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Abstract

Problems in scientific computing often consist of a workloadof jobs with dependencies between

them. Batch schedulers are job-oriented, and are not well-suited to executing these workloads with

complex dependencies.

We introduce Jole, a Python library created to run these workloads. Jole has three contributions

that allow flexibility not possible with a batch scheduler. First, dynamic job execution allows control

and monitoring of jobs as they are running. Second, dynamic workload specification allows the

creation of workloads that can adjust their execution whilerunning. Lastly, dynamic infrastructure

aggregation allows workloads to take advantage of additional resources as they become available.

We evaluate Jole using GAFolder, a protein structure prediction tool. We show that our contri-

butions can be used to create GAFolder workloads that use less cluster resources, iterate on global

protein structures, and take advantage of additional cluster resources to search more thoroughly.
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Chapter 1

Introduction

Computing science has become important for research in manyscientific disciplines. The vast im-

provement in computing hardware has enabled scientists to study problems and perform simulations

in much greater detail. In biology, computers are used to predict protein structure, find similar pro-

teins, and perform cell simulations. In physics, they can beused for simulating the effects of solar

flares or fluid dynamics. In computing science, computers maybe used to train machine-learned

classifiers, artificial intelligence agents, or poker strategies. For many disciplines, having access to

computational resources is a requirement for further research.

Many of these problem domains are well-suited to running on clusters of commodity comput-

ers. Some are naturally parallel and others may have high granularity due to a large problem size.

With the capabilities of commodity hardware increasing while their associated prices decline, it has

become more attractive to solve problems using many of thesecommodity computers, leading to

capacity computing. Capacity computing focuses on maximizing the throughput of several jobs.

Commodity clusters cannot solve individual problems as fast as more expensive machines, but they

can solve many of them at a time. As an example, many of Google’s computations are run on com-

modity clusters [2]. MapReduce [5] and Google File System (GFS) [6] have been created to take

advantage of these commodity nodes for computation and storage.

Other problems may benefit more from running single jobs as fast as possible. Capability com-

puting is focused on this problem. This generally means building computers with the best processors,

memory, hard drives, and interconnects. While useful for many problems, capability computing re-

sources do not offer the best price/performance ratio for problems that are well-suited to capacity

computing resources, and would not benefit from Jole.

With the use of capacity computing resources, tools for running jobs have become more impor-

tant. Rather than running single jobs, users generally run workloads consisting of several jobs with

dependencies between them. Trying to run a user’s workload interactively can be an exercise in

frustration. Although it is common for users to run jobs interactively, they could save a lot of their

time by using an automated tool to run their jobs for them whenthey are running large workloads.

An automated tool can make scheduling decisions much fasterthan a user.
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The main tool for running jobs on commodity clusters has beenbatch schedulers, such as

TORQUE [18] or OpenPBS [20]. There are several properties ofworkloads in scientific comput-

ing that make them well-suited to running under batch scheduled resources. First, the jobs within

a workload are non-interactive. All application options are specified by command-line arguments,

environment variables, or configuration files. This means that the jobs can be run without user in-

tervention. Second, these workloads generally consist of many jobs. For many applications, there

is very little to no communication between jobs. This means that they can run efficiently over many

machines in a distributed fashion. Third, the jobs within workloads consist mainly of long-running

jobs. This means that scheduling overhead is less of a problem, as the jobs will have higher granu-

larity in general.

Batch schedulers are an improvement over running jobs interactively on each node. With batch

schedulers, users are able to specify large amounts of jobs,and let the scheduler decide when and

where to run them. Batch schedulers are usually configured tomaximize throughput, completing as

much work as possible in the shortest amount of time. Users can specify the resources that their jobs

need and let the scheduler handle placement of jobs on the cluster. Users just need to write scripts

or workflow specifications that describe their workload, andsubmit them to the scheduler.

Although batch schedulers are an improvement over running jobs manually, there are some ways

in which running jobs on the cluster could be improved. For example, job dependencies may not be

well supported on some batch schedulers, making it hard to properly run a workflow. With batch

schedulers that do support job dependencies, the job dependencies are generally static, and must be

rewritten for each workflow that is submitted. For other batch schedulers, users may need to ensure

that job dependencies are met by writing scripts that monitor their jobs independently of the batch

scheduler.

Dependencies between jobs are common in workloads. GAFolder, a protein structure prediction

tool, is an individual application, but it is possible to runmultiple instances in several different ways

to improve prediction results or to decrease run time. In thedynamic local and global workflow,

described in Section 5.3, groups of GAFolder instances are run iteratively. The globally best protein

structures are used as a basis for the GAFolder instances in each generation. This workload is

shown in Figure 1.1. Note that this workflow is also shown in Figure 5.5. In the evaluation of this

workflow, we are able to produce an improvement in score from -33.32 with the static workflow to

-33.52 with the dynamic local and global workflow. This dynamic iteration of GAFolder instances

would be difficult to implement in a static workflow language.The best scores must be determined

in each generation during run time and subsequent jobs running GAFolder must be created that use

the structures with the best scores.

Another improvement that could be made over batch schedulers is the ability to get more infor-

mation about jobs and interact with them as they are running.Users may want to know more about

a jobs execution than whether it is running or not. For example, users may want to know about the
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Figure 1.1: GAFolder: Dynamic Local and Global Workflow
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progress being made in a job. If the job is progressing poorlyor has reached a plateau in search, they

may want to automatically terminate it. With batch schedulers, they must determine which node a

job is executing on, login to that node, and look at output or other information in order to do this.

This is too much administrative work for what may be a relatively simple task they wish to perform

on their job as it is running.

Another improvement that could be made over batch schedulers is the ability for workloads to

react to changes in available resources. Many clusters may exist within an organization, which may

be idle much of the time. Users could benefit by taking advantage of these clusters when they are

idle. For example, they may want to run additional instancesof a job when there are additional

resources available to run jobs on. For workloads involvingsearch, this allows their workloads to

perform a more exhaustive search when there are more available resources.

Our work is focused on creating a workflow execution library,Jole, that improves the flexibil-

ity of running workloads on clusters. With the features of our library, we can improve upon the

workload support of batch schedulers.

1.1 Research Challenges and Contributions

Our main research challenges and contributions are as follows:

1. Dynamic Job Execution

Not all batch jobs need to run to completion. Depending on theapplication or algorithm, some

batch jobs should be terminated early or new batch jobs should be launched, based on partial

results of other batch jobs. With a regular batch scheduler and workflow language, this level

of job control is not possible. Therefore, support for dynamically controlling jobs while they

are executing can be beneficial.

We introduce monitors, which can interact with jobs as they are running. There may be some

criteria by which users want to terminate jobs. A monitor canbe used to interact with the job,

and once it meets the criteria, terminate it.

This is an improvement over current batch scheduling because it is now possible to interact

with jobs while they are running. With a normal batch scheduler, users normally have to wait

until the job is done to get their results. With monitors, it is possible to watch the output of

jobs and end them early if the results are not satisfactory.

For example, each run of GAFolder uses a random seed, producing different results on each

run. Some runs will reach a local minima before reaching the standard number of iterations.

It can be beneficial to end those runs early and start new ones in their place, in order to get

more benefit from the computation.

2. Dynamic Workflow
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Many workflows have complicated control and dataflow dependencies between jobs. Specify-

ing this information in a static language can be cumbersome,especially if there is varied input

data and control-flow. Some types of control-flow may not be possible, such as iterations,

in systems which only support directed acyclic graphs (DAGs) for workflow specification.

With a static specification language, each small differencein workflow may require a sepa-

rate submission script. Therefore, a dynamic scripting-based approach to specification can be

beneficial.

Data handles, job futures, and job arrays enable a dynamic scripting based-approach to work-

flow specification. Each of these features can be used to synchronize on job status. Combined

with the use of the Python scripting language for Jole, thesefeatures allow users to synchro-

nize on jobs, gather data globally about jobs, and adjust theworkflow based on the global

data.

These improvements help in several ways. First, it is possible to script a workflow which

modifies itself based on global data. This allows workflows toiterate based on the results

of the intermediate computations, which would be difficult to perform with a static workflow

specification language. Second, the use of a scripting language allows parametrization of the

workflow script, allowing reuse for different workflows. Lastly, data handles prevent the need

to handle file conflicts in output files between workflows.

For example, several instances of GAFolder are run in order to produce structure predictions.

New GAFolder instances can be run using the most promising structures globally in order

to further refine the structure. This process can be repeatedseveral times, in order to focus

search around the most promising proteins. This cyclic graph would be hard to implement

using a static language, but can be implemented using Jole.

3. Dynamic Infrastructure

Within an organization, there may be several clusters that are not heavily used by their owners.

These resources could be used by others when they are idle. Users with their own clusters will

also benefit from this sharing, because they can now spread their jobs across other clusters

when they are idle. It would be beneficial to automatically take advantage of these resources

when they become available. A workflow may be modified as it is running, to better take

advantage of additional resources.

Submitters enable users to run workflows across clusters. The job manager starts and interacts

with submitters on each cluster in order to run jobs. The userspecifies the machines they wish

to run submitters in their workflow script. A workflow can get resource information from the

job manager as it is running, and use that information to decide how to continue running the

workload.

For some workloads, adjusting the workflow graph based on theavailable resources can help

5



improve results. With some search applications, it can be possible to generate better results

by running more instances of the program when more resourcesare available. If each instance

of the search is independent and searches a different space,more instances will allow a more

thorough search.

For example, in the dynamic local and global workload for GAFolder, a set number of in-

stances are run in each generation. By running additional GAFolder instances in each genera-

tion, it is possible to perform a more complete search in the protein space and produce better

quality structure predictions.

6



Chapter 2

Background

In the previous chapter, we described the importance of workflows to scientific computing and de-

scribed several improvements that could be implemented on top of batch schedulers. We introduced

and described some of the contributions of Jole for running workflows.

In this chapter, we describe some work related to Jole, in theparallel language and batch schedul-

ing fields. We then describe some concepts that are used in Jole. Finally, we describe some of the

motivating applications that are used in the following chapters.

2.1 Related Work

2.1.1 Parallel and Distributed Languages

Parallel and distributed languages are targeted towards performing computation using several pro-

cessor cores or machines. Data-parallel languages, such asMapReduce, are becoming more popular,

as they enable a natural way of parallelizing data analysis and computation. Implementations of the

Message Passing Interface (MPI), remain popular for scientific computing, as they may have com-

munication patterns that do not map well to data-parallel languages.

While there is a wealth of research towards distributed and data-parallel languages, there is

less targeted towards batch-scheduled job-level parallelism. However, there is an overlap in ideas

between the two. Table 2.1 compares the main properties of each system. The types of parallelism

and fault tolerance supported in each language are shown. Process placement refers to the ability to

place processes near the data they will use on a distributed architecture.

System Parallelism Fault Tolerance Process Placement

Jole Task Yes (Jobs) Manual
MapReduce Data Yes (Tasks) Automatic
Dryad Data Yes (Vertices) Automatic
MPI Task & Data Manual Manual

Table 2.1: Comparison of Jole to Data Parallel Languages
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MapReduce

MapReduce [5] is a programming model and framework for data-parallel programming. Although

Google has not released their system to the public, an open-source implementation of MapReduce

called Hadoop [10] has become popular. Users specify a map function which takes key/value pairs

and processes them to produce intermediate key/value pairs. These new key/value pairs are merged

by a user specified reduce function. This programming model is somewhat limited, however there

are many programs that are well-suited to running under thismodel. Some examples include count-

ing uniform resource locator (URL) access frequencies fromlogs, counting term frequencies in

documents, and creating inverted indexes.

Google uses MapReduce to perform computation on a variety ofproblems, including large

machine-learning problems, clustering problems, extracting properties from web pages, and large

graph computations. One of the most significant uses of MapReduce is Google’s production in-

dexing system, which produces the data structure required for Google’s search engine. These com-

putations are performed on many terabytes of data in five to ten MapReduce operations. One step

performed in this process is the creation of an inverted index, which maps words to documents

containing the word. This inverted index is used for web searches to find documents containing

query words. Additionally, MapReduce is used for the calculations in determining PageRank [21].

Roughly, PageRank measures importance of web pages by looking on incoming links to a page and

the PageRanks of those links.

The following pseudocode in Figure 2.1, from Dean and Ghemawat [5], illustrates the use of

MapReduce to count word frequencies in a set of documents.

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

Figure 2.1: MapReduce pseudocode for counting word frequencies

The map phase uses the map function in Figure 2.1, which iterates through each word in the

document and emits an intermediate key/value pair for each word with the word as the key and 1

as the value. The reduce phase uses the reduce function in Figure 2.1, which iterates through the
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intermediate values for a key produced in the map phase, summing the word count for a word. This

reduce phase will be performed on every key.

The MapReduce system automatically parallelizes the map phase by partitioning the input data

intoMchunks. These chunks can be processed in parallel by independent map tasks. The output from

map tasks is partitioned intoR chunks by a partitioning function, where each partition is processed

by a separate reduce task. The number of partitions must be specified by the user. The partitioning

function can be specified by the user, if the user prefers to partition the data differently. When the

computation is close to finishing, redundant executions of in-progress tasks will be scheduled. This

prevents stragglers, tasks running on slow or problematic machines, from slowing down the entire

MapReduce operation.

MapReduce handles scheduling of these tasks and can recoverfrom machine failures. Due to

the use of the Google File System (GFS) [6], the data is replicated across multiple machines. If a

machine fails, the input data will be on other nodes. GFS willre-replicate this data to ensure that

the minimum replication criteria is met. A master process controls the execution of the MapReduce

program. Workers are periodically pinged to check for failure. If a worker fails, the master process

will restart its task.

MapReduce is somewhat limited in the types of dataflow programs it can run, but there are many

problems that are well-suited to this model. Mapping jobs tothis model may be more difficult. The

simplest case for executing most jobs is to use the map phase to execute the job, while having a

trivial reduce phase which merely collects the output. For example, the basic local alignment search

tool (BLAST) [1] could be parallelized using MapReduce by using the set of query proteins as input

to the map phase, which would be partitioned between map tasks performing BLAST. The reduce

phase could simply emit the BLAST results from the map phase,or perhaps do some filtering based

on score. Due to MapReduce’s use of chunking to achieve parallelism, it may be necessary to adjust

the chunking size in order to get sufficient concurrency. Forexample, GAFolder consists of long

running jobs with a single input protein. The chunk size would have to be small to run a GAFolder

workflow on MapReduce. MapReduce is more suited towards running large problems, where this

would not be necessary.

Running jobs with MapReduce has several benefits. With sufficient input data and proper chunk

size, MapReduce achieves good parallelism. Jobs run with Jole will likely achieve similar paral-

lelism, although the user would have to split their data before creating jobs, rather than having the

system do this automatically. MapReduce is able to recover from machine failures by monitoring

tasks on each machine. If a machine fails, it will rerun thosetasks. Our job manager is also able to

recover from machine failures of placeholders. If a machinefails, the placeholder will no longer be

sending messages to the job manager, so the job manager will start a new job to replace it.

Although it may be possible to map some workflows to MapReduce, it can result in a longer

makespan, in addition to extra work fitting jobs into the MapReduce paradigm. MapReduce does
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not support dynamic job execution, meaning that all jobs will run until finished. With Jole, jobs can

be monitored and ended early if they do not meet some criteria.

Dryad

Dryad is a distributed data parallel framework from Microsoft [11]. Users specify a dataflow graph

of processes and code segments within the framework. The vertices in the graphs represent the

computations, while the edges specify the data channels. Dryad’s job manager controls the execution

of these vertices and builds an execution graph for running the workflow on the cluster. Dryad has

a series of operations that must be used to create a dataflow graph. Graphs can be created by

instantiating vertices, adding edges, and merging graphs.

The following example, from Isardet al. [11], illustrates the creation of a graph with Dryad,

producing the graph shown in Figure 2.3.

GraphBuilder XSet = moduleXˆN;
GraphBuilder DSet = moduleDˆN;
GraphBuilder MSet = moduleMˆ(N * 4);
GraphBuilder SSet = moduleSˆ(N * 4);
GraphBuilder YSet = moduleYˆN;
GraphBuilder HSet = moduleHˆ1;
GraphBuilder XInputs = (ugriz1 >= XSet) || (neighbor >= XSet );
GraphBuilder YInputs = ugriz2 >= YSet;
GraphBuilder XToY = XSet >= DSet >> MSet >= SSet;
for (i = 0; i < N * 4; ++i)
{

XToY = XToY || (SSet.GetVertex(i) >= YSet.GetVertex(i/4)) ;
}
GraphBuilder YToH = YSet >= HSet;
GraphBuilder HOutputs = HSet >= output;
GraphBuilder fnl = XInputs || YInputs || XToY || YToH || HOutp uts;

Figure 2.2: Dryad code for SQL query execution

The clone operation (ˆ ) creates cloned vertices, which, when executed, will have the input data

split between them. For example, in Figure 2.2,moduleX ˆN results in then X vertices shown

in Figure 2.2. The pointwise composition operation (=>) forms a pointwise composition between

sets, which creates edges between the vertices. For example, in Figure 2.2,XSet >= DSet ,

results in the edges between the X and D vertices in Figure 2.3. The bipartite composition operation

(>>) creates the complete bipartite graph between two sets. Forexample, in Figure 2.2,DSet >>

MSet, results in the set of edges between the D and M vertices in Figure 2.3. Finally, the merge

operation (||) operation merges graphs. For example, in Figure 2.2,(ugriz1 => Xset) ||

(neighbor => XSet) will create two graphs containing data dependencies into the XSet, then

merge them to produce the dependencies on both sets for each Xvertex shown in Figure 2.3. The

complete graph for the code in Figure 2.2 is shown in Figure 2.3.
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Figure 2.3: SQL Query Graph in Dryad
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The job manager supports fault tolerant execution of the vertices by maintaining version numbers

and execution logs for each vertex. File output from vertices are uniquely named for each version,

to avoid conflicts, and when a job completes successfully, the outputs will be renamed to the final

name. If a vertex execution fails, the job manager can be notified by the vertex or daemon. If the

failure was due to a failed input channel, the vertex that generated that channel will be restarted.

If the machine running the vertex fails, the job manager willreceive a heartbeat timeout. Failed

vertices are scheduled for re-execution.

Dryad can refine the execution graph to aggregate data from nodes close in the cluster topology.

For example, nodes on the same rack may have a dedicated switch for communications within the

rack, connected to a central switch for communications between racks. This information is not

known until run-time, so it cannot be planned in advance. Oneuse of data aggregation would be

in performing a data reduction. Dryad can aggregate the datafor each rack, perform the reduction,

then send the data to the next jobs in the graph. Performing a reduction before sending data across

racks can save bandwidth.

DryadLINQ [29] is a framework on top of Dryad to allow easier programming of data paral-

lel applications. DryadLINQ uses Language Integrated Query (LINQ), an SQL-like language, to

specify the data manipulation. LINQ’s declarative style isamenable to automatic optimization and

scheduling on the Dryad backend. DryadLINQ has its own job manager, which allows dynamic

scheduling of the jobs on the cluster. DryadLINQ also has some useful debugging features, which

allow you replicate failing jobs and their input and rerun them yourself.

Dryad requires less work to map jobs to its framework than with MapReduce. Commands

cleanly map to the vertices and input and output files map to the edges in the Dryad graph. Dryad,

like Jole, supports fault tolerant execution of vertices byusing a ping heartbeat. If a vertex does not

reply within a period of time, it is assumed to have failed, and a new job is scheduled to run. Dryad’s

scheduler is more advanced than ours, and will try to schedule jobs near the data they need.

Like MapReduce, Dryad does not support dynamic execution ofjobs. In cases where jobs do

not need to be run to completion, this will result in a longer makespan.

Message Passing Interface

Message Passing Interface (MPI) is a message-passing library specification. Several implementa-

tions exist which implement this specification, such as MPICH [9] or Open MPI [19]. MPI provides

the programmer with a complete protocol specification for communicating with other processes.

MPI is lower-level than the previous systems and will generally require more specification to run

similar workloads.

MPI has several features that are useful for writing distributed applications:

1. Communicator

Communicators are objects which are used for communicatingwith other processes. The
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group and context of a process are contained in the communicator. Intracommunicators are

for communicating with processes within the same group, while intercommunicators are for

communicating with processes in other groups.

2. Point-to-Point Communication

Several functions in MPI provide communication between specific processes, and may be

blocking or non-blocking.

3. Collective Operations

Collective operations allow communication between sets ofprocesses and includes operations

for synchronization, data movement, and collective computation. For synchronization, the

MPI Barrier function is used to synchronize all processes in a group, between phases of a

computation. For data movement, their are several functions, includingBroadcast , which

sends the same chunk of data to all processes in the group, andScatter which divides a data

chunk among all processes. The computations functions includeReduce , which reduces a

set of data to a single value, using operations such as addition or multiplication, andScan ,

which performs partial reductions.

As a programming interface, MPI is a flexible tool for implementing parallel programs. How-

ever, implementing an application using techniques similar to Jole, MapReduce, or Dryad in MPI

would take a significant amount of programming in order to achieve the same functionality. While

MPI is a complete system for communication, the other systems include additional functionality,

such as fault tolerance or automatic process placement, that would also need to be implemented to

be competitive.

2.1.2 Batch Schedulers

Batch schedulers are systems that schedule and run a large number of jobs on a set of resources. They

are useful for running large numbers of jobs, as the user can submit their jobs to the scheduler, letting

it run their jobs unattended. Batch schedulers generally take computing resources into account for

scheduling jobs. For example, the number of processor coresand amount of memory are attributes

that are commonly set for jobs, ensuring they get enough processor time and do not run out of

memory. Disk usage can be set under some batch schedulers, which can help prevent thrashing. The

resources needed for a job are generally set by users, so any mistakes can lead to problems, such as

slowdowns or lost jobs.

Jole is closely related to batch schedulers, as the main goalof running large numbers of jobs

on a set of resources is the same. However, there are featuresnot generally available in other batch

schedulers that we feel improve the ability to run workflows.Table 2.2 compares how workflows

are specified, the type of job execution supported, and the infrastructure usage possible with each
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batch scheduler. Table 2.3 compares further features. It should be noted that Jole does not support

all the features in Table 2.3, as they were not a focus in this work.

System Workflow Job Execution Infrastructure Provisioning

Jole Dynamic (Scriptable) Dynamic Dynamic
Condor Static (DAG) Static Dynamic
BAD-FS Static (DAG) Static Static
WaFS Static (DAG) Static Static

Table 2.2: Comparison of Key Features

System Fault Tolerance Checkpoint/Resume Dataflow Capacity Aware Scheduling

Jole Yes (Job) No Yes No
Condor Yes Yes No Job
BAD-FS Yes No Yes Job
WaFS No No Yes Workflow

Table 2.3: Comparison of Additional Features

Condor

Condor [25] is a batch scheduler that, in addition to the normal functions of a batch scheduler, is

able to harness idle computing resources in the execution ofa workload. Condor provides libraries,

which if used for an application, allow checkpointing and resumption of the application, enabling

migration of jobs. In addition Condor has a meta-scheduler called Directed Acyclic Graph Manager

(DAGMan). DAGMan allows users to specify their workflow by creating a directed acyclic graph.

The graphs are represented bydag files, which contain the dependencies between jobs. These files

are static, and must be rewritten to create new workflows. An example DAGman script is shown in

Figure 2.4.

JOB CLUSTALW1 clustalw1.condor
JOB CLUSTALW2 clustalw2.condor
JOB TRAINHMM1 trainhmm1.condor
JOB TRAINHMM2 trainhmm2.condor
PARENT CLUSTALW1 CHILD TRAINHMM1
PARENT CLUSTALW2 CHILD TRAINHMM2

Each JOB entry is a job consisting of a name (CLUSTALW) and a script (clustalw.condor ).
Dependencies are specified using the PARENT option, where job names in the CHILD list are
dependent on job names in the PARENT list.

Figure 2.4: Example Workflow Specification for DAGMan

Like Jole, Condor has the ability to automatically use idle resources. This ability in Condor is

more advanced, as it will detect usage of a machine in deciding whether or not to run jobs on it. Jole

relies on a global file to get this information. However, Condor does not have the ability to create a
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non-static workload. Furthermore, Condor does not have theability to interact with jobs while they

are running.

BAD-FS

BAD-FS [3] is a scheduler and file system which share information with each other in order to run

batch workloads more efficiently. Like in Jole, BAD-FS workson top of existing batch schedulers,

rather than replacing them. This makes it easier to utilize their system on resources where root

privileges are not available. BAD-FS is able to get improvedperformance by data-aware scheduling

and caching. Intermediate data is kept on cluster nodes, where successive jobs using that data will

be run. By running a sequence of jobs on the same machine, the amount of data transfer needed

is minimized. BAD-FS is also aware of the data capacity requirements of workloads. By ensuring

jobs have adequate storage resources, thrashing is avoided. BAD-FS achieves fault-tolerance by re-

executing jobs when they fail or the resources they are usingfail. Because BAD-FS avoids copying

of intermediate data between jobs, several jobs may need to be run to regenerate the data needed to

run the failed job.

BAD-FS uses a workflow script that is similar to those used forDAGman. The following exam-

ple, from Bentet al. [3], illustrates an example workflow script.

job a a.condor
job b b.condor
job c c.condor
job d d.condor
parent a child b
parent c child d
volume b1 ftp://home/data 1 GB
volume p1 scratch 50 MB
volume p2 scratch 50 MB
mount b1 a /mydata
mount b1 c /mydata
mount p1 a /tmp
mount p1 b /tmp
mount p2 c /tmp
mount p2 d /tmp
extract p1 x ftp://home/out.1
extract p2 x ftp://home/out.2

Figure 2.5: Example Workflow Specification for BAD-FS

As with DAGman scripts, the job keyword defines jobs, and parent/child keywords are used to

define dependencies between jobs. The other keywords are unique to BAD-FS. The volume keyword

is used to define data sources required by the workload. The mount keyword binds a volume into

a jobs namespace at the path specified. Lastly, the extract keyword indicates which files must be

committed to the home server.

BAD-FS does not support dynamic workflow specification, dynamic job execution, or dynamic
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infrastructure provisioning. It does, however, have some other features that are useful. It has data-

aware scheduling and caching, which can prevent excess data-copying. It also implements fault

tolerance similar to Jole. However, BAD-FS may have to re-execute more jobs when a node fails, as

it caches intermediate data on nodes. This data has to be created again when the node fails.

WaFS

Workflow-aware File System (WaFS) [26] is a extension of a traditional file system, which provides

distinct namespaces for each workflow instance, and gathersdataflow information about the work-

flow. The WaFS scheduler uses this information to increase inter and intra-instance concurrency of

the workflow.

WaFS has three policies that were tested for handling file conflicts:

1. Versioned Namespace (VNS)

WaFS implements VNS by naming files with version numbers. Forexample, the fileA.out

could be calledA.out.1 in workflow instance one, andA.out.2 in workflow instance two.

This policy is most similar to the one used with Jole. Jole adds version numbers to files only

when it finds conflicts, rather than for each workflow instance.

2. Overwrite-Safe Concurrency (OSC)

OSC is a policy which only overwrites files when it is safe to doso. Rather than versioning

files so that each workflow instance is isolated, OSC only allows jobs from an instance to

replace files when the earlier instance no longer needs the file.

3. Hybrid

The hybrid policy uses a storage budget to decide how much versioning can be used to improve

concurrency without incurring deadlock. If files are not needed by earlier instances, they will

be overwritten by subsequent instances.

WaFS has two policies for scheduling jobs:

1. Dataflow-based Aggregate Requests (DAR)

DAR attempts to maximize active storage utilization and increase inter-instance concurrency.

The dataflow information is used in order to minimize the maximum claim of each instance.

Resources are allocated at the workflow instance level.

2. Dataflow-based Topological Ordering (DTO)

DTO attempts to maximize active storage utilization and intra-instance concurrency. Re-

sources are allocated at the job, rather than instance level. Before running each job, DTO

analyzes the storage requirements and determines whether after executing the job, there are

enough resources to execute the rest of the workflow in topological order.
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WaFS has more focus on dataflow gathering and scheduling of workflow instances using the

dataflow information. The goals of Jole are more towards making it easier to specify workflows

and dynamically control their execution. Jole focuses on user specification of dataflow information,

rather than gathering it automatically. These goals are complimentary, and combining the elements

of each system could produce a better system for running workloads. Jole does not schedule based

on the storage resources of the workload and keeps all intermediate files from a workload. For

workloads that output a significant amount of intermediate data, the hybrid policy for file conflicts

would be useful. Additionally, the scheduling policies from WaFS would be useful for deadlock

avoidance when running these workloads.

The use of WaFS for dataflow gathering would likely only be useful for static workflows in Jole.

Using dynamic job execution or dynamic workloads in Jole would make it difficult to gather useful

dataflow information, due to variable length jobs and differences in the workflow graph between

instances.

TrellisDAG

TrellisDAG [7] [8] is a workload execution system developedby the Trellis Group [17], and is

similar in many ways to our system. It has three main parts:

1. Description Layer

At a highest level the description layer consists of groups of jobs. Jobs within a group are

assumed to have a pipeline dependency graph, and will execute in serial order. If a group

contains subgroups and jobs, the subgroups will execute before the jobs. Dependencies are

not specified between jobs, but between groups.

Workflows can be submitted using a flat file, makefile, or a DAG description script. For com-

plex workflows, using a DAG description script is recommended, as it will greatly simplify

the submission script. DAG description scripts rely on a Python module, which contains the

interface that generates the workflow. Users specify their workflow using this interface, and

the result is converted and submitted to the jobs database.

2. Job Database

The job database is contained in a PostgreSQL relational database. The job database contains

information about group membership and super/subgroup relationships. The database also

contains information about the dependencies between groups. The job database updates job

and group execution information as jobs complete.

3. Placeholders

A placeholder represents a unit of potential work. In TrellisDAG, it is implemented as a shell

script. Placeholders connect to a command-line server, getthe next available job, execute it,
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and resubmit themselves. Placeholders are one way of building an overlay metacomputer. By

running placeholders across administrative domains, it ispossible to have a single point of

control for execution. Placeholders allow easier load balancing between resources because

they claim jobs only once they are able to run. Thus, jobs willbe dynamically load balanced

as they only are tied to a resource once it is ready to run them.

At a high level, Jole is similar to TrellisDAG. Both Jole and TrellisDAG use placeholders, which

allows them to take advantage of resources in multiple administrative domains. As a side effect

of using placeholders, they both handle load balancing well, as jobs are not tied to any particular

resource in advance. They will run on whatever resource asksfor a job first.

Jole and TrellisDAG both contain a job manager, which contains information about jobs, their

dependencies, and their status. TrellisDAG’s job manager is a PostgreSQL database with command-

line tools as an interface. Placeholders communicate with the database using using Secure Shell

(SSH) [28]. Our job manager is a Python class, which communicates with the placeholders over

TCP/IP sockets.

Workflows are created quite differently in Jole and TrellisDAG. In TrellisDAG, the user specifies

a workflow by creating a Python module corresponding to the interface required. This means that

the workflow is static after it is created. In Jole, the user’sworkflow script can respond dynamically,

changing the final workflow that is executed. For example, theworkflow script may use global data

about job results to create new jobs and to decide whether to continue running jobs. Furthermore,

we support data dependencies between jobs using data handles. When jobs are created using data

handles, dependencies do not have to be explicitly specified, as they will be created automatically

based on the files a job is reading and writing.

In addition to this, Jole is capable of interacting with jobsas they are running. For some types

of jobs, we can determine whether the results of a job are improving at a quick enough pace, and if

they are not, kill the job. New jobs could be started in their place, potentially getting better results,

or no new jobs could be submitted, freeing space on the cluster for other jobs.

2.2 Concepts

2.2.1 Futures

Futures are used in the programming language Alice ML [14], and were used in earlier languages

such as MultiLisp [12] and Act 1 [16]. Concurrent futures, which are used in Jole, are a way for

programs to increase concurrency and synchronize on valuesthat may take some time to compute.

The future acts a proxy for the value of a computation, which is computed in parallel with the

program. Concurrent futures start the computation as soon as they are created. Once the program

needs to use the result of the future, it will try to access it.If the future is not done, the program

will wait on the future until it finishes and returns the result. This can be used as a method of
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synchronization, as the program can continue running untilit actually needs the value of the future.

Alternatively, lazy futures, which can be used to prevent unneeded computation, only start a

computation once the program tries to access the future. This has benefits if the result returned

by the future may not be used. With eager futures, the computation would execute regardless of

whether or not the result will be used. The downside of lazy futures is that the total runtime will be

longer if most of the results from the futures will be needed.

2.2.2 Placeholders

Placeholders are a mechanism for creating an overlay metacomputer [22]. An overlay metacomputer

allows a user to have a unified interface to a set of resources.A placeholder is defined as a unit

of work. They will run tasks for the metacomputer. Placeholders may be submitted to the batch

scheduler in order to complete tasks, or may be started on machines that do not have batch schedulers

(zero-infrastructure).

Placeholders are not bound to a job until they are executed ona node. This late binding is useful

for scheduling across multiple resource sites. Rather thansubmitting jobs to the batch schedulers

of each site, placeholders can be submitted instead. Once the placeholder starts execution, it will

request a job from the job server. This allows the load to be balanced among sites, as each site will

only pull jobs from the job server when it can run them.

2.3 Motivating Applications

2.3.1 Pathway Analyst

Pathway Analyst [23] is a metabolic pathway predictor developed at the University of Alberta. A

pathway is made up of a series of reactions, by which a compound may be converted into something

more useful to the organism. Pathways can be represented by graphs, where the reactions are the

edges and compounds are the vertices. Given a user-suppliedproteome, Pathway Analyst creates

a new predicted pathway, based on the proteins that are predicted to participate in the reactions

specific to the pathway. A proteome is the complete set of proteins encoded by the DNA of an

organism. Each protein is represented by a series of lettersrepresenting the amino acids that make

up the protein.

One of the classifiers used in Pathway Analyst is the hidden Markov model (HMM) classifier.

HMMs are probabilistic models that can be used to model the hidden states of a sequence. With

catalysts, we are trying to model the shared structure of thecatalyst proteins that is most likely the

region that allows the protein to catalyze a certain reaction. To do this, we first useclustalw to

find the most probable alignment of the proteins based on the likelihood of different mutations. With

this alignment, we usehmmbuild , a tool in the HMMer [24] toolkit, which analyzes the alignment

and produces an HMM. With the HMM, we can usehmmsearch to search through protein files
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and find other proteins that are more likely to catalyze the reaction.

2.3.2 GAFolder

GAFolder is a protein structure energy minimizer developedat the University of Alberta. GAFolder

uses cyclic coordinate decent and a genetic algorithm to perform conformational sampling. The

genetic algorithm uses an energy score to evaluate structures, which is based on predicted/known

secondary structure, radius of gyration, hydrogen-bond energies, and other features. During execu-

tion, GAFolder maintains a set of structures as the population within a GAFolder instance. In each

iteration, the structures are mutated, changing the torsion angles of the protein. The best structures

survive and will ”mate” with other structures, combining different mutations. A single instance of

the program may converge to local minima, so several instances are executed in order to get the best

structure prediction.

GAFolder is used within CS23D [27] and GeNMR [4] to help refinethe protein structure.

2.4 Concluding Remarks

There are many methods for specifying and running batch scheduled jobs. We have shown how a

variety of languages and job scheduling systems specify andexecute jobs, as well as the benefits

of each system. For Jole, we focus on the dynamic execution ofjobs and workloads. The use of

these methods can improve runtime or quality of results for several types of workloads. We have

also introduced some concepts used in Jole, as well as some motivating applications.
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Chapter 3

Jole: Job-Level Parallel Workloads

As capacity computing resources increase in size and performance, it has become more important

than ever to be able to efficiently take advantage of these resources. Batch schedulers are good at

running large numbers of independent jobs, but it may be difficult to specify dependencies or they

may have to be controlled externally. The goal of Jole is to make it easier and more flexible to run

these large batch workflows.

Current methods for running batch workloads can be cumbersome. For example, in some batch

schedulers, even specifying job dependencies may require extra work on the part of the user. With

the TORQUE Resource Manager [18], the user must get the job identification numbers of all jobs

they need as dependencies, and add those dependencies to jobsubmissions for each job they need

to run. With Jole, users can specify the files that will be usedby a job, allowing our job manager

control job dependencies automatically.

In batch schedulers that support it, such as DAGman, dataflowinformation must be specified

statically, by writing scheduler-specific job files that contain the dependencies for each job, for each

set of input and output files. This static specification of workflow causes the need for a large amount

of information that must be created for each workflow instance. With a scripting language interface,

workflows can be created dynamically, based on file inputs or some other criteria. In addition, with

Jole, it is not necessary for the workflow to be an acyclic graph. Users could specify that a group

of commands repeat until their output meets some criteria. This can be useful for programs which

refine their output on each iteration. For example, with GAFolder, several instances of the program

are run in order to make protein structure predictions. The best of the predicted structures will be

used as input for the next generation. This process can be repeated to further refine the protein

structure, until the energy improvement does not meet some threshold.

Current methods also assume that jobs are atomic units of work that must be finished to com-

pletion. This is not true for all workloads. For example, optimization jobs may hit local minimas

or maximas. Rather than letting the optimization complete,it might be beneficial to end it early

once this convergence has been detected. Output of jobs may even be used to remove jobs from

the queue. For example, when running a set of BLAST commands with varying E-values, one of
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the commands may return no proteins. Once this is discovered, it is not necessary to run any of the

BLAST commands that have a more stringent E-value, as they would not return any results.

Lastly, batch schedulers are not able to dynamically adjustworkloads based on the available re-

sources. Users may want some method of adjusting their workload based on the available resources.

With the use of placeholders and submitters, we create an overlay metacomputer, aggregating mul-

tiple resources. The submitters are executed on the head nodes of each cluster the user wishes to

run their jobs on. They are responsible for submitting placeholders to the batch schedulers and for-

warding traffic between the placeholders and job manager. The workflow script can get resource

information from the job manager in order to determine how tocontinue the workflow.

Jole was created in order to increase the flexibility of running workloads on clusters. In this

chapter, we describe the concepts of Jole and how each concept results in an improvement over

current methods.

Feature Targeted Problem

Job Future High latency batch jobs and synchronization
Job Array Iteration and synchronization over multiple job futures
Data Handle Data flow synchronization and file conflicts
Command Generator Specification of large number of related commands
Monitor Interaction with job while running
Submitter Interacting with multiple batch schedulers

Table 3.1: Jole: Library Features

3.1 Pathway Analyst Example

Throughout this chapter, we include code examples to demonstrate each concept, by implementing

a script to train HMM classifiers for Pathway Analyst, a metabolic pathway prediction tool created

at the University of Alberta. Each iteration of the script will build upon the previous, using the

concepts described. Each model is trained, as follows:

1. Align a set of proteins which catalyze a single reaction, usingclustalw [15].

2. Train an HMM on the aligned proteins usinghmmbuild .

The workflow for Pathway Analyst is shown in Figure 3.1. We implement the alignment of

proteins usingclustalw and training of the HMM usinghmmbuild in the following examples.

3.2 Job Future

One of the main concepts in Jole is the idea of a job future. Jobfutures contain the necessary

information to run a job, and submit this information to the job manager. Like futures in other

languages, our job futures will execute code in another thread, immediately returning control to the
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Figure 3.1: Pathway Analyst Workflow: Training an HMM Classifier

Figure 3.2: Execution of a Job Future
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main program. If the main program tries to access a result from the job future, it will wait on the job

until the result is available.

Job futures are a simple way for Jole to deal with dynamic job completion order. Because the job

futures are executed asynchronously, they will respond to job completion with low latency, allowing

dependent jobs to start as soon as the current job is finished.Job futures can handle heterogeneous

cluster nodes or changes in workflow execution without blocking, due to their asynchronous nature.

Job futures are illustrated in Figure 3.2

In the example coming up, we create two jobs futures,jf andjf2 , then wait onjf2 . Due to

the asynchronous nature of job futures, the creation of bothimmediately return control to the script,

which then waits on the completion ofjf2 .

The main difference between futures and job futures is the ability to run arbitrary code. Futures

are generally used to execute long running methods in a program, while job futures execute programs

written in any language. This difference in granularity is important as well. Job futures are tailored

to running batch jobs, rather than segments of code.

Dependencies can be specified with dataflow or control flow information. Control flow informa-

tion is passed using thedepends on argument, which is a list containing the job futures that the

current job future must wait for before executing. Because job futures start executing upon creation,

they must be created in order of dependencies. Dataflow information is embedded in the command

argument, using data handles. These data handles must also be specified in the correct order of

dependencies when creating job futures. For example, suppose a file is going to be written to by one

job, then read from by a subsequent job. If the data handle forthe subsequent job is created first, the

job will assume that the file should already exist, since no existing data handles show the file should

be written to. It will not be dependent on the job that writes that file, and will try to read it without

waiting for the other job. When created in the correct order,the job that reads that file will see that

another job is going to write to it, and it will wait for that job to finish before executing.

When created, job futures submit their job information to the job manager. The job manager will

look at explicit dependencies and the data handles to check if the job has unmet job dependencies.

If it does, the job manager will wait until they are met. Once the dependencies are met, the job

manager submits a placeholder to the batch scheduler. The job future waits for notification from the

job manager that its job is done.

The futures may be synchronized with the main script by waiting for them, trying to access their

results, or by waiting on a collection of them. A collection of job futures allows the script to use

synchronization methods, such aswait all , wait any , or wait some.

3.2.1 Example

The first step for creating an HMM classifier for Pathway Analyst is to align the proteins and

create and HMM model based on their alignment. We useclustalw to align the proteins and
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hmmbuild , a tool provided with HMMer [24], to produce the HMM model. Sample code is shown

in Figure 3.3.

# Initialization of job manager
from job_manager import JobManager
jm = JobManager()
jm.new_submitter(’PBS’,’botha-c10’)

# Create clustalw job
jf = jm.new_job_future(

"clustalw -INFILE=32864.fasta -OUTFILE=32864.aln")
# Create hmmbuild job
jf2 = jm.new_job_future(

"hmmbuild -F 32864.hmm 32864.aln", depends_on=[jf])
# Wait for hmmbuild job to finish
jf2.wait()

Figure 3.3: Creating job futures

Each job future is initialized using thenew job future method of the job manager. The

clustalw job future is initialized with only a command string. Thehmmbuild job future is

given a list argumentdepends on , which lists other job futures that must complete before running

this one.

3.3 Command Generator

Figure 3.4: Command Generator Usage

The command generator is a useful abstraction for automatically creating sets of commands.

Parameter sweeps can be easily specified, allowing the jobs to be automatically created and run,

without the user having to iterate through all the parameters. Parameter sweeps are created using the

Cartesian product of the parameters, but using filters on thecommand generators will make it easier

to specify custom parameter sweeps.

Command generators help with the dynamic specification of workflows. Rather than specifying a

static workflow, command generators allow the user to specify workflows dynamically based on lists

of input/output files and parameters. The usage of a command generator is illustrated in Figure 3.4.

Commands are generated by specifying a skeleton string, containing printf-like variables, along

with a list for each variable. The Cartesian product of the lists is taken, and each element is used
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to create a command, substituting the variables in the skeleton string. To filter a command, the user

specifies a function which takes the same amount of arguments. Based on these arguments, the

function must be written to return true if they want to filter the command based on its variables. The

commands are added to a job array to create job futures.

In the following example, a set of commands is created using two lists to build the commands.

3.3.1 Example

Training classifiers in Pathway Analyst involves running a similar set of commands over many files.

Rather than iterating over all the possible arguments to produce our command strings, we can use a

command generator to produce the set of commands for us. Use of a command generator is shown

in Figure 3.5.

fasta_files = [’1.fasta’, ’2.fasta’]
aln_files = [’1.aln’, ’2.aln’]

# Generate clustalw commands with given argument lists
cmds = generate_commands("clustalw -INFILE=%a -OUTFILE= %a",

[tie_arguments(fasta_files,aln_files)])

# Resulting cmds array
# cmds = ["clustalw -INFILE=1.fasta -OUTFILE=1.aln",
# "clustalw -INFILE=2.fasta -OUTFILE=2.aln"]

Figure 3.5: Generating commands

In this example, each entry inaln files is the output name for theclustalw command,

corresponding to the entry infasta files at the same index. Because we want their entries to

correspond to each other, we use thetie arguments function. The%aflags in the command

string are substituted with entries from our parameter lists. Filters are not used in this example.

Filters are simple functions that returnTrue if the set of parameters should be filtered from the

generated commands. Example use of a filter is shown in Figure3.6.

For this example, a filter is created which takes two arguments. Filters must have the same

number of arguments as are being specified in the command generator. The filter here will return

True if the first argument is greater than 10 and the second argument is greater than 50. Those sets

that meet this criteria are filtered from the final command list.

3.4 Job Array

A collection of job futures can be contained in a job array, which allows for some useful operations

to be performed. Firstly, iterators of the job array allow usto iterate over the job states of the job

futures. Currently, iterators only exist for the completion states, but other iterators will be useful.

For example, iterators over error states would be useful in implementing fault-tolerance. Secondly,
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def filter(a1,a2):
if a1 > 10 and a2 > 50:

return True
return False

list1 = [5,20]
list2 = [25,75]

cmds = generate_commands("command %a %a", [list1, list2],
filter_fun=filter)

# Resulting cmds array
# cmds = ["command 5 25", "command 5 75", "command 20 25"]

Figure 3.6: Filtering commands

Figure 3.7: Job Array
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the job array can be used for job synchronization. The standard wait all , wait some, and

wait any synchronization methods are supported.

Job arrays may also be useful for dynamic workflow creation. For example, a common workload

is a parameter sweep. A static workflow could be created to runjobs with a series of parameters.

With job arrays, we may iterate over the results of jobs as they finish, and create new jobs in promis-

ing areas of the sweep. Job arrays are illustrated in Figure 3.7.

Job arrays can also be used to specify monitors for groups of jobs. By adding a monitor to a job

array, the monitor will be used on every job in the array.

Job arrays indirectly interact with the job manager throughthe job futures. Iteration and syn-

chronization are based on interacting with the job futures in the array, which then interact with the

job manager.

3.4.1 Example

In the previous example, we generated a set of commands with the command generator. It would

be possible to create job futures out of the commands individually, but a job array allows us to

instantiate all the job futures at once, and gives us some extra synchronization. An example using

job arrays is shown in Figure 3.8

# Variable cmds contains commands from command generator
# cmds = ["clustalw -INFILE=1.fasta -OUTFILE=1.aln",
# "clustalw -INFILE=2.fasta -OUTFILE=2.aln"]
# aln_files = [’1.aln’, ’2.aln’]
hmm_files = [’1.hmm’, ’2.hmm’]

# Create job array
aln_ja = JobArray()
# Add commands to array
aln_ja.add_commands(cmds)
# Wait for all job futures in array to finish
aln_ja.wait_all()

# Create job array for hmmbuild commands
hmm_ja = JobArray()
# Generate hmmbuild commands
cmds = generate_commands("hmmbuild -F %a %a",

[tie_arguments(aln_files,hmm_files)])
# cmds = ["hmmbuild -F 1.aln 1.hmm", "hmmbuild -F 2.aln 2.hmm "]

hmm_ja.add_commands(cmds)
hmm_ja.wait_all()

Figure 3.8: Job Array Example

The methodadd commands is used to add a list of commands to the job array. In this example,

we use thewait all synchronization method to ensure all protein alignment jobs are finished
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before starting thehmmbuild commands.

3.5 Data Handle

Data handles are a useful abstraction on files. They allow dataflow information to be handled by Jole.

By specifying commands with the command generator, data handles are simplified, but provide the

benefit of dataflow job synchronization. If Jole were to be combined with a dataflow scheduler, this

information can be obtained automatically.

Data handles must be created in dependency order, similar tojob futures. The first reference to

a file by a data handle determines its initial state. For example, if a read data handle is created first,

Jole will check for the file, and if it does not exist, return anexception. If a write data handle is

created first, Jole assumes that the file will be a new file, and will check the filename for conflicts,

automatically changing the name if there are conflicts. Subsequent jobs that have read data handles

on those files will wait for the write data handles to be finished before executing.

Data handles help with the dynamic specification of workflows. Data handles allow the user to

easily iterate over directory contents, creating workflowsbased on the input files. The job futures

use these data handles to automatically create dependencies between jobs.

Data handles are also useful for fault tolerance. One feature they can handle are filename con-

flicts between workflows. When there is a conflict between filenames, data handles will automati-

cally choose a new filename and use that filename in any commands which use the data handle. This

filename remapping is stored in a global table. Subsequent data handles look up filenames in the

global table. If a filename has been remapped, the new data handles will have that information. So,

the user can refer to files by their original name in the workflow while Jole uses the renamed files

behind the scenes. Data handles are also useful for file access problems. If a file is only accessible

on the head node of a cluster, a data handle could automatically retrieve the file, so that it can be

used by the running job.

Data handles may also be used to improve I/O performance. By copying heavily used files to

local storage, job run times may be improved. It may also be possible to keep intermediate files in

local storage by running subsequent jobs needing the intermediate file on the same node.

Data handles are used by the job manager in order to synchronize jobs based on dataflow in-

formation. The job manager will inspect the contents of a jobfor data handles, waiting for them

to become available before starting the job. Once the job is finished executing, the job future will

change the state of write data handles to read, allowing jobsthat need to read these files to start

executing.

In the following example, data handles are created automatically by specifying the%r and%w

flags togenerate commands.
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3.5.1 Example

Using data handles can let us avoid having to specify job dependencies manually through job futures

or job arrays. A data handle example is shown in Figure 3.9.

cmds = generate_commands("clustalw -INFILE=%r -OUTFILE= %w",
[tie_arguments(fasta_files,aln_files)])

ja = JobArray()
ja.add_commands(cmds)
cmds = generate_commands("hmmbuild -F %r %w",

[tie_arguments(aln_files,hmm_files)])
ja.add_commands(cmds)
ja.wait_all()

# Basic job futures are created using the following construc tion:
# jf = JobFuture("filename", "w") # A file that will be writte n to
# jf = JobFuture("filename", "r") # A file that will be read fr om

Figure 3.9: Specifying data handles in command generator

In this example, the %a flags are replaced with %r and %w flags, which represent files that will

be read or written to by the command. These flags are used so that data handles will be created for

those arguments. The job futures created with these commands will automatically synchronize on

the data handles, based on their read/write properties.

3.5.2 Dataflow

Data handles are used to represent the files within a workflow,and to handle filename conflicts

between workflows. The state of each data handle is stored in the workflow, so that jobs which need

to use those data handles can wait for them to be available by checking the workflow. By using data

handles for all file input and output in a workflow, the workflowcan execute efficiently based on the

dataflow information.

3.5.3 Remote File Access

One problem when writing a script to run on a cluster is that files accessible on the head node may

not be accessible from the compute nodes. File handles can help with this problem as well. If a file

handle tries to access a non-existent path or file on a computenode, it can copy the file from the

head node and modify the path in the command so that the job mayexecute. A similar check for

writing files is done as well. If the file handle determines write access to the destination directory is

not possible, it may change the path so that the job can be executed, then copy the file back to the

head node in the proper path.
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3.6 Job Manager

Figure 3.10: Overview of Job Execution

The job manager stores job information and status, sending job information to placeholders when

they request it.

The job manager sends messages to submitters to submit placeholders to the underlying batch

schedulers. A placeholder represents a unit of work, but theplaceholder is not bound to a specific

unit of work until it is executed. Once it is executed, the placeholder communicates with the job

manager to grab a job. If there is a job available that has its dependencies met, the job will be sent

to the placeholder. If there are no available jobs, the placeholder may be told to wait or terminate.

By executing jobs in this way, the job manager controls job synchronization, rather than the batch

scheduler.

The job manager also controls access to the placeholder for remote monitoring. Each placeholder

has a communications port which the job manager stores. Whena monitor wants to communicate

with a job, it asks the job manager for a placeholder communicator. Once the job is grabbed by a

placeholder, the job manager gives the communicator to the monitor.

Several problems can occur while running a job. Specific nodes may be missing libraries, have

network issues, or have limited storage space. Error recovery for these problems can be as simple

as running the job on a different node. Placeholders periodically send messages to the job manager

to notify it that they are still running. If the job manager stops receiving these messages, it assumes
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the machine has failed, and reschedules the job.

3.7 Submitter

The submitter is an abstraction on top of the batch scheduler. This abstraction allows Jole to have

a constant interface to different batch schedulers, letting programs written in Jole work on all sup-

ported batch schedulers. Workflows specified with batch scripts will be tailored to a single batch

scheduler. Workflows specified in Jole can run on any scheduler that a submitter has been created

for.

Submitters are specified by the user. They must specify the hostname of the machine and the type

of batch scheduler that is available. A submitter daemon will be started on each node specified by

the user. Generally, they will be run on the head node of a cluster, from where they can submit

placeholders to run jobs. This allows users to take advantage of multiple computing resources

transparently.

Submitters also contain a socket forwarder, which acts as a proxy for communication when direct

network connections are not possible. For example, on some clusters the compute nodes may only

have network access to the head node, for security reasons. This means the placeholders cannot

connect directly to the job manager. In cases where this happens, placeholders will instead connect

to the socket forwarder which will forward their communication to the job manager.

3.8 Monitor

Monitors allow interaction with jobs as they are running. Users may want to end jobs early based

on their poor results, or start new jobs based off of jobs withgood results. Monitors allow users to

perform these interactions while the jobs are being executed. Monitors are the key mechanism that

enables dynamic job execution.

3.8.1 Remote Monitor

Remote monitors are run on the host machine and interact witha stub server that runs with the

placeholder. The server has some basic functions that the monitor can call, similar to the idea of a

GNU Debugger (GDB) stub program for debugging on embedded devices. These commands may

ask for output from some file, ask whether a file exists, or end ajob. This prevents some problems

with trying to run code on the cluster nodes. Since the main program will be run on the head node,

all libraries needed by the user code will already be loaded.If the user wants to use an executable to

perform some task based on communication with the stub, theyonly have to ensure the host machine

supports their code.

One common use for a monitor is to watch the output of a file. Theraw output of a file may

take up too much bandwidth to transfer efficiently, so we support the usage of regular expressions to
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Figure 3.11: Remote Monitoring of a Job

limit the output that is sent to the monitor.

Monitoring over the network could be extended by allowing arbitrary commands to be executed

by the placeholder stub server. The user may want to start a bash session on the placeholder server

and submit a sequence of commands to be followed. This would allow a greater range of function-

ality to be performed by the stub server, without having to encode it within the server.

3.8.2 Local Monitor

We have created monitor classes to perform common functions, such as regular expression search

or file existence checking. These monitor classes are passedon to the placeholder, along with the

job, and will run in parallel with the job. Each monitor changes the state of the job when a positive

result is returned. Monitors can depend on other monitors, so that a series of checks can be done in

order. A monitor can change the state to the end state, which will kill the job. This can be useful for

terminating jobs under certain circumstances.

The ability to send user specified functions along with monitor classes is being worked on.

This function would be passed to the job future along with themonitor class and would be added

to the placeholder when it is created. The placeholder will execute the monitor class with the user

specified function while the job is running. It is possible todetermine all libraries in use in the current

script, so prerequisite libraries could be automatically imported in the user function. Otherwise, the

function might not have the required libraries available when it is run in the placeholder. It could

also be possible to specify external processes to monitor the output file. The placeholder would

run this process and watch its output to determine whether tokill a job. This monitoring method

may be useful to users, but may be less portable if the software across machines is not relatively
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Figure 3.12: Local Monitoring of a Job
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homogeneous.

Placeholder local monitoring benefits from much more efficient I/O access to output files than

network monitoring. Depending on the job, running placeholder local monitors could result in a

large decrease in network I/O.

Placeholder local monitoring may also be useful if users want to run a minimal version of Jole

to just get the benefits of monitors. The job manager could be avoided entirely by submitting the job

information and monitor with the placeholder to the batch scheduler, and letting the placeholder run

the job. This allows the user to monitor certain aspects of their job without the dependencies needed

by the job manager.

Local Monitor Types

We have created some basic monitors, as follows:

1. Regular Expression Monitor

A regular expression monitor watches a file until the specified regular expression is matched.

Basic functions can be added to the regular expression monitor to check values returned from

groups in the regular expression.

2. File Creation Monitor

A file creation monitor will watch for a specified filename. Once the filename has been cre-

ated, the monitor is finished running.

3. Custom Monitor

A custom monitor allows the user to create a custom function to execute within the monitor

on the remote machine. By scanning the environment for modules and functions that are

currently loaded, the user’s function will be converted back into Python code along with the

code necessary to load the modules and functions currently in use. Once started on the remote

machine, the monitor will execute the code to create the function, then execute the function.

4. Executable Monitor

An executable monitor allows a user specified executable to be run on the remote node. The

executable must return zero for the monitor to return successfully.

3.9 Adapting Jole for Different Applications

We have used a workflow from Pathway Analyst in this chapter todemonstrate the features of Jole.

Now, we explain the high level details of creating workflows for other applications. There are a

few steps required in creating a workflow in Jole. These stepsmay vary slightly based on what

features users take advantage of. At a minimum, users will probably want to use job futures with
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dependencies specified between them, using control-flow or dataflow dependencies. The control-

flow dependencies may take the form of dependencies given to each job future, or synchronizing on

sets of jobs using job arrays. If they are creating many related commands, such as in a parameter

sweep, command generators will allow them to specify these commands with less syntax. The

Pathway Analyst workflow can take advantage of command generators to specify the commands,

while the GAFolder workloads in Chapter 5 do not need commandgenerators, as they consist of the

same command being run multiple times. Additionally, theseworkflows can be parametrized, so that

the workflow script may be run on different sets of inputs. Forexample, the GAFolder workloads in

Chapter 5 could be parametrized to take a protein structure as input to the workflow. This reduces

specification needed to run different workflow instances. Ingeneral, different workflows will not

have a lot of similarity between each other and will have to bemostly written from scratch.

More advanced workflows may use custom monitors in order to enable dynamic job execution.

Custom monitors will likely have to be written for differentapplications, as they may have different

properties that must be taken into account for the monitor. Although the monitors will generally need

to be tailored to each application, the mechanism behind monitor execution is general and allows

Jole to run monitors specific to each application. If a user has other workloads that use the same

application, they can use their custom monitors in the otherworkload. For example, the workflow

for Pathway Analyst has no need for monitors, as all jobs needto be run until completion. However,

as shown in Section 5.2, monitors can be used to terminate GAFolder job instances early and save

cluster resources.

The concepts of dynamic workflow and dynamic infrastructureare general and can be used in

different workflows. However, how they are specified is workflow dependent, and will be different

for each workflow. For example, different workflows performing iteration over a global value will

likely be looking at different job information or output to determine whether to continue iteration.

Using infrastructure as it becomes available is a general concept of Jole, and this will be done

regardless of what is specified in the workflow. The only necessary prerequisite for this is to run

submitters on the clusters that the user wishes to use. However, modifying the workload based on the

available resources is workload dependent, as different jobs may not benefit from running additional

instances. This type of information must be specified in the workload. For example, these features

are not needed in the Pathway Analyst workload, as the jobs must all run to completion and do not

have properties that would benefit from iteration. However,the Pathway Analyst workload would

be able to run jobs on additional idle resources by adding submitters. GAFolder can benefit from

these features, allowing an iterative workflow on global jobresults to be done or for more jobs to be

run when there are additional resources, as shown in Sections 5.3 and 5.4. Similar to the Pathway

Analyst workload, the GAFolder workloads can run on idle resources, as long as submitters are

created for each resource in the workflow script.
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3.10 Concluding Remarks

In this chapter, we have described the features of Jole and why each feature is important. The

Pathway Analyst example allows us to present the common usage of the various features. These

features enable dynamic job execution, dynamic workloads,and dynamic infrastructure.
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Chapter 4

Implementation

We have implemented Jole in Python. As a scripting language,Python requires has less verbose

syntax than some other common languages, such as C++ or Java.This less verbose syntax can make

it simpler to specify workflows, because less code is needed and there are fewer language concepts

users need to know before implementing their workflow. Although Python is slower that C++ or

Java for many CPU intensive tasks, using C++ or Java to implement Jole would likely not result in a

large difference in performance. Since jobs are generally long running, the workflow script will be

waiting for jobs to finish most of the time, rather than performing active computation. Improvements

in the small segments of time where the script is working would likely not make a large difference

in overall performance.

Other scripting languages, such as Ruby or Perl would be decent candidates for implementing

Jole. Like Python, they have less verbose syntax than others, such as C++ or Java. However, we feel

that Python has a good mix of clean syntax, a simple application programming interface (API), and

performance when compared to other scripting languages that makes Python a good choice for Jole.

Most of Jole’s functionality is contained in a library, which is used to create and execute work-

loads. The additional functionality is in two Python scripts. The first script is the submitter script,

which is run on the head node of each batch scheduler being used. The second script is the place-

holder script, which is executed by the batch scheduler and runs the job.

4.1 Job Future

Job futures are a class in our library, which uses a thread to handle asynchronous computation.

When a job future is initialized, the thread handles execution of the job. Control is handed back

immediately to the script after creating the thread. In the thread, the job future notes which data

handles are being written to and submits the job to the job manager. The job future will then wait on

the job manager until the job is done. Once it is done, all write data handles will be set to read, so

that jobs dependent on reading these data handles can start.

While the job future is executing, it writes to some state variables in a synchronized fashion,
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Figure 4.1: Job Future States
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using a condition variable. The condition variable allows other threads or the main script to wait

on the job future. Once the job future finishes, it can notify the other processes using the condition

variable.

Figure 4.1 shows the possible states of a job future. Job future A has completed the job, and its

thread has completed executing. Job future B has a running job, and its thread is waiting for it to

finish. Job future C has a queued job, and its thread is waitingfor it to finish.

4.2 Command Generator

The command generator is implemented as a set of functions. Users use the command generator

by calling thegenerate commands function. The two main functions which implement the

command generator’s functionality are shown in Figure 4.2.The command generator can be given a

filtering function, which must have the same amount of arguments as the number of parameter lists.

This function must return true for sets of parameters that should be filtered. The command generator

will leave those sets out of the list of commands it creates.

To create the command list, thegenerate commands function iterates over the Cartesian

product of the parameter lists. In each iteration, it checksif the set of parameters should be filtered.

If the parameters are not filtered, they are passed to thesimple command function along with

the command string, which will parse the strings and replacethe command arguments with the

parameters, initializing any data handles that are specified and adding them to the final command.

After this iteration is finished, the final list of commands isreturned.

4.3 Job Array

The job array is a class in Jole, inherited from the Python array, with some additional features added

to handle job futures. The class definition for the job array is shown in Figures 4.3 and 4.4. There are

iterator methods that allow iteration over jobs in different states. As well, there is a custom iterator

method, which allows the user to define a filter function that filters out job futures they do not want.

Job arrays also have synchronization commands that act on the array of job futures. The first,

wait all , uses the job futures synchronization commands and waits for them all to finish before

returning. The second,wait some, uses threads and a condition variable to synchronize on a

waiting jobs variable. Each thread waits on a job future and modifies the waiting jobs variable once

finished, while the main script waits on the condition variable. Once a thread reaches the proper

count, it notifies the main script, and thewait some method returns.wait any , is a special case

of wait some, which waits on one job.
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# Command Generator
def generate_commands(s_command, lists, filter_fun = Non e):

commands = []
string_command = s_command.strip()
# Iterate over Cartesian product of parameters
for set in cartesian_product( * lists):

if filter_fun:
# Check if parameter set should be filtered
if not filter_fun( * set):

commands.append(simple_command(string_command, * set))
else:

commands.append(simple_command(string_command, * set))
return commands

# Parse command
def simple_command(string_command, * args):

p = re.compile(r’(%[arw])|[ ]’)
split_command = p.split(string_command)
flat_args = flatten(args)
string_arg_count = 0
for x in split_command:

if x == ’%a’ or x == ’%r’ or x == ’%w’:
string_arg_count += 1

if (string_arg_count != len(flat_args)):
raise "Number of arguments doesn’t match"

count = 0
for ind in range(0,len(split_command)):

if split_command[ind] == ’%a’:
split_command[ind] = flat_args[count]
count += 1

elif split_command[ind] == ’%r’:
split_command[ind] = DataHandle(flat_args[count], "r")
count += 1

elif split_command[ind] == ’%w’:
split_command[ind] = DataHandle(flat_args[count], "w")
count += 1

elif split_command[ind] is None:
split_command[ind] = " "

return split_command

Figure 4.2: Command Generator
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from job_future import JobFuture
import threading
from time import sleep

class JobArray(list):
def __init__(self, job_manager):

super(JobArray,self).__init__()
self.__threads = []
self.__finish_cond = threading.Condition()
self.job_manager = job_manager

def __del__(self):
for thread in self.__threads:

thread.join()

def custom_iterator(self, filter):
for job_future in self:

if not filter(job_future):
yield(job_future)

def add_job_future(self, job_future):
self.append(job_future)

def add_command(self, command):
self.append(self.job_manager.new_job_future(command ))

def add_commands(self, command_ary):
for command in command_ary:

self.add_command(command)

def wait_all(self):
for job_future in self:

job_future.wait()

Figure 4.3: Job Array Class: Part 1
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def wait_some(self, count):
self.__jobs_waiting = count

for job_future in self:
self.__threads.append(threading.Thread(

target=self.__wait_future, args=(job_future,)))
self.__threads[-1].start()

self.__finish_cond.acquire()
self.__finish_cond.wait()
self.__finish_cond.release()

def wait_any(self):
self.wait_some(1)

def __wait_future(self, job_future):
job_future.wait()
self.__finish_cond.acquire()
self.__jobs_waiting -= 1
if self.__jobs_waiting == 0:

self.__finish_cond.notify()
self.__finish_cond.release()

def finished_jobs(self):
for job_future in self:

if job_future.is_finished():
yield(job_future)

def queued_jobs(self):
for job_future in self:

if job_future.is_queued():
yield(job_future)

def running_jobs(self):
for job_future in self:

if job_future.is_running():
yield(job_future)

def add_monitor(self, m_func):
for job_future in self:

job_future.add_monitor(m_func)

Figure 4.4: Job Array Class: Part 2
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4.4 Data Handles

Data handles are implemented as a class in the Jole library. When initialized, data handles interact

with the global workflow space, in order to keep track of files.When initializing a read data handle,

it will first check if the same data handle is in the global workflow space. If it is, it will return a

data handle with that information. Otherwise, it will checkif the file exists and return an error if it

does not. We must check if the file exists in the global workflowfirst, because if the file was created

through a write data handle, it may exist at a different path due to name conflicts.

Write data handles are initialized by finding a non-conflicting name in the same path as the

original file name. Once this is done, it is returned.

4.5 Job Manager

The job manager keeps an internal list of the jobs and their properties. In addition, it keeps track of

submitters for each cluster. Once a job is submitted, the jobmanager looks at dependencies. If they

are not met, the job manager will wait to schedule the job until all its dependencies are met. Once

the dependencies for the job are met, the job manager will notify the submitters that a job is ready,

and the submitters will submit placeholders to their underlying batch scheduler.

The job manager also maintains a socket server, which is usedto communicate with the place-

holders. Each placeholder will communicate with the socketserver in order to grab job information

and change the state of the job. The job manager keeps track ofactive jobs in order to produce

communicators for the placeholders. When a remote monitor asks for a placeholder communicator,

the job manager will return one immediately if the job is active. Otherwise, the job manager will

wait until the job becomes active. The socket server also receives messages from each placeholder

as they are running, which are used to notify the job manager that the placeholders are still running.

If these messages stop coming in from a placeholder, the job manager assumes that the machine has

died, and will reschedule the job on another machine.

In addition, the job manager maintains information about each job as they are executed on the

cluster. This information is needed by remote monitors so that they are notified once their job starts

and to create a placeholder communicator for them to use to communicate with the job.

4.6 Submitters

Submitters are scripts written to interface with the batch scheduler of a cluster. They are mainly

used to submit jobs, since the placeholders will still communicate with the job manager to grab jobs

and return their results. The job manager communicates withthese wrappers on different hosts to

submit jobs.

Submitters watch a global file in order to determine whether to run jobs on their cluster. If

the server becomes unavailable, the submitter must remove all jobs from the cluster. To do this,
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Figure 4.5: Using Multiple Batch Schedulers
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submitters maintain a list of job identification numbers forsubmitted placeholders. When a cluster

becomes unavailable, the submitter kills all jobs using thebatch scheduler interface.

The submitters are executed by logging into the nodes through SSH. In order to minimize user

intervention,ssh-agent or passwordless SSH keys should be used. Usage of the TrellisSecurity

Infrastructure (TSI) [13] could be used to ease setup and administration of SSH keys.

On some clusters, it may not be possible for the compute nodesto communicate outside of the

cluster. In this case, we need a way to forward their traffic tothe job manager. This is accomplished

using a socket forwarder. The socket forwarder runs in parallel with the submitter. When the submit-

ter receives a message to submit a placeholder, it gives the placeholder the address and port number

of the socket forwarder. When the placeholder communicateswith the socket forwarder, the socket

forwarder will open a connection to the job manager and relaytraffic between them.

4.7 Placeholder

The placeholder is implemented in a script, which is executed by the batch scheduler of a cluster.

The placeholder has a synchronized state condition variable, which controls the execution of the

placeholder. When initialized, the placeholder starts a socket server to handle monitor requests.

It then communicates with the job manager server to get the job information. The job and any

placeholder local monitors are started in threads. The placeholder waits on the state variable to

change to the finished state before exiting. The state will change to finished if the job finishes, or if

one of the monitors decides to end execution early.

When the placeholder grabs a job from the job manager, it scans for any data handles or monitors.

If a data handle is found, the placeholder verifies the data handle is accessible and has the proper

permissions in order to continue. If there are file access problems, the placeholder will attempt to

scp the input files in and write output files to an accessible directory. It will try to scp the output

files back to the host node when the job is done. If a monitor is found, it initializes the monitor and

starts it.

4.8 Remote Monitor

The remote monitor is implemented as user written function which uses a placeholder communicator

to interact with the placeholder’s socket server. The communicator has specific functions that allow

the monitor to perform different functionality, includinggrabbing file output and killing jobs.

The required functionality is added to the function, then passed to the job future. The job future

creates a thread to start the monitor, which first waits for the job to be submitted. Once the job

is submitted, the remote monitor asks the job manager for a communicator to that job. This call

will block until the job has started running and communicated with the job manager. Once this has

finished, the remote monitor will run.
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4.9 Local Monitor

Local monitors are implemented as a series of classes that are added to the job futures when they

are created. The monitor information is formatted to send across the network, and is sent to the

placeholder when it requests a job. The monitors are reinitialized at the placeholder using the

init monitor function, which inspects the information and reinitializes the monitor based on

the information. These monitors are run in separate threads, and change the state condition variable

when each succeeds.

For the most part, the monitors have fairly static functionality, and will carry it out once it is

started. However, the custom monitor allows the user to submit their own function to run at the

placeholder. To initialize a custom monitor, the user must add theglobals hash to the arguments.

This lets the custom monitor inspect the namespace of the main Python script in order to get the

proper dependencies needed to run the code.

Figure 4.6 shows the Python code necessary to gather all the dependencies for a custom monitor

function. The first step is to get the source code for the function that will be run. This is done

using the Python inspect module. Then the custom monitor iterates through theglobals hash

in order to grab dependencies. For modules found in theglobals hash, an import statement is

added. User created modules only show up as strings, so we must checksys.modules to see if

any user created modules need to be imported. Lastly, functions in theglobals hash are looked at.

If they are from the main script, their source code will be sent along with the user created method.

If they are imported from other modules, a ’import x from y ’ statement is added, where x is

the function and y is the module.

4.10 Concluding Remarks

In this chapter, we have described the implementation of Jole and showed some of the code used to

implement the functionality of Jole’s components. Jole hasbeen implemented as standard Python

libraries and as two scripts, using Python.
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# Convert to string when first creating
text_ary = inspect.getsource(function).split("\n")
# Change function name
text_ary[0] = "def mon_func(self):"

# Grabbing necessary function code
for x in my_globals.keys():

match = re.search(r’ˆ__.+__$’,x)
if match:

continue
if type(my_globals[x]) is types.ModuleType\

and x != ’__builtins__’:
# Add imports
text_ary.insert(0, "import %s" % x)

elif isinstance(my_globals[x], basestring)\
and sys.modules.has_key(my_globals[x]):

text_ary.insert(0, "import %s" % my_globals[x])
elif type(my_globals[x]) is types.BuiltinFunctionType\

or type(my_globals[x]) is types.FunctionType:
try:

f_mod = my_globals[x].__module__
f_name = my_globals[x].__name__
if f_name == function.__name__:

continue
if f_mod == "__main__":

f_text = inspect.getsource(my_globals[x])
text_ary.insert(0, f_text)

else:
text_ary.insert(0, "from %s import %s" % (f_mod, f_name))

except Exception, e:
text_ary.insert(0, str(e))
text_ary.insert(0, "# %s failed" % x)

self.__function_text = "\n".join(text_ary)

Figure 4.6: Gathering Modules and Functions Needed for Local Monitor
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Chapter 5

Evaluation

We described the concepts and implementation of Jole in the previous two chapters. In this chapter,

we evaluate Jole with respect to our three contributions using GAFolder workloads. We show:

1. Dynamic job execution allows jobs to be monitored and operations performed on them while

they are running. We show that this can be used with GAFolder to terminate jobs early based

on user-specified criteria. By ending some jobs early, cluster time can be freed for other jobs.

In comparison, jobs run with static execution are all run until completion.

2. Dynamically changing workflows can be implemented in Jole, using standard control flow in

Python and global information from the workflow. We show thatJole can be used to imple-

ment a GAFolder workload that loops based on the improvementin scores between genera-

tions. The workflow uses the best global structures found in each generation as the basis for

jobs in the next. This type of workflow requires scripting, and would be difficult to implement

with a static language.

3. Workloads that adapt to available resources can be implemented using Jole. This can allow a

user’s workload to take advantage of shared resources. We demonstrate Jole’s ability to adapt

to available resources, and show that this ability can be used to implement a workload which

adjusts the number of jobs it runs based on the available resources. We show that adjusting

the number of jobs to the available resources can be used to improve the structure prediction

results of a GAFolder workload.

5.1 Evaluation Methodology

We test Jole using GAFolder, a protein structure predictor developed at the University of Alberta.

GAFolder uses genetic algorithms to evolve and choose a finalstructure, by minimizing the energy

score of the torsion angles of the predicted protein. Each instance of GAFolder uses a different

random seed for the random number generator, and will searchin different areas. Instances of
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GAFolder may converge to local minima, so multiple instances are executed in order to perform a

more thorough search.

We use GAFolder for our evaluation, because it is in production use, it is developed indepen-

dently, and it serves as an external case study for Jole. GAFolder has several properties that can be

improved using our system.

1. GAFolder is currently run for a set number of iterations. By monitoring GAFolder jobs as

they are running, it is possible to selectively stop jobs based on the rate of progress they are

making.

2. Protein structure scores can be further improved by running subsequent GAFolder instances

with the most promising global structures as input. This allows the GAFolder instances to

better search the space around the most promising structures.

3. Different instances of GAFolder will search different areas of the protein structure space.

Therefore, running more instances of GAFolder will search alarger area of the protein struc-

ture space, and can result in higher quality structures.

We test Jole using several GAFolder workloads, created to demonstrate the contributions of Jole.

Each workload runs several instances of GAFolder to refine the structure of the ubiquitin protein,

one of the example proteins provided by GAFolder. For timingmeasurements, each workload was

run five times.

All experiments are run on the test environment shown in Figure 5.1. These two test clusters

have been created on separate machines within a preexisting20-node cluster using TORQUE PBS.

All machines are connected by gigabit Ethernet. Each cluster is made up of three nodes containing

a total of 12 cores. Machines A1 and B1 only schedule jobs on two of the four available cores, so

10 cores are available for job scheduling in each cluster. Each compute node contains a quad-core

Intel Xeon 5160 processor, with a clock speed of 3.0GHz. Eachcompute node also contains 12GB

of RAM.

5.2 Dynamic Job Execution

Without the use of Jole, GAFolder runs for a set number of iterations, rather than using a convergence

criteria. This is done for simplicity. By actively monitoring these jobs while they are running, we

can stop the execution of jobs that are not improving their energy score. If the application has the

exclusive use of a cluster, new jobs could be started to replace the stopped ones, since each execution

is independent and searches a different structure space. This could potentially allow GAFolder to

better focus its search. In the case of a shared-use cluster,stopping these jobs can free up resources

for other users, which is what we show here. Recall that, in a batch scheduled environment, jobs
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Figure 5.1: Cluster Testing Environment

are generally run to completion. While the status could be monitored by the application itself, Jole

allows you to create monitors for many applications.

To test dynamic job execution, we ran two GAFolder workloadson cluster A, shown in Fig-

ure 5.1. The results are shown in Table 5.1. The workflow graphfor these workloads is illustrated in

Figure 5.2. Each workload consists of 20 instances of GAFolder, each given the same initial protein

structure. After the workload is finished running, the best protein structures are returned, based on

the evaluation score of GAFolder. GAFolder uses different random-number seeds to search the pro-

tein structure space. To ensure reproducibility, we presetthe random seed for each instance, keeping

them the same in both workloads.

The static workload runs standard instances of GAFolder. Each instance runs 300 iterations

of the genetic algorithm, as that is a number of iterations that has been used in practice by the

developers of GAFolder. This gives us a baseline from which to compare the results of the dynamic

local workload.

The dynamic local workload runs standard instances of GAFolder with a monitor attached to

each one. The monitor watches the output of the GAFolder job,determining the standard deviation

of the last 25 iterations. By determining the standard deviation of the last 25 iterations, we can

determine how much the score is changing. If the standard deviation of those iterations is less

than 0.0001, the monitor will end the job, as there is little change in score happening. Note that

these GAFolder instances are identical to the instances in the static workload, except for the added

monitors.
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Figure 5.2: GAFolder: Workflow

From the results for the static workload and the dynamic local workload in Table 5.1, we can see

that:

1. Dynamic job execution reduces the average number of iterations from 300 to 204.55, leading

to shorter job times and shorter makespan. Compare the average job time of 1424.99 seconds

for the static workload to 969.45 seconds for the dynamic local workload. The makespan is

reduced from 2889.94 seconds to 2708.67 seconds.

2. Dynamic job execution leads to a reduction in accumulatedtime, which is the sum of the

running times of all GAFolder instances. A reduction results in more time on the cluster for

other jobs. Of course, this improvement is a direct result ofshorter job times. Note that

the accumulated time for the static workload is 28478.87 seconds, while the dynamic local

workload uses 19375.11 seconds of accumulated time.

3. However, it should be noted that the score for the dynamic local workload is slightly worse,

with a score of -32.97 versus a score of -33.32 for the static workload. Recall that lower

scores are better, as GAFolder performs an energy minimization. This occurs due to ending

jobs early. However, the score when using dynamic job execution can be improved by running

a global workload, discussed in Section 5.3.

While there is not a large decrease in makespan, the use of dynamic job execution has resulted in

a 6% reduction. The main benefit is the reduction in the accumulated time, as a result of the shorter
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job times. The average job time for the workload with dynamicjob execution is 32% lower, which

corresponds to the 32% lower accumulated time for the workload with dynamic job execution. This

is a significant reduction that could be used to allow jobs from other users to run, or to run additional

GAFolder jobs to further search the protein space. The dynamic local and global workload numbers

are discussed in Section 5.3.

Workload Makespans Accum Times Avg Job Times Avg Iters Score

Static (20) 2889.94 (3.11) 28478.87 (21.75) 1424.99 300 -33.32
DL (20) 2708.67 (5.37) 19375.11 (21.21) 969.45 204.55 -32.97
DLG (10) 1276.26 (11.65) 9147.47 (32.17) 303.78 60.10 -33.12
DLG (20) 2950.73 (24.14) 23566.04 (220.50) 236.14 44.86 -33.52

DL refers to the dynamic local workload and DLG refers the dynamic local and global workload.
For the workload column, the number in parentheses refers tothe number of GAFolder iterations

run (per generation in the case of global workloads). All timing values are from the average of five
runs, and display the standard deviation in parentheses.

The score column shows the best structure score from any instance in a workload.

Table 5.1: GAFolder: Comparison of workloads

The GAFolder runtime distribution for each workload is shown in Figures 5.3 and 5.4. In

Figure 5.3, we can see that there is little variation in runtimes of GAFolder for the static workload,

as compared to the dynamic job execution workload. The runtime varies between 1410.75 and

1444.12 seconds. In Figure 5.4, we can see that there is more runtime variance between jobs in the

dynamic workload. There are a few jobs that run almost as longas in the static workload, but for the

most part, jobs were terminated significantly earlier.

Instance Number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
un

ni
ng

 T
im

e 
(s

)

0

200

400

600

800

1000

1200

1400

1600

1800

Figure 5.3: GAFolder Runtime Distribution: Static Workflow

5.3 Dynamic Workflow

As stated in Section 5.2, multiple instances of GAFolder areexecuted to better search the structure

space of a protein. This process can be repeated on the best proteins found, allowing search to be
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Figure 5.4: GAFolder Runtime Distribution: Dynamic Local Workflow

focused in the most promising area. A global workload, shownin Figure 5.5, repeats the workload

in Section 5.2 with the best proteins from each generation. The first iteration of the workload is

identical to the dynamic local workload in Section 5.2. After the first iteration is done, the best two

structures are used as input for the new GAFolder instances,which will further search the structure

space around the promising structures. Once the improvement in score between generations is below

our threshold, the workflow will finish. Note that the dynamiclocal workload in Section 5.2 only

alters execution locally for each instance of GAFolder, while the dynamic local and global work-

load looks at the results of each job in order to determine whether to continue executing additional

generations.

Workflows that must use global information from job executions to decide on control flow are

difficult to program in a static workflow specification language. Scripting is required in order to

check the results of jobs between each generation, and decide whether to run another. If there has

not been enough of an increase in score to support running more instances, the best protein found so

far is returned. With Jole, this dynamic workflow can be easily specified.

We test the GAFolder dynamic local and global workload on cluster A, shown in Figure 5.1.

Results are shown in Table 5.1. Each generation of the workflow is identical to the dynamic lo-

cal workflow in Section 5.2, except for a more stringent cutoff for ending jobs. This means that

GAFolder instances will be ended earlier when making slow progress, as compared to the dynamic

local workload. The following parameters were used:

1. Two workloads are run, with one having 10 instances per generation and the other with 20.

For the first test, the number of instances is less than in the dynamic local workload. This

means that the search is not as exhaustive in the initial generation, but more generations will

run, focusing on the best structures from each generation.

2. A standard deviation of less than 0.001 over 25 iterationsends job execution. This cutoff is

more stringent than it is in the dynamic local workload. By using a more stringent termination
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Figure 5.5: GAFolder: Dynamic Local and Global Workflow
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criteria, GAFolder jobs will be ended earlier, resulting inlower initial scores. Rather than im-

proving the score through more initial iterations, we can improve it through more generations.

3. A decrease in score between generations of less than 0.1 ends the workflow loop. For example,

if the best structure score in the first generation was -16 andthe best in the second generation

was -16.1, than more generations would be run. If the best structure in the second generation

was -16.05, than no more generations would be run.

4. The two most promising protein structures are carried over between generations, to be used

as the initial structures for GAFolder instances.

From the results in Table 5.1, we can see that:

1. Dynamic workload specification allows the dynamic local and global workload to search more

exhaustively around promising proteins, resulting in a better score than when using dynamic

job execution alone. Using more restrictive cutoffs for GAFolder instances allows the work-

flow to more aggressively trim instances that are not showingimprovement. Compare the

score of -33.12 for the dynamic local and global workload with 10 instances to -32.97 for the

dynamic local workload. The dynamic local and global workload runs in 1276.26 seconds, as

compared to 2708.67 seconds for the dynamic local workload.

2. With the dynamic local and global workload for GAFolder running 20 instances per genera-

tion, an energy score better than the final one produced by thestatic workload is achieved, in

only slightly more time. Notice a score of -33.52 for the dynamic local and global workload

with 20 instances and a score of -33.32 for the static workload. The makespan for the dy-

namic local and global workload with 20 instances is slightly higher. However, the dynamic

local and global workload with 20 instances reached a score of -33.44 after 2700 seconds,

producing a better score in less time than the static workload. Also, the accumulated time of

the dynamic local and global workload with 20 instances is significantly less. Compare the

accumulated time of 23566.04 seconds for the dynamic local and global workload with 20

instances to 28478.87 seconds for the static workload.

When using 10 instances of GAFolder in each generation, the dynamic local and global work-

load finishes approximately 55% faster than the static workload, and 52% faster than the dynamic

local workload. The accumulated time is also an improvement, scoring about 67% shorter than

the static workload and 52% shorter than the workload with dynamic job execution. The decrease

in accumulated time results in more cluster resources for other users or jobs. However, the score

is slightly worse than the static workload, although it is animprovement over the dynamic local

workload.

When using 20 instances of GAFolder in each generation, the dynamic local and global workload

was able to produce a better quality score. The increase in instances per generation resulted in a
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longer makespan, which was about 2% longer than the static workload. The accumulated time is

about 21% longer than the dynamic local workload and 17% shorter than the static workflow. While

this workload took slightly longer, it was able to produce a structure score that is 0.2 better than the

static workload.

Figures 5.6 show 5.7 show the average number of iterations performed by GAFolder in each

generation for each workload. The first generation has the largest average number of iterations by

a significant margin. The next generations averages are between 20 and 30 iterations. This occurs

because the GAFolder instances have a higher rate of improvement in the first generation, while in

later generations improvement in score comes at a slower rate.
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Figure 5.6: Average Number of Iterations Per Generation: Dynamic Local and Global Workload (10
instances)
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Figure 5.7: Average Number of Iterations Per Generation: Dynamic Local and Global Workload (20
instances)
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5.4 Dynamic Infrastructure

In many organizations, there are resources which are often idle. For example, within an organization,

several groups may have their own clusters. Some groups may only need to run large workloads

occasionally. However, when they run their workloads, theywant to be able to fully utilize their

cluster, in order to finish running their workload as quicklyas possible. When these clusters are idle,

it would be beneficial to be able to execute other users jobs onthem. One goal of Jole is to allow

users to run workloads across cluster resources. With Jole,users can run their workloads completely

on shared resources. Jole will run jobs on the shared clusters as they become available, and kill jobs

when the cluster is used by the owner. The following workloaddemonstrates how Jole allows users

to run their workload across different cluster resources.

To test dynamically running a workload across cluster resources, we use the GAFolder work-

flow from Section 5.3, modified to search more extensively. Specifically, we run 20 instances of

GAFolder per generation and end execution when the difference in score between generations is

less than 0.02. After 15 minutes, the submitter running on cluster B is notified to stop running jobs.

60 minutes later, the same submitter is notified that it can resume running jobs. We are running the

workload on the two test clusters, cluster A and cluster B, shown in Figure 5.1. Our submitters are

configured to remove all jobs from the queue, and kill any running jobs, immediately after receiving

a notification to stop running jobs. For example, if job 1 is running on cluster B and the submitter

for B receives a notification to stop running jobs, job 1 will be killed. It will then be put into the

failed jobs queue, which has priority over jobs that have notrun yet. Job 1 will run on cluster A as

soon as it reaches the front of the failed jobs queue.

Figure 5.8 illustrates the usage of each cluster throughoutthe workload. Cluster A has relatively

stable usage throughout the execution of the workload. Reductions in the number of instances run-

ning on both clusters occur mainly due to barriers between generations of the GAFolder calculations,

when only a few GAFolder instances are running. Cluster B has0 instances running on it, from 15

minutes to 75 minutes. This is due to the submitter on clusterB stopping jobs after receiving stop

notification. At 75 minutes the submitter receives a notification to continue running jobs, and jobs

start running on cluster B again.

Figure 5.9 shows the number of completed instances on clusters A and B. We can see that

cluster A has a mostly linear graph, finishing jobs at a stablepace. Cluster B, however, reaches a

plateau after 15 minutes. Again, this happens because the submitter for B was told to stop running

jobs. Once the submitter is allowed to run jobs again, after 60 minutes, the number of completed

instances rises relatively linearly.

5.4.1 Adjusting Workflow Based On Total Resources

Distributing jobs among available resources as they becomeavailable is useful, but with Jole it is

also possible to dynamically alter the workload based on theavailable resources. Suppose a user
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Figure 5.8: Dynamic Infrastructure: Number of Instances Running on Each Cluster

Timeline (Minutes)
0 20 40 60 80 100 120

N
um

be
r 

of
 In

st
an

ce
s

0

50

100

150

200

250

300

350

400

Cluster_A

Cluster_B

Figure 5.9: Dynamic Infrastructure: Instances Finished onEach Cluster
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wants to run a workload that finishes within a certain period of time. If they are running a workload

on heterogeneous resources, they could roughly estimate running time based on the number of jobs.

If more resources are available, they could run more jobs in the same amount of time.

We test this using the same workflow from earlier in this section, except for a small change.

Rather than running a set amount of GAFolder instances in each generation, we now check the total

number of processors available, setting the number of instances to double the amount of processors.

This allows our workflow to do a more exhaustive search in eachgeneration if there are more re-

sources available. The dynamic local and global workflows inSection 5.3 are focused on improving

score with less resources. In this section, we show that score can be improved with more resources.

We run the workload twice, with the same base infrastructureavailable, cluster A. The constant

workload has no additional resources available to it and will run 20 instances per generation on

cluster A until the workload has finished. The adjusting workload has opportunities to use cluster B

for the first 15 minutes and after 75 minutes into the workload. Remember that both cluster A and

B have 10 cores available. This results in twice as much computing power to boost throughput for

the adjusting workload when cluster B is available.

Figures 5.10 and 5.11 show the number of instances running and completed on cluster A over

time for the constant workload. Cluster A has a stable numberof instances running on it throughout

the workload. The number of instances finishing in the first 23minutes increases at a much slower

rate than later generations, as each instance is running formore iterations than instances in later

generations. After the first 23 minutes, the number of instances finished increases at a quicker rate.
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Figure 5.10: Constant Workload: Instances Running on Cluster A

Figures 5.12 through 5.13 show the number of instances running and finished on clusters A and

B for the adjusting workload. Cluster A has a similar slope for finished instances over the first 23

minutes, which then increases as instances are run for less iterations. From the figures for cluster B,

we can see that the number of finished instances increases in between 0 and 15 minutes and after 75

minutes into the workload.
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Figure 5.11: Constant Workload: Instances Finished on Cluster A
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Figure 5.12: Adjusting Workload: Instances Running on EachCluster
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Figure 5.13: Adjusting Workload: Instances Finished on Each Cluster
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The best GAFolder score over time for each workload is shown in Figure 5.14. These scores are

gathered by finding the globally best structure score every minute. The scores from the adjusting

workload and constant workload trade places over the first 82minutes. However, after 75 minutes,

the adjusting workload has more resources available and starts running more instances. The ad-

justing workload maintains a lead over the constant workload until both are finished. The constant

workload stops running after 153 minutes, because the scoreimprovement criteria for running more

generations was not met. The adjusting workloads runs for slightly longer, as it meets the minimum

score improvement criteria for more generations.
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Figure 5.14: GAFolder Scores Over Time in the Constant and Adjusting Workloads

Table 5.2 compares the best scores between workloads at the end of each generation. From the

table, we can see that each workload achieves the same score after the first generation. This happens

because each workload runs the same instances in the first generation, producing the same results.

Subsequent generations show the adjusting workload gaining a lead in the first generation and losing

it in the second generation. The adjusting workload regainsthis lead in the ninth generation. The

adjusting workload maintains this lead for the all remaining generations. Note that generation times

are relatively close for the first six generations. During generation 6, cluster B becomes unavailable,

so any jobs that were running on it needed to be rerun. The samesituation occurs in generation

18. The constant workload only ran 24 generations, as the threshold for continuing was not met in

generation 23.

5.5 Concluding Remarks

In evaluating Jole with GAFolder workloads, we have shown that the contributions of Jole can be

used to improve upon the standard GAFolder workflow. Specifically:

1. Dynamic Job Execution
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Generation Constant Workload Adjusting Workload
Score Time (m) Instances Score Time (m) Instances

0 -32.81 23 20 -32.81 21 20
1 -33.04 29 20 -33.11 29 40
2 -33.24 36 20 -33.24 35 40
3 -33.44 43 20 -33.35 41 40
4 -33.52 48 20 -33.46 47 40
5 -33.63 53 20 -33.55 52 40
6 -33.70 59 20 -33.68 64 40
7 -33.80 64 20 -33.79 70 20
8 -33.85 70 20 -33.90 76 20
9 -33.95 75 20 -34.01 81 20
10 -33.99 81 20 -34.10 86 20
11 -34.07 86 20 -34.20 92 40
12 -34.11 92 20 -34.25 98 40
13 -34.14 97 20 -34.34 104 40
14 -34.19 103 20 -34.39 110 40
15 -34.29 109 20 -34.43 115 40
16 -34.35 114 20 -34.48 121 40
17 -34.41 120 20 -34.59 127 40
18 -34.45 125 20 -34.65 138 40
19 -34.49 131 20 -34.67 143 20
20 -34.52 136 20 -34.69 149 20
21 -34.56 142 20 -34.72 154 20
22 -34.58 147 20 -34.81 160 20
23 -34.59 153 20 -34.90 165 20
24 - - - -34.94 171 20
25 - - - -34.96 176 20
26 - - - -34.99 181 20
27 - - - -34.99 187 20

Table 5.2: GAFolder Scores After Each Generation in the Constant and Adjusting Workloads
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In Section 5.2, we show that using monitors to dynamically terminate GAFolder instances

showing a slow rate of improvement, rather that waiting for the standard number of iterations

to finish, can free up significant time on the cluster. However, this happens at the expense of

some score quality.

2. Dynamic Workflow

In Section 5.3, we show that by using global information fromjobs in a workload running 10

instances per generation, it is possible to get decent scores in much less time than the static

workload. In addition, we also show that by using the global information from a workload

running 20 instances per generation, it is possible to get better scores than the static workload,

while not using as much cluster resources.

3. Dynamic Infrastructure

In Section 5.4, we show that Jole is able to take advantage of additional resources as they

become available. Furthermore, we show that these additional resources may be used to run

extra GAFolder instances in each generation, generating better scores.

64



Chapter 6

Concluding Remarks

As scientific computing problems grow larger, methods for executing these problems become more

important. Batch schedulers are often used to schedule and execute these scientific workloads.

Generally, batch schedulers are static with respect to three properties: interacting with a job while

it is running, modifying a workload while it is running, and changing the workload infrastructure

while it is running. Many workloads can benefit from allowingdynamic changes in one or several

of these properties.

We introduce Jole, a library that enables dynamic changes inthese three properties. Monitors

allow interaction with jobs as they are running. Job futures, job arrays and the Python base of Jole

allow modifying workloads as they are running. The architecture of the job manager, submitters,

and placeholders enables dynamic changes to infrastructure.

We evaluate Jole using a set of workloads for GAFolder, to test each of Jole’s contributions.

1. Dynamic Job Execution

The dynamic local workload demonstrates the usefulness of dynamically interacting with jobs

as they are running. By using monitors to end GAFolder jobs that reach plateaus, space can

be freed up on the cluster to run other jobs, at the expense of some score quality.

2. Dynamic Workflow

The dynamic local and global workloads demonstrate the usefulness of modifying workloads

as they are running, using global information. By monitoring improvements in score between

generations, our workload script will run while a fast enough rate of progress is being made.

Combining the dynamic workload abilities with more restrictive cutoffs allows the global

workload to get better score, while using less cluster resources.

3. Dynamic Infrastructure

The adjusting workload demonstrates the usefulness of dynamic changes in the execution

infrastructure. As more resources become available, Jole will run jobs on them. By adjusting
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the workload to run more jobs when there is more available resources, it is possible to find

better protein structures with GAFolder.

6.1 Future Work

Jole would benefit from more closely integrating the runningof jobs in virtual machines (VMs) with

the scheduler. While it is currently possible to run VM jobs,Jole would benefit from being able to

perform low-level interactions with the VM. Specifically, the ability to suspend/resume VMs would

be a great benefit in dealing with dynamic infrastructure. Ifa cluster becomes unavailable, a simple

policy would be to suspend all the VMs, waiting for the cluster to become available again. If any of

the suspended jobs still need to be run when the cluster is available again, they would be resumed.

However, this policy depends on the availability of enough disk space to suspend the VMs on each

node, and still run other jobs. A more advanced policy might migrate machines off the cluster,

choosing to move the VMs with most computation performed or by some other criteria.

Jole may also benefit from the use of some of the Trellis infrastructure. Specifically, the Trellis

Security Infrastructure (TSI) and Trellis NFS (TNFS) wouldbe useful for running jobs with Jole.

TSI is a complete solution for maintaining an SSH overlay, sothat user processes can access any

other remote host in the overlay. Currently in Jole, users must setup their ownssh-agent process

on the host node, which must be done to allow submitters to start on the remote nodes. Processes

cannot access other remote hosts unless the user has setup passwordless SSH keys. TSI would

simply the infrastructure needed to run jobs and move data between nodes in Jole. The use of TNFS

would be more secure than the current setup required to automatically copy data to placeholders

when it is not available. With the use of TSI, TNFS securely authenticates with other hosts and

copies files.
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Appendix A

Code Listings

A.1 Workflow Script for GAFolder Local and Global Workflow

#!/usr/bin/env python

# Jole Libraries

from job_manager import *

from job_future import *

from job_array import *

from data_handle import *

from monitor import *

from gafolder_lib import *

import operator, threading, os, re, sys

from uuid import uuid4

import time

def main():

jm = JobManager()

# Head nodes of two test clusters

jm.new_submitter(’PBS’, ’botha-c12’)

jm.new_submitter(’PBS’, ’botha-c10’)

sthread = threading.Thread(target=score_thread)

sthread.setDaemon(True)

sthread.start()

# Generate uuid for job
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uuid = str(uuid4())

# GAFolder parameters

num_instances = 20

num_carryover = 2

loop_diff = 0.02

loop_count = 0

count = 0

gafolder_dir =\

"/usr/botha10b/jordan/job_demo/gafolder_dyn_infra/g afolder"

inst_dirs = []

ja = jm.new_job_array()

for inst_num in range(0, num_instances):

# Uniquely identify each instance

inst_dir = "gafolder-%s-0-%d" % ( uuid, inst_num)

inst_dirs.append(inst_dir)

command = ["./gafolder -it 300 -r %d -pdb " % count,

DataHandle("gafolder/example/ubiquitin/1ubq.pdb", "r "),

" -cs ",

DataHandle("gafolder/example/ubiquitin/bmr5387.str" , "r"),

" > gafolder_log"]

count += 1

os.mkdir(inst_dir)

os.chdir(inst_dir)

cm = CustomMonitor(job_mon, my_globals=globals())

jf = GAJobFuture(jm, command,

gafolder_dir=gafolder_dir, monitors=[cm])

ja.add_job_future(jf)

os.chdir("..")

ja.wait_all() # Wait for GAFolder jobs to finish

prev_best_score = None

loop_count += 1
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while True:

best_dirs_and_scores =\

best_score_dirs(inst_dirs, num_carryover)

cur_best_score = best_dirs_and_scores[0][1]

dirs = [x[0] for x in best_dirs_and_scores]

best_pdb_files = best_pdbs(dirs)

if not prev_best_score is None:

score_diff = prev_best_score - cur_best_score

# End iterations if improvement in score below threshold

if prev_best_score - cur_best_score < loop_diff:

break

prev_best_score = cur_best_score

inst_dirs = []

ja2 = jm.new_job_array()

for inst_num in range(0, num_instances):

inst_dir = "gafolder-%s-%d-%d"\

% ( uuid, loop_count, inst_num)

inst_dirs.append(inst_dir)

command = ["./gafolder -it 300 -r %d -pdb " % count,

DataHandle(best_pdb_files[inst_num%len(best_pdb_fil es)],\

"r"),

" -cs ",

DataHandle("gafolder/example/ubiquitin/bmr5387.str" , "r"),

" > gafolder_log"]

count += 1

os.mkdir(inst_dir)

os.chdir(inst_dir)

cm = CustomMonitor(job_mon, my_globals=globals())

jf = GAJobFuture(jm, command,

gafolder_dir=gafolder_dir, monitors=[cm])

ja.add_job_future(jf)

os.chdir("..")

loop_count += 1

ja2.wait_all() # Wait for GAFolder jobs to finish
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if __name__ == "__main__":

main()

A.2 Custom Local Monitor Used for GAFolder Instances

def job_mon():

header_hsh = {}

# Regular expressions for various output

hl_re = re.compile(’ˆ-+\n$’)

output_re = re.compile\

(’Best score after initializing all genomes’)

output_re2 = re.compile(’To set version\=124’)

output_end_re = re.compile\

(’To set version\=123’) # Output is done

# Track where we are in file

begin = False

begin2 = False

first_hl = True

nlh = False

scores = []

# Iterate through log file as it is added to

for line in tail_f_retry("gafolder_log"):

# Break once output is done

if begin2 and output_end_re.match(line):

break

# Check score of current output

if begin2:

sp_line = line.split()

try:

iter = int(sp_line[0])

score = float(sp_line[header_hsh[’Total’]])

scores.append(score)

# Check standard deviation of last 25 scores

if std_dev_last(scores, 25, 0.0001):
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# Notify placeholder job is done

self.comp_state.change_state("Log Finish", True)

break

except Exception as e:

pass

# Split header to get column names

if nlh:

sp_header = line.split()

for x in range(0,len(sp_header)):

header_hsh[sp_header[x]] = x+1

nlh = False

# Find first line previous to header

if first_hl and hl_re.match(line):

nlh = True

first_hl = False

# First beginning regex

if output_re.match(line):

begin = True

# Second beginning regex

if begin and output_re2.match(line):

begin2 = True

73


