University of Alberta

JOLE: A LIBRARY FOR DYNAMIC JOB-LEVEL PARALLEL WORKLOADS

by

Jordan Dacey Lee Patterson

A thesis submitted to the Faculty of Graduate Studies anddtel
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

(©Jordan Dacey Lee Patterson
Fall 2009
Edmonton, Alberta

Permission is hereby granted to the University of Albertaraiies to reproduce single copies of this thesis

and to lend or sell such copies for private, scholarly orrgdie research purposes only. Where the thesis is

converted to, or otherwise made available in digital forime, niversity of Alberta will advise potential users
of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis, and
except as herein before provided, neither the thesis nosanstantial portion thereof may be printed or
otherwise reproduced in any material form whatever witlibatauthor’s prior written permission.

Examining Committee

Paul Lu, Computing Science

Mike Carbonaro, Educational Psychology

Mario Nascimento, Computing Science

Abstract

Problems in scientific computing often consist of a workladdobs with dependencies between
them. Batch schedulers are job-oriented, and are not wigesto executing these workloads with
complex dependencies.

We introduce Jole, a Python library created to run these wads. Jole has three contributions
that allow flexibility not possible with a batch schedulersE dynamic job execution allows control
and monitoring of jobs as they are running. Second, dynanoikiwad specification allows the
creation of workloads that can adjust their execution whilening. Lastly, dynamic infrastructure
aggregation allows workloads to take advantage of additimsources as they become available.

We evaluate Jole using GAFolder, a protein structure ptiedi¢cool. We show that our contri-
butions can be used to create GAFolder workloads that useclester resources, iterate on global

protein structures, and take advantage of additionalelussources to search more thoroughly.

Acknowledgements

| would like to thank my supervisor, Paul Lu, for his suppartiayuidance during my work on this
research. In addition, | would like to thank both the Proteokmalyst and Trellis research groups.
Working with the Proteome Analyst group introduced me t@agsh and motivated me to pursue
further studies. Our Trellis group discussions have begyable and have exposed me to a range
of interesting research. As well, | would like to thank my fmfor their support throughout the

years. Finally, | thank my wife, Amanda, whose love and suplpas made this possible.

Table of Contents

1 Introduction 1
1.1 Research Challenges and Contributions 4
2 Background 7
2.1 RelatedWork 7
2.1.1 Parallel and Distributed Languages 7
2.1.2 BatchSchedulers 13
2.2 CONCEPLS . . . o o e e e 81
2.2.1 FUIUIES . . . o e e e e 18
2.2.2 Placeholders e 91
2.3 Motivating Applications Lo 19
2.3.1 Pathway Analyst e 91
2.3.2 GAFolder e 20
2.4 ConcludingRemarks e e 20
3 Jole: Job-Level Parallel Workloads 21
3.1 Pathway AnalystExample 22
3.2 JobFuture 22
3.21 Example 24
3.3 Command Generator 25
3.3.1 Example 26
3.4 JObAray e e 6 2
341 Example 28
35 DataHandle 29
3.5.1 Example 30
3.5.2 Dataflow 30
3.5.3 RemoteFile Access. e 30
3.6 JobManager. e 31
3.7 Submitter e 32
3.8 MONItor e 23
3.8.1 RemoteMonitor 32
3.8.2 LocalMonitor 33
3.9 Adapting Jole for Different Applications L. 35
3.10 ConcludingRemarks e 37
4 Implementation 38
4.1 JobFuture e 38
4.2 Command Generator 40
4.3 JODArray e 04
44 DataHandles e 44
45 JobManager. e 44
4.6 Submitters L e 44
4.7 Placeholder 46
4.8 Remote Monitor. e 46
4.9 LocalMonitor e e a7
4.10 ConcludingRemarks e e a7

valuation

1 Evaluation Methodology
2 DynamicJobExecution. e

.3 DynamicWorkflow
4

5

5

Dynamic Infrastructure
5.4.1 Adjusting Workflow Based On Total Resources
ConcludingRemarks e

6 Concluding Remarks
6.1 Future Work e e

Bibliography
A Code Listings

A.1 Workflow Script for GAFolder Local and Global Workflow
A.2 Custom Local Monitor Used for GAFolder Instances

49
49
50

58
58
62

65
66

67
69

69
72

List of Tables

ago w NN

N [l WN -

Comparison of Jole to Data Parallel Languages 7
Comparisonof Key Features i 14
Comparison of Additional Features, 14
Jole: Library Features e 22
GAFolder: Comparisonofworkloads, .. 53

GAFolder Scores After Each Generation in the Constashaljusting Workloads 63

List of Figures

goaoaaoaon g goaooa hABABRARDL WWOORWWWLWLWW NONNN 2

PR RPRPREP OO ~ U WNE OUhhWNPE PRPPRPOO~NOUIRWNE arhwWNE =

NEF— O

ArWNERLO

GAFolder: Dynamic Local and Global Workflow 3
MapReduce pseudocode for counting word frequencies 8
Dryad code for SQL queryexecution 0 i 10
SQLQueryGraphinDryad e 11
Example Workflow SpecificationforDAGMan 14
Example Workflow Specification for BAD-FS 15
Pathway Analyst Workflow: Training an HMM Classifier 23
ExecutionofaJob Future 23
Creatingjobfutures e 25
Command Generatorusage i i it i e e e 25
Generatingcommands 26
Filteringcommands e 27
Job Array e 72
Job Array Example e 28
Specifying data handles in command generator 30
Overview of Job Execution e 31
Remote MonitoringofaJob, 33
Local MonitoringofaJdob 34
Job Future States 39
Command Generator 41
Job Array Class: Part1 42
Job Array Class: Part2 e 43
Using Multiple Batch Schedulers 45
Gathering Modules and Functions Needed for Local Monito 48
Cluster Testing Environment uue... 51
GAFolder: Workflow 52
GAFolder Runtime Distribution: Static Workflow 53
GAFolder Runtime Distribution: Dynamic Local Workflow. 54
GAFolder: Dynamic Local and Global Workflow 55
Average Number of Iterations Per Generation: Dynamialand Global Workload
(10iInStances) o e 75
Average Number of Iterations Per Generation: Dynamialand Global Workload
(200NStances) e 75
Dynamic Infrastructure: Number of Instances Runningaoh Cluster 59
Dynamic Infrastructure: Instances FinishedonEaclstefu 59
Constant Workload: Instances Runningon ClusterA 60
Constant Workload: Instances Finished on ClusterA 61
Adjusting Workload: Instances Running on Each Cluster. 61
Adjusting Workload: Instances Finishedon EachCluste 61
GAFolder Scores Over Time in the Constant and Adjustiogkloads 62

Chapter 1

Introduction

Computing science has become important for research in sEantific disciplines. The vast im-
provementin computing hardware has enabled scientistady problems and perform simulations
in much greater detail. In biology, computers are used tdipt@rotein structure, find similar pro-
teins, and perform cell simulations. In physics, they cam&ed for simulating the effects of solar
flares or fluid dynamics. In computing science, computers beysed to train machine-learned
classifiers, artificial intelligence agents, or poker siés. For many disciplines, having access to
computational resources is a requirement for further rekea

Many of these problem domains are well-suited to runninglasters of commodity comput-
ers. Some are naturally parallel and others may have highugaty due to a large problem size.
With the capabilities of commodity hardware increasinglevthieir associated prices decline, it has
become more attractive to solve problems using many of thesenodity computers, leading to
capacity computing. Capacity computing focuses on maxigithe throughput of several jobs.
Commodity clusters cannot solve individual problems asdasnore expensive machines, but they
can solve many of them at a time. As an example, many of Gaogtehputations are run on com-
modity clusters [2]. MapReduce [5] and Google File Syster$§5[6] have been created to take
advantage of these commodity nodes for computation andggor

Other problems may benefit more from running single jobs sisaa possible. Capability com-
puting is focused on this problem. This generally meanglmdlcomputers with the best processors,
memory, hard drives, and interconnects. While useful fonyrroblems, capability computing re-
sources do not offer the best price/performance ratio foblems that are well-suited to capacity
computing resources, and would not benefit from Jole.

With the use of capacity computing resources, tools for ingpjobs have become more impor-
tant. Rather than running single jobs, users generally mnklvads consisting of several jobs with
dependencies between them. Trying to run a user’s worklodactively can be an exercise in
frustration. Although it is common for users to run jobs matively, they could save a lot of their
time by using an automated tool to run their jobs for them winety are running large workloads.

An automated tool can make scheduling decisions much fstara user.

The main tool for running jobs on commodity clusters has bleeatth schedulers, such as
TORQUE [18] or OpenPBS [20]. There are several propertiesarkloads in scientific comput-
ing that make them well-suited to running under batch scleediesources. First, the jobs within
a workload are non-interactive. All application options apecified by command-line arguments,
environment variables, or configuration files. This meaas the jobs can be run without user in-
tervention. Second, these workloads generally consistarfynjpbs. For many applications, there
is very little to no communication between jobs. This meduas they can run efficiently over many
machines in a distributed fashion. Third, the jobs withirrkloads consist mainly of long-running
jobs. This means that scheduling overhead is less of a pmlale the jobs will have higher granu-
larity in general.

Batch schedulers are an improvement over running jobsadtieely on each node. With batch
schedulers, users are able to specify large amounts of goldislet the scheduler decide when and
where to run them. Batch schedulers are usually configurethtomize throughput, completing as
much work as possible in the shortest amount of time. Userspecify the resources that their jobs
need and let the scheduler handle placement of jobs on teeclWsers just need to write scripts
or workflow specifications that describe their workload, antdmit them to the scheduler.

Although batch schedulers are an improvement over runoiogjnanually, there are some ways
in which running jobs on the cluster could be improved. Famegle, job dependencies may not be
well supported on some batch schedulers, making it harddpesly run a workflow. With batch
schedulers that do support job dependencies, the job depeied are generally static, and must be
rewritten for each workflow that is submitted. For other batchedulers, users may need to ensure
that job dependencies are met by writing scripts that motii@ir jobs independently of the batch
scheduler.

Dependencies between jobs are common in workloads. GAF@lgeotein structure prediction
tool, is an individual application, but it is possible to mnultiple instances in several different ways
to improve prediction results or to decrease run time. Indyn@amic local and global workflow,
described in Section 5.3, groups of GAFolder instancesuar@eratively. The globally best protein
structures are used as a basis for the GAFolder instancegcn generation. This workload is
shown in Figure 1.1. Note that this workflow is also shown igufe 5.5. In the evaluation of this
workflow, we are able to produce an improvement in score fr88132 with the static workflow to
-33.52 with the dynamic local and global workflow. This dyneiteration of GAFolder instances
would be difficult to implement in a static workflow languadée best scores must be determined
in each generation during run time and subsequent jobsmgraAFolder must be created that use
the structures with the best scores.

Another improvement that could be made over batch schesligiéhe ability to get more infor-
mation about jobs and interact with them as they are runnilsgrs may want to know more about

a jobs execution than whether it is running or not. For exampders may want to know about the

Best m structures
from previous generation

Initial Protein Structure

Best structures

GAFolder 1 GAFolder 2 GAFolder 20
Predicted Predicted Predicted
structure 1 structure 2 structure 20

Predict another
generation

Best m structures

Best
Score Diff No
<0.1

Yes

Return best m
structures

Figure 1.1: GAFolder: Dynamic Local and Global Workflow

progress being made in a job. If the job is progressing pawrhas reached a plateau in search, they
may want to automatically terminate it. With batch schedylthey must determine which node a
job is executing on, login to that node, and look at outputtbeoinformation in order to do this.
This is too much administrative work for what may be a rekdtisimple task they wish to perform
on their job as it is running.

Another improvement that could be made over batch scheslidehe ability for workloads to
react to changes in available resources. Many clusters ristygthin an organization, which may
be idle much of the time. Users could benefit by taking adygmnts these clusters when they are
idle. For example, they may want to run additional instarafea job when there are additional
resources available to run jobs on. For workloads invohd@egrch, this allows their workloads to
perform a more exhaustive search when there are more aegikgources.

Our work is focused on creating a workflow execution libraigle, that improves the flexibil-
ity of running workloads on clusters. With the features of tbrary, we can improve upon the

workload support of batch schedulers.

1.1 Research Challenges and Contributions
Our main research challenges and contributions are asvigillo

1. Dynamic Job Execution

Not all batch jobs need to run to completion. Depending ormfi@ication or algorithm, some
batch jobs should be terminated early or new batch jobs dhmilaunched, based on patrtial
results of other batch jobs. With a regular batch scheduldveorkflow language, this level
of job control is not possible. Therefore, support for dyiatty controlling jobs while they

are executing can be beneficial.

We introduce monitors, which can interact with jobs as theyranning. There may be some
criteria by which users want to terminate jobs. A monitor barused to interact with the job,

and once it meets the criteria, terminate it.

This is an improvement over current batch scheduling becaus now possible to interact
with jobs while they are running. With a normal batch schedulsers normally have to wait
until the job is done to get their results. With monitors sitpossible to watch the output of

jobs and end them early if the results are not satisfactory.

For example, each run of GAFolder uses a random seed, pragdifferent results on each
run. Some runs will reach a local minima before reaching tardard number of iterations.
It can be beneficial to end those runs early and start new oniir place, in order to get

more benefit from the computation.

2. Dynamic Workflow

Many workflows have complicated control and dataflow depeoids between jobs. Specify-
ing this information in a static language can be cumbersesygcially if there is varied input
data and control-flow. Some types of control-flow may not bssfile, such as iterations,
in systems which only support directed acyclic graphs (DAfes workflow specification.
With a static specification language, each small differénagorkflow may require a sepa-
rate submission script. Therefore, a dynamic scriptingedapproach to specification can be

beneficial.

Data handles, job futures, and job arrays enable a dynamipting based-approach to work-
flow specification. Each of these features can be used to symizle on job status. Combined
with the use of the Python scripting language for Jole, tlieatires allow users to synchro-
nize on jobs, gather data globally about jobs, and adjustvibrflow based on the global

data.

These improvements help in several ways. First, it is ptessdh script a workflow which
modifies itself based on global data. This allows workflowstécate based on the results
of the intermediate computations, which would be difficalperform with a static workflow
specification language. Second, the use of a scripting Eggallows parametrization of the
workflow script, allowing reuse for different workflows. lths data handles prevent the need

to handle file conflicts in output files between workflows.

For example, several instances of GAFolder are run in omdprdduce structure predictions.
New GAFolder instances can be run using the most promisingtstes globally in order

to further refine the structure. This process can be repeategtal times, in order to focus
search around the most promising proteins. This cycliclgrapuld be hard to implement

using a static language, but can be implemented using Jole.

. Dynamic Infrastructure

Within an organization, there may be several clusters tteatat heavily used by their owners.
These resources could be used by others when they are idies Wih their own clusters will
also benefit from this sharing, because they can now spreddjobs across other clusters
when they are idle. It would be beneficial to automaticalketadvantage of these resources
when they become available. A workflow may be modified as itiining, to better take

advantage of additional resources.

Submitters enable users to run workflows across clusteesjotimanager starts and interacts
with submitters on each cluster in order to run jobs. The sgecifies the machines they wish
to run submitters in their workflow script. A workflow can gesource information from the
job manager as it is running, and use that information tod#ehbw to continue running the

workload.

For some workloads, adjusting the workflow graph based oavh#able resources can help

improve results. With some search applications, it can lssipte to generate better results
by running more instances of the program when more resoareesvailable. If each instance
of the search is independent and searches a different space jnstances will allow a more

thorough search.

For example, in the dynamic local and global workload for @Afer, a set number of in-
stances are run in each generation. By running addition&dkder instances in each genera-
tion, it is possible to perform a more complete search in tleégin space and produce better

quality structure predictions.

Chapter 2

Background

In the previous chapter, we described the importance of fiawk to scientific computing and de-
scribed several improvements that could be implementedmoftbatch schedulers. We introduced
and described some of the contributions of Jole for runniagkflows.

In this chapter, we describe some work related to Jole, ipahallel language and batch schedul-
ing fields. We then describe some concepts that are useden Biolally, we describe some of the

motivating applications that are used in the following dieap.

2.1 Related Work
2.1.1 Parallel and Distributed Languages

Parallel and distributed languages are targeted towanmdsrpeng computation using several pro-
cessor cores or machines. Data-parallel languages, siuéEReduce, are becoming more popular,
as they enable a natural way of parallelizing data analysiscamputation. Implementations of the
Message Passing Interface (MPI), remain popular for sieebmputing, as they may have com-
munication patterns that do not map well to data-paraltejlemges.

While there is a wealth of research towards distributed asta-garallel languages, there is
less targeted towards batch-scheduled job-level paratielHowever, there is an overlap in ideas
between the two. Table 2.1 compares the main propertiescbfgestem. The types of parallelism
and fault tolerance supported in each language are showoe$s placement refers to the ability to

place processes near the data they will use on a distributadecture.

System Parallelism Fault Tolerance Process Placement
Jole Task Yes (Jobs) Manual

MapReduce Data Yes (Tasks) Automatic

Dryad Data Yes (Vertices) Automatic

MPI Task & Data Manual Manual

Table 2.1: Comparison of Jole to Data Parallel Languages

MapReduce

MapReduce [5] is a programming model and framework for gatallel programming. Although
Google has not released their system to the public, an operte implementation of MapReduce
called Hadoop [10] has become popular. Users specify a magiifun which takes key/value pairs
and processes them to produce intermediate key/value jiese new key/value pairs are merged
by a user specified reduce function. This programming madebmewhat limited, however there
are many programs that are well-suited to running undentildel. Some examples include count-
ing uniform resource locator (URL) access frequencies ftogs, counting term frequencies in
documents, and creating inverted indexes.

Google uses MapReduce to perform computation on a variefyraflems, including large
machine-learning problems, clustering problems, extrggiroperties from web pages, and large
graph computations. One of the most significant uses of Mdp&eis Google’s production in-
dexing system, which produces the data structure require@dogle’s search engine. These com-
putations are performed on many terabytes of data in fiverntdt@pReduce operations. One step
performed in this process is the creation of an invertedxneéhich maps words to documents
containing the word. This inverted index is used for web ceas to find documents containing
guery words. Additionally, MapReduce is used for the caltiahs in determining PageRank [21].
Roughly, PageRank measures importance of web pages bypokiincoming links to a page and
the PageRanks of those links.

The following pseudocode in Figure 2.1, from Dean and Gheand$y, illustrates the use of
MapReduce to count word frequencies in a set of documents.
map(String key, String value):

/I key: document name

/I value: document contents

for each word w in value:
Emitintermediate(w, "1");

reduce(String key, Iterator values):
/I key: a word
/I values: a list of counts
int result = O;
for each v in values:
result += Parselnt(v);
Emit(AsString(result));

Figure 2.1: MapReduce pseudocode for counting word frecjaen

The map phase uses the map function in Figure 2.1, whichétetarough each word in the
document and emits an intermediate key/value pair for eawrd with the word as the key and 1

as the value. The reduce phase uses the reduce functionureRidlL, which iterates through the

intermediate values for a key produced in the map phase, sugrthe word count for a word. This
reduce phase will be performed on every key.

The MapReduce system automatically parallelizes the mapephy partitioning the input data
into Mchunks. These chunks can be processed in parallel by indepemap tasks. The output from
map tasks is partitioned inf@ chunks by a partitioning function, where each partitionrisgessed
by a separate reduce task. The number of partitions mustduifigpl by the user. The partitioning
function can be specified by the user, if the user prefers titipa the data differently. When the
computation is close to finishing, redundant executionsgdrbgress tasks will be scheduled. This
prevents stragglers, tasks running on slow or problematichimes, from slowing down the entire
MapReduce operation.

MapReduce handles scheduling of these tasks and can rdcowemachine failures. Due to
the use of the Google File System (GFS) [6], the data is refgttacross multiple machines. If a
machine fails, the input data will be on other nodes. GFS ngilteplicate this data to ensure that
the minimum replication criteria is met. A master processticas the execution of the MapReduce
program. Workers are periodically pinged to check for faluf a worker fails, the master process
will restart its task.

MapReduce is somewhat limited in the types of dataflow progriacan run, but there are many
problems that are well-suited to this model. Mapping jobthte model may be more difficult. The
simplest case for executing most jobs is to use the map pbasestute the job, while having a
trivial reduce phase which merely collects the output. aneple, the basic local alignment search
tool (BLAST) [1] could be parallelized using MapReduce bingshe set of query proteins as input
to the map phase, which would be partitioned between ma f@esiforming BLAST. The reduce
phase could simply emit the BLAST results from the map phaisperhaps do some filtering based
on score. Due to MapReduce’s use of chunking to achievelplisad, it may be necessary to adjust
the chunking size in order to get sufficient concurrency. &le, GAFolder consists of long
running jobs with a single input protein. The chunk size wicuve to be small to run a GAFolder
workflow on MapReduce. MapReduce is more suited towardsimgrarge problems, where this
would not be necessary.

Running jobs with MapReduce has several benefits. With serficnput data and proper chunk
size, MapReduce achieves good parallelism. Jobs run wighwidl likely achieve similar paral-
lelism, although the user would have to split their data befweating jobs, rather than having the
system do this automatically. MapReduce is able to recaean inachine failures by monitoring
tasks on each machine. If a machine fails, it will rerun thias&s. Our job manager is also able to
recover from machine failures of placeholders. If a macffails, the placeholder will no longer be
sending messages to the job manager, so the job managetartih:mew job to replace it.

Although it may be possible to map some workflows to MapRegditasan result in a longer

makespan, in addition to extra work fitting jobs into the MapRce paradigm. MapReduce does

not support dynamic job execution, meaning that all job$mit until finished. With Jole, jobs can

be monitored and ended early if they do not meet some criteria

Dryad

Dryad is a distributed data parallel framework from Micriagdl]. Users specify a dataflow graph
of processes and code segments within the framework. Thie®in the graphs represent the
computations, while the edges specify the data channejsd3job manager controls the execution
of these vertices and builds an execution graph for runriegmorkflow on the cluster. Dryad has
a series of operations that must be used to create a datafaph.grGraphs can be created by
instantiating vertices, adding edges, and merging graphs.

The following example, from Isardt al. [11], illustrates the creation of a graph with Dryad,

producing the graph shown in Figure 2.3.

moduleX"N;
moduleD"N;
moduleM™(N *4);
moduleS™(N *4);

GraphBuilder XSet
GraphBuilder DSet
GraphBuilder MSet
GraphBuilder SSet
GraphBuilder YSet = moduleY’N;

GraphBuilder HSet = moduleH™1;

GraphBuilder Xlnputs = (ugrizl >= XSet) || (neighbor >= XSet);
GraphBuilder Yinputs = ugriz2 >= YSet;

GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;

for i = 0; i <N *4; ++i)

{

}
GraphBuilder YToH = YSet >= HSet;

GraphBuilder HOutputs = HSet >= output;
GraphBuilder fnl = Xlnputs || Yinputs || XToY || YToH || HOutp uts;

XToY = XToY || (SSet.GetVertex(i) >= YSet.GetVertex(i/4)) ;

Figure 2.2: Dryad code for SQL query execution

The clone operatiort () creates cloned vertices, which, when executed, will hheeriput data
split between them. For example, in Figure 2iihduleX "N results in then X vertices shown
in Figure 2.2. The pointwise composition operatienx) forms a pointwise composition between
sets, which creates edges between the vertices. For exaimgigure 2.2,XSet >= DSet ,
results in the edges between the X and D vertices in FiguteTh@&bipartite composition operation
(>>) creates the complete bipartite graph between two setexamnple, in Figure 2.)Set >>
MSet, results in the set of edges between the D and M vertices iar&ig.3. Finally, the merge
operation [|) operation merges graphs. For example, in Figure @@riz1 => Xset) ||
(neighbor => XSet) will create two graphs containing data dependencies irdXX®et, then
merge them to produce the dependencies on both sets for eaetiex shown in Figure 2.3. The

complete graph for the code in Figure 2.2 is shown in Figuse 2.

10

Figure 2.3: SQL Query Graph in Dryad

11

The job manager supports fault tolerant execution of thitoger by maintaining version numbers
and execution logs for each vertex. File output from vestiaee uniquely named for each version,
to avoid conflicts, and when a job completes successfukyptitputs will be renamed to the final
name. If a vertex execution fails, the job manager can bdiedtby the vertex or daemon. If the
failure was due to a failed input channel, the vertex thategated that channel will be restarted.
If the machine running the vertex fails, the job manager véteive a heartbeat timeout. Failed
vertices are scheduled for re-execution.

Dryad can refine the execution graph to aggregate data frosose in the cluster topology.
For example, nodes on the same rack may have a dedicateth $arittommunications within the
rack, connected to a central switch for communications betwracks. This information is not
known until run-time, so it cannot be planned in advance. Gseof data aggregation would be
in performing a data reduction. Dryad can aggregate thefdatach rack, perform the reduction,
then send the data to the next jobs in the graph. Performiedction before sending data across
racks can save bandwidth.

DryadLINQ [29] is a framework on top of Dryad to allow easigngramming of data paral-
lel applications. DryadLINQ uses Language Integrated @Q@eiNQ), an SQL-like language, to
specify the data manipulation. LINQ’s declarative stylamsenable to automatic optimization and
scheduling on the Dryad backend. DryadLINQ has its own jolmagar, which allows dynamic
scheduling of the jobs on the cluster. DryadLINQ also hasesaseful debugging features, which
allow you replicate failing jobs and their input and reruarnthyourself.

Dryad requires less work to map jobs to its framework tharhwitapReduce. Commands
cleanly map to the vertices and input and output files mapdetiges in the Dryad graph. Dryad,
like Jole, supports fault tolerant execution of verticesibing a ping heartbeat. If a vertex does not
reply within a period of time, it is assumed to have failedj amew job is scheduled to run. Dryad’s
scheduler is more advanced than ours, and will try to sclegdbk near the data they need.

Like MapReduce, Dryad does not support dynamic executigold. In cases where jobs do

not need to be run to completion, this will result in a longekespan.

Message Passing Interface

Message Passing Interface (MPI) is a message-passingyl&pacification. Several implementa-
tions exist which implement this specification, such as MP[@] or Open MPI [19]. MPI provides
the programmer with a complete protocol specification fangwinicating with other processes.
MPI is lower-level than the previous systems and will gethgraquire more specification to run
similar workloads.

MPI has several features that are useful for writing disteld applications:

1. Communicator

Communicators are objects which are used for communicatitty other processes. The

12

group and context of a process are contained in the comntonidatracommunicators are
for communicating with processes within the same grouplenhitercommunicators are for

communicating with processes in other groups.

2. Point-to-Point Communication

Several functions in MPI provide communication betweencBmeprocesses, and may be

blocking or non-blocking.

3. Collective Operations

Collective operations allow communication between semofesses and includes operations
for synchronization, data movement, and collective comprt. For synchronization, the
MPI_Barrier function is used to synchronize all processes in a groupyd®t phases of a
computation. For data movement, their are several funstimeludingBroadcast , which
sends the same chunk of data to all processes in the grouScattér which divides a data
chunk among all processes. The computations functionade¢teduce, which reduces a
set of data to a single value, using operations such as additimultiplication, andscan,

which performs partial reductions.

As a programming interface, MPI is a flexible tool for implemtiag parallel programs. How-
ever, implementing an application using techniques smdalole, MapReduce, or Dryad in MPI
would take a significant amount of programming in order toi@ahthe same functionality. While
MPI is a complete system for communication, the other systemwiude additional functionality,
such as fault tolerance or automatic process placementythdd also need to be implemented to

be competitive.

2.1.2 Batch Schedulers

Batch schedulers are systems that schedule and run a largeenaf jobs on a set of resources. They
are useful for running large numbers of jobs, as the useruamis their jobs to the scheduler, letting
it run their jobs unattended. Batch schedulers generally tamputing resources into account for
scheduling jobs. For example, the number of processor ear@smount of memory are attributes
that are commonly set for jobs, ensuring they get enoughessmr time and do not run out of
memory. Disk usage can be set under some batch schedulérh,agn help prevent thrashing. The
resources needed for a job are generally set by users, soiatakes can lead to problems, such as
slowdowns or lost jobs.
Jole is closely related to batch schedulers, as the mainajaahning large numbers of jobs

on a set of resources is the same. However, there are feanirgenerally available in other batch
schedulers that we feel improve the ability to run workflowable 2.2 compares how workflows

are specified, the type of job execution supported, and thasimucture usage possible with each

13

batch scheduler. Table 2.3 compares further featuresoltidtbe noted that Jole does not support

all the features in Table 2.3, as they were not a focus in tbikw

System Workflow Job Execution Infrastructure Provisioning
Jole Dynamic (Scriptable) Dynamic Dynamic

Condor Static (DAG) Static Dynamic

BAD-FS Static (DAG) Static Static

WaFS Static (DAG) Static Static

Table 2.2: Comparison of Key Features

System Fault Tolerance Checkpoint/Resume Dataflow Capagire Scheduling

Jole Yes (Job) No Yes No
Condor Yes Yes No Job
BAD-FS Yes No Yes Job
WaFS No No Yes Workflow

Table 2.3: Comparison of Additional Features

Condor

Condor [25] is a batch scheduler that, in addition to the rabritnctions of a batch scheduler, is
able to harness idle computing resources in the executiamairkload. Condor provides libraries,
which if used for an application, allow checkpointing andumption of the application, enabling
migration of jobs. In addition Condor has a meta-scheduled Directed Acyclic Graph Manager
(DAGMan). DAGMan allows users to specify their workflow byeating a directed acyclic graph.
The graphs are representeddag files, which contain the dependencies between jobs. These fil
are static, and must be rewritten to create new workflows. ¥amgple DAGman script is shown in
Figure 2.4.

JOB CLUSTALW1 clustalwl.condor
JOB CLUSTALW2 clustalw2.condor
JOB TRAINHMM1 trainhmm1.condor
JOB TRAINHMMZ2 trainhmm2.condor
PARENT CLUSTALW1 CHILD TRAINHMM1
PARENT CLUSTALW2 CHILD TRAINHMMZ2

Each JOB entry is a job consisting of a name (CLUSTALW) andrgpsclustalw.condor).

Dependencies are specified using the PARENT option, whérengamnes in the CHILD list are
dependent on job names in the PARENT list.

Figure 2.4: Example Workflow Specification for DAGMan

Like Jole, Condor has the ability to automatically use idlsaurces. This ability in Condor is
more advanced, as it will detect usage of a machine in degidirether or not to run jobs on it. Jole

relies on a global file to get this information. However, Condoes not have the ability to create a

14

non-static workload. Furthermore, Condor does not havaliliy to interact with jobs while they
are running.

BAD-FS

BAD-FS [3] is a scheduler and file system which share inforomatvith each other in order to run
batch workloads more efficiently. Like in Jole, BAD-FS works top of existing batch schedulers,
rather than replacing them. This makes it easier to utilimgrtsystem on resources where root
privileges are not available. BAD-FS is able to getimpropedormance by data-aware scheduling
and caching. Intermediate data is kept on cluster nodesenhecessive jobs using that data will
be run. By running a sequence of jobs on the same machinentbarda of data transfer needed
is minimized. BAD-FS is also aware of the data capacity nequents of workloads. By ensuring
jobs have adequate storage resources, thrashing is av&@8484FS achieves fault-tolerance by re-
executing jobs when they fail or the resources they are daihdBecause BAD-FS avoids copying
of intermediate data between jobs, several jobs may neegl torbto regenerate the data needed to
run the failed job.

BAD-FS uses a workflow script that is similar to those usedfaGman. The following exam-

ple, from Bentet al.[3], illustrates an example workflow script.

job a a.condor
job b b.condor
job ¢ c.condor
job d d.condor
parent a child b
parent ¢ child d

volume bl ftp://home/data 1 GB
volume pl scratch 50 MB
volume p2 scratch 50 MB

mount bl a /mydata
mount bl ¢ /mydata
mount pl a tmp

mount pl b tmp

mount p2 ¢ ftmp

mount p2 d tmp

extract pl x ftp://home/out.1
extract p2 x ftp://home/out.2

Figure 2.5: Example Workflow Specification for BAD-FS

As with DAGman scripts, the job keyword defines jobs, and piEchild keywords are used to
define dependencies between jobs. The other keywords ayeain BAD-FS. The volume keyword
is used to define data sources required by the workload. Thennkeyword binds a volume into
a jobs namespace at the path specified. Lastly, the extrgatokd indicates which files must be
committed to the home server.

BAD-FS does not support dynamic workflow specification, dyitajob execution, or dynamic

15

infrastructure provisioning. It does, however, have sothefeatures that are useful. It has data-
aware scheduling and caching, which can prevent excesscdptang. It also implements fault
tolerance similar to Jole. However, BAD-FS may have to reeeixe more jobs when a node fails, as

it caches intermediate data on nodes. This data has to hed@gain when the node fails.
WaFS

Workflow-aware File System (WaFS) [26] is a extension of ditra@nal file system, which provides
distinct namespaces for each workflow instance, and gatta¢agiow information about the work-
flow. The WaFS scheduler uses this information to increase and intra-instance concurrency of
the workflow.

WaFS has three policies that were tested for handling fildlicts

1. Versioned Namespace (VNS)

WaFS implements VNS by naming files with version numbers.gxample, the filéd.out

could be called\.out.1 in workflow instance one, amdl.out.2 in workflow instance two.
This policy is most similar to the one used with Jole. Jolesadgtsion numbers to files only
when it finds conflicts, rather than for each workflow instance

2. Overwrite-Safe Concurrency (OSC)

OSC is a policy which only overwrites files when it is safe toso Rather than versioning
files so that each workflow instance is isolated, OSC onlyal@bs from an instance to

replace files when the earlier instance no longer needs &he fil

3. Hybrid

The hybrid policy uses a storage budget to decide how mudlioréng can be used to improve
concurrency without incurring deadlock. If files are notaee by earlier instances, they will

be overwritten by subsequent instances.
WaFS has two policies for scheduling jobs:

1. Dataflow-based Aggregate Requests (DAR)

DAR attempts to maximize active storage utilization andéase inter-instance concurrency.
The dataflow information is used in order to minimize the maxin claim of each instance.

Resources are allocated at the workflow instance level.

2. Dataflow-based Topological Ordering (DTO)

DTO attempts to maximize active storage utilization andaiihstance concurrency. Re-
sources are allocated at the job, rather than instance I8afbre running each job, DTO
analyzes the storage requirements and determines whéthieexecuting the job, there are

enough resources to execute the rest of the workflow in tgpedborder.

16

WaFS has more focus on dataflow gathering and scheduling ifflew instances using the
dataflow information. The goals of Jole are more towards nwaki easier to specify workflows
and dynamically control their execution. Jole focuses aar gpecification of dataflow information,
rather than gathering it automatically. These goals areptiomntary, and combining the elements
of each system could produce a better system for runningleadk. Jole does not schedule based
on the storage resources of the workload and keeps all iethiate files from a workload. For
workloads that output a significant amount of intermediagdthe hybrid policy for file conflicts
would be useful. Additionally, the scheduling policiesrfraVaFS would be useful for deadlock
avoidance when running these workloads.

The use of WaFS for dataflow gathering would likely only befuier static workflows in Jole.
Using dynamic job execution or dynamic workloads in Jole tanake it difficult to gather useful
dataflow information, due to variable length jobs and déferes in the workflow graph between

instances.

TrellisDAG

TrellisDAG [7] [8] is a workload execution system developey the Trellis Group [17], and is

similar in many ways to our system. It has three main parts:

1. Description Layer

At a highest level the description layer consists of groufplos. Jobs within a group are
assumed to have a pipeline dependency graph, and will ex@tserial order. If a group
contains subgroups and jobs, the subgroups will executerddfie jobs. Dependencies are

not specified between jobs, but between groups.

Workflows can be submitted using a flat file, makefile, or a DAGcdiption script. For com-
plex workflows, using a DAG description script is recommehdss it will greatly simplify
the submission script. DAG description scripts rely on enBgitmodule, which contains the
interface that generates the workflow. Users specify thenkflow using this interface, and

the result is converted and submitted to the jobs database.

2. Job Database

The job database is contained in a PostgreSQL relationabdaé. The job database contains
information about group membership and super/subgroapioaships. The database also
contains information about the dependencies between grolipe job database updates job

and group execution information as jobs complete.

3. Placeholders

A placeholder represents a unit of potential work. In Ts&\G, it is implemented as a shell

script. Placeholders connect to a command-line servethgatext available job, execute it,

17

and resubmit themselves. Placeholders are one way of bgiédi overlay metacomputer. By
running placeholders across administrative domains, pbissible to have a single point of
control for execution. Placeholders allow easier load l@tey between resources because
they claim jobs only once they are able to run. Thus, jobshéldynamically load balanced

as they only are tied to a resource once it is ready to run them.

At a high level, Jole is similar to TrellisDAG. Both Jole anckllisDAG use placeholders, which
allows them to take advantage of resources in multiple adtnative domains. As a side effect
of using placeholders, they both handle load balancing, wsljobs are not tied to any particular
resource in advance. They will run on whatever resourcefasksjob first.

Jole and TrellisDAG both contain a job manager, which caorstémformation about jobs, their
dependencies, and their status. TrellisDAG’s job manageFostgreSQL database with command-
line tools as an interface. Placeholders communicate \ughdiatabase using using Secure Shell
(SSH) [28]. Our job manager is a Python class, which comnategcwith the placeholders over
TCP/IP sockets.

Workflows are created quite differently in Jole and TrelkgR In TrellisDAG, the user specifies
a workflow by creating a Python module corresponding to therface required. This means that
the workflow is static after it is created. In Jole, the usexdskflow script can respond dynamically,
changing the final workflow that is executed. For exampleytbekflow script may use global data
about job results to create new jobs and to decide whethearttinzie running jobs. Furthermore,
we support data dependencies between jobs using data kaidieen jobs are created using data
handles, dependencies do not have to be explicitly specdthey will be created automatically
based on the files a job is reading and writing.

In addition to this, Jole is capable of interacting with jassthey are running. For some types
of jobs, we can determine whether the results of a job aredwipg at a quick enough pace, and if
they are not, Kill the job. New jobs could be started in thédicp, potentially getting better results,

or no new jobs could be submitted, freeing space on the cligstether jobs.

2.2 Concepts
2.2.1 Futures

Futures are used in the programming language Alice ML [143, were used in earlier languages
such as MultiLisp [12] and Act 1 [16]. Concurrent futures,igthare used in Jole, are a way for
programs to increase concurrency and synchronize on viilaemay take some time to compute.
The future acts a proxy for the value of a computation, whltamputed in parallel with the
program. Concurrent futures start the computation as sedhey are created. Once the program
needs to use the result of the future, it will try to accesdfithe future is not done, the program

will wait on the future until it finishes and returns the rdsulhis can be used as a method of

18

synchronization, as the program can continue running itatiltually needs the value of the future.

Alternatively, lazy futures, which can be used to preventaeded computation, only start a
computation once the program tries to access the futures &8 benefits if the result returned
by the future may not be used. With eager futures, the cortipatavould execute regardless of
whether or not the result will be used. The downside of lazyris is that the total runtime will be

longer if most of the results from the futures will be needed.

2.2.2 Placeholders

Placeholders are a mechanism for creating an overlay nrafader [22]. An overlay metacomputer
allows a user to have a unified interface to a set of resourdgdaceholder is defined as a unit
of work. They will run tasks for the metacomputer. Placekaddmay be submitted to the batch
scheduler in order to complete tasks, or may be started ohimexcthat do not have batch schedulers
(zero-infrastructure).

Placeholders are not bound to a job until they are executednmde. This late binding is useful
for scheduling across multiple resource sites. Rather sdmitting jobs to the batch schedulers
of each site, placeholders can be submitted instead. Orcgldlseholder starts execution, it will
request a job from the job server. This allows the load to berted among sites, as each site will

only pull jobs from the job server when it can run them.

2.3 Motivating Applications
2.3.1 Pathway Analyst

Pathway Analyst [23] is a metabolic pathway predictor depetl at the University of Alberta. A
pathway is made up of a series of reactions, by which a congpmay be converted into something
more useful to the organism. Pathways can be representethpligy where the reactions are the
edges and compounds are the vertices. Given a user-supptisgbme, Pathway Analyst creates
a new predicted pathway, based on the proteins that arecpgddio participate in the reactions
specific to the pathway. A proteome is the complete set ofeprstencoded by the DNA of an
organism. Each protein is represented by a series of le#presenting the amino acids that make
up the protein.

One of the classifiers used in Pathway Analyst is the hidderkdamodel (HMM) classifier.
HMMs are probabilistic models that can be used to model thddm states of a sequence. With
catalysts, we are trying to model the shared structure o€dltedlyst proteins that is most likely the
region that allows the protein to catalyze a certain reacti® do this, we first uselustalw to
find the most probable alignment of the proteins based onkibkhood of different mutations. With
this alignment, we usemmbuild , a tool in the HMMer [24] toolkit, which analyzes the alignnie

and produces an HMM. With the HMM, we can useimsearch to search through protein files

19

and find other proteins that are more likely to catalyze tlaetien.

2.3.2 GAFolder

GAFolder is a protein structure energy minimizer develogigtie University of Alberta. GAFolder
uses cyclic coordinate decent and a genetic algorithm tioperconformational sampling. The
genetic algorithm uses an energy score to evaluate stas;tuhich is based on predicted/known
secondary structure, radius of gyration, hydrogen-bordgies, and other features. During execu-
tion, GAFolder maintains a set of structures as the popmnatithin a GAFolder instance. In each
iteration, the structures are mutated, changing the tomigles of the protein. The best structures
survive and will "mate” with other structures, combinindfdirent mutations. A single instance of
the program may converge to local minima, so several instare executed in order to get the best
structure prediction.
GAFolder is used within CS23D [27] and GeNMR [4] to help refihe protein structure.

2.4 Concluding Remarks

There are many methods for specifying and running batchdsdbe jobs. We have shown how a
variety of languages and job scheduling systems specifyeaadute jobs, as well as the benefits
of each system. For Jole, we focus on the dynamic executigobgfand workloads. The use of
these methods can improve runtime or quality of results éveral types of workloads. We have

also introduced some concepts used in Jole, as well as sothatimy applications.

20

Chapter 3

Jole: Job-Level Parallel Workloads

As capacity computing resources increase in size and peaface, it has become more important
than ever to be able to efficiently take advantage of thesmiress. Batch schedulers are good at
running large numbers of independent jobs, but it may becdiffto specify dependencies or they
may have to be controlled externally. The goal of Jole is tkeriaeasier and more flexible to run
these large batch workflows.

Current methods for running batch workloads can be cumbesé&or example, in some batch
schedulers, even specifying job dependencies may reqtitee \work on the part of the user. With
the TORQUE Resource Manager [18], the user must get the ftifatation numbers of all jobs
they need as dependencies, and add those dependenciestinissions for each job they need
to run. With Jole, users can specify the files that will be usgé job, allowing our job manager
control job dependencies automatically.

In batch schedulers that support it, such as DAGman, datafitsmmation must be specified
statically, by writing scheduler-specific job files that t@in the dependencies for each job, for each
set of input and output files. This static specification ofkfiow causes the need for a large amount
of information that must be created for each workflow instarWith a scripting language interface,
workflows can be created dynamically, based on file input®presother criteria. In addition, with
Jole, it is not necessary for the workflow to be an acyclic gragsers could specify that a group
of commands repeat until their output meets some criterds an be useful for programs which
refine their output on each iteration. For example, with GIlEg several instances of the program
are run in order to make protein structure predictions. Témt bf the predicted structures will be
used as input for the next generation. This process can leatexp to further refine the protein
structure, until the energy improvement does not meet saneshold.

Current methods also assume that jobs are atomic units d&f that must be finished to com-
pletion. This is not true for all workloads. For example,ioptation jobs may hit local minimas
or maximas. Rather than letting the optimization compléteyight be beneficial to end it early
once this convergence has been detected. Output of jobs veaybe used to remove jobs from

the queue. For example, when running a set of BLAST commaiittisvarying E-values, one of

21

the commands may return no proteins. Once this is discoyiliechot necessary to run any of the
BLAST commands that have a more stringent E-value, as theydwvwt return any results.

Lastly, batch schedulers are not able to dynamically adyoskloads based on the available re-
sources. Users may want some method of adjusting their aadkdbased on the available resources.
With the use of placeholders and submitters, we create ataguaetacomputer, aggregating mul-
tiple resources. The submitters are executed on the heassmfatach cluster the user wishes to
run their jobs on. They are responsible for submitting phadaers to the batch schedulers and for-
warding traffic between the placeholders and job managee wWarkflow script can get resource
information from the job manager in order to determine howdntinue the workflow.

Jole was created in order to increase the flexibility of ragnivorkloads on clusters. In this
chapter, we describe the concepts of Jole and how each domseits in an improvement over

current methods.

Feature Targeted Problem

Job Future High latency batch jobs and synchronization

Job Array Iteration and synchronization over multiple jobufes
Data Handle Data flow synchronization and file conflicts
Command Generator Specification of large number of relatethtands
Monitor Interaction with job while running

Submitter Interacting with multiple batch schedulers

Table 3.1: Jole: Library Features

3.1 Pathway Analyst Example

Throughout this chapter, we include code examples to detratagach concept, by implementing
a script to train HMM classifiers for Pathway Analyst, a metabpathway prediction tool created
at the University of Alberta. Each iteration of the scriptiviuild upon the previous, using the

concepts described. Each model is trained, as follows:

1. Align a set of proteins which catalyze a single reacti@mgclustalw [15].

2. Train an HMM on the aligned proteins usihgqimbuild .

The workflow for Pathway Analyst is shown in Figure 3.1. We lement the alignment of

proteins usinglustalw and training of the HMM usinepmmbuild in the following examples.

3.2 Job Future

One of the main concepts in Jole is the idea of a job future. fdalres contain the necessary
information to run a job, and submit this information to tlod jmanager. Like futures in other

languages, our job futures will execute code in anotheathreanmediately returning control to the

22

reactionl-f1.fasta reactionl-f2.fasta reactionl-f3.fasta

! ! !

clustalw?2 clustalw?2 clustalw?2
alignment alignment alignment
Y Y Y
hmmtrain hmmtrain hmmtrain
foldl.fasta model fold2.fasta model model fold3.fasta

hmmsearch hmmsearch hmmsearch
search search search
results results results
evaluator evaluator evaluator

best fold
e-value

best fold
e-value

best fold
e-value

final

evaluator

best e-value

Figure 3.1: Pathway Analyst Workflow: Training an HMM Cldssi

1) Submits job information
to job manager, waits for results

Job Manager

Job Future 2) Job manager waits for
dependencies, submits
Data Handle placeholder and executes

Job

3) Once job is done, sets
write data handles to read
so subsequent jobs will execute

Figure 3.2: Execution of a Job Future

23

main program. If the main program tries to access a resutt fhee job future, it will wait on the job
until the result is available.

Job futures are a simple way for Jole to deal with dynamic fwhgletion order. Because the job
futures are executed asynchronously, they will responali@pmpletion with low latency, allowing
dependent jobs to start as soon as the current job is finislibdfutures can handle heterogeneous
cluster nodes or changes in workflow execution without hitegkdue to their asynchronous nature.
Job futures are illustrated in Figure 3.2

In the example coming up, we create two jobs futufesandjf2 , then wait onf2 . Due to
the asynchronous nature of job futures, the creation of inmthediately return control to the script,
which then waits on the completion 2

The main difference between futures and job futures is thigyatm run arbitrary code. Futures
are generally used to execute long running methods in aanogrhile job futures execute programs
written in any language. This difference in granularityrigpiortant as well. Job futures are tailored
to running batch jobs, rather than segments of code.

Dependencies can be specified with dataflow or control floarmftion. Control flow informa-
tion is passed using thgepends _on argument, which is a list containing the job futures that the
current job future must wait for before executing. Becaoseijitures start executing upon creation,
they must be created in order of dependencies. Dataflown#ton is embedded in the command
argument, using data handles. These data handles musteageebified in the correct order of
dependencies when creating job futures. For example, seppfile is going to be written to by one
job, then read from by a subsequent job. If the data handiésubsequent job is created first, the
job will assume that the file should already exist, since ristigrg data handles show the file should
be written to. It will not be dependent on the job that writesttfile, and will try to read it without
waiting for the other job. When created in the correct orthex,job that reads that file will see that
another job is going to write to it, and it will wait for thatljdo finish before executing.

When created, job futures submit their job information ®jtib manager. The job manager will
look at explicit dependencies and the data handles to cli¢io& job has unmet job dependencies.
If it does, the job manager will wait until they are met. Onbe tdependencies are met, the job
manager submits a placeholder to the batch scheduler. BHatjare waits for naotification from the
job manager that its job is done.

The futures may be synchronized with the main script by wgitor them, trying to access their
results, or by waiting on a collection of them. A collectiohjab futures allows the script to use

synchronization methods, suchwaait _all ,wait _any, orwait _some.

3.2.1 Example

The first step for creating an HMM classifier for Pathway Amdlis to align the proteins and

create and HMM model based on their alignment. We alestalw to align the proteins and

24

hmmbuild , a tool provided with HMMer [24], to produce the HMM model.r8gple code is shown
in Figure 3.3.

Initialization of job manager

from job_manager import JobManager
jm = JobManager()
jm.new_submitter('PBS’,’botha-c10’)

Create clustalw job
jf = jm.new_job_future(
"clustalw -INFILE=32864.fasta -OUTFILE=32864.aln")
Create hmmbuild job
jf2 = jm.new_job_future(
"hmmbuild -F 32864.hmm 32864.aln", depends_on=[jf])
Wait for hmmbuild job to finish
jf2.wait()

Figure 3.3: Creating job futures

Each job future is initialized using theew_job _future method of the job manager. The
clustalw job future is initialized with only a command string. Thenmbuild job future is
given a list argumerdepends _on, which lists other job futures that must complete beforanmg

this one.

3.3 Command Generator

["command a 1",

"command %a %a"
\ "command a 2",

Command "command b 1",
[a, b, c]))

Generator "command b 2",
"command ¢ 1",
[1,2] "command ¢ 2"]

Figure 3.4: Command Generator Usage

The command generator is a useful abstraction for autoaiigticreating sets of commands.
Parameter sweeps can be easily specified, allowing the gobe tiutomatically created and run,
without the user having to iterate through all the paransefearameter sweeps are created using the
Cartesian product of the parameters, but using filters ondh@mand generators will make it easier
to specify custom parameter sweeps.

Command generators help with the dynamic specification okfiamvs. Rather than specifying a
static workflow, command generators allow the user to speafkflows dynamically based on lists
of input/output files and parameters. The usage of a commamergtor is illustrated in Figure 3.4.

Commands are generated by specifying a skeleton stringgioamy printf-like variables, along

with a list for each variable. The Cartesian product of tistslis taken, and each element is used

25

to create a command, substituting the variables in the &kekdring. To filter a command, the user

specifies a function which takes the same amount of argumé@dsed on these arguments, the
function must be written to return true if they want to filteetcommand based on its variables. The
commands are added to a job array to create job futures.

In the following example, a set of commands is created usuogists to build the commands.

3.3.1 Example

Training classifiers in Pathway Analyst involves runningnaikar set of commands over many files.
Rather than iterating over all the possible arguments tdymre our command strings, we can use a
command generator to produce the set of commands for us. fldseconmand generator is shown

in Figure 3.5.

fasta_files = ['1.fasta’, '2.fasta’]
aln_files = ['1.aln’, '2.aln’]

Generate clustalw commands with given argument lists
cmds = generate_commands(“clustalw -INFILE=%a -OUTFILE= %a",
[tie_arguments(fasta_files,aln_files)])

Resulting cmds array
cmds = ["clustalw -INFILE=1.fasta -OUTFILE=1.aln",
"clustalw -INFILE=2.fasta -OUTFILE=2.aln"]

Figure 3.5: Generating commands

In this example, each entry mn _files is the output name for thelustalw command,
corresponding to the entry fiasta _files at the same index. Because we want their entries to
correspond to each other, we use tige _arguments function. The%aflags in the command
string are substituted with entries from our parametes.ligtlters are not used in this example.

Filters are simple functions that retufinue if the set of parameters should be filtered from the
generated commands. Example use of a filter is shown in FRj6re

For this example, a filter is created which takes two argumefilters must have the same
number of arguments as are being specified in the commandajeneThe filter here will return
True if the first argumentis greater than 10 and the second arguimgreater than 50. Those sets

that meet this criteria are filtered from the final command lis

3.4 Job Array

A collection of job futures can be contained in a job arrayichtallows for some useful operations
to be performed. Firstly, iterators of the job array allowtosterate over the job states of the job
futures. Currently, iterators only exist for the completigtates, but other iterators will be useful.

For example, iterators over error states would be usefuhplementing fault-tolerance. Secondly,

26

def filter(al,a2):
if al > 10 and a2 > 50:
return True
return False

listl
list2

[5,20]
[25,75]

cmds = generate_commands("command %a %a", [listl, list2],
filter_fun=filter)

Resulting cmds array
cmds = [‘command 5 25", "command 5 75", "command 20 25"]

Figure 3.6: Filtering commands

Job Future

Data Handle Data Handle

Job Future

Data Handle Data Handle

Job Array

Figure 3.7: Job Array

27

the job array can be used for job synchronization. The standait _all , wait _some, and
wait _any synchronization methods are supported.

Job arrays may also be useful for dynamic workflow creatiam.ekample, a common workload
is a parameter sweep. A static workflow could be created tqats with a series of parameters.
With job arrays, we may iterate over the results of jobs ag timésh, and create new jobs in promis-
ing areas of the sweep. Job arrays are illustrated in Figdre 3

Job arrays can also be used to specify monitors for groupmbef By adding a monitor to a job
array, the monitor will be used on every job in the array.

Job arrays indirectly interact with the job manager throtighjob futures. Iteration and syn-
chronization are based on interacting with the job futunethe array, which then interact with the

job manager.

3.4.1 Example

In the previous example, we generated a set of commands lmathdmmand generator. It would
be possible to create job futures out of the commands indalg, but a job array allows us to
instantiate all the job futures at once, and gives us sonra eyhchronization. An example using

job arrays is shown in Figure 3.8

Variable cmds contains commands from command generator
cmds = ["clustalw -INFILE=1.fasta -OUTFILE=1.aln",

"clustalw -INFILE=2.fasta -OUTFILE=2.aln"]

aln_files = ['l.aln’, '2.aln’]

hmm_files = ['1.hmm’, '2.hmm’]

Create job array

aln_ja = JobArray()

Add commands to array
aln_ja.add_commands(cmds)

Wait for all job futures in array to finish
aln_ja.wait_all()

Create job array for hmmbuild commands

hmm_ja = JobArray()

Generate hmmbuild commands

cmds = generate_commands("hmmbuild -F %a %a",
[tie_arguments(aln_files,hmm_files)])

cmds = ["hmmbuild -F l.aln 1.hmm", "hmmbuild -F 2.aln 2.hmm "

hmm_ja.add_commands(cmds)
hmm_ja.wait_all()

Figure 3.8: Job Array Example

The methoddd _commandsis used to add a list of commands to the job array. In this eXxamp

we use thewait _all synchronization method to ensure all protein alignmens jake finished

28

before starting themmbuild commands.

3.5 Data Handle

Data handles are a useful abstraction on files. They alloafldatinformation to be handled by Jole.
By specifying commands with the command generator, datdleamre simplified, but provide the
benefit of dataflow job synchronization. If Jole were to be borad with a dataflow scheduler, this
information can be obtained automatically.

Data handles must be created in dependency order, simijal foitures. The first reference to
a file by a data handle determines its initial state. For exenifpa read data handle is created first,
Jole will check for the file, and if it does not exist, returnexception. If a write data handle is
created first, Jole assumes that the file will be a new file, alidheck the filename for conflicts,
automatically changing the name if there are conflicts. 8gbent jobs that have read data handles
on those files will wait for the write data handles to be fintsbefore executing.

Data handles help with the dynamic specification of workflo@ata handles allow the user to
easily iterate over directory contents, creating workfltaased on the input files. The job futures
use these data handles to automatically create dependéetieeen jobs.

Data handles are also useful for fault tolerance. One fedahay can handle are filename con-
flicts between workflows. When there is a conflict between dileas, data handles will automati-
cally choose a new filename and use that filename in any comswamdh use the data handle. This
filename remapping is stored in a global table. Subsequeatt@dadles look up filenames in the
global table. If a filename has been remapped, the new datdsanill have that information. So,
the user can refer to files by their original name in the workflehile Jole uses the renamed files
behind the scenes. Data handles are also useful for fileapcelslems. If a file is only accessible
on the head node of a cluster, a data handle could autonhatietiieve the file, so that it can be
used by the running job.

Data handles may also be used to improve I/O performance.opyirg heavily used files to
local storage, job run times may be improved. It may also Issipée to keep intermediate files in
local storage by running subsequent jobs needing the iegiate file on the same node.

Data handles are used by the job manager in order to synderbs based on dataflow in-
formation. The job manager will inspect the contents of affpbdata handles, waiting for them
to become available before starting the job. Once the jolmishfed executing, the job future will
change the state of write data handles to read, allowing tjadisneed to read these files to start
executing.

In the following example, data handles are created autcalbtiby specifying theéor and%w

flags togenerate _commands.

29

3.5.1 Example

Using data handles can let us avoid having to specify jobmidgecies manually through job futures

or job arrays. A data handle example is shown in Figure 3.9.

cmds = generate_commands(“clustalw -INFILE=%r -OUTFILE= %w",
[tie_arguments(fasta_files,aln_files)])

ja = JobArray()

ja.add_commands(cmds)

cmds = generate_commands("hmmbuild -F %r %w",
[tie_arguments(aln_files,hmm_files)])

ja.add_commands(cmds)

ja.wait_all()

Basic job futures are created using the following construc tion:

jf = JobFuture(“filename”, "w") # A file that will be writte n to
jf = JobFuture(“filename”, "r") # A file that will be read fr om

Figure 3.9: Specifying data handles in command generator

In this example, the %a flags are replaced with %r and %w flagiEhwrepresent files that will
be read or written to by the command. These flags are used tstatashandles will be created for
those arguments. The job futures created with these comsnaiticautomatically synchronize on

the data handles, based on their read/write properties.

3.5.2 Dataflow

Data handles are used to represent the files within a work#io, to handle filename conflicts
between workflows. The state of each data handle is storée iwaorkflow, so that jobs which need
to use those data handles can wait for them to be availabladxking the workflow. By using data
handles for all file input and output in a workflow, the workfloan execute efficiently based on the

dataflow information.

3.5.3 Remote File Access

One problem when writing a script to run on a cluster is thasfdccessible on the head node may
not be accessible from the compute nodes. File handles damvith this problem as well. If a file
handle tries to access a non-existent path or file on a conmmate, it can copy the file from the
head node and modify the path in the command so that the jobexegute. A similar check for
writing files is done as well. If the file handle determinesteveiccess to the destination directory is
not possible, it may change the path so that the job can bai@dahen copy the file back to the
head node in the proper path.

30

3.6 Job Manager

Job Manager

I. Sends job 1 4. Placeholder
information ! orabs job pmmmmmmemmmnees '
2. Job Manager i information |
Job Future tells Submitter Submitter : .
Placeholder

to start
Placeholder

3. Placeholder
submitted to
batch scheduler

Batch Scheduler

Cluster Head Node

L]
L]
E Cluster Compute
! Node
L]

User's Machine

4. Placeholder
started

Figure 3.10: Overview of Job Execution

The job manager stores job information and status, sendinigijormation to placeholders when
they request it.

The job manager sends messages to submitters to submihpldees to the underlying batch
schedulers. A placeholder represents a unit of work, buptheeholder is not bound to a specific
unit of work until it is executed. Once it is executed, thegglaolder communicates with the job
manager to grab a job. If there is a job available that hasgpeddencies met, the job will be sent
to the placeholder. If there are no available jobs, the plalcker may be told to wait or terminate.
By executing jobs in this way, the job manager controls johcéyonization, rather than the batch
scheduler.

The job manager also controls access to the placeholderfate monitoring. Each placeholder
has a communications port which the job manager stores. \&heanitor wants to communicate
with a job, it asks the job manager for a placeholder comnataic Once the job is grabbed by a
placeholder, the job manager gives the communicator to thator.

Several problems can occur while running a job. Specific aoday be missing libraries, have
network issues, or have limited storage space. Error regdoethese problems can be as simple
as running the job on a different node. Placeholders peradigisend messages to the job manager

to notify it that they are still running. If the job manageogs$ receiving these messages, it assumes

31

the machine has failed, and reschedules the job.

3.7 Submitter

The submitter is an abstraction on top of the batch scheduilés abstraction allows Jole to have
a constant interface to different batch schedulers, tpttrograms written in Jole work on all sup-
ported batch schedulers. Workflows specified with batchptckvill be tailored to a single batch
scheduler. Workflows specified in Jole can run on any schethd¢ a submitter has been created
for.

Submitters are specified by the user. They must specify thihme of the machine and the type
of batch scheduler that is available. A submitter daemohheilstarted on each node specified by
the user. Generally, they will be run on the head node of aelugom where they can submit
placeholders to run jobs. This allows users to take advantdgnultiple computing resources
transparently.

Submitters also contain a socket forwarder, which acts asxyior communication when direct
network connections are not possible. For example, on sdustecs the compute nodes may only
have network access to the head node, for security reasdris.nieans the placeholders cannot
connect directly to the job manager. In cases where thisdrepmmlaceholders will instead connect

to the socket forwarder which will forward their communioatto the job manager.

3.8 Monitor

Monitors allow interaction with jobs as they are running.etdsmay want to end jobs early based
on their poor results, or start new jobs based off of jobs wibd results. Monitors allow users to
perform these interactions while the jobs are being exécWnitors are the key mechanism that

enables dynamic job execution.

3.8.1 Remote Monitor

Remote monitors are run on the host machine and interactavéitub server that runs with the
placeholder. The server has some basic functions that tm¢ancan call, similar to the idea of a
GNU Debugger (GDB) stub program for debugging on embeddettel® These commands may
ask for output from some file, ask whether a file exists, or ejubaThis prevents some problems
with trying to run code on the cluster nodes. Since the maigam will be run on the head node,
all libraries needed by the user code will already be loatféde user wants to use an executable to
perform some task based on communication with the stubahigyhave to ensure the host machine
supports their code.
One common use for a monitor is to watch the output of a file. fEHweoutput of a file may

take up too much bandwidth to transfer efficiently, so we supihe usage of regular expressions to

32

2. Interact with placeholder

through communicator
Cluster Compute

Node

L]
L]
1]
L]
L]
1]
L]
L]
1]
L]
1. Request and wait fob M ' e
for placeholder communicator J00 Manager ' ! :
: : :
: : -
1 ' '
1 ' '
Job Future ! ' '
L]
' ' '
' H '
Monitor Function |« Communicator [Placeholder :
L]
L]
: :
L]
: :
: :
: L]
! '

User's Node

Figure 3.11: Remote Monitoring of a Job

limit the output that is sent to the monitor.

Monitoring over the network could be extended by allowinigitsary commands to be executed
by the placeholder stub server. The user may want to starstadession on the placeholder server
and submit a sequence of commands to be followed. This wdlolt a greater range of function-

ality to be performed by the stub server, without having tocele it within the server.

3.8.2 Local Monitor

We have created monitor classes to perform common functguth as regular expression search
or file existence checking. These monitor classes are passtmthe placeholder, along with the
job, and will run in parallel with the job. Each monitor cha@sghe state of the job when a positive
result is returned. Monitors can depend on other monitorthat a series of checks can be done in
order. A monitor can change the state to the end state, whiltkilthe job. This can be useful for
terminating jobs under certain circumstances.

The ability to send user specified functions along with namiasses is being worked on.
This function would be passed to the job future along withrtfanitor class and would be added
to the placeholder when it is created. The placeholder wéceate the monitor class with the user
specified function while the job is running. Itis possibl@tiermine all libraries in use in the current
script, so prerequisite libraries could be automaticatiported in the user function. Otherwise, the
function might not have the required libraries availableewtit is run in the placeholder. It could
also be possible to specify external processes to monitootiput file. The placeholder would
run this process and watch its output to determine whethkillta job. This monitoring method

may be useful to users, but may be less portable if the saftaaross machines is not relatively

33

1. Submit job and Monitor
class to Job Manager

Job Future

Job Manager

Job

Monitor Class

Monitor Class

User's Machine

job with monitor class

3. Monitor class runs
locally on remote machine

Job

Monitor Class

Placeholder

Cluster Compute Node

Figure 3.12: Local Monitoring of a Job

34

2. Placeholder asks for and receives

homogeneous.

Placeholder local monitoring benefits from much more efficléO access to output files than
network monitoring. Depending on the job, running placdeollocal monitors could result in a
large decrease in network 1/O.

Placeholder local monitoring may also be useful if userstw@nun a minimal version of Jole
to just get the benefits of monitors. The job manager couldrbilad entirely by submitting the job
information and monitor with the placeholder to the batdtestuler, and letting the placeholder run
the job. This allows the user to monitor certain aspectseif fbb without the dependencies needed

by the job manager.

Local Monitor Types

We have created some basic monitors, as follows:

1. Regular Expression Monitor

A regular expression monitor watches a file until the spettifegular expression is matched.
Basic functions can be added to the regular expression ordnitheck values returned from

groups in the regular expression.

2. File Creation Monitor
A file creation monitor will watch for a specified filename. @rtbe filename has been cre-
ated, the monitor is finished running.

3. Custom Monitor

A custom monitor allows the user to create a custom functioexecute within the monitor
on the remote machine. By scanning the environment for nesdahd functions that are
currently loaded, the user’s function will be convertedibito Python code along with the
code necessary to load the modules and functions currentlga. Once started on the remote

machine, the monitor will execute the code to create thetfoncthen execute the function.

4. Executable Monitor

An executable monitor allows a user specified executable tarb on the remote node. The

executable must return zero for the monitor to return sisfatg.

3.9 Adapting Jole for Different Applications

We have used a workflow from Pathway Analyst in this chapteletmonstrate the features of Jole.
Now, we explain the high level details of creating workfloves bther applications. There are a
few steps required in creating a workflow in Jole. These stegg vary slightly based on what

features users take advantage of. At a minimum, users vabatsly want to use job futures with

35

dependencies specified between them, using control-flova@afldw dependencies. The control-
flow dependencies may take the form of dependencies giveactojeb future, or synchronizing on
sets of jobs using job arrays. If they are creating manyedlabmmands, such as in a parameter
sweep, command generators will allow them to specify th@santands with less syntax. The
Pathway Analyst workflow can take advantage of command gémrsrto specify the commands,
while the GAFolder workloads in Chapter 5 do not need comnggmerators, as they consist of the
same command being run multiple times. Additionally, thesekflows can be parametrized, so that
the workflow script may be run on different sets of inputs. &mmple, the GAFolder workloads in
Chapter 5 could be parametrized to take a protein structunepat to the workflow. This reduces
specification needed to run different workflow instancesgéneral, different workflows will not
have a lot of similarity between each other and will have tortostly written from scratch.

More advanced workflows may use custom monitors in order &blerdynamic job execution.
Custom monitors will likely have to be written for differeapplications, as they may have different
properties that must be taken into account for the monittthodigh the monitors will generally need
to be tailored to each application, the mechanism behinditoroexecution is general and allows
Jole to run monitors specific to each application. If a userdther workloads that use the same
application, they can use their custom monitors in the otfekload. For example, the workflow
for Pathway Analyst has no need for monitors, as all jobs nebeé run until completion. However,
as shown in Section 5.2, monitors can be used to terminateo@AFjob instances early and save
cluster resources.

The concepts of dynamic workflow and dynamic infrastrucanegeneral and can be used in
different workflows. However, how they are specified is warkfldependent, and will be different
for each workflow. For example, different workflows perfonmiiteration over a global value will
likely be looking at different job information or output tetérmine whether to continue iteration.
Using infrastructure as it becomes available is a genenmnatet of Jole, and this will be done
regardless of what is specified in the workflow. The only nsagsprerequisite for this is to run
submitters on the clusters that the user wishes to use. Howewdifying the workload based on the
available resources is workload dependent, as differdstijoay not benefit from running additional
instances. This type of information must be specified in thekload. For example, these features
are not needed in the Pathway Analyst workload, as the jolss afilrun to completion and do not
have properties that would benefit from iteration. Howetlee, Pathway Analyst workload would
be able to run jobs on additional idle resources by addingngitdrs. GAFolder can benefit from
these features, allowing an iterative workflow on globaljesults to be done or for more jobs to be
run when there are additional resources, as shown in Sedi@and 5.4. Similar to the Pathway
Analyst workload, the GAFolder workloads can run on idleorgses, as long as submitters are

created for each resource in the workflow script.

36

3.10 Concluding Remarks

In this chapter, we have described the features of Jole anydeabh feature is important. The
Pathway Analyst example allows us to present the commoneushthe various features. These

features enable dynamic job execution, dynamic workloand,dynamic infrastructure.

37

Chapter 4

Implementation

We have implemented Jole in Python. As a scripting languBg#on requires has less verbose
syntax than some other common languages, such as C++ orfJasdess verbose syntax can make
it simpler to specify workflows, because less code is needddteere are fewer language concepts
users need to know before implementing their workflow. Althlo Python is slower that C++ or
Java for many CPU intensive tasks, using C++ or Java to imgédole would likely not resultin a
large difference in performance. Since jobs are generaily funning, the workflow script will be
waiting for jobs to finish most of the time, rather than penfiorg active computation. Improvements
in the small segments of time where the script is working wdikely not make a large difference
in overall performance.

Other scripting languages, such as Ruby or Perl would bendeemdidates for implementing
Jole. Like Python, they have less verbose syntax than qtherh as C++ or Java. However, we feel
that Python has a good mix of clean syntax, a simple appdicgtiogramming interface (API), and
performance when compared to other scripting languagésihiees Python a good choice for Jole.

Most of Jole’s functionality is contained in a library, whiés used to create and execute work-
loads. The additional functionality is in two Python scsipf he first script is the submitter script,
which is run on the head node of each batch scheduler beiry U$® second script is the place-

holder script, which is executed by the batch scheduler ansl the job.

4.1 Job Future

Job futures are a class in our library, which uses a threadgtalle asynchronous computation.
When a job future is initialized, the thread handles executf the job. Control is handed back
immediately to the script after creating the thread. In tivead, the job future notes which data
handles are being written to and submits the job to the jobagan The job future will then wait on
the job manager until the job is done. Once it is done, allend@ta handles will be set to read, so
that jobs dependent on reading these data handles can start.

While the job future is executing, it writes to some stateialgles in a synchronized fashion,

38

L

Job Future A

Data Handle

Thread finished

Job Future B

Data Handle

yd
VaVavVaid

Blocked on Job

Job Future C

)

Data Handle

/
AN 7

Blocked on Job

Figure 4.1: Job Future States

39

PBS Job Manager

— PBSlJob

PBS Job

PBS Job

Done

Running

Queued

using a condition variable. The condition variable alloviises threads or the main script to wait
on the job future. Once the job future finishes, it can notify bther processes using the condition
variable.

Figure 4.1 shows the possible states of a job future. Jobdwthas completed the job, and its
thread has completed executing. Job future B has a runnmagajad its thread is waiting for it to

finish. Job future C has a queued job, and its thread is waibing to finish.

4.2 Command Generator

The command generator is implemented as a set of functiossersllise the command generator
by calling thegenerate _commands function. The two main functions which implement the
command generator’s functionality are shown in Figure ##2 command generator can be given a
filtering function, which must have the same amount of argumnas the number of parameter lists.
This function must return true for sets of parameters thatikhbe filtered. The command generator
will leave those sets out of the list of commands it creates.

To create the command list, tlgeenerate _commands function iterates over the Cartesian
product of the parameter lists. In each iteration, it chéicttee set of parameters should be filtered.
If the parameters are not filtered, they are passed taithple _command function along with
the command string, which will parse the strings and reptheecommand arguments with the
parameters, initializing any data handles that are spddifiwel adding them to the final command.

After this iteration is finished, the final list of commandseasurned.

4.3 Job Array

The job array is a class in Jole, inherited from the Pythoayawith some additional features added
to handle job futures. The class definition for the job arsashiown in Figures 4.3 and 4.4. There are
iterator methods that allow iteration over jobs in diffarstates. As well, there is a custom iterator
method, which allows the user to define a filter function tHtdrs out job futures they do not want.
Job arrays also have synchronization commands that acteoartay of job futures. The first,
wait _all , uses the job futures synchronization commands and waithém all to finish before
returning. The secondyait _some, uses threads and a condition variable to synchronize on a
waiting jobs variable. Each thread waits on a job future andifies the waiting jobs variable once
finished, while the main script waits on the condition valéabOnce a thread reaches the proper
count, it notifies the main script, and thait _some method returnswait _any, is a special case

of wait _some, which waits on one job.

40

Command Generator

def generate_commands(s_command, lists, filter_fun = Non
commands = []
string_command = s_command.strip()
lterate over Cartesian product of parameters

for set in cartesian_product(* [ists):
if filter_fun:
Check if parameter set should be filtered
if not filter_fun(* set):

commands.append(simple_command(string_command,
else:
commands.append(simple_command(string_command,
return commands

Parse command
def simple_command(string_command, *args):
p = re.compile(r'(%farw])|[T)
split._ command = p.split(string_command)
flat_args = flatten(args)
string_arg_count = 0
for x in split_command:
if X == "%a’ or x == '%r' or x == %W’
string_arg_count += 1

if (string_arg_count != len(flat_args)):

raise "Number of arguments doesn’t match"
count = 0
for ind in range(0,len(split_command)):

if split_command[ind] == '%a’:
split_command[ind] = flat_args[count]
count += 1

elif split_command[ind] == '%r"
split_command[ind] = DataHandle(flat_args[count], "r")
count += 1

elif split_command[ind] == '%w’;
split._command[ind] = DataHandle(flat_args[count], "w")
count += 1

elif split_command[ind] is None:
split_command[ind] = " "
return split_command

Figure 4.2: Command Generator

41

* set))

* set))

from job_future import JobFuture
import threading
from time import sleep

class JobArray(list):
def __init_ (self, job_manager):
super(JobArray,self). __init_ ()
self. _threads = []
self. _finish_cond = threading.Condition()
self.job_manager = job_manager

def _ del__(self):
for thread in self. threads:
thread.join()

def custom_iterator(self, filter):
for job_future in self:
if not filter(job_future):
yield(job_future)

def add_job_future(self, job_future):
self.append(job_future)

def add_command(self, command):
self.append(self.job_manager.new_job_future(command

def add_commands(self, command_ary):
for command in command_ary:
self.add_command(command)

def wait_all(self):
for job_future in self:
job_future.wait()

Figure 4.3: Job Array Class: Part 1

42

)

def wait_some(self, count):
self. _jobs_waiting = count

for job_future in self:
self.__threads.append(threading.Thread(
target=self.__wait_future, args=(job_future,)))
self. _threadsl[-1].start()

self.__ finish_cond.acquire()
self.__finish_cond.wait()
self. _ finish_cond.release()

def wait_any(self):
self.wait_some(1)

def _ wait_future(self, job_future):
job_future.wait()
self. _ finish_cond.acquire()
self.__jobs_waiting -= 1
if self.__jobs_waiting == O:
self.__finish_cond.notify()
self. _ finish_cond.release()

def finished_jobs(self):
for job_future in self:
if job_future.is_finished():
yield(job_future)

def queued_jobs(self):
for job_future in self:
if job_future.is_queued():
yield(job_future)

def running_jobs(self):
for job_future in self:
if job_future.is_running():
yield(job_future)

def add_monitor(self, m_func):
for job_future in self:
job_future.add_monitor(m_func)

Figure 4.4: Job Array Class: Part 2

43

4.4 Data Handles

Data handles are implemented as a class in the Jole libramgnWhitialized, data handles interact
with the global workflow space, in order to keep track of fildghen initializing a read data handle,
it will first check if the same data handle is in the global witow space. If it is, it will return a
data handle with that information. Otherwise, it will chétkhe file exists and return an error if it
does not. We must check if the file exists in the global workflivst, because if the file was created
through a write data handle, it may exist at a different path &t name conflicts.

Write data handles are initialized by finding a non-conftigthame in the same path as the

original file name. Once this is done, it is returned.

4.5 Job Manager

The job manager keeps an internal list of the jobs and thepeaties. In addition, it keeps track of
submitters for each cluster. Once a job is submitted, thejabager looks at dependencies. If they
are not met, the job manager will wait to schedule the jobl afitits dependencies are met. Once
the dependencies for the job are met, the job manager wifyrtbe submitters that a job is ready,
and the submitters will submit placeholders to their unded batch scheduler.

The job manager also maintains a socket server, which istesegmmunicate with the place-
holders. Each placeholder will communicate with the sosketer in order to grab job information
and change the state of the job. The job manager keeps traattioé jobs in order to produce
communicators for the placeholders. When a remote monrstes for a placeholder communicator,
the job manager will return one immediately if the job is @eti Otherwise, the job manager will
wait until the job becomes active. The socket server alseives messages from each placeholder
as they are running, which are used to notify the job mandgeithe placeholders are still running.
If these messages stop coming in from a placeholder, the @tager assumes that the machine has
died, and will reschedule the job on another machine.

In addition, the job manager maintains information abowhgab as they are executed on the
cluster. This information is needed by remote monitors sbtiey are notified once their job starts

and to create a placeholder communicator for them to usentmmemicate with the job.

4.6 Submitters

Submitters are scripts written to interface with the batchesluler of a cluster. They are mainly
used to submit jobs, since the placeholders will still comioate with the job manager to grab jobs
and return their results. The job manager communicatestivibe wrappers on different hosts to
submit jobs.

Submitters watch a global file in order to determine whetberun jobs on their cluster. If

the server becomes unavailable, the submitter must renibjeba from the cluster. To do this,

44

3) Node starts execution
of placeholder

Cluster 1 Compute Node

Placeholder

4) Job request routed through
socket forwarder. Results
routed back when done.

Cluster 1 Head Node

Script Host

Submitter

Socket Forwarder

Job Manager

1) Tells submitters to
submit placeholders

Cluster 2 Head Node

Cluster 2 Compute Node

Placeholder

3) Node starts execution
of placeholder

Figure 4.5: Using Multiple Batch Schedulers

Submitter

Socket Forwarder

4) Job request routed through
socket forwarder. Results
routed back when done.

45

2) Placeholder submitted
to batch scheduler

2) Placeholder submitted
to batch scheduler

submitters maintain a list of job identification numbers$abmitted placeholders. When a cluster
becomes unavailable, the submitter kills all jobs usingatieh scheduler interface.

The submitters are executed by logging into the nodes thr@8H. In order to minimize user
interventionssh-agent or passwordless SSH keys should be used. Usage of the Betligity
Infrastructure (TSI) [13] could be used to ease setup andrasimation of SSH keys.

On some clusters, it may not be possible for the compute nodesmmunicate outside of the
cluster. In this case, we need a way to forward their traffth&job manager. This is accomplished
using a socket forwarder. The socket forwarder runs in fgnaith the submitter. When the submit-
ter receives a message to submit a placeholder, it giveddbehmlder the address and port number
of the socket forwarder. When the placeholder communicaitbsthe socket forwarder, the socket

forwarder will open a connection to the job manager and rekdffic between them.

4.7 Placeholder

The placeholder is implemented in a script, which is exatbtethe batch scheduler of a cluster.
The placeholder has a synchronized state condition variaithich controls the execution of the
placeholder. When initialized, the placeholder starts cksbserver to handle monitor requests.
It then communicates with the job manager server to get thanformation. The job and any
placeholder local monitors are started in threads. Theeplalder waits on the state variable to
change to the finished state before exiting. The state walhge to finished if the job finishes, or if
one of the monitors decides to end execution early.

When the placeholder grabs a job from the job manager, isdcaiany data handles or monitors.
If a data handle is found, the placeholder verifies the datalleas accessible and has the proper
permissions in order to continue. If there are file accesblpmos, the placeholder will attempt to
scp the input files in and write output files to an accessible dingc It will try to scp the output
files back to the host node when the job is done. If a monitavusd, it initializes the monitor and

starts it.

4.8 Remote Monitor

The remote monitor is implemented as user written functibittvuses a placeholder communicator
to interact with the placeholder’s socket server. The comioaior has specific functions that allow
the monitor to perform different functionality, includiggabbing file output and killing jobs.

The required functionality is added to the function, thegageal to the job future. The job future
creates a thread to start the monitor, which first waits ferjib to be submitted. Once the job
is submitted, the remote monitor asks the job manager fomamaanicator to that job. This call
will block until the job has started running and communidatéth the job manager. Once this has

finished, the remote monitor will run.

46

4.9 Local Monitor

Local monitors are implemented as a series of classes thatdated to the job futures when they
are created. The monitor information is formatted to sermdsscthe network, and is sent to the
placeholder when it requests a job. The monitors are reliziéid at the placeholder using the
init _monitor function, which inspects the information and reinitiafizhe monitor based on
the information. These monitors are run in separate threamischange the state condition variable
when each succeeds.

For the most part, the monitors have fairly static functlidpaand will carry it out once it is
started. However, the custom monitor allows the user to suthreir own function to run at the
placeholder. To initialize a custom monitor, the user mdsittheglobals hash to the arguments.
This lets the custom monitor inspect the namespace of the Ryhon script in order to get the
proper dependencies needed to run the code.

Figure 4.6 shows the Python code necessary to gather aleffendencies for a custom monitor
function. The first step is to get the source code for the fondthat will be run. This is done
using the Python inspect module. Then the custom monitcatée through thglobals hash
in order to grab dependencies. For modules found ingthbals hash, an import statement is
added. User created modules only show up as strings, so wechecksys.modules to see if
any user created modules need to be imported. Lastly, fumin theglobals hash are looked at.
If they are from the main script, their source code will bets#ang with the user created method.
If they are imported from other modules,import x from y ' statementis added, where x is

the function and y is the module.

4.10 Concluding Remarks

In this chapter, we have described the implementation &f dod showed some of the code used to
implement the functionality of Jole’s components. Jole basn implemented as standard Python

libraries and as two scripts, using Python.

47

Convert to string when first creating
text_ary = inspect.getsource(function).split("\n")
Change function name

text_ary[0] = "def mon_func(self):"

Grabbing necessary function code
for x in my_globals.keys():
match = re.search(r”__.+ $'x)

if match:
continue

if type(my_globals[x]) is types.ModuleType\
and x != ' builtins__":

Add imports
text_ary.insert(0, "import %s" % Xx)
elif isinstance(my_globals[x], basestring)\
and sys.modules.has_key(my_globals[x]):
text_ary.insert(0, “import %s" % my_globals[x])
elif type(my_globals[x]) is types.BuiltinFunctionType\
or type(my_globals[x]) is types.FunctionType:
try:
f mod = my_globals[x].__module__
f name = my_globals[x].__name_ _

if f name == function. name__ :
continue
if f mod == "_ main__"

f text = inspect.getsource(my_globals[x])
text_ary.insert(0, f_text)
else:
text_ary.insert(0, "from %s import %s" % (f_mod, f _name))
except Exception, e:
text_ary.insert(0, str(e))
text_ary.insert(0, "# %s failed" % Xx)

self.__function_text = "\n".join(text_ary)

Figure 4.6: Gathering Modules and Functions Needed for ILldcaitor

48

Chapter 5

Evaluation

We described the concepts and implementation of Jole inréhgqus two chapters. In this chapter,

we evaluate Jole with respect to our three contributionsguGiAFolder workloads. We show:

1. Dynamic job execution allows jobs to be monitored and af@ns performed on them while
they are running. We show that this can be used with GAFolw&grminate jobs early based
on user-specified criteria. By ending some jobs early, efusne can be freed for other jobs.

In comparison, jobs run with static execution are all rurilwampletion.

2. Dynamically changing workflows can be implemented in Jagéng standard control flow in
Python and global information from the workflow. We show tbale can be used to imple-
ment a GAFolder workload that loops based on the improvetnestores between genera-
tions. The workflow uses the best global structures founageheyeneration as the basis for
jobs in the next. This type of workflow requires scriptingdawmuld be difficult to implement

with a static language.

3. Workloads that adapt to available resources can be ingrltad using Jole. This can allow a
user’s workload to take advantage of shared resources. Werdgrate Jole’s ability to adapt
to available resources, and show that this ability can bd tesemplement a workload which
adjusts the number of jobs it runs based on the availableiress. We show that adjusting
the number of jobs to the available resources can be usedotowa the structure prediction

results of a GAFolder workload.

5.1 Evaluation Methodology

We test Jole using GAFolder, a protein structure predicemetbped at the University of Alberta.
GAFolder uses genetic algorithms to evolve and choose adinadture, by minimizing the energy
score of the torsion angles of the predicted protein. Eastante of GAFolder uses a different

random seed for the random number generator, and will séardifferent areas. Instances of

49

GAFolder may converge to local minima, so multiple instanaee executed in order to perform a
more thorough search.

We use GAFolder for our evaluation, because it is in productise, it is developed indepen-
dently, and it serves as an external case study for Jole. (8AFbas several properties that can be

improved using our system.

1. GAFolder is currently run for a set number of iterationg; rBonitoring GAFolder jobs as
they are running, it is possible to selectively stop jobsedasn the rate of progress they are

making.

2. Protein structure scores can be further improved by nghsubsequent GAFolder instances
with the most promising global structures as input. Thisvadl the GAFolder instances to

better search the space around the most promising strecture

3. Different instances of GAFolder will search differeneas of the protein structure space.
Therefore, running more instances of GAFolder will seartdrger area of the protein struc-

ture space, and can result in higher quality structures.

We test Jole using several GAFolder workloads, createdrtedstrate the contributions of Jole.
Each workload runs several instances of GAFolder to refipesttucture of the ubiquitin protein,
one of the example proteins provided by GAFolder. For tinmgasurements, each workload was
run five times.

All experiments are run on the test environment shown in feéigul. These two test clusters
have been created on separate machines within a preex@§tingde cluster using TORQUE PBS.
All machines are connected by gigabit Ethernet. Each dlist@ade up of three nodes containing
a total of 12 cores. Machines Al and B1 only schedule jobs @ndfithe four available cores, so
10 cores are available for job scheduling in each clustechEEampute node contains a quad-core
Intel Xeon 5160 processor, with a clock speed of 3.0GHz. Eachpute node also contains 12GB
of RAM.

5.2 Dynamic Job Execution

Without the use of Jole, GAFolder runs for a set number oittens, rather than using a convergence
criteria. This is done for simplicity. By actively monitoig these jobs while they are running, we
can stop the execution of jobs that are not improving the@rgynscore. If the application has the
exclusive use of a cluster, new jobs could be started tocethe stopped ones, since each execution
is independent and searches a different structure spads.cdhld potentially allow GAFolder to
better focus its search. In the case of a shared-use cls&ipping these jobs can free up resources

for other users, which is what we show here. Recall that, iatatbscheduled environment, jobs

50

Cluster A

1

1

:

1

1

:

Node Al Node A2 Node A3

2 cores 4 cores 4 cores '

"

1

___ 1

(T TTTTTTTTTTTmmmmmmmmmmmmmmmmmEmmmmmmm A AT :

. Cluster B ,

; :

1 1

1 1

1 1

' 1

1 1
1

; Node B1 Node B2 Node B3

! 2 cores 4 cores 4 cores '

; :

1 1

' 1

Figure 5.1: Cluster Testing Environment

are generally run to completion. While the status could beitoced by the application itself, Jole
allows you to create monitors for many applications.

To test dynamic job execution, we ran two GAFolder workloadscluster A, shown in Fig-
ure 5.1. The results are shown in Table 5.1. The workflow gfapthese workloads is illustrated in
Figure 5.2. Each workload consists of 20 instances of GAgpkhch given the same initial protein
structure. After the workload is finished running, the bestgin structures are returned, based on
the evaluation score of GAFolder. GAFolder uses differantiom-number seeds to search the pro-
tein structure space. To ensure reproducibility, we pribsatandom seed for each instance, keeping
them the same in both workloads.

The static workload runs standard instances of GAFoldechBastance runs 300 iterations
of the genetic algorithm, as that is a number of iteratiorsd ttas been used in practice by the
developers of GAFolder. This gives us a baseline from whiatoimpare the results of the dynamic
local workload.

The dynamic local workload runs standard instances of Géétolvith a monitor attached to
each one. The monitor watches the output of the GAFoldergetermining the standard deviation
of the last 25 iterations. By determining the standard dmnaof the last 25 iterations, we can
determine how much the score is changing. If the standardhtitev of those iterations is less
than 0.0001, the monitor will end the job, as there is litth@ge in score happening. Note that
these GAFolder instances are identical to the instancdmistatic workload, except for the added

monitors.

51

Initial Protein Structure

GAFolder 1 GAFolder 2 GAFolder 20
Predicted Predicted Predicted
Structure 1 Structure 2 Structure 20

Return best m
structures

Figure 5.2: GAFolder: Workflow

From the results for the static workload and the dynamicllacakload in Table 5.1, we can see

1. Dynamic job execution reduces the average number ofitt@safrom 300 to 204.55, leading

to shorter job times and shorter makespan. Compare thegevgtatime of 1424.99 seconds
for the static workload to 969.45 seconds for the dynamialle®rkload. The makespan is
reduced from 2889.94 seconds to 2708.67 seconds.

. Dynamic job execution leads to a reduction in accumuléited, which is the sum of the
running times of all GAFolder instances. A reduction resuitmore time on the cluster for
other jobs. Of course, this improvement is a direct resulshadrter job times. Note that
the accumulated time for the static workload is 28478.80sés, while the dynamic local

workload uses 19375.11 seconds of accumulated time.

. However, it should be noted that the score for the dynaowallworkload is slightly worse,
with a score of -32.97 versus a score of -33.32 for the staticklwvad. Recall that lower
scores are better, as GAFolder performs an energy minimizalhis occurs due to ending
jobs early. However, the score when using dynamic job exatotn be improved by running

a global workload, discussed in Section 5.3.

While there is not a large decrease in makespan, the use afrdgiob execution has resulted in

a 6% reduction. The main benefit is the reduction in the actated time, as a result of the shorter

52

job times. The average job time for the workload with dynajoicexecution is 32% lower, which
corresponds to the 32% lower accumulated time for the warkisith dynamic job execution. This
is a significant reduction that could be used to allow jobsffasher users to run, or to run additional

GAFolder jobs to further search the protein space. The dymkwal and global workload numbers
are discussed in Section 5.3.

Workload Makespan Accum Times Avg Job Times Avg Iters Score
Static (20) 2889.94(3.11) 28478.87 (21.75) 1424.99 300 .333
DL (20) 2708.67 (5.37) 19375.11(21.21) 969.45 204.55 -B2.9
DLG (10) 1276.26 (11.65) 9147.47(32.17) 303.78 60.10 33.1
DLG (20) 2950.73(24.14) 23566.04(220.50) 236.14 44.86 533

DL refers to the dynamic local workload and DLG refers theaiyrc local and global workload.
For the workload column, the number in parentheses refdéretoumber of GAFolder iterations
run (per generation in the case of global workloads). Aliitigwvalues are from the average of five

runs, and display the standard deviation in parentheses.
The score column shows the best structure score from argnicstin a workload.

Table 5.1: GAFolder: Comparison of workloads

The GAFolder runtime distribution for each workload is skmoim Figures 5.3 and 5.4. In
Figure 5.3, we can see that there is little variation in et of GAFolder for the static workload,
as compared to the dynamic job execution workload. The metiaries between 1410.75 and
1444.12 seconds. In Figure 5.4, we can see that there is matiene variance between jobs in the
dynamic workload. There are a few jobs that run almost as&arig the static workload, but for the
most part, jobs were terminated significantly earlier.

T T T 1T 1T T T T T T T T T T T T T T°1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Instance Number

Figure 5.3: GAFolder Runtime Distribution: Static Workflow

5.3 Dynamic Workflow

As stated in Section 5.2, multiple instances of GAFolderexecuted to better search the structure

space of a protein. This process can be repeated on the b#ésingrfound, allowing search to be

53

0 T T T 1T 1T T T T T T T T T T T T T T°1
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Instance Number

Figure 5.4: GAFolder Runtime Distribution: Dynamic LocabYkflow

focused in the most promising area. A global workload, shawFigure 5.5, repeats the workload
in Section 5.2 with the best proteins from each generatidme first iteration of the workload is
identical to the dynamic local workload in Section 5.2. Aftiee first iteration is done, the best two
structures are used as input for the new GAFolder instamd@sh will further search the structure
space around the promising structures. Once the improvamseore between generations is below
our threshold, the workflow will finish. Note that the dynartacal workload in Section 5.2 only
alters execution locally for each instance of GAFolder,lavtiie dynamic local and global work-
load looks at the results of each job in order to determinetindreéo continue executing additional
generations.

Workflows that must use global information from job execn$ido decide on control flow are
difficult to program in a static workflow specification langga Scripting is required in order to
check the results of jobs between each generation, andedetidther to run another. If there has
not been enough of an increase in score to support running imstances, the best protein found so
far is returned. With Jole, this dynamic workflow can be gesiecified.

We test the GAFolder dynamic local and global workload orsteduA, shown in Figure 5.1.
Results are shown in Table 5.1. Each generation of the wevkfiaddentical to the dynamic lo-
cal workflow in Section 5.2, except for a more stringent dutof ending jobs. This means that
GAFolder instances will be ended earlier when making slosgpess, as compared to the dynamic

local workload. The following parameters were used:

1. Two workloads are run, with one having 10 instances peeiggion and the other with 20.
For the first test, the number of instances is less than in ynardic local workload. This
means that the search is not as exhaustive in the initialrggor, but more generations will

run, focusing on the best structures from each generation.

2. A standard deviation of less than 0.001 over 25 iterat@mds job execution. This cutoff is

more stringent than it is in the dynamic local workload. Bingsa more stringent termination

54

Best m structures
from previous generation

Initial Protein Structure

Best structures

GAFolder 1 GAFolder 2 GAFolder 20
Predicted Predicted Predicted
structure 1 structure 2 structure 20

Predict another
generation

Best m structures

Best
Score Diff No
<0.1

Yes

Return best m
structures

Figure 5.5: GAFolder: Dynamic Local and Global Workflow

55

criteria, GAFolder jobs will be ended earlier, resultindower initial scores. Rather than im-

proving the score through more initial iterations, we capriave it through more generations.

3. Adecrease in score between generations of less thandsttenworkflow loop. For example,
if the best structure score in the first generation was -1@lamthest in the second generation
was -16.1, than more generations would be run. If the basttsire in the second generation

was -16.05, than no more generations would be run.

4. The two most promising protein structures are carried beéwveen generations, to be used

as the initial structures for GAFolder instances.
From the results in Table 5.1, we can see that:

1. Dynamic workload specification allows the dynamic local global workload to search more
exhaustively around promising proteins, resulting in @dvetcore than when using dynamic
job execution alone. Using more restrictive cutoffs for Gider instances allows the work-
flow to more aggressively trim instances that are not showimgrovement. Compare the
score of -33.12 for the dynamic local and global workloadwti® instances to -32.97 for the
dynamic local workload. The dynamic local and global woddauns in 1276.26 seconds, as

compared to 2708.67 seconds for the dynamic local workload.

2. With the dynamic local and global workload for GAFoldenning 20 instances per genera-
tion, an energy score better than the final one produced bstditie workload is achieved, in
only slightly more time. Notice a score of -33.52 for the dynalocal and global workload
with 20 instances and a score of -33.32 for the static wortkloBhe makespan for the dy-
namic local and global workload with 20 instances is slighigher. However, the dynamic
local and global workload with 20 instances reached a scbr8344 after 2700 seconds,
producing a better score in less time than the static wodkl@dso, the accumulated time of
the dynamic local and global workload with 20 instances gmiicantly less. Compare the
accumulated time of 23566.04 seconds for the dynamic laugiggobal workload with 20

instances to 28478.87 seconds for the static workload.

When using 10 instances of GAFolder in each generation, ¥hardic local and global work-
load finishes approximately 55% faster than the static vead] and 52% faster than the dynamic
local workload. The accumulated time is also an improvemsedring about 67% shorter than
the static workload and 52% shorter than the workload withagiyic job execution. The decrease
in accumulated time results in more cluster resources fugrafisers or jobs. However, the score
is slightly worse than the static workload, although it isiaqprovement over the dynamic local
workload.

When using 20 instances of GAFolder in each generation ythardic local and global workload

was able to produce a better quality score. The increasestarines per generation resulted in a

56

longer makespan, which was about 2% longer than the statikleas. The accumulated time is
about 21% longer than the dynamic local workload and 17%tshtitan the static workflow. While
this workload took slightly longer, it was able to produceracture score that is 0.2 better than the
static workload.

Figures 5.6 show 5.7 show the average number of iteratiorfsrpged by GAFolder in each
generation for each workload. The first generation has tlyet average number of iterations by
a significant margin. The next generations averages areckat®0 and 30 iterations. This occurs
because the GAFolder instances have a higher rate of immevein the first generation, while in

later generations improvement in score comes at a slower rat

80 —

60

Number of Iterations

I
o
1

20

0 T T T
0 1 2

Generation Number

Figure 5.6: Average Number of Iterations Per Generatiomdbdyic Local and Global Workload (10
instances)

140 4
120
100
80
60

40

Number of Iterations

20 4

0 T T T T T
0 1 2 3 4

Generation Number

Figure 5.7: Average Number of Iterations Per Generatiomddyic Local and Global Workload (20
instances)

57

5.4 Dynamic Infrastructure

In many organizations, there are resources which are aftenfror example, within an organization,
several groups may have their own clusters. Some groups migyieed to run large workloads
occasionally. However, when they run their workloads, theyt to be able to fully utilize their
cluster, in order to finish running their workload as quicitypossible. When these clusters are idle,
it would be beneficial to be able to execute other users jolth@m. One goal of Jole is to allow
users to run workloads across cluster resources. Withusdes can run their workloads completely
on shared resources. Jole will run jobs on the shared ciussathey become available, and kill jobs
when the cluster is used by the owner. The following workldathonstrates how Jole allows users
to run their workload across different cluster resources.

To test dynamically running a workload across cluster reses) we use the GAFolder work-
flow from Section 5.3, modified to search more extensivelyec8jrally, we run 20 instances of
GAFolder per generation and end execution when the difterém score between generations is
less than 0.02. After 15 minutes, the submitter running astef B is notified to stop running jobs.
60 minutes later, the same submitter is notified that it canme running jobs. We are running the
workload on the two test clusters, cluster A and cluster Bwshin Figure 5.1. Our submitters are
configured to remove all jobs from the queue, and kill any mgipbs, immediately after receiving
a notification to stop running jobs. For example, if job 1 iaming on cluster B and the submitter
for B receives a notification to stop running jobs, job 1 will killed. It will then be put into the
failed jobs queue, which has priority over jobs that haveroatyet. Job 1 will run on cluster A as
soon as it reaches the front of the failed jobs queue.

Figure 5.8 illustrates the usage of each cluster througheuworkload. Cluster A has relatively
stable usage throughout the execution of the workload. &gihs in the number of instances run-
ning on both clusters occur mainly due to barriers betweeeriggions of the GAFolder calculations,
when only a few GAFolder instances are running. Cluster Bthiastances running on it, from 15
minutes to 75 minutes. This is due to the submitter on clBtstopping jobs after receiving stop
notification. At 75 minutes the submitter receives a notifarato continue running jobs, and jobs
start running on cluster B again.

Figure 5.9 shows the number of completed instances on custeand B. We can see that
cluster A has a mostly linear graph, finishing jobs at a stphlee. Cluster B, however, reaches a
plateau after 15 minutes. Again, this happens because bmitter for B was told to stop running
jobs. Once the submitter is allowed to run jobs again, affeméutes, the number of completed

instances rises relatively linearly.

5.4.1 Adjusting Workflow Based On Total Resources

Distributing jobs among available resources as they bearaiable is useful, but with Jole it is

also possible to dynamically alter the workload based orettalable resources. Suppose a user

58

14 4

12 —

10 —

Number of Instances

0 20 40 60 80 100 120
Timeline (Minutes)

Cluster_A
.................. Cluster B

Figure 5.8: Dynamic Infrastructure: Number of Instancesiitng on Each Cluster

400

350

250 —
200

150

Number of Instances

100

50 — e

T T T T T 1
0 20 40 60 80 100 120

Timeline (Minutes)

Cluster_A
.................. Cluster_B

Figure 5.9: Dynamic Infrastructure: Instances Finishedtaoh Cluster

59

wants to run a workload that finishes within a certain peribtihoe. If they are running a workload
on heterogeneous resources, they could roughly estimaténgitime based on the number of jobs.
If more resources are available, they could run more joblsérsame amount of time.

We test this using the same workflow from earlier in this sexgtiexcept for a small change.
Rather than running a set amount of GAFolder instances im gaxeration, we now check the total
number of processors available, setting the number ofigstato double the amount of processors.
This allows our workflow to do a more exhaustive search in gmsteration if there are more re-
sources available. The dynamic local and global workflowdntion 5.3 are focused on improving
score with less resources. In this section, we show thaesor be improved with more resources.

We run the workload twice, with the same base infrastrucivedlable, cluster A. The constant
workload has no additional resources available to it andl it 20 instances per generation on
cluster A until the workload has finished. The adjusting vieakl has opportunities to use cluster B
for the first 15 minutes and after 75 minutes into the workld@ddmember that both cluster A and
B have 10 cores available. This results in twice as much coimgppower to boost throughput for
the adjusting workload when cluster B is available.

Figures 5.10 and 5.11 show the number of instances runnidig@mpleted on cluster A over
time for the constant workload. Cluster A has a stable nurabistances running on it throughout
the workload. The number of instances finishing in the firsti2Butes increases at a much slower
rate than later generations, as each instance is runningdoe iterations than instances in later

generations. After the first 23 minutes, the number of instarfinished increases at a quicker rate.

14
12 4

10

Number of Instances

0 T T T T T T T
0 20 40 60 80 100 120 140 160

Timeline (Minutes)

Figure 5.10: Constant Workload: Instances Running on €iust

Figures 5.12 through 5.13 show the number of instancesmgranid finished on clusters A and
B for the adjusting workload. Cluster A has a similar slopefioished instances over the first 23
minutes, which then increases as instances are run fotéeations. From the figures for cluster B,
we can see that the number of finished instances increasesieén 0 and 15 minutes and after 75

minutes into the workload.

60

500 —

400 —

300

200

Number of Instances

100

0 T T T T T T T 1
0 20 40 60 80 100 120 140 160

Timeline (Minutes)

Figure 5.11: Constant Workload: Instances Finished ont€lus

14

12 4

Number of Instances

0 : mm —
0 50 100 150 200

Timeline (Minutes)

Cluster_A
.................. Cluster_B

Figure 5.12: Adjusting Workload: Instances Running on Eakister

700
600 —|

500 —

300

Number of Instances

100 —

0 T T T]
0 50 100 150 200
Timeline (Minutes)

Cluster_A
.................. Cluster B

Figure 5.13: Adjusting Workload: Instances Finished ontE@hkuster

61

The best GAFolder score over time for each workload is showigure 5.14. These scores are
gathered by finding the globally best structure score evanuta. The scores from the adjusting
workload and constant workload trade places over the firshiB2ites. However, after 75 minutes,
the adjusting workload has more resources available amt$ stnning more instances. The ad-
justing workload maintains a lead over the constant workiaatil both are finished. The constant
workload stops running after 153 minutes, because the soprevement criteria for running more
generations was not met. The adjusting workloads runsifghty} longer, as it meets the minimum

score improvement criteria for more generations.

Timeline (Minutes)

Constant
.................. Adjusting

Figure 5.14: GAFolder Scores Over Time in the Constant arjdgtithg Workloads

Table 5.2 compares the best scores between workloads atdhef each generation. From the
table, we can see that each workload achieves the same $enitha first generation. This happens
because each workload runs the same instances in the firstagiem, producing the same results.
Subsequent generations show the adjusting workload ggénigad in the first generation and losing
it in the second generation. The adjusting workload reghisslead in the ninth generation. The
adjusting workload maintains this lead for the all remajngienerations. Note that generation times
are relatively close for the first six generations. Duringgation 6, cluster B becomes unavailable,
so any jobs that were running on it needed to be rerun. The séoaion occurs in generation
18. The constant workload only ran 24 generations, as tkslhiotd for continuing was not met in

generation 23.

5.5 Concluding Remarks

In evaluating Jole with GAFolder workloads, we have showat the contributions of Jole can be

used to improve upon the standard GAFolder workflow. Spedi§ic

1. Dynamic Job Execution

62

Generation Constant Workload Adjusting Workload
Score Time(m) Instances Score Time(m) Instances

0 -32.81 23 20 -32.81 21 20
1 -33.04 29 20 -33.11 29 40
2 -33.24 36 20 -33.24 35 40
3 -33.44 43 20 -33.35 41 40
4 -33.52 48 20 -33.46 47 40
5 -33.63 53 20 -33.55 52 40
6 -33.70 59 20 -33.68 64 40
7 -33.80 64 20 -33.79 70 20
8 -33.85 70 20 -33.90 76 20
9 -33.95 75 20 -34.01 81 20
10 -33.99 81 20 -34.10 86 20
11 -34.07 86 20 -34.20 92 40
12 -34.11 92 20 -34.25 98 40
13 -34.14 97 20 -34.34 104 40
14 -34.19 103 20 -34.39 110 40
15 -34.29 109 20 -34.43 115 40
16 -34.35 114 20 -34.48 121 40
17 -34.41 120 20 -34.59 127 40
18 -34.45 125 20 -34.65 138 40
19 -34.49 131 20 -34.67 143 20
20 -34.52 136 20 -34.69 149 20
21 -34.56 142 20 -34.72 154 20
22 -34.58 147 20 -34.81 160 20
23 -34.59 153 20 -34.90 165 20
24 - - - -34.94 171 20

25 - - - -34.96 176 20

26 - - - -34.99 181 20

27 - - - -34.99 187 20

Table 5.2: GAFolder Scores After Each Generation in the @ansand Adjusting Workloads

63

In Section 5.2, we show that using monitors to dynamicaltynieate GAFolder instances
showing a slow rate of improvement, rather that waiting ke standard number of iterations
to finish, can free up significant time on the cluster. Howgtres happens at the expense of

some score quality.

. Dynamic Workflow

In Section 5.3, we show that by using global information friofws in a workload running 10
instances per generation, it is possible to get decentsdomuch less time than the static
workload. In addition, we also show that by using the glob&bimation from a workload
running 20 instances per generation, it is possible to géttbscores than the static workload,

while not using as much cluster resources.

. Dynamic Infrastructure

In Section 5.4, we show that Jole is able to take advantagddifianal resources as they
become available. Furthermore, we show that these additiesources may be used to run

extra GAFolder instances in each generation, generatitigrtseores.

64

Chapter 6

Concluding Remarks

As scientific computing problems grow larger, methods faaening these problems become more
important. Batch schedulers are often used to schedule xawlte these scientific workloads.
Generally, batch schedulers are static with respect te threperties: interacting with a job while
it is running, modifying a workload while it is running, antianging the workload infrastructure
while it is running. Many workloads can benefit from allowidgnamic changes in one or several
of these properties.

We introduce Jole, a library that enables dynamic changéseise three properties. Monitors
allow interaction with jobs as they are running. Job futujels arrays and the Python base of Jole
allow modifying workloads as they are running. The architez of the job manager, submitters,
and placeholders enables dynamic changes to infrasteuctur

We evaluate Jole using a set of workloads for GAFolder, togash of Jole’s contributions.

1. Dynamic Job Execution

The dynamic local workload demonstrates the usefulnesgradmically interacting with jobs
as they are running. By using monitors to end GAFolder jobs tbach plateaus, space can

be freed up on the cluster to run other jobs, at the expensmd score quality.

2. Dynamic Workflow

The dynamic local and global workloads demonstrate theulrse$s of modifying workloads
as they are running, using global information. By monitgrimprovements in score between
generations, our workload script will run while a fast enlougte of progress is being made.
Combining the dynamic workload abilities with more redtvie cutoffs allows the global

workload to get better score, while using less cluster nessu

3. Dynamic Infrastructure

The adjusting workload demonstrates the usefulness ofrdignehanges in the execution

infrastructure. As more resources become available, Jitllewv jobs on them. By adjusting

65

the workload to run more jobs when there is more availableuess, it is possible to find

better protein structures with GAFolder.

6.1 Future Work

Jole would benefit from more closely integrating the runrahgbs in virtual machines (VMs) with
the scheduler. While it is currently possible to run VM jobsle would benefit from being able to
perform low-level interactions with the VM. Specificallizg ability to suspend/resume VMs would
be a great benefit in dealing with dynamic infrastructure. ¢fuster becomes unavailable, a simple
policy would be to suspend all the VMs, waiting for the clustebecome available again. If any of
the suspended jobs still need to be run when the cluster igbleagain, they would be resumed.
However, this policy depends on the availability of enougtk dpace to suspend the VMs on each
node, and still run other jobs. A more advanced policy migigrate machines off the cluster,
choosing to move the VMs with most computation performedyosdime other criteria.

Jole may also benefit from the use of some of the Trellis itfuature. Specifically, the Trellis
Security Infrastructure (TSI) and Trellis NFS (TNFS) wolle useful for running jobs with Jole.
TSI is a complete solution for maintaining an SSH overlaythad user processes can access any
other remote host in the overlay. Currently in Jole, userstreetup their owssh-agent process
on the host node, which must be done to allow submitters to @tathe remote nodes. Processes
cannot access other remote hosts unless the user has seswpopiless SSH keys. TSI would
simply the infrastructure needed to run jobs and move ddtedsn nodes in Jole. The use of TNFS
would be more secure than the current setup required to atiatly copy data to placeholders
when it is not available. With the use of TSI, TNFS securelthanticates with other hosts and

copies files.

66

Bibliography

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.fdrhnan. Basic local alignment
search toolJournal of Molecular Biology215(3):403-10, 1990.

[2] L. Barroso, J. Dean, and U. Holzle. Web search for a pgtafke google cluster architecture.
IEEE Micro, 23(2):22—-28, 2003.

[3] J.Bent, D. Thain, A. C. Arpaci-Dusseau, R. H. Arpaci-Besu, and M. Livny. Explicit control
in a batch-aware distributed file system. Rroceedings of the 1st conference on Symposium
on Networked Systems Design and Implementa2iogd4.

[4] M. V. Berjanskii, P. Tang, J. Liang, J. A. Cruz, J. Zhou,Zhou, E. Bassett, C. Macdonell,
P. Lu, G. Lin, and D. S. Wishart. Genmr: a web server for rapid-based protein structure
determinationNucleic Acids ResearcB7(Web-Server-Issue):670-677, 2009.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified data psirog on large clusters. Bro-
ceedings of the 6th conference on Symposium on Operatiten®y/Besign & Implementation
2004.

[6] S. Ghemawat, H. Gobioff, and S. Leung. The google fileaystSIGOPS Operating Systems
Review 37(5):29-43, 2003.

[7] M. Goldenberg. Trellisdag: A system for structured delgeduling. Master’s thesis, University
of Alberta, 2003.

[8] M. Goldenberg, P. Lu, and J. Schaeffer. Trellisdag: Ategsfor structured dag scheduling. In
9th Workshop on Job Scheduling Strategies for Parallel Pssing pages 2143, 2003.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-perftance, portable implementation
of the mpi message passing interface standdadallel Computing22(6):789—-828, 1996.

[10] Hadoop.http://hadoop.apache.org/

[11] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Orad: distributed data-parallel pro-
grams from sequential building blocks. Rroceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2883es 59-72, 2007.

[12] R. H. Halstead Jr. Multilisp: a language for concurrgyrbolic computationACM Transac-
tions on Programming Languages and Systeni):501-538, 1985.

[13] M. Kan, D. Ngo, M. Lee, P. Lu, N. Bard, M. Closson, M. Dinl. Goldenberg, N. Lamb,
R. Senda, E. Sumbar, and Y. Wang. The Trellis Security Iirvature: A Layered Approach
to Overlay Metacomputers. hhe 18th International Symposium on High Performance Com-
puting Systems and Applicatiqr004.

[14] L. Kornstaedt. Alice in the land of 0z: An interoperatyitbased implementation of a func-
tional language on top of a relational languageMaorkshop on Multi-Language Infrastructure
and Interoperability2001.

[15] M. A. Larkin, G. Blackshields, N. P. Brown, R. ChennaAP.McGettigan, H. McWilliam,
F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, J. Gibson, and D. G.
Higgins. Clustal w and clustal x version 2 Bioinformatics 23(21):2947-2948, 2007.

[16] H. Lieberman. Concurrent object-oriented programgriimact 1. Object-oriented concurrent
programming pages 9-36, 1987.

67

[17] P. Lu. The Trellis Projecthttp://www.cs.ualberta.ca/"paullu/Trellis/
[18] TORQUE Resource Managéttp://www.clusterresources.com
[19] Open MPI.http://www.open-mpi.org

[20] OpenPBShttp://www.openpbs.org

[21] L. Page, S. Brin, R. Motwani, and T. Winograd. The pag&rmtation ranking: Bringing order
to the web. Technical Report 1999-66, Stanford InfoLab 9199

[22] C. Pinchak. Placeholder scheduling for overlay metgmating. Master’s thesis, University of
Alberta, 2003.

[23] L. Pireddu, D. Szafron, P. Lu, and R. Greiner. The pathetabolic pathway prediction web
server.Nucleic Acids ResearcB4:W714-W719, 2006.

[24] S. Eddyet al. HMMer: Biosequence Analysis Using Profile Hidden Markov Ntsd
http://hmmer.janelia.org/ .

[25] D. Thain, T. Tannenbaum, and M. Livny. Distributed cautipg in practice: the condor expe-
rience.Concurrency - Practice and Experiende’ (2-4):323-356, 2005.

[26] Y. Wang. Transparent Dataflow Detection and Use in Workflow Scheduf@oncurrency and
Deadlock AvoidancePhD thesis, University of Alberta, 2008.

[27] D. S. Wishart, D. Arndt, M. V. Berjanskii, P. Tang, J. 2hand G. Lin. Cs23d: a web server
for rapid protein structure generation using nmr chemibi#tsand sequence datducleic
Acids Researct86(Web-Server-Issue):496-502, 2008.

[28] T. Ylonen. SSH - Secure login connections over the mgerProceedings of the 6th Security
Symposiunml996.

[29] V. Yu, M. Isard, D. Fetterly, M. Budiul. Erlingsson, P. K. Gunda, and J. Currey. Dryadling:
a system for general-purpose distributed data-paraltalpeding using a high-level language.
In Proceedings of the 8th conference on Symposium on Operayisigms Design & Imple-
mentation 2008.

68

Appendix A

Code Listings

A.1 Workflow Script for GAFolder Local and Global Workflow

#l/usr/bin/env python

Jole Libraries

from job_manager import *
from job_future import *
from job_array import *
from data_handle import *

from monitor import *
from gafolder_lib import *

import operator, threading, os, re, sys
from uuid import uuid4

import time

def main():
jm = JobManager()
Head nodes of two test clusters
jm.new_submitter('PBS’, 'botha-c12’)
jm.new_submitter('PBS’, 'botha-c10’)

sthread = threading.Thread(target=score_thread)
sthread.setDaemon(True)

sthread.start()

Generate uuid for job

69

uuid = str(uuid4())

GAFolder parameters
num_instances = 20
num_carryover = 2
loop_diff = 0.02

loop_count = 0

count = O

gafolder_dir =\
"fusr/bothal0b/jordan/job_demo/gafolder_dyn_infra/g afolder”

inst_dirs =]
ja = jm.new_job_array()
for inst_num in range(0, num_instances):
Uniquely identify each instance
inst_dir = "gafolder-%s-0-%d" % (uuid, inst_num)
inst_dirs.append(inst_dir)
command = ["./gafolder -it 300 -r %d -pdb " % count,
DataHandle("gafolder/example/ubiquitin/lubg.pdb”, "r ",
" -cs ",
DataHandle("gafolder/example/ubiquitin/bmr5387.str" , '),
" > gafolder_log"]
count += 1
0s.mkdir(inst_dir)
os.chdir(inst_dir)
cm = CustomMonitor(job_mon, my_globals=globals())
jf = GAJobFuture(jm, command,
gafolder_dir=gafolder_dir, monitors=[cm])
ja.add_job_future(jf)
os.chdir("..")

ja.wait_all() # Wait for GAFolder jobs to finish

prev_best_score = None

loop_count += 1

70

while True:

best _dirs_and_scores =\
best_score_dirs(inst_dirs, num_carryover)

cur_best score = best_dirs_and_scores[0][1]

dirs = [x[0] for x in best_dirs_and_scores]

best pdb files = best pdbs(dirs)

if not prev_best score is None:
score_diff = prev_best_score - cur_best_score
End iterations if improvement in score below threshold
if prev_best score - cur_best score < loop_diff:

break
prev_best_score = cur_best score

inst_dirs =]

ja2 = jm.new_job_array()
for inst_num in range(0, num_instances):
inst_dir = "gafolder-%s-%d-%d"\
% (uuid, loop_count, inst_num)
inst_dirs.append(inst_dir)
command = ["./gafolder -it 300 -r %d -pdb " % count,

DataHandle(best_pdb_files[inst_num%len(best_pdb_fil es)]\
",

" -cs ",

DataHandle("gafolder/example/ubiquitin/bmr5387.str" .M,

> gafolder_log"]
count += 1
os.mkdir(inst_dir)
os.chdir(inst_dir)
cm = CustomMonitor(job_mon, my_globals=globals())
jf = GAJobFuture(jm, command,
gafolder_dir=gafolder_dir, monitors=[cm])
ja.add_job_future(jf)
os.chdir("..")

loop_count += 1
ja2.wait_all() # Wait for GAFolder jobs to finish

71

if name__ =="_ main_ "

main()

A.2 Custom Local Monitor Used for GAFolder Instances

def job_mon():
header_hsh = {}

Regular expressions for various output
hl_re = re.compile(”-+\n$’)
output_re = re.compile\
('Best score after initializing all genomes’)
output_re2 = re.compile(To set version\=124’)
output_end_re = re.compile\
(To set version\=123") # Output is done

Track where we are in file
begin = False
begin2 = False
first_hl = True

nlh = False

scores = []
lterate through log file as it is added to
for line in tail_f retry("gafolder_log"):
Break once output is done
if begin2 and output_end_re.match(line):
break
Check score of current output
if begin2:
sp_line = line.split()
try:
iter = int(sp_line[0])
score = float(sp_line[header_hsh['Total’]])
scores.append(score)
Check standard deviation of last 25 scores
if std_dev_last(scores, 25, 0.0001):

72

Notify placeholder job is done
self.comp_state.change_state("Log Finish", True)
break
except Exception as e:
pass
Split header to get column names
nlh:
sp_header = line.split()
for x in range(0,len(sp_header)):
header_hsh[sp_header[x]] = x+1
nlh = False
Find first line previous to header
first_hl and hl_re.match(line):
nlh = True
first_hl = False
First beginning regex
output_re.match(line):
begin = True
Second beginning regex
begin and output_re2.match(line):

begin2 = True

73

