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Abstract

Three-dimensional (3D) braided composite materials have been used in the trans-

portation, aviation, and military applications because of their many beneficial at-

tributes. Included in these attributes is their increased through thickness properties

that make them an idea replacement for composites where structural integrity is re-

quired. This increase to the through thickness properties arises from the additional

interlocking yarns in the through thickness direction. However, due the complexities

introduced by the additional yarns and undulations in the through thickness direc-

tion, modelling, predicting the properties, and tailoring the properties becomes quite

difficult.

The goal of this thesis is to present an investigation on three-dimensional braids

produced from a rotary three-dimensional braider. Additionally, to develop a geo-

metric and finite element models using sub-modelling. And to create a model for

predicting the axial and transverse tensile elastic moduli of the 3D braids.

The development of an in-house rotary three-dimensional braiding machine is

presented. The machine is commissioned, and braids are produced to demonstrate

the geometric similarities between the geometric models produced with the same

braiding parameters.

Two geometric models are developed, a mathematical model as well as a computer

aided design model. These models provide a visual representation of the braided

structure and allow further development of a FEA analysis to determine the braid

properties. A finite element model is developed, as well as a global-local model. The

models are used to predict the axial and transverse modulus for the braid, and the
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axial and transverse stiffness for the sub-unit cells, respectively. Finally, a method

of combining the individual sub-unit cell stiffnesses is developed to predict the axial

and transverse moduli. This method provides a rapid way of calculating the moduli

of the braided structure, as well as a method for predicting the properties of braids

with a larger cross-sectional area.

To analyse the data collected during this study, a design of experiments (DoE)

is used. Further, the DoE allowed for the determination of the significance of the

factors on the axial and transverse moduli. It is found that the cross-section braided

structure has a significant effect on the each of these moduli. Further, these properties

are attributed to the number of each of the sub-unit cells present in the braided

structure. It is then shown that the as the braided structure increases in size, the

moduli approached the stiffness value of the middle sub-unit cell due the larger rate

at which the number of middle sub-unit cells grow compared to the others.

Finally, the study compares the results of the new method for determining 3D

braided properties to the well established FGM model. It is shown that the new

method’s values for predicting the elastic properties are more accurate when compared

to the FGM model.
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Preface

This thesis is an original work by Daniel Ryan Aldrich. No part of this thesis has

been previously published.
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“We knew the world would not be the same. A few people laughed, a
few people cried, most people were silent. I remembered the line from
the Hindu scripture, the Bhagavad-Gita; Vishnu is trying to persuade
the Prince that he should do his duty and, to impress him, takes on his
multi-armed form and says, “Now I am become Death, the destroyer

of worlds.” I suppose we all thought that, one way or another.”

-Robert Oppenheimer, “The Decision to Drop the Bomb”
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Chapter 1

Introduction

Due to their high specific stiffness and strength, the use of composite materials is

quickly increasing throughout the world [1]. The annual market share, for carbon

fibre composites alone, occupies an annual share of over 13.23 billion in U.S. dollars

worldwide [2]. This annual share is a result of composite materials being increasingly

used in a number of different fields including transportation, aircraft and aerospace,

structural applications, and military [3]. In the aerospace industry, Boeing is increas-

ing the use of composite materials in their aircrafts, for example, the 787 Dreamliner

is composed of 50% advanced composite materials [4].

Composite materials offer numerous advantages over traditional materials. The

main advantages are lower weight, high corrosion resistance, high fatigue strength,

increased stiffness, and increased strength, as well as tailorable properties [5]. Be-

cause of their tailorability, composite materials can be designed for a specific ap-

plication. This tailorability is achieved by adjusting the design and manufacturing

parameters, such as, fibre angle, fibre volume fraction, materials, etc. On the other

hand, composites face a number of challenges including high cost due materials used,

UV sensitivities, high environmental impacts, brittle failure, and complex fabrication

processes.

Composite materials can be viewed under two broad categories, short fibre and

long fibre. Short-fibre composites have lower general properties; however, they are
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less costly to produce. Long-fibre composites are used when higher loads are expected

and are therefore more common; some examples of long fibre composites include

laminates, filament winding, braiding, etc.

Among these long-fibre composites, braided composites have better through-thick-

ness properties when compared to some conventional composites, such as laminates,

due to the additional interlocking of the yarns [5]. Braided composites can be further

sub-categorized as two-dimensional (2D) and three-dimensional (3D) braided com-

posites. While the properties of the 2D and 3D braided composites can be tailored

by adjusting the materials, braid angle, inclusion of axial fibres, etc.; two-dimen-

sional braided structures are still limited by the properties in the through-thickness

direction. By including additional interlocking yarns in the through-thickness direc-

tion, a three-dimensional (3D) braided composite is created and further increases the

through-thickness properties. For this thesis, the design and modelling of three-di-

mensional braided composites are considered.

1.1 Motivation

Three-dimensional braided composite structures are composed of yarns of fibres braided

to form a preform with a solid cross-sectional area [6]. The solid cross-sectional area

is created by the inclusion of additional interlocking yarns in the through-thickness

direction, which results in increased through thickness properties for 3D braided com-

posites [6, 7]. Though 3D braided composites have been developed to help prevent

problems of delamination and to increase the through-thickness properties, there still

exist a number of complications that limit the widespread use of these composites.

The additional interlocking of the yarns and the resulting undulations further com-

plicates the geometry of the braid and leads to complications in the development of

geometric and finite element models needed to predict the properties of the structures.

Properties of three-dimensionally braided composites need to be accurately deter-

mined to allow the increase in the use of these composites. Because production of
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3D braided composites is much slower compared to 2D braided composites, trial-and-

error strategies to design these composites will not be sufficient. The need for an

accurate method and model to predict the composite’s properties is required. In lit-

erature, these models often utilize “unit cells” that are composed of yarns that follow

straight paths, or that would require massive iteration to tailor the properties [7–18].

Most current models make oversimplifications to the geometry, such as assuming the

yarns travel straight paths in the unit cell and do not account for the undulations of

the yarns. Additionally, these models are not greatly suited for use in tailoring appli-

cations due to the requirement to rerun the model for each iteration of the tailoring

process.

Consequently, it is necessary to have a reliable machine to produce braided struc-

tures, along with an advanced model and method, to predict the properties. These

lead to the objectives of this thesis. The complications in the modelling 3D braids,

and the need for a reliable and accurate method to predict the properties of the 3D

braids resulted in the motivation behind this study.

1.2 Thesis Objectives

The first objective of this thesis is to develop a computer-controlled machine that is

capable of reliably producing 3D braids. The machine is required to produce a 3D

braid using a rotary style movement, as well as have the ability for further adaptability

in the future. This machine is used to help further develop an understanding of the

braid geometry.

The second objective is the creation of a geometric, computer-aided design (CAD),

and finite element (FE) model. To create the geometric model, the method relies on

the emulation of the braiding machine to determine the position of the yarns. The

geometric model is used to create a computer-aided design model, as well as a finite

element model. The finite element model can then be analysed with global-local FE

analysis to determine the properties of the sub-unit cells.

3



The final objective of this thesis is to form a new method and model for deter-

mining the tensile axial and transverse Young’s modulus of 3D braided composite

structures. This new method describes an efficient way to determine the tensile axial

and transverse Young’s modulus of different sized rectangular (square) 3D braids.

The proposed method relies on the use of a finite element model that is analysed by

its unit and sub-unit cells to create a method for predicting the properties of larger

braided structures.

1.3 Thesis Outline

This thesis is organised into seven chapters, and appendices. A background to com-

posite materials, and the progression from 2D composites materials to the develop-

ment of 3D braided composites is provided in Chapter 2. Current models used for

analysis of composites and 3D braided composites are summarized in Chapter 3. The

design of an in-house 3D braiding machine is examined in Chapter 4, as well as a gen-

eral analysis of the geometric structure. The geometry is analysed with open source

image analysis software. The mathematics and programming behind the geometric

and CAD models used to develop the final FE model are investigated in Chapter 5.

The models presented in Chapter 5 are based on the modelling technique, machine

emulation. Further, the efficient automation of the creation of the models is explored.

The method used to determine the Young’s modulus in the axial and transverse direc-

tions is outlined in Chapter 6. The application of global-local FEA on sub-unit cells

is shown to provide the stiffness of the sub-unit cells, and the application of a spring

model is used to determine the tensile properties of the full model as well as the larger

models. The results are compared to the well-known fabric geometry model by Dr.

Frank Ko, and the analysis of the full cross-sectional area model is given. Finally, he

presented and future work is summarized in Chapter 7.
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Chapter 2

Background

2.1 Composite Materials

Composite materials are materials that are composed of two or more constituents with

different distinct physical properties to create an effective material with characteristics

different from each of the individual constituents [5]. The constituents that form

the composite remain separated and distinguishable (on the macro-scale) from each

other, unlike the combining of metals to form an alloy. The formation of composites

usually comprises of two components: the reinforcement, and the matrix [5]. The

reinforcement is embedded within the matrix, and can take the form of fibres, particles

or flakes; while the matrix is usually a continuous, homogeneous, isotropic material

[5].

Traditional structural materials cannot always meet modern demands or require-

ments. Composite materials offer high strength to weight ratios (specific strength)

and high stiffness to weight ratios (specific stiffness), as well as tailorability, and ease

of manufacture [19]. These applications include use in the aeronautics/aerospace,

transportation, structural, and military applications [4, 19]. Additionally, while com-

posite materials are able to provide high specific stiffness and specific strength, they

are also able to provide the benefits of improved fatigue and impact resistance, ther-

mal conductivity, and corrosion resistance [5, 19]. These properties facilitate the

use of composite structures in aeroplanes, satellites, consumer products, as well as
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military gear.

Composites are often distinguished by the material of the matrix (metal, ceramic,

or polymer matrix composites) and the type of reinforcement (fibre, particle, or flake

reinforced composites) present. In the case of fibre-reinforced composites, they can

be first classified as either discontinuous or continuous. Discontinuous (short) fibre

composites are a more versatile material in terms of manufacturability. Because these

fibres are short, they allow composites to be formed though spray lay-up, extrusion,

and even injection moulding. Whereas, continuous (long) fibre composites are more

limited in the means of production. However, continuous fibre composites are advan-

tageous due to the general increase in the composite’s mechanical properties. Because

of the higher properties and practical applications of long fibre composites, this thesis

will focus on these. Additionally, of the long fibre composites, they can be further

classified as being a textile-base composite if the fibres are woven, knitted, or braided.

The use of textile-based composites allows for a higher production rate due to the

relative ease of producing textiles.

2.2 Textile-Based Composite Materials

Textile-based composite materials (TCM) are composites that consists of a textile

reinforcement embedded in a polymer matrix material. Textile based composites

utilise fibres that are interlocked, usually through braiding, knitting, or weaving;

however, some forms of TCM are non-woven, where the fibres do not interlock but

are supported by the matrix or fused to each other, such as in the case of unidirectional

composite tapes and fibre mats. The different types of TCM are summarized in Figure

2.1.

Due to the interlocking fibres in some TCM, a significant increase in the structural

integrity of the composite structures can be observed in the off axis direction with

regards to strength and stiffness.[19]. The increase in structural integrity makes

these materials ideal replacements for structural materials where the specific strength

8



Figure 2.1: Examples of the different types of textile based composites, sorted by
their main categories. Adapted from reference [20]
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of the material is important. To further increase the structural properties or to

tailor the material properties for specific applications, the development of various two-

dimensional (2D) composite materials have been introduced. Of the many different

types of 2D composites, 2D braided composites (tubular braided composites) and

woven composites (lamina based composites) are the most common.

Braided and woven composite structures both consist of interlocking yarns, how-

ever, they have been differentiated by some researchers based on the direction that

the yarns travel [21]. Florentine et al. has referred to structures that consist of thick

walled structures that produce a net shape as a woven material [21]. However, Dr.

Frank Ko has mentioned that the difference between weaving and braiding to be the

direction that the fibres travel [21]. In a braided structure, the yarns travel/undu-

late along a single axis known as the braiding axis, where as woven composites the

yarns travel along a set of orthogonal directions [21]. For this study, a focus on braid

composites, under the definition that Dr. Frank Ko introduced, is made.

These braided structures still have drawbacks, where the properties in the through-

thickness direction are limited. The reduced properties in the through-thickness di-

rection are usually due to the limited material in this direction. To mediate this

problem, the inclusion of additional interlocking yarns in the through-thickness di-

rection has been shown to increase these properties [8]. These new structures, known

as 3D braided composites, are explored in this thesis.

2.3 Three-Dimensional Braided Composites

The production of three-dimensional (3D) braided composites is achieved with two

main types of 3D braiders, in the literature. The first design (Track and Column)

was originally developed by Florentine, with the second design (Rotary) originally

developed by Smith (Square Braiding),later adapted by Tsuzuki to increase the num-

ber of yarns [22, 23]. These were followed by an adaptation by Ko to accommodate

a hexagonal close packed arrangement (Hexagonal), and finally a further adaptation
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by Ko to increase the number of yarns further with the inclusion of a switching mech-

anism (Advanced Hexagonal) [24]. Further detail on the design of these braiders is

explored in Chapter 3.

Many researchers have investigated the tensile strength and modulus of these three-

dimensional braids. It was found that, though there is a lowering of the tensile

properties in the axial direction, there is a significant increase in the properties in

the through-thickness direction [7, 8, 25, 26]. This increase in the properties in

the through-thickness direction led to the development of these structures for use in

aircrafts [6, 27]. The increase in the properties allowed for higher structural integrity

and made it possible to develop structures already with the required shape [6].

Due to these advancement in the aircraft industry, there was a need to be able to

predict the properties of the final braided structure before the timely manufacturing

process took place. This led researchers to start analysing the structures in a similar

way to 2D braid composite structures.

By braking the structure down in to unit cells, a representation of the full structure

was created. These unit cell structures allowed for the analysis of a much smaller

representative volume, rather than needing to analyse the full structure [10].

Further effort was taken to try to analyse the smaller repeating structures found

within the unit cell. These structures, known as sub-unit cells, have been analysed

with multiphase finite element analysis to better predict the properties of these struc-

tures. [11].

Methods for 3D braiding have been altered by some researchers in the attempt to

increase the number of active yarns and thereby increase the fibre volume fraction for

these structures [24].

The “five-directional” braided composites, presented by Zhang et al., include ad-

ditional axial fibres that are shown to increase the tensile and bending stiffnesses

[15]. The axial fibres act similar to the those found in 2D tri-axial braided composite

structures.
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In an effort to better predict the mechanical properties of 3D braided composites

researchers, such as Gao et al., have further developed existing models into computer

programs [28]. These computer programs are capable of assisting in the determining

the braid parameters required to tailor the properties of 3D braided composites [28].

2.4 Conclusions

In this chapter, a brief background on composite materials, textile-based composite

materials, and the development of three-dimensional braided composites is presented.

Composite materials are shown to have desirable properties over traditional materi-

als, including their high specific strength and specific stiffness, and their ability to

be tailored to the application. Though these composite materials have numerous

benefits, they do still pose some complications. Where these complications exist, the

development of textile-based composites aims to correct. However, it is noted that

even the textile-based composites still have drawbacks mainly the through-thickness

properties. This leads to the introduction of 3D braided composite materials. In the

next chapter, various machines and models that have been developed for 3D braided

composites are outlined.
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Chapter 3

Literature Review

3.1 Introduction

In this chapter, a discussion on the development of three-dimensional braiding, and

the design of three-dimensional braiding machines is provided. Additionally, the de-

velopment of current well-established models for predicting the properties of these

three-dimensional braids is established. The progression from unit cell representa-

tional volume elements (RVE) to sub-unit cell RVE is provided. Finally, the need for

a new model for predicting the properties of three- dimensional braided structures is

presented.

3.2 3D Braider Designs

There are two main types of three-dimensional (3D) braiders that have been developed

and researched: Track and Column, and Rotary. Track and column braiders utilize a

grid of carriers that are moved around on a baseplate usually assisted by actuators.

These actuators move the entire column or row of carriers. Rotary braiders utilize a

series of horn-gears or cams to move the carriers around a baseplate. The cams can

be linked together and driven by a motor or each individual cam can be driven by an

independent motor for more advanced braided structures. Track and Column, and

Rotary designs both have advantages and drawbacks.
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3.2.1 Track and Column

There are two main set-ups for track and column braiders, rectangular and circu-

lar [29]. For the rectangular set-up, the carriers are arranged in orthogonal rows

and columns [21, 30–32]; whereas the carriers are arranged in concentric rings and

azimuthal lines for a circular set-up [10, 29, 33, 34]. Within track and column 3D

braiding, there exists many different desired patterns that machines are created to

perform. For track and column braiders, the more common patterns are the two-step

[35] and four-step [36] processes. Florentine has created and patented a four-step

track and column 3D braiding machine as well as a process for producing 3D braids

using both rectangular and annular track and column designs [21, 30].

Figure 3.1: Example track and column 3D Braider.

3.2.2 Rotary

There are many different types of rotary braiders that have been developed. The

first type of rotary design, known as the square braiding machine, was developed

by Michael Smith [22]. The square braiding machine is similar to later machines

16



produced by Tsuzuki et al., however, it uses a maypole style movement that is truly

continuous [22]. The second type of rotary design is the four position rotary 3D

braider. Tsuzuki et al. adapted the square braiding machine to fill all of the locations

on the cams and created a Cartesian grid of yarns [23]. This greatly increased the

number of yarns used to produce a braid, but required a discontinuous (stepwise)

movement [23]. To further increase the number of yarns in a braided structure, Dr.

Frank Ko development the hexagonal rotary 3D braider based on the hexagonal close

packing [28, 37]. Additional research has allowed a further increase in the number of

yarns in a 3D braided structure [24]. Schreiber et al. included switching mechanisms

between the adjacent cams of the hexagonal braider allowing for more complex braided

structures, as well as the higher fibre volume fractions [24].

Figure 3.2: Example Rotary 3D braider.

3.3 3D Braided Unit Cell Geometry

3.3.1 Unit Cells

Unit cells, example shown in ??, are the smallest structure within the full composite

structure that can be repeated to recreate the full structure. Unit cells are beneficial

because they allow the simplification of the full structure of the composite, while

retaining the properties from the full structure. Because of this great simplification,

many researchers have developed models and have investigated the properties of these

unit cells [38–40]. The use of unit cells have proven invaluable as they are able to
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simplify complex models into a single repeating element. Many models developed for

3D braids, often over simplify the geometry of the unit cell by assuming that yarns

travel in straight lines, and that there is limited interaction between the constituents.

Because of these assumptions and oversimplifications, it leads to the development of

models that are inaccurate [7, 8, 10, 11, 41].

Figure 3.3: Example of a basic unit cell

3.3.2 Sub-Unit Cells

Sub-unit cells are an extension of unit cells, however, instead of a single structure

being used to represent the full composite, the sub-unit cells can be patterned and

rotated to represent the unit cell. Sub-unit cells for 3D braids were first noted by Dr.

Ko, and analysed by many researchers [11, 15, 17]. The sub-unit cells have not been

extensively studied due to their inherent complexity, however it has been noted that

sub-unit cell posses differing properties from each other. This thesis aims to provide

a method and model to analyse the sub-unit cells and predict the properties of the

full-unit cell. Further, an investigation into the ability to extrapolate the properties

to predict the properties of larger braided structures is discussed.
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3.3.3 Geometric Models

Geometric models are used to help visualize and increase understanding of the shape

of composite materials. Geometric models use mathematical and computational ge-

ometry to describe the geometric shape, including the creation of models through

computer aided design (CAD). Many geometric models have been developed to help

understand the geometry and properties of 2D composite structures [41–45]. The

geometric models for 2D composite structures, often focus on the construction of the

representative unit cell geometries for the structure rather than the structure as a

whole. And due to the complex nature of the interactions found within these struc-

tures often simplifications are made. More notably, models often reduce the paths of

yarns in the unit cell to straight lines and disregard the interactions of yarns allowing

them to co-occupy the same space. However, more recently 2D models for braided

composites have started to account for these limitations [42, 45].

Current geometric models for 3D braided composites are often developed from

models that were developed for 2D braided composites [38]. Many researchers have

developed these geometric models further for use with FE modelling and these are

discussed further in Section 3.4.4. Sheng et al. were able to create a geometric model

based on the projection of the yarn paths and the crimp function used to describe

the yarns [46]. The model was able to show good agreement among results shown in

other literature [46].

Machine Emulation

Machine emulation is a process for determining the structure of composite materi-

als. By emulating the machine used to create the structure, the path of the yarns

can be predicted and used to create a geometric model [13]. Though this process

has been used in three-dimensional braided composites, no research has shown its

implementation in two-dimensional composites.

For machine emulation, often code is created to track the locations of the individual
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yarns, as well as emulate the braiding process. The relative locations of yarns during

the braiding processes are usually stored within a matrix [47]. These relative locations

can be converted into the absolute locations for generating the geometric model. This

creates a discrete path for the individual yarns of the braided composite [13, 47].

Further, it has been shown that the geometric models obtained through machine

emulation can be exported into FEA software to determine the elastic properties of

the composite’s unit cell [14].

3.4 3D Braided Composite Models

Many researchers have extensively studied three-dimensional braided composites. In

this section, a brief chronological review of these studies is provided, followed by a

breakdown of the research based on various modelling methods that are used. There

have been a number of different models, where some are derived from 2D models and,

as such, some of the models presented include references to the 2D models.

Three dimensional braiders have been developed by several different researchers

as a means to provide braided composites with better through thickness properties.

Additionally, they allow for the formation of braided composites with a specified or

varying cross-sectional area.

Ko et al. developed a geometric model based on the rule of mixtures and cosine

averaging to predict the elastic properties of 3D braids based on the hexagonal close

packing rotary 3D braider. This model assumes that the yarns of the braided structure

follow idealized straight paths, and do not interact with adjacent yarns. The results

from this method were compared to experimental results and it was found that the

results were within 20.3% of the experimental results. Ko et al. also noted that

the 3D braided composite materials had a lower longitudinal strength and modulus

when compared to unidirectional composites, however, possessed a higher longitudinal

strength and modulus when compared to woven laminates[7].

Ko et al. continued their research on 3D braided composite materials, showing that
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they can be used to develop 3D braided structures with a specified cross-sectional

area. By further developing the previous model, it was adapted and applied to these

new 3D braided structures. Using the properties of the yarns, the properties of the

preform, as well as the composite are able to be predicted. It was found by Ko et

al. that the model was able to predict the tensile elastic properties within 5 to 25%

error. [8]

The model developed by Ko et al. was further developed by Whyte et al. to create

a method of predicting the properties of a composite based on its unit cell geometry.

This method now known as the fabric geometry model (FGM) is largely based on the

volume averaging methods used for two dimensional composites. The FGM method,

like the previous two methods, assumes that the yarns are ideal and travel straight

paths through the unit cell; additionally, the yarns are assumed not to interact with

each other [25].

Yang et al. developed a predictive model to determine the elastic properties of

3D braided composite structures. This model assumes that the yarns that compose

the braid are treated as straight laminae sheets inclined to the braid angle of the

yarns. The determination of the properties from this model is based on CLPT, and

further assumes that the yarns all pass thought the centre of the unit cell without

interacting with each other. It was noted by Yang et al. that the predictions are in

reasonable agreement with experiments performed by other researchers, however, are

unable to provide more than an approximation for the fibre volume fraction due the

model allowing the fibres to co-occupy the same space [9].

Mo et al. provided a strain energy-based method for determining the elastic prop-

erties of the braided composites. Similar to the previous model Mo et al. utilize a

unit cell that consists of idealized straight yarns [26].

Du et al. developed a geometric model that like previous models assumes that

the yarn travel along straight paths within the unit cell. However, this model does

not allow the yarns to pass though each other and occupy the same space. By not
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allowing the yarns to pass though each other, a more accurate fibre volume fraction

can be determined. Furthermore, the maximum allowable fibre volume fraction was

determined as the point when the yarns begin to jam. Du et al. were able to compare

their predicted results with experimental data; this showed that the experimental

data was closer to their theoretical limit, due to the tensions required to form the

braiding structures [10].

Wang et al. provided a method for mapping the geometric structure of one braid

to another allowing the original braid to undergo a shape change [41].

Chen et al. provided a finite element (FE) method that divides the typical unit cell

model into several smaller sub-unit cell. They found that the braided structure can

be divided into three types of sub-unit cells: the interior, surface, and corner cells.

By reducing the unit cell into three smaller repeating sub-unit cells, the number of

elements required in the FE analysis are drastically reduced, as well as the required

amount of memory to run the simulation is reduced. Chen et al. found that the

results fell within 2.2 to 12.2% of the experimental results [11].

Kostar et al. showed how different 3D structures can be created utilizing 3D

braiding, including: composites that have a varying cross-sectional area [32].

Zeng et al. expanded on Chen’s method to determine the structural properties

of 3D braided composites [11], to include a method of determining the properties of

damaged composites [12].

Zhang et al. provided a method using Visual-C++ to automatically create CAD

models, given specified braiding parameters [48].

Tolosana et al. developed a geometric model, for the four-step (track and column)

braiding, that is based on the movements of the machine to predict the final braided

structure. By tracking the locations of the yarns at the machine, during its operation,

the position of the yarns in the braid can be predicted. Tolosana et al. found that

the developed geometric model follows closely to the geometry of the actual braided

specimen [13].
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Schreiber et al. developed and constructed a new type of 3D braider based on

the original design built by Dr. Ko. The new design increases the number of yarns

by including a switching mechanism between each of the adjacent horn gears. This

increase in the number of yarns has shown to increase the fibre volume fraction of 3D

braided structures, and the introduction of a switching mechanism allows for more

complex braided structure to be developed [24].

Tolosana et al. developed a new method for processing the previously created CAD

models [13]. The new method imports the CAD model of the yarns into FE software

where the yarns are compressed together from the sides. After compression brings

all the fibres closer together they are embedded in a matrix before virtual testing is

performed on the samples. Tolosana were able to predict the longitudinal compression

modulus and found that the results are within 4.2% of the experimental results [14].

Zhang et al. like Chen [11] and Zeng [12] divided the braided structure into sub-

unit cells and were able to test them to determine that the sub-unit cells possess

differing properties from one another [15].

Deng et al. were able to use the Matlab®programming language to implement

machine emulation presented by Tolosana et al. [13]. They found that they were able

to create a geometric representation of the braided structure [47].

Gao et al. created a software solution with a GUI to assist in the process of

tailoring the properties of 3D braided structures. The software implements the fabric

geometry model, presented by Dr. Ko [8, 25], to predict the elastic properties of the

braided structure [28].

Yang et al. used the process of machine emulation [13] to automatically create

an APDL file for importing the model into commercially available FEA software for

analysis [16].

Zhang et al. extended on their previous work [15] and were able to further confirm

their findings that the sub-unit cells have differing properties. Furthermore, they

were able to use their FEA results to predict the properties of the resulting braided
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structure and compare them to experimental results where they found that they were

within 3.46 to 11.17%. Finally, Zhang et al. were able to see the effects that braid

angle and fibre volume fraction have on the elastic properties[17].

Paul et al. utilized FEA to determine the effects of braid angle and fibre volume

fraction on the elastic properties of the braided structure. The found that the braiding

angle has a large effect on the longitudinal modulus, however, it only has a small effect

on the transverse modulus [49]

Smith et al. found that 3D braided composites can be used to create a dental

archwire that has tailorable properties. Additionally, they found that the polymer

based archwire exhibits properties in a similar range to those found in current dental

archwires made from shape memory alloys [50].

Because of the discovered properties and benefits of 3D braided composites, the

development of models to predict the properties are necessary to further progress the

use of such composite materials. Many models have been developed to help predict

the properties of these braided structures. Many of these models are advantageous,

however, they also have many disadvantages making them less suitable for predicting

the properties of these structures and for assisting in the tailorability of the braids.

In the following sub-sections, an overview of the different types of models, their

advantages and disadvantages are provided.

3.4.1 Rule of Mixtures & Classical Laminate Plate Theory

The rule of mixtures (RoM) and classical laminate plate theory (CLPT) have been

used extensively in composite materials to help predict the properties of braided and

laminated composites [51, 52]. They have been shown to provide methods to help

predict the mechanical properties of many composite materials.

The RoM for determining the longitudinal elastic modulus and major Poisson’s ra-

tio uses a weighted mean of the mechanical properties for each of the constituents that

make up the composite material. Alternatively, the RoM uses the inverse weighted
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sum of inverses to determine the transverse elastic modulus and the shear modulus.

The basic assumptions for the rule of mixtures are that,

1. Fibers are distributed evenly throughout the matrix,

2. Loads are applied parallel or normal to the fibre direction,

3. Fibres and matrix are perfectly bonded,

4. Matrix is free of voids,

5. Lamina is initially in an unstressed state, and

6. Fibre and matrix act linear elastically.

The method for determining the properties of a composite with the RoM is summa-

rized in Equations (3.1) - (3.4).

E1 =
∑
i

ViE1,i (3.1)

E2 =

(∑
i

Vi

E2,i

)−1

(3.2)

ν12 =
∑
i

Viνi (3.3)

G12 =

(∑
i

Vi

Gi

)−1

(3.4)

Classical laminate plate theory is a method for predicting the relationship between

the mechanical properties of laminated composite materials. Classical laminate plate

theory is an extension of the Kirchkoff-Love theory of plates has been readily used

to determine the mechanical properties of laminated composite materials, as well as

being adapted for use on other composite structures [53]. The basic assumptions of

CLPT are,
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1. Every lamina is homogeneous and orthotropic,

2. A line straight and perpendicular to the middle surface remains straight and

perpendicular to the middle surface during deformation,

3. The laminate is thin and is loaded only plane stress,

4. Displacements are continuous and small throughout the laminate, and

5. No slip occurs between the lamina interfaces.

The CLPT theory is a method for creating the extensional stiffness, A, the bending

stiffness, D, and the extensional-bending coupling, B, matrices that are combined

and allows for the determination of the effective material properties of the composite.

These equations for CLPT have been summarized in Equations (3.5) - (3.7) and

are described in [5]. Many researchers have utilized the CLPT as a base to build

their own model for determining the mechanical properties of various composites.

Though these methods are widely used, more accurate methods for determining the

mechanical properties are continuously being developed from these models, as well as

from various other methods.

[Q] =

⎡⎢⎢⎢⎢⎣
E11

1− ν12ν21

E11ν21

1− ν12ν21
0

E22ν21

1− ν12ν21

E11

1− ν12ν21
0

0 0 G12

⎤⎥⎥⎥⎥⎦ (3.5)

Aij =
N∑
k=1

(
Q̄ij

)
k
(zk − zk−1)

Bij =
1

2

N∑
k=1

(
Q̄ij

)
k

(
z2k − z2k−1

)
Dij =

1

3

N∑
k=1

(
Q̄ij

)
k

(
z3k − z3k−1

)
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There are also models that utilize a modified form of the CLPT; the most notable

model started with Ishikawa and Chou. Ishikawa and Chou developed models based

on the CLPT to help predict the properties of woven and later satin woven compos-

ites. Ishikawa and Chou created three models for predicting the properties of woven

composites: the mosaic model, the fibre undulation model, and the bridge model. Of

these models the more notable are the mosaic model and the fibre undulation model.

The mosaic model reduces a woven composite to an assembly of cross-ply laminates

to which CLPT is applied [54–56]. This reduces the complex undulations of the weave

to a simple stack of laminae. The fibre undulation model is an extension of the mosaic

model that further considers the effects of the undulations and continuity of the fibres

[54, 57]. This model adapted the CLPT to take in account the undulating regions of

a woven composite, by assuming they follow a sinusoidal path [58].

3.4.2 Volume Averaging Methods

Volume averaging methods (VAM) involve a superpositioning of the individual con-

stituents of the composite based on the volume fraction of the constituent. There

are two main methods to superpose the properties together: stiffness averaging and

compliance averaging. Stiffness averaging (see Equation (3.8)) utilizes the stiffness

matrix where as compliance averaging (see Equation (3.9)) utilizes the compliance

matrix.

[Ceff ] =
∑
i

ki [Ci] (3.8)

[Seff ] =
∑
i

ki [Si] (3.9)
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Fabric Geometry Model

The fabric geometry model (FGM) is a model used to predict the elastic properties

of composite materials. The model utilizes analysis of the unit cells of the composite

to develop a combined stiffness matrix for the composite [8, 20, 25, 59]. Though the

model pre-dates the volume averaging methods, the fabric geometry model can be

seen as a simplified form of the volume averaging method; with the fabric geometry

model not taking in account the undulations of the fibres. FGM has been used

with both stiffness averaging and compliance averaging methods for iso-strain and

iso-stress conditioning, respectively. FGM provides a simplified and fast method for

determining the properties of the braided composites and can even be further applied

to other composite structures. However, it has been shown be able to predict the

properties to within 5 to 25%, this may be attributed to the assumption that the

yarns travel in straight lines and the undulation of yarns are not considered [8, 20,

25, 59]. Further, the FGM method fails to account for the interactions between the

yarns and can require a large number of iterations for tailoring properties.

3.4.3 Fiber Inclination Model

The fiber inclination model (FIM) is a combination of CLPT and the VAM. It is

a direct extension the fibre undulation model presented by Ishikawa and Chou [60];

whereby the method was adapted for three-dimensional braided structures. It con-

siders each of the different fibre directions as a unidirectional angle lamina set at

an incline. It utilizes the equations presented for the CLPT but invokes a VAM to

determine the stiffness matrix used to determine the extensional stiffness (A), the

bending-extension coupling matrix (B), and the bending stiffness (D) matrices [9,

60]. The fibre inclination model, like the FGM model, does not consider the undu-

lation or the interaction of the yarns. Additionally., for tailoring of properties an

iterative process is required.
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3.4.4 Finite Element Models

Finite element (FE) models are often implemented to provide accurate representations

of composite performance [61, 62]. These models are often based on geometric models;

by creating a geometric model, the geometry can be accurately recreated. From there,

the model can be simplified to aid in the creation of the finite elements and the solving

of the system.

It is shown by Yang et al. that geometric models can be efficiently created for

export into commercial FE software [16]. For the four-step (track and column) braid-

ing process, Yang et al. were able to create appropriate entities in the ANSYS FE

software, utilizing code written in Matlab® [16]. The FE model was created to

show the structure of the yarn geometry and allowed for the studying of the yarn

properties [16]. However, no analysis was conducted.

Axial Young’s modulus is shown to decrease as the braid angle increased, this is

consistent with Chen et al. [11, 12, 49]. It has also been shown that the properties

of braided composites can be controlled by adjusting the fibre volume fraction [49].

These changes in the composite’s structure, show the importance of tailorability in

three-dimensional braided composites.

Other researchers have investigated the smaller sub-unit cells originally noted by

Dr. Frank Ko. The sub-unit cells are a collection of repeating geometries in the

braided composite, that unlike a regular unit cell do not represent the full braided

structure. Instead, sub-unit cells are combined by patterning, translating, and ro-

tating to form the completed braided structure. Modelling of the sub-unit cells was

performed by Zhang et al. and it was shown that the individual sub-unit cells have

differing properties [15, 17]. Zhang et al. were able to use this modelling to predict

the longitudinal modulus to within 3.5 to 11.2% the experimental results.

Similar to sub-modelling the finite multiphase element method (FMEM), uses a

coarse global mesh to determine the overall effects then uses a finer local mesh to
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determine the effects in the unit cells [11]. However, the finite multiphase element

model reduces the FE model into a regular gridded structure that consists of three

types of finite elements: fibre, matrix, and mixed [11, 12]. Using these FMEM meth-

ods, Chen et al. were able to produce results within 2.2 to 12.2% of experimental

results.

Many of the model presented here are able to predict the properties of 3D braids,

or show properties present in the geometric structure of the braids. However, most

of the widely used models over simplify the braided structure by assuming the yarns

travel straight paths and the yarns do not interact with each other. These over

simplifications lead to inaccuracies in the prediction of the elastic properties. Further,

for the advancement of 3D braided composite structures, there must exist an efficient

method for tailoring the properties of the braided structure.

3.5 Conclusions

In this chapter, an overview of the current models and methods used in predicting

the properties of 3D braided composite structures is provided. Three-dimensional

braided composites have been model using geometric, analytical, as well as finite

element models. The use of unit cells is introduced as the base for most models and

the topic of sub-unit cells is addressed. The progression of 3D braided models is

developed, and the current drawbacks are noted. Finally, the need for a new model

to accurately predict the properties of 3D braids is made.
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Chapter 4

Design of a Rotary
Three-Dimensional Braiding
Machine and Analysis of the
Braided Structure

4.1 Introduction

In this chapter, the design, development and results of creating an in-house three-

dimensional rotary braiding machine is discussed. Summaries for the various com-

ponents that assemble to form the 3D braider, as well as the description of how the

parts function is outlined. Finally, the production of 3D braided samples is described,

and the analysis of the braided structures is provided.

4.2 Machine Development

For this work, an in-house three-dimensional rotary braider is designed and developed.

This allows for further study of the geometric properties of the 3D braided structure

of braids produced from a 3D rotary braider. Additionally, the development of an

in-house machine allows for future work to be developed from the material presented.

For the research presented in this work, a set-up of three by three cams is used. This

provides the means to analyse the properties of the smallest square braided structure

that also possesses the three sub- unit cells discussed in Chapter 6. However, the
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machine is designed to accept up to 7 by 7 cams, meaning that the machine can easily

be adapted to produce larger and more complex braided structures. A summary of

the maximum specifications of the machine are shown in Table 4.1, while the full

braider drawings are presented in Appendix A.2.

Table 4.1: Summary of the maximum machine specifications.

Property Value Units

Number (Cams) 7 by 7 -
Number (Yarns) 112 Total

Uptake 180 [mm]

The braiding machine is comprised of a number of different components that work

together to form the 3D braided structures. The major components include: the

cams and carriers, which move the yarns to their new positions above the base plate;

the uptake mechanism with the zeroing mechanism, which keeps the braid forming

consistently with the ability to quick reset itself; the geared motors and drivers that

provide the electro-mechanical power to the system; and the control system, which

acts as a brain for the machine. All of the machine components can be seen in

Figure 4.1. In the following sections, an overview of the different assemblies that

create the braider, as well as details on the individual parts that make the assemblies

are provided.

4.2.1 Base Plate

The base plate serves as the level surface where the carriers run along, as well as the

attachment point for the geared motors and cam system. The base plate is CNC cut

from a two-foot square, 1/2” thick aluminium sheet. While the base plate is supported

on two opposite ends, by the frame of the machine, the choice of 1/2” thick aluminium

sheet means that the base plate is stiff enough such that deflection, due to bending, is

negligible and does not affect the operation of the machine or formation of braids. A

CNC is used to accurately create holes for the motor shaft and the holes for attaching
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the motor assemblies to the base plate. The motor assembly holes are created as a

counterbore to ensure the head of the socket head screws lay beneath the surface that

the carriers slide on. This ensures that the flange on the carriers can never run into

the head of the screws.

(a)

(b)

Figure 4.1: Layout of the custom built three-dimensional braiding machine including:
a) the cams, b) the carrier, c) the base plate, d) the uptake mechanism, e) the motors
and drivers, and f) the control system.
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4.2.2 Cams and Carrier

The cams and carriers are what drive the braiding process; the carriers are what carry

the yarns while the cams push the carriers around the base plate. The cams, and

carriers for this rotary 3D braider are based off designs presented by Ko, Pastore,

and other researchers [7, 8, 63]. The cams are allowed to rotate in a clockwise or

counter-clockwise motion that moves the carriers and their yarns around the cams

forming the braid.

Before the full-scale production of the braider is started, a scaled down version

is rapid prototyped using additive manufacturing as a proof of concept. Once the

proof of concept, shown in Figure 4.2, is shown to successfully move the carriers with

the cams, the design is adapted for subtractive manufacturing techniques. Using

subtractive manufacturing, the time required to produce the parts is significantly

reduced, however, more forethought is required to ensure the parts could be properly

assembled. In the following sections, the design considerations for both the cams and

carriers will be discussed.

Figure 4.2: Prototype of the cam and carrier mechanisms.

Cams

The cams or horn gears are used to move the carriers around the base plate. The

cams, which are driven by a geared stepper motor, are able to turn in 90◦ intervals
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that corresponds to the position of the adjacent cams. The cams are waterjet cut

from a 1/4” aluminium sheet, with the hole to attach the shaft from the motor

assembly reamed to create a press fit. To significantly decrease the chance of the

system jamming, the corners of the cams are chamfered and smoothed. The result of

the chamfering can be seen in Figure 4.3. This will allow the carriers that interact

with the cams to automatically realign themselves as they are moved around.

(a) (b)

Figure 4.3: Cams before (a) and after (b) chamfering.

Because the chamfering and waterjetting processes produce a very rough surface

finish (see Figure 4.4a), further machining is required to finish the surfaces. The

surfaces are finished to 150 microns, and the direction of the surface finishing is set

to the same as the movement of the mechanism. The results of the surface finishing

process are shown in Figure 4.4.

Carriers

The carriers are the mechanism that holds and carry the yarns that make the braid.

The carriers are moved around the base plate by means of the cams and are able

to control the tension in the yarns during the braiding process. In this section, the

carriers are broken down into two sub-assemblies (the base of the carriers, and the

bobbin and tensioning mechanism) and the functions of each of the sub-assemblies
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(a)

(b)

Figure 4.4: Cams before (a) and after (b) surface finishing.

are highlighted.

The base of the carriers, shown in Figure 4.5, function to provide a low friction

interface with the base plate to ensure that the carriers provide little resistance as

they are pushed around the base plate. Additionally, the base of the carriers provides

a flange that interfaces with the cams; this flange is designed to prevent the carriers

from lifting up during the braiding process when the tensions become high in the

yarns. The base of the carriers is created from three parts, two similar pieces and a

rod to align all of the components.

Figure 4.5: Base of Carrier.

The two similar pieces are waterjet cut from ultra high molecular weight polyethy-

lene (UHMWPE). This material is chosen to provide the low friction interface between

the cams and the carriers, and the base plate and the carriers. The low friction oc-

curs due to the combination of UHMWPE’s extremely low surface energy with most
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materials, and great wear performance, and self-lubricating behaviour [64, 65]. The

high wear resistance, low coefficients of frication, and self-lubricating behaviour for

UHMWPE makes it suitable for the continuous sliding that occurs while the carriers

are moved around by the cams. To assemble the parts of the base together, a small

rod is used for alignment while the surfaces are adhered together by a cyanoacrylate

based adhesive. The alignment rod is left protruding from the top of the assembly to

allow for the alignment of the bobbin and tensioning mechanism discussed next.

The second part of the carrier assembly is the bobbin and tensioning mechanism,

shown in Figure 4.6. This assembly provides support for the bobbin, which houses the

yarn, and provides the tension for the yarns, which assists in providing a consistent

braided structure. The bobbin used to house the yarn is a standard sewing bobbin

used in sewing machines. Sewing machine bobbins are chosen to hold the yarn due to

the relatively small form, as well as the ready availability of the part. Additionally,

the bobbins are acquired with their bobbin cases, which have a built-in adjustable

tensioning mechanism removing the need for a separate tensioning mechanism.

Figure 4.6: Tension mechanism.

To support the bobbin a mount is designed and cut from acrylic and also featured a

hole on the bottom for attaching the assembly to the base of the carrier. The support
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for the bobbin assembly is precision cut from 1/16” acrylic sheet by a commercial

laser cutter [66] and assembled using a solvent based cement (Weld-On 4 Acrylic

Adhesive). To provide the tension in the yarns that is required to produce consistent

braids, the leaf-spring mechanism on the bobbin case is utilized. This allows for easy

adjustments to be made in the tension of the yarns.

Finally, the two sub-assemblies for the carrier are bonded together using the rod

from the base again for alignment. The bonding is performed utilizing the same

cyanoacrylate-based adhesive that is used to bond the two haves of the base together.

Next, once the carrier is assembled and the yarns are loaded on to the bobbins, the

yarns need to be attached to the uptake mechanism.

4.2.3 Uptake Mechanism

The uptake mechanism is what pulls the yarn to ensure the braid is forming in a con-

sistent manner. The uptake mechanism is designed to progress the braid up during

the braiding process, this ensures that a consistent braid is formed, and the formation

of the braid occurs at a single point (the braid formation point). Additionally, the

uptake mechanism is able to control the braid angle of the braided structure; this is

preformed by adjusting the speed of the uptake mechanism. By increasing or decreas-

ing the speed of the uptake mechanism, the braid angle can be reduced or increased,

respectively. This leads to one of the ways in which tailorability is introduced into

the braided structure.

The uptake mechanism is divided into six parts the base, the lead-screw linear ac-

tuators, the cross bar, the motor driver, the plain bearing supports, and the endstop

feedback system, shown in Figure 4.7. Similar to the cam system, the uptake mech-

anism is driven by stepper motors that drive a lead-screw and thus also drives the

crossbar up or down. The lead-screw linear actuators, full specifications are available

in Appendix A.1, which are used to drive the uptake mechanism, are mounted to the

base, which affixes the uptake mechanism to the frame of the braiding machine. The
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travelling nut of the lead-screw linear actuator is attached to the crossbar and causes

the crossbar to travel up and down depending on the direction the lead screws are

driven. To support the ends of the lead screws and to prevent unnecessary deflec-

tion, the ends are supported in by two plain bearings that are attached to top of the

braiding machine’s frame.

Figure 4.7: Braider uptake mechanism showing 1) the linear actuators, 2) the base
of the uptake mechanism, 3) the end stop switch, 4) the cross bar, and 5) the plain
bearing supports.

Zeroing Mechanism

A zeroing mechanism is designed to assist in the rapid resetting of the machine, which

allows for faster production braided samples. By sensing if the crossbar has reached

the lowest position, the machine is able to reset the linear actuator. Further, by

understanding the zero point, the position of the crossbar can be tracked through

the braiding process and can be moved to any position. The mechanism is able to

sense when the machine has returned to its initial state by the use of an end stop

(momentary switch), that becomes depressed when the mechanism reaches its lowest

position. The microcontroller is able to poll the endstop and determine when the

mechanism has reached its reset position and stop the motors.
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4.2.4 Geared Motors and Driving Mechanism

The geared motors are what turn the cams on the base plate. Each motor assembly,

shown in Figure 4.8, consists of a 200-step stepper motor and a 19.19:1 planetary gear

reducer[67]. The geared motors are chosen because they use the compact NEMA 17

motor form factor while still providing enough torque to turn the cams. For complete

specifications on the motors used, please refer to Appendix A.1, and for the complete

electrical documentation please refer to Appendix A.3.

Figure 4.8: Geared stepper motors used to drive the cams.

The motors used to drive the cams are divided into two groups, those that drive

the even cams and those that drive the odd cams, however, it is noted that provided

more drivers, each motor could be independently driven, and more complex braiding

patterns could be achieved. All of the motors of a specified group are wired in series

to each other to make all of the motors of the same group step together. Additionally,
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this lowers the required amount of current to drive all of the motors and allows all the

motors of a single group to be driven by a single motor driver, shown in Figure 4.9.

Figure 4.9: Current limiting stepper driver based on the TB6600 chip.

The motor drivers are a HY-DIV268N-5A; these motor drivers are based on the

Toshiba TB6600HG PWM chopper-type bipolar stepping motor driver integrated

circuit (IC) and are also able to isolate the braiders control circuitry from the high

voltage used to power the motors. Because the drivers are based on the TB6600 IC,

this allows the motors to be run at a higher voltage than the motor is rated for. This

is possible due to the PWM chopper-type current control that monitors the current

draw from the motor and when it reaches above a specified threshold the power to

the motor is momentarily interrupted and the cycle is allowed to repeat. By running

the motors at a higher voltage, the step response of the motor is shortened allowing

for faster stepping. And by using the chopper-type driver, the motor is protected

from overheating and becoming damaged from the over-voltage.

Motor Adaptor

For adaptability, the motor mounting holes in the base plate are made to the NEMA

17 motor specifications. However, due to the inclusion of a motor with a planetary
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gear reduction, the mounting holes of the motor do not match those used for the

base plate. To remedy this, a motor adaptor is designed from three pieces of 1/8”

laser cut acrylic. The three pieces work together to securely fasten the motors to the

base plate, while making sure the heads of the screws remain below the surface and

nuts are captive. The inclusion of the adaptor, additionally, provides additional space

require for the motor coupling that is required to change the shaft size to that of a

NEMA 17 stepper motor. The assembled motor adaptor can be seen attached to the

motor in Figure 4.8.

4.2.5 Control System

The control system is primary broken into two components: the master system that

determines what tasks need to be executed and when they will be executed, and the

slave system that executes the tasks from the master system. The braiding machine

can be controlled from any Windows® computer that will act as the master system;

the computer runs an application designed and written in Matlab® [68] that sends

serial commands to a connected microcontroller.

An open source, commercially available microcontroller board, Arduino: Mega [69],

is chosen to interface with the master system and send the logic signals to the various

drivers and systems that drive the braiding machine. The Arduino microcontroller

is chosen to control the braider, because it has open-source hardware and software.

Because of this, the programming of the microcontroller is straight forward. Addi-

tionally, the Arduino: Mega offers many extra GPIO pins that can be used to expand

the machine later.

To control the braiding machine, commands are sent from the controlling computer

to the microcontroller using the attached USB Type-B connector. Commands are sent

in an eight-byte chunk that are interoperated by the microcontroller and translated to

the commands/functions to be executed, see Figure 4.10 for an overview of this pro-

cess. While the microcontroller is executing the commands, both the microcontroller
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and the controlling computer wait for commands to finish to ensure that the com-

mand buffer does not overflow. The firmware used on the microcontroller is available

in full in Appendix B.2.

4.3 Braid Production

Braid production is started by entering the settings/parameters on a computer, and

continues with the computer sending appropriate commands to a microcontroller. The

production of the braids is assisted by a computer program written inMatlab®. The

program provides an easy to use interface that allows the user to control the different

aspects of the braiding process. Once started, the program is able to communicate

to the connected braiding machine by the use of serial communication. The protocol

for communicating with the braiding machine is custom made to allow better control

over the necessary parameters.

The serial protocol utilizes eight byte commands that are able to control and create

different environments on the microcontroller. The different commands are all built

using the same structure. The first byte chooses the library, the second selects the

function or control sequence, and the remaining six bytes set various options and

provide the data necessary to run the functions or control sequences. To ensure the

control system and microcontroller are synchronized, all variables are stored on both

systems using an object or class structure and are updated together. Because the

computer knows the state of all the objects and variables on the microcontroller, this

allows the computer to display any available information at any time. And further

allows the easy implementation of software monitoring of specific machine parameters.

The production of the braid is used to determine the geometric properties of the

braided structure. In Figure 4.11 a braid is shown being formed by the 3D rotary

braiding machine. In the following subsection, the measurements of the external braid

angle and pitch of the braid are determined.
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Figure 4.10: Flow diagram of the Arduino firmware.
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Figure 4.11: Produced braid before removal from the machine.

4.3.1 Measured Geometry

The rotary three-dimensional braider is used to create a sample three by three non-

impregnated specimen from 200-denier Aramid fibres (Kevlar® from Fiber-Line®,

USA). These specimen’s geometric properties are later analysed. For the specimen,

the external braid angle is measured, as well as the pitch of the braid.

To measure the external braid angle and the pitch of the braid, the freely available

image measurement software, ImageJ [70], is utilized. To determine each of the

parameters, five measurements are taken along the length of the braid. Of these

parameters, the pitch length of the braid is chosen to generate a geometric model and

is further discussed in Chapter 5.
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External Braid Angle

To measure the external braid angle, a picture of the specimen is taken with a reference

background. The background shows a millimetre grid, and provides a reference for

the measurements taken. For the measurement of the external braid angle reference

lines are drawn from the base of a yarn being measured to the same point of the

next yarn. This reference line represents the instantaneous braid axis. Next a line is

drawn from the base of the yarn parallel along the length of it. This creates the two

lines required to determine the external braid angle; the five measurement points are

shown in Figure 4.12.

Figure 4.12: Measurement of the external braid angle.

From these points the, software is able to determine the average external braid

angle to be 12.19± 1.87◦. A full summary of each of the individual measurements is

shown in Table 4.2.
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Table 4.2: Summary of the measurements for the external braid angle.

Measurement Angle

1 10.763
2 12.624
3 10.412
4 12.152
5 15.018

Average 12.194

Braid Pitch

To measure the braid pitch, a similar procedure to the external braid angle is imple-

mented. A picture of the specimen is taken with a millimetre grid in the background

to provide a reference for the measurements. For the measurement of the braid pitch,

the scale is first set in the software using the grid to specify the length for one mil-

limetre. This is done by drawing lines over the grid and using the lines as known

distances for converting the number of pixels to real world measurements. Next the

measurement lines are drawn from the base of a yarn extending forward to the base

of the next yarn. These lines are shown in Figure 4.13 with the results summarized

in Table 4.3.

From these points the, software is able to determine the average braid pitch to be

1.43± 0.07 mm. A full summary of each of the individual measurements is shown in

Table 4.3.

Table 4.3: Summary of the measurements for the braid pitch.

Measurement Length

1 1.420
2 1.379
3 1.446
4 1.367
5 1.546

Average 1.432
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Figure 4.13: Measurement of the height of the unit-cell (braid pitch).

4.4 Conclusions

In this chapter, is a summary of the design and manufacturing of an in-house rotary

3D braiding machine. Additionally, the design decisions are analysed, and the justi-

fications are provided for the decisions. An introduction is provided to demonstrate

how the machine is controlled, as well the machine is shown to be able to produce 3D

braided specimens. Finally, the measurement of the external properties of the braid

is performed and the external braid angle is determined to be 12.19◦ and the braid

pitch to be 1.43 mm for a 200-denier Kevlar® braid.
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Chapter 5

Design of a Geometric Model for
Three-Dimensional Rotary
Braiding

5.1 Introduction

An outline of the procedure of producing a geometric, as well as a geometric computer

aided design (CAD) model is provided in this chapter. To facilitate faster creation of

these models, a computer program is developed. The program implements machine

emulation to generate the paths of the yarns that are required to develop the geometric

model.

The geometric model is imported into a parametric CAD software using another

program that is written in the CAD software’s own programming language. These

programs are able to work together to automate the creation of geometric models for

3D braided composites. In the following sections, an overview of the mathematics of

the geometric models, as well as the function of the custom programs are provided.

5.2 Path and Geometric Model Generation

To be able to create the geometric model of the three-dimensional braided structure,

the paths of each of the individual yarns must be known. In this section a set of

points (x, y, z) are produced by the program that can later be interpreted by three-
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dimensional modelling/design software to generate the geometric CAD model. The

geometric CAD model can be further processed to create the unit and sub-unit cells

required for Chapter 6.

The path of the yarns is created utilizing a method known as machine emulation.

Machine emulation is the process where the machine and its processes are modelled

and replicated to generate the path of the yarns [13, 16, 47]. This method was first

introduced by Tolosana et al. for 3D braided structures and later used by Deng et

al. and Yang et al. to further analyse 3D braided structures. All of the researchers

utilizing this method, have used it to predict the paths of the yarns formed from track

and column braiders.

For this research, the machine emulation method is implemented to determine

the paths of the yarns for a braid produced from a rotary 3D braider. In the next

subsections the braid pattern, which describes the process where the braid is formed,

and an overview of the in-house program used to automate the process of creating

the geometric and geometric CAD models is discussed.

5.2.1 Braid Pattern

The braiding pattern is a reference to the steps that are taken and repeated to form

the braided structure. There are many different patterns that can be accomplished

with 3D braiders. For track and column braiders, the dominate pattern used is the

4-step process. While the 4-step is more commonly used due to its simplicity, it lacks

the ability to form largely complex shapes. To mitigate this, the universal method

that includes a multiple of four steps to complete the braiding pattern was introduced

[32]. This new universal method sacrifices speed to be able braid complex shapes. By

dividing the braided structure into smaller sections and braiding the smaller sections

then braid the sections together near net shape geometry can be achieved [32].

For rotary braiders, the patterns can be quite simple, as in the case of the square

braider where the braid pattern can be considered a single step that can operate
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continuously [22]. However, the braid patterns for rotary braiders can also become

more complex having multiple steps or, in the case of producing complex shapes, also

adjusting the number of active cams can change the braid pattern. Additionally, the

braiding pattern can be changed by varying the number of cams rotating, which cams

rotate, how much of a rotation is performed, and the order in which the rotations are

performed.

For this research, a simple two-step process, shown in Figure 5.1, is used to create

the braided structures. The two-step process consists of a counter-clockwise rotation

of the ‘odd’ cams (Step-1) followed by a clockwise rotation of the ‘even’ cams (Step-

2). After the second step is completed, the braid has returned to a similar position

as the starting position. This pattern can now be repeated to form the 3D braided

composite structure.

(a) (b)

Figure 5.1: Braiding pattern show (a) the first step (odd rotation) and (b) the second
step (even rotation)

By understanding how the braid is formed, the geometry of the braid can be de-

termined. Using a process called machine emulation [11], the steady state formation

of the braid can be determined. This process involves emulating the machine’s move-

ments, and from the movement of the machine calculate the positions of the yarns

in the formed braid. Once the position of the yarns is known, the geometry of the
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braid can be determined before the braid is created. This allows for further analysis

of the braided structure and the prediction of the material properties before the braid

is created.

A discussion on the implementation of machine emulation on a rotary 3D braider

is made in the following subsections. Further, an introduction to the mathematics

of the geometric model is made. Finally, the creation of a geometric CAD model is

discussed.

5.2.2 Program for Geometric and CAD Model

For this study, a program is designed to automate the creation of the geometric

model, as well as the creation of a computer-aided design (CAD) model of the braided

structure. Additionally, the program is designed to provide an understanding of the

estimated properties of the braided structure by providing theoretical limits, and the

approximation by the implementing of the widely used fabric geometry model (FGM).

The program itself is divided into a few different sections: material properties, braid

definition, estimated properties, path generation, visualization, and CAD export that

can be seen in Figure 5.2. For the full code, please refer to Appendix C.2.

Material Properties

To assist in the design of three dimensional braided structures, the properties of

the individual materials for the braid must be known. The properties for various

materials have been recorded and stored in a separate file that is read in when the

program is executed, see Appendix C.1. This library of materials is coded in the

extensible markup language (XML) coding format and is divided into two sections:

fibre properties and matrix properties. The library is written in a way that assumes

the fibres to be anisotropic (specifically, transversely isotropic) and the matrix is

assumed to be isotropic. For the fibre material properties, the name of fibre, the

axial Young’s modulus, transverse Young’s modulus, Poisson’s ratio, shear modulus,
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and density are stored. Additionally, for the fibre properties, a default denier can

be stored in the library as well, though this can be overridden at any point in the

program, see Figure 5.2. For the matrix material properties, only the name of the

material, the Young’s modulus, and Poisson’s ratio are recorded.

These material properties are combined with the yarn packing factor to determine

the properties of the impregnated yarns (this is just an individual yarn with the matrix

impregnating the fibres). The majority of the material properties are combined using

the rule of mixtures, as shown in Equation (5.1) - (5.4).

E11 = E1,fVf + EmVm (5.1)

E22 = E33 =
EmE2,f

E2,fVm + EmVf

(5.2)

G12 = G13 =
GmGf

GfVm +GmVf

(5.3)

ν12 = ν13 = νfVf + νmVm (5.4)

Where the fibre volume fraction of the individual impregnated yarns, Vf , and

matrix volume fraction, Vm, are defined with the yarn packing fraction [7], κ,

Vf = κ (5.5)

Vm = 1− Vf = 1− κ. (5.6)

The remaining material properties are derived using the composite cylinder assem-

blage model [71], as shown in Equation (5.7) - (5.10).

G23 =
E22

2 (1 + ν23)
(5.7)

ν23 =
K∗ − cG23

K∗ + cG23

(5.8)

c = 1 +
4K∗ν2

13

E11

(5.9)

The bulk modulus, K∗, of the composite is given by

K∗ =
Km (Kf +Gm)Vm +Kf (Km +Gm)Vf

(Kf +Gm)Vm + (Km +Gm)Vf

, (5.10)
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where the bulk moduli of the fibres, Kf , and matrix, Km, are given by Equation

(5.11) and (5.12), respectively.

Kf =
E1,f

2 (1 + νf ) (1− 2νf )
(5.11)

Km =
Em

2 (1 + νm) (1− 2νm)
(5.12)

Finally, the radius for the cross-section of the yarns is determined from the denier

and the linear density of the yarns. Adapted from [28]. Equation (5.13).

r =

√
ζ

9000π ρ
(5.13)

ζ := Denier ,

[
g

9000m

]

ρ := Density ,

[
g

cm3

]

Braid Definition

Within the program is a braid definition section. This section allows one to select

the materials for the yarns and the matrix, as well as make further adjustments to

the set-up and layout of the machine and the design of the braided structure. The

different features that can be adjusted are the number of knots, the path angle, the

width and the depth of the braid, the spacing factor, the number of unit cells, and

either the unit cell height or the average braid angle.

The number of knots (points defining the path of the yarns) controls the number

of points that are generated between the start and end positions of a cam movement.

The number of knots has little to no effect on the on the geometric model, but has

more of an effect on the CAD model. The more points that are generated the more

knots there will be defining the B-Spline curve used to generate the yarns in the CAD

software. The increase in the number of knots also makes the creation of the CAD

model take more or less time. The number of knots used in the follow study is kept

at a constant ten knots.
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The path angle is a property that alters the path that the yarn is assumed to take.

It bows the beginning and end of the path allowing for a different representation of

the yarn path. For this study, the angle is assumed to be zero, meaning that the

yarns have no alteration to the path.

The width and depth of the braid control the number of active cams in the model.

For this study, only square braids are considered.

The spacing factor, SF , is an adjustment factor for the space between yarns. The

spacing factor can be a number between zero and infinity, though numbers that are

approximately equal to one are more realistic, as open structure 3D braids are more

likely to collapse when tension is applied. Though the minimum spacing factor can

be calculated (see Equation (5.14)), it is noted that for the braids in the study, all

the spacing factors are close to one due to the yarn diameter, d, being much smaller

than the unit cell height, z. Because of this, the spacing factor is approximated as

one throughout this study.

SF =
z

√
z2 − 4 d2

(5.14)

Finally, either the height of a unit cell or the average braid angle can be set.

Because the unit cell height and the average braid angle are fundamentally linked,

through Equation (5.17), only one of the parameters needs to be set to determine

the other. For the study, the unit cell height is set to 1.432 [mm] as is determined in

Section 4.3.1. As a result, the braid angle is automatically set to 11.68◦, which is with

in the result of 12.19 ± 1.87◦ provided in Section 4.3.1. With all of the parameters

set the program can then start calculating the mechanical properties.

Estimated Properties

Additionally, the program is able to calculate some of the theoretical limits of the

elastic properties, as well as provide the results from the well-established FGM model.

The theoretical limits are found from taking the results of a unidirectional angle lam-
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ina at the average braid angle of the 3D braided composite and from a unidirectional

lamina with no angle offset.

The program is able to estimate the internal, external, and average braid angle, as

well as the braid pitch. These braid parameters are estimated based on the geometry

of the braid and the assumption that for the calculation the yarns follow linear paths.

For both the internal and external braid angle, the yarns move by 2
√
2 r SF in the

transverse directions, and move by z/2 and z in the axial direction, respectively.

From this, the braid angle is estimated using the trigonometric relationships. The

internal, external, and average braid angle for an n by m braid are derived and shown

in Equations (5.15), (5.16), and (5.17), respectively.

θint = tan−1

(
4
√
2 r SF

z

)
(5.15)

θext = tan−1

(
2
√
2 r SF

z

)
(5.16)

θave =
2nm− n−m

2nm+ n+m
· tan−1

(
4
√
2 r SF

z

)

+
2 (n+m)

2nm+ n+m
· tan−1

(
2
√
2 r SF

z

) (5.17)

Where z is the braid pitch, defined in Equation (5.18), and SF is the spacing

factor, defined previously in Equation (5.14).

z =
4 r
√

1 + cos2 (θint)

sin (θint)
(5.18)

Path Generation

The paths that are created by the machine emulation process consist of straight

segments that are connected. The individual yarns positions are stored in a matrix,

with the initial matrix shown in Figure 5.3a. In the matrix, the yarns are located by

the number 1, the odd cams are assign -1, and the even cams are assigned -2, while
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unoccupied spaces are assigned a 0. To track the individual yarns as they move, the

1’s are replaced by incrementing numbers from 1 to the number of yarns in the braid,

shown in Figure 5.3b.

The machine emulation is created by introducing functions that are able perform

the rotation of the cams in the matrix. For the rotary 3D braid, there are two

functions one that looks for the odd cams, -1, and rotates the surrounding yarns in

one direction. Similarly there is another function that looks for the even cams, -2,

and rotates the surrounding yarns in the opposite direction. After each step in the

braiding process is completed, the new locations of the yarns are saved into a new

index in the matrix. This creates a 3D matrix where each layer in the third direction

is the locations of the yarns at a specified height.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 1 0
1 −1 1 −2 1 −1 1
0 1 0 1 0 1 0
1 −2 1 −1 1 −2 1
0 1 0 1 0 1 0
1 −1 1 −2 1 −1 1
0 1 0 1 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(a)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 2 0 3 0
4 −1 5 −2 6 −1 7
0 8 0 9 0 10 0
11 −2 12 −1 13 −2 14
0 15 0 16 0 17 0
18 −1 19 −2 20 −1 21
0 22 0 23 0 24 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(b)

Figure 5.3: Initial (a) and indexed (b) tracking matrices, used for determining the
location of yarns during machine emulation.

After the locations of the yarns are determined for each step, the matrix is trans-

lated into a set of x, y, z points for each yarn. The number of x, y, z points are then

increased by determining the yarn positions between the steps of the braiding process.

The number of additional points is specified by the user in the GUI of the program

and will produce equally spaced points in the x-direction (along the braid axis).

Due the stepwise nature of the braiding process, the use of machine emulation cre-

ates a non-smooth model with bends and cusps. The yarn paths are then processed to

create a more continuous and smoother path for the yarns, emulating the undulations
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found in physical braided samples. The smoothing is performed by a moving average

filter, however, due to the phase shift of running a filter in one direction (forwards),

a zero-phase filter is used instead.

The benefit of using a zero-phase moving average filter over a simple moving average

filter is shown in Figure 5.4. As seen in the figure, the simple forward smoothing

process causes a shift of the original path, in the braiding axis direction. This shift

causes an inaccuracy with predicting the location of the yarns. The zero-phase filter

mitigates this by running the smoothing algorithm both forwards and backwards

resulting in a smoothed yarn path that still lines up with the original yarn path.

Figure 5.4: Comparison of the affect of forward smoothing (green) and zero phase
smoothing (red).

Visualization and Output

Being able to visualize the different properties of a 3D braided composite is important

to understand if the structure is suitable for an application. The program offers a

number of different visualizations and outputs to help the user better understand the

structure of the 3D braided composite. The main outputs from the program are in
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the form of tabled data displayed in the GUI, Graphs to help interpret the braided

structure, and an output file that summarizes the braids paths that are created.

The first visual output that the program offers is the reference on a yarn jamming

plot, see Figure 5.5. In this output, the current parameters for the fibre volume

fraction and braid angle are plotted with respect to the yarn jamming line. This

provides an estimate for the maximum braid angle and maximum fibre volume fraction

of the current structure. For tailoring the properties, this provides a reference for how

much the braid angle and fibre volume fraction are allowed to change before a change

to the structure is required.

Figure 5.5: Plot of fibre volume fraction as a function of the braid angle (red) with
respect to the yarn jamming (yellow)

To provide a visual reference of how the geometry of the braid will look, the

program creates an approximate plot of the 3D surfaces that will make the braid,

shown in Figure 5.6. This is performed by plotting a 3D tube along the path of the

yarns. The visualization of the yarns allows for the detection of yarn interference or

of the yarns being to far apart, allowing parameters, such as the spacing factor, to

be adjusted. By providing this visualization in the program, the 3D structure can be
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confirmed and time is saved generating the geometric CAD model.

Using the plots of the yarn paths with a yarn highlighted, shown in Figure 5.7,

provides insight to how the yarns will move in the braid. Further, these plots can

be viewed from the top to determine how many different loops the yarns will travel

in. For the three by three braided structure presented in this work, there are three

different paths that the yarns will traverse. These paths are shown in Figure 5.8,

where it should be noted that once a yarn starts on one of these three paths it will

remain there as long as the braiding pattern remains unchanged.

Figure 5.6: Three-dimensional visual representation of the yarn paths.

The final output from the program is an output file. This output file makes sure

that the settings and parameters can be found later, either to help with the recreation
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of a specific braided structure or as a simple log/summary. The output file is saved

as plaintext in the properties file, BRAID.PROPERTIES, and an example of the output

is included in Appendix C.3.

Figure 5.7: Three-dimensional visual representation of the yarn paths with a single
path highlighted for clarity.

CAD Export

The program can be used to automatically export the yarn paths to create a 3D

geometric CAD model. The program initiates the creation of the CAD model by

invoking a system command. The system command is set to open the CAD software

and run the macro written in Visual Basic for Applications [72] (VBA) to create

the CAD model. The follow section will provide a more in depth description of this
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(a) (b)

(c)

Figure 5.8: Figure showing the two-dimensional paths that the yarns follow during
the braiding process.

macro, and the creation of the geometric CAD model.

5.3 Geometric CAD Model Generation

The geometric CAD model, shown in Figure 5.9, serves as a visual 3D model of the

braided structure that can be easily manipulated and inspected. The CAD model

also provides an intermediate step between the geometric model discussed previously,

and the finite element model discussed in Chapter 6. Further, the geometric CAD
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model provides a method for confirming the geometry of the final braid.

The three-dimensional representation of the braided structure is generated using

in-house created software, available in Appendix D. The software utilises Visual Basic

for Applications (VBA) to autonomously generate the model based on the individual

data for the yarns, and the general braid data file. The program is able to read in

the data about the spacing, as well as the data about the yarn diameter, number of

yarns, and dimensions of the braid. After the braid data is read in, the x, y, z data

for each of the yarns is read in and a spline is created as a path for extruding the yarn.

A cylindrical yarn is extruded by extruding a circle, with the same diameter as the

yarns, along the spline path. After all the yarns are created, a solid block is created

for the resin and the yarns are then cavated from the resin creating an assemblage

of parts. The full assembly, as well as the individual constituents (yarns and matrix)

are shown in Figure 5.10.

Figure 5.9: Three-dimensional CAD model of the braided structure.

Additionally, the geometric CAD model can be compared directly with the braids

produced from a 3D braiding machine. Figure 5.11 shows a braid produced on the 3D

rotary braided presented in Chapter 4 next to the geometric CAD model of a braid

with the same properties. It can be seen that the braids share a similar structure and

that the paths of the yarns in the geometric model follow closely to those present in
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the braided sample, however, it is noted that the geometry is not exact due to the

assumption that the yarns have a circular cross-sectional area. The development of a

model that is able to further take in account the changing cross-sectional area of the

yarns may be addressed in the future work following this study.

(a) (b) (c)

Figure 5.10: Constituents of the CAD model, showing (a) the combined model, (b)
the fibres, and (c) the matrix.

Finally, the integration of the two programs allows the automatic creation of the

geometric model, as well as the automatic creation of the geometric CAD model. This

reduces the time required to create the necessary models for finite element modelling

that is discussed in Chapter 6. And further, facilitates the means to simulate a tensile

test to determine the elastic properties of the braided structure.

5.4 Conclusions

In this chapter, the procedure of producing a geometric, as well as a geometric CAD

model are introduced. The geometric model is produced using the machine emulation

method. The machine emulation is performed by an in-house computer program.

Furthermore, this computer program is able to provide the user with valuable feedback

regarding the properties and the structure of the 3D braids. Lastly, the computer

program is able to export the geometric model to a second in-house program that is

capable of producing a geometric CAD model.
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(a) (b)

Figure 5.11: Comparison of (a) the produced braid and (b) the rendered braid

The two programs are able to work together to automate the creation of geometric

models. And the results of the models are shown to have the same structure as the

braids produced from the in-house rotary 3D braider. In the follow chapter, the

geometric CAD model is used to generate a finite element model to determine the

elastic properties of the braided structure.
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Chapter 6

Finite Element Modelling of the
Tensile Properties for a
Three-Dimensional Rotary Braid

6.1 Introduction

This chapter addresses the need for a method and model that is able to predict the

properties of three-dimensional braided composites. The model developed uses the

concept of sub-unit cells first introduced by Chen [11] to predict the properties of

a braid formed by a 3D rotary braider. A design of experiments is implemented to

study the results and compare results to a well know modelling method.

6.2 Model Development

The imported geometry from the CAD model (Figure 6.1) is set up in the commer-

cially available finite element analysis (FEA) software ABAQUS [73] to allow further

analysis to be performed. In this section, a focus on the response to iso-strain con-

ditions are analysed to determine the mechanical properties of the full and sub-unit

cell models. Further, the results of a new model for predicting three-dimension (3D)

braided composites are investigated.
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Figure 6.1: Imported CAD model of the three full unit cells for a 3 by 3 braided
structure.

6.2.1 Unit Cell

Unit cells are the smallest repeating element that is representative of the entire struc-

ture. Researchers use unit cells to simplify the complex repeating geometry into a

finite structure. Because of this, they have been utilized in many developments to un-

derstand composite materials [38–40]. In this research, the development of a full-unit

cell is required to validate the properties of a proposed sub-unit cell model.

The full-unit cell is analysed at three different levels: one unit cell, two unit cells,

and three unit cells in height. This is done to show that the results at the midplane

converged and can be considered representative of the full braided structure. The

results show that the results are converged, and the there is no significant effect on

the remaining results of the study.

All models are consistently meshed at three levels: an initial course mesh, an

intermediate mesh size chosen to roughly double the number of elements in the model,

and, finally, a fine mesh chosen to roughly quadruple the number of element from the

initial mesh. Examples of the meshes for the yarns and matrix are shown in Figure 6.2.

The load that is applied to the model causes an iso-strain condition. This allows

for simpler determination of the mechanical properties. By straining the specimen a
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known amount and measuring the total forces in the midplane, the effective stiffness

for the sub-unit cells or the Young’s modulus of the full-unit cell can be determined.

(a) (b)

Figure 6.2: Mesh applied to the yarns (a) and the matrix (b) of the imported geometry.

To recreate these conditions in the FE model, the bottom face of the model is

restricted to remain on its plane while the top face is displaced upwards to cause a

1% strain in the model. To prevent large movements and to stabilize the models, a

single node is encastré’d. All of the applied boundary conditions are seen applied to

the 3 by 3 full-unit cell model in Figure 6.3. For the 3 by 3 full-unit cell model, the

model is run to determine the global results, for subsequent sub-unit cells.

After the FEA has been run, the results are analysed. For this the deformed model,

shown in Figure 6.4, is bisected on its midplane. From the new surface that is created

the total force is measured, see Figure 6.5. The total force is then converted back

into a engineering stress by dividing the force by the original cross-sectional area of

the model. With the mid-plane engineering stress determined, the Young’s modulus

or resulting stiffness is determined by dividing the engineering stress by the known

strain that is applied to the model.
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Figure 6.3: Load applied to the FEA model.

Figure 6.4: The scaled deformation of the FEA model under the applied loads.

6.2.2 Cyclic Unit Cell

For square and rectangular braided structures, there is a smaller unit cell that exists

and is due to the rotational symmetry (cyclic unit cell). Cyclic unit cells can be

applied to determine the properties of the braided structure. The combination of

using a cyclic unit cell with FE analysis allows for the drastic decrease in the time

required to solve the model. However, for larger and larger braids the benefit of this
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Figure 6.5: The resulting force on the model at the midpoint.

is reduced, and the time required to solve the model drastically increases.

6.2.3 Sub-Unit Cell

Sub-unit cells are the next extension of unit cells. Sub-unit cells are a sub division

of the full-unit cell that can be patterned and combined to form the full-unit cell

geometry. They were first noted by researchers developing full-unit cell models, how-

ever, their effects were not considered for predicting the properties of the braided

structures [7]. Later, the properties of the individual sub-unit cells for track and

column braiders were analysed and it was noted that the properties differ for each of

the sub- unit cells [11]. For this section, the sub unit cells are defined and the FEA

modelling method is shown.

The sub-unit cell model utilises multiple repeating sections that can be patterned

to form the full braid cross-section. The sub-unit cell model consists of three different

sub-unit cells: edge-, middle-, and corner- unit cells. Figure 6.6 shows how the sub-

unit cells can be patterned and combined to form the full unit cell.

From these three types of sub-unit cells, the material properties of various, and

more arbitrary shapes can be estimated. By utilising the stiffness from each of the

individual sub-unit cells, shown in Figure 6.7, they can be combined to estimate
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the effective Young’s modulus of the material in the axial, as well as the transverse

directions.

(a) 3 by 3 (b) 4 by 4 (c) n by m

Figure 6.6: Pattern for sub-unit cells.

(a) (b) (c)

Figure 6.7: Sub-unit cells for a rectangular braided structure. Including (a) the centre
sub-unit cell, (b) the edge sub-unit cell, and (c) the middle sub-unit cell.

To determine the stiffness of each of the individual sub-unit cells, a full-unit cell

model is tested using FEA, then the model is sliced and global-local FEA is per-

formed. Also known as sub-modelling, global-local FEA allows the determination

of the stiffness of the sub-unit cells while accounting for the interactions between

adjacent sub-unit cells.

The sub-unit cell models are adapted from the full-unit cell model. The full-unit

cell model is cut into the sub-unit cells, with the new sub-unit cell models enabled

for running global-local (sub-modelling) analysis. Once the sub-unit cell model is

linked to the original full-unit cell model, a new sub-modelling boundary condition is
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applied to the cut faces that further links the results of the models.

Then in a similar process to the full-unit cell model, the sub-unit cell models are

meshed and the analysis is run. The results for the stiffness are also obtained in a

similar way; by slicing the model on its midplane and measuring the total force on

the cut face, the stiffness of the sub-unit cells are determined. These stiffnesses are

then utilized for the new method discussed for determining the mechanical properties

of the larger braided structures.

6.2.4 Prediction of the Properties of Large versus Small Cross-
Section Braids

To predict the mechanical properties of large cross-sectional braided structures, a

new method is introduced. The properties of the sub-unit cells from a 3 by 3 braid

are combined to predict the properties of larger braided structures. To combine the

mechanical properties, the sub-unit cells are assumed to act as springs in parallel and

series.

To be able to treat the sub-unit cells as a set of springs the mechanical properties

have to be converted to an analogous form. The method utilized in finite element anal-

ysis (FEA) to determine the stiffness of the elements is introduced. This treats each

individual spring stiffness, ki, of the system as a function of the mechanical stiffness,

Ei, the cross-sectional area, Ai, and the length of each member, Li. The individual

spring stiffness can be seen in Equation (6.1), and just like physical springs the meth-

ods for combining the sub-unit cell stiffness for parallel and for series arrangements

are shown in Equations (6.2) and (6.3), respectively.

ki =
Ei Ai

Li

(6.1)

keff =
∑
i

ki (6.2)

keff =

[∑
i

(
1

ki

)]−1

(6.3)
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Axial Young’s Modulus

The Axial Young’s modulus is found by combining the stiffnesses of the individual

sub-unit cells as if they are a system of parallel springs, as shown in Figure 6.8.

Figure 6.8: Representation of the spring model used to combine the sub-unit cells to
determine the axial Young’s modulus. Each spring represents a single sub-unit cell.

Ecomp, xAcomp, yz

Lcomp, x

=
∑
i

Ei Ai

Li

(6.4)

Ecomp, x =
Lcomp, x

Acomp, yz

×
∑
i

Ei Ai

Li

(6.5)

Because each of the sub-unit cells and the composite material as a whole has the

same length in the x-direction, this can be reduced to:

Ecomp, x =
1

Acomp, x

×
∑
i

Ei Ai (6.6)

This can then be written as

Ecomp, x =
ncEcAc + nm Em Am + neEeAe

Acomp, yz

(6.7)
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for an n by m rectangular 3D braid:

nc := 4

nm := nm− 2m− 2n+ 4

ne := 2m+ 2n− 8

Transverse Young’s Modulus

The transverse Young’s modulus is found similarly to how the axial Young’s modulus

is found. However, due to the more complex layout of the sub-unit cell with respect to

the transverse direction, a different algorithm needs to be implemented to determine

the Young’s modulus. The new layout involves combining the sub-unit cells together

as a system of parallel springs similar to the axial, however, each of the individual

parallel springs are comprised of a set of springs in series. A visual representation of

the new spring model for determining the effective transverse modulus is shown in

Figure 6.9 where each of the springs represents a single sub-unit cell.

Figure 6.9: Representation of the spring model used to combine the sub-unit cells to
determine the transverse Young’s modulus. Each spring represents a single sub-unit
cell.
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To determine the effective Young’s modulus the springs must be combined into

a single spring that represents the system. To effectively combine the springs two

steps are required. The first step involves determining the effective stiffness of each

of the sets of springs in series. Next each of these stiffnesses are combined using the

previously established methods to determine the overall effective transverse Young’s

modulus; both steps are summarized by Equation (6.8).

Ecomp, y Acomp, xz

Lcomp, y

=
∑
i

[∑
j

Li j

Ei j Ai j

]−1

(6.8)

Note that for each of the strips in the j direction have the same cross-sectional

area and thus the equation for the effective Young’s modulus of the composite can be

written as:

Ecomp, y =
Lcomp, y

Acomp, y

×
∑
i

Ai

[∑
j

Li j

Ei j

]−1

(6.9)

For a rectangular braid of size n by m this can be written as:

Ecomp, y =
Lcomp, y

Acomp, xz

×

[
2A1

(
Ec Ee2

2Ee2Lc + (n− 2)EcLe2

)

+(m− 2)A2

(
Ee1Em

2EmLe1 + (n− 2)Ee1Lm

)] (6.10)

6.3 Design of Experiments

For analysis of the FE results, a design of experiments (DOE) approach is utilized and

analysed using commercially available statistics software, Minitab [74]. The analysis

is broken into two sections; the first section is for determining the axial results, while

the second section is for determining the transverse results.

For these tests, several factors are manipulated; these factors allow for the anal-

ysis of the sub-unit and full-unit cells, as well as the analysis of the effects of mesh

refinement, and the effect of multiple unit cells on the measurement of the mechan-

ical properties. The manipulated variables in both the axial case and the transverse
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case are the same, and they are summarized for the axial and transverse case, in

Table 6.1 and Table 6.2, respectively. Four different models are tested at different

number of stacked unit cells, and different levels of mesh refinement. Furthermore,

the 3 by 3 models also have their sub-unit cells analysed. For the axial case as well

as the transverse case, the only responding variable is the measured force on the

cross-section.

Table 6.1: Design of experiments factors used for analysis of the axial modulus.

Manipulated Variable Units
Levels

-2 -1 0 1 2

1 Model - 3 by 3 4 by 4 - 5 by 5 6 by 6
2 Number of Unit Cells - - 1 2 3 -
3 Type of Unit Cell - Full Middle - Corner Edge
4 Refinement - - 6.5 10 20 -

Table 6.2: Design of experiments factors used for analysis of the transverse modulus.

Manipulated Variable Units
Levels

-2 -1 0 1 2

1 Model - 3 by 3 4 by 4 - 5 by 5 6 by 6
2 Number of Unit Cells - - 1 2 3 -
3 Type of Unit Cell - Full Middle Corner Edge1 Edge2
4 Refinement - - 6.5 10 20 -

To analyse the data, multiple regression analysis is implemented in the form of

ANOVA testing. To validate the use of ANOVA, the three assumptions that ANOVA

makes must be held true. The three assumptions for ANOVA are that the each case

or test must be independent of any other test, the residuals must be normally dis-

tributed, and the variances are equal. Because of the nature of the tests, all the

runs are separate from each other, satisfying the assumption that the tests must be

independent. A linear line trend in the half normal plot of the residuals shows that

residuals from the analysis are normally distributed, which fulfils the second assump-

tion of ANOVA testing. Finally, the plot of the residuals versus the order number
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must show no order, trend, or pattern leading to the conclusion that the variances

are equal and that the final assumption for ANOVA is fulfilled. Because these as-

sumptions for ANOVA are met, further analysis using ANOVA can be performed.

6.4 Results and Discussion

6.4.1 Axial Young’s Modulus

It can be seen from the results in Table 6.3 that each of the sub-unit cells has differing

stiffnesses. These differences can be attributed to the difference in the angle of the

fibres within the sub-unit cells, as well as the fibre volume fraction of each of the sub-

unit cells. Because of the difference in the angle of the exterior and interior yarns,

there is a difference in the stiffness of the sub-unit cells.

Table 6.3: Average stiffness of the individual sub-unit cells.

Sub-Unit Cell Stiffness [GPa]

Edge 15.791
Middle 16.121
Corner 14.791

The difference in the angle of the external and internal yarns comes from the

movement of the machine. Yarns that currently reside on the internal structure of

the braid, are moved on every even or odd movement of the cams. Whereas, yarns

that reside on the surface of the braid are only moved every even movement or on

every odd movement. This means that yarns on the surfaces are moved half as much

as the internal yarns and as a result they have a lower braid angle as well. This lower

braid angle increases the mechanical properties in the axial direction.

The fibre volume fraction of each of the sub-unit cells also has an effect on the

stiffness of the sub-unit cells. The lower the fibre volume fraction is the lower the

stiffness of the sub-unit cell. This occurs due to the increase in the amount of the

resin, which has a stiffness that is orders of magnitude lower than that of the fibres,
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when compared to the fibres.

It is shown, in Figure 6.10, that the data from the tests follows closely to a linear

graph. This shows that the data collected is normally distributed, and that the

assumption required to run multiple regression is met.

Figure 6.10: Half normal plot of the residuals for the axial Young’s modulus.

From the data, multiple regression analysis is performed and the measure of effects

for the axial simulations is analysed; this data is shown using the pareto chart from

Figure 6.11. From the pareto chart, it can be seen that the mesh refinement has

no significant effect on the results. This means that the analysis is independent of

the size of the mesh, and the mesh did not significantly effect the results obtained.

Further, from the pareto chart, it can be seen that the ‘Model’ and ‘Type of Unit

Cell’ has a significant effect on the axial modulus Where, the ‘Model’ refers to the

size in terms of number of active cams, i.e., the cross-sectional area. While, ‘Type

of Unit Cell’ refers to the cross-section in terms of being a full-, middle-, edge-, or

corner-unit cell.

Looking specifically at the result of the ‘Model’ on the axial modulus, it can be
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seen that as the size of the braid increase the median of the modulus increase in a

logarithmic fashion. This is shown in the box plot, see Figure 6.12, of the ‘Model’

versus the axial modulus. However, in the box plot it can be seen that minimum and

maximum values for the three by three braid encompass the values achieved for the

other braid sizes. This is due to the inclusion of the sub-unit cell stiffnesses in the

results.

Figure 6.11: Pareto chart showing the significant effects on the axial Young’s modulus.

With the sub-unit cell results separated, as shown in Figure 6.13, the trend of the

of the axial modulus increasing logarithmically can be clearly seen. As the size of

the braid increases, the modulus approaches the stiffness of the middle sub-unit cell.

This is expected due to the different rates at which the sub-unit cells grow as the size

of the braid increases.

For square braids the number of middle sub-unit cells and edge sub-unit cells are
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Figure 6.12: Results from the DoE summarized in a boxplot of the axial modulus vs.
the number of active cams in the model.

Figure 6.13: Axial results from the DoE, splitting the number of active cams further
by the type of sub-unit cell.

given by:

nm = n2 − 4n+ 4 (6.11)

ne = 4n− 8 (6.12)

(6.13)
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Where it can be shown that the rate at which the middle sub-unit cells grow

compared to rate at which the edge sub-unit cells grow is always increasing:

dR = d

⎛⎜⎜⎝
d (nm)

dn
d (nm)

dn

⎞⎟⎟⎠ /dn =
d ((2n− 4)/4)

dn
=

1

2
(6.14)

As shown in Figure 6.14, because of the always increasing nature of the number

of middle sub-unit cells compared to number of edge sub-unit cells, the effective

modulus of larger braided structures can be seen to approach the modulus of the

middle sub-unit cell. This shows how for larger braided structures the impact of the

other sub-unit cells does not play a significant effect. For larger braided structures,

it is sufficient to only consider the effects of the middle sub-unit cell as the repeating

volume element. However, for smaller braided structures it is important to consider

the effects of the corner and edge sub-unit cells.

Figure 6.14: Predicted Young’s modulus plotted against the number of active cams
with the modulus for the middle, edge, and corner sub-unit cells included for reference.

For this study, the predicted axial Young’s modulus is compared to that of the
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simulated one. The predicted axial Young’s modulus is found to be within 1.57%,

2.34%, 2.57%, and 2.78% for the 3 by 3, 4 by 4, 5 by 5, and 6 by 6 braided composites,

respectively. Whereas, when compared the FGM model for predicting the Young’s

modulus, the modulus is found to be larger than 8%. These results are summarized

in Table 6.4. In Table 6.4, the difference between the predicted modulus and the FEA

modulus, as well as the difference between the FGM modulus and the FEA modulus

are shown to the right of their respective columns. Both models appear to wander as

the size of the braid increases, meaning that the precision in the model degrades.

Table 6.4: Comparison of the axial modulus predicted by the model presented to the
full-unit cell results and to the well established FGM model.

Model
FE

Modulus
[GPa]

Predicted
Modulus
[GPa]

Predicted
Difference

FGM
[GPa]

FGM
Difference

3 by 3 15.119 15.356 1.57% 16.363 8.22%
4 by 4 15.367 15.727 2.34% 16.757 9.05%
5 by 5 15.528 15.928 2.57% 16.997 9.46%
6 by 6 15.616 16.049 2.78% 17.159 9.88%

6.4.2 Transverse Young’s Modulus

Similar to the results from the axial modulus in Figure 6.15 the data from the tests

follows closely to a linear graph. This shows that the data collected is normally

distributed, and that the assumption required to run multiple regression is met.

From the data, multiple regression analysis is performed and the measure of effects

for the transverse simulations is analysed using the pareto chart in Figure 6.16. From

the pareto chart, it can be seen that the mesh refinement has no significant effect on

the results. This means that just as in the axial case, the analysis is independent of

the size of the mesh.

Further, similar results to the axial case are found. The modulus increased in a

logarithmic trend that approaches the value of the middle sub-unit cell. These results
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Figure 6.15: Half normal plot of the residuals for the transverse Young’s modulus.

are seen in Figure 6.17.

Figure 6.16: Pareto chart showing the significant effects on the transverse Young’s
modulus.

For this study, the predicted transverse modulus is compared to that of the sim-
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ulated one as well as the popular FGM model. The predicted transverse modulus is

found to be within 0.17%, 0.08%, 1.10%, and 0.21% for the 3 by 3, 4 by 4 , 5 by

5, and 6 by 6 braided composites, respectively. Whereas, when compared the the

FGM model for predicting the transverse Young’s modulus, the modulus is found

to be larger than 17%. These results are summarized in Table 6.5. In Table 6.5,

the difference between the predicted modulus and the FEA modulus, as well as the

difference between the FGM modulus and the FEA modulus are shown to the right

of their respective columns.

Figure 6.17: Transverse results from the DoE, splitting the number of active cams
further by the type of sub-unit cell.

6.5 Conclusions

The progression to the development of a new finite element model for predicting the

properties of 3D braids produced from a 3D rotary braider is provided. Additionally,

the use of sub-modelling is used to determine the effective stiffness of the previous sub-

unit cells. These stiffnesses are combined using a spring based modelling method to

further predict the properties of the larger braided structures. The results predicted
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from the spring based model are compared to those of a full FE analysis and are

found to be within 2.78% for the axial modulus, and within 1.10% for the transverse

modulus.

Table 6.5: Comparison of the transverse modulus predicted by the model presented
to the full-unit cell results and to the well established FGM model.

Model
FEA

Modulus
[GPa]

Predicted
Modulus
[GPa]

Predicted
Difference

FGM
[GPa]

FGM
Difference

3 by 3 4.191 4.198 0.17% 4.937 17.80%
4 by 4 4.216 4.213 0.08% 5.055 19.89%
5 by 5 4.270 4.223 1.10% 5.134 20.23%
6 by 6 4.239 4.231 0.21% 5.190 22.42%
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Chapter 7

Conclusions, Recommendations, &
Future Work

7.1 Conclusions

The goals of this thesis are to design and build a rotary three-dimensional braiding

machine, develop geometric and geometric CAD model, develop an FE model using

sub-unit cells, and finally use their stiffnesses to predict the properties of a full braided

structure as well as predict the properties of similar braided structures.

The 3D rotary braider consists of a few sub-assemblies that work together to pro-

duce braided structures. The braider is designed to allow for an easy method of

increasing the size of the machine as well as to minimize the complexity of the ma-

chine. The machine is computer controlled and able to be controlled from the in-house

software that calculates the movements and sends the appropriate commands to the

braiders microcontroller. Further, the braids produced are analysed to determine the

external braid angle and the braid pitch.

Later, the process of using machine emulation to create the geometric model of a

braided structure is provided. The method is automated through the creation of an

in-house software, and the properties of the braid. The software further demonstrated

the ability to assist in the tailoring of braid properties by providing upper and lower

bounds based on the rule of mixtures and angled lamina, as well as providing the

results from the well-known FGM model. In addition to creating a geometric model,
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the software is able to create a geometric CAD model.

The geometric model is converted to two FEAmodels in Chapter 6 by importing the

geometric CAD models into commercial FEA software, and adding the appropriate

boundary conditions. The first model is for the full-unit cell, while the second model

is a new model analysing the sub-unit cells. The full unit cell models were used

to determine the axial and transverse moduli of a 3 by 3, 4 by 4, 5 by 5, and 6

by 6 braided structures. While the sub-unit cell models were used to determine the

individual stiffnesses of the sub-unit cells in the axial and transverse directions. Later

a method of recombining the results from the sub-unit is proposed.

In addition to the conclusions and new sub-unit cell model above, this thesis is

able to demonstrate the benefit of sub-unit cell modelling and analysis. This is

demonstrated by the development of a new method/model for recombining the sub-

unit cells. It is shown that the sub-unit cell modelling can be used to accurately

predict the properties of 3D braided structures as well as predict the properties for a

family of similar braided structures. The results from this new method are directly

compared to the results predicted from the well-established FGM method and found

the new method advantageous for determining the axial and transverse moduli. This

makes the new method/model ideal for calculating the elastic properties of 3D braided

composite materials, and provides more flexibility when producing structures with

tailored properties.

7.2 Future Work

In this thesis, an in-house rotary 3D braider is developed, a method of producing

geometric and geometric CAD models are developed and automatized the elastic

properties of the 3D braided composites are predicted. Expansion of the machine

to include individually controlled motors would allow the advancement of creating

complex braided structures. These complex structures can include braids that diverge,

or purposely introduce separations with in the structure thus further increasing the
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tailorability of the 3D braids.

Adaptation of the geometric model to account for the changing cross-sectional area

of the yarns as they undulate through the braided structure could further increase

the accuracy when comparing to the physical braided geometry.

Nonlinear finite element analysis would provide the full stress strain curve of the

braided structure. By determining the full stress strain curve other critical design

points can be determined. This further development could lead to the prediction of

the failure points including the ultimate strength for the braided structure. Finally

a comparison of axial and transverse moduli from the braids produced from the

developed machine would further verify the results obtained in this study.
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Appendix A: Braider
Documentation

A.1 Motor and Motor Driver Specifications

A.1.1 Stepperonline 17HS19-1684S-PG19 - Datasheet
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A.1.2 Pololu Leadscrew Linear Actuator - Datasheet
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A.1.3 TB6600HG - Datasheet
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1 

TOSHIBA BiCD Integrated Circuit  Silicon Monolithic 

TB6600HG 
 
PWM Chopper-Type bipolar 
Stepping Motor Driver IC 
 
 
The TB6600HG is a PWM chopper-type single-chip bipolar sinusoidal 
micro-step stepping motor driver. 
Forward and reverse rotation control is available with 2-phase, 
1-2-phase, W1-2-phase, 2W1-2-phase, and 4W1-2-phase excitation 
modes. 
2-phase bipolar-type stepping motor can be driven by only clock signal 
with low vibration and high efficiency. 
 

Features 
• Single-chip bipolar sinusoidal micro-step stepping motor driver 
• Ron (upper + lower) = 0.4 Ω (typ.) 
• Forward and reverse rotation control available 
• Selectable phase drive (1/1, 1/2, 1/4, 1/8, and 1/16 step) 
• Output withstand voltage: Vcc = 50 V 
• Output current: IOUT = 5.0 A (absolute maximum ratings, peak) 

        IOUT = 4.5 A (operating range, maximal value) 
• Packages: HZIP25-P-1.00F 
• Built-in input pull-down resistance: 100 kΩ (typ.), (only TQ terminal: 70ｋΩ(typ.)) 
• Output monitor pins (ALERT): Maximum of IALERT = 1 mA 
• Output monitor pins (MO): Maximum of IMO = 1 mA 
• Equipped with reset and enable pins 
• Stand by function 
• Single power supply 
• Built-in thermal shutdown (TSD) circuit 
• Built-in under voltage lock out (UVLO) circuit 
• Built-in over-current detection (ISD) circuit 
 
 
 
 
 
 
 
 
 
 

TB6600HG 

 
 
 

 

Weight:  
HZIP25-P-1.00F: 7.7g (typ.) 

HZIP25-P-1.00F 
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Pin Functions 

Pin No. I/O Symbol Functional Description Remark 

1 Output ALERT TSD / ISD monitor pin Pull-up by external resistance 

2 ― SGND Signal ground  

3 Input TQ Torque (output current) setting input pin  

4 Input Latch/Auto Select a return type for TSD. L: Latch, H: Automatic return 

5 Input Vref Voltage input for 100% current level  

6 Input Vcc Power supply  

7 Input M1 Excitation mode setting input pin  
8 Input M2 Excitation mode setting input pin  
9 Input M3 Excitation mode setting input pin  

10 Output OUT2B B channel output 2  

11 ― NFB B channel output current detection pin  

12 Output OUT1B B channel output 1  

13 ― PGNDB Power ground  

14 Output OUT2A A channel output 2   

15 ― NFA A channel output current detection pin  

16 Output OUT1A A channel output 1  

17 ― PGNDA Power ground  

18 Input ENABLE Enable signal input pin H: Enable, L: All outputs off 

19 Input RESET Reset signal input pin L: Initial mode 

20 Input Vcc Power supply  

21 Input CLK CLK pulse input pin  

22 Input CW/CCW Forward/reverse control pin L: CW, H:CCW 

23 ― OSC Resistor connection pin for internal oscillation setting  

24 Output Vreg Control side connection pin for power capacitor  Connecting capacitor to 
SGND 

25 Output MO Electrical angle monitor pin Pull-up by external resistance 

 
 
 
 
 
<Terminal circuits> 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input pins 
(M1, M2, M3,CLK, CW/CCW,  
ENABLE, RESET, Latch/Auto) 

 
 

Input pins 
(TQ) 
 

 

 

 

10kΩ 

100kΩ 

VDD 

 

10kΩ 

70kΩ 
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Pin Assignment 
 
 
 

（Top View） 
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Block Diagram 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Setting of Vref 
 
 
 
 
 
 
 
 

Input 
Voltage ratio 

TQ 

L 30% 

H 100% 

M1 

M2 

CW/CCW 

CLK 

M3 

OSC 

 
 
 
 
 
 
 
 
 

Input 
circuit 

1/3 

TSD / ISD / UVLO 

MO ALERT 

 
H-Bridge 
driver A 

OUT1A 

OUT2A 
 
 
 

NFA 

 
H-Bridge 
driver B 

OUT1B 

OUT2B 

NFB 

Vref 

SGND PGNDB 

Current selector 
circuit A 

3 

4 

12 

15 

14 

16 

6, 20 1 25 24 

7 

8 

9 

22 

21 

19 
 

18 

17 2 

Current selector 
circuit B 

 
Pre 

-drive 

 
Pre 

-drive 

11 

OSC 

10 

RESET 

13 

PGNDA 

23 

5 

Latch/Auto 

TQ 

Vcc Vreg 

100%/30% 

Reg(5V) 

ENABLE 
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Description of Functions 

1. Excitation Settings 
 The excitation mode can be selected from the following eight modes using the M1, M2 and M3 inputs. New 
excitation mode starts from the initial mode when M1, M2, or M3 inputs are shifted during motor operation. 
In this case, output current waveform may not continue. 

 

Input Mode 
(Excitation) M1 M2 M3 

L L L 
Standby mode  

(Operation of the internal circuit is almost turned off.) 

L L H 1/1 (2-phase excitation, full-step) 

L H L 
1/2A type (1-2 phase excitation A type) 

( 0%, 71%, 100% ) 

L H H 
1/2B type (1-2 phase excitation B type) 

( 0%, 100% ) 

H L L 1/4 (W1-2 phase excitation) 

H L H 1/8 (2W1-2 phase excitation) 

H H L 1/16 (4W1-2 phase excitation) 

H H H 
Standby mode 

 (Operation of the internal circuit is almost turned off.) 

 
Note: To change the exciting mode by changing M1, M2, and M3, make sure not to set M1 = M2 = M3 = L or M1 = M2 = 

M3 = H. 
 
Standby mode 
 

The operation mode moves to the standby mode under the condition M1 = M2 = M3 = L or M1 = M2 = M3 
= H. 
The power consumption is minimized by turning off all the operations except protecting operation. 
In standby mode, output terminal MO is HZ. 
Standby mode is released by changing the state of M1=M2=M3=L and M1=M2=M3=H to other state. 
Input signal is not accepted for about 200 μs after releasing the standby mode. 
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2. Function 
 
(1)To turn on the output, configure the ENABLE pin high. To turn off the output, configure the ENABLE 
pin low. 
(2) The output changes to the Initial mode shown in the table below when the ENABLE signal goes High 
level and the RESET signal goes Low level. (In this mode, the status of the CLK and CW/CCW pins are 
irrelevant.) 
(3) As shown in the below figure of Example 1, when the ENABLE signal goes Low level, it sets an OFF on 
the output. In this mode, the output changes to the initial mode when the RESET signal goes Low level. 
Under this condition, the initial mode is output by setting the ENABLE signal High level. And the motor 
operates from the initial mode by setting the RESET signal High level.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(*: Output current starts rising at the timing of PWM frequency just after ENABLE pin outputs high.) 
 
 
 
 

Command of the standby has a higher priority 
than ENABLE. Standby mode can be turned on 
and off regardless of the state of ENABLE.   
X: Don’t Care 
 

Input 
Output mode 

CLK CW/CCW RESET ENABLE 

 L H H CW 

 H H H CCW 

X X L H Initial mode 

X X X L Z 

（例1）

内部電流設定

Z

出力電流(A相)

CLK

RESET

ENABLE

(Example 1) 

Internal current set 

 

Output current 
 (phase A ) 

(*) 

115



TB6600HG 

2016-06-10 
 

7 

 
3. Initial Mode 

When RESET is used, the phase currents are as follows. 
 

Excitation Mode Phase A Current Phase B Current 

1/1 (2-phase excitation, full-step) 100% -100% 

1/2A type (1-2 phase excitation A type) (0%, 71%, 100%) 100% 0% 

1/2B type (1-2 phase excitation B type) (0%, 100%) 100% 0% 

1/4 (W1-2 phase excitation) 100% 0% 

1/8 (2W1-2 phase excitation) 100% 0% 

1/16 (4W1-2 phase excitation) 100% 0% 

 
current direction is defined as follows. 
OUT1A → OUT2A: Forward direction 
OUT1B → OUT2B: Forward direction 
 
 

4. 100% current settings (Current value) 
100% current value is determined by Vref inputted from external part and the external resistance for 
detecting output current. Vref is doubled 1/3 inside IC. 
 
  Io (100%) = (1/3 × Vref) ÷ RNF 
 
The average current is lower than the calculated value because this IC has the method of peak current 
detection.  
Pleas use the IC under the conditions as follows; 

0.11Ω ≤ RNF ≤ 0.5Ω, 0.3V ≤ Vref ≤ 1.95V 
 
5. OSC 

Triangle wave is generated internally by CR oscillation by connecting external resistor to OSC terminal. 
Rosc should be from 30kΩ to 120kΩ. The relation of Rosc and fchop is shown in below table and figure. The 
values of fchop of the below table are design guarantee values. They are not tested for pre-shipment.  

 
Rosc(kΩ) 

 
fchop(kHz) 

Min Typ. Max 
30 - 60 - 
51 - 40 - 

120 - 20 - 
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6. Decay Mode  

It takes approximately five OSCM cycles for charging-discharging a current in PWM mode. The 40% fast 
decay mode is created by inducing decay during the last two cycles in Fast Decay mode. 
The ratio 40% of the fast decay mode is always fixed. 

    The relation between the master clock frequency (fMCLK), the OSCM frequency (fOSCM) and the PWM 
frequency (fchop) is shown as follows: 

fOSCM = 1/20 ×fMCLK 
         fchop = 1/100 ×fMCLK 
 

When Rosc=51kΩ, the master clock=4MHz, OSCM=200kHz, the frequency of PWM(fchop)=40kHz. 
 

 
 
 
 

6-1. Current Waveform and Mixed Decay Mode settings 
The period of PWM operation is equal to five periods of OSCM. 
The ratio 40% of the fast decay mode is always fixed. 
The “NF” refers to the point at which the output current reaches its predefined current level. 
 

MDT means the point of MDT (MIXED DECAY TIMMING) in the below diagram.  
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

OSCM  
Internal 
Waveform 

fchop 
 

NF 
 40%  

fast 
Decay 
Mode MDT 

 
Charge mode → NF: Predefined current level → Slow mode → 
MDT(Mixed decay timing) → Fast mode → Current monitoring → 
 (When predefined current level ＞ Output current) Charge mode 

 

Predefined Current Level 
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6-2.  Effect of Decay Mode 
 

• Increasing the current (sine wave) 

 
 

• Decreasing the current (In case the current is decreased to the predefined value in a short time because 
it decays quickly.) 

 
 
 
 

• Decreasing the current (In case it takes a long time to decrease the current to the predefined value 
because the current decays slowly.) 

 
During Mixed Decay and Fast Decay modes, if the predefined current level is less than the output current at 
the RNF (current monitoring point), the Charge mode in the next chopping cycle will disappear (though the 
current control mode is briefly switched to Charge mode in actual operations for current sensing) and the 
current is controlled in Slow and Fast Decay modes (mode switching from Slow Decay mode to Fast Decay 
mode at the MDT point). 

Note: The above figures are rough illustration of the output current. In actual current waveforms, transient response 
curves can be observed. 

Predefined 
Current Level 
 

Slow 

 
 

Slow 

Fast 

Predefined 
Current Level 
 

Slow 

 

Charge 

Fast 

Fast 

Fast 
Slow 

               Charge          Charge 

Even if the output current rises above the predefined current at the RNF point, the 
current control mode is briefly switched to Charge mode for current sensing. 

 

Slow Slow 

Charge 
Slow 

Fast 

Slow 

Fast 
Charge 

Predefined 
Current Level 
 

Predefined 
Current Level 
 

Fast 
Charge 

Fast 

Charge 

Even if the output current rises above the predefined current at the RNF point, the 
current control mode is briefly switched to Charge mode for current sensing. 

 

Slow Slow 

Slow Slow 

Fast Fast 

Charge 

Charge 

Fast 
Charge 

Fast 
Charge 

Predefined 
Current Level 
 

Predefined 
Current Level 
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6-3. Current Waveforms in Mixed Decay Mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
• When the NF points come after Mixed Decay Timing points 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

• When the output current value > predefined current level in Mixed Decay mode 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NF 

NF 

OSCM 
Internal 
waveform 
 
IOUT 

fchop fchop 

Predefined 
Current Level 
 

Predefined Current Level 
 

40%  
Fast 
DECAY 
MODE 

MDT (MIXED DECAY TIMMING) points 

NF 

40% 
Fast 
DECAY 
MODE 

IOUT 

fchop fchop 

Predefined 
Current Level 

 
 

CLK signal input 

Switches to Fast mode after Charge mode 
 
 

NF 

MDT (MIXED DECAY TIMMING) points 

NF 

NF 

IOUT 

fchop fchop 

Predefined 
Current 
Level 

 
 
 

CLK signal input 
 

fchop 

MDT (MIXED DECAY TIMMING) points 

Predefined Current 
Level 

 
 
 

40% 
Fast 
DECAY 
MODE 

Even if the output current rises above the predefined current at the 
RNF point, the current control mode is briefly switched to Charge 
mode for current sensing. 

 

Predefined 
Current Level 
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Output Stage Transistor Operation Mode 

 
Output Stage Transistor Operation Functions 

CLK U1 U2 L1 L2 

CHARGE ON OFF OFF ON 

SLOW OFF OFF ON ON 

FAST OFF ON ON OFF 

Note: The above chart shows an example of when the current flows as indicated by the arrows in the above figures. 
If the current flows in the opposite direction, refer to the following chart: 

 

CLK U1 U2 L1 L2 

CHARGE OFF ON ON OFF 

SLOW OFF OFF ON ON 

FAST ON OFF OFF ON 

 
Upon transitions of above-mentioned functions, a dead time of about 300 ns (Design guarantee value) is inserted 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
 

U1 

L1 

U2 

L2 

PGND 

OFF 

OFF 

U1 

L1 

U2 

L2 

OFF 

ON 

Note  

Load 

PGND 

U1 

L1 

U2 

L2 

Note  

Load 

PGND 

Note  

RNF 

 Vcc 
 

ON 

ON 

Load 

Charge Mode Slow Mode Fast Mode 

ON 

RNF 

Vcc 

RNF 

Vcc 

OFF 

OFF OFF 

ON 

ON 

OUT1         OUT2 

  

OUT1         OUT2 

 

OUT1         OUT2 
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Thermal Shut-Down circuit (TSD) 
(1) Automatic return 

TSD = 160°C (typ.) (Note) 
 TSDhys = 70°C (typ.) (Note) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Automatic return has a temperature hysteresis shown in the above figure. 

 
In case of automatic return, the return timing is adjusted at charge start of fchop after the temperature falls to the 
return temperature (90°C (typ.) in the above figure). 
 The return period after the temperature falls corresponds to one cycle to two cycles of fchop. 
 
 
(2) Latch type 

TSD = 160°C (typ.)  (Note) 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
The operation returns by programming the ENABLE as H → L → H shown in above figure or turning on power 
supply and turning on UVLO function. In this time, term of L level of ENABLE should be 0.3ms or more. 
To recover the operation, the junction temperature (the chip temperature) should be 90°C or less when ENABLE 
input is switched from L to H level. Otherwise, the operation does not recover.  

Note: Pre-shipment testing is not performed. 
 
 

･State of internal IC when TSD circuit operates. 
The states of the internal IC and outputs, while the shutdown circuit is operating, correspond to the state when 
ENABLE is L. 
The state after automatic return corresponds to the state when ENABLE is H. Please configure the Reset L to 
rotate the motor from the initial state. 

 160°C (typ.) (Note) 

Junction temperature (Chip temperature) 

ALERT output 
H 
 

L 

90°C (typ.) (Note) 

 
 

Output on     Output off     Output on 
Output state 

 160°C (typ.)  (Note) 

Junction temperature (Chip temperature) 

ALERT output 
H 
 
L 

Output on       Output off      Output on 

ENABLE input 

0.3ms or more when Rosc=51kΩ 

Output state 

H 
 

L 

(*)Output current starts rising at the 
timing of PWM frequency just after 
ENABLE pin outputs high. 

(*) 
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Latch/Auto is an input pin for determining the return method of TSD. 
If Latch/Auto pin outputs low, TSD function returns by either of turning on power supply again or programming 
the ENABLE as H → L → H. 
If Latch/Auto pin outputs high, it returns automatically. 
In standby mode, TSD function returns automatically regardless of the state of the Latch/Auto pin. 
When power supply voltage Vcc is less than 8V, TSD function cannot operate regardless of the state of the 
Latch/Auto pin. 
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ISD (Over current detection) 
Current that flows through output power MOSFETs are monitored individually. If over-current is detected 
in at least one of the eight output power MOSFETs, all output power MOSFETs are turned off then this 
status is kept until ENABLE signal is input. In this time, term of L level of ENABLE should be 0.3ms or 
more.  

Masking term of 1μs or more (typ. when Rosc=51kΩ) (Note) should be provided in order to protect detection 
error by noise. ISD does not work during the masking term. 

  

 Over current detection value ISD=6.5 A    (Note) 

 

 

 

 

  

  

 

 

 

 
 

 

 

 

 

 

 

The operation returns by programming the ENABLE as H → L → H shown in above figure or turning 
on power supply and turning on UVLO function. 

Note: Pre-shipment testing is not performed. 
 
･State of internal IC when ISD circuit operates. 
The states of the internal IC and outputs, while the over current detection circuit is operating, correspond to the 
state when ENABLE is L. 
The state after automatic return corresponds to the state when ENABLE is H. Please configure the Reset L to 
rotate the motor from the initial state. 

 

 

 

Return method of ISD 
ISD function returns by either of turning on power supply again or programming the ENABLE as H → L → H 
regardless of the state of the Latch/Auto pin. 
In standby mode, ISD function cannot operate. 
When power supply voltage Vcc is less than 8V, ISD function cannot operate. 

 
 
 
 
 
 

DMOS 
Power transistor current 

 

6.5A (typ.) 

Dead band 
1μs or more(typ.) 

Output on         Output off         Output on     
Output state 

(*)Output current starts rising at the 
timing of PWM frequency just after 
ENABLE pin outputs high. 

ALERT output 
H 
 
L 

ENABLE input 

0.3ms or more when Rosc=51kΩ 

H 
 

L 

(*) 
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Under Voltage Lock Out (UVLO) circuit 
 

Outputs are shutoff by operating at 5.5 V (Typ.) of Vcc or less. 
It has a hysteresis of 0.5 V (Typ.) and returns to output when Vcc reaches 6.0 V (Typ.). The following values are 

design guarantee values. 
 

･State of internal IC when UVLO circuit operates. 
The states of the internal IC and outputs correspond to the state in the ENABLE mode and the initial mode at 
the same time.  
After a return, it can start from the initial mode. 

 
When Vcc falls to around 5.5 V and UVLO operates, output turns off. 
It recovers automatically from the initial mode when both Vcc rise to around 6.0 V or more. The following 

values are design guarantee values. 
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ALERT output 
ALERT terminal outputs low in detecting either TSD or ISD.  
ALERT terminal is connected to power supply externally via pull-up resistance.  

          VALERT = 0.5 V (max) at 1 mA 
 
 
 
 
 
 
 
 
  
 

Applied voltage to pull-up resistance is up to 5.5 V. And conducted current is up to 1 mA. 
It is recommended to gain 5 V by connecting the external pull-up resistance to Vreg pin. 

 

MO output 
MO turns on at the predetermined state and output low.  
MO terminal is connected to power supply externally via pull-up resistance.  

         VMO = 0.5 V (max) at 1 mA  
 
 
 
 
 
 
 Applied voltage to pull-up resistance is up to 5.5 V. And conducted current is up to 1 mA. 
 It is recommended to gain 5 V by connecting the external pull-up resistance to Vreg pin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Voltage pull-up of MO and ALERT pins 
･It is recommended to pull-up voltage to Vreg pin. 
･In case of pull-up to except 5 V (for instance, 3.3 V etc.), it is recommended to use other power supply (ex. 3.3 V) 
while Vcc output between the operation range. When Vcc decreases lower than the operation range and Vreg 
decreases from 5 V to 0 V under the condition that other power supply is used to pull-up voltage, the current 
continues to conduct from other power supply to the IC inside through the diode shown in the figure.  Though this 
phenomenon does not cause destruction and malfunction of the IC, please consider the set design not to continue 
such a state for a long time.  
･As for the pull-up resistance for MO and ALERT pins, please select large resistance enough for the conducting 
current so as not to exceed the standard value of 1 mA. 
Please use the resistance of 30 kΩ or more in case of applying 5 V, and 20 kΩ or more in case of applying 3.3 V. 
 

TSD ISD ALERT 

Under TSD detection Under ISD detection 

Low Normal Under ISD detection 

Under TSD detection Normal 

Normal Normal Z 

State  MO 

Initial  Low 

Not initial  Z 

 

 

 

(To Vreg in the IC) 

(To pull-up resistance) 
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Sequence and current level in each excitation mode 

1/1-step Excitation Mode (M1: L, M2: L, M3: H, CW Mode) 
  

 
 

1/1-step Excitation Mode (M1: L, M2: L, M3: H, CCW Mode) 

 

CLK 

100 
(%) 

0 

−100 

t0 t1 t2 t3 

 
t7 t8 t4 t5 t6 

IA 

100 
(%) 

0 

−100 

IB 
 
 
 

MO 

CLK 

100 
(%) 

0 

−100 

t0 t1 t2 t3 t7 t8 t4 t5 t6 

IA 

100 
(%) 

0 

−100 

IB 
 
 
 

MO 

It operates from the initial state after the excitation mode is switched. 
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1/2-step Excitation Mode (A type) (M1: L, M2: H, M3: L, CW Mode) 
  

 
 

1/2-step Excitation Mode (A type) (M1: L, M2: H, M3: L, CCW Mode) 

 
 
 

CLK 

100 
(%) 

0 

−100 

t0 t1 t2 t3 t7 t8 t4 t5 t6 

71 

−71 

IA 

100 
(%) 

0 

−100 

71 

−71 
 
 
 

IB 
 
 
 

MO 

CLK 

100 
(%) 

0 

−100 

t0 t1 t2 t3 t7 t8 t4 t5 t6 

71 

−71 

IA 

100 
(%) 

0 

−100 

71 

−71 
 
 
 

IB 
 
 
 

MO 

It operates from the initial state after the excitation mode is switched. 
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1/2-step Excitation Mode (B type) (M1: L, M2: H, M3: H, CW Mode) 
  

 
 

1/2-step Excitation Mode (B type) (M1: L, M2: H, M3: H, CCW Mode) 

 
 
 

CLK 

100 
(%) 

0 

−100 

t0 t1 t2 t3 t7 t8 t4 t5 t6 

IA 

100 
(%) 

0 

−100 

IB 
 
 
 

MO 

CLK 

100 
(%) 

0 

−100 

t0 t1 

 
t2 t3 t7 t8 t4 t5 t6 

IA 

100 
(%) 

0 

−100 

71 

−71 
 
 
 

IB 
 
 
 

MO 

It operates from the initial state after the excitation mode is switched. 
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1/4-step Excitation Mode (M1: H, M2: L, M3: L, CW Mode) 
   
 

 
1/4-step Excitation Mode (M1: H, M2: L, M3: L, CCW Mode) 

 

CLK 

100 
(%) 

0 

−100 

t0 t1 t2 t3 t7 t8 t4 t5 t6 

71 

−71 

IA 

IB 
 
 
 

t9 t10 t11 t15 t16 t12 t13 t14 
 

38 

−38 

92 

−92 

100 
(%) 

0 

−100 

71 

−71 

38 

−38 

92 

−92 

MO 

It operates from the initial state after the excitation mode is switched. 

CLK 

100 
(%) 

0 

−100 

t0 t1 t2 t3 t7 t8 t4 t5 t6 

71 

−71 

IA 

IB 
 
 
 

t9 t10 t11 t15 t16 t12 t13 t14 
 

38 

−38 

92 

−92 

100 
(%) 

0 

−100 

71 

−71 

38 

−38 

92 

−92 

MO 
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1/8-Step Excitation Mode (M1: H, M2: L, M3: H, CW Mode) 
 

 

IA 

IB 
 
 
 

It operates from the initial state after the excitation mode is switched. 

MO 

38 

CLK 

t0 t1 t2 t3 t7 t8 t4 t5 t12 t13 t6 

100 
(%) 

98 
92 
83 
71 

56 

38 

20 

0 

−20 

−38 

−56 

−71 

 
 

−92 
−98 
−100 

100 
(%) 

98 
92 
83 
71 

56 

 
 
 
 

 

20 

 0 

−20 

−38 

−56 

−71 

 
 

−98 
−100 

t9 t10 t11 t14 t17 t18 t15 t16 t19 t20 t21 t22 t27 t28 t24 t25 t29 t30 t31 t32 t23 t26 

−83 

−83 
−92 
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1/8-Step Excitation Mode (M1: H, M2: L, M3: H, CCW Mode) 

It operates from the initial state after the excitation mode is switched. 

MO 

38 

−83 
−92 

−83 
−71 

CLK 

100 
(%) 

98 
92 
83 
71 

56 

38 

20 

0 

−20 

−38 

−56 

 
 

−92 
−98 
−100 

100 
(%) 

98 
92 
83 
71 

56 

 
 
 
 

 

20 

 0 

−20 

−38 

−56 

−71 

 
 

−98 
−100 

t0 t1 t2 t3 t7 t8 t4 t5 t12 t13 t6 t9 t10 t11 t14 t17 t18 t15 t16 t19 t20 t21 t22 t27 t28 t24 t25 t29 t30 t31 t32 t23 t26 

IA 

IB 
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1/16-step Excitation Mode (M1: H, M2: H, M3: L, CW Mode) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−100 
−98 

0 

−96 
−88 
−92 

−77 
−71 

−56 
−63 

−47 

−38 

−29 

−20 

−10 

−83 

10 

20 

29 

38 

 

47 

56 
63 
71 
77 
83 
88 
92 
96 
98 

100 
[%] 

CLK 

t0･･･････････････････････････････････････････････････････････････････････････････････････････････････････････････････････t64 
 

IA 

IB 

It operates from the initial state after the excitation mode is switched. 

 

MO 
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1/16-step Excitation Mode (M1: H, M2: H, M3: L, CCW Mode) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−100 
−98 

0 

−96 
−88 
−92 

−77 
−71 

−56 
−63 

−47 

−38 

−29 

−20 

−10 

−83 

10 

20 

29 

38 

47 

56 
63 
71 
77 
83 
88 
92 
96 
98 

100 
[%] 

 

CLK 

t0･･･････････････････････････････････････････････････････････････････････････････････････････････････････････････････････t64 
 

IA 

IB 

 

MO 
 

It operates from the initial state after the excitation mode is switched. 
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Current level 
2-phase, 1-2-phase, W1-2-phase, 2W1-2-phase, 4W1-2-phase excitation (unit: %) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Current level (1/16, 1/8, 1/4, 1/2, 1/1 )

θ16 --- 100.0 ---
θ15 95.5 99.5 100.0
θ14 94.1 98.1 100.0
θ13 91.7 95.7 99.7
θ12 88.4 92.4 96.4
θ11 84.2 88.2 92.2
θ10 79.1 83.1 87.1
θ9 73.3 77.3 81.3
θ8 66.7 70.7 74.7
θ7 59.4 63.4 67.4
θ6 51.6 55.6 59.6
θ5 43.1 47.1 51.1
θ4 34.3 38.3 42.3
θ3 25.0 29.0 33.0
θ2 15.5 19.5 23.5
θ1 5.8 9.8 13.8
θ0 --- 0.0 ---

％

Max. Unit
1/16,

1/8, 1/4,
1/2, 1/1

Min. Typ.
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Absolute Maximum Ratings (Ta = 25°C) 

Characteristic Symbol Rating Unit 

Power supply voltage Vcc 50 V 

Output current (per one phase) 
IO  

(PEAK) 

5.0  A 

Drain current (ALERT, MO) 
I (ALERT) 

1 mA 
I (MO) 

Input voltage VIN 6 V 

Power dissipation PD 

3.2 (Note 1) 
W 

40  (Note 2) 

Operating temperature Topr -30 to 85 °C 

Storage temperature Tstg -55 to 150 °C 

 

Note 1: Ta = 25°C, No heatsink 

Note 2: Ta = 25°C, with infinite heatsink. 
 
The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even for a 
moment. Do not exceed any of these ratings. 
Exceeding the rating (s) may cause the device breakdown, damage or deterioration, and may result injury by explosion 
or combustion. 
Please use the IC within the specified operating ranges. 
 

Operating Range (Ta = −30~85°C) 

Characteristic Symbol Test Condition Min Typ. Max Unit 

Power supply voltage Vcc ― 8.0 ― 42 V 

Output current IOUT ― ― ― 4.5 A 

Input voltage 
VIN ― 0 ― 5.5 V 

Vref ― 0.3 ― 1.95 V 

Clock frequency in logical part fCLK ― ― ― 200 kHz 

Chopping frequency fchop See page 7. 20 40 60 kHz 

Note: Two Vcc terminals should be programmed the same voltage.  
The maximum current of the operating range can not be necessarily conducted depending on various 
conditions because output current is limited by the power dissipation PD. 
Make sure to avoid using the IC in the condition that would cause the temperature to exceed Tj (avg.) 
=107°C. 
 

     The power supply voltage of 42 V and the output current of 4.5 A are the maximum values of operating range. 
Please design the circuit with enough derating within this range by considering the power supply variation, the 
external resistance, and the electrical characteristics of the IC. In case of exceeding the power supply voltage 
of 42 V and the output current of 4.5 A, the IC will not operate normally. 
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Electrical Characteristics (Ta = 25°C, Vcc = 24 V) 

Characteristic Symbol Test Condition Min Typ. Max Unit 

Input voltage 
High VIN (H) 

M1, M2, M3, CW/CCW, CLK, 
RESET, ENABLE, Latch/Auto, TQ 

2.0 ― 5.5 
V 

Low VIN (L) -0.2 ― 0.8 

Input hysteresis voltage VH ― 400 ― mV 

Input current 

IIN (H) 

M1, M2, M3, CW/CCW, CLK, 
RESET, ENABLE, Latch/Auto             
VIN = 5.0 V 

― 50 75 

μA TQ,  VIN = 5.0 V ― 70 105 

IIN (L) 

M1, M2, M3, CW/CCW, CLK, 
RESET, ENABLE, Latch/Auto, TQ 
VIN = 0 V 

― ― 1 

Vcc supply current 

Icc1 

Output open,               
RESET: H, ENABLE: H､        
M1:L, M2:L, M3:H (1/1-step mode)       
CLK:L 

― 4.2 7 

mA 

Icc2 

Output open,               
RESET: L, ENABLE: L          
M1:L, M2:L, M3:H (1/1-step mode) 
CLK:L 

― 3.6 7 

Icc3 Standby mode (M1:L, M2:L, M3:L) ― 1.8 4 

Vref input 
circuit 

Current limit 
voltage VNF  Vref = 3.0 V(Note 1), TQ=H 0.9 1.0 1.1 V 

Input current IIN(Vref) Vref = 3.0 V(Note 1) ― ― 1 μA 

Divider ratio Vref/VNF Maximum current: 100%, TQ=H ― 3 ― ― 

Minimum CLK pulse width 
twCLKH 

CLK 2.2 ― ― μs 
twCLKL 

Output residual voltage 
VOL MO 

IOL = 1 mA ― ― 0.5 V 
VOL ALERT 

Internal constant voltage Vreg External capacitor = 0.1 μF        
(in standby mode) 4.5 5.0 5.5 V 

Chopping frequency fchop Rosc=51kΩ 28 40 52 kHz 

Note 1: Though Vref of the test condition for pre-shipment is 3.0V, make sure to configure Vref within the operating 
range which is written in page 26 in driving the motor. 

 
 
Electrical Characteristics (Ta = 25°C, Vcc = 24 V)  
 

Characteristic Symbol Test Condition Min Typ. Max Unit 

Output ON resistor Ron U + Ron L IOUT = 4 A ― 0.4 0.6 Ω 

Output transistor switching characteristics 
tr 

VNF = 0 V, Output: Open 
― 50 ― 

ns 
tf ― 500 ― 

Output leakage 
current 

Upper side ILH 
Vcc = 50 V 

― ― 5 
μA 

Lower side ILL ― ― 5 
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Timing Waveforms and Names 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 

CLK 
  

Vcc 

GND 
tr tf 

10% 

90% 90% 

10% 

 

 

Figure 1  Timing Waveforms and Names 

twCLKH twCLKH 

Figure 2  Timing Waveforms and Names 

twCLKL 

OUT1A, OUT2A, 

OUT1B, OUT2B 
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Power Dissipation 
 

TB6600HG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
PD  – Ta 

Ambient temperature  Ta  (°C) 
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① Infinite heatsink 
Rθj-c = 1°C/W 

② HEATSINK (RθHS = 3.5°C/W) 
Rθj-c + RθHS = 4.5°C/W 

③ IC only 
Rθj-a = 39°C/W 
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1. How to Turn on the Power 
 In applying Vcc or shutdown, ENABLE should be Low. 

See Example 1(ENABLE = High → RESET = High) and Example 2(RESET = High → ENABLE = High) 
as follows. In example 1, a motor can start driving from the initial mode. 

(1) CLK: Current step proceeds to the next mode with respect to every rising edge of CLK. 
(2) ENABLE: It is in Hi-Z state in low level. It is output in high level. 

     RESET: It is in the initial mode (Phase A=100% and Phase B=0%) in low level. 
     ①ENABLE=Low and RESET=Low: Hi-Z. Internal current setting is in initial mode. 
     ②ENABLE=Low and RESET=High: Hi-Z. Internal current setting proceeds by internal counter. 
     ③ENABLE=High and RESET=Low: Output in the initial mode (Phase A=100% and Phase B=0%). 
     ④ENABLE=High and RESET=High: Output at the value which is determined by the internal counter. 
 
   <Recommended control input sequence> 

 

（例2）

Z

出力電流(A相)

CLK

RESET

ENABLE

内部電流設定

（例1）

内部電流設定

Z

出力電流(A相)

CLK

RESET

ENABLE

(Example 1) 

Internal current set 

Output current 
 (Phase A) 

(Example 2) 

Internal current set 

Output current 
 (Phase A) 

(*：Output current starts rising at the timing of PWM frequency just after ENABLE pin outputs high.) 

(*) 

(*) 
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Application Circuit   
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note 1: Capacitors for the power supply lines should be connected as close to the IC as possible. 

Note 2: Current detecting resistances (RNFA and RNFB) should be connected as close to the IC as possible. 
Note 3: Pay attention for wire layout of PCB not to allow GND line to have large common impedance. 
Note 4: External capacitor connecting to Vreg should be 0.1μF. Pay attention for the wire between this 

capacitor and Vreg terminal and the wire between this capacitor and SGND not to be influenced by 
noise. 

Note 5: The IC may not operate normally when large common impedance is existed in GND line or the IC is 
easily influenced by noise. For example, if the IC operates continuously for a long time under the 
circumstance of large current and high voltage, the number of clock signals inputted to CLK 
terminal and that of steps of output current waveform may not proportional. And so, the IC may not 
operate normally. To avoid this malfunction, make sure to conduct Note.1 to Note.4 and evaluate 
the IC enough before using the IC. 

24V 

M1 

M2 

CW/CCW 

CLK 

ENABLE 

M3 

OSC 

TSD/ISD/UVLO 

MO ALERT 

 
H-Bridge 
driver A 

Vcc 

OUT1A 

OUT2A 
 
 
 

NFA 

 
H-Bridge 
driver B 

OUT1B 

OUT2B 

NFB 

Vref 

SGND 

Current selector 
circuit A 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Current selector 
circuit B 

 
Pre 

-drive 

 
Pre 

-drive 

 

OSC 

 

MCU 

 

0.2Ω 

0.2Ω 
 

24V 

RESET 

PGNDA 

  

PGNDB 

 

 

Latch/Auto 

Vreg 

51kΩ 

TQ 

 
 

 

 

 

 

 
Control 

logic 

1/3 

100%/ 
30% 

0.1μF 

0.1μF  47μF 

Reg (5V) 

fuse 
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Package Dimensions 
 
 
 
Weight: 7.7 g (typ.) 
Unit: mm 
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Notes on Contents 
 
1. Block Diagrams 

Some of the functional blocks, circuits, or constants in the block diagram may be omitted or simplified for 
explanatory purposes. 

 
2. Equivalent Circuits  

The equivalent circuit diagrams may be simplified or some parts of them may be omitted for explanatory 
purposes. 

 
3. Timing Charts 

Timing charts may be simplified for explanatory purposes. 
 
4. Application Circuits 

The application circuits shown in this document are provided for reference purposes only.  Thorough evaluation 
is required, especially at the mass production design stage. 
Toshiba does not grant any license to any industrial property rights by providing these examples of application 
circuits. 

 
5. Test Circuits 

Components in the test circuits are used only to obtain and confirm the device characteristics. These components 
and circuits are not guaranteed to prevent malfunction or failure from occurring in the application equipment. 

 
 
 
IC Usage Considerations 

Notes on handling of ICs 
 
[1] The absolute maximum ratings of a semiconductor device are a set of ratings that must not be exceeded, even 

for a moment. Do not exceed any of these ratings. 
Exceeding the rating(s) may cause the device breakdown, damage or deterioration, and may result injury by 
explosion or combustion. 

 
[2] Use an appropriate power supply fuse to ensure that a large current does not continuously flow in case of over 

current and/or IC failure. The IC will fully break down when used under conditions that exceed its absolute 
maximum ratings, when the wiring is routed improperly or when an abnormal pulse noise occurs from the 
wiring or load, causing a large current to continuously flow and the breakdown can lead smoke or ignition. To 
minimize the effects of the flow of a large current in case of breakdown, appropriate settings, such as fuse 
capacity, fusing time and insertion circuit location, are required.  

 
[3] If your design includes an inductive load such as a motor coil, incorporate a protection circuit into the design to 

prevent device malfunction or breakdown caused by the current resulting from the inrush current at power ON 
or the negative current resulting from the back electromotive force at power OFF. IC breakdown may cause 
injury, smoke or ignition.  
Use a stable power supply with ICs with built-in protection functions. If the power supply is unstable, the 
protection function may not operate, causing IC breakdown. IC breakdown may cause injury, smoke or ignition.  
 

[4] Do not insert devices in the wrong orientation or incorrectly. 
Make sure that the positive and negative terminals of power supplies are connected properly. 
Otherwise, the current or power consumption may exceed the absolute maximum rating, and exceeding the 
rating(s) may cause the device breakdown, damage or deterioration, and may result injury by explosion or 
combustion. 
In addition, do not use any device that is applied the current with inserting in the wrong orientation or 
incorrectly even just one time. 
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Points to remember on handling of ICs 
 
(1) Over current Detection Circuit 

Over current detection circuits (referred to as current limiter circuits) do not necessarily protect ICs under all 
circumstances. If the over current detection circuits operate against the over current, clear the over current 
status immediately.  
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause 
the over current detection circuit to not operate properly or IC breakdown before operation. In addition, 
depending on the method of use and usage conditions, if over current continues to flow for a long time after 
operation, the IC may generate heat resulting in breakdown.  

 
(2) Thermal Shutdown Circuit 

Thermal shutdown circuits do not necessarily protect ICs under all circumstances. If the thermal shutdown 
circuits operate against the over temperature, clear the heat generation status immediately. 
Depending on the method of use and usage conditions, such as exceeding absolute maximum ratings can cause 
the thermal shutdown circuit to not operate properly or IC breakdown before operation. 

 
(3) Heat Radiation Design 

In using an IC with large current flow such as power amp, regulator or driver, please design the device so that 
heat is appropriately radiated, not to exceed the specified junction temperature (Tj) at any time and condition. 
These ICs generate heat even during normal use. An inadequate IC heat radiation design can lead to decrease 
in IC life, deterioration of IC characteristics or IC breakdown. In addition, please design the device taking into 
considerate the effect of IC heat radiation with peripheral components. 

 
(4) Back-EMF 

When a motor rotates in the reverse direction, stops or slows down abruptly, a current flow back to the motor’s 
power supply due to the effect of back-EMF. If the current sink capability of the power supply is small, the 
device’s motor power supply and output pins might be exposed to conditions beyond absolute maximum ratings. 
To avoid this problem, take the effect of back-EMF into consideration in system design. 
 

(5) Short-circuiting between outputs, air contamination faults, faults due to improper grounding, short-circuiting 
between contiguous pins 
Utmost care is necessary in the design of the power supply lines, GND lines, and output lines since the IC may 
be destroyed by short-circuiting between outputs, air contamination faults, or faults due to improper grounding, 
or by short-circuiting between contiguous pins. They may destroy not only the IC but also peripheral parts and 
may contribute to injuries for users. Over current may continue to flow in the IC because of this destruction 
and cause smoke or ignition of the IC. Expect the volume of this over current and add an appropriate power 
supply fuse in order to minimize the effects of the over current. Capacity of the fuse, fusing time, and the 
inserting position in the circuit should be configured suitably. 
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RESTRICTIONS ON PRODUCT USE 

• Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information 
in this document, and related hardware, software and systems (collectively "Product") without notice. 

• This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with 
TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission. 

• Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are 
responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and 
systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily 
injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the 
Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of 
all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes 
for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the 
instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their 
own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such 
design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, 
diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating 
parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR 
APPLICATIONS. 

• PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE 
EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH 
MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT 
("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without 
limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for 
automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, 
safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE 
PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your 
TOSHIBA sales representative. 

• Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part. 

• Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any 
applicable laws or regulations. 

• The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any 
infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to 
any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise. 

• ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE 
FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY 
WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR 
LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND 
LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO 
SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS 
FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT. 

• Do not use or otherwise make available Product or related software or technology for any military purposes, including without 
limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile 
technology products (mass destruction weapons). Product and related software and technology may be controlled under the 
applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the 
U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited 
except in compliance with all applicable export laws and regulations. 

• Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. 
Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, 
including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES 
OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS. 
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A.3 3D Rotary Braider - Electrical Schematic
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Appendix B: 3D Rotary Braider -
Code

Listing B.1: User interface for controlling the creation of 3D Braided Samples.
c l a s s d e f MAGIC < matlab . apps . AppBase

% Properties that correspond to app components

p r op e r t i e s ( Access = pub l i c )
UIFigure matlab . u i . Figure
PROGRESSGaugeLabel matlab . u i . c on t r o l . Label
PROGRESSGauge matlab . u i . c on t r o l . LinearGauge
Bra idCyc lesSpinnerLabe l matlab . u i . c on t r o l . Label
Bra idCyc lesSpinner matlab . u i . c on t r o l . Spinner
CONNECTIONPanel matlab . u i . c on ta ine r . Panel
CONNECTButton matlab . u i . c on t r o l . StateButton
COMPORTDropDownLabel matlab . u i . c on t r o l . Label
COMPORTDropDown matlab . u i . c on t r o l . DropDown
CONNECTIONDisplay matlab . u i . c on t r o l . Ed i tF i e ld
StartButton matlab . u i . c on t r o l . Button

end

p r op e r t i e s ( Access = pr i va t e )
s e rve rObjec t
comPort = 8 ;
baudRate = 115000;
errorCatch
p r op e r t i e s f ID
motorsetData
evenMotor = 1 ;
oddMotor = 2 ;

end

methods ( S t a t i c )
function generateMachinePROPERTIES ( )

fID = fopen ( ’Machine.PROPERTIES ’ , ’W’ ) ;
fprintf ( fID , [ . . .

’#+------------------------------------------------------------------------+’ , . . .
’\n#| |’ , . . .
’\n#| FILENAME : Machine_PROPERTIES VERSION : 1.0.0 |’ , . . .
’\n#| |’ , . . .
’\n#| TITLE : Braiding Machine Propties AUTHOR : Daniel Aldrich |’ , . . .
’\n#| |’ , . . .
’\n#+------------------------------------------------------------------------+’ , . . .
’\n#| |’ , . . .
’\n#| DEPENDENT FILES : |’ , . . .
’\n#| <none > |’ , . . .
’\n#| |’ , . . .
’\n#| DESCRIPTION : |’ , . . .
’\n#| <none > |’ , . . .
’\n#| |’ , . . .
’\n#| PUBLIC FUNCTIONS : |’ , . . .

159



’\n#| <none > |’ , . . .
’\n#| |’ , . . .
’\n#| NOTES : |’ , . . .
’\n#| <none > |’ , . . .
’\n#| |’ , . . .
’\n#| COPYRIGHT : |’ , . . .
’\n#| Copyright (c) 2017 Daniel Aldrich |’ , . . .
’\n#| |’ , . . .
’\n#| Permission is hereby granted , free of charge , to any person |’ , . . .
’\n#| obtaining a copy of this software and associated documentation |’ , . . .
’\n#| files (the "Software"), to deal in the Software without |’ , . . .
’\n#| restriction , including without limitation the rights to use , |’ , . . .
’\n#| copy , modify , merge , publish , distribute , sublicense , and/or |’ , . . .
’\n#| sell copies of the Software , and to permit persons to whom the |’ , . . .
’\n#| Software is furnished to do so , subject to the following |’ , . . .
’\n#| conditions: |’ , . . .
’\n#| |’ , . . .
’\n#| The above copyright notice and this permission notice shall be |’ , . . .
’\n#| included in all copies or substantial portions of the Software. |’ , . . .
’\n#| |’ , . . .
’\n#| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |’ , . . .
’\n#| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |’ , . . .
’\n#| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |’ , . . .
’\n#| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |’ , . . .
’\n#| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |’ , . . .
’\n#| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |’ , . . .
’\n#| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |’ , . . .
’\n#| OTHER DEALINGS IN THE SOFTWARE. |’ , . . .
’\n#| |’ , . . .
’\n#| CHANGES : |’ , . . .
’\n#| <none > |’ , . . .
’\n#| |’ , . . .
’\n#+------------------------------------------------------------------------+’ , . . .

’\n\n# Even Motor Setup ’ , . . .
’\nMotor Set = even’ , . . .
’\nNumber of Steps = 200’ , . . .
’\nDirection Pin = 3’ , . . .
’\nEnable Pin = 4’ , . . .
’\nStep Pin = 2’ , . . .
’\n\n# Odd Motor Setup ’ , . . .
’\nMotor Set = odd’ , . . .
’\nNumber of Steps = 200’ , . . .
’\nDirection Pin = 6’ , . . .
’\nEnable Pin = 7’ , . . . .
’\nStep Pin = 5\n’ ] ) ;

fclose ( fID ) ;
end

end

methods ( Access = pr i va t e )

function attemptDisconnect ( app , ˜)
app .CONNECTButton . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @attemptConnection , t rue ) ;
app .CONNECTButton . BackgroundColor = [ 0 , 1 , 0 ] ;
app .CONNECTButton . Text = ’CONNECT ’ ;
i n s t r r e s e t ;

end

function readMachinePROPERTIES(app , fID )
while ˜feof ( fID )

tempLine = fgetl ( fID ) ;
if ˜isempty ( tempLine ) && ˜strcmp ( tempLine ( 1 ) , ’#’ ) %If not a Comment

temp = s t r s p l i t ( tempLine , ’=’ ) ;
key = s t r t r im ( temp {1} ) ;
va lue = s t r t r im ( temp {2} ) ;
switch key

case ’Motor Set’
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motorSet = value ;
case ’Number of Steps’

property = ’Steps’ ;
case ’Direction Pin’

property = ’Dir’ ;
case ’Enable Pin’

property = ’En’ ;
case ’Step Pin’

property = ’Pul’ ;
end

if ˜strcmp ( key , ’Motor Set’ )
app . motorsetData . ( motorSet ) . ( property ) = st r2doub l e ( va lue ) ;

end

end

end

end

end

methods ( Access = pr i va t e )

% Code that executes after component creation

function startupFcn ( app )
t ry

fID = fopen ( ’Machine.PROPERTIES ’ , ’r’ ) ;
readMachinePROPERTIES(app , fID ) ;
fclose ( fID ) ;

catch ME
app . errorCatch = ME;
MAGIC. generateMachinePROPERTIES ( ) ;
fID = fopen ( ’Machine.PROPERTIES ’ , ’r’ ) ;
readMachinePROPERTIES(app , fID ) ;
fclose ( fID ) ;

end

end

% Value changed function: CONNECTButton

function attemptConnection ( app , event )
if ˜ strcmpi ( app .COMPORTDropDown. Value , ’-SELECT PORT -’ )

if ˜ strcmpi ( app .COMPORTDropDown. Value , ’Bypass ’ )
t ry

app . comPort = st r2doub l e ( app .COMPORTDropDown. Value ( 4 : end ) ) ;
app . s e rve rObjec t = Arduino Server ( . . .

app . comPort , . . .
app . baudRate ) ;

app .CONNECTIONDisplay . S t r ing = ’*** CONNECTED ***’ ;
app .CONNECTIONDisplay . ForegroundColor = [ 0 , 1 , 0 ] ;
app .CONNECTButton . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @attemptDisconnect , t rue ) ;
app .CONNECTButton . BackgroundColor = [ 1 , 0 , 0 ] ;
app .CONNECTButton . Text = ’DISCONNECT ’ ;

catch ME
app . errorCatch = ME;
app .CONNECTButton . Value = f a l s e ;
for n = 1 :3

app .CONNECTIONDisplay . Value = ’*** ERROR CONNECTING ***’ ;
tic ; while ( toc <0 .75) ; end
app .CONNECTIONDisplay . Value = ’*** PLEASE TRY AGAIN ***’ ;
tic ; while ( toc <0 .75) ; end
app .CONNECTIONDisplay . Value = ’*** NOT CONNECTED ***’ ;

end

end

else

app .CONNECTButton . ValueChangedFcn = . . .
c reateCal lbackFcn (app , @attemptDisconnect , t rue ) ;

app .CONNECTButton . BackgroundColor = [ 1 , 0 , 0 ] ;
app .CONNECTButton . Text = ’DISCONNECT ’ ;
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end

else

app .CONNECTButton . Value = f a l s e ;
end

end

% Button pushed function: StartButton

function s t a r tBra i d i ng ( app , event )
% Create Even Stepper Motor Object and set Speed and Direction

tSteps = app . motorsetData . even . Steps ;
tPul = app . motorsetData . even . Pul ;
tDir = app . motorsetData . even . Dir ;
tEn = app . motorsetData . even .En ;

app . s e rve rObjec t . c r ea t eS teppe r (0 , tSteps , tPul , tDir , tEn ) ;
setSpeed ( app . s e rve rObjec t . Stepper {app . evenMotor } , ’30RPM’ ) ;
s e tD i r e c t i o n ( app . s e rve rObjec t . Stepper {app . evenMotor } , ’CW’ ) ;

% Create Odd Stepper Motor Object and set Speed and Direction

tSteps = app . motorsetData . odd . Steps ;
tPul = app . motorsetData . odd . Pul ;
tDir = app . motorsetData . odd . Dir ;
tEn = app . motorsetData . odd .En ;

app . s e rve rObjec t . c r ea t eS teppe r (1 , tSteps , tPul , tDir , tEn ) ;
setSpeed ( app . s e rve rObjec t . Stepper {app . oddMotor } , ’30RPM’ ) ;
s e tD i r e c t i o n ( app . s e rve rObjec t . Stepper {app . oddMotor } , ’CCW’ ) ;

n = 0 ;
while (n < 100)

n = n + 1 ;

% Rotate Even Motors by 90 Degrees

rotateMotor ( app . s e rve rObjec t . Stepper {app . evenMotor } , 9 0 ) ;
tic ; while ( toc < 0 . 2 5 ) ; end % Wait 0.25 sec before next command

% Rotate Odd Motors by 90 Degrees

rotateMotor ( app . s e rve rObjec t . Stepper {app . oddMotor } , 9 0 ) ;
tic ; while ( toc < 0 . 2 5 ) ; end % Wait 0.25 sec before next command

end

end

end

% App initialization and construction

methods ( Access = pr i va t e )

% Create UIFigure and components

function createComponents ( app )

% Create UIFigure

app . UIFigure = u i f i g u r e ;
app . UIFigure . Po s i t i on = [100 100 640 4 8 0 ] ;
app . UIFigure .Name = ’UI Figure ’ ;

% Create PROGRESSGaugeLabel

app . PROGRESSGaugeLabel = u i l a b e l ( app . UIFigure ) ;
app . PROGRESSGaugeLabel . Hor izontalAl ignment = ’center ’ ;
app . PROGRESSGaugeLabel . FontName = ’Consolas ’ ;
app . PROGRESSGaugeLabel . Po s i t i on = [292 352 58 1 5 ] ;
app . PROGRESSGaugeLabel . Text = ’PROGRESS ’ ;

% Create PROGRESSGauge

app .PROGRESSGauge = uigauge ( app . UIFigure , ’linear ’ ) ;
app .PROGRESSGauge . MajorTicks = . . .

[ 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 1 0 0 ] ;
app .PROGRESSGauge . FontName = ’Consolas ’ ;
app .PROGRESSGauge . Pos i t i on = [18 382 606.203125 4 0 ] ;
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% Create BraidCyclesSpinnerLabel

app . Bra idCyc lesSpinnerLabe l = u i l a b e l ( app . UIFigure ) ;
app . Bra idCyc lesSpinnerLabe l . Hor izontalAl ignment = ’right’ ;
app . Bra idCyc lesSpinnerLabe l . FontName = ’Consolas ’ ;
app . Bra idCyc lesSpinnerLabe l . Po s i t i on = [387 300 85 1 5 ] ;
app . Bra idCyc lesSpinnerLabe l . Text = ’Braid Cycles ’ ;

% Create BraidCyclesSpinner

app . Bra idCyclesSpinner = u i sp inne r ( app . UIFigure ) ;
app . Bra idCyclesSpinner . LowerL imit Inc lus ive = ’off’ ;
app . Bra idCyclesSpinner . Limits = [ 0 1 0 0 ] ;
app . Bra idCyclesSpinner . RoundFractionalValues = ’on’ ;
app . Bra idCyclesSpinner . Hor izontalAl ignment = ’center ’ ;
app . Bra idCyclesSpinner . FontName = ’Consolas ’ ;
app . Bra idCyclesSpinner . Pos i t i on = [487 296 100 2 2 ] ;
app . Bra idCyclesSpinner . Value = 1 ;

% Create CONNECTIONPanel

app .CONNECTIONPanel = u ipane l ( app . UIFigure ) ;
app .CONNECTIONPanel . T i t l ePo s i t i o n = ’centertop ’ ;
app .CONNECTIONPanel . T i t l e = ’CONNECTION ’ ;
app .CONNECTIONPanel . FontName = ’Consolas ’ ;
app .CONNECTIONPanel . Po s i t i on = [33 179 260 1 4 6 ] ;

% Create CONNECTButton

app .CONNECTButton = uibutton ( app .CONNECTIONPanel , ’state’ ) ;
app .CONNECTButton . ValueChangedFcn = createCal lbackFcn (app , . . .

@attemptConnection , t rue ) ;
app .CONNECTButton . Text = ’CONNECT ’ ;
app .CONNECTButton . BackgroundColor = [ 0 1 0 ] ;
app .CONNECTButton . FontName = ’Consolas ’ ;
app .CONNECTButton . Pos i t i on = [81 13 100 2 2 ] ;

% Create COMPORTDropDownLabel

app .COMPORTDropDownLabel = u i l a b e l ( app .CONNECTIONPanel ) ;
app .COMPORTDropDownLabel . Hor izontalAl ignment = ’right’ ;
app .COMPORTDropDownLabel . FontName = ’Consolas ’ ;
app .COMPORTDropDownLabel . Po s i t i on = [30 60 58 1 5 ] ;
app .COMPORTDropDownLabel . Text = ’COM PORT’ ;

% Create COMPORTDropDown

app .COMPORTDropDown = uidropdown ( app .CONNECTIONPanel ) ;
app .COMPORTDropDown. Items = {’-SELECT PORT -’ , ’COM0’ , ’COM1’ , . . .

’COM2’ , ’COM3’ , ’COM4’ , ’COM5’ , ’COM6’ , ’COM7’ , ’COM8’ , . . .
’COM9’ , ’Bypass ’ } ;

app .COMPORTDropDown. FontName = ’Consolas ’ ;
app .COMPORTDropDown. Pos i t i on = [103 56 130 2 2 ] ;
app .COMPORTDropDown. Value = ’-SELECT PORT -’ ;

% Create CONNECTIONDisplay

app .CONNECTIONDisplay = u i e d i t f i e l d ( app .CONNECTIONPanel , ’text’ ) ;
app .CONNECTIONDisplay . Ed i tab le = ’off’ ;
app .CONNECTIONDisplay . Hor izontalAl ignment = ’center ’ ;
app .CONNECTIONDisplay . FontName = ’Consolas ’ ;
app .CONNECTIONDisplay . FontColor = [1 0 0 ] ;
app .CONNECTIONDisplay . Pos i t i on = [35 96 191 2 2 ] ;
app .CONNECTIONDisplay . Value = ’*** NOT CONNECTED ***’ ;

% Create StartButton

app . StartButton = uibutton ( app . UIFigure , ’push’ ) ;
app . StartButton . ButtonPushedFcn = createCal lbackFcn (app , . . .

@startBraiding , t rue ) ;
app . StartButton . Pos i t i on = [272 42 100 2 2 ] ;
app . StartButton . Text = ’Start’ ;

end

end
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methods ( Access = pub l i c )

% Construct app

function app = MAGIC

% Create and configure components

createComponents ( app )

% Register the app with App Designer

r eg i s t e rApp (app , app . UIFigure )

% Execute the startup function

runStartupFcn (app , @startupFcn )

if nargout == 0
clear app

end

end

% Code that executes before app deletion

function delete ( app )

% Delete UIFigure when app is deleted

delete ( app . UIFigure )
end

end

end

B.1 Matlab Code

Listing B.2: This is a Test
%+------------------------------------------------------------------------+

%| |

%| FILENAME : Arduino_Server_m VERSION : 0.0.0 |

%| |

%| TITLE : Arduino Server Object AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| Arduino.m |

%| Custom.m |

%| Pololu.m |

%| stepperMotor.m |

%| |

%| DESCRIPTION : |

%| Arduino Server Object acts as a container object for the provided|

%| Libraries. |

%| |

%| PUBLIC FUNCTIONS : |

%| <various > |

%| |

%| NOTES : |

%| <note > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |

%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |
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%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |

%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

c l a s s d e f Arduino Server < handle
%% Properties

p r op e r t i e s ( SetAccess = pub l i c )
Stepper ;

Actuator ;
end

p r op e r t i e s ( SetAccess = pr i va t e )
port = ’COM8’ ;
baud = 115000;
arduino = [ ] ;
Data = [0 0 0 0 0 0 0 0 ] ;

end

p r op e r t i e s ( SetAccess = pr ivate , Hidden )

end

%% Constructor

methods ( Access = pub l i c )
function [ t h i s ] = Arduino Server ( portNumber , baudRate )

switch nargin

case 2
t h i s . port = [ ’COM’ , num2str ( portNumber ) ] ;
t h i s . baud = baudRate ;

case 1
t h i s . port = [ ’COM’ , num2str ( portNumber ) ] ;

o the rw i se
% port = ’COM8 ’;

% baud = 115000;

end

%instrreset;

t h i s . arduino = s e r i a l ( t h i s . port , . . .
’Baudrate ’ , t h i s . baud , . . .
’Timeout ’ , 0 . 0 0 1 ) ;

t h i s . arduino . BytesAvailableFcnCount = 1 ;
t h i s . arduino . BytesAvailableFcnMode = ’byte’ ;
fopen ( t h i s . arduino ) ;
t h i s . arduino . BytesAvai lableFcn = . . .

{@(˜ ,˜ , x ) fprintf ( fscanf (x , ’%c’ , 1 ) ) , t h i s . arduino } ;
end

end

%% Methods (Custom)

methods ( Access = pub l i c )
function callHome ( t h i s )
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t h i s . Data = Custom . callHome ( ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function saveVar ( th i s , Var iable , Data )
t h i s . Data = Custom . saveVar iab l e ( Variable , Data ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function doMath( th i s ,Mode , Var0 , Var1 )
t h i s . Data = Custom . Arithmet ic (Mode , Var0 , Var1 ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

end

%% Methods (Arduino)

methods ( Access = pub l i c )
function pinMode ( th i s , pin ,mode)

t h i s . Data = Arduino . pinMode ( pin ,mode ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function d ig i ta lRead ( th i s , pin )
t h i s . Data = Arduino . d i g i t a lRead ( pin ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function d i g i t a lWr i t e ( th i s , pin , s t a t e )
t h i s . Data = Arduino . d i g i t a lWr i t e ( pin , s t a t e ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function analogRead ( th i s , pin )
t h i s . Data = Arduino . analogRead ( pin ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function analogWrite ( th i s , pin , va lue )
t h i s . Data = Arduino . analogWrite ( pin , va lue ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

end

%% Methods (stepperMotor)

methods ( Access = pub l i c )
function [ ] = c r ea t eSteppe r ( th i s , ID , Steps , stepPin , . . .

d irPin , enablePin , Di rect ion , Speed , Enable )
switch nargin

case 9
% Do Nothing

case 8
Enable = f a l s e ;

case 7
Enable = f a l s e ;
Speed = ’60RPM’ ;

case 6
Enable = f a l s e ;
Speed = ’60RPM’ ;
D i r e c t i on = ’CW’ ;

case 5
Enable = f a l s e ;
Speed = ’60RPM’ ;
D i r e c t i on = ’CW’ ;
s tepPin = 2 ;

case 4
Enable = f a l s e ;
Speed = ’60RPM’ ;
D i r e c t i on = ’CW’ ;
s tepPin = 2 ;
d i rP in = 3 ;

case 3
Enable = f a l s e ;
Speed = ’60RPM’ ;
D i r e c t i on = ’CW’ ;
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stepPin = 2 ;
d i rP in = 3 ;
enablePin = 4 ;

case 2
Enable = f a l s e ;
Speed = ’60RPM’ ;
D i r e c t i on = ’CW’ ;
s tepPin = 2 ;
d i rP in = 3 ;
enablePin = 4 ;
Steps = 200 ;

o therw i se
Enable = f a l s e ;
Speed = ’60RPM’ ;
D i r e c t i on = ’CW’ ;
s tepPin = 2 ;
d i rP in = 3 ;
enablePin = 4 ;
Steps = 200 ;
ID = 0 ;

end

t h i s . Stepper {ID+1} = stepperMotor ( th i s , ID , Steps , stepPin , . . .
d irPin , enablePin , Di rect ion , Speed , Enable ) ;

end

end

%% Methods (Pololu)

methods ( Access = pub l i c )
function createMotor ( th i s , Motor , Steps , stepPin , dirPin , enablePin )

t h i s . Data = . . .
Polo lu . createMotor (Motor , Steps , stepPin , dirPin , enablePin ) ;

t h i s . s e r i a lWr i t e ;
end

function setSpeed ( th i s , Motor , vara rg in )
t h i s . Data = Polo lu . setSpeed (Motor , vara rg in { : } ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function s e tD i r e c t i o n ( th i s , Motor , D i r e c t i on )
t h i s . Data = Polo lu . s e tD i r e c t i o n (Motor , D i r e c t i on ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function enableMotor ( th i s , Motor )
t h i s . Data = Polo lu . enableMotor (Motor ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function disableMotor ( th i s , Motor )
t h i s . Data = Polo lu . d i sableMotor (Motor ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function stepMotor ( th i s , Motor , Steps )
t h i s . Data = Polo lu . stepMotor (Motor , Steps ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

function rotateMotor ( th i s , Motor , Angle )
t h i s . Data = Polo lu . rotateMotor (Motor , Angle ) ;
t h i s . s e r i a lWr i t e ( ) ;

end

end

%% Methods Braider

methods ( Access = pub l i c )
function [ ] = setupBra ider ( )

end

function [ ] = setupXAxis ( ) % Even

end
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function [ ] = setupYAxis ( ) % Odd

end

function [ ] = setupZAxis ( )

end

function [ ] = advanceX ( )

end

function [ ] = advanceY ( )

end

function [ ] = advanceZ ( )

end

end

%% Methods (Private)

methods ( Access = pr i va t e )
function [ ] = s e r i a lWr i t e ( t h i s )

if sum ( t h i s . Data )
fwrite ( t h i s . arduino , t h i s . Data , ’uchar’ ) ;
Arduino Server . s e r ia lDebounce ( ) ;

else

% No Data to Send

end

t h i s . Data = [0 0 0 0 0 0 0 0 ] ;
end

function [ ] = se r i a lRead (˜ , ˜ , t h i s )
d i sp l ay ( fscanf ( t h i s . arduino , ’%c’ ) ) ;

end

end

%% Methods (Static)

methods ( S t a t i c )
function [ ] = ser ia lDebounce ( )

tic ; while ( toc <0 .25) ; end
end

end

%% Methods (Private & Hidden)

methods ( Access = pr ivate , Hidden )

end

%% Methods (Hidden)

methods ( Access = publ ic , Hidden )
function bypassWrite ( th i s , Data )

% Allows other Libraries to update the Data vector to be written

% to the server , and initiate a write.

t h i s . Data = Data ;
t h i s . s e r i a lWr i t e ( ) ;

end

function bypassSetData ( th i s , Data )
t h i s . Data = Data ;

end

function bypassSendData ( t h i s )
t h i s . s e r i a lWr i t e ( ) ;

end

end

%% Events

events

end

end
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B.1.1 Libraries

Listing B.3: This is a Test
%+------------------------------------------------------------------------+

%| |

%| FILENAME : Arduino_m VERSION : 0.0.0 |

%| |

%| TITLE : Arduino Library AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| <none > |

%| |

%| DESCRIPTION : |

%| Library containing basic function for controlling an Arduino. |

%| |

%| PUBLIC FUNCTIONS : |

%| pinMode |

%| digitalRead |

%| digitalWrite |

%| analogRead |

%| analogWrite |

%| |

%| NOTES : |

%| <note > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |

%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |

%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |

%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

c l a s s d e f Arduino < handle
%% Properties

p r op e r t i e s ( Constant , Hidden )
Library = 1
HIGH = 1
LOW = 0
PULLUP = 2
OUTPUT = 1
INPUT = 0
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end

%% Static Functions

methods ( S t a t i c )
function [ Data ] = pinMode ( pin ,mode)

if i s c h a r (mode)
mode = Arduino . ( upper (mode ) ) ;

else

mode = mod(mode , 3 ) ;
end

Function = 0 ;
Data = uint8 ( [ . . .

Arduino . Library , . . .
Function , . . .
pin , . . .
mode , . . .
0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = d ig i t a lRead ( pin )
Function = 1 ;
Data = uint8 ( [ . . .

Arduino . Library , . . .
Function , . . .
pin , . . .
0 , 0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = d i g i t a lWr i t e ( pin , s t a t e )
if i s c h a r ( s t a t e )

s t a t e = Arduino . ( s t a t e ) ;
else

s t a t e = mod( s tate , 2 ) ;
end

Function = 2 ;
Data = uint8 ( [ . . .

Arduino . Library , . . .
Function , . . .
pin , . . .
s ta te , . . .
0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = analogRead ( pin )
Function = 3 ;
Data = uint8 ( [ . . .

Arduino . Library , . . .
Function , . . .
pin , . . .
0 , 0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = analogWrite ( pin , va lue )
if i s c h a r ( va lue )

va lue = st r2doub l e ( va lue ( 1 : end−1))*255/100;
end

Function = 4 ;
Data = uint8 ( [ . . .

Arduino . Library , . . .
Function , . . .
pin , . . .
value , . . .
0 , 0 , 0 , 0 ] ) ;

end

end

end

Listing B.4: This is a Test
%+------------------------------------------------------------------------+

%| |
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%| FILENAME : Custom_m VERSION : 0.0.0 |

%| |

%| TITLE : Custom Library AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| <none > |

%| |

%| DESCRIPTION : |

%| Library containing custom functions , meant for testing Server. |

%| |

%| PUBLIC FUNCTIONS : |

%| saveVariable |

%| Arithmetic |

%| |

%| NOTES : |

%| <note > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |

%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |

%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |

%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

c l a s s d e f Custom < handle
%% Properties

p r op e r t i e s ( Constant , Hidden )
Library = 0 ;

end

%% Static Functions

methods ( S t a t i c )
function [ Data ] = callHome ( )

Function = 0 ;
Data = uint8 ( [ . . .

Custom . Library , . . .
Function , . . .
0 , . . .
0 , . . .
1 2 7 , 0 , 0 , 1 ] ) ;

end

function [ Data ] = saveVar iab l e ( Variable , Data )
Function = 1 ;
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Data = uint8 ( [ . . .
Custom . Library , . . .
Function , . . .
Var iable , . . .
Data , . . .
0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = Arithmet ic (Mode , Var0 , Var1 )
switch lower (Mode)

case {’+’ , ’addition ’ , ’add’}
Mode = 0 ;

case {’-’ , ’subtraction ’ , ’minus’}
Mode = 1 ;

case {’*’ , ’multiply ’ , ’times’}
Mode = 2 ;

case {’/’ , ’divide ’}
Mode = 3 ;

o therw i se
Mode = mod(Mode , 4 ) ;

end

Function = 2 ;
Data = uint8 ( [ . . .

Custom . Library , . . .
Function , . . .
Mode , . . .
Var0 , . . .
Var1 , . . .
0 , 0 , 0 ] ) ;

end

end

end

Listing B.5: This is a Test
%+------------------------------------------------------------------------+

%| |

%| FILENAME : Pololu_m VERSION : 0.0.0 |

%| |

%| TITLE : Pololu Library AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| <none > |

%| |

%| DESCRIPTION : |

%| Library for controlling step/direction based motor drivers. |

%| |

%| PUBLIC FUNCTIONS : |

%| createMotor |

%| setSpeed |

%| setDirection |

%| enableMotor |

%| disableMotor |

%| stepMotor |

%| rotateMotor |

%| setState |

%| |

%| NOTES : |

%| <note > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |
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%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |

%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |

%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

c l a s s d e f Polo lu < handle
%% Properties

p r op e r t i e s ( Constant , Hidden )
Library = 2 ;
CW = 1 ;
CCW = 0 ;

end

%% Stactic Functions

methods ( S t a t i c )
function [ Data ] = createMotor (Motor , Steps , stepPin , dirPin , enablePin )

Function = 0 ;
addSteps = floor ( Steps /256 ) ;

Data = uint8 ( [ . . .
Po lo lu . Library , . . .
Function , . . .
Motor , . . .

addSteps , . . .
mod( Steps , 2 5 6 ) , . . .
stepPin , . . .
d irPin , . . .
enablePin ] ) ;

end

function [ Data ] = setSpeed (Motor , vara rg in )
if length ( vararg in)>=2

Mode = vararg in {2} ;
Speed = vararg in {1} ;

elseif i s c h a r ( vara rg in {1})
Mode = vararg in {1}( end−2:end ) ;
Speed = st r2doub l e ( vara rg in {1} ( 1 : end−3)) ;

else

Mode = ’RPM’ ;
Speed = vararg in {1} ;

end

switch upper (Mode)
case {’RPM’}

Mode = 0 ;
case {’RPS’}

Mode = 1 ;
case {’RAD’}

Mode = 2 ;
case {’MRPM’}
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Mode = 3 ;
o therw i se

Mode = mod(Mode , 4 ) ;
end

Function = 1 ;
Data = uint8 ( [ . . .

Po lo lu . Library , . . .
Function , . . .
Mode , . . .
Motor , . . .
Speed , . . .
0 , 0 , 0 ] ) ;

end

function [ Data ] = s e tD i r e c t i o n (Motor , D i r e c t i on )
switch upper ( D i r e c t i on )

case {’CW’ , ’CLOCKWISE ’}
Dir e c t i on = Polo lu .CW;

case {’CCW’ , ’COUNTERCLOCKWISE ’}
Dir e c t i on = Polo lu .CCW;

otherw i se
D i r e c t i on = mod( Direct ion , 2 ) ;

end

Function = 2 ;
Data = uint8 ( [ . . .

Po lo lu . Library , . . .
Function , . . .
Motor , . . .
D i rec t ion , . . .
0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = enableMotor (Motor )
Function = 3 ;
Data = uint8 ( [ . . .

Po lo lu . Library , . . .
Function , . . .
Motor , . . .
0 , 0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = disableMotor (Motor )
Function = 4 ;
Data = uint8 ( [ . . .

Po lo lu . Library , . . .
Function , . . .
Motor , . . .
0 , 0 , 0 , 0 , 0 ] ) ;

end

function [ Data ] = stepMotor (Motor , Steps )
Function = 5 ;
if Steps>255

binSteps = dec2bin ( Steps , 1 6 ) ;
Steps = bin2dec ( b inSteps ( 9 : end ) ) ;
ex t raSteps = bin2dec ( b inSteps ( 1 : 8 ) ) ;

else

ext raSteps = 0 ;
end

Data = uint8 ( [ . . .
Po lo lu . Library , . . .
Function , . . .
Motor , . . .
Steps , . . .
extraSteps , 0 , 0 , 0 ] ) ;

end

function [ Data ] = rotateMotor (Motor , Angle )
Function = 6 ;
if Angle>255

binAngle = dec2bin (Angle , 1 6 ) ;
Angle = bin2dec ( binAngle ( 9 : end ) ) ;
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extraAngle = bin2dec ( binAngle ( 1 : 8 ) ) ;
else

extraAngle = 0 ;
end

Data = uint8 ( [ . . .
Po lo lu . Library , . . .
Function , . . .
Motor , . . .
Angle , . . .
extraAngle , 0 , 0 , 0 ] ) ;

end

function [ Data ] = s e tS t a t e (Motor , State )
switch upper ( State )

case {’ENABLE ’ , 1 , true , ’ON’ , ’POWERED ’ , ’ENABLED ’}
Data = Polo lu . enableMotor (Motor ) ;

case {’DISABLE ’ , 0 , f a l s e , ’OFF’ , ’DISABLED ’ , ’UNPOWERED ’}
Data = Polo lu . d i sableMotor (Motor ) ;

end

end

end

end

Listing B.6: This is a Test
%+------------------------------------------------------------------------+

%| |

%| FILENAME : stepperMotor_m VERSION : 0.0.0 |

%| |

%| TITLE : Stepper Motor Object AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| Pololu_m |

%| |

%| DESCRIPTION : |

%| Stepper Motor Object acts as a container for the Pololu Library , |

%| while storing individual properties on a motor. |

%| |

%| PUBLIC FUNCTIONS : |

%| createMotor |

%| setSpeed |

%| setDirection |

%| enableMotor |

%| disableMotor |

%| stepMotor |

%| rotateMotor |

%| setState |

%| toggleState |

%| stepMotorHP |

%| rotateMotorHP |

%| enableMotorHP |

%| disableMotorHP |

%| |

%| NOTES : |

%| <note > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |

%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |

%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |
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%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

c l a s s d e f stepperMotor < Polo lu
%% Properties

p r op e r t i e s ( SetAccess = pr i va t e )
Server
ID
Steps
D i r e c t i on
Speed
State

end

p r op e r t i e s ( SetAccess = pr ivate , Hidden )
stepDelay

end

%% Constructor

methods
function [ t h i s ] = stepperMotor ( Server , ID , Steps , stepPin , . . .

d irPin , enablePin , Di rect ion , Speed , Enable )
switch nargin

case 8
ID = 0 ;

case 7
ID = 0 ;
Steps = 200 ;

case 6
ID = 0 ;
Steps = 200 ;
stepPin = 13 ;

case 5
ID = 0 ;
Steps = 200 ;
stepPin = 13 ;
d i rP in = 13 ;

case 4
ID = 0 ;
Steps = 200 ;
stepPin = 13 ;
d i rP in = 13 ;
enablePin = 13 ;

case 3
ID = 0 ;
Steps = 200 ;
stepPin = 13 ;
d i rP in = 13 ;
enablePin = 13 ;
D i r e c t i on = ’CW’ ;

case 2
ID = 0 ;
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Steps = 200 ;
stepPin = 13 ;
d i rP in = 13 ;
enablePin = 13 ;
D i r e c t i on = ’CW’ ;
Speed = ’60RPM’ ;

case 1
ID = 0 ;
Steps = 200 ;
stepPin = 13 ;
d i rP in = 13 ;
enablePin = 13 ;
D i r e c t i on = ’CW’ ;
Speed = ’60RPM’ ;
Enable = 0 ;

o therw i se

end

t h i s . Server = Server ;
t h i s . ID = ID ;
t h i s . Steps = Steps ;
t h i s . D i r e c t i on = Di r e c t i on ;
t h i s . Speed = Speed ;

if enablePin<0
enablePin = abs ( enablePin ) + 128 ;

end

Mode = Speed ( end−2:end ) ;
Vel = st r2doub l e ( Speed ( 1 : end−3)) ;
switch upper (Mode)

case {’RPM’}
Factor = 60 ;

case {’RPS’}
Factor = 1 ;

case {’RAD’}
Factor= 2*pi ( ) ;

o the rw i se
end

t h i s . stepDelay = inv ( t h i s . Steps *Vel/Factor ) ;
t h i s . State = Enable ;

Data = th i s . createMotor ( ID , Steps , stepPin , dirPin , enablePin ) ;
t h i s . Server . bypassWrite (Data ) ;

t h i s . s e t S t a t e ( Enable ) ;
t h i s . setSpeed ( Speed ) ;
t h i s . s e tD i r e c t i o n ( D i r e c t i on ) ;

end

end

%% Methods

methods
function [ ] = enableMotor ( t h i s )

if ˜ t h i s . State
[ Data ] = enableMotor@Pololu ( t h i s . ID ) ;
t h i s . Server . bypassWrite (Data ) ;

end

end

function [ ] = disableMotor ( t h i s )
if t h i s . State

[ Data ] = disableMotor@Pololu ( t h i s . ID ) ;
t h i s . Server . bypassWrite (Data ) ;

end

end

function [ ] = setSpeed ( th i s , va ra rg in )
[ Data ] = setSpeed@Pololu ( t h i s . ID , vararg in { : } ) ;
if length ( vararg in)>=2

Mode = vararg in {2} ;
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Vel = vararg in {1} ;
elseif i s c h a r ( vara rg in {1})

Mode = vararg in {1}( end−2:end ) ;
Vel = st r2doub l e ( vara rg in {1} ( 1 : end−3)) ;

else

Mode = ’RPM’ ;
Vel = vararg in {1} ;

end

t h i s . Speed = [ num2str ( Vel ) ,Mode ] ;
switch upper (Mode)

case {’RPM’}
Factor = 60 ;

case {’RPS’}
Factor = 1 ;

case {’RAD’}
Factor = 2*pi ( ) ;

case {’MRPM’}
Factor = 60000 ;

o therw i se
ind = mod(Mode , 4 ) ;
Factor = [60 1 2*pi ( ) 6 0000 ] ;
Factor = Factor ( ind ) ;

end

t h i s . stepDelay = inv ( t h i s . Steps *Vel/Factor ) ;
t h i s . Server . bypassWrite (Data ) ;

end

function [ ] = s e tD i r e c t i o n ( th i s , D i r e c t i on )
[ Data ] = setDi r ec t i on@Polo lu ( t h i s . ID , D i r e c t i on ) ;
t h i s . D i r e c t i on = Di r e c t i on ;
t h i s . Server . bypassWrite (Data ) ;

end

function [ ] = stepMotor ( th i s , Steps )
if ˜ t h i s . State

[ Data ] = Polo lu . enableMotor ( t h i s . ID ) ;
t h i s . Server . bypassWrite (Data ) ;

end

[ Data ] = stepMotor@Pololu ( t h i s . ID , Steps ) ;
t h i s . Server . bypassWrite (Data ) ;
de lay = th i s . stepDelay *Steps ;
tic ; while ( toc<delay ) ; end
if ˜ t h i s . State

[ Data ] = Polo lu . d i sableMotor ( t h i s . ID ) ;
t h i s . Server . bypassWrite (Data ) ;

end

end

function [ ] = rotateMotor ( th i s , Angle )
if ˜ t h i s . State

[ Data ] = Polo lu . enableMotor ( t h i s . ID ) ;
t h i s . Server . bypassWrite (Data ) ;

end

[ Data ] = rotateMotor@Pololu ( t h i s . ID , Angle ) ;
numofSteps = Angle* t h i s . Steps /360 ;
t h i s . Server . bypassWrite (Data ) ;
de lay = th i s . stepDelay *numofSteps ;
tic ; while ( toc<delay ) ; end
if ˜ t h i s . State

[ Data ] = Polo lu . d i sableMotor ( t h i s . ID ) ;
t h i s . Server . bypassWrite (Data ) ;

end

end

function [ ] = s e tS t a t e ( th i s , State )
[ Data ] = setState@Polo lu ( t h i s . ID , State ) ;
t h i s . State = ˜(Data (2)−3) ;
t h i s . Server . bypassWrite (Data ) ;

end

function [ ] = togg l eS t a t e ( t h i s )
t h i s . State = ˜ t h i s . State ;
[ Data ] = Polo lu . s e t S t a t e ( t h i s . ID , t h i s . State ) ;
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t h i s . Server . bypassWrite (Data ) ;
end

end

end

B.2 Arduino Code

Listing B.7: This is a Test
//+------------------------------------------------------------------------+

//| |

//| FILENAME : Arduino_Server_ino VERSION : b.0.2 |

//| |

//| TITLE : Arduino Server Protocol AUTHOR : Daniel Aldrich |

//| |

//+------------------------------------------------------------------------+

//| |

//| DEPENDENT FILES : |

//| Pololu_h |

//| Pololu_cpp |

//| |

//| DESCRIPTION : |

//| Server function to be run on an Arduino board. Command are sent |

//| as 8 8bit instructions. The instructions consist of the |

//| Library , Function , Option , and Additional Data. Because each |

//| the Library and Function Consist of an 8bit number there are |

//| 256 available Libraries each with 265 available Funcitons. The |

//| instructions are to be sent in the following order: |

//| |

//| Library , Function , Option , Data0 , Data1 , Data2 , Data3 , Data4 |

//| |

//| PUBLIC FUNCTIONS : |

//| <none > |

//| |

//| NOTES : |

//| <none > |

//| |

//| COPYRIGHT : |

//| Copyright (c) 2017 Daniel Aldrich |

/**

**| Permission is hereby granted , free of charge , to any person |

**| obtaining a copy of this software and associated documentation |

**| files (the "Software"), to deal in the Software without |

**| restriction , including without limitation the rights to use , |

**| copy , modify , merge , publish , distribute , sublicense , and/or |

**| sell copies of the Software , and to permit persons to whom the |

**| Software is furnished to do so , subject to the following |

**| conditions: |

**| |

**| The above copyright notice and this permission notice shall be |

**| included in all copies or substantial portions of the Software. |

**| |

**| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

**| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

**| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

**| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

**| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

**| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

**| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

**| OTHER DEALINGS IN THE SOFTWARE. |

**/

//| |

//| CHANGES : |

//| <none > |
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//| |

//+------------------------------------------------------------------------+

#inc lude <Polo lu . h>

float tempArray [ ] = {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0} ;

Polo lu motorsPololu [ 5 ] ;

float Number0 ;
float Number1 ;

byte pin ;
byte pwm;
boolean s t a t e ;

float ans ;

char tempChar ;
S t r ing tempStr ;
unsigned int tempUint ;

byte Library ;
byte Function ;
byte Option ;
byte Data0 ;
byte Data1 ;
byte Data2 ;
byte Data3 ;
byte Data4 ;

unsigned long t imer ;
unsigned long t imeout = 500000; // 0.5 second timeout for data

boolean timedout = f a l s e ;

void setup ( ) {
// put your setup code here , to run once:

S e r i a l . begin (115000 ) ;
S e r i a l . p r i n t l n ( "Starting Server" ) ;
S e r i a l . p r i n t l n ( "Connection Established!" ) ;
PORTK = B11111111 ;
PORTF = B11111111 ;

}

void loop ( ) {
timedout = f a l s e ;
if ( S e r i a l . a v a i l a b l e ( ) > 0){

Library = S e r i a l . read ( ) ;
t imer = micros ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) <= 0)
{

if ( ( micros ( ) − t imer ) >= timeout )
{

timedout = true ;
break ;

} ;
} ;
if ( ! timedout )
{

Function = S e r i a l . read ( ) ;
t imer = micros ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) <= 0)
{

if ( ( micros ( ) − t imer ) >= timeout )
{

timedout = true ;
break ;

} ;
} ;
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} ;
if ( ! timedout )
{

Option = S e r i a l . read ( ) ;
t imer = micros ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) <= 0)
{

if ( ( micros ( ) − t imer ) >= timeout )
{

timedout = true ;
break ;

} ;
} ;

} ;
if ( ! timedout )
{

Data0 = S e r i a l . read ( ) ;
t imer = micros ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) <= 0)
{

if ( ( micros ( ) − t imer ) >= timeout )
{

timedout = true ;
break ;

} ;
} ;

} ;
if ( ! timedout )
{

Data1 = S e r i a l . read ( ) ;
t imer = micros ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) <= 0)
{

if ( ( micros ( ) − t imer ) >= timeout )
{

timedout = true ;
break ;

} ;
} ;

} ;
if ( ! timedout )
{

Data2 = S e r i a l . read ( ) ;
t imer = micros ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) <= 0)
{

if ( ( micros ( ) − t imer ) >= timeout )
{

timedout = true ;
break ;

} ;
} ;

} ;
if ( ! timedout )
{

Data3 = S e r i a l . read ( ) ;
t imer = micros ( ) ;
while ( S e r i a l . a v a i l a b l e ( ) <= 0)
{

if ( ( micros ( ) − t imer ) >= timeout )
{

timedout = true ;
break ;

} ;
} ;

} ;
if ( ! timedout )
{
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Data4 = S e r i a l . read ( ) ;
switch ( Library )
{

case 0x00 :
/* This Library is reserved for server testing functions. */

switch ( Function ){
case 0x00 :

// Null Function

if ( ! Option && ! Data0 ){
if (Data1==127 && Data2==0 && Data3==0 && Data4==1){

// Call Home

S e r i a l . p r i n t l n ( "localhost" ) ;
} ;

} ;
break ;
case 0x01 :

// Store Variable

tempArray [ Option ] = Data0 ;

S e r i a l . p r i n t ( "var" ) ;
S e r i a l . p r i n t ( Option ) ;
S e r i a l . p r i n t ( " = " ) ;
S e r i a l . p r i n t l n (Data0 ) ;
break ;

case 0x02 :
// Arithmetic

Number0 = tempArray [ Data0 ] ;
Number1 = tempArray [ Data1 ] ;
switch ( Option ){

case 0x00 :
ans = Number0 + Number1 ;
tempChar = ’+’ ;

break ;
case 0x01 :

ans = Number0 − Number1 ;
tempChar = ’-’ ;

break ;
case 0x02 :

ans = Number0 * Number1 ;
tempChar = ’*’ ;

break ;
case 0x03 :

ans = Number0 / Number1 ;
tempChar = ’/’ ;

break ;
}
S e r i a l . p r i n t (Number0 ) ;
S e r i a l . p r i n t ( " " ) ;
S e r i a l . p r i n t ( tempChar ) ;
S e r i a l . p r i n t ( " " ) ;
S e r i a l . p r i n t (Number1 ) ;
S e r i a l . p r i n t l n ( " =" ) ;
S e r i a l . p r i n t ( " " ) ;
S e r i a l . p r i n t l n ( ans ) ;
break ;

}
break ;
case 0x01 :

/* This Library is for performing standard arduino functions.

* This includes: Changing pins , Setting inputs , Setting outputs

*/

switch ( Function ){
case 0x00 :

// pinMode

/*

* Option is the pin Number

* Option: 1 to n (number of pins , where analog pins
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* are a continuation of the digital pins)

* Data is the state of the pin (Input or Output)

* Data: 0 (Input) or 1 (Output)

*/

pin = Option ;
s t a t e = Data0%2;
pinMode ( pin , s t a t e ) ;

if ( s t a t e ){
tempStr = "Output" ;

}else{
tempStr = "Input" ;

}

S e r i a l . p r i n t ( "pin " ) ;
S e r i a l . p r i n t ( pin ) ;
S e r i a l . p r i n t ( " was set to " ) ;
S e r i a l . p r i n t l n ( tempStr ) ;

break ;
case 0x01 :

// digitalRead

pin = Option ;
ans = d ig i t a lRead ( pin ) ;

S e r i a l . p r i n t ( "pin " ) ;
S e r i a l . p r i n t ( pin ) ;
S e r i a l . p r i n t ( " reads " ) ;
S e r i a l . p r i n t l n ( ans ) ;

break ;
case 0x02 :

// digitalWrite

pin = Option ;
s t a t e = Data0%2;
d i g i t a lWr i t e ( pin , s t a t e ) ;

if ( s t a t e ){
tempStr = "High" ;

}else{
tempStr = "Low" ;

}

S e r i a l . p r i n t ( "pin " ) ;
S e r i a l . p r i n t ( pin ) ;
S e r i a l . p r i n t ( " was set to " ) ;
S e r i a l . p r i n t l n ( tempStr ) ;

break ;
case 0x03 :

// analogRead

pin = Option ;
ans = analogRead ( pin ) ;

S e r i a l . p r i n t l n ( ans ) ;
break ;
case 0x04 :

// analogWrite

pin = Option ;
pwm = Data0%256;
analogWrite ( pin ,pwm) ;

S e r i a l . p r i n t ( "pin " ) ;
S e r i a l . p r i n t ( pin ) ;
S e r i a l . p r i n t ( " was set to " ) ;
S e r i a l . p r i n t (100 .0*pwm/255 . 0 ) ;
S e r i a l . p r i n t l n ( " %" ) ;

break ;
}

break ;
case 0x02 :

183



/* This is a Library for the use of Pololu stepper drivers */

switch ( Function ){
case 0x00 :

/* Create a Motor Object */

motorsPololu [ Option ] =
Polo lu ( u i n t 16 t (Data0 ) , u i n t 16 t (Data1 ) , int (Data2 ) , int (Data3 ) , int (Data4 ) ) ;

// (number_of_steps_0 , number_of_steps_1 , pin_step , pin_direction , pin_enable)

break ;
case 0x01 :

/* Set the speed of the Motor */

switch ( Option ){
case 0x00 :

// Set using Rev per Min

motorsPololu [ int (Data0 ) ] . setRPM(Data1 ) ;
break ;
case 0x01 :

// Set Using Rev per Sec

motorsPololu [ int (Data0 ) ] . setRPS (Data1 ) ;
break ;
case 0x02 :

// Set Using Rad per Sec

motorsPololu [ int (Data0 ) ] . setRad (Data1 ) ;
break ;
case 0x03 :

// Set Using Rad per Sec

motorsPololu [ int (Data0 ) ] . setmRPM(Data1 ) ;
break ;

}
break ;
case 0x02 :

/* Set the Direction of the Motor */

motorsPololu [ int ( Option ) ] . s e tD i r e c t i o n (Data0 ) ;
break ;
case 0x03 :

/* Enable the Motor for Use */

motorsPololu [ int ( Option ) ] . enable ( ) ;
break ;
case 0x04 :

/* Disable the Motor to save Power */

motorsPololu [ int ( Option ) ] . d i s a b l e ( ) ;
break ;
case 0x05 :

/* Steps the motor by the number of steps in Data0 */

tempUint = ( int (Data1)<<8) + int (Data0 ) ;
motorsPololu [ int ( Option ) ] . s t epper ( tempUint ) ;

break ;
case 0x06 :

/* Degrees to rotate the motor in it’s preset Direction */

tempUint = ( int (Data1)<<8) + int (Data0 ) ;
motorsPololu [ int ( Option ) ] . r o t a t e ( tempUint ) ;

break ;
}

break ;
case 0x03 :

/* */

switch ( Function ){
case 0x00 :
/* */

break ;
}

break ;
}

}else{
S e r i a l . p r i n t l n ( "Error: Timedout waiting for Data" ) ;

}
}

}
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B.2.1 Libraries

Listing B.8: This is a Test
//+------------------------------------------------------------------------+

//| |

//| FILENAME : Pololu_h VERSION : 1.0.0 |

//| |

//| TITLE : Pololu Library Header AUTHOR : Daniel Aldrich |

//| |

//+------------------------------------------------------------------------+

//| |

//| DEPENDENT FILES : |

//| Pololu_cpp |

//| |

//| DESCRIPTION : |

//| <none > |

//| |

//| PUBLIC FUNCTIONS : |

//| setRPM |

//| setRPS |

//| setRad |

//| setDirection |

//| enable |

//| disable |

//| stepper |

//| rotate |

//| enableHP |

//| disableHP |

//| stepperHP |

//| rotateHP |

//| |

//| NOTES : |

//| <none > |

//| |

//| COPYRIGHT : |

//| Copyright (c) 2017 Daniel Aldrich |

/**

**| Permission is hereby granted , free of charge , to any person |

**| obtaining a copy of this software and associated documentation |

**| files (the "Software"), to deal in the Software without |

**| restriction , including without limitation the rights to use , |

**| copy , modify , merge , publish , distribute , sublicense , and/or |

**| sell copies of the Software , and to permit persons to whom the |

**| Software is furnished to do so , subject to the following |

**| conditions: |

**| |

**| The above copyright notice and this permission notice shall be |

**| included in all copies or substantial portions of the Software. |

**| |

**| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

**| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

**| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

**| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

**| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

**| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

**| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

**| OTHER DEALINGS IN THE SOFTWARE. |

**/

//| |

//| CHANGES : |

//| <none > |

//| |
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//+------------------------------------------------------------------------+

// Ensure Library is only included once

#i f n d e f Po lo lu h
#de f i n e Polo lu h

#de f i n e CW 1
#de f i n e CCW 0

c l a s s Polo lu
{

pr i va t e :
// Properties:

unsigned long number o f s teps ;
int d i r e c t i o n ;

unsigned long s t ep de l ay ;
unsigned long t imer ;

// Hardware:

int p i n s t e p s ;
int p i n d i r e c t i o n ;
int p in enab l e ;
bool r e v e r s ePo l a r i t y ;

pub l i c :
// Constructor:

Polo lu ( u i n t 16 t number o f s teps 0 , u i n t 16 t number o f s teps 1 , int p in s tep ,
int p i n d i r e c t i o n , int p in enab l e ) ;
Polo lu ( ) ;

// Methods:

void setRPM( long rev per min ) ;
void setRPS ( long r e v p e r s e c ) ;
void setRad ( long r ad p e r s e c ) ;
void setmRPM( long mrev per min ) ;

void s e tD i r e c t i o n ( bool d i r e c t i o n ) ;

void enable ( void ) ;
void d i s ab l e ( void ) ;
void s t epper ( unsigned int s t e p s t o t a k e ) ;
void r o t a t e ( unsigned int d e g r e e s t o r o t a t e ) ;

p r i va t e :
// Methods:

void stepMotor ( void ) ;
void stepMotorHP ( void ) ;

} ;

#end i f

Listing B.9: This is a Test
//+------------------------------------------------------------------------+

//| |

//| FILENAME : Pololu_cpp VERSION : 1.0.0 |

//| |

//| TITLE : Pololu Library Source AUTHOR : Daniel Aldrich |

//| |

//+------------------------------------------------------------------------+

//| |

//| DEPENDENT FILES : |

//| Pololu_h |

//| |

//| DESCRIPTION : |

//| <none > |

//| |

//| PUBLIC FUNCTIONS : |
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//| setRPM |

//| setRPS |

//| setRad |

//| setDirection |

//| enable |

//| disable |

//| stepper |

//| rotate |

//| enableHP |

//| disableHP |

//| stepperHP |

//| rotateHP |

//| |

//| NOTES : |

//| <none > |

//| |

//| COPYRIGHT : |

//| Copyright (c) 2017 Daniel Aldrich |

/**

**| Permission is hereby granted , free of charge , to any person |

**| obtaining a copy of this software and associated documentation |

**| files (the "Software"), to deal in the Software without |

**| restriction , including without limitation the rights to use , |

**| copy , modify , merge , publish , distribute , sublicense , and/or |

**| sell copies of the Software , and to permit persons to whom the |

**| Software is furnished to do so , subject to the following |

**| conditions: |

**| |

**| The above copyright notice and this permission notice shall be |

**| included in all copies or substantial portions of the Software. |

**| |

**| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

**| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

**| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

**| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

**| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

**| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

**| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

**| OTHER DEALINGS IN THE SOFTWARE. |

**/

//| |

//| CHANGES : |

//| <none > |

//| |

//+------------------------------------------------------------------------+

#inc lude ”Arduino . h”
#inc lude ”Polo lu . h”

// Constructors

Polo lu : : Polo lu ( u i n t 16 t number o f s teps 0 , u i n t 16 t number o f s teps 1 , int p in s t ep s ,
int p i n d i r e c t i o n , int p in enab l e )

{
th i s−>number o f s teps = ( long ( number o f s t eps 0 )<<8) + number o f s t eps 1 ;
th i s−>d i r e c t i o n = 1 ;
th i s−>s t ep de l ay = 0 ;
th i s−>p i n s t e p s = p in s t ep s ;
th i s−>p i n d i r e c t i o n = p i n d i r e c t i o n ;
th i s−>p in enab l e = 0x7F & pin enab l e ;
th i s−> r e v e r s ePo l a r i t y = bool ( p in enab le >>7);
pinMode ( th i s−>p in s t ep s , OUTPUT) ;
pinMode ( th i s−>p i n d i r e c t i o n , OUTPUT) ;
pinMode ( th i s−>pin enab le , OUTPUT) ;

} ;
Polo lu : : Polo lu ( )
{

th i s−>number o f s teps = 200 ;
th i s−>d i r e c t i o n = 1 ;
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th i s−>s t ep de l ay = 0 ;
th i s−>p i n s t e p s = 2 ;
th i s−>p i n d i r e c t i o n = 3 ;
th i s−>p in enab l e = 4 ;

pinMode ( th i s−>p in s t ep s , OUTPUT) ;
pinMode ( th i s−>p i n d i r e c t i o n , OUTPUT) ;
pinMode ( th i s−>pin enab le , OUTPUT) ;
d i g i t a lWr i t e ( th i s−>pin enab le ,HIGH) ;

} ;

// Methods

void Polo lu : : setRPM( long rev per min )
{

th i s−>s t ep de l ay = 60000000L/( th i s−>number o f s teps * rev per min ) ;
} ;

void Polo lu : : setRPS ( long r e v p e r s e c )
{

th i s−>s t ep de l ay = 1000000L/( th i s−>number o f s teps * r e v p e r s e c ) ;
} ;

void Polo lu : : setRad ( long r ad p e r s e c )
{

th i s−>s t ep de l ay = 1000000L/( th i s−>number o f s teps * r ad p e r s e c /6.283185L ) ;
} ;
void Polo lu : : setmRPM( long mrev per min )
{

th i s−>s t ep de l ay = 60000000000L/( th i s−>number o f s teps *mrev per min ) ;
} ;
void Polo lu : : s e tD i r e c t i o n ( bool d i r e c t i o n )
{

th i s−>d i r e c t i o n = d i r e c t i o n ;
} ;

void Polo lu : : enable ( void )
{

if ( th i s−>r e v e r s ePo l a r i t y )
{

d i g i t a lWr i t e ( th i s−>pin enab le , HIGH) ;
}else{

d i g i t a lWr i t e ( th i s−>pin enab le , LOW) ;
}

} ;

void Polo lu : : d i s a b l e ( void )
{

if ( th i s−>r e v e r s ePo l a r i t y )
{

d i g i t a lWr i t e ( th i s−>pin enab le , LOW) ;
}else{

d i g i t a lWr i t e ( th i s−>pin enab le , HIGH) ;
}

} ;

void Polo lu : : s t epper ( unsigned int s t e p s t o t a k e )
{

d i g i t a lWr i t e ( th i s−>p i n d i r e c t i o n , th i s−>d i r e c t i o n ) ;
while ( s t e p s t o t a k e > 0)
{

th i s−>stepMotor ( ) ;
−−s t e p s t o t a k e ;

}
} ;

void Polo lu : : r o t a t e ( unsigned int d e g r e e s t o r o t a t e )
{

th i s−>s t epper ( ( unsigned int ) ( ( float ) d e g r e e s t o r o t a t e *( float ) th i s−>number o f s teps / 3 6 0 . 0 ) ) ;
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} ;

void Polo lu : : stepMotor ( void )
{

th i s−>t imer = micros ( ) ;

d i g i t a lWr i t e ( th i s−>p in s t ep s , HIGH) ;
while ( ( micros ( ) − th i s−>t imer ) <= th i s−>s t ep de l ay /2 ){} ;

d i g i t a lWr i t e ( th i s−>p in s t ep s , LOW) ;
while ( ( micros ( ) − th i s−>t imer ) <= th i s−>s t ep de l ay ){} ;

} ;
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Appendix C: Path Generation and
Property Estimation

C.1 Material Library

Listing C.1: .
<!−− This f i l e i s des igned to s t o r e mate r i a l p r op e r t i e s f o r the var i ous −−>
<!−− mate r i a l s used in 3D bra id ing . −−>
<!−− −−>
<!−− There are two types o f mat e r i a l s that can be dec l a r ed us ing the −−>
<!−− Keywords ’ Fiber ’ or ’Matrix ’ . To s t a r t a mate r i a l d e c l a r a t i o n use −−>
<!−− ’<Keyword>’ and to end a d e c l a r a t i on use ’</Keyword> ’ . −−>
<!−− −−>
<!−− When s p e c i f i n g a mate r i a l the f i r s t l i n e f o l l ow i n g the d e c l a r a t i on −−>
<!−− must be the name o f the ma t e r i a l : −−>
<!−− e . g . name=Name o f Mater ia l −−>
<!−− −−>
<!−− For a Fiber , f o l l ow i n g the name o f the mater ia l , the next l i n e s −−>
<!−− should conta in ( in any order ) : −−>
<!−− E1 ˜ Log i tud ina l Young ’ s Modulus [GPa] −−>
<!−− E2 ˜ Transverse Young ’ s Modulus [GPa] −−>
<!−− v ˜ Possion ’ s Ratio −−>
<!−− G ˜ Log i tud ina l Shear Modulus [GPa] −−>
<!−− Denier ˜ Linear Density [ g/9000m] −−>
<!−− Density ˜ Density [ s . g . ] or [ g/cm3 ] −−>
<!−− −−>
<!−− For a Matrix , f o l l ow i n g the name o f the mater ia l , the next l i n e s −−>
<!−− should conta in ( in any order ) : −−>
<!−− E ˜ Young ’ s Modulus [GPa] −−>
<!−− v ˜ Possion ’ s Ratio −−>

<Mater i a l s>
<Fiber>

name=Aramid 29
E1=61
E2=4.2
v=0.35
G=2.9
Denier=1625
Density=1.44

</Fiber>
<Fiber>

name=Aramid 49
E1=154
E2=4.2
v=0.35
G=2.9
Denier=1140
Density=1.44

</Fiber>
<Fiber>
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name=Graphite PITCH
E1=385
E2=6.3
v=0.2
G=7.7
Denier=1500
Density=1.99

</Fiber>
<Fiber>

name=Graphite PAN
E1=224
E2=14
v=0.2
G=14
Denier=1500
Density=1.78

</Fiber>
<Fiber>

name=Glass
E1=71
E2=71
v=0.22
G=29.1
Denier=400
Density=2.55

</Fiber>
<Matrix>

name=Epoxy
E=3.4
v=0.3

</Matrix>
<Matrix>

name=Po lye s t e r
E=2.5
v=0.33

</Matrix>
<Matrix>

name=Aluminium
E=69
v=0.3

</Matrix>
<Matrix>

name=Polyamide NYLON
E=3.5
v=0.35

</Matrix>
</Mate r i a l s>

C.2 Path Generation Code

Listing C.2: Program interface for generating braid paths and for initiating the gen-
eration of the braid model.
c l a s s d e f bra idGenerator < matlab . apps . AppBase

% Properties that correspond to app components

p r op e r t i e s ( Access = pub l i c )
UIFigure matlab . u i . Figure
LabelNumericEditFie ld2 matlab . u i . c on t r o l . Label
etPathAngle matlab . u i . c on t r o l . NumericEditFie ld
LabelNumericEditFie ld3 matlab . u i . c on t r o l . Label
etBraidWidth matlab . u i . c on t r o l . NumericEditFie ld
LabelNumericEditFie ld4 matlab . u i . c on t r o l . Label
e tKnots inSp l ine matlab . u i . c on t r o l . NumericEditFie ld
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LabelNumericEditFie ld5 matlab . u i . c on t r o l . Label
etBraidDepth matlab . u i . c on t r o l . NumericEditFie ld
LabelNumericEditFie ld6 matlab . u i . c on t r o l . Label
etSpac ingFactor matlab . u i . c on t r o l . NumericEditFie ld
btGeneratePlots matlab . u i . c on t r o l . Button
btGenerateModel matlab . u i . c on t r o l . Button
LabelNumericEditFie ld7 matlab . u i . c on t r o l . Label
etNumofUnitCel ls matlab . u i . c on t r o l . NumericEditFie ld
cbSmoothing matlab . u i . c on t r o l . CheckBox
cbTriAxia l matlab . u i . c on t r o l . CheckBox
btGeneratePaths matlab . u i . c on t r o l . Button
Labe lEd i tF ie ld matlab . u i . c on t r o l . Label
etFolderName matlab . u i . c on t r o l . Ed i tF i e ld
btCloseP lo t s matlab . u i . c on t r o l . Button
cbType2Paths matlab . u i . c on t r o l . CheckBox
LabelDropDown matlab . u i . c on t r o l . Label
ddF ibe rSe l e c t matlab . u i . c on t r o l . DropDown
LabelDropDown2 matlab . u i . c on t r o l . Label
ddMatr ixSe lect matlab . u i . c on t r o l . DropDown
LabelNumericEditFie ld9 matlab . u i . c on t r o l . Label
etFiberE1 matlab . u i . c on t r o l . NumericEditFie ld
Label matlab . u i . c on t r o l . Label
e tF iberv matlab . u i . c on t r o l . NumericEditFie ld
Label2 matlab . u i . c on t r o l . Label
etFiberG matlab . u i . c on t r o l . NumericEditFie ld
Label3 matlab . u i . c on t r o l . Label
etMatrixE matlab . u i . c on t r o l . NumericEditFie ld
Label4 matlab . u i . c on t r o l . Label
etMatrixv matlab . u i . c on t r o l . NumericEditFie ld
Label5 matlab . u i . c on t r o l . Label
etMatrixG matlab . u i . c on t r o l . NumericEditFie ld
Label33 matlab . u i . c on t r o l . Label
etFiberE2 matlab . u i . c on t r o l . NumericEditFie ld
cbDenier matlab . u i . c on t r o l . CheckBox
Den ie rEd i tF ie ldLabe l matlab . u i . c on t r o l . Label
e tDenier matlab . u i . c on t r o l . NumericEditFie ld
UnitCe l lHe ightPi tchLabe l matlab . u i . c on t r o l . Label
etZHeight matlab . u i . c on t r o l . NumericEditFie ld
LowerBoundPanel matlab . u i . c on ta ine r . Panel
tbAngleLamina matlab . u i . c on t r o l . Ed i tF i e ld
Label24 matlab . u i . c on t r o l . Label
etAngleLaminaEx matlab . u i . c on t r o l . NumericEditFie ld
Label25 matlab . u i . c on t r o l . Label
etAngleLaminavxy matlab . u i . c on t r o l . NumericEditFie ld
Label26 matlab . u i . c on t r o l . Label
etAngleLaminaGxy matlab . u i . c on t r o l . NumericEditFie ld
Label27 matlab . u i . c on t r o l . Label
etAngleLaminaEy matlab . u i . c on t r o l . NumericEditFie ld
Label28 matlab . u i . c on t r o l . Label
etAngleLaminavxz matlab . u i . c on t r o l . NumericEditFie ld
Label29 matlab . u i . c on t r o l . Label
etAngleLaminaGxz matlab . u i . c on t r o l . NumericEditFie ld
Label30 matlab . u i . c on t r o l . Label
etAngleLaminaEz matlab . u i . c on t r o l . NumericEditFie ld
Label31 matlab . u i . c on t r o l . Label
etAngleLaminavyz matlab . u i . c on t r o l . NumericEditFie ld
Label32 matlab . u i . c on t r o l . Label
etAngleLaminaGyz matlab . u i . c on t r o l . NumericEditFie ld
UpperBoundPanel matlab . u i . c on ta ine r . Panel
tbLamina matlab . u i . c on t r o l . Ed i tF i e ld
Label15 matlab . u i . c on t r o l . Label
etLaminaE1 matlab . u i . c on t r o l . NumericEditFie ld
Label16 matlab . u i . c on t r o l . Label
etLaminav12 matlab . u i . c on t r o l . NumericEditFie ld
Label17 matlab . u i . c on t r o l . Label
etLaminaG12 matlab . u i . c on t r o l . NumericEditFie ld
Label18 matlab . u i . c on t r o l . Label
etLaminaE2 matlab . u i . c on t r o l . NumericEditFie ld
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Label19 matlab . u i . c on t r o l . Label
etLaminav13 matlab . u i . c on t r o l . NumericEditFie ld
Label20 matlab . u i . c on t r o l . Label
etLaminaG13 matlab . u i . c on t r o l . NumericEditFie ld
Label21 matlab . u i . c on t r o l . Label
etLaminaE3 matlab . u i . c on t r o l . NumericEditFie ld
Label22 matlab . u i . c on t r o l . Label
etLaminav23 matlab . u i . c on t r o l . NumericEditFie ld
Label23 matlab . u i . c on t r o l . Label
etLaminaG23 matlab . u i . c on t r o l . NumericEditFie ld
YarnPropert iesPanel matlab . u i . c on ta ine r . Panel
Label6 matlab . u i . c on t r o l . Label
etYarnE1 matlab . u i . c on t r o l . NumericEditFie ld
Label7 matlab . u i . c on t r o l . Label
etYarnv12 matlab . u i . c on t r o l . NumericEditFie ld
Label8 matlab . u i . c on t r o l . Label
etYarnG12 matlab . u i . c on t r o l . NumericEditFie ld
Label9 matlab . u i . c on t r o l . Label
etYarnE2 matlab . u i . c on t r o l . NumericEditFie ld
Label10 matlab . u i . c on t r o l . Label
etYarnv13 matlab . u i . c on t r o l . NumericEditFie ld
Label11 matlab . u i . c on t r o l . Label
etYarnG13 matlab . u i . c on t r o l . NumericEditFie ld
Label12 matlab . u i . c on t r o l . Label
etYarnE3 matlab . u i . c on t r o l . NumericEditFie ld
Label13 matlab . u i . c on t r o l . Label
etYarnv23 matlab . u i . c on t r o l . NumericEditFie ld
Label14 matlab . u i . c on t r o l . Label
etYarnG23 matlab . u i . c on t r o l . NumericEditFie ld
YarnPackingFractionLabel matlab . u i . c on t r o l . Label
etYarnPackingFract ion matlab . u i . c on t r o l . NumericEditFie ld
YarnRadiusLabel matlab . u i . c on t r o l . Label
etYarnRadius matlab . u i . c on t r o l . NumericEditFie ld
Bra idPrope r t i e s matlab . u i . c on ta ine r . Panel
Bra idCrossSect iona lDimsEditF ie ldLabe l matlab . u i . c on t r o l . Label
Bra idCrossSect iona lDimsEditF ie ld matlab . u i . c on t r o l . Ed i tF i e ld
Uni tCe l lHe ig thEd i tF ie ldLabe l matlab . u i . c on t r o l . Label
Un i tCe l lHe ig thEd i tF i e ld matlab . u i . c on t r o l . Ed i tF i e ld
AverageBraid ingAngleEditFie ldLabe l matlab . u i . c on t r o l . Label
AverageBraid ingAngleEditFie ld matlab . u i . c on t r o l . Ed i tF i e ld
Bra id ingTightnes sEd i tF i e ldLabe l matlab . u i . c on t r o l . Label
Bra id ingTightnes sEd i tF i e ld matlab . u i . c on t r o l . Ed i tF i e ld
FiberVolumeFract ionEditFie ldLabel matlab . u i . c on t r o l . Label
FiberVolumeFract ionEditFie ld matlab . u i . c on t r o l . Ed i tF i e ld
NumberofYarnsEditFieldLabel matlab . u i . c on t r o l . Label
NumberofYarnsEditField matlab . u i . c on t r o l . Ed i tF i e ld
YoungsModulusRangeEditFieldLabel matlab . u i . c on t r o l . Label
YoungsModulusRangeEditField matlab . u i . c on t r o l . Ed i tF i e ld
In t e r i o rBra id ingAng l eEd i tF i e ldLabe l matlab . u i . c on t r o l . Label
In t e r i o rBra id ingAng l eEd i tF i e l d matlab . u i . c on t r o l . Ed i tF i e ld
Sur faceBra id ingAng leEd i tF ie ldLabe l matlab . u i . c on t r o l . Label
Sur faceBra id ingAng leEd i tF i e ld matlab . u i . c on t r o l . Ed i tF i e ld
FGMPanel matlab . u i . c on ta ine r . Panel
Label24 2 matlab . u i . c on t r o l . Label
etFGMEx matlab . u i . c on t r o l . NumericEditFie ld
Label25 2 matlab . u i . c on t r o l . Label
etFGMvxy matlab . u i . c on t r o l . NumericEditFie ld
Label26 2 matlab . u i . c on t r o l . Label
etFGMGxy matlab . u i . c on t r o l . NumericEditFie ld
Label27 2 matlab . u i . c on t r o l . Label
etFGMEy matlab . u i . c on t r o l . NumericEditFie ld
Label28 2 matlab . u i . c on t r o l . Label
etFGMvxz matlab . u i . c on t r o l . NumericEditFie ld
Label29 2 matlab . u i . c on t r o l . Label
etFGMGxz matlab . u i . c on t r o l . NumericEditFie ld
Label30 2 matlab . u i . c on t r o l . Label
etFGMEz matlab . u i . c on t r o l . NumericEditFie ld
Label31 2 matlab . u i . c on t r o l . Label

193



etFGMvyz matlab . u i . c on t r o l . NumericEditFie ld
Label32 2 matlab . u i . c on t r o l . Label
etFGMGyz matlab . u i . c on t r o l . NumericEditFie ld
BraidAngleAverageLabel matlab . u i . c on t r o l . Label
etTAngle matlab . u i . c on t r o l . NumericEditFie ld
AnglesfromGeometryPanel matlab . u i . c on ta ine r . Panel
ApproxAverageAngleLabel matlab . u i . c on t r o l . Label
etAverageAngle matlab . u i . c on t r o l . NumericEditFie ld
ApproxInter iorAngleLabel matlab . u i . c on t r o l . Label
e t I n t e r i o rAng l e matlab . u i . c on t r o l . NumericEditFie ld
ApproxSurfaceAngleLabel matlab . u i . c on t r o l . Label
e tSur faceAng le matlab . u i . c on t r o l . NumericEditFie ld
ButtonGroup matlab . u i . c on ta ine r . ButtonGroup
enab lePi tch matlab . u i . c on t r o l . RadioButton
enableAngle matlab . u i . c on t r o l . RadioButton

end

p r op e r t i e s ( Access = pr i va t e )
Knots = 10 ; % Description

Path = 0 . 0 ; % Description

Denier = 1500 ;
Density = 1 . 32629 ;
Radius = 0 . 2 ;
braidLength = 3 ; % Description

braidWidth = 3 ; % Description

un i tCe l l s = 3 ; % Description

Spac ing Factor = 1 ; % Description

enableSmoothing = true ; % Description

enableYarns = f a l s e ; % Description

folderName = ’default ’ ;
Vf = 1 ;
yarnAngle = 0 ;
curDir
Mate r i a l s
FGMData

end

methods ( Access = pr i va t e )

function [ ] = updateLamina ( app )

Em = app . etMatrixE . Value ;
vm = app . etMatrixv . Value ;
Gm = app . etMatrixG . Value ;

E1 = app . etYarnE1 . Value ;
E2 = app . etYarnE2 . Value ;
v12 = app . etYarnv12 . Value ;
G12 = app . etYarnG12 . Value ;

theta = app . yarnAngle ;
Vm = 1−app . Vf ;

k f = E1/(2*(1+v12 )*(1−2*v12 ) ) ;
km = Em/(2*(1+vm)*(1−2*vm) ) ;
k = (km*( k f+Gm)*Vm + kf *(km+Gm)* app . Vf ) / . . .

( ( k f+Gm)*Vm + (km+Gm)* app . Vf ) ;

E1 = app . Vf*E1 + Vm*Em;
E2 = 1/( app . Vf/E2 + Vm/Em) ;
E3 = E2 ;

v12 = app . Vf*v12 + Vm*vm;
v13 = v12 ;

m = 1+4*k*v12ˆ2/E1 ;
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v23 = @(G23) (k − m*G23)/( k + m*G23 ) ;

G12 = 1/( app . Vf/G12 + Vm/Gm) ;
G13 = G12 ;
G23 = max ( double ( s o l v e (@(G23) 2*(1−v23 (G23) )*G23 − E2 ) ) ) ;

v23 = v23 (G23 ) ;

app . etLaminaE1 . Value = E1 ;
app . etLaminav12 . Value = v12 ;
app . etLaminaG12 . Value = G12 ;
app . etLaminaE2 . Value = E2 ;
app . etLaminav13 . Value = v13 ;
app . etLaminaG13 . Value = G13 ;
app . etLaminaE3 . Value = E3 ;
app . etLaminav23 . Value = v23 ;
app . etLaminaG23 . Value = G23 ;

E1 = app . etYarnE1 . Value ;
E2 = app . etYarnE2 . Value ;
v12 = app . etYarnv12 . Value ;
G12 = app . etYarnG12 . Value ;
Vf = app . Vf* cosd ( theta ) ;
Vm = 1−Vf ;

k f = E1/(2*(1+v12 )*(1−2*v12 ) ) ;
km = Em/(2*(1+vm)*(1−2*vm) ) ;
k = (km*( k f+Gm)*Vm + kf *(km+Gm)*Vf ) / . . .

( ( k f+Gm)*Vm + (km+Gm)*Vf ) ;

E1 = Vf*E1 + Vm*Em;
E2 = 1/(Vf/E2 + Vm/Em) ;
E3 = E2 ;

v12 = Vf*v12 + Vm*vm;
v13 = v12 ;

m = 1+4*k*v12ˆ2/E1 ;

v23 = @(G23) (k − m*G23)/( k + m*G23 ) ;

G12 = 1/(Vf/G12 + Vm/Gm) ;
G13 = G12 ;
G23 = max ( double ( s o l v e (@(G23) 2*(1−v23 (G23) )*G23 − E2 ) ) ) ;

v23 = v23 (G23 ) ;

T = @( angle ) [ . . .
cosd ( angle )ˆ2 s ind ( angle )ˆ2 0 0 0 2* s ind ( angle )* cosd ( angle )
s ind ( angle )ˆ2 cosd ( angle )ˆ2 0 0 0 −2* s ind ( angle )* cosd ( angle )
0 0 1 0 0 0
0 0 0 cosd ( angle ) s ind ( angle ) 0
0 0 0 −s ind ( angle ) cosd ( angle ) 0
−s ind ( angle )* cosd ( angle ) s ind ( angle )* cosd ( angle ) 0 0 0 . . .
cosd ( angle )ˆ2− s ind ( angle ) ˆ 2 ] ;

R = diag ( [ 1 1 1 2 2 2 ] ) ;

S = [ . . .
1/E1 −v12/E1 −v13/E1 0 0 0
−v12/E1 1/E2 −v23/E2 0 0 0
−v13/E1 −v23/E2 1/E3 0 0 0
0 0 0 1/G23 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G12 ] ;

Sb = T( theta ) ’*S*T( theta ) ;
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E. x = 1/Sb ( 1 , 1 ) ;
E . y = 1/Sb ( 2 , 2 ) ;
E . z = 1/Sb ( 3 , 3 ) ;
v . xy = −Sb (1 ,2 )*E. x ;
v . yx = −Sb (2 ,1 )*E. y ;
v . xz = −Sb (1 ,3 )*E. x ;
v . zx = −Sb (3 ,1 )*E. z ;
v . yz = −Sb (2 ,3 )*E. y ;
v . zy = −Sb (3 ,2 )*E. z ;
G. xy = 1/Sb ( 6 , 6 ) ;
G. xz = 1/Sb ( 5 , 5 ) ;
G. yz = 1/Sb ( 4 , 4 ) ;

app . etAngleLaminaEx . Value = E. x ;
app . etAngleLaminavxy . Value = v . xy ;
app . etAngleLaminaGxy . Value = G. xy ;
app . etAngleLaminaEy . Value = E. y ;
app . etAngleLaminavxz . Value = v . xz ;
app . etAngleLaminaGxz . Value = G. xz ;
app . etAngleLaminaEz . Value = E. z ;
app . etAngleLaminavyz . Value = v . yz ;
app . etAngleLaminaGyz . Value = G. yz ;

app . tbLamina . Value = sprintf ( ’%s/%s %.2f (Vy: %0.3f, PF: %0.3f)’ , . . .
app . ddFibe rSe l e c t . Value , . . .
app . ddMatr ixSe lect . Value , . . .
0 , . . .
app . Vf , . . .
app . etYarnPackingFract ion . Value ) ;

app . tbAngleLamina . Value = sprintf ( ’%s/%s %.2f (Vy: %0.3f, PF: %0.3f)’ , . . .
app . ddFibe rSe l e c t . Value , . . .
app . ddMatr ixSe lect . Value , . . .
theta , . . .
Vf , . . .
app . etYarnPackingFract ion . Value ) ;

end

function [ ] = p r i n tRe su l t s ( app , enab leP lot )
if nargin==1

enab leP lot = f a l s e ;
else

enab leP lot = true ;
end

f i l ename = [ app . folderName , ’\BRAID.PROPERTIES ’ ] ;
fID = fopen ( f i l ename , ’W’ , ’native ’ , ’UTF -8’ ) ;
Ef1= app . etFiberE1 . Value ;
Ef2= app . etFiberE2 . Value ;
v f = app . e tF iberv . Value ;
Gf = app . etFiberG . Value ;
Em = app . etMatrixE . Value ;
vm = app . etMatrixv . Value ;
Gm = app . etMatrixG . Value ;

Ey1 = app . etYarnE1 . Value ;
vy12 = app . etYarnv12 . Value ;
Gy12 = app . etYarnG12 . Value ;
Ey2 = app . etYarnE2 . Value ;
vy13 = app . etYarnv13 . Value ;
Gy13 = app . etYarnG13 . Value ;
Ey3 = app . etYarnE3 . Value ;
vy23 = app . etYarnv23 . Value ;
Gy23 = app . etYarnG23 . Value ;

E1 = app . etLaminaE1 . Value ;
v12 = app . etLaminav12 . Value ;
G12 = app . etLaminaG12 . Value ;
E2 = app . etLaminaE2 . Value ;
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v13 = app . etLaminav13 . Value ;
G13 = app . etLaminaG13 . Value ;
E3 = app . etLaminaE3 . Value ;
v23 = app . etLaminav23 . Value ;
G23 = app . etLaminaG23 . Value ;

E . x = app . etAngleLaminaEx . Value ;
v . xy = app . etAngleLaminavxy . Value ;
G. xy = app . etAngleLaminaGxy . Value ;
E . y = app . etAngleLaminaEy . Value ;
v . xz = app . etAngleLaminavxz . Value ;
G. xz = app . etAngleLaminaGxz . Value ;
E . z = app . etAngleLaminaEz . Value ;
v . yz = app . etAngleLaminavyz . Value ;
G. yz = app . etAngleLaminaGyz . Value ;

theta = app . yarnAngle ;
bn = app . braidWidth ;
bm = app . braidLength ;
SF = app . Spac ing Factor+app . enableYarns * . . .

(1/ s ind (45+app . Path)−1.0+app . Path /180 ) ;
Pf = app . etYarnPackingFract ion . Value ;
Fiber = upper ( app . ddF ibe rSe l e c t . Value ) ;
Matrix = upper ( app . ddMatr ixSe lect . Value ) ;
yarnRadius = app . Radius ;

Sx = 2*yarnRadius *(2*bn*SF +1.5) ;
Sy = 2*yarnRadius *(2*bm*SF +1.5) ;
Ny = (2+app . enableYarns )*bn*bm+bn+bm;
eta = Ny*pi*yarnRadius ˆ2/(Sx*Sy ) ;

app . Bra idCrossSect iona lDimsEditF ie ld . Value = . . .
sprintf ( ’%.3f X %.3f’ , Sx , Sy ) ;

app . Un i tCe l lHe ig thEd i tF i e ld . Value = num2str ( app . etZHeight . Value ) ;
app . AverageBraid ingAngleEditFie ld . Value = num2str ( app . yarnAngle ) ;
app . In t e r i o rBra id ingAng l eEd i tF i e l d . Value = . . .

num2str ( atand (4* sqrt (2)* app . Radius * . . .
app . Spac ing Factor /app . etZHeight . Value ) ) ;

app . Sur faceBra id ingAng leEd i tF i e ld . Value = . . .
num2str ( atand (2* sqrt (2)* app . Radius * . . .
app . Spac ing Factor /app . etZHeight . Value ) ) ;

app . Bra id ingTightnes sEd i tF i e ld . Value = num2str ( eta ) ;
app . FiberVolumeFract ionEditFie ld . Value = num2str ( app . Vf*Pf ) ;
app . NumberofYarnsEditField . Value = num2str (Ny ) ;
app . YoungsModulusRangeEditField . Value = . . .

sprintf ( ’%.3f - %.3f’ ,E . x , E1 ) ;

app .FGM(Ny, Sx*Sy )

pr intHeader ( fID )

printSummary ( fID , Fiber , Matrix , Pf , app . Vf , theta ,E . x , E1 , . . .
app . etFGMEx . Value , bn ,bm, SF , yarnRadius , app . Knots , . . .
app . enableSmoothing , app . enableYarns , app . etZHeight . Value )

pr intF iberProps ( fID , Ef1 , Ef2 , vf , Gf , [ ’Fiber Properties: ’ , F iber ] , . . .
app . Density , app . Denier , yarnRadius )

p r i n t I s o ( fID , Em,vm,Gm, [ ’Matrix Properties: ’ , Matrix ] )

pr intOrtho ( fID , Ey1 , Ey2 , Ey3 , vy12 , vy13 , vy23 , Gy12 ,Gy13 ,Gy23 , . . .
sprintf ( ’Yarn Properties: %s/%s (PF: %.3f)’ , Fiber , Matrix , Pf ) )

pr intOrtho ( fID , E1 , E2 , E3 , v12 , v13 , v23 ,G12 ,G13 ,G23 , . . .
sprintf ( ’%s/%s 0.00 deg (Vy: %.3f, PF: %.3f)’ , . . .
Fiber , Matrix , app . Vf , Pf ) )

pr intOrtho ( fID ,E. x ,E. y ,E . z , v . xy , v . xz , v . yz ,G. xy ,G. xz ,G. yz , . . .

197



sprintf ( ’%s/%s %.2f deg (Vy: %.3f, PF: %.3f)’ , . . .
Fiber , Matrix , theta , app . Vf , Pf ) )

pr intOrtho ( fID , . . .
app . etFGMEx . Value , . . .
app . etFGMEy . Value , . . .
app . etFGMEz . Value , . . .
app . etFGMvxy . Value , . . .
app . etFGMvxz . Value , . . .
app . etFGMvyz . Value , . . .
app . etFGMGxy . Value , . . .
app . etFGMGxz . Value , . . .
app . etFGMGyz . Value , . . .
’Fabric Geometery Model’ )

fclose ( fID ) ;

if enab leP lot
figure ;
fplot (Pf , [ 0 , 9 0 ] ) ;
hold on
Sx = 2*yarnRadius *(2*bn*SF +1.5) ;
Sy = 2*yarnRadius *(2*bm*SF +1.5) ;
Ny = (2+app . enableYarns )*bn*bm+bn+bm;
eta = Ny*pi*yarnRadius ˆ2/(Sx*Sy ) ;
fplot (@( t ) Pf .* eta . / cosd ( t ) , [ 0 , acosd ( sqrt ( eta /( pi/2−eta ) ) ) ] ) ;
fplot (@( t ) pi . / 2 . * Pf .* cosd ( t ) ./(1+ cosd ( t ) . ˆ 2 ) , [ 0 , 9 0 ] ) ;

plot ( theta , Pf* eta / cosd ( theta ) , ’ok’ ) ;
plot ( [ 0 , theta ] , [ Pf* eta / cosd ( theta ) , Pf* eta / cosd ( theta ) ] , ’--k’ ) ;
plot ( [ theta , theta ] , [ 0 , Pf* eta / cosd ( theta ) ] , ’--k’ ) ;

axis ( [ 0 90 0 1 ] ) ;
xlabel ( ’Braiding Angle , \theta ’ ) ;
ylabel ( ’Fiber Volume Fraction , V_f’ ) ;
text (45 , Pf+0.05 , sprintf ( ’Yarn Packing Fraction = %.2f’ , Pf ) , . . .

’HorizontalAlignment ’ , ’center ’ )
end

end

function [ ] = FGM(app ,Ny, Area )
E1 = app . etYarnE1 . Value ;
v12 = app . etYarnv12 . Value ;
G12 = app . etYarnG12 . Value ;
E2 = app . etYarnE2 . Value ;
v13 = app . etYarnv13 . Value ;
G13 = app . etYarnG13 . Value ;
E3 = app . etYarnE3 . Value ;
v23 = app . etYarnv23 . Value ;
G23 = app . etYarnG23 . Value ;

Em = app . etMatrixE . Value ;
vm = app . etMatrixv . Value ;
Gm = app . etMatrixG . Value ;

S = [ . . .
1/E1 −v12/E1 −v13/E1 0 0 0
−v12/E1 1/E2 −v23/E2 0 0 0
−v13/E1 −v23/E2 1/E3 0 0 0
0 0 0 1/G23 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G12 ] ;

Sm = [ . . .
1/Em −vm/Em −vm/Em 0 0 0
−vm/Em 1/Em −vm/Em 0 0 0
−vm/Em −vm/Em 1/Em 0 0 0
0 0 0 1/Gm 0 0
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0 0 0 0 1/Gm 0
0 0 0 0 0 1/Gm] ;

A = @( theta , beta ) [ 1 0 0 ; 0 cosd ( beta ) s ind ( beta ) ; . . .
0 −s ind ( beta ) cosd ( beta ) ] * . . .
[ cosd ( theta ) −s ind ( theta ) 0 ; s ind ( theta ) cosd ( theta ) 0 ; 0 0 1 ] ;

Ta = @( theta , beta )A( theta , beta ) . ˆ 2 ;
Tb = @( theta , beta )2* c i r c s h i f t (A( theta , beta ) , 1 , 2 ) . * . . .

c i r c s h i f t (A( theta , beta ) , 2 , 2 ) ;
Tc = @( theta , beta ) c i r c s h i f t (A( theta , beta ) , 1 , 1 ) . * . . .

c i r c s h i f t (A( theta , beta ) , 2 , 1 ) ;
Td = @( theta , beta ) c i r c s h i f t (A( theta , beta ) , [ 1 , 1 ] ) . * . . .

c i r c s h i f t (A( theta , beta ) , [ 2 , 2 ] ) + . . .
c i r c s h i f t (A( theta , beta ) , [ 1 , 2 ] ) . * c i r c s h i f t (A( theta , beta ) , [ 2 , 1 ] ) ;

T = @( theta , beta ) [Ta( theta , beta ) ,Tb( theta , beta ) ; . . .
Tc( theta , beta ) ,Td( theta , beta ) ] ;

for m = 1:2
C = zeros ( size (S ) ) ;
for n = 1 :Ny

tFGM = app .FGMData(n+(m−1)*Ny , 2 ) ;
bFGM = app .FGMData(n+(m−1)*Ny , 1 ) ;
C = C + inv (T(tFGM,bFGM) ’*S*T(tFGM,bFGM) ) * . . .

pi*app . Radius ˆ2/ cosd (tFGM)/Area ;

end

C = C + inv (Sm)* ( Area − sum ( app . Radius . / . . .
cosd ( app .FGMData( (m−1)*Ny+1:m*Ny, 2 ) ) ) ) / Area ;

switch m
case 1

C1 = C;
case 2

C2 = C;
end

end

Snew = inv (C1/2+C2/2 ) ;
Snew( abs (Snew)<1e−5) = 0 ;

app . etFGMEx . Value = 1/Snew ( 1 , 1 ) ;
app . etFGMEy . Value = 1/Snew ( 2 , 2 ) ;
app . etFGMEz . Value = 1/Snew ( 3 , 3 ) ;
app . etFGMvxy . Value = −Snew (1 ,2 )* app . etFGMEx . Value ;
app . etFGMGxy . Value = 1/Snew ( 6 , 6 ) ;
app . etFGMvxz . Value = −Snew (1 ,3 )* app . etFGMEx . Value ;
app . etFGMGxz . Value = 1/Snew ( 5 , 5 ) ;
app . etFGMvyz . Value = −Snew (2 ,3 )* app . etFGMEy . Value ;
app . etFGMGyz . Value = 1/Snew ( 4 , 4 ) ;

end

end

methods ( Access = pr i va t e )

% Code that executes after component creation

function startupFcn ( app )
app . curDir = cd ;

app . Mate r i a l s = xmlParse ( ’Materials.lib’ ) ;

app . ddFibe rSe l e c t . Items = f i e ldnames ( app . Mate r i a l s . Fiber ) ;

app . ddMatr ixSe lect . Items = f i e ldnames ( app . Mate r i a l s . Matrix ) ;
va lue = app . ddF ibe rSe l e c t . Value ;
E1 = app . Mate r i a l s . Fiber . ( va lue ) . E1 ;
E2 = app . Mate r i a l s . Fiber . ( va lue ) . E2 ;
v = app . Mate r i a l s . Fiber . ( va lue ) . v ;
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G = app . Mate r i a l s . Fiber . ( va lue ) .G;
app . Denier = app . Mate r i a l s . Fiber . ( va lue ) . Denier ;
app . etDenier . Value = app . Denier ;
app . Density = app . Mate r i a l s . Fiber . ( va lue ) . Density ;
app . Radius = sqrt ( app . Denier /(9000* pi ( )* app . Density ) ) ;
app . etYarnRadius . Value = app . Radius ;
n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) ) ;
app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;
app . etFiberE1 . Value = E1 ;
app . etFiberE2 . Value = E2 ;
app . e tF iberv . Value = v ;
app . etFiberG . Value = G;
value = app . ddMatr ixSe lect . Value ;
E = app . Mate r i a l s . Matrix . ( va lue ) .E ;
v = app . Mate r i a l s . Matrix . ( va lue ) . v ;
G = E/(2*(1+v ) ) ;

app . etMatrixE . Value = E;
app . etMatrixv . Value = v ;
app . etMatrixG . Value = G;
app .PF( )

end

% Value changed function: cbDenier

function DenierChange ( app , event )
va lue = app . cbDenier . Value ;

if value
app . etDenier . Ed i tab l e = ’on’ ;

else

app . etDenier . Ed i tab l e = ’off’ ;
va lue = app . ddF ibe rSe l e c t . Value ;
app . Denier = app . Mate r i a l s . Fiber . ( va lue ) . Denier ;
app . etDenier . Value = app . Mate r i a l s . Fiber . ( va lue ) . Denier ;
app . Radius = sqrt ( app . Denier /(9000* pi ( )* app . Density ) ) ;
app . etYarnRadius . Value = app . Radius ;
n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2 )*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2 )*R*SF)/ ( 0 . 5* z ) ) ;
app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e tSur faceAngle . Value = atand ((2* sqrt (2 )*R*SF)/( z ) ) ;
end

end

% Value changed function: etDenier

function DenierValue ( app , event )
va lue = round ( app . etDenier . Value ) ;
app . etDenier . Value = value ;
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app . Denier = value ;
app . Radius = sqrt ( app . Denier /(9000* pi ( )* app . Density ) ) ;
app . etYarnRadius . Value = app . Radius ;
n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) ) ;
app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;
end

% Value changed function: etYarnPackingFraction

function PF(app , event )
va lue = app . etYarnPackingFract ion . Value ;

Ef1= app . etFiberE1 . Value ;
Ef2= app . etFiberE2 . Value ;
v f = app . e tF iberv . Value ;
Gf = app . etFiberG . Value ;
Em = app . etMatrixE . Value ;
vm = app . etMatrixv . Value ;
Gm = app . etMatrixG . Value ;

Pf = value ;

Vm = 1−Pf ;

k f = Ef1 /(2*(1+ vf )*(1−2* vf ) ) ;
km = Em/(2*(1+vm)*(1−2*vm) ) ;
k = (km*( k f+Gm)*Vm + kf *(km+Gm)*Pf ) / . . .

( ( k f+Gm)*Vm + (km+Gm)*Pf ) ;

E1 = Pf*Ef1 + Vm*Em;
E2 = 1/( Pf/Ef2 + Vm/Em) ;
E3 = E2 ;

v12 = Pf* vf + Vm*vm;
v13 = v12 ;

m = 1+4*k*v12ˆ2/E1 ;

v23 = @(G23) (k − m*G23)/( k + m*G23 ) ;

G12 = 1/( Pf/Gf + Vm/Gm) ;
G13 = G12 ;
G23 = max ( double ( s o l v e (@(G23) 2*(1−v23 (G23) )*G23 − E2 ) ) ) ;

v23 = v23 (G23 ) ;
app . etYarnE1 . Value = E1 ;
app . etYarnv12 . Value = v12 ;
app . etYarnG12 . Value = G12 ;
app . etYarnE2 . Value = E2 ;
app . etYarnv13 . Value = v13 ;
app . etYarnG13 . Value = G13 ;
app . etYarnE3 . Value = E3 ;
app . etYarnv23 . Value = v23 ;
app . etYarnG23 . Value = G23 ;
app . updateLamina ( )

end

% Value changed function: etTAngle
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function TAngleChange ( app , event )
va lue = app . etTAngle . Value ;
n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = 4*sqrt (2 )*R*SF/tand ( value ) ;
app . etZHeight . Value = z ;
app . Un i tCe l lHe ig thEd i tF i e ld . Value = num2str ( app . etZHeight . Value ) ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) ) ;
app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;

end

% Value changed function: etBraidDepth

function braidL (app , event )
va lue = app . etBraidDepth . Value ;
app . braidLength = round ( va lue ) ;
bm = app . braidLength ;
bn = app . braidWidth ;
SF = app . Spac ing Factor ;
Sx = 2*app . Radius *(2*bn*SF +1.5) ;
Sy = 2*app . Radius *(2*bm*SF +1.5) ;
app . Bra idCrossSect iona lDimsEditF ie ld . Value = . . .

sprintf ( ’%.3f X %.3f’ , Sx , Sy ) ;
app . NumberofYarnsEditField . Value = . . .

num2str ((2+app . enableYarns )*bn*bm+bn+bm) ;

n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) ) ;
app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;
end

% Value changed function: etBraidWidth

function braidW(app , event )
va lue = app . etBraidWidth . Value ;
app . braidWidth = round ( va lue ) ;
bm = app . braidLength ;
bn = app . braidWidth ;
SF = app . Spac ing Factor ;
Sx = 2*app . Radius *(2*bn*SF +1.5) ;
Sy = 2*app . Radius *(2*bm*SF +1.5) ;
app . Bra idCrossSect iona lDimsEditF ie ld . Value = . . .

sprintf ( ’%.3f X %.3f’ , Sx , Sy ) ;
app . NumberofYarnsEditField . Value = . . .

num2str ((2+app . enableYarns )*bn*bm+bn+bm) ;

n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) ) ;
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app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .
atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;
end

% Button pushed function: btClosePlots

function c l o s eP l o t s ( app , event )
close all ;

end

% Value changed function: cbSmoothing

function enSmoothing ( app , event )
va lue = app . cbSmoothing . Value ;
app . enableSmoothing = value ;

end

% Value changed function: cbTriAxial

function enTriAxia l ( app , event )
va lue = app . cbTriAxia l . Value ;
app . enableYarns = value ;
bm = app . braidLength ;
bn = app . braidWidth ;
SF = app . Spac ing Factor ;
Sx = 2*app . Radius *(2*bn*SF +1.5) ;
Sy = 2*app . Radius *(2*bm*SF +1.5) ;
app . Bra idCrossSect iona lDimsEditF ie ld . Value = . . .

sprintf ( ’%.3f X %.3f’ , Sx , Sy ) ;
app . NumberofYarnsEditField . Value = . . .

num2str ((2+app . enableYarns )*bn*bm+bn+bm) ;
end

% Value changed function: ddFiberSelect

function f iberChange ( app , event )
va lue = app . ddF ibe rSe l e c t . Value ;
E1 = app . Mate r i a l s . Fiber . ( va lue ) . E1 ;
E2 = app . Mate r i a l s . Fiber . ( va lue ) . E2 ;
v = app . Mate r i a l s . Fiber . ( va lue ) . v ;
G = app . Mate r i a l s . Fiber . ( va lue ) .G;
D = app . Mate r i a l s . Fiber . ( va lue ) . Denier ;
app . etDenier . Value = D;
rho= app . Mate r i a l s . Fiber . ( va lue ) . Density ;
app . etFiberE1 . Value = E1 ;
app . etFiberE2 . Value = E2 ;
app . e tF iberv . Value = v ;
app . etFiberG . Value = G;
app . Density = rho ;
app . Denier = D;
app . Radius = sqrt ( app . Denier /(9000* pi ( )* app . Density ) ) ;
app . etYarnRadius . Value = app . Radius ;
bm = app . braidLength ;
bn = app . braidWidth ;
SF = app . Spac ing Factor ;
Sx = 2*app . Radius *(2*bn*SF +1.5) ;
Sy = 2*app . Radius *(2*bm*SF +1.5) ;
app . Bra idCrossSect iona lDimsEditF ie ld . Value = . . .

sprintf ( ’%.3f X %.3f’ , Sx , Sy ) ;
n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ))+(2*(n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) ) ;
app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
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atand ((2* sqrt (2)*R*SF)/( z ) ) ;
app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;
app .PF( )

end

% Value changed function: etFolderName

function f o l d e r ( app , event )
va lue = app . etFolderName . Value ;
if isempty ( va lue )

app . etFolderName . Value = app . folderName ;
else

app . folderName = value ;
end

end

% Button pushed function: btGenerateModel

function genModel ( app , event )
if app . cbType2Paths . Value

[ ˜ , app . Vf , app . yarnAngle , app .FGMData ] = . . .
generateBraidPaths ( app . Knots , app . Path , app . braidLength , . . .
app . braidWidth , app . Radius , app . Spacing Factor , . . .
app . un i tCe l l s , app . folderName , app . enableSmoothing , . . .
app . enableYarns , f a l s e , f a l s e , true , app . etZHeight . Value ) ;

else

[ ˜ , app . Vf , app . yarnAngle , app .FGMData ] = . . .
generateBraidPaths ( app . Knots , app . Path , app . braidLength , . . .
app . braidWidth , app . Radius , app . Spacing Factor , . . .
app . un i tCe l l s , app . folderName , app . enableSmoothing , . . .
app . enableYarns , f a l s e , f a l s e , f a l s e , app . etZHeight . Value ) ;

end

app . updateLamina ( ) ;
app . p r i n tRe su l t s ( ) ;
system ( [ ’copy "’ , app . curDir , ’\Import_Curves.swp" "’ , . . .

app . curDir , ’\’ , app . folderName , ’\Import_Curves.swp"’ ] )
system ( [ ’"C:\ Program Files\SOLIDWORKS Corp\’ , . . .

’SOLIDWORKS (2)\ SLDWORKS.exe" -m "’ , . . .
app . curDir , ’\’ , app . folderName , ’\Import_Curves.swp"’ ] )

end

% Button pushed function: btGeneratePaths

function genPaths ( app , event )
if app . cbType2Paths . Value

[ ˜ , app . Vf , app . yarnAngle , app .FGMData ] = . . .
generateBraidPaths ( app . Knots , app . Path , app . braidLength , . . .
app . braidWidth , app . Radius , app . Spacing Factor , . . .
app . un i tCe l l s , app . folderName , app . enableSmoothing , . . .
app . enableYarns , f a l s e , f a l s e , true , app . etZHeight . Value ) ;

else

[ ˜ , app . Vf , app . yarnAngle , app .FGMData ] = . . .
generateBraidPaths ( app . Knots , app . Path , app . braidLength , . . .
app . braidWidth , app . Radius , app . Spacing Factor , . . .
app . un i tCe l l s , app . folderName , app . enableSmoothing , . . .
app . enableYarns , f a l s e , f a l s e , f a l s e , app . etZHeight . Value ) ;

end

app . updateLamina ( ) ;
app . p r i n tRe su l t s ( ) ;

end

% Button pushed function: btGeneratePlots

function genPlots ( app , event )
close all ;
if app . cbType2Paths . Value

[ ˜ , app . Vf , app . yarnAngle , app .FGMData ] = . . .
generateBraidPaths ( app . Knots , app . Path , app . braidLength , . . .
app . braidWidth , app . Radius , app . Spacing Factor , . . .
app . un i tCe l l s , app . folderName , app . enableSmoothing , . . .
app . enableYarns , f a l s e , true , true , app . etZHeight . Value ) ;

else
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[ ˜ , app . Vf , app . yarnAngle , app .FGMData ] = . . .
generateBraidPaths ( app . Knots , app . Path , app . braidLength , . . .
app . braidWidth , app . Radius , app . Spacing Factor , . . .
app . un i tCe l l s , app . folderName , app . enableSmoothing , . . .
app . enableYarns , f a l s e , true , f a l s e , app . etZHeight . Value ) ;

end

app . updateLamina ( ) ;
app . p r i n tRe su l t s ( 1 ) ;

end

% Value changed function: ddMatrixSelect

function matrixChange ( app , event )
va lue = app . ddMatr ixSe lect . Value ;
E = app . Mate r i a l s . Matrix . ( va lue ) .E ;
v = app . Mate r i a l s . Matrix . ( va lue ) . v ;
G = E/(2*(1+v ) ) ;

app . etMatrixE . Value = E;
app . etMatrixv . Value = v ;
app . etMatrixG . Value = G;
app .PF( )

end

% Selection changed function: ButtonGroup

function modeChange ( app , event )
se l e c tedButton = app . ButtonGroup . Se l e c t edObjec t ;
switch se l e c tedButton

case app . enab lePi tch
app . etZHeight . Ed i tab le = ’on’ ;
app . etTAngle . Ed i tab l e = ’off’ ;

case app . enableAngle
app . etZHeight . Ed i tab le = ’off’ ;
app . etTAngle . Ed i tab l e = ’on’ ;

end

end

% Value changed function: etPathAngle

function pathAngle ( app , event )
va lue = app . etPathAngle . Value ;
app . Path = value ;

end

% Value changed function: etSpacingFactor

function s f ( app , event )
va lue = app . etSpac ingFactor . Value ;
app . Spac ing Factor = value ;
bm = app . braidLength ;
bn = app . braidWidth ;
SF = app . Spac ing Factor ;
Sx = 2*app . Radius *(2*bn*SF +1.5) ;
Sy = 2*app . Radius *(2*bm*SF +1.5) ;
app . Bra idCrossSect iona lDimsEditF ie ld . Value = . . .

sprintf ( ’%.3f X %.3f’ , Sx , Sy ) ;
n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) ) ;
app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;
end
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% Value changed function: etKnotsinSpline

function sp l ineKnots ( app , event )
va lue = app . e tKnots inSp l ine . Value ;
app . Knots = round ( va lue ) ;

end

% Value changed function: etNumofUnitCells

function uc ( app , event )
va lue = app . etNumofUnitCel ls . Value ;
app . un i tC e l l s = round ( va lue ) ;

end

% Value changed function: etZHeight

function zChange ( app , event )
va lue = app . etZHeight . Value ;
n = app . braidLength ;
m = app . braidWidth ;
R = app . Radius ;
SF = app . Spac ing Factor ;
z = app . etZHeight . Value ;
app . Un i tCe l lHe ig thEd i tF i e ld . Value = num2str ( app . etZHeight . Value ) ;
app . etAverageAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((2* sqrt (2)*R*SF)/ ( 0 . 5* z ) )+ . . .
(2* ( n+m))/ (2*n*m+n+m)* atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e t I n t e r i o rAng l e . Value = atand ((4* sqrt (2)*R*SF)/( z ) ) ;
app . etTAngle . Value = (2*n*m−n−m)/(2*n*m+n+m) * . . .

atand ((4* sqrt (2)*R*SF)/( z ) ) + (2* ( n+m))/ (2*n*m+n+m) * . . .
atand ((2* sqrt (2)*R*SF)/( z ) ) ;

app . e tSur faceAngle . Value = atand ((2* sqrt (2)*R*SF)/( z ) ) ;
end

end

% App initialization and construction

methods ( Access = pr i va t e )

% Create UIFigure and components

function createComponents ( app )

% Create UIFigure

app . UIFigure = u i f i g u r e ;
app . UIFigure . Po s i t i on = [101 101 1425 8 7 1 ] ;
app . UIFigure .Name = ’Braid Generator ’ ;

% Create LabelNumericEditField2

app . LabelNumericEditFie ld2 = u i l a b e l ( app . UIFigure ) ;
app . LabelNumericEditFie ld2 . Hor izontalAl ignment = ’right’ ;
app . LabelNumericEditFie ld2 . Po s i t i on = [95 745 60 1 5 ] ;
app . LabelNumericEditFie ld2 . Text = ’Path Angle ’ ;

% Create etPathAngle

app . etPathAngle = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etPathAngle . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @pathAngle , t rue ) ;
app . etPathAngle . Limits = [ 0 4 5 ] ;
app . etPathAngle . ValueDisplayFormat = ’%.1f’ ;
app . etPathAngle . Hor izontalAl ignment = ’center ’ ;
app . etPathAngle . Po s i t i on = [170 741 100 2 2 ] ;

% Create LabelNumericEditField3

app . LabelNumericEditFie ld3 = u i l a b e l ( app . UIFigure ) ;
app . LabelNumericEditFie ld3 . Hor izontalAl ignment = ’right’ ;
app . LabelNumericEditFie ld3 . Po s i t i on = [92 702 63 1 5 ] ;
app . LabelNumericEditFie ld3 . Text = ’Braid Width’ ;

% Create etBraidWidth

app . etBraidWidth = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etBraidWidth . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @braidW , true ) ;
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app . etBraidWidth . Limits = [ 1 2 0 ] ;
app . etBraidWidth . ValueDisplayFormat = ’%.0f’ ;
app . etBraidWidth . Hor izontalAl ignment = ’center ’ ;
app . etBraidWidth . Pos i t i on = [170 698 100 2 2 ] ;
app . etBraidWidth . Value = 3 ;

% Create LabelNumericEditField4

app . LabelNumericEditFie ld4 = u i l a b e l ( app . UIFigure ) ;
app . LabelNumericEditFie ld4 . Hor izontalAl ignment = ’right’ ;
app . LabelNumericEditFie ld4 . Po s i t i on = [73 788 82 1 5 ] ;
app . LabelNumericEditFie ld4 . Text = ’Knots in Spline ’ ;

% Create etKnotsinSpline

app . e tKnots inSp l ine = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . e tKnots inSp l ine . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @splineKnots , t rue ) ;
app . e tKnots inSp l ine . Limits = [ 5 1 0 00 ] ;
app . e tKnots inSp l ine . ValueDisplayFormat = ’%.0f’ ;
app . e tKnots inSp l ine . Hor izontalAl ignment = ’center ’ ;
app . e tKnots inSp l ine . Po s i t i on = [170 784 100 2 2 ] ;
app . e tKnots inSp l ine . Value = 10 ;

% Create LabelNumericEditField5

app . LabelNumericEditFie ld5 = u i l a b e l ( app . UIFigure ) ;
app . LabelNumericEditFie ld5 . Hor izontalAl ignment = ’right’ ;
app . LabelNumericEditFie ld5 . Po s i t i on = [90 659 65 1 5 ] ;
app . LabelNumericEditFie ld5 . Text = ’Braid Depth’ ;

% Create etBraidDepth

app . etBraidDepth = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etBraidDepth . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @braidL , t rue ) ;
app . etBraidDepth . Limits = [ 1 2 0 ] ;
app . etBraidDepth . ValueDisplayFormat = ’%.0f’ ;
app . etBraidDepth . Hor izontalAl ignment = ’center ’ ;
app . etBraidDepth . Pos i t i on = [170 655 100 2 2 ] ;
app . etBraidDepth . Value = 3 ;

% Create LabelNumericEditField6

app . LabelNumericEditFie ld6 = u i l a b e l ( app . UIFigure ) ;
app . LabelNumericEditFie ld6 . Hor izontalAl ignment = ’right’ ;
app . LabelNumericEditFie ld6 . Po s i t i on = [73 617 82 1 5 ] ;
app . LabelNumericEditFie ld6 . Text = ’Spacing Factor ’ ;

% Create etSpacingFactor

app . etSpac ingFactor = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etSpac ingFactor . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @sf , t rue ) ;
app . etSpac ingFactor . Limits = [ 0 . 5 5 0 ] ;
app . etSpac ingFactor . ValueDisplayFormat = ’%.2f’ ;
app . etSpac ingFactor . Hor izontalAl ignment = ’center ’ ;
app . etSpac ingFactor . Po s i t i on = [170 613 100 2 2 ] ;
app . etSpac ingFactor . Value = 1 ;

% Create btGeneratePlots

app . btGeneratePlots = uibutton ( app . UIFigure , ’push’ ) ;
app . btGeneratePlots . ButtonPushedFcn = . . .

c reateCal lbackFcn (app , @genPlots , t rue ) ;
app . btGeneratePlots . Po s i t i on = [163 416 120 4 2 ] ;
app . btGeneratePlots . Text = ’Generate Plots’ ;

% Create btGenerateModel

app . btGenerateModel = uibutton ( app . UIFigure , ’push’ ) ;
app . btGenerateModel . ButtonPushedFcn = . . .

c reateCal lbackFcn (app , @genModel , t rue ) ;
app . btGenerateModel . Po s i t i on = [307 416 120 4 2 ] ;
app . btGenerateModel . Text = ’Generate Model’ ;
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% Create LabelNumericEditField7

app . LabelNumericEditFie ld7 = u i l a b e l ( app . UIFigure ) ;
app . LabelNumericEditFie ld7 . Hor izontalAl ignment = ’right’ ;
app . LabelNumericEditFie ld7 . Po s i t i on = [42 575 113 1 5 ] ;
app . LabelNumericEditFie ld7 . Text = ’Number of Unit Cells’ ;

% Create etNumofUnitCells

app . etNumofUnitCel ls = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etNumofUnitCel ls . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @uc , t rue ) ;
app . etNumofUnitCel ls . L imits = [ 1 2 0 ] ;
app . etNumofUnitCel ls . ValueDisplayFormat = ’%.0f’ ;
app . etNumofUnitCel ls . Hor izontalAl ignment = ’center ’ ;
app . etNumofUnitCel ls . Po s i t i on = [170 571 100 2 2 ] ;
app . etNumofUnitCel ls . Value = 3 ;

% Create cbSmoothing

app . cbSmoothing = uicheckbox ( app . UIFigure ) ;
app . cbSmoothing . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @enSmoothing , t rue ) ;
app . cbSmoothing . Text = ’Enable Smoothing ’ ;
app . cbSmoothing . Pos i t i on = [392 768 120 1 6 ] ;
app . cbSmoothing . Value = true ;

% Create cbTriAxial

app . cbTriAxia l = uicheckbox ( app . UIFigure ) ;
app . cbTriAxia l . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @enTriAxial , t rue ) ;
app . cbTriAxia l . Text = ’Enable Tri -Axial Yarns ’ ;
app . cbTriAxia l . Po s i t i on = [392 728 144 1 6 ] ;

% Create btGeneratePaths

app . btGeneratePaths = uibutton ( app . UIFigure , ’push’ ) ;
app . btGeneratePaths . ButtonPushedFcn = . . .

c reateCal lbackFcn (app , @genPaths , t rue ) ;
app . btGeneratePaths . Po s i t i on = [18 416 120 4 2 ] ;
app . btGeneratePaths . Text = ’Generate Paths’ ;

% Create LabelEditField

app . Labe lEd i tF ie ld = u i l a b e l ( app . UIFigure ) ;
app . Labe lEd i tF ie ld . Hor izontalAl ignment = ’right’ ;
app . Labe lEd i tF ie ld . Po s i t i on = [357 634 74 1 5 ] ;
app . Labe lEd i tF ie ld . Text = ’Folder Output ’ ;

% Create etFolderName

app . etFolderName = u i e d i t f i e l d ( app . UIFigure , ’text’ ) ;
app . etFolderName . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @folder , t rue ) ;
app . etFolderName . Hor izontalAl ignment = ’center ’ ;
app . etFolderName . Pos i t i on = [446 630 100 2 2 ] ;
app . etFolderName . Value = ’default ’ ;

% Create btClosePlots

app . btC loseP lo t s = uibutton ( app . UIFigure , ’push’ ) ;
app . btC loseP lo t s . ButtonPushedFcn = . . .

c reateCal lbackFcn (app , @closePlots , t rue ) ;
app . btC loseP lo t s . Po s i t i on = [451 416 120 4 2 ] ;
app . btC loseP lo t s . Text = ’Close Plots ’ ;

% Create cbType2Paths

app . cbType2Paths = uicheckbox ( app . UIFigure ) ;
app . cbType2Paths . Enable = ’off’ ;
app . cbType2Paths . Text = ’Enable Type II’ ;
app . cbType2Paths . Pos i t i on = [392 686 97 1 6 ] ;

% Create LabelDropDown

app . LabelDropDown = u i l a b e l ( app . UIFigure ) ;
app . LabelDropDown . Pos i t i on = [624 762 28 1 5 ] ;
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app . LabelDropDown . Text = ’Fiber’ ;

% Create ddFiberSelect

app . ddFibe rSe l e c t = uidropdown ( app . UIFigure ) ;
app . ddFibe rSe l e c t . Items = {’Option 1’ } ;
app . ddFibe rSe l e c t . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @fiberChange , t rue ) ;
app . ddFibe rSe l e c t . Po s i t i on = [667 758 100 2 2 ] ;

% Create LabelDropDown2

app . LabelDropDown2 = u i l a b e l ( app . UIFigure ) ;
app . LabelDropDown2 . Hor izontalAl ignment = ’right’ ;
app . LabelDropDown2 . Pos i t i on = [800 763 33 1 5 ] ;
app . LabelDropDown2 . Text = ’Matrix ’ ;

% Create ddMatrixSelect

app . ddMatr ixSe lect = uidropdown ( app . UIFigure ) ;
app . ddMatr ixSe lect . Items = {’Option 1’ } ;
app . ddMatr ixSe lect . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @matrixChange , t rue ) ;
app . ddMatr ixSe lect . Po s i t i on = [848 759 100 2 2 ] ;

% Create LabelNumericEditField9

app . LabelNumericEditFie ld9 = u i l a b e l ( app . UIFigure ) ;
app . LabelNumericEditFie ld9 . Hor izontalAl ignment = ’center ’ ;
app . LabelNumericEditFie ld9 . Po s i t i on = [ 6 6 1 . 5 712 111 1 5 ] ;
app . LabelNumericEditFie ld9 . Text = ’Logitudinal Modulus ’ ;

% Create etFiberE1

app . etFiberE1 = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etFiberE1 . Ed i tab le = ’off’ ;
app . etFiberE1 . Hor izontalAl ignment = ’center ’ ;
app . etFiberE1 . Pos i t i on = [667 680 100 2 2 ] ;

% Create Label

app . Label = u i l a b e l ( app . UIFigure ) ;
app . Label . Hor izontalAl ignment = ’right’ ;
app . Label . Po s i t i on = [675 600 84 1 5 ] ;
app . Label . Text = ’Poisson ’’s Ratio’ ;

% Create etFiberv

app . e tF iberv = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . e tF iberv . Ed i tab le = ’off’ ;
app . e tF iberv . Hor izontalAl ignment = ’center ’ ;
app . e tF iberv . Pos i t i on = [667 568 100 2 2 ] ;

% Create Label2

app . Label2 = u i l a b e l ( app . UIFigure ) ;
app . Label2 . Hor izontalAl ignment = ’right’ ;
app . Label2 . Po s i t i on = [675 542 83 1 5 ] ;
app . Label2 . Text = ’Shear Modulus ’ ;

% Create etFiberG

app . etFiberG = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etFiberG . Edi tab le = ’off’ ;
app . etFiberG . HorizontalAl ignment = ’center ’ ;
app . etFiberG . Pos i t i on = [667 510 100 2 2 ] ;

% Create Label3

app . Label3 = u i l a b e l ( app . UIFigure ) ;
app . Label3 . Hor izontalAl ignment = ’right’ ;
app . Label3 . Po s i t i on = [851 713 94 1 5 ] ;
app . Label3 . Text = ’Young’’s Modulus ’ ;

% Create etMatrixE

app . etMatrixE = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etMatrixE . Edi tab le = ’off’ ;
app . etMatrixE . HorizontalAl ignment = ’center ’ ;
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app . etMatrixE . Pos i t i on = [848 681 100 2 2 ] ;

% Create Label4

app . Label4 = u i l a b e l ( app . UIFigure ) ;
app . Label4 . Hor izontalAl ignment = ’right’ ;
app . Label4 . Po s i t i on = [856 630 84 1 5 ] ;
app . Label4 . Text = ’Poisson ’’s Ratio’ ;

% Create etMatrixv

app . etMatrixv = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etMatrixv . Ed i tab le = ’off’ ;
app . etMatrixv . Hor izontalAl ignment = ’center ’ ;
app . etMatrixv . Pos i t i on = [848 598 100 2 2 ] ;

% Create Label5

app . Label5 = u i l a b e l ( app . UIFigure ) ;
app . Label5 . Hor izontalAl ignment = ’right’ ;
app . Label5 . Po s i t i on = [856 543 83 1 5 ] ;
app . Label5 . Text = ’Shear Modulus ’ ;

% Create etMatrixG

app . etMatrixG = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etMatrixG . Edi tab le = ’off’ ;
app . etMatrixG . HorizontalAl ignment = ’center ’ ;
app . etMatrixG . Pos i t i on = [848 511 100 2 2 ] ;

% Create Label33

app . Label33 = u i l a b e l ( app . UIFigure ) ;
app . Label33 . Hor izontalAl ignment = ’center ’ ;
app . Label33 . Po s i t i on = [ 6 6 1 . 5 654 111 1 5 ] ;
app . Label33 . Text = ’Transverse Modulus ’ ;

% Create etFiberE2

app . etFiberE2 = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etFiberE2 . Ed i tab le = ’off’ ;
app . etFiberE2 . Hor izontalAl ignment = ’center ’ ;
app . etFiberE2 . Pos i t i on = [667 622 100 2 2 ] ;

% Create cbDenier

app . cbDenier = uicheckbox ( app . UIFigure ) ;
app . cbDenier . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @DenierChange , t rue ) ;
app . cbDenier . Text = ’Override Denier ’ ;
app . cbDenier . Po s i t i on = [662 426 109 1 5 ] ;

% Create DenierEditFieldLabel

app . Den ie rEd i tF ie ldLabe l = u i l a b e l ( app . UIFigure ) ;
app . Den ie rEd i tF ie ldLabe l . Hor izontalAl ignment = ’center ’ ;
app . Den ie rEd i tF ie ldLabe l . Po s i t i on = [696 486 42 1 5 ] ;
app . Den ie rEd i tF ie ldLabe l . Text = ’Denier ’ ;

% Create etDenier

app . etDenier = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etDenier . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @DenierValue , t rue ) ;
app . etDenier . L imits = [ 1 Inf ] ;
app . e tDenier . Ed i tab l e = ’off’ ;
app . e tDenier . Hor izontalAl ignment = ’center ’ ;
app . e tDenier . Po s i t i on = [667 454 100 2 2 ] ;
app . etDenier . Value = 1000 ;

% Create UnitCellHeightPitchLabel

app . UnitCe l lHe ightPi tchLabe l = u i l a b e l ( app . UIFigure ) ;
app . UnitCe l lHe ightPi tchLabe l . Hor izontalAl ignment = ’right’ ;
app . UnitCe l lHe ightPi tchLabe l . Po s i t i on = [26 533 129 1 5 ] ;
app . UnitCe l lHe ightPi tchLabe l . Text = ’Unit Cell Height (Pitch)’ ;

% Create etZHeight
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app . etZHeight = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etZHeight . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @zChange , t rue ) ;
app . etZHeight . Limits = [ 1 e−06 1000 ] ;
app . etZHeight . Hor izontalAl ignment = ’center ’ ;
app . etZHeight . Pos i t i on = [170 529 100 2 2 ] ;
app . etZHeight . Value = 2 ;

% Create LowerBoundPanel

app . LowerBoundPanel = u ipane l ( app . UIFigure ) ;
app . LowerBoundPanel . T i t l e = ’Lower Bound’ ;
app . LowerBoundPanel . Po s i t i on = [367 33 291 3 2 5 ] ;

% Create tbAngleLamina

app . tbAngleLamina = u i e d i t f i e l d ( app . LowerBoundPanel , ’text’ ) ;
app . tbAngleLamina . Ed i tab le = ’off’ ;
app . tbAngleLamina . Hor izontalAl ignment = ’center ’ ;
app . tbAngleLamina . BackgroundColor = [ 0 . 9 373 0 .9373 0 . 9 3 7 3 ] ;
app . tbAngleLamina . Pos i t i on = [9 257 276 3 5 ] ;

% Create Label24

app . Label24 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label24 . Hor izontalAl ignment = ’center ’ ;
app . Label24 . Vert i ca lAl ignment = ’center ’ ;
app . Label24 . Po s i t i on = [47 224 20 1 5 ] ;
app . Label24 . Text = ’Ex’ ;

% Create etAngleLaminaEx

app . etAngleLaminaEx = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminaEx . Edi tab le = ’off’ ;
app . etAngleLaminaEx . HorizontalAl ignment = ’center ’ ;
app . etAngleLaminaEx . Pos i t i on = [25 192 64 2 2 ] ;

% Create Label25

app . Label25 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label25 . Hor izontalAl ignment = ’center ’ ;
app . Label25 . Po s i t i on = [47 141 20 1 5 ] ;
app . Label25 . Text = ’vxy’ ;

% Create etAngleLaminavxy

app . etAngleLaminavxy = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminavxy . Ed i tab le = ’off’ ;
app . etAngleLaminavxy . Hor izontalAl ignment = ’center ’ ;
app . etAngleLaminavxy . Pos i t i on = [25 109 64 2 2 ] ;

% Create Label26

app . Label26 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label26 . Hor izontalAl ignment = ’center ’ ;
app . Label26 . Po s i t i on = [46 54 21 1 5 ] ;
app . Label26 . Text = ’Gxy’ ;

% Create etAngleLaminaGxy

app . etAngleLaminaGxy = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminaGxy . Edi tab le = ’off’ ;
app . etAngleLaminaGxy . Hor izontalAl ignment = ’center ’ ;
app . etAngleLaminaGxy . Pos i t i on = [25 22 64 2 2 ] ;

% Create Label27

app . Label27 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label27 . Hor izontalAl ignment = ’center ’ ;
app . Label27 . Vert i ca lAl ignment = ’center ’ ;
app . Label27 . Po s i t i on = [135 223 20 1 5 ] ;
app . Label27 . Text = ’Ey’ ;

% Create etAngleLaminaEy

app . etAngleLaminaEy = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminaEy . Edi tab le = ’off’ ;
app . etAngleLaminaEy . HorizontalAl ignment = ’center ’ ;
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app . etAngleLaminaEy . Pos i t i on = [113 191 64 2 2 ] ;

% Create Label28

app . Label28 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label28 . Hor izontalAl ignment = ’center ’ ;
app . Label28 . Po s i t i on = [135 140 20 1 5 ] ;
app . Label28 . Text = ’vxz’ ;

% Create etAngleLaminavxz

app . etAngleLaminavxz = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminavxz . Ed i tab le = ’off’ ;
app . etAngleLaminavxz . Hor izontalAl ignment = ’center ’ ;
app . etAngleLaminavxz . Po s i t i on = [113 108 64 2 2 ] ;

% Create Label29

app . Label29 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label29 . Hor izontalAl ignment = ’center ’ ;
app . Label29 . Po s i t i on = [134 53 21 1 5 ] ;
app . Label29 . Text = ’Gxz’ ;

% Create etAngleLaminaGxz

app . etAngleLaminaGxz = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminaGxz . Ed i tab le = ’off’ ;
app . etAngleLaminaGxz . Hor izontalAl ignment = ’center ’ ;
app . etAngleLaminaGxz . Pos i t i on = [113 21 64 2 2 ] ;

% Create Label30

app . Label30 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label30 . Hor izontalAl ignment = ’center ’ ;
app . Label30 . Vert i ca lAl ignment = ’center ’ ;
app . Label30 . Po s i t i on = [223 223 20 1 5 ] ;
app . Label30 . Text = ’Ez’ ;

% Create etAngleLaminaEz

app . etAngleLaminaEz = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminaEz . Ed i tab le = ’off’ ;
app . etAngleLaminaEz . Hor izontalAl ignment = ’center ’ ;
app . etAngleLaminaEz . Pos i t i on = [201 191 64 2 2 ] ;

% Create Label31

app . Label31 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label31 . Hor izontalAl ignment = ’center ’ ;
app . Label31 . Po s i t i on = [223 140 20 1 5 ] ;
app . Label31 . Text = ’vyz’ ;

% Create etAngleLaminavyz

app . etAngleLaminavyz = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminavyz . Ed i tab le = ’off’ ;
app . etAngleLaminavyz . Hor izontalAl ignment = ’center ’ ;
app . etAngleLaminavyz . Po s i t i on = [201 108 64 2 2 ] ;

% Create Label32

app . Label32 = u i l a b e l ( app . LowerBoundPanel ) ;
app . Label32 . Hor izontalAl ignment = ’center ’ ;
app . Label32 . Po s i t i on = [222 53 21 1 5 ] ;
app . Label32 . Text = ’Gyz’ ;

% Create etAngleLaminaGyz

app . etAngleLaminaGyz = u i e d i t f i e l d ( app . LowerBoundPanel , ’numeric ’ ) ;
app . etAngleLaminaGyz . Ed i tab le = ’off’ ;
app . etAngleLaminaGyz . Hor izontalAl ignment = ’center ’ ;
app . etAngleLaminaGyz . Pos i t i on = [201 21 64 2 2 ] ;

% Create UpperBoundPanel

app . UpperBoundPanel = u ipane l ( app . UIFigure ) ;
app . UpperBoundPanel . T i t l e = ’Upper Bound’ ;
app . UpperBoundPanel . Po s i t i on = [26 33 297 3 2 5 ] ;
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% Create tbLamina

app . tbLamina = u i e d i t f i e l d ( app . UpperBoundPanel , ’text’ ) ;
app . tbLamina . Ed i tab le = ’off’ ;
app . tbLamina . Hor izontalAl ignment = ’center ’ ;
app . tbLamina . BackgroundColor = [ 0 . 9 373 0 .9373 0 . 9 3 7 3 ] ;
app . tbLamina . Pos i t i on = [11 260 280 3 5 ] ;

% Create Label15

app . Label15 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label15 . Hor izontalAl ignment = ’center ’ ;
app . Label15 . Vert i ca lAl ignment = ’center ’ ;
app . Label15 . Po s i t i on = [48 224 20 1 5 ] ;
app . Label15 . Text = ’E1’ ;

% Create etLaminaE1

app . etLaminaE1 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminaE1 . Edi tab le = ’off’ ;
app . etLaminaE1 . Hor izontalAl ignment = ’center ’ ;
app . etLaminaE1 . Pos i t i on = [26 192 64 2 2 ] ;

% Create Label16

app . Label16 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label16 . Hor izontalAl ignment = ’center ’ ;
app . Label16 . Po s i t i on = [48 141 20 1 5 ] ;
app . Label16 . Text = ’v12’ ;

% Create etLaminav12

app . etLaminav12 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminav12 . Ed i tab le = ’off’ ;
app . etLaminav12 . Hor izontalAl ignment = ’center ’ ;
app . etLaminav12 . Pos i t i on = [26 109 64 2 2 ] ;

% Create Label17

app . Label17 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label17 . Hor izontalAl ignment = ’center ’ ;
app . Label17 . Po s i t i on = [46 54 23 1 5 ] ;
app . Label17 . Text = ’G12’ ;

% Create etLaminaG12

app . etLaminaG12 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminaG12 . Ed i tab le = ’off’ ;
app . etLaminaG12 . HorizontalAl ignment = ’center ’ ;
app . etLaminaG12 . Pos i t i on = [26 22 64 2 2 ] ;

% Create Label18

app . Label18 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label18 . Hor izontalAl ignment = ’center ’ ;
app . Label18 . Vert i ca lAl ignment = ’center ’ ;
app . Label18 . Po s i t i on = [139 224 20 1 5 ] ;
app . Label18 . Text = ’E2’ ;

% Create etLaminaE2

app . etLaminaE2 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminaE2 . Edi tab le = ’off’ ;
app . etLaminaE2 . Hor izontalAl ignment = ’center ’ ;
app . etLaminaE2 . Pos i t i on = [117 192 64 2 2 ] ;

% Create Label19

app . Label19 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label19 . Hor izontalAl ignment = ’center ’ ;
app . Label19 . Po s i t i on = [139 141 20 1 5 ] ;
app . Label19 . Text = ’v13’ ;

% Create etLaminav13

app . etLaminav13 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminav13 . Ed i tab le = ’off’ ;
app . etLaminav13 . Hor izontalAl ignment = ’center ’ ;
app . etLaminav13 . Pos i t i on = [117 109 64 2 2 ] ;
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% Create Label20

app . Label20 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label20 . Hor izontalAl ignment = ’center ’ ;
app . Label20 . Po s i t i on = [137 54 23 1 5 ] ;
app . Label20 . Text = ’G13’ ;

% Create etLaminaG13

app . etLaminaG13 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminaG13 . Ed i tab le = ’off’ ;
app . etLaminaG13 . HorizontalAl ignment = ’center ’ ;
app . etLaminaG13 . Pos i t i on = [117 22 64 2 2 ] ;

% Create Label21

app . Label21 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label21 . Hor izontalAl ignment = ’center ’ ;
app . Label21 . Vert i ca lAl ignment = ’center ’ ;
app . Label21 . Po s i t i on = [230 223 20 1 5 ] ;
app . Label21 . Text = ’E3’ ;

% Create etLaminaE3

app . etLaminaE3 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminaE3 . Edi tab le = ’off’ ;
app . etLaminaE3 . Hor izontalAl ignment = ’center ’ ;
app . etLaminaE3 . Pos i t i on = [208 191 64 2 2 ] ;

% Create Label22

app . Label22 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label22 . Hor izontalAl ignment = ’center ’ ;
app . Label22 . Po s i t i on = [230 140 20 1 5 ] ;
app . Label22 . Text = ’v23’ ;

% Create etLaminav23

app . etLaminav23 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminav23 . Ed i tab le = ’off’ ;
app . etLaminav23 . Hor izontalAl ignment = ’center ’ ;
app . etLaminav23 . Pos i t i on = [208 108 64 2 2 ] ;

% Create Label23

app . Label23 = u i l a b e l ( app . UpperBoundPanel ) ;
app . Label23 . Hor izontalAl ignment = ’center ’ ;
app . Label23 . Po s i t i on = [228 53 23 1 5 ] ;
app . Label23 . Text = ’G23’ ;

% Create etLaminaG23

app . etLaminaG23 = u i e d i t f i e l d ( app . UpperBoundPanel , ’numeric ’ ) ;
app . etLaminaG23 . Ed i tab le = ’off’ ;
app . etLaminaG23 . HorizontalAl ignment = ’center ’ ;
app . etLaminaG23 . Pos i t i on = [208 21 64 2 2 ] ;

% Create YarnPropertiesPanel

app . YarnPropert iesPanel = u ipane l ( app . UIFigure ) ;
app . YarnPropert iesPanel . T i t l e = ’Yarn Properties ’ ;
app . YarnPropert iesPanel . Po s i t i on = [978 459 403 3 2 5 ] ;

% Create Label6

app . Label6 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label6 . Hor izontalAl ignment = ’center ’ ;
app . Label6 . Vert i ca lAl ignment = ’center ’ ;
app . Label6 . Po s i t i on = [66 218 20 1 5 ] ;
app . Label6 . Text = ’E1’ ;

% Create etYarnE1

app . etYarnE1 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnE1 . Edi tab le = ’off’ ;
app . etYarnE1 . HorizontalAl ignment = ’center ’ ;
app . etYarnE1 . Pos i t i on = [26 186 100 2 2 ] ;
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% Create Label7

app . Label7 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label7 . Hor izontalAl ignment = ’center ’ ;
app . Label7 . Po s i t i on = [66 135 20 1 5 ] ;
app . Label7 . Text = ’v12’ ;

% Create etYarnv12

app . etYarnv12 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnv12 . Ed i tab le = ’off’ ;
app . etYarnv12 . Hor izontalAl ignment = ’center ’ ;
app . etYarnv12 . Pos i t i on = [26 103 100 2 2 ] ;

% Create Label8

app . Label8 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label8 . Hor izontalAl ignment = ’center ’ ;
app . Label8 . Po s i t i on = [64 48 23 1 5 ] ;
app . Label8 . Text = ’G12’ ;

% Create etYarnG12

app . etYarnG12 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnG12 . Ed i tab le = ’off’ ;
app . etYarnG12 . Hor izontalAl ignment = ’center ’ ;
app . etYarnG12 . Pos i t i on = [26 16 100 2 2 ] ;

% Create Label9

app . Label9 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label9 . Hor izontalAl ignment = ’center ’ ;
app . Label9 . Vert i ca lAl ignment = ’center ’ ;
app . Label9 . Po s i t i on = [192 218 20 1 5 ] ;
app . Label9 . Text = ’E2’ ;

% Create etYarnE2

app . etYarnE2 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnE2 . Edi tab le = ’off’ ;
app . etYarnE2 . HorizontalAl ignment = ’center ’ ;
app . etYarnE2 . Pos i t i on = [152 186 100 2 2 ] ;

% Create Label10

app . Label10 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label10 . Hor izontalAl ignment = ’center ’ ;
app . Label10 . Po s i t i on = [192 135 20 1 5 ] ;
app . Label10 . Text = ’v13’ ;

% Create etYarnv13

app . etYarnv13 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnv13 . Ed i tab le = ’off’ ;
app . etYarnv13 . Hor izontalAl ignment = ’center ’ ;
app . etYarnv13 . Pos i t i on = [152 103 100 2 2 ] ;

% Create Label11

app . Label11 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label11 . Hor izontalAl ignment = ’center ’ ;
app . Label11 . Po s i t i on = [190 48 23 1 5 ] ;
app . Label11 . Text = ’G13’ ;

% Create etYarnG13

app . etYarnG13 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnG13 . Ed i tab le = ’off’ ;
app . etYarnG13 . Hor izontalAl ignment = ’center ’ ;
app . etYarnG13 . Pos i t i on = [152 16 100 2 2 ] ;

% Create Label12

app . Label12 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label12 . Hor izontalAl ignment = ’center ’ ;
app . Label12 . Vert i ca lAl ignment = ’center ’ ;
app . Label12 . Po s i t i on = [318 218 20 1 5 ] ;
app . Label12 . Text = ’E3’ ;
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% Create etYarnE3

app . etYarnE3 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnE3 . Edi tab le = ’off’ ;
app . etYarnE3 . HorizontalAl ignment = ’center ’ ;
app . etYarnE3 . Pos i t i on = [278 186 100 2 2 ] ;

% Create Label13

app . Label13 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label13 . Hor izontalAl ignment = ’center ’ ;
app . Label13 . Po s i t i on = [318 135 20 1 5 ] ;
app . Label13 . Text = ’v23’ ;

% Create etYarnv23

app . etYarnv23 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnv23 . Ed i tab le = ’off’ ;
app . etYarnv23 . Hor izontalAl ignment = ’center ’ ;
app . etYarnv23 . Pos i t i on = [278 103 100 2 2 ] ;

% Create Label14

app . Label14 = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . Label14 . Hor izontalAl ignment = ’center ’ ;
app . Label14 . Po s i t i on = [316 48 23 1 5 ] ;
app . Label14 . Text = ’G23’ ;

% Create etYarnG23

app . etYarnG23 = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnG23 . Ed i tab le = ’off’ ;
app . etYarnG23 . Hor izontalAl ignment = ’center ’ ;
app . etYarnG23 . Pos i t i on = [278 16 100 2 2 ] ;

% Create YarnPackingFractionLabel

app . YarnPackingFractionLabel = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . YarnPackingFractionLabel . Hor izontalAl ignment = ’right’ ;
app . YarnPackingFractionLabel . Po s i t i on = [82 275 125 1 5 ] ;
app . YarnPackingFractionLabel . Text = ’Yarn Packing Fraction ’ ;

% Create etYarnPackingFraction

app . etYarnPackingFract ion = . . .
u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;

app . etYarnPackingFract ion . ValueChangedFcn = . . .
c reateCal lbackFcn (app , @PF, t rue ) ;

app . etYarnPackingFract ion . Limits = [ 0 . 0 5 1 ] ;
app . etYarnPackingFract ion . ValueDisplayFormat = ’%.3f’ ;
app . etYarnPackingFract ion . Hor izontalAl ignment = ’center ’ ;
app . etYarnPackingFract ion . Pos i t i on = [222 271 100 2 2 ] ;
app . etYarnPackingFract ion . Value = 0 . 7 5 ;

% Create YarnRadiusLabel

app . YarnRadiusLabel = u i l a b e l ( app . YarnPropert iesPanel ) ;
app . YarnRadiusLabel . Hor izontalAl ignment = ’right’ ;
app . YarnRadiusLabel . Po s i t i on = [134 242 73 1 5 ] ;
app . YarnRadiusLabel . Text = ’Yarn Radius ’ ;

% Create etYarnRadius

app . etYarnRadius = u i e d i t f i e l d ( app . YarnPropert iesPanel , ’numeric ’ ) ;
app . etYarnRadius . Limits = [ 1 e−05 1001 ] ;
app . etYarnRadius . ValueDisplayFormat = ’%.3f’ ;
app . etYarnRadius . Ed i tab l e = ’off’ ;
app . etYarnRadius . Hor izontalAl ignment = ’center ’ ;
app . etYarnRadius . Po s i t i on = [222 238 100 2 2 ] ;
app . etYarnRadius . Value = 0 . 2 ;

% Create BraidProperties

app . Bra idPrope r t i e s = u ipane l ( app . UIFigure ) ;
app . Bra idPrope r t i e s . T i t l e = ’Braid Properties ’ ;
app . Bra idPrope r t i e s . Po s i t i on = [1085 33 296 3 2 5 ] ;

% Create BraidCrossSectionalDimsEditFieldLabel
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app . Bra idCrossSect iona lDimsEditF ie ldLabe l = . . .
u i l a b e l ( app . Bra idProper t i e s ) ;

app . Bra idCrossSect iona lDimsEditF ie ldLabe l . Hor izontalAl ignment = ’right’ ;
app . Bra idCrossSect iona lDimsEditF ie ldLabe l . Po s i t i on = [6 243 158 1 5 ] ;
app . Bra idCrossSect iona lDimsEditF ie ldLabe l . Text = . . .

’Braid Cross -Sectional Dims.’ ;

% Create BraidCrossSectionalDimsEditField

app . Bra idCrossSect iona lDimsEditF ie ld = . . .
u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;

app . Bra idCrossSect iona lDimsEditF ie ld . Ed i tab le = ’off’ ;
app . Bra idCrossSect iona lDimsEditF ie ld . Hor izontalAl ignment = ’center ’ ;
app . Bra idCrossSect iona lDimsEditF ie ld . Po s i t i on = [179 239 100 2 2 ] ;

% Create UnitCellHeigthEditFieldLabel

app . Un i tCe l lHe ig thEd i tF ie ldLabe l = u i l a b e l ( app . Bra idPrope r t i e s ) ;
app . Un i tCe l lHe ig thEd i tF ie ldLabe l . Hor izontalAl ignment = ’right’ ;
app . Un i tCe l lHe ig thEd i tF ie ldLabe l . Po s i t i on = [73 210 91 1 5 ] ;
app . Un i tCe l lHe ig thEd i tF ie ldLabe l . Text = ’Unit Cell Heigth ’ ;

% Create UnitCellHeigthEditField

app . Un i tCe l lHe ig thEd i tF i e ld = u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;
app . Un i tCe l lHe ig thEd i tF i e ld . Ed i tab le = ’off’ ;
app . Un i tCe l lHe ig thEd i tF i e ld . Hor izontalAl ignment = ’center ’ ;
app . Un i tCe l lHe ig thEd i tF i e ld . Po s i t i on = [179 206 100 2 2 ] ;

% Create AverageBraidingAngleEditFieldLabel

app . AverageBraid ingAngleEditFie ldLabe l = u i l a b e l ( app . Bra idProper t i e s ) ;
app . AverageBraid ingAngleEditFie ldLabe l . Hor izontalAl ignment = ’right’ ;
app . AverageBraid ingAngleEditFie ldLabe l . Po s i t i on = [29 177 135 1 5 ] ;
app . AverageBraid ingAngleEditFie ldLabe l . Text = ’Average Braiding Angle ’ ;

% Create AverageBraidingAngleEditField

app . AverageBraid ingAngleEditFie ld = . . .
u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;

app . AverageBraid ingAngleEditFie ld . Ed i tab le = ’off’ ;
app . AverageBraid ingAngleEditFie ld . Hor izontalAl ignment = ’center ’ ;
app . AverageBraid ingAngleEditFie ld . Po s i t i on = [179 173 100 2 2 ] ;

% Create BraidingTightnessEditFieldLabel

app . Bra id ingTightnes sEd i tF i e ldLabe l = u i l a b e l ( app . Bra idProper t i e s ) ;
app . Bra id ingTightnes sEd i tF i e ldLabe l . Hor izontalAl ignment = ’right’ ;
app . Bra id ingTightnes sEd i tF i e ldLabe l . Po s i t i on = [57 78 107 1 5 ] ;
app . Bra id ingTightnes sEd i tF i e ldLabe l . Text = ’Braiding Tightness ’ ;

% Create BraidingTightnessEditField

app . Bra id ingTightnes sEd i tF i e ld = . . .
u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;

app . Bra id ingTightnes sEd i tF i e ld . Ed i tab le = ’off’ ;
app . Bra id ingTightnes sEd i tF i e ld . Hor izontalAl ignment = ’center ’ ;
app . Bra id ingTightnes sEd i tF i e ld . Po s i t i on = [179 74 100 2 2 ] ;

% Create FiberVolumeFractionEditFieldLabel

app . FiberVolumeFract ionEditFie ldLabel = u i l a b e l ( app . Bra idProper t i e s ) ;
app . FiberVolumeFract ionEditFie ldLabel . Hor izontalAl ignment = ’right’ ;
app . FiberVolumeFract ionEditFie ldLabel . Po s i t i on = [39 45 125 1 5 ] ;
app . FiberVolumeFract ionEditFie ldLabel . Text = ’Fiber Volume Fraction ’ ;

% Create FiberVolumeFractionEditField

app . FiberVolumeFract ionEditFie ld = . . .
u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;

app . FiberVolumeFract ionEditFie ld . Ed i tab le = ’off’ ;
app . FiberVolumeFract ionEditFie ld . Hor izontalAl ignment = ’center ’ ;
app . FiberVolumeFract ionEditFie ld . Pos i t i on = [179 41 100 2 2 ] ;

% Create NumberofYarnsEditFieldLabel

app . NumberofYarnsEditFieldLabel = u i l a b e l ( app . Bra idPrope r t i e s ) ;
app . NumberofYarnsEditFieldLabel . Hor izontalAl ignment = ’right’ ;
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app . NumberofYarnsEditFieldLabel . Po s i t i on = [67 12 97 1 5 ] ;
app . NumberofYarnsEditFieldLabel . Text = ’Number of Yarns’ ;

% Create NumberofYarnsEditField

app . NumberofYarnsEditField = u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;
app . NumberofYarnsEditField . Ed i tab le = ’off’ ;
app . NumberofYarnsEditField . Hor izontalAl ignment = ’center ’ ;
app . NumberofYarnsEditField . Po s i t i on = [179 8 100 2 2 ] ;

% Create YoungsModulusRangeEditFieldLabel

app . YoungsModulusRangeEditFieldLabel = u i l a b e l ( app . Bra idProper t i e s ) ;
app . YoungsModulusRangeEditFieldLabel . Hor izontalAl ignment = ’right’ ;
app . YoungsModulusRangeEditFieldLabel . Po s i t i on = [26 277 138 1 5 ] ;
app . YoungsModulusRangeEditFieldLabel . Text = ’Young’’s Modulus Range ’ ;

% Create YoungsModulusRangeEditField

app . YoungsModulusRangeEditField = u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;
app . YoungsModulusRangeEditField . Ed i tab le = ’off’ ;
app . YoungsModulusRangeEditField . Hor izontalAl ignment = ’center ’ ;
app . YoungsModulusRangeEditField . Po s i t i on = [179 273 100 2 2 ] ;

% Create InteriorBraidingAngleEditFieldLabel

app . In t e r i o rBra id ingAng l eEd i tF i e ldLabe l = u i l a b e l ( app . Bra idPrope r t i e s ) ;
app . In t e r i o rBra id ingAng l eEd i tF i e ldLabe l . Hor izontalAl ignment = ’right’ ;
app . In t e r i o rBra id ingAng l eEd i tF i e ldLabe l . Po s i t i on = [37 144 127 1 5 ] ;
app . In t e r i o rBra id ingAng l eEd i tF i e ldLabe l . Text = ’Interior Braiding Angle ’ ;

% Create InteriorBraidingAngleEditField

app . In t e r i o rBra id ingAng l eEd i tF i e l d = . . .
u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;

app . In t e r i o rBra id ingAng l eEd i tF i e l d . Ed i tab le = ’off’ ;
app . In t e r i o rBra id ingAng l eEd i tF i e l d . Hor izontalAl ignment = ’center ’ ;
app . In t e r i o rBra id ingAng l eEd i tF i e l d . Pos i t i on = [179 140 100 2 2 ] ;

% Create SurfaceBraidingAngleEditFieldLabel

app . Sur faceBra id ingAng leEd i tF ie ldLabe l = u i l a b e l ( app . Bra idPrope r t i e s ) ;
app . Sur faceBra id ingAng leEd i tF ie ldLabe l . Hor izontalAl ignment = ’right’ ;
app . Sur faceBra id ingAng leEd i tF ie ldLabe l . Po s i t i on = [32 111 131 1 5 ] ;
app . Sur faceBra id ingAng leEd i tF ie ldLabe l . Text = ’Surface Braiding Angle ’ ;

% Create SurfaceBraidingAngleEditField

app . Sur faceBra id ingAng leEd i tF i e ld = . . .
u i e d i t f i e l d ( app . Bra idPropert i e s , ’text’ ) ;

app . Sur faceBra id ingAng leEd i tF i e ld . Ed i tab le = ’off’ ;
app . Sur faceBra id ingAng leEd i tF i e ld . Hor izontalAl ignment = ’center ’ ;
app . Sur faceBra id ingAng leEd i tF i e ld . Po s i t i on = [178 107 100 2 2 ] ;

% Create FGMPanel

app . FGMPanel = u ipane l ( app . UIFigure ) ;
app . FGMPanel . T i t l e = ’FGM’ ;
app . FGMPanel . Po s i t i on = [707 33 336 3 2 5 ] ;

% Create Label24_2

app . Label24 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label24 2 . Hor izontalAl ignment = ’center ’ ;
app . Label24 2 . Vert ica lAl ignment = ’center ’ ;
app . Label24 2 . Pos i t i on = [69 229 20 1 5 ] ;
app . Label24 2 . Text = ’Ex’ ;

% Create etFGMEx

app . etFGMEx = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMEx . Edi tab le = ’off’ ;
app . etFGMEx . HorizontalAl ignment = ’center ’ ;
app . etFGMEx . Pos i t i on = [47 197 64 2 2 ] ;

% Create Label25_2

app . Label25 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label25 2 . Hor izontalAl ignment = ’center ’ ;
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app . Label25 2 . Pos i t i on = [69 146 20 1 5 ] ;
app . Label25 2 . Text = ’vxy’ ;

% Create etFGMvxy

app . etFGMvxy = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMvxy . Ed i tab le = ’off’ ;
app . etFGMvxy . Hor izontalAl ignment = ’center ’ ;
app . etFGMvxy . Pos i t i on = [47 114 64 2 2 ] ;

% Create Label26_2

app . Label26 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label26 2 . Hor izontalAl ignment = ’center ’ ;
app . Label26 2 . Pos i t i on = [68 59 21 1 5 ] ;
app . Label26 2 . Text = ’Gxy’ ;

% Create etFGMGxy

app . etFGMGxy = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMGxy . Edi tab le = ’off’ ;
app . etFGMGxy . Hor izontalAl ignment = ’center ’ ;
app . etFGMGxy . Pos i t i on = [47 27 64 2 2 ] ;

% Create Label27_2

app . Label27 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label27 2 . Hor izontalAl ignment = ’center ’ ;
app . Label27 2 . Vert ica lAl ignment = ’center ’ ;
app . Label27 2 . Pos i t i on = [157 228 20 1 5 ] ;
app . Label27 2 . Text = ’Ey’ ;

% Create etFGMEy

app . etFGMEy = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMEy . Edi tab le = ’off’ ;
app . etFGMEy . HorizontalAl ignment = ’center ’ ;
app . etFGMEy . Pos i t i on = [135 196 64 2 2 ] ;

% Create Label28_2

app . Label28 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label28 2 . Hor izontalAl ignment = ’center ’ ;
app . Label28 2 . Pos i t i on = [157 145 20 1 5 ] ;
app . Label28 2 . Text = ’vxz’ ;

% Create etFGMvxz

app . etFGMvxz = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMvxz . Ed i tab le = ’off’ ;
app . etFGMvxz . HorizontalAl ignment = ’center ’ ;
app . etFGMvxz . Pos i t i on = [135 113 64 2 2 ] ;

% Create Label29_2

app . Label29 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label29 2 . Hor izontalAl ignment = ’center ’ ;
app . Label29 2 . Pos i t i on = [156 58 21 1 5 ] ;
app . Label29 2 . Text = ’Gxz’ ;

% Create etFGMGxz

app . etFGMGxz = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMGxz . Ed i tab le = ’off’ ;
app . etFGMGxz . Hor izontalAl ignment = ’center ’ ;
app . etFGMGxz . Pos i t i on = [135 26 64 2 2 ] ;

% Create Label30_2

app . Label30 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label30 2 . Hor izontalAl ignment = ’center ’ ;
app . Label30 2 . Vert ica lAl ignment = ’center ’ ;
app . Label30 2 . Pos i t i on = [245 228 20 1 5 ] ;
app . Label30 2 . Text = ’Ez’ ;

% Create etFGMEz

app . etFGMEz = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMEz . Edi tab le = ’off’ ;
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app . etFGMEz . Hor izontalAl ignment = ’center ’ ;
app . etFGMEz . Pos i t i on = [223 196 64 2 2 ] ;

% Create Label31_2

app . Label31 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label31 2 . Hor izontalAl ignment = ’center ’ ;
app . Label31 2 . Pos i t i on = [245 145 20 1 5 ] ;
app . Label31 2 . Text = ’vyz’ ;

% Create etFGMvyz

app . etFGMvyz = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMvyz . Ed i tab le = ’off’ ;
app . etFGMvyz . HorizontalAl ignment = ’center ’ ;
app . etFGMvyz . Pos i t i on = [223 113 64 2 2 ] ;

% Create Label32_2

app . Label32 2 = u i l a b e l ( app . FGMPanel ) ;
app . Label32 2 . Hor izontalAl ignment = ’center ’ ;
app . Label32 2 . Pos i t i on = [244 58 21 1 5 ] ;
app . Label32 2 . Text = ’Gyz’ ;

% Create etFGMGyz

app . etFGMGyz = u i e d i t f i e l d ( app . FGMPanel , ’numeric ’ ) ;
app . etFGMGyz . Ed i tab le = ’off’ ;
app . etFGMGyz . Hor izontalAl ignment = ’center ’ ;
app . etFGMGyz . Pos i t i on = [223 26 64 2 2 ] ;

% Create BraidAngleAverageLabel

app . BraidAngleAverageLabel = u i l a b e l ( app . UIFigure ) ;
app . BraidAngleAverageLabel . Hor izontalAl ignment = ’right’ ;
app . BraidAngleAverageLabel . Po s i t i on = [29 491 126 1 5 ] ;
app . BraidAngleAverageLabel . Text = ’Braid Angle (Average)’ ;

% Create etTAngle

app . etTAngle = u i e d i t f i e l d ( app . UIFigure , ’numeric ’ ) ;
app . etTAngle . ValueChangedFcn = . . .

c reateCal lbackFcn (app , @TAngleChange , t rue ) ;
app . etTAngle . Limits = [ 1 e−15 9 0 ] ;
app . etTAngle . Ed i tab l e = ’off’ ;
app . etTAngle . Hor izontalAl ignment = ’center ’ ;
app . etTAngle . Po s i t i on = [170 487 100 2 2 ] ;
app . etTAngle . Value = 2 ;

% Create AnglesfromGeometryPanel

app . AnglesfromGeometryPanel = u ipane l ( app . UIFigure ) ;
app . AnglesfromGeometryPanel . T i t l ePo s i t i o n = ’centertop ’ ;
app . AnglesfromGeometryPanel . T i t l e = ’Angles from Geometry ’ ;
app . AnglesfromGeometryPanel . Po s i t i on = [312 476 279 1 3 8 ] ;

% Create ApproxAverageAngleLabel

app . ApproxAverageAngleLabel = u i l a b e l ( app . AnglesfromGeometryPanel ) ;
app . ApproxAverageAngleLabel . Hor izontalAl ignment = ’right’ ;
app . ApproxAverageAngleLabel . Po s i t i on = [11 89 131 1 5 ] ;
app . ApproxAverageAngleLabel . Text = ’Approx. Average Angle’ ;

% Create etAverageAngle

app . etAverageAngle = . . .
u i e d i t f i e l d ( app . AnglesfromGeometryPanel , ’numeric ’ ) ;

app . etAverageAngle . Ed i tab le = ’off’ ;
app . etAverageAngle . Hor izontalAl ignment = ’center ’ ;
app . etAverageAngle . Po s i t i on = [157 85 100 2 2 ] ;

% Create ApproxInteriorAngleLabel

app . ApproxInter iorAngleLabe l = u i l a b e l ( app . AnglesfromGeometryPanel ) ;
app . ApproxInter iorAngleLabe l . Hor izontalAl ignment = ’right’ ;
app . ApproxInter iorAngleLabe l . Po s i t i on = [19 53 123 1 5 ] ;
app . ApproxInter iorAngleLabe l . Text = ’Approx. Interior Angle ’ ;
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% Create etInteriorAngle

app . e t I n t e r i o rAng l e = . . .
u i e d i t f i e l d ( app . AnglesfromGeometryPanel , ’numeric ’ ) ;

app . e t I n t e r i o rAng l e . Ed i tab l e = ’off’ ;
app . e t I n t e r i o rAng l e . Hor izontalAl ignment = ’center ’ ;
app . e t I n t e r i o rAng l e . Po s i t i on = [157 49 100 2 2 ] ;

% Create ApproxSurfaceAngleLabel

app . ApproxSurfaceAngleLabel = u i l a b e l ( app . AnglesfromGeometryPanel ) ;
app . ApproxSurfaceAngleLabel . Hor izontalAl ignment = ’right’ ;
app . ApproxSurfaceAngleLabel . Po s i t i on = [15 15 127 1 5 ] ;
app . ApproxSurfaceAngleLabel . Text = ’Approx. Surface Angle’ ;

% Create etSurfaceAngle

app . e tSur faceAngle = . . .
u i e d i t f i e l d ( app . AnglesfromGeometryPanel , ’numeric ’ ) ;

app . e tSur faceAngle . Ed i tab le = ’off’ ;
app . e tSur faceAngle . Hor izontalAl ignment = ’center ’ ;
app . e tSur faceAngle . Po s i t i on = [157 11 100 2 2 ] ;

% Create ButtonGroup

app . ButtonGroup = uibuttongroup ( app . UIFigure ) ;
app . ButtonGroup . SelectionChangedFcn = . . .

c reateCal lbackFcn (app , @modeChange , t rue ) ;
app . ButtonGroup . BorderType = ’none’ ;
app . ButtonGroup . Pos i t i on = [9 486 21 7 2 ] ;

% Create enablePitch

app . enab lePi tch = ui rad iobut ton ( app . ButtonGroup ) ;
app . enab lePi tch . Text = ’’ ;
app . enab lePi tch . Pos i t i on = [3 48 25 1 5 ] ;
app . enab lePi tch . Value = true ;

% Create enableAngle

app . enableAngle = u i rad iobut ton ( app . ButtonGroup ) ;
app . enableAngle . Text = ’’ ;
app . enableAngle . Po s i t i on = [3 6 25 1 5 ] ;

end

end

methods ( Access = pub l i c )

% Construct app

function app = braidGenerator

% Create and configure components

createComponents ( app )

% Register the app with App Designer

r eg i s t e rApp (app , app . UIFigure )

% Execute the startup function

runStartupFcn (app , @startupFcn )

if nargout == 0
clear app

end

end

% Code that executes before app deletion

function delete ( app )

% Delete UIFigure when app is deleted

delete ( app . UIFigure )
end

end

end
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Listing C.3: Main function for generating the braid paths.
%+------------------------------------------------------------------------+

%| |

%| FILENAME : generateBraidPaths_m VERSION : b.1.0 |

%| |

%| TITLE : Generate Braid Paths AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| Machine_Emulation.m |

%| Plot_Path.m |

%| |

%| DESCRIPTION : |

%| <none > |

%| |

%| PUBLIC FUNCTIONS : |

%| <none > |

%| |

%| NOTES : |

%| <none > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |

%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |

%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |

%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

function [ time , Vf , yarnAngle ,FGM] = generateBraidPaths (Knot , Path , . . .
braidLength , braidWidth , Radius , Spacing Factor , un i tCe l l s , folderName , . . .
enableSmoothing , enableYarns , enableTimer , enab lePlots , enableTypeII , z )

system ( [ ’mkdir ’ , folderName ] ) ;
r e s = 15 ;
Spac ing Factor = Spac ing Factor+enableYarns *(1/ s ind (45+Path)−1.0+Path /180 ) ;
zSca l e = z /2 ;
b ra id ingSteps = un i tCe l l s *2 ;
smoothingFactor = floor (Knot/3)*2+1;
r epea t s = 1 ;
r e p l i c a t e s = 1 ;
if enableTimer

r epea t s = 3 ;
r e p l i c a t e s = 100 ;
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end

for m = 1 : r epea t s
tic

for c = 1 : r e p l i c a t e s
clear x y z M
Path = pi ( )*Path /180 ;
Pattern=Machine Emulation ( braidLength , braidWidth , b ra id ingSteps +1);
Pattern = Pattern ( 1 : b ra id ingSteps +1);
S i z e = max ( max ( Pattern {1} ) ) ;
Deadzone = 2 ;
number n = 24 ;

Middlex = ( braidWidth *2+2)/2;
Middley = ( braidLength *2+2)/2;

for n = 1 : S i z e
if enableTypeII

[ x (n , : ) , y (n , : ) , z (n , : ) ] = . . .
P lo t Path t ( Pattern ( : ) , n , 1 , Knot , Path ) ;

else

[ x (n , : ) , y (n , : ) , z (n , : ) ] = . . .
Plot Path ( Pattern ( : ) , n , 1 , Knot , Path ) ;

[xFGM(n , : ) ,yFGM(n , : ) , zFGM(n , : ) ] = . . .
Plot Path ( Pattern ( 1 : 3 ) , n , 1 , 1 , 0 ) ;

end

end

Z n = z ;
X n = x−Middlex ;
Y n = y−Middley ;

xFGM = diff ( (xFGM−Middlex )*Radius *2* Spacing Factor , 1 , 2 ) ;
yFGM = diff ( (yFGM−Middley )*Radius *2* Spacing Factor , 1 , 2 ) ;
mFGM = sqrt (xFGM.ˆ2 + yFGM. ˆ 2 ) ;
zFGM = diff (zFGM* zSca le , 1 , 2 ) ;

logiFGM = as ind (yFGM./mFGM)>=0;

bFGM = logiFGM . * ( acosd (xFGM./mFGM)) + . . .
˜logiFGM .* ( 360 − acosd (xFGM./mFGM) ) ;

bFGM( isnan (bFGM)) = 0 ;
tFGM = atand ( abs (mFGM./zFGM) ) ;

FGM = [bFGM( : ) , tFGM( : ) ] ;

for n = 1 : S i z e
x = X n(n , : ) ;
y = Y n(n , : ) ;
z = Z n (n , : ) ;

x = [ x ( 1 ) * [ ones ( 1 , 2 0 ) ] , x ( : ) ’ , x ( end ) * [ ones ( 1 , 2 0 ) ] ] . . .
*Radius *2* Spac ing Factor ;

y = [ y ( 1 ) * [ ones ( 1 , 2 0 ) ] , y ( : ) ’ , y ( end ) * [ ones ( 1 , 2 0 ) ] ] . . .
*Radius *2* Spac ing Factor ;

if enableSmoothing
x = f i l t f i l t ( ones (1 , smoothingFactor )/ smoothingFactor , 1 , x ) ;
y = f i l t f i l t ( ones (1 , smoothingFactor )/ smoothingFactor , 1 , y ) ;

end

z = [ Deadzone / 2 0 * [ 2 0 : − 1 : 1 ] , . . .
z ( : ) ’ * zSca le , . . .
−Deadzone /20* [ 1 :20 ]+ z ( end )* zSca l e ] . . .
−Deadzone ;

if enab l eP lo t s
if n == 1

f i g 1 = figure ( ’Name’ , ’Braid Paths’ , . . .
’units’ , ’normalized ’ , . . .
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’position ’ , [ 0 , 0 . 5 5 , 0 . 5 , 0 . 3 5 ] ) ;
hold on ;
f i g 2 = figure ( ’Name’ , ’Braid Geometry Approximation ’ , . . .

’units’ , ’normalized ’ , . . .
’position ’ , [ 0 . 5 , 0 . 5 5 , 0 . 5 , 0 . 3 5 ] ) ;

view ( [ 1 , 1 , 1 ] )
hold on ;

end

figure ( f i g 1 )
if sum (n == number n )

plot3 (x , y , z , ’-o’ , ’Color’ , ’r’ , ’LineWidth ’ , 2 )
else

plot3 (x , y , z , ’:’ , ’Color’ , [ 0 . 5 0 . 5 0 . 5 ] , ’LineWidth ’ , 1 . 8 )
end

axis equal
grid on
figure ( f i g 2 )
tubep lo t ( [ x ( : ) , y ( : ) , z ( : ) ] ’ , Radius , r e s ) ;
axis equal
grid on

end

M( : , : , n ) = [ x ( : )*100 , z ( : )*100 , y ( : ) * 1 0 0 ] ;
f i l ename = sprintf ( ’\\Yarn%i.txt’ , n ) ;
csvwrite ( [ folderName , f i l ename ] ,M( : , : , n ) )

end

if enableYarns
for a = 1 : braidWidth

for b = 1 : braidLength
n = n + 1 ;
x = [ ( 2* a−Middlex )* ones (1 , length ( z ) ) ] . . .

*Radius *2* Spac ing Factor ;
y = [ ( 2*b−Middley )* ones (1 , length ( z ) ) ] . . .

*Radius *2* Spac ing Factor ;
if enab l eP lo t s

figure ( f i g 1 )
plot3 (x , y , z , ’:’ , . . .

’Color’ , [ 0 . 5 0 . 5 0 . 5 ] , . . .
’LineWidth ’ , 1 . 8 )

axis equal
grid on
figure ( f i g 2 )
tubep lo t ( [ x ( : ) , y ( : ) , z ( : ) ] ’ , Radius , r e s ) ;
axis equal
grid on
view ( [ 1 , 1 , 1 ] )

end

M( : , : , n ) = [ x ( : )*100 , z ( : )*100 , y ( : ) * 1 0 0 ] ;
f i l ename = sprintf ( ’\\Yarn%i.txt’ , n ) ;
csvwrite ( [ folderName , f i l ename ] ,M( : , : , n ) )

end

end

S i z e = S i z e+braidWidth*braidLength ;
end

csvwrite ( [ folderName , ’\Data.txt’ ] , . . .
[ S ize , Radius /10 , max ( abs ( z ) ) / 1 0 , . . .
braidWidth , braidLength , Spac ing Factor ] ) ;

%axis equal

end

time (m) = toc /100 ;
end

M = M/100;
a ( size (M,1)−1 , size (M, 3 ) ) = 0 ;
dM = diff (M) ;
yarnArea ( size (M,1)−1) = 0 ;
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yarnAngle ( size (M,1)−1) = 0 ;
yAngle ( size (M,1)−1 , size (M, 3 ) ) = 0 ;
yArea ( size (M,1)−1 , size (M, 3 ) ) = 0 ;
Vf ( size (M,1)−1) = 0 ;
Area = ((4 * Spac ing Factor * braidWidth + 3) * Radius ) . . .

* ( (4 * Spac ing Factor * braidLength + 3) * Radius ) ;
c = 0 ;
for m = 1 : size (M,1)−1

for n = 1 : size (M, 3 )
c = c + 1 ;
dx = dM(m, 1 , n ) ;
dz = dM(m, 2 , n ) ;
dy = dM(m, 3 , n ) ;
a (m, n) = Radius /( abs ( dz )/ norm ( [ dx , dy , dz ] ) ) ;
yAngle (m, n) = atand ( norm ( [ dx , dy ] ) / abs ( dz ) ) ;
yArea (m, n) = pi ( )*Radius*a (m, n ) ;
yarnAngle (m) = yarnAngle (m) + atand ( norm ( [ dx , dy ] ) / abs ( dz ) ) ;
yarnArea (m) = yarnArea (m) + pi ( )*Radius*a (m, n ) ;

end

yarnAngle (m) = yarnAngle (m)/n ;
Vf (m) = yarnArea (m)/Area ;

end

if enab l eP lo t s
figure ( ’Name’ , ’Volume Fraction along Braid Length ’ , . . .

’units’ , ’normalized ’ , . . .
’position ’ , [ 0 , 0 . 0 5 , 1 / 3 , 0 . 3 5 ] )

plot(−M(1 : end−1 ,2 ,1) ,Vf )
end

ind = −M(1 : end−1 ,2 ,1)>2 & −M(1 : end−1,2,1)<−M( end , 2 ,1) −2 ;
Vf = ( mean (Vf ( ind ) ) ) ;
if enab l eP lo t s

figure ( ’Name’ , ’Average Yarn Angle along Braid Length ’ , . . .
’units’ , ’normalized ’ , . . .
’position ’ , [ 1 / 3 , 0 . 0 5 , 1 / 3 , 0 . 3 5 ] )

plot(−M(1 : end−1 ,2 ,1) , yarnAngle )
end

yarnAngle = ( mean ( yarnAngle ( ind ) ) ) ;
if enab l eP lo t s

figure ( ’Name’ , ’Yarn Angle along Braid Length ’ , . . .
’units’ , ’normalized ’ , . . .
’position ’ , [ 2 / 3 , 0 . 0 5 , 1 / 3 , 0 . 3 5 ] )

for n = 1 : size (M, 3 )
plot3(−M(1 : end−1 ,2 ,n ) , ones (1 , size (M,1)−1)*n , yAngle ( : , n ) )
hold on

end

end

if enab l eP lo t s
if n == 1

f i g 1 = figure ( ’Name’ , ’Braid Paths’ , . . .
’units’ , ’normalized ’ , . . .
’position ’ , [ 0 , 0 . 5 5 , 0 . 5 , 0 . 3 5 ] ) ;

hold on ;
f i g 2 = figure ( ’Name’ , ’Braid Geometry Approximation ’ , . . .

’units’ , ’normalized ’ , . . .
’position ’ , [ 0 . 5 , 0 . 5 5 , 0 . 5 , 0 . 3 5 ] ) ;

view ( [ 1 , 1 , 1 ] )
hold on ;

end

figure ( f i g 1 )
if sum (n == number n )

plot3 (x , y , z , ’-o’ , ’Color’ , ’r’ , ’LineWidth ’ , 2 )
else

plot3 (x , y , z , ’:’ , ’Color’ , [ 0 . 5 0 . 5 0 . 5 ] , ’LineWidth ’ , 1 . 8 )
end

axis equal
grid on
figure ( f i g 2 )
tubep lo t ( [ x ( : ) , y ( : ) , z ( : ) ] ’ , Radius , r e s ) ;
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axis equal
grid on

end

Listing C.4: Function that performs machine emulation to generate the braid pattern.
%+------------------------------------------------------------------------+

%| |

%| FILENAME : Machine_Emulation_m VERSION : 1.0.0 |

%| |

%| TITLE : Machine Emulation AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| <none > |

%| |

%| DESCRIPTION : |

%| <none > |

%| |

%| PUBLIC FUNCTIONS : |

%| <none > |

%| |

%| NOTES : |

%| <none > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |

%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |

%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |

%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

function [ Pattern ] = Machine Emulation ( vararg in )
if nargin<1

Cams = [ 3 , 3 ] ;
bSteps = 25 ;

elseif nargin == 1
Cams(1) = vararg in {1} ;
Cams(2 ) = vararg in {1} ;
bSteps = 25 ;

elseif nargin == 2
Cams(1) = vararg in {1} ;
Cams(2 ) = vararg in {2} ;
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bSteps = 25 ;
elseif nargin == 3

Cams(1) = vararg in {1} ;
Cams(2 ) = vararg in {2} ;
bSteps = vararg in {3} ;

end

Braid Even = zeros (1 ,Cams(1)*2+1) ;
Braid Odd = Braid Even−1;
Braid Even ( 2 : 2 : end ) = 1 ;
Braid Odd ( 1 : 2 : end ) = 1 ;
Braid Odd1 = Braid Odd ;
Braid Odd2 = Braid Odd ;

Braid Odd1 ( 4 : 4 : end ) = −2;
Braid Odd2 ( 2 : 4 : end ) = −2;

Braid = zeros (Cams*2+1) ’ ;

for n = 1:2*Cams(2)+1
if mod(n , 2 )

Braid (n , : ) = Braid Even ;
elseif mod(n , 4 )

Braid (n , : ) = Braid Odd1 ;
else

Braid (n , : ) = Braid Odd2 ;
end

end

temp = Braid ’ ;
in = find ( temp==1);
temp( in ) = 1 : length ( in ) ;
Braid = temp ’ ;

B r a i d s t a r t = Braid ;
Pattern {1} = Braid ;
Braid = zeros ( size ( Braid ) ) ;

n = 1 ;
while n<bSteps

if n == 1
Braid = Bra i d s t a r t ;

end

n = n + 1 ;
if ˜mod(n , 2 )

Braid = RotateO ( Braid ) ;

else

Braid = RotateE ( Braid ) ;
end

Pattern {n} = Braid ;
end

end

function [ Braid ] = RotateO ( Braid )
[ y , x ] = find ( Braid==−1);
for n = 1 : length ( x )

Bra id Sec t i on = Braid (y (n)−1:y (n)+1 ,x (n)−1:x (n )+1);
Bra id Sec t i on = Rotate1 ( Bra id Sec t i on ) ;
Braid (y (n)−1:y (n)+1 ,x (n)−1:x (n)+1) = Bra id Sec t i on ;

end

end

function [ Braid ] = RotateE ( Braid )
[ y , x ] = find ( Braid==−2);
for n = 1 : length ( x )

Bra id Sec t i on = Braid (y (n)−1:y (n)+1 ,x (n)−1:x (n )+1);
Bra id Sec t i on = Rotate2 ( Bra id Sec t i on ) ;
Braid (y (n)−1:y (n)+1 ,x (n)−1:x (n)+1) = Bra id Sec t i on ;
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end

end

function [ Bra id Sec t i on ] = Rotate1 ( Bra id Sec t i on )
Bra id Sec t i on ( [ 4 , 6 ] ) = Bra id Sec t i on ( [ 6 , 4 ] ) ;
Bra id Sec t i on = Bra id Sect ion ’ ;

end

function [ Bra id Sec t i on ] = Rotate2 ( Bra id Sec t i on )
Bra id Sec t i on ( [ 2 , 8 ] ) = Bra id Sec t i on ( [ 8 , 2 ] ) ;
Bra id Sec t i on = Bra id Sect ion ’ ;

end

Listing C.5: Function that further subdivides the braid patterns to generate the
individual paths of the yarn.
%+------------------------------------------------------------------------+

%| |

%| FILENAME : Plot_Path_m VERSION : 1.0.0 |

%| |

%| TITLE : Plot Paths from Pattern AUTHOR : Daniel Aldrich |

%| |

%+------------------------------------------------------------------------+

%| |

%| DEPENDENT FILES : |

%| <none > |

%| |

%| DESCRIPTION : |

%| <none > |

%| |

%| PUBLIC FUNCTIONS : |

%| <none > |

%| |

%| NOTES : |

%| <none > |

%| |

%| COPYRIGHT : |

%| Copyright (c) 2017 Daniel Aldrich |

%{

%| Permission is hereby granted , free of charge , to any person |

%| obtaining a copy of this software and associated documentation |

%| files (the "Software"), to deal in the Software without |

%| restriction , including without limitation the rights to use , |

%| copy , modify , merge , publish , distribute , sublicense , and/or |

%| sell copies of the Software , and to permit persons to whom the |

%| Software is furnished to do so, subject to the following |

%| conditions: |

%| |

%| The above copyright notice and this permission notice shall be |

%| included in all copies or substantial portions of the Software. |

%| |

%| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND , |

%| EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES |

%| OF MERCHANTABILITY , FITNESS FOR A PARTICULAR PURPOSE AND |

%| NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT |

%| HOLDERS BE LIABLE FOR ANY CLAIM , DAMAGES OR OTHER LIABILITY , |

%| WHETHER IN AN ACTION OF CONTRACT , TORT OR OTHERWISE , ARISING |

%| FROM , OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |

%| OTHER DEALINGS IN THE SOFTWARE. |

%}

%| |

%| CHANGES : |

%| <none > |

%| |

%+------------------------------------------------------------------------+

function [ x , y , z ] = Plot Path ( Pattern , n , res , theta , maxAngle )
patternLength = length ( Pattern ) ;
x ( patternLength ) = 0 ;
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y ( patternLength ) = 0 ;
z ( patternLength ) = 0 ;

[ tx1 , ty1 ] = find ( Pattern{1}==−1);
[ tx2 , ty2 ] = find ( Pattern{1}==−2);

for i = 1 : patternLength
temp = Pattern { i } ;

[ x ( i ) , y ( i ) ] = find ( temp==n ) ;

if i == 1
z (1 ) = 0 ;

else

z ( i ) = z ( i −1) − 1 ;
end

end

if theta > 2
X = x ( 1 ) ;
Y = y ( 1 ) ;
Z = z ( 1 ) ;
ang l e s = linspace (0 , pi /2 , theta ) ;
ang l e s = ang l e s ( 2 : end−1);
for n = 2 : i

if x (n)˜=x(n−1) && y(n)˜=y(n−1)

if ˜mod(n , 2)
% -1 Rotates CW

[ ˜ , index ] = min ( ( tx1−x (n−1)) .ˆ2 + ( ty1−y (n−1 ) ) . ˆ 2 ) ;
[ t , ˜ ] = cart2pol ( x (n−1)−tx1 ( index ) , y (n−1)−ty1 ( index ) ) ;
Ztheta = linspace ( z (n−1) , z (n ) , theta ) ;
[ Xtheta , Ytheta ] = pol2cart ( t−angles , 1 ) ;

temp = Xtheta ( ( angles>=maxAngle)&( angles<=(pi/2−maxAngle ) ) ) ;

if length ( temp)>1
x1 = temp ( 1 ) ;
x2 = temp( end ) ;

temp = Ytheta ( ( angles>=maxAngle)&( angles<=(pi/2−maxAngle ) ) ) ;

y1 = temp ( 1 ) ;
y2 = temp( end ) ;

end

Xtheta = Xtheta + tx1 ( index ) ;
Ytheta = Ytheta + ty1 ( index ) ;

if length ( temp)>1
m = ( x2 − x1 )/ ( y2 − y1 ) ;
b = y2 − m*x2 ;

r = @( t ) (b)./(− cos ( t )/m+sin ( t ) ) ;

ang = ang l e s ( angles>=maxAngle & angles<=(pi/2−maxAngle ) ) ;
ind = find ( angles>=maxAngle & angles<=(pi/2−maxAngle ) ) ;

[ tempx , tempy ] = pol2cart ( t−ang , r ( t−ang ) ) ;
dx = diff ( tempx ) ;
dy = diff ( tempy ) ;

n len = sqrt ( dx .ˆ2 + dy . ˆ2 )/ norm ( [ y2 − y1 , x2 − x1 ] ) ;
z l en = Ztheta ( ind ( end)+1)−Ztheta ( ind (1)+1) ;
tempz = cumsum ( z l en *nlen ) ;
Ztheta ( ind+1) = [ 0 , tempz]+Ztheta ( ind (1)+1) ;
Xtheta ( ind ) = tempx + tx1 ( index ) ;
Ytheta ( ind ) = tempy + ty1 ( index ) ;

end
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else

% -2 Rotates CCW

[ ˜ , index ] = min ( ( tx2−x (n−1)) .ˆ2 + ( ty2−y (n−1 ) ) . ˆ 2 ) ;
[ t , ˜ ] = cart2pol ( x (n−1)−tx2 ( index ) , y (n−1)−ty2 ( index ) ) ;
Ztheta = linspace ( z (n−1) , z (n ) , theta ) ;
[ Xtheta , Ytheta ] = pol2cart ( t+angles , 1 ) ;

temp = Xtheta ( ( ang l e s >= maxAngle ) & ( ang l e s <=(pi/2−maxAngle ) ) ) ;
if length ( temp)>1

x1 = temp ( 1 ) ;
x2 = temp( end ) ;

temp = Ytheta ( ( angles>=maxAngle)&( angles<=(pi/2−maxAngle ) ) ) ;

y1 = temp ( 1 ) ;
y2 = temp( end ) ;

end

Xtheta = Xtheta + tx2 ( index ) ;
Ytheta = Ytheta + ty2 ( index ) ;

if length ( temp)>1
m = ( x2 − x1 )/ ( y2 − y1 ) ;
b = y2 − m*x2 ;

r = @( t ) (b)./(− cos ( t )/m+sin ( t ) ) ;

ang = ang l e s ( angles>=maxAngle & angles<=(pi/2−maxAngle ) ) ;
ind = find ( angles>=maxAngle & angles<=(pi/2−maxAngle ) ) ;

[ tempx , tempy ] = pol2cart ( t+ang , r ( t+ang ) ) ;

dx = diff ( tempx ) ;
dy = diff ( tempy ) ;

n len = sqrt ( dx .ˆ2 + dy . ˆ2 )/ norm ( [ y2 − y1 , x2 − x1 ] ) ;
z l en = Ztheta ( ind ( end)+1)−Ztheta ( ind (1)+1) ;
tempz = cumsum ( z l en *nlen ) ;
Ztheta ( ind+1) = [ 0 , tempz]+Ztheta ( ind (1)+1) ;

Xtheta ( ind ) = tempx + tx2 ( index ) ;
Ytheta ( ind ) = tempy + ty2 ( index ) ;

end

end

X = [X, Xtheta , x (n ) ] ;
Y = [Y, Ytheta , y (n ) ] ;
Z = [Z , Ztheta ( 2 : end ) ] ;

else

X = [X, ones (1 , theta −1)*x (n ) ] ;
Y = [Y, ones (1 , theta −1)*y (n ) ] ;
Z = [Z, − [ 1 : theta −1]/( theta−1)+z (n−1) ] ;

end

end

else

X = x ;
Y = y ;
Z = z ;

end

z = Z ;
if res>1

Z = z ( 1 ) : ( z (2 ) − z ( 1 ) ) / r e s : z ( end ) ;
x = spline ( z ,X, Z ) ;
y = spline ( z ,Y, Z ) ;

else

x = X( : ) ;
y = Y( : ) ;

end

z = Z ( : ) ;
z = linspace (Z (1 ) ,Z( end ) , length (Z ) ) ;
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x = x ( : ) ;
y = y ( : ) ;
x = x ’ ;
y = y ’ ;
z = z ( : ) ’ ;

C.3 Estimated Properties Output

Listing C.6: .
+=======================================================================+
| |
| BRAID PROPERTIES |
| |
| 28−Feb−2018 11 : 40 : 00 |
| |
+=======================================================================+
+=======================================================================+
| |
| MATERIALS |
| |
| Fiber s : ARAMID 29 |
| Matrix : EPOXY |
| |
| PROPERTIES |
| |
| Long . Young ’ s Modulus : 13 .149 − 18 .237 [GPa] |
| Young ’ s Modulus (FGM) : 16 .364 [GPa] |
| Yarn Packing Fract ion ( Pf ) : 0 .750 |
| Ave Braid ing Angle ( Theta ) : 11 .613 [ deg ] |
| I n t e r i o r Bra id ing Angle : 15 .476 [ deg ] |
| Sur face Bra id ing Angle : 7 .882 [ deg ] |
| Braid ing Tightness ( eta ) : 0 .335 |
| Fiber Volume Fract ion (Vf ) : 0 .258 |
| |
| MODEL PROPERTIES |
| |
| Braid Cross−s e c t i o n Dims . : 1 .051 x 1 .051 [mm] |
| Unit Ce l l Height ( Pitch ) : 1 .432 [mm] |
| Number o f Act ive Cams : 3 by 3 ( 9) |
| Sp l ine Knots per Step : 10 |
| 2−Way Conv . Smoothing : Enabled |
| Number o f Yarns : 24 |
| Spacing Factor : 1 .000 |
| |
+=======================================================================+
+=======================================================================+
| |
| FIBER PROPERTIES: ARAMID 29 |
| |
| Density : 1 .44 [ g/ cc ] |
| Denier : 200 [ g/9000m] |
| Radius : 0 .070 [mm] |
| |
+−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+
| E1 | E2 | Poisson ’ s Ratio | Shear Modulus |
+−−−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−+
| 61 .000 | 4 .200 | 0 .350 | 2 .900 |
+=======================================================================+
+=======================================================================+
| |
| MATRIX PROPERTIES: EPOXY |
| |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
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| Young ’ s Modulus | Poisson ’ s Ratio | Shear Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 3 .400 | 0 .300 | 1 .308 |
+=======================================================================+
+=======================================================================+
| |
| YARN PROPERTIES: ARAMID 29/EPOXY (PF: 0 . 750 ) |
| |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Young ’ s Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| E1 | E2 | E3 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 46 .600 | 3 .967 | 3 .967 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Poisson ’ s Ratio |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| v12 | v13 | v23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 0 .337 | 0 .337 | 0 .510 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Shear Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| G12 | G13 | G23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 2 .223 | 2 .223 | 4 .049 |
+=======================================================================+
+=======================================================================+
| |
| ARAMID 29/EPOXY 0.00 DEG (VY: 0 .343 , PF: 0 . 750 ) |
| |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Young ’ s Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| E1 | E2 | E3 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 18 .237 | 3 .575 | 3 .575 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Poisson ’ s Ratio |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| v12 | v13 | v23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 0 .313 | 0 .313 | 0 .304 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Shear Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| G12 | G13 | G23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 1 .523 | 1 .523 | 2 .569 |
+=======================================================================+
+=======================================================================+
| |
| ARAMID 29/EPOXY 11.61 DEG (VY: 0 .343 , PF: 0 . 750 ) |
| |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Young ’ s Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| E1 | E2 | E3 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 13 .149 | 3 .545 | 3 .572 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Poisson ’ s Ratio |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| v12 | v13 | v23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 0 .377 | 0 .265 | 0 .289 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Shear Modulus |
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+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| G12 | G13 | G23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 1 .629 | 1 .543 | 2 .487 |
+=======================================================================+
+=======================================================================+
| |
| FABRIC GEOMETERY MODEL |
| |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
| Young ’ s Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| E1 | E2 | E3 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 16 .364 | 4 .937 | 4 .937 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Poisson ’ s Ratio |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| v12 | v13 | v23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 0 .360 | 0 .360 | 0 .241 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| Shear Modulus |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| G12 | G13 | G23 |
+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−+
| 1 .980 | 1 .980 | 1 .569 |
+=======================================================================+
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Appendix D: Model Generation
Code

Listing D.1: This is a Test
Dim swApp As Object
Dim Part As Object
Dim PartExt As SldWorks . ModelDocExtension
Dim doc As Object
Dim boo l s t a tu s As Boolean
Dim l ong s t a tu s As Long , longwarnings As Long
Dim myFeature As Object
Dim skSegment As Object
Dim i As In t eg e r
Dim t As Long
Dim CWD As String

Dim bRet As Boolean
Dim partYarns As String

Dim partRes in As String

Dim partBraid As String

Dim f i l ename As String

Public Declare PtrSafe Function GetTickCount Lib "kernel32.dll" ( ) As Long

Sub main ( )
Set swApp = Appl i ca t ion . SldWorks

’Part 1

Set Part = swApp . NewDocument(
"C:\ ProgramData\SolidWorks\SOLIDWORKS 2015\ templates\Part.prtdot" ,
0 , 0 , 0)

Set PartExt = Part . Extension
partYarns = Part . GetTit l e
CWD = swApp . GetCurrentMacroPathFolder ( )
swApp . SetCurrentWorkingDirectory (CWD)
t = GetTickCount
Open CWD & "\Data.txt" For Input As #1
Input #1 , Count , Radius , Length , bW, bL , SF
Close #1

Set Part = swApp . ActiveDoc
Dim myModelView As Object
Set myModelView = Part . ActiveView
myModelView . FrameState = swWindowState e . swWindowMaximized
For i = 1 To Count

boo l s t a tu s = Part . In s e r tCurveF i l e (CWD & "\Yarn" & i & ".txt" )

Part . C l e a rS e l e c t i on2 True
Next i

For i = 1 To Count
boo l s t a tu s = Part . Extension . SelectByID2 ( "Top Plane" , "PLANE" ,
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0 , 0 , 0 , False , 0 , Nothing , 0)
Part . SketchManager . In s e r tSke t ch True

Part . C l e a rS e l e c t i on2 True

Open CWD & "\Yarn" & i & ".txt" For Input As #1
Input #1 , X, Y, Z
Close #1

Set skSegment = Part . SketchManager . CreateCirc leByRadius (
X / 1000 , −Z / 1000 , 0#, Radius )

Part . C l e a rS e l e c t i on2 True
Part . SketchManager . In s e r tSke t ch True

Part . C l e a rS e l e c t i on2 True

boo l s t a tu s = Part . Extension . SelectByID2 (
"Sketch" & i , "SKETCH" , 0 , 0 , 0 , False , 1 , Nothing , 0)

boo l s t a tu s = Part . Extension . SelectByID2 (
"Curve" & i , "REFERENCECURVES" , 0 , 0 , 0 , True , 4 , Nothing , 0)

Set myFeature = Part . FeatureManager . Inse r tProt rus ionSwept3 (
False , False , swTwistControlType e . swTwistControlFollowPath ,
False , False , swTangencyType e . swTangencyNone ,
swTangencyType e . swTangencyNone , False , 0 , 0 ,
swThinWallType e . swThinWallOneDirection , 10 ,
True , True , True , 0 , True )

Part . C l e a rS e l e c t i on2 True
Next i

Part . ShowNamedView2 "*Isometric" , 7
Part . ViewZoomtofit2
Part . SetMaterialPropertyName2 "Default" ,

"C:/ ProgramData/SolidWorks/SOLIDWORKS 2015/"&
"Custom Materials/Custom Materials.sldmat" , "Aramid"

f i l ename = CWD & "\Yarns.SLDPRT"

boo l s t a tu s = PartExt . SaveAs ( f i l ename , swSaveAsCurrentVersion ,
swSaveAsOptions Si lent , Nothing , l ongs ta tus , longwarnings )

’Part 2

Set Part = swApp . NewDocument(
"C:\ ProgramData\SolidWorks\SOLIDWORKS 2015\ templates\Part.prtdot" ,
0 , 0 , 0)

Set PartExt = Part . Extension
partRes in = Part . GetTit l e
swApp . ActivateDoc2 "Part2" , False , l ong s t a tu s

boo l s t a tu s = Part . Extension . SelectByID2 ( "Top Plane" , "PLANE" , 0 , 0 , 0 ,
False , 0 , Nothing , 0)

Part . SketchManager . In s e r tSke t ch True
Part . C l e a rS e l e c t i on2 True
Part . ShowNamedView2 "*Top" , 5
boo l s t a tu s = Part . Extension . SetUserPre fe renceTogg le (

swUserPre ferenceTogg le e . swSketchAddConstToRectEntity ,
swUserPre ferenceOpt ion e . swDeta i l ingNoOpt ionSpec i f i ed , True )

boo l s t a tu s = Part . Extension . SetUserPre fe renceTogg le (
swUserPre ferenceTogg le e . swSketchAddConstLineDiagonalType ,
swUserPre ferenceOpt ion e . swDeta i l ingNoOpt ionSpec i f i ed , True )

Dim vSkLines As Variant
vSkLines = Part . SketchManager . CreateCenterRectangle (0 , 0 , 0 ,

(4 * SF * bW + 3) * Radius / 2 , (4 * SF * bL + 3) * Radius / 2 , 0)
Part . C l e a rS e l e c t i on2 True

Part . SketchManager . In s e r tSke t ch True
Part . C l e a rS e l e c t i on2 True
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boo l s t a tu s = Part . Extension . SelectByID2 ( "Sketch1" , "SKETCH" ,
0 , 0 , 0 , False , 4 , Nothing , 0)

Set myFeature = Part . FeatureManager . FeatureExtrus ion2 (True , False ,
True , 0 , 0 , Length , 0 . 01 , False , False , False , False , 0 , 0 ,
False , False , False , False , True , True , True , 0 , 0 , Fa l se )

Part . Se lect ionManager . EnableContourSe lect ion = False

Part . C l e a rS e l e c t i on2 True

Part . SetMaterialPropertyName2 "Default" ,
"C:/ Program Files/SOLIDWORKS Corp/SOLIDWORKS (2)/"&
"lang/english/sldmaterials/SOLIDWORKS Materials.sldmat" ,
"Epoxy , Unfilled"

f i l ename = CWD & "\Resin.SLDPRT"

boo l s t a tu s = PartExt . SaveAs ( f i l ename , swSaveAsCurrentVersion ,
swSaveAsOptions Si lent , Nothing , l ongs ta tus , longwarnings )

’Assembly

Set Part = swApp . NewDocument( "C:\ ProgramData\SolidWorks\"&
"SOLIDWORKS 2015\ templates\Assembly.asmdot" , 0 , 0 , 0)

Set PartExt = Part . Extension
swApp . ActivateDoc2 "Assem#" , False , l ong s t a tu s
partBraid = Part . GetTit l e
Set Part = swApp . ActiveDoc

boo l s t a tu s = Part . AddComponent(CWD & "\Yarns.SLDPRT" , 0 , 0 , 0)
Set Part = swApp . ActiveDoc
boo l s t a tu s = Part . AddComponent(CWD & "\Resin.SLDPRT" , 0 , 0 , 0)
Set Part = swApp . ActiveDoc

boo l s t a tu s = Part . Extension . SelectByID2 ( "Point1@Origin@Yarns -1@" &
partBraid , "EXTSKETCHPOINT" , 0 , 0 , 0 , True , 1 , Nothing , 0)

boo l s t a tu s = Part . Extension . SelectByID2 ( "Point1@Origin@Resin -1@" &
partBraid , "EXTSKETCHPOINT" , 0 , 0 , 0 , True , 1 , Nothing , 0)

Dim myMate As Object
Set myMate = Part . AddMate5 (20 , −1, False , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,

False , False , 0 , l ong s t a tu s )
Part . C l e a rS e l e c t i on2 True
Part . EditRebui ld3

Part . ShowNamedView2 "*Isometric" , 7
Part . ViewZoomtofit2

f i l ename = CWD & "\Braid.SLDASM"

boo l s t a tu s = PartExt . SaveAs ( f i l ename , swSaveAsCurrentVersion ,
swSaveAsOptions Si lent , Nothing , l ongs ta tus , longwarnings )

boo l s t a tu s = Part . Extension . SelectByID2 ( "Resin -1 @Braid" , "COMPONENT" ,
0 , 0 , 0 , False , 0 , Nothing , 0)

Part . AssemblyPartToggle
Part . EditPart
Part . C l e a rS e l e c t i on2 True
boo l s t a tu s = Part . Extension . SelectByID2 ( "Yarns -1 @Braid" , "COMPONENT" ,

0 , 0 , 0 , True , 0 , Nothing , 0)
Part . In s e r tCav i ty4 0 , 0 , 0 , True , 1 , −1
Part . AssemblyPartToggle
Part . EditAssembly

boo l s t a tu s = PartExt . SaveAs ( f i l ename , swSaveAsCurrentVersion ,
swSaveAsOptions Si lent , Nothing , l ongs ta tus , longwarnings )

swApp . ActivateDoc2 "Resin.SLDPRT" , False , l ong s t a tu s
Set Part = swApp . ActiveDoc
Set PartExt = Part . Extension
f i l ename = CWD & "\Resin.SLDPRT"

boo l s t a tu s = PartExt . SaveAs ( f i l ename , swSaveAsCurrentVersion ,
swSaveAsOptions Si lent , Nothing , l ongs ta tus , longwarnings )
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swApp . ActivateDoc2 "Braid.SLDASM" , False , l ong s t a tu s
Set Part = swApp . ActiveDoc
Set PartExt = Part . Extension
f i l ename = CWD & "\Braid.SLDASM"

boo l s t a tu s = PartExt . SaveAs ( f i l ename , swSaveAsCurrentVersion ,
swSaveAsOptions Si lent , Nothing , l ongs ta tus , longwarnings )

swApp . CloseDoc "Resin.SLDPRT"

swApp . CloseDoc "Yarns.SLDPRT"

boo l s t a tu s = Part . Extension . SelectByID2 ( "Resin -1 @Braid" , "COMPONENT" ,
0 , 0 , 0 , False , 0 , Nothing , 0)

boo l s t a tu s = Part . SetComponentTransparent (True )

Part . C l e a rS e l e c t i on2 True

MsgBox GetTickCount − t , , "Milliseconds"

End Sub
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