore the fixed indirect cost and the variable part is modelled as a linear 

function of project duration. Some references, such as Ammar (2018), model both 

fixed and variable parts of indirect cost, assuming a constant indirect cost slope (IS) 

for the variable part. This method is illustrated in Figure 3.16.  However, there is a 

more general realistic method to model indirect cost slope, which is to consider 

three different indirect cost slopes (illustrated in Figure 3.17). This method has not 

been used in TCT literature. As an example of a change in indirect cost slope, safety 

related costs can be considered. An expedited schedule gives rise to additional 

safety hazards and increases the safety cost. All three indirect cost models can be 

easily accommodated by the proposed method. If a single constant indirect cost 

slope (Figure 3.16) is selected, no change is required in the proposed methodology. 

However, if three indirect costs slopes are selected, a new step must be added in 

certain iterations. In this case, we must examine if the indirect cost slope has 

changed during a cycle. If so, direct cost, indirect cost, and the total cost 

corresponding to the project duration where the indirect cost slope changes must be 

recorded. Note that there is no need to stop and reselect the activities for crashing. 

The reason for recording this instance as an alternative solution is the effect that 

combined direct cost slope and indirect cost slope have on total cost slope (explained 

in the next paragraph). 
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Figure 3.16 Single constant indirect cost slope 
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Figure 3.17 Three constant indirect cost slopes 

As stated before, the value of objective function in each iteration represents the 

added direct cost if project duration is reduced by one time-unit. On the other hand, 

IS represents the reduced indirect cost if project duration is reduced by one time-

unit. As a result, the addition of these two values determines the net total cost slope 

and can guide us in finding local or global optimums. If the conditions for increasing 
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objective function are met (linear or convex activity time-cost relationships), single 

and three indirect cost slopes must be examined separately: 

 For single constant indirect cost slope, once the value of objective function 

(combined direct cost slope) surpasses the indirect cost slope in a cycle, total 

cost can only increase by any further crashing and the lowest total cost has 

already been recorded, as the increase on direct cost resulting from crashing 

would outstrip the decrease on indirect cost due to the shortening of project 

duration. 

 For three indirect cost slopes, once the value of objective function (combined 

direct cost slope) surpasses the corresponding indirect cost slope in a cycle, 

we must check if the value of indirect cost slope does not increase (it would 

be equal or lower than current indirect cost slope) as a result of any further 

project duration crashing. If this is ensured, then total cost can only increase 

by any further crashing and the lowest total cost has already been recorded. 

Otherwise, the total cost may be further lowered until the condition is 

satisfied, that is: if the value of indirect cost slope does not increase (it would 

be equal or lower than current indirect cost slope) as a result of any further 

project duration crashing.  

3.5 Explanatory Notes 

Considering a project having 15 activities as an example, with each activity having 

three options for completion, the total number of possible combinations will be 315 

(14,348,907). This number is only for a small network. If the number of activities 

increases to represent a real network, the number of permutations increases 

exponentially. For a 100-activity network, with 50 of the activities having three 

crash options, the number would be 350 (7.18e+23). Considering the structure of the 
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problem, the proposed method narrows the search space by breaking down the 

problem into smaller ones and focusing only on critical path(s) (highlighted 

activities in Figure 3.18). In addition, for each activity on the critical path(s) that 

has available crash time, only two modes (crashing or not crashing) is considered.  

As a result, computational efficiency is improved.  

It must be noted that although the search space is limited, IP is still required as we 

can have multiple critical paths, each having several crashing options, which is 

probable for a large-sized network. As an example, consider the critical paths 

highlighted in Figure 3.18. Assuming all activities on the critical paths (9 activities) 

have crash options, the number of possible combinations to be examined is 29 (512). 

By extending this analogy to a large-sized network, the necessity of automated IP 

becomes apparent. In general, manual TCT cannot be performed on a real project.  
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Figure 3.18 Graphical representation of search space 

For comparison of formulation, TCT programming models proposed by Liu et al. 

(1995), Jiang and Zhu (2010), or Ahuja et al. (1994) (refer to Sections 4.2 and 4.3) 
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can be examined. Common constraints in existing methods include precedence 

relationships and activity start and finish times. Those constraints are replaced by 

one constraint for each critical path in the proposed algorithm, which significantly 

streamlines the modelling effort. Furthermore, only critical paths are required to be 

formulated, resulting in simpler formulation. 

By using PFCPM’s path-based method of scheduling, there is no need for the 

backward pass of classic CPM. In other words, once the paths are identified, 

updating the schedule in each iteration requires minimal effort.  

The proposed method provides a range of feasible alternative solutions that reveals 

the trend of total cost against project time, and can be used for what-if analysis. 

Risk of delays can be reduced by choosing a near-optimal solution with a longer 

duration but reasonably close total cost. The longer duration may result in more 

total floats for certain activities.  

The rules are simple and can be easily understood and applied by practitioners. 

Early completion bonus and late completion penalty can be easily modelled by 

extending the procedures in the proposed algorithm and there is no need for them to 

be modelled in the mathematical programming formulation.  

The method can be automated without the need for any specialized software. Solver 

is a free add-in program for Microsoft Excel to handle mathematical optimization. 

This program is easy to use and does not require a knowledge of mathematical 

programming in order to use it. The entire method can be modelled in a 

spreadsheet. A guide on how to set up the Excel program is provided in Appendix C. 
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Chapter 4. Case Studies 

In this chapter, three case studies are solved by the proposed method. The first and 

second cases have linear and curvilinear time-cost relationships, respectively. The 

results are compared to the solution provided by each reference for cross-validation. 

The purpose of the third case is to implement the method for a real, relatively large-

sized project network.   

4.1 Case One – Linear Time-Cost Relationship 

This case was presented in Section 8.5 of Hegazy (2002). The network consists of 11 

activities and activity time-cost relationship is assumed to be continuous linear. 

Activities’ normal and crash data and the project network are presented in Table 

4.1 and Figure 4.1. Indirect cost of project is $500 per day of project duration. 

Table 4.1 Activity data of case one 

 
Normal Crash 

Activity Duration (d) Direct Cost ($) Duration (d) Direct Cost ($) 

A 4 2,000 No crashing 

B 6 10,000 3 16,600 

C 2 4,000 No crashing 

D 8 18,000 No crashing 

E 4 20,000 No crashing 

F 10 15,000 No crashing 

G 16 12,000 12 12,800 

H 8 16,000 4 17,000 

I 6 10,000 No crashing 

J 6 10,000 No crashing 

K 10 8,000 9 9,000 

Total Direct Cost ($) 125,000 
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As this is a small simple network, paths can be easily identified by visual inspection 

which are ADEI, BFHI, BGK, and CJK. The results, obtained by the method 

streamlined for linear time-cost relationship (Section 3.3.1), are presented in Tables 

4.2, 4.3, and 4.4. The minimum total cost is $140,300 with a corresponding project 

duration of 28 days. The shortest possible project duration is 24 days with a 

corresponding total of $145,150. 
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Figure 4.1 AON network of case one 

Table 4.2 Cost slopes and available crash times of case one 

Activity S ($/d) 

AC (d) 

C1 C2 C3 C4 C5 

A - 0 0 0 0 0 

B 2,200 3 3 3 3 0 

C - 0 0 0 0 0 

D - 0 0 0 0 0 

E - 0 0 0 0 0 

F - 0 0 0 0 0 

G 200 4 2 0 0 0 

H 250 4 4 2 1 1 

I - 0 0 0 0 0 

J - 0 0 0 0 0 

K 1,000 1 1 1 0 0 
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Table 4.3 Path lengths of case one 

 
PL (d) 

Path C1 C2 C3 C4 C5 

ADEI 22 22 22 22 22 

BFHI 30 30 28 27 24 

BGK 32 30 28 27 24 

CJK 18 18 18 17 17 

 

Table 4.4 Results summary of case one 

Cycle 
Project 

Duration (d) 

Direct 

Cost ($) 

Indirect 

Cost ($) 

Total 

Cost ($) 

Activity 

Crashed 

C1 32 125,000 16,000 141,000 
 

C2 30 125,400 15,000 140,400 G-2d 

C3 28 126,300 14,000 140,300 H-2d & G-2d 

C4 27 127,550 13,500 141,050 H-1d & K-1d 

C5 24 134,150 12,000 146,150 B-3d 

 

For a better demonstration of the proposed method’s formulation, a detailed 

solution for this case is provided. As this is a linear case, cost slopes will not change 

in each iteration. The following are sample calculations for activity B. 

 𝐴𝐶𝐵 = 6 − 3 = 3 days  

 
𝑆𝐵 =

$16,600 − $10,000

3 𝑑𝑎𝑦𝑠
= $2,200/𝑑 

 

In the first iteration, only path BGK (path length of 32 days) is critical and from 

this path, all activities have available crash time. Therefore, the IP formulation is 

as follows, 

Minimize 2200 × 𝑥𝐵 + 200 × 𝑥𝐺 + 1000 × 𝑥𝐾  

Subject to 𝑥𝐵 = 0,1; 𝑥𝐺 = 0,1; 𝑥𝐾 = 0,1  
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 𝑥𝐵 + 𝑥𝐺 + 𝑥𝐾 ≥ 1  

The result of the IP is as below,  

 𝑥𝐵 = 0; 𝑥𝐺 = 1; 𝑥𝐾 = 0  

Therefore, activity G must be crashed in this cycle. The next-to-critical path is BFHI 

with a path length of 30 days and available crash time of G is 4 days. Hence, for the 

crash duration: 

 𝐶𝐷 = 𝑚𝑖𝑛 {
𝑃𝐹𝑛𝑡𝑐 = 𝑃𝐹𝐵𝐹𝐻𝐼 = 32 − 30 = 2 𝑑𝑎𝑦𝑠

𝑚𝑖𝑛 {𝐴𝐶𝐺} = 𝑚𝑖𝑛 {4} = 4 𝑑𝑎𝑦𝑠
= 2 𝑑𝑎𝑦𝑠  

G will be crashed by 2 days. For the second iteration, both paths of BGK and BFHI 

are critical (path length of 30 days) from which activities B, G, H, and K have 

available crash time. The IP formulation for second iteration is as follows, 

Minimize 2200 × 𝑥𝐵 + 200 × 𝑥𝐺 + 250 × 𝑥𝐻 + 1000 × 𝑥𝐾  

Subject to 𝑥𝐵 = 0,1; 𝑥𝐺 = 0,1; 𝑥𝐻 = 0,1; 𝑥𝐾 = 0,1  

 𝑥𝐵 + 𝑥𝐺 + 𝑥𝐾 ≥ 1  (𝑝𝑎𝑡ℎ 𝐵𝐺𝐾)  

 𝑥𝐵 + 𝑥𝐻 ≥ 1 (𝑝𝑎𝑡ℎ 𝐵𝐹𝐻𝐼)  

The result of the IP is as below,  

 𝑥𝐵 = 0; 𝑥𝐺 = 1; 𝑥𝐻 = 1; 𝑥𝐾 = 0  

Therefore, activities G and H must be crashed in this cycle. The next-to-critical path 

is ADEI with a path length of 22 days and available crash times of G and H are 4 

and 2 days, respectively. Hence, for the crash duration: 

 𝐶𝐷 = 𝑚𝑖𝑛 {
𝑃𝐹𝑛𝑡𝑐 = 𝑃𝐹𝐴𝐷𝐸𝐼 = 30 − 22 = 8 𝑑𝑎𝑦𝑠

𝑚𝑖𝑛 {4,2} = 2 𝑑𝑎𝑦𝑠
= 2 𝑑𝑎𝑦𝑠  

G and H will each be crashed by 2 days. For the next iterations, a more summarized 

solution is provided. For the third iteration, 

Minimize 2200 × 𝑥𝐵 + 250 × 𝑥𝐻 + 1000 × 𝑥𝐾  
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Subject to 𝑥𝐵 = 0,1; 𝑥𝐻 = 0,1; 𝑥𝐾 = 0,1  

 𝑥𝐵 + 𝑥𝐾 ≥ 1  (𝑝𝑎𝑡ℎ 𝐵𝐺𝐾)  

 𝑥𝐵 + 𝑥𝐻 ≥ 1 (𝑝𝑎𝑡ℎ 𝐵𝐹𝐻𝐼)  

 ⇒ 𝑥𝐵 = 0; 𝑥𝐻 = 1; 𝑥𝐾 = 1  

 𝐶𝐷 = 𝑚𝑖𝑛 {
𝑃𝐹𝑛𝑡𝑐 = 𝑃𝐹𝐴𝐷𝐸𝐼 = 28 − 22 = 6 𝑑𝑎𝑦𝑠

𝑚𝑖𝑛 {2,1} = 1 𝑑𝑎𝑦
= 1 𝑑𝑎𝑦  

H and K will each be crashed by 1 day. For the fourth iteration, 

Minimize 2200 × 𝑥𝐵 + 250 × 𝑥𝐻  

Subject to 𝑥𝐵 = 0,1; 𝑥𝐻 = 0,1;   

 𝑥𝐵 ≥ 1  (𝑝𝑎𝑡ℎ 𝐵𝐺𝐾)  

 𝑥𝐵 + 𝑥𝐻 ≥ 1 (𝑝𝑎𝑡ℎ 𝐵𝐹𝐻𝐼)  

 ⇒ 𝑥𝐵 = 1; 𝑥𝐻 = 0  

 𝐶𝐷 = 𝑚𝑖𝑛 {
𝑃𝐹𝑛𝑡𝑐 = 𝑃𝐹𝐴𝐷𝐸𝐼 = 27 − 22 = 5 𝑑𝑎𝑦𝑠

𝑚𝑖𝑛 {3} = 3 𝑑𝑎𝑦𝑠
= 3 𝑑𝑎𝑦  

B will be crashed by 3 days. For the fifth iteration, none of activities on path BGK 

have available crash time. Therefore, path BGK cannot be crashed anymore and 

TCT analysis will be terminated. Hegazy (2002) has solved this problem by using 

the cost slope method with manual activity selection and classic CPM (with 

backward pass) and has obtained the same results as our analysis. In this case, 

manual activity selection is possible as the project network is small. Figure 4.2 

represents the alternative feasible solutions and the trend of direct and total cost of 

the project. Table 4.5 is the comparison of objective function (combined direct cost 

slope) and indirect cost slope in each iteration. 
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Figure 4.2 Cost trends of case one 

Table 4.5 Objective function comparison with indirect cost slope 

Cycle Value of Objective Function ($/day) Indirect Cost Slope (4/day) 

C2 200 500 

C3 450 500 

C4 1,250 500 

C5 2,200 500 
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4.2 Case Two – Curvilinear Time-Cost Relationship 

This case was presented in Chapter 10 of Ahuja et al. (1994). The network consists 

of 5 activities and activity time-cost relationship is assumed to be continuous 

curvilinear. Activity time-cost relationships’ one time-unit approximation is 

presented in Table 4.6 with cost slopes calculated. The project’s AON network is 

presented in Figure 4.3. Indirect cost of project is $160 per day of project duration.  

ST

A

B

C

E

F

FN

 

Figure 4.3 AON network of case two 

 Table 4.6 Crash data of case two 

 
Normal First Crash Second Crash 

Activity 
Duration 

(d) 

Direct 

Cost 

($) 

Duration 

(d) 

Direct 

Cost 

($) 

S 

($/d) 

Duration 

(d) 

Direct 

Cost 

($) 

S 

($/d) 

A 5 4,000 4 4,100 100 3 4,220 120 

B 6 4,200 5 4,330 130 4 4,580 250 

C 4 3,200 3 3,280 80 2 3,380 100 

E 3 1,000 2 1,100 100 
   

F 2 2,600 1 2,740 140 
   

Total Direct Cost 

($) 
15,000 

      

 

Summary of the TCT analysis results is provided in Table 4.7 and Table 4.8. The 

lowest project cost is $16,620 with a corresponding duration of 9 days (only activity 

C requires to be crashed by 2 days). The shortest project duration is 6 days with a 
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corresponding cost of $16,980. Figure 4.4 represents the alternative feasible 

solutions and the trend of direct and total cost of the project. 

Table 4.7. Path lengths of case two 

 
PL (d) 

Path C1 C2 C3 C4 C5 C6 

ACF 11 10 9 8 7 6 

BF 8 8 8 8 7 5 

BE 9 9 9 8 7 6 

 

Table 4.8 Results summary of case two 

Cycle 
Project 

Duration (d) 

Direct 

Cost ($) 

Indirect 

Cost ($) 

Total 

Cost ($) 

Activity 

Crashed 

C1 11 15,000 1,760 16,760 
 

C2 10 15,080 1,600 16,680 C-1d 

C3 9 15,180 1,440 16,620 C-1d 

C4 8 15,380 1,280 16,660 A-1d& E-1d 

C5 7 15,630 1,120 16,750 A-1d& B-1d 

C6 6 16,020 960 16,980 B-1d& F-1d 

 

Ahuja et al. (1994) solved this problem by using integer programming which 

produced one exact optimum solution that denoted the lowest total cost. Obtained 

optimum point was of 9 days and $16,620 which is the same as our solution. Linear 

programming formulation of Ahuja et al. (1994) consisted of 9 variables and 19 

constraints and was based on an activity-on-arrow (AOA) network. Each variable 

represented durations of linear segments of activity time-cost relationships. Six of 

the constraints represented precedence relationships and the remaining thirteen 

constraints represented upper and lower limits of durations of each linear segment. 

Note that the total of 19 constraints did not include the integer non-negative 
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constraints imposed on variables. Proposed algorithm’s formulation requires only 3 

constraints, each representing a path. Furthermore, this cumbersome formulation 

for a 5 activity network only provides one solution (optimum) as opposed to five 

feasible alternatives obtained by the proposed algorithm.  

 

Figure 4.4 Cost trends of case two 
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4.3 Case Three – Practical Project 

Proposed algorithm must be tested on a large network to ensure its practicality. 

However, there are no such examples found in connection with TCT analyses 

(regardless of heuristics or optimization method being applied) in literature. 

Therefore, a network based on a real two-story residential project obtained from 

industry has been selected to test the proposed algorithm on a practical, more 

complex scenario. This case can be used as a complete test bed for TCT methods in 

the future. The 81 activity AON network and project information has been 

summarized without eliminating any TCT related aspects for the purpose of simple 

presentation. Changes made include: 

 Removal of activities without available crash time and transferring their 

duration to other activities (either crashable or non-crashable) without 

changing the logic of the network. Note that the direct cost of removed 

activities is still accounted for in total direct cost. 

 The criticality theorem presented by Ahuja et al. (1994) has been used to 

remove redundant paths. Based on the criticality theorem, if a path has a 

normal length less than or equal to the crashed project duration (all activities 

executed under crash scenario), this path can never become critical and can 

be excluded from TCT optimization.  

Project information is provided in Table 4.9. Most activities have available crash 

times with either linear or curvilinear activity time-cost relationships.  
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Table 4.9 Project information for case three 

Activity 

ID 
Predecessor 

Normal 

Duration (d) 

AC 

(d) 
Type Cost Slope ($/d) 

A ST 4 0 No crash - - - 

B A 3 0 No crash - - - 

C A 6 0 No crash - - - 

D A 2 0 No crash - - - 

E A 5 2 Linear 3,000 - - 

F E 2 1 Linear 1,000 - - 

G F 12 4 Linear 700 - - 

H G 5 1 Linear 2,800 - - 

I H 15 3 Linear 5,700 - - 

J I 33 4 Linear 2,300 - - 

K H 5 1 Linear 2,000 - - 

L K 14 1 Linear 400 - - 

M L 4 1 Linear 1,700 - - 

N M, P 12 3 Curvilinear 5,000 5,100 5,200 

O N 18 3 Linear 850 - - 

P L 6 1 Linear 1,050 - - 

Q P 12 1 Linear 2,300 - - 

R N, Q 10 2 Curvilinear 3,700 5,000 - 

S R 6 1 Linear 820 - - 

T Q 18 2 Linear 3,500 - - 

  

Total direct cost of the project is estimated to be $590,000 under normal conditions 

and normal project duration is 83 days. Indirect cost is modelled in two separate 

scenarios. The first scenario assumes a fixed indirect cost of $20,000 and a variable 

indirect cost of $2000 per day of project duration. For the second scenario, the 

variable indirect cost has been modified to include three indirect cost slopes (Table 

4.10).  
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Table 4.10 Indirect cost information for second scenario (three indirect slopes) 

 
Indirect Cost Slope ($/d) Corresponding Project Duration (T) 

Variable 

2,050 T ≤71 

1,500 71< T ≤77 

1,890 77< T  

Fixed  20,000 

 

Identified non-redundant paths are presented in Table 4.11. Path lengths and 

available crash times of each iteration are presented in Table 4.12 and Table 4.13, 

respectively. Summary of results for scenario one and scenario two are provided in 

Tables 4.14 and 4.15, respectively. The shortest project duration is determined to be 

70 days for both scenarios. The lowest project cost for first scenario is $767,250 with 

a corresponding project duration of either 75 or 76 days, as added direct cost by 

crashing activity K is equal to indirect cost slope in that iteration. The lowest 

project cost for second scenario is $768,300 with a corresponding project duration of 

76 days. Figure 4.5 and Figure 4.6 represent the alternative feasible solutions and 

the trend of direct and total cost of the project for first (single slope) and second 

(three slopes) indirect cost scenarios, respectively. 

Table 4.11 Identified paths of case three 

Path ID Activities Normal Path Length (d) 

1 AB 7 

2 AC 10 

3 AD 6 

4 AEFGHIJ 76 

5 AEFGHKLMNO 81 

6 AEFGHKLPNO 83 

7 AEFGHKLMNRS 79 

8 AEFGHKLPNRS 81 

9 AEFGHKLPQRS 81 

10 AEFGHKLPQT 83 
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Table 4.12 Path length results 

Path ID 
PL (d) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

1 7 7 7 7 7 7 7 7 7 7 7 7 

2 10 10 10 10 10 10 10 10 10 10 10 10 

3 6 6 6 6 6 6 6 6 6 6 6 6 

4 76 76 74 72 71 71 71 70 69 69 69 69 

5 81 80 78 76 75 75 74 73 72 71 70 69 

6 83 82 80 78 77 76 75 74 73 72 71 70 

7 79 78 76 74 73 73 72 71 70 70 70 69 

8 81 80 78 76 75 74 73 72 71 71 71 70 

9 81 80 78 76 75 74 73 72 71 70 70 69 

10 83 82 80 78 77 76 75 74 73 72 71 70 

 

Table 4.13 Available crash time of case three 

Activity 
AC (d) 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 

A 0 0 0 0 0 0 0 0 0 0 0 0 

B 0 0 0 0 0 0 0 0 0 0 0 0 

C 0 0 0 0 0 0 0 0 0 0 0 0 

D 0 0 0 0 0 0 0 0 0 0 0 0 

E 1 1 1 1 1 1 1 1 0 0 0 0 

F 1 1 1 1 0 0 0 0 0 0 0 0 

G 4 4 2 0 0 0 0 0 0 0 0 0 

H 1 1 1 1 1 1 1 0 0 0 0 0 

I 3 3 3 3 3 3 3 3 3 3 3 3 

J 4 4 4 4 4 4 4 4 4 4 4 4 

K 1 1 1 1 1 1 0 0 0 0 0 0 

L 1 0 0 0 0 0 0 0 0 0 0 0 

M 1 1 1 1 1 1 1 1 1 1 1 1 

N 3 3 3 3 3 3 3 3 3 3 3 3 

O 3 3 3 3 3 3 3 3 3 2 1 0 

P 1 1 1 1 1 0 0 0 0 0 0 0 

Q 1 1 1 1 1 1 1 1 1 0 0 0 

R 2 2 2 2 2 2 2 2 2 2 2 2 

S 1 1 1 1 1 1 1 1 1 1 1 0 

T 2 2 2 2 2 2 2 2 2 2 1 0 
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Table 4.14 Results of case three: single indirect cost slope 

Cycle 
Project 

Duration (d) 

Direct 

Cost ($) 

Indirect 

Cost ($) 

Total 

Cost ($) 

Activity 

Crashed 

C1 83 $590,000 $186,000 $776,000 
 

C2 82 $590,400 $184,000 $774,400 L-1d 

C3 80 $591,800 $180,000 $771,800 G-2d 

C4 78 $593,200 $176,000 $769,200 G-2d 

C5 77 $594,200 $174,000 $768,200 F-1d 

C6 76 $595,250 $172,000 $767,250 P-1d 

C7 75 $597,250 $170,000 $767,250 K-1d 

C8 74 $600,050 $168,000 $768,050 H-1d 

C9 73 $603,050 $166,000 $769,050 E-1d 

C10 72 $606,200 $164,000 $770,200 O-1d, Q-1d 

C11 71 $610,550 $162,000 $772,550 O-1d, T-1d 

C12 70 $615,720 $160,000 $775,720 O-1d, S-1d, T-1d 

 

Table 4.15 Results of case three: three indirect cost slopes 

Cycle 
Project 

Duration (d) 

Direct 

Cost ($) 

Indirect 

Cost ($) 

Total 

Cost ($) 

Activity 

Crashed 

C1 83 $590,000 $185,890 $775,890 
 

C2 82 $590,400 $184,000 $774,400 L-1d 

C3 80 $591,800 $180,220 $772,020 G-2d 

C4 78 $593,200 $176,440 $769,640 G-2d 

C5 77 $594,200 $174,550 $768,750 F-1d 

C6 76 $595,250 $173,050 $768,300 P-1d 

C7 75 $597,250 $171,550 $768,800 K-1d 

C8 74 $600,050 $170,050 $770,100 H-1d 

C9 73 $603,050 $168,550 $771,600 E-1d 

C10 72 $606,200 $167,050 $773,250 O-1d, Q-1d 

C11 71 $610,550 $165,550 $776,100 O-1d, T-1d 

C12 70 $615,720 $163,500 $779,220 O-1d, S-1d, T-1d 

 

Note that as the conditions for increasing objective function (linear or convex 

activity time-cost relationships) are met, the comparison of value of objective 

function and indirect cost slope was performed for both scenarios. However, as we 
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are interested in not just the minimum total cost, but the minimum total duration 

as well, the analysis was continued. 

 

Figure 4.5 Cost trend of case three for first scenario (single slope) 
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Figure 4.6 Cost trend of case three for second scenario (three slopes) 
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as El. The formulation based on Ahuja et al. (1994) for the first scenario (single 

indirect cost slope) is as follows: 

Maximize 3000 × 𝑡𝐸 + 1000 × 𝑡𝐹 + 700 × 𝑡𝐺 + 2800 × 𝑡𝐻 + 5700 × 𝑡𝐼

+ 2300 × 𝑡𝐽 + 2000 × 𝑡𝐾 + 400 × 𝑡𝐿 + 1700 × 𝑡𝑀

+ 5000 × 𝑡𝑁1 + 5100 × 𝑡𝑁2 + 5200 × 𝑡𝑁3 + 850

× 𝑡𝑂 + 1050 × 𝑡𝑃 + 2300 × 𝑡𝑄 + 3700 × 𝑡𝑅1

+ 5000 × 𝑡𝑅2 + 820 × 𝑡𝑆 + 3500 × 𝑡𝑇 − 2000

× 𝐸16 

 

Subject to 𝑡𝐴 = 4  

 𝑡𝐵 = 3  

 𝑡𝐶 = 6  

 𝑡𝐷 = 2  

 𝑡𝐸 ≤ 5  

 𝑡𝐸 ≥ 3  

 𝑡𝐹 ≤ 2  

 𝑡𝐹 ≥ 1  

 𝑡𝐺 ≤ 12  

 𝑡𝐺 ≥ 8  

 𝑡𝐻 ≤ 5  

 𝑡𝐻 ≥ 4  

 𝑡𝐼 ≤ 15  

 𝑡𝐼 ≥ 12  

 𝑡𝐽 ≤ 33  

 𝑡𝐽 ≥ 29  

 𝑡𝐾 ≤ 5  

 𝑡𝐾 ≥ 1  
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 𝑡𝐿 ≤ 14  

 𝑡𝐿 ≥ 13  

 𝑡𝑀 ≤ 4  

 𝑡𝑀 ≥ 3  

 𝑡𝑁1 ≤ 12 − 11  

 𝑡𝑁2 ≤ 11 − 10  

 𝑡𝑁3 ≤ 10  

 𝑡𝑁3 ≥ 9  

 𝑡𝑂 ≤ 18  

 𝑡𝑂 ≥ 16  

 𝑡𝑃 ≤ 6  

 𝑡𝑃 ≥ 5  

 𝑡𝑄 ≤ 12  

 𝑡𝑄 ≥ 11  

 𝑡𝑅1 ≤ 10 − 9  

 𝑡𝑅2 ≤ 9  

 𝑡𝑅2 ≥ 8  

 𝑡𝑆 ≤ 6  

 𝑡𝑆 ≥ 5  

 𝑡𝑇 ≤ 18  

 𝑡𝑇 ≥ 16  

 𝐸1 + 𝑡𝐴 − 𝐸2 ≤ 0  

 𝐸2 + 𝑡𝐵 − 𝐸16 ≤ 0  

 𝐸2 + 𝑡𝐶 − 𝐸16 ≤ 0  

 𝐸2 + 𝑡𝐷 − 𝐸16 ≤ 0  

 𝐸2 + 𝑡𝐸 − 𝐸3 ≤ 0  
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 𝐸3 + 𝑡𝐹 − 𝐸4 ≤ 0  

 𝐸4 + 𝑡𝐺 − 𝐸5 ≤ 0  

 𝐸5 + 𝑡𝐻 − 𝐸6 ≤ 0  

 𝐸6 + 𝑡𝐼 − 𝐸7 ≤ 0  

 𝐸7 + 𝑡𝐽 − 𝐸16 ≤ 0  

 𝐸6 + 𝑡𝐾 − 𝐸8 ≤ 0  

 𝐸8 + 𝑡𝐿 − 𝐸9 ≤ 0  

 𝐸9 + 𝑡𝑀 − 𝐸10 ≤ 0  

 𝐸10 + 𝑡𝑁1 + 𝑡𝑁2 + 𝑡𝑁3 − 𝐸12 ≤ 0  

 𝐸12 + 𝑡𝑂 − 𝐸16 ≤ 0  

 𝐸9 + 𝑡𝑃 − 𝐸11 ≤ 0  

 𝐸11 + 𝑡𝑄 − 𝐸13 ≤ 0  

 𝐸14 + 𝑡𝑅1 + 𝑡𝑅2 − 𝐸15 ≤ 0  

 𝐸15 + 𝑡𝑆 − 𝐸16 ≤ 0  

 𝐸13 + 𝑡𝑇 − 𝐸16 ≤ 0  
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Constraints of the formulation include: 

 Activity duration upper and lower bounds, 

 Precedence relationships (for the constraints that include event times). 

A total of 59 constraints is required. This method can handle the three indirect cost 

slopes by adding a few constraints and is an established pure mathematical 

programming method to arrive at the optimum solution. As can be seen, the 

formulation effort required by the proposed method (3 constraints) is considerably 

less than the method of Ahuja et al. (1994). Quantitative comparison through 

controlled experiments is out of the scope of this thesis and will be left for 

immediate future follow-up work. In addition to formulation, solving a complex 

large-scale TCT problem with pure mathematical programming methods can be 

costly in terms of training, software, and hardware. Not to mention, the 

optimization engine might not converge to optimum at all due to inherent 

limitations of solution algorithms (Yang, 2008). Furthermore, TCT needs to be 

applied on dynamic construction projects, where resources, time, and expertise 

available for TCT analysis is limited; thus, frequent changes requires a light-weight 

solution for TCT like the one being proposed in order to easily update the analysis 

results and keep current of the changing situations in reality. 
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Chapter 5. Conclusion 

TCT is an important tool that can provide a major advantage in the competitive 

construction market. It obtains the most economical project duration and shortest 

project duration by reducing the duration of a selection of activities. However, in 

practice, its use is limited as current methods are complex and require tremendous 

effort. To address this problem, this study has proposed a new, more practical 

approach for TCT. The proposed iterative algorithm utilizes a path-based approach 

to analyze the project network; while IP is employed to handle the complexity of 

real-life cases. The method can be automated and is computationally efficient, easy 

to formulate, and ready to scale up to projects of practical size and complexity. The 

problem is broken down into smaller sub-problems for optimization in each 

iteration, focusing only on the critical paths instead of the entire project. 

Furthermore, the decision of duration of crashing is not part of the IP and the 

number of required constraints is comparatively less than other methods (refer to 

Sections 3.5, 4.2, and 4.3). Therefore, although no systematic way of comparison has 

been provided yet, it can be deduced that the execution time and modelling effort of 

the proposed method is less than most existing methods. The method is intended to 

be simple and can handle large-scale networks (e.g. 1000 activities). It also provides 

a range of feasible alternatives that reveals the cost trends, resulting in optimal or 

near optimal solutions. To summarize, the proposed method adds to the body of 

knowledge by extending PFCPM into an optimization scheme for TCT, while 

providing a more streamlined, less complex, and more practical approach to tackle 

the classic TCT problem in critical path scheduling.  

Despite the advantages of the proposed methodology, certain limitations of this 

research should be noted and explained: 
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 Calendar days are not considered in the algorithm. For example, concrete 

curing can be carried out during weekends. The general solution is to add the 

calendar constraints onto the final schedule after TCT analysis, prior to 

implementation (similar to Microsoft Project and Primavera P6). In general, 

calendar days are deemed irrelevant in scheduling optimization. 

 Uncertainties in costs and durations are not modelled. Activity cost and 

duration is assumed to be deterministic. 

 The method assumes that the inputs, such as work breakdown structure, 

AON network, and activity time-cost relationships are sufficiently defined 

prior to TCT analysis. Any inaccuracy of inputs can undermine the reliability 

of TCT results.  

For future work, the current research can be extended to several fields: 

 The algorithm can adapt a stochastic approach to quantify the risk 

associated with TCT results. This approach requires sufficient time and cost 

data. In addition, existing data may not be detailed enough to be useful in 

TCT. However, artificial intelligence techniques may be used to extract 

usable information. As the proposed method is relatively light-weight and 

computationally efficient, it can be extended into a simulation scheme to 

enable the use of random sampling, Monte Carlo simulation and statistical 

analyses for addressing uncertainty or risks in connection with input data. 

To a certain extent, the proposed TCT method can be taken as a more 

sophisticated version of CPM for project time and cost planning; it would 

enable the development of a more sophisticated version of PERT simulation 

for investigating risks on project time and cost tradeoff. 

 Resource use can be added to the proposed algorithm to combine TCT with 

resource allocation and perform time-cost-resource tradeoff simultaneously. 
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 Quantitative comparison with other methods through controlled experiments 

on case studies is part of the immediate future follow-up work. 

 Planning and input preparation for TCT has been mostly untouched in 

literature. Several subjects such as activity time-cost relationship, 

implications of schedule compression on safety and its cost, TCT-related data 

collection and retrieval system, or project-type-specific TCT have great 

potential to improve the current method. 

  



81 

 

References 

Ahuja, H. (1984). Project management techniques in planning and controlling 

construction projects. Wiley, New York. 

 

Ahuja, H. N., Dozzi, S. P., & AbouRizk, S. M. (1994). Project management: 

techniques in planning and controlling construction projects. John Wiley & Sons. 

 

Al Haj, R. A., & El-Sayegh, S. M. (2015). Time–cost optimization model considering 

float-consumption impact. Journal of Construction Engineering and Management, 

141(5), 04015001. 

 

Ammar, M. A. (2010). Optimization of project time-cost trade-off problem with 

discounted cash flows. Journal of Construction Engineering and Management, 

137(1), 65-71. 

 

Ammar, M. A. (2018). Efficient modeling of time-cost trade-off problem by 

eliminating redundant paths. International Journal of Construction Management, 

1-10. 

 

Baker, B. M. (1997). Cost/time trade-off analysis for the critical path method: A 

derivation of the network flow approach. Journal of the Operational Research 

Society, 48(12), 1241-1244. 

 

Bettemir, Ö. H., & Birgönül, M. T. (2017). Network analysis algorithm for the 

solution of discrete time-cost trade-off problem. KSCE Journal of Civil Engineering, 

21(4), 1047-1058. 

 

Danielson, G. (1968). On finding the simple paths and circuits in a graph. IEEE 

transactions on circuit theory, 15(3), 294-295. 



82 

 

Dantzig, G. B., Ford Jr, L. R., & Fulkerson, D. R. (1956). A primal--dual algorithm 

(No. P-778). Rand Corp Santa Monica CA. 

 

De, P., Dunne, E. J., Ghosh, J. B., & Wells, C. E. (1995). The discrete time-cost 

tradeoff problem revisited. European journal of operational research, 81(2), 225-238. 

 

De, P., Dunne, E. J., Ghosh, J. B., & Wells, C. E. (1997). Complexity of the discrete 

time-cost tradeoff problem for project networks. Operations research, 45(2), 302-

306. 

 

Deckro, R. F., Hebert, J. E., Verdini, W. A., Grimsrud, P. H., & Venkateshwar, S. 

(1995). Nonlinear time/cost tradeoff models in project management. Computers & 

Industrial Engineering, 28(2), 219-229. 

 

Elbeltagi, E., Hegazy, T., & Grierson, D. (2005). Comparison among five 

evolutionary-based optimization algorithms. Advanced engineering informatics, 

19(1), 43-53. 

 

El-Kholy, A. M. (2013). New aspects in time-cost tradeoff analysis. Journal of 

Management in Engineering, 31(4), 04014051. 

 

Falk, J. E., & Horowitz, J. L. (1972). Critical path problems with concave cost-time 

curves. Management Science, 19(4-part-1), 446-455. 

 

Feng, C. W., Liu, L., & Burns, S. A. (2000). Stochastic construction time-cost trade-

off analysis. Journal of Computing in Civil Engineering, 14(2), 117-126. 

 

Fratta, L., & Montanari, U. (1975). A vertex elimination algorithm for enumerating 

all simple paths in a graph. Networks, 5(2), 151-177. 

 



83 

 

Fulkerson, D. R. (1961). A network flow computation for project cost curves. 

Management science, 7(2), 167-178. 

 

Goyal, S. K. (1975). Note—A Note on “A Simple CPM Time-Cost Tradeoff 

Algorithm”. Management Science, 21(6), 718-722. 

 

Goyal, S. K. (1996). A simple time-cost tradeoff algorithm. Production Planning & 

Control, 7(1), 104-106. 

 

Hegazy, T. (2002). "Resource management: Part 2 - Time-Cost Tradeoff." Chapter 8 

in Computer-Based Construction Project Management, T. Hegazy, Prentice Hall, 

Upper Saddle River, New Jersey, 211-236. 

 

Hegazy, T., & Ayed, A. (1999). Simplified spreadsheet solutions: Models for critical 

path method and Time-Cost-Tradeoff analysis. Cost Engineering, 41(7), 26. 

 

Hochbaum, D. S. (2016). A polynomial time repeated cuts algorithm for the time 

cost tradeoff problem: The linear and convex crashing cost deadline problem. 

Computers & Industrial Engineering, 95, 64-71. 

 

Jiang, A., & Zhu, Y. (2010). A multi-stage approach to time-cost trade-off analysis 

using mathematical programming. International Journal of Construction 

Management, 10(3), 13-27. 

 

Kelley Jr, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. 

Operations research, 9(3), 296-320. 

 

Kelley Jr, J. E., & Walker, M. R. (1959, December). Critical-path planning and 

scheduling. In Papers presented at the December 1-3, 1959, eastern joint IRE-

AIEE-ACM computer conference (pp. 160-173). ACM. 



84 

 

Kim, J., Kang, C., & Hwang, I. (2012). A practical approach to project scheduling: 

considering the potential quality loss cost in the time–cost tradeoff problem. 

International Journal of Project Management, 30(2), 264-272. 

 

Kroft, D. (1967). All paths through a maze. Proceedings of the IEEE, 55(1), 88-90. 

 

Liu, J., & Rahbar, F. (2004). Project time-cost trade-off optimization by maximal 

flow theory. Journal of construction engineering and management, 130(4), 607-609. 

 

Liu, L., Burns, S. A., & Feng, C. W. (1995). Construction time-cost trade-off analysis 

using LP/IP hybrid method. Journal of construction engineering and management, 

121(4), 446-454. 

 

Lu, M., & Lam, H. C. (2009). Transform schemes applied on non-finish-to-start 

logical relationships in project network diagrams. Journal of construction 

engineering and management, 135(9), 863-873. 

 

Lu, M., & Li, H. (2003). Resource-activity critical-path method for construction 

planning. Journal of construction engineering and management, 129(4), 412-420. 

 

Lu, M., Liu, J., & Ji, W. (2017). Formalizing a path-float-based approach to 

determine and interpret total float in project scheduling analysis. International 

Journal of Construction Management, 17(4), 251-263. 

 

Moussourakis, J., & Haksever, C. (2004). Flexible model for time/cost tradeoff 

problem. Journal of Construction Engineering and Management, 130(3), 307-314. 

 

Moussourakis, J., & Haksever, C. (2009). Project compression with nonlinear cost 

functions. Journal of Construction Engineering and Management, 136(2), 251-259. 

 



85 

 

Olawale, Y. A., & Sun, M. (2010). Cost and time control of construction projects: 

inhibiting factors and mitigating measures in practice. Construction management 

and economics, 28(5), 509-526. 

 

Pathak, B. K., & Srivastava, S. (2014). Integrated ANN-HMH approach for 

nonlinear time-cost tradeoff problem. International Journal of Computational 

Intelligence Systems, 7(3), 456-471. 

 

Peurifoy, R. L., & Oberlender, G. D. (2002). Estimating construction costs. McGraw-

Hill. 

 

Phillips Jr, S., & Dessouky, M. I. (1977). Solving the project time/cost tradeoff 

problem using the minimal cut concept. Management Science, 24(4), 393-400. 

 

Prager, W. (1963). A structural method of computing project cost polygons. 

Management Science, 9(3), 394-404. 

 

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching–learning-based 

optimization: a novel method for constrained mechanical design optimization 

problems. Computer-Aided Design, 43(3), 303-315. 

 

Robinson, D. R. (1975). A dynamic programming solution to cost-time tradeoff for 

CPM. Management Science, 22(2), 158-166. 

 

Rubin, F. (1978). Enumerating all simple paths in a graph. IEEE Transactions on 

Circuits and Systems, 25(8), 641-642. 

 

Siemens, N. (1971). A simple CPM time-cost tradeoff algorithm. Management 

science, 17(6), B-354. 

 



86 

 

Siemens, N., & Gooding, C. (1975). Reducing project duration at minimum cost: A 

time-cost tradeoff algorithm. Omega, 3(5), 569-581. 

 

Su, Z. X., Qi, J. X., & Wei, H. Y. (2015). A float-path theory and its application to the 

time-cost tradeoff problem. Journal of Applied Mathematics, 2015. 

 

Toğan, V., & Eirgash, M. A. (2019). Time-Cost Trade-off Optimization of 

Construction Projects using Teaching Learning Based Optimization. KSCE Journal 

of Civil Engineering, 23(1), 10-20. 

 

Xiong, Y., & Kuang, Y. (2008). Applying an ant colony optimization algorithm-based 

multiobjective approach for time–cost trade-off. Journal of Construction 

Engineering and Management, 134(2), 153-156. 

 

Yang, I. T. (2007). Performing complex project crashing analysis with aid of particle 

swarm optimization algorithm. International Journal of Project Management, 25(6), 

637-646. 

 

Yang, X. (2008). Introduction to mathematical optimization. From Linear 

Programming to Metaheuristics. 

 

Zheng, D. X., & Ng, S. T. (2005). Stochastic time–cost optimization model 

incorporating fuzzy sets theory and nonreplaceable front. Journal of Construction 

Engineering and Management, 131(2), 176-186. 

 

Zheng, D. X., Ng, S. T., & Kumaraswamy, M. M. (2004). Applying a genetic 

algorithm-based multiobjective approach for time-cost optimization. Journal of 

Construction Engineering and management, 130(2), 168-176. 

 



87 

 

Zou, X., Fang, S. C., Huang, Y. S., & Zhang, L. H. (2016). Mixed-integer linear 

programming approach for scheduling repetitive projects with time-cost trade-off 

consideration. Journal of computing in civil engineering, 31(3), 06016003. 

  



88 

 

Appendix A Resource Levelling 

Lu and Li (2003) presented a method called resource-activity critical path method 

(RACPM), which implemented resource limitations onto AON by adding resource 

links. To elaborate, consider the AON presented in Figure A.1. Activity durations 

and resource requirements based on original CPM results are presented in Table 

A.1. Assuming only five laborers are available, labor requirement on day 3 exceeds 

the limit.  

ST

A(2)

C(3)

D(5)

B(1)

FN

 

Figure A.1 Original AON for RACPM 

Table A.1 Resource requirement for RACPM 

Activity Duration 
Labor 

Requirement 
Day 1 Day 2 Day 3 Day 4 Day 5 

A 2 1 1 1 
   

B 1 2 
  

2 
  

C 3 3 3 3 3 
  

D 5 1 1 1 1 1 1 

Labor Requirement 5 5 6 1 1 

 

Consider the new resource plan presented in Table A.2 which adheres to the limit of 

five laborers. According to RACPM, a new resource link of “B follows C” is identified 

as some laborers involved with activity C will later work on activity B. If we add 

this link to the original AON and remove the redundancies, the updated AON will 
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be built (Figure A.2). Results of CPM performed on updated AON are presented in 

Table A.3, which complies with the resource limit.  

Table A.2 Levelled resource plan 

Labor ID Day 1 Day 2 Day 3 Day 4 Day 5 

LB1 A A 
   

LB2 C C C B B 

LB3 C C C B B 

LB4 C C C 
  

LB5 D D D D D 

 

ST

A(2)

C(3)

D(5)

B(1)

FN

 

Figure A.2 Updated AON 

Table A.3 Updated resource requirement 

Activity Duration 
Labor 

Requirement 
Day 1 Day 2 Day 3 Day 4 Day 5 

A 2 1 1 1 
   

B 1 2 
   

2 
 

C 3 3 3 3 3 
  

D 5 1 1 1 1 1 1 

Labor Requirement 5 5 4 3 1 
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Appendix B Network Transformation 

Critical path analysis on a network with non-FS precedence relationships and lags 

is referred to as precedence diagram method (PDM). Lu and Lam (2009) presented 

transform schemes to convert PDM into a network with only FS relationships and 

without lags. Figure B.1 illustrates a selection of these schemes. 

A(a)

B(b)

Activity (duration)

PDM AON without lag

Lag: s
A1(s)

A2(a-s)

B(b)

A(a)

B(b)

A1(s) A2(a-s)

B2(0)

Lag: s

Lag: f

Lag: f

B1(b)

A(a)

B(b)

A(a) L(f) B(b)

A(a)

B(b)

A(a)

B2(f)B1(b-f)

 

Figure B.1 Sample transformation schemes 
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Appendix C Algorithm Setup in Excel 

The proposed methodology can be easily set up in Excel. Solver (a free add-in for 

Excel) can solve the IP required in algorithm. In this section, the first iteration of 

the case presented in Section 4.2 (case two) is used for illustration, with IP 

formulation presented below. The only critical path is ACF, with all activities 

having available crash time. 

Minimize 100 × 𝑥𝐴 + 80 × 𝑥𝐶 + 140 × 𝑥𝐹  

Subject to 𝑥𝐴 = 0,1; 𝑥𝐶 = 0,1; 𝑥𝐹 = 0,1  

 𝑥𝐴 + 𝑥𝐶 + 𝑥𝐹 ≥ 1  

 

At first, a range of cells is assigned to the binary decision variables representing 

activities that have available crash time. Subsequently, the path constraint imposed 

by Eq. 3.10 is defined using the decision variables (Figure C.1). Note that the 

constraint of binary variables will be defined later in the Solver itself. 

 

Figure C.1 Definition of path constraints 

Next step is to define the objective function using decision variables (Figure C.2).  
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Figure C.2 Definition of objective function 

Now, we must go to Data tab, analyze, and open solver. In this part, objective 

function, variable cells, and constraints should be specified (Figure C.3). As 

illustrated in Figure C.3, optimization goal should be set to minimize and simplex 

must be selected as the solving method. In order to adjust the solving method for 

binary programming, click on options in solver dialog box (Figure C.3) and set the 

integer optimality percentage to zero (Figure C.4). Process of specifying binary and 

path constraints is illustrated in Figure C.5. Finally, click on solve to obtain the 

results (presented in Figure C.6). In this case, activity C should be crashed with a 

combined cost slope of $80 per day. Solver can also provide a solution report on a 

separate sheet. In each iteration, cost slopes in objective function must be updated if 

necessary. If a new critical path is formed, corresponding path constraint must be 

added. Furthermore, activities on the new critical path that have available crash 

time must be added to objective function (if not included previously). 
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Figure C.3 Solver dialog box 

 

Figure C.4 Integer optimality percentage 

Constraints 

Objective Function 

Variables 

Solving Method 
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(a) Specifying path constraints  

 

(b) Specifying binary constraints 

Figure C.5 Constraint specification 

 

Figure C.6 Optimization results 

 


