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Abstract

The goal of error control coding is to encode information in such a way, that in the event that

errors occur during transmission over a noisy communication channel or during storage in

an unreliable memory, the receiver can correct the errors and recover the original transmit-

ted information. Low-density parity-check (LDPC) codes are a kind of high performance

linear block code, which are already used in many recent communication systems. Infor-

mation rates guaranteed by these codes approach the theoretical Shannon capacity limit. In

addition, LDPC codes are now widely used in practice and included in many communica-

tion standards. Therefore study of these codes is very important and practical approaches

to their design and decoding techniques are of great interest.

There exist very good decoding algorithms for LDPC codes with respect to different

channel models. However, LDPC codes suffer from the infamous error floor problem at

high signal-to-noise ratios. This problem is attributed to the trapping sets by Richardson.

It is shown that the dominant trapping sets of regular LDPC codes, so called absorption

sets, undergo a two-phase dynamic behavior in the iterative message-passing decoding al-

gorithm. We present a linear dynamic model for the iteration behavior of these sets. It

can be seen that they undergo an initial geometric growth phase which stabilizes in a final

bit-flipping behavior where the algorithm reaches a fixed point. Our analysis is shown to

lead to very accurate numerical calculations of the error floor bit error rates down to error

rates that are inaccessible by simulation.

The topologies of the dominant absorption sets of two example codes, the IEEE 802.3an

[2048, 1723] regular (6, 32) LDPC code and the Tanner [155, 64, 20] regular (3, 5) LDPC

code, are identified and tabulated by using topological features in combination with search

algorithms, respectively.

To make our analysis more complete, we provide more solid evidence showing that

trapping sets are equivalent to absorption sets. In other words, we argue that absorption

sets characterize all failure mechanisms. Some insights from our linear analysis can be

borrowed to approach this problem.



Another insight that this formula provides to us is the means to reduce the error floor,

which is another important part of what we hoped to achieve by developing the formula in

the first place. By allowing the log-likelihood ratios (LLRs) utilized by the message-passing

decoding to grow bigger in precision length, the absorption sets as a trouble-causing struc-

ture will be successfully corrected. Therefore, the absorption sets, generically born with

the code design, will no longer threaten the error correcting performance as long as the

messages have enough room and time to grow. This translates to greater LLR clipping

thresholds and more iterations, both of which are preset at the decoder. However, the actual

settings are dependent on how much the subgraph of the dominant absorption set resem-

bles that of a non-zero minimum-weight codeword, therefore the settings are empirical. In

general more likeness in their topologies, the more effort it costs to correct the absorption

set.
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from the University of Nebraska, USA. I thank them all for reviewing my thesis thoroughly

and professionally. Their insightful feedback and expertise helped broaden my perspective

and improve my thesis during the last step of this program.

I would also like to thank my fellow colleagues and friends for their help and friendship

throughout the whole program. They are Dr. Dmitry Trukhachev, Dr. Deyasini Majum-

dar, Dr. Sumeeth Nagaraj, Dr. Saeed Fouladi Fard, Dr. Lukasz Krzymien, Dr. Marcel Jar,

Dr. Gongpu Wang, Dr. Rongfei Fan, Dr. Larry Hua, Majid Ghanbarinejad, Russell Dodd,

Michiko Maruyama, Rezwana Huq, Navid Rezaei, Sheehan Khan, Ke Li, Jie Gao, Bo Hu,

Li Xu, and Michelle Xia. The list could go on. I would like to thank the staff of the ECE

Department, especially, Ms. Pinder Bains and Ms. Kathleen Forbes, for their assistance in

a timely and friendly manner. I would also like to express my gratitude to the families

of the Sieberts, the Wienses, the Sealeys, the Fehrs, and the Cornfields for their love and

encouragement.

Finally, my special thanks go to my parents and grandparents for their unconditional

love and support.



Table of Contents

1 Introduction 1
1.1 Binary Linear Block Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Low-Density Parity-Check Codes . . . . . . . . . . . . . . . . . . . . . . 7
1.3 The Influence of the Decoding Algorithm . . . . . . . . . . . . . . . . . . 11
1.4 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Two Example LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Organization of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 LDPC Decoding Algorithms 15
2.1 Iterative Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 LDPC Decoding Algorithm on BEC . . . . . . . . . . . . . . . . . 16
2.1.2 Gallager’s LDPC Decoding Algorithm A for BSC . . . . . . . . . . 17
2.1.3 Message-Passing Algorithm on AWGN . . . . . . . . . . . . . . . 18

2.2 Linear Programming Decoding . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Maximum-Likelihood Decoding . . . . . . . . . . . . . . . . . . . 22
2.2.2 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Linear Programming Decoding for LDPC Codes . . . . . . . . . . 24
2.2.4 Comparison with Message-Passing Decoding . . . . . . . . . . . . 28

3 Error Floor Estimation 29
3.1 Error Patterns of LDPC Codes on BEC . . . . . . . . . . . . . . . . . . . . 30
3.2 Bit-Flipping on BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Message-Passing on AWGN . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Decoding Failures of the IEEE 802.3an LDPC Code in its Error Floor Region 32

3.4.1 Finding Dominant Absorption Sets . . . . . . . . . . . . . . . . . 33
3.4.2 Less Dominant Absorption Sets . . . . . . . . . . . . . . . . . . . 36

3.5 Error Floor Estimation of the IEEE 802.3an LDPC Code . . . . . . . . . . 40
3.5.1 Dynamic Analysis of Absorption Sets . . . . . . . . . . . . . . . . 40
3.5.2 Numerical Verification . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Error Floor of the Tanner [155, 64, 14] Regular (3, 5) LDPC Code . . . . . 53
3.6.1 Absorption Set Identification . . . . . . . . . . . . . . . . . . . . . 55
3.6.2 Linear Algebraic Estimation of the Error Rate . . . . . . . . . . . . 57

3.7 Error Probability Formula Refinement . . . . . . . . . . . . . . . . . . . . 62
3.7.1 External Variable Nodes . . . . . . . . . . . . . . . . . . . . . . . 62
3.7.2 PAS Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.7.3 Spectral Approximation . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Some Other LDPC Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9 Error Patterns of Linear Programming Decoding . . . . . . . . . . . . . . . 66

3.9.1 Linear Programming Decoding on BSC . . . . . . . . . . . . . . . 67
3.9.2 Relationship between LP and MP on BSC . . . . . . . . . . . . . . 69

4 Error Floor Reduction 72
4.1 Extrinsics Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 LLR Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 Iterations and Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



5 Conclusions and Future Work 88
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 92

A IEEE 802.3an RS-based LDPC Code 98
A.1 Code Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A.1.1 A Class of LDPC Codes Based on Reed-Solomon Codes . . . . . . 98
A.1.2 IEEE 802.3an LDPC Code . . . . . . . . . . . . . . . . . . . . . . 103

A.2 Absorption Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.2.1 a = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2.2 a = 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2.3 a = 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.4 a = 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2.5 a = 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.2.6 a = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B Tanner Codes 159
B.1 Tanner Code [155, 64, 20], (3, 5) . . . . . . . . . . . . . . . . . . . . . . . 160

B.1.1 Absorption Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.1.2 Error Events Analysis . . . . . . . . . . . . . . . . . . . . . . . . 165

B.2 Tanner Code [755, 334, 14], (3, 5) . . . . . . . . . . . . . . . . . . . . . . 180
B.2.1 Absorption Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
B.2.2 Error Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.2.3 Minimum Weight Codeword . . . . . . . . . . . . . . . . . . . . . 186

B.3 Tanner Code [186, 35, 36], (5, 6) . . . . . . . . . . . . . . . . . . . . . . . 186
B.3.1 Girth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
B.3.2 Absorption Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
B.3.3 Codeword Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.3.4 Error Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.4 Tanner Code [104, 30, 14], (3, 4) . . . . . . . . . . . . . . . . . . . . . . . 194
B.4.1 Absorption Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.4.2 Codeword Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 197
B.4.3 Error Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197



List of Tables

3.1 The dominant failure patterns of iterative message-passing decoding. . . . . 32
3.2 The first few absorption sets of the IEEE 802.3an LDPC code. . . . . . . . 34
3.3 The multiplicity of each variable node in (8, 8) absorption sets. . . . . . . . 38
3.4 First few absorption sets of the [155, 64, 20] regular (3, 5) Tanner code. . . 56

A.1 The first few absorption sets of the IEEE 802.3an LDPC code. . . . . . . . 105
A.2 The multiplicity of each variable node in (7, 14) absorption sets. . . . . . . 116
A.3 An example (9, 12) absorption set that falls in the first class. . . . . . . . . 143
A.4 An example (9, 16) absorption set that falls in the first class. . . . . . . . . 144
A.5 An example (9, 18) absorption set. . . . . . . . . . . . . . . . . . . . . . . 144
A.6 A weight-14 codeword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.7 The multiplicity of each variable node in (10, 10) absorption sets. . . . . . 156
A.8 An example (10, 10) absorption set. . . . . . . . . . . . . . . . . . . . . . 157
A.9 An example (10, 12) absorption set. . . . . . . . . . . . . . . . . . . . . . 157
A.10 An example (10, 14) absorption set. . . . . . . . . . . . . . . . . . . . . . 157
A.11 An example (10, 16) absorption set. . . . . . . . . . . . . . . . . . . . . . 158
A.12 An example (10, 18) absorption set. . . . . . . . . . . . . . . . . . . . . . 158
A.13 An example (10, 20) absorption set. . . . . . . . . . . . . . . . . . . . . . 158

B.1 First few absorption sets of Tanner code [155, 64, 20] (3, 5). . . . . . . . . 162
B.2 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4 dB of

a min-sum decoder with different clipping values. . . . . . . . . . . . . . . 166
B.3 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4.25 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 167
B.4 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4.5 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 168
B.5 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4.75 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 169
B.6 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5 dB of

a min-sum decoder with different clipping values. . . . . . . . . . . . . . . 170
B.7 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5.25 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 171
B.8 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5.5 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 172
B.9 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5.75 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 173
B.10 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6 dB of

a min-sum decoder with different clipping values. . . . . . . . . . . . . . . 174
B.11 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6.25 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 175
B.12 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6.5 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 176
B.13 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6.75 dB

of a min-sum decoder with different clipping values. . . . . . . . . . . . . 177
B.14 A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 7 dB of

a min-sum decoder with different clipping values. . . . . . . . . . . . . . . 178
B.15 First few absorption sets of Tanner code [755, 334, 14] (3, 5). . . . . . . . . 181



B.16 A breakdown of Tanner [755, 334, 14] (3, 5) error events from a standard
min-sum decoder with LLR∈ [−10, 10]. . . . . . . . . . . . . . . . . . . . 185

B.17 Absorption sets of Tanner code [186, 35, 36] (5, 6). . . . . . . . . . . . . . 189
B.18 Codeword spectrum of Tanner [186, 35, 36] (5, 6) LDPC code. . . . . . . . 192
B.19 A breakdown of Tanner [186, 35, 36] (5, 6) error events from a standard

min-sum decoder with LLR∈ [−10, 10]. . . . . . . . . . . . . . . . . . . . 195
B.20 First few absorption sets of Tanner code [104, 30, 14] (3, 4). . . . . . . . . 197
B.21 Codeword spectrum of Tanner [104, 30, 14] (3, 4) LDPC code. . . . . . . . 198
B.22 A breakdown of Tanner [104, 30, 14] (3, 4) error events from a standard

min-sum decoder with LLR∈ [−10, 10]. . . . . . . . . . . . . . . . . . . . 200



List of Figures

1.1 An illustration of a communication scheme. . . . . . . . . . . . . . . . . . 2
1.2 The Tanner graph of a linear block code of length 8. . . . . . . . . . . . . . 4
1.3 A parity-check matrix H with dimension 93× 155. . . . . . . . . . . . . . 7
1.4 The subgraph induced by a trapping set of size-8 of a Tanner LDPC code. . 9
1.5 The error rate of the IEEE 802.3an LDPC code. . . . . . . . . . . . . . . . 10
1.6 The topology of the dominant trapping set of the IEEE 802.3an LDPC code. 10

2.1 A binary erasure channel with probability of erasure p. . . . . . . . . . . . 16
2.2 A binary symmetric channel with crossover probability p. . . . . . . . . . . 17

3.1 Example of a stopping set. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Example of an absorption set. . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 A dominant absorption set of the regular (6, 32) IEEE 802.3an code (not all

check node connections are shown). . . . . . . . . . . . . . . . . . . . . . 33
3.4 Square pattern plots of the binary parity check matrix: Top: output of [21];

Bottom: used in the IEEE 802.3an standard. . . . . . . . . . . . . . . . . . 35
3.5 The only possible topology of (5, 10) absorption sets. . . . . . . . . . . . . 36
3.6 Possible topologies of (8, 8) absorption sets. . . . . . . . . . . . . . . . . . 38
3.7 Histograms of the multiplicity of 2,048 variable nodes in (8, 8) absorption

sets, where the horizontal thin red line marks the average multiplicity 55.75. 39
3.8 The accumulated LLRs at an (8, 8) absorption set nodes of the IEEE 802.3an

LDPC code verses iterations, assuming that the all-zero codeword is trans-
mitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.9 The only possible topology of a (5, 3) absorption set. . . . . . . . . . . . . 45
3.10 Topology of the (7, 12) absorptions sets. . . . . . . . . . . . . . . . . . . . 52
3.11 Error probability of the dominant absorption sets at Eb/N0 = 5 dB and

approximation functions based on a and b. (Curves are drawn only for
possible or existing parameter combinations.) . . . . . . . . . . . . . . . . 52

3.12 IS simulations, FPGA hardware simulations, and analytical error floor anal-
ysis for the [2048, 1723] regular (6, 32) LDPC code. . . . . . . . . . . . . . 54

3.13 The topology of the (8, 2) absorption set of the [155, 64, 20] regular (3, 5)
Tanner code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.14 The numerical and analytical results of the performance of Tanner [155, 64, 20], (3, 5)
LDPC code, assuming min-sum decoding and BPSK modulation on AWGN
channel and maximum iteration=50. . . . . . . . . . . . . . . . . . . . . . 66

3.15 Error patterns of the [155, 64, 20], (3, 5) Tanner code. . . . . . . . . . . . . 69
3.16 A size-9 instanton of LP decoding. . . . . . . . . . . . . . . . . . . . . . . 70
3.17 A size-6 instanton of LP decoding. . . . . . . . . . . . . . . . . . . . . . . 71

4.1 The tanh(x/2) value will be treated as 1 for all |x| > 55 ln 2 ≈ 38. . . . . 75
4.2 The accumulated LLRs at the first (8, 2) absorption set nodes of the Tanner

[155, 64, 20] LDPC code when the input frame is decoded by a min-sum
decoder with different clipping thresholds, assuming all-zero codeword is
transmitted at 6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



4.3 The accumulated LLRs at the second (8, 2) absorption set nodes of the Tan-
ner [155, 64, 20] LDPC code when the input framed is decoded by a min-
sum decoder with different clipping thresholds, assuming all-zero codeword
is transmitted at 6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 The extrinsic LLRs at the (8, 2) absorption set nodes of the Tanner [155, 64, 20]
LDPC code when the input framed is decoded by a min-sum decoder with
different clipping thresholds, assuming all-zero codeword is transmitted at
6 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 The accumulated LLRs at the second (8, 2) absorption set nodes of the
Tanner [155, 64, 20] LDPC code when the input framed is decoded by a
min-sum decoder with clipping threshold=38 and maximum iteration=500,
assuming all-zero codeword is transmitted at 6 dB. . . . . . . . . . . . . . 79

4.6 The bit error rates of the Tanner [155, 64, 20], (3, 5) LDPC code, assuming
min-sum decoding and BPSK modulation on AWGN channel with different
decoder configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Bit error rates of the Tanner [155, 64, 20] LDPC code using both formula
(3.143) and importance sampling (IS) with LLR clippings at 10, 100 and
1000, respectively. The maximum iteration number is set to 50. . . . . . . . 80

4.8 The percentage of absorption sets to the decoding failures of the Tanner
[155, 64, 20] LDPC code, assuming min-sum decoding on AWGN channel
with maximum iteration=50. . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 The accumulated LLRs at an (8, 8) absorption set nodes of the IEEE 802.3an
[2048, 1723] LDPC code when the input framed is decoded by a min-sum
decoder with different clipping thresholds, assuming the all-zero codeword
is transmitted at 5 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.10 The dynamics of the eight extrinsics of the (8, 8) absorption set nodes of the
IEEE 802.3an [2048, 1723] LDPC code when the input framed is decoded
by a min-sum decoder when the LLR clipping limit is 10, assuming all-zero
codeword is transmitted at 5 dB. . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Bit error rates of the IEEE 802.3an LDPC code using both formula (3.97)
and importance sampling (IS) with LLR clippings at 10, 100 and 1000,
respectively. The iteration number is set to 10. . . . . . . . . . . . . . . . . 83

4.12 The numerical and analytical results of the performance of Tanner [155, 64, 20], (3, 5)
LDPC code, assuming BPSK modulation on an AWGN channel and maxi-
mum iteration=50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.13 The numerical results of the performance of Tanner [155, 64, 20], (3, 5)
LDPC code, assuming BPSK modulation on an AWGN channel and maxi-
mum iteration=50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.14 The percentage of absorption sets to the decoding failures of the Tanner
[155, 64, 20] LDPC code, assuming sum-product decoding on AWGN chan-
nel with maximum iteration=50. . . . . . . . . . . . . . . . . . . . . . . . 85

4.15 Error rates of the IEEE 802.3an LDPC code via importance sampling (IS)
with finite precision, where the LLRs are clipped at 10, 100 and 1000, re-
spectively. The maximum iteration number is preset at 10. . . . . . . . . . 87

A.1 The only possible topology of (5, 10) absorption sets. . . . . . . . . . . . . 106
A.2 Possible topologies of (6, b) absorption sets. . . . . . . . . . . . . . . . . . 107
A.3 Possible intrinsic connections between two degree-4 nodes. . . . . . . . . . 108
A.4 Possible intrinsic connections among three nodes. . . . . . . . . . . . . . . 109
A.5 Possible intrinsic connections among four nodes. . . . . . . . . . . . . . . 109
A.6 The possible topologies of (7, 10) absorption sets that cannot be ruled out

without searching against the parity-check matrix H. . . . . . . . . . . . . 110
A.7 One check node connecting to a (7, 10) absorption set four times. . . . . . . 111
A.8 Topology of the (7, 12) absorption set. . . . . . . . . . . . . . . . . . . . . 111
A.9 Step 1 in constructing a (7, 14) absorption set. . . . . . . . . . . . . . . . . 112
A.10 Step 2 in constructing a (7, 14) absorption set: Case I. . . . . . . . . . . . . 112
A.11 Case I of (7, 14) absorption sets. . . . . . . . . . . . . . . . . . . . . . . . 112
A.12 Step 2 in constructing a (7, 14) absorption set: Case II. . . . . . . . . . . . 113
A.13 Step 3 in constructing a (7, 14) absorption set: Case II.A. . . . . . . . . . . 113



A.14 Case II.A of (7, 14) absorption sets. . . . . . . . . . . . . . . . . . . . . . 113
A.15 Step 3 in constructing a (7, 14) absorption set: Case II.B. . . . . . . . . . . 113
A.16 Case II.B of (7, 14) absorption sets. . . . . . . . . . . . . . . . . . . . . . 114
A.17 Two out of three possible topologies of (7, 14) absorption sets. . . . . . . . 114
A.18 The last of the three possible topologies of (7, 14) absorption sets where

one check node is connected to the set four times. . . . . . . . . . . . . . . 115
A.19 Only possible topology of (8, 0) absorption set. . . . . . . . . . . . . . . . 115
A.20 One check node connecting to (8, 4) and (8, 6) absorption sets four times. . 117
A.21 Two possible topologies of (8, 8) absorption set with degree-6 variable nodes.119
A.22 Another two possible topologies of (8, 8) absorption set with degree-6 vari-

able nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
A.23 Possible intrinsic connections between two groups of variable nodes which

are grouped by degrees. The top row represents the degree-4 nodes, whereas
the bottom is degree-6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A.24 One check node connecting to (8, 8) sets four times. . . . . . . . . . . . . . 122
A.25 Two check nodes connecting to (8, 8) set four times. . . . . . . . . . . . . 123
A.26 Step 1 in constructing an (8, 8) absorption set. . . . . . . . . . . . . . . . . 123
A.27 Step 2 in constructing an (8, 8) absorption set: Case I. . . . . . . . . . . . . 123
A.28 One topology of an (8, 8) absorption set: Case I. . . . . . . . . . . . . . . . 123
A.29 Step 2 in constructing an (8, 8) absorption set: Case II. . . . . . . . . . . . 124
A.30 Step 3 in constructing an (8, 8) absorption set: Case II.A. . . . . . . . . . . 124
A.31 Step 4 in constructing an (8, 8) absorption set: Case II.A. . . . . . . . . . . 124
A.32 Step 3 in constructing an (8, 8) absorption set: Case II.B. . . . . . . . . . . 124
A.33 Step 4 in constructing an (8, 8) absorption set: Case II.B.1. . . . . . . . . . 125
A.34 Step 4 in constructing an (8, 8) absorption set: Case II.B.2. . . . . . . . . . 125
A.35 Another three out of five possible topologies of (8, 8) absorption sets. . . . 125
A.36 Some topologies of (8, 12) absorption sets. . . . . . . . . . . . . . . . . . 126
A.37 Step 1 in constructing an (8, 16) absorption set. . . . . . . . . . . . . . . . 127
A.38 First topology of (8, 16) absorption sets: Case I. . . . . . . . . . . . . . . . 127
A.39 Equivalent appearances of the first topology of (8, 16) absorption sets: Case I.128
A.40 Step 2 in constructing an (8, 16) absorption set: Case II. . . . . . . . . . . . 128
A.41 Step 3 in constructing an (8, 16) absorption set: Case II. . . . . . . . . . . . 128
A.42 Second topology of (8, 16) absorption sets: Case II. . . . . . . . . . . . . . 129
A.43 Equivalent appearances of the second topology of (8, 16) absorption sets:

Case II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.44 Step 2 in constructing an (8, 16) absorption set: Case III. . . . . . . . . . . 129
A.45 Step 3 in constructing an (8, 16) absorption set: Case III.A. . . . . . . . . . 129
A.46 Step 4 in constructing an (8, 16) absorption set: Case III.A. . . . . . . . . . 130
A.47 Step 5 in constructing an (8, 16) absorption set: Case III.A.1. . . . . . . . . 130
A.48 Step 6 in constructing an (8, 16) absorption set: Case III.A.1. . . . . . . . . 130
A.49 Third topology of (8, 16) absorption sets: Case III.A.1. . . . . . . . . . . . 131
A.50 Equivalent appearance of the third topology of (8, 16) absorption sets: Case

III.A.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
A.51 Step 5 in constructing an (8, 16) absorption set: Case III.A.2. . . . . . . . . 131
A.52 Another topology of (8, 16) absorption sets: Case III.A.2. . . . . . . . . . . 131
A.53 Step 3 in constructing an (8, 16) absorption set: Case III.B. . . . . . . . . . 132
A.54 Step 4 in constructing an (8, 16) absorption set: Case III.B. . . . . . . . . . 132
A.55 Step 4 in constructing an (8, 16) absorption set: Case III.B. . . . . . . . . . 132
A.56 Step 4 in constructing an (8, 16) absorption set: Case III.B.1. . . . . . . . . 133
A.57 A topology of (8, 16) absorption sets: Case III.B.1. . . . . . . . . . . . . . 133
A.58 Step 4 in constructing an (8, 16) absorption set: Case III.B. . . . . . . . . . 133
A.59 Another topology of (8, 16) absorption sets: Case III.B.2. . . . . . . . . . . 134
A.60 An equivalent appearance of the topology of the (8, 16) absorption set:

Case III.B.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
A.61 Step 2 in constructing an (8, 16) absorption set: Case IV. . . . . . . . . . . 134
A.62 Step 3 in constructing an (8, 16) absorption set: Case IV.A. . . . . . . . . . 135
A.63 Step 4 in constructing an (8, 16) absorption set: Case IV.A. . . . . . . . . . 135
A.64 Step 5 in constructing an (8, 16) absorption set: Case IV.A.1. . . . . . . . . 135
A.65 Step 6 in constructing an (8, 16) absorption set: Case IV.A.1.i. . . . . . . . 136



A.66 A topology of (8, 16) absorption sets: Case IV.A.1.i. . . . . . . . . . . . . 136
A.67 Step 6 in constructing an (8, 16) absorption set: Case IV.A.1.ii. . . . . . . . 136
A.68 a topology of the (8, 16) absorption set: Case IV.A.1.ii. . . . . . . . . . . . 137
A.69 Step 5 in constructing an (8, 16) absorption set: Case IV.A.2. . . . . . . . . 137
A.70 Step 6 in constructing an (8, 16) absorption set: Case IV.A.2. . . . . . . . . 137
A.71 A topology of (8, 16) absorption sets: Case IV.A.2. . . . . . . . . . . . . . 137
A.72 An equivalent appearance of the (8, 16) absorption set: Case IV.A.2. . . . . 138
A.73 Step 3 in constructing an (8, 16) absorption set: Case IV.B. . . . . . . . . . 138
A.74 Step 4 in constructing an (8, 16) absorption set: Case IV.B. . . . . . . . . . 138
A.75 A topology of (8, 16) absorption sets: Case IV.B. . . . . . . . . . . . . . . 139
A.76 An equivalent appearance of the (8, 16) absorption set: Case IV.B. . . . . . 139
A.77 Possible topologies of (8, 16) absorption sets. . . . . . . . . . . . . . . . . 139
A.78 A possible topology of the (9, 4) absorption sets. . . . . . . . . . . . . . . 140
A.79 A possible topology of the (9, 6) absorption sets. . . . . . . . . . . . . . . 141
A.80 Possible intrinsic connections between two groups of variable nodes which

are grouped by degrees. The top row represents the degree-5 nodes, whereas
the bottom degree-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

A.81 One check node connecting to a (9, 12) absorption set six times. . . . . . . 145
A.82 Two possible topologies of (9, 2) absorption sets with two check nodes con-

nected to the set four times. . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.83 Two possible topologies of (9, 4) absorption sets with two check nodes con-

nected to the set four times that are derived from Figure A.82(a). . . . . . . 146
A.84 Another three possible topologies of (9, 4) absorption sets with two check

nodes connected to the set four times that are derived from Figure A.82(b). 146
A.85 Two possible topologies of (9, 4) absorption sets with two check nodes con-

nected to the set four times and sharing one variable node. . . . . . . . . . 147
A.86 A few possible topologies of (9, 6) absorption sets with two check nodes

connected to the set four times and sharing one variable node. . . . . . . . 148
A.87 One check node connecting to a (9, 0) absorption set four times. . . . . . . 149
A.88 Two possible topologies of (9, 2) absorption sets with one check node con-

nected to the set four times. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.89 Five possible topologies of (9, 4) absorption sets with one check node con-

nected to the set four times that are derived from Figure A.88(a). . . . . . . 150
A.90 Another four possible topologies of (9, 4) absorption sets with one check

node connected to the set four times that are derived from Figure A.88(b). . 151
A.91 Possible intrinsic connections between two groups of variable nodes which

are grouped by degrees. The top row represents the degree-5 nodes, whereas
the bottom degree-4. (Supplementary to Figure A.80.) . . . . . . . . . . . . 153

A.92 (10, 10) absorptions sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

B.1 The only possible topology of (4, 4) absorption sets. . . . . . . . . . . . . . 162
B.2 The only possible topology of (5, 5) absorption sets. . . . . . . . . . . . . . 163
B.3 The only possible topologies of (6, b) absorption sets. . . . . . . . . . . . . 163
B.4 Possible topologies of (7, b) absorption sets. . . . . . . . . . . . . . . . . . 164
B.5 Possible topologies of (8, b) absorption sets. . . . . . . . . . . . . . . . . . 164
B.6 The topology of the (8, 2) absorption set. . . . . . . . . . . . . . . . . . . 165
B.7 The percent of (8, 2) absorption sets of all absorption sets of Tanner [155,

64, 20] (3, 5) LDPC code. (Note that it shares the same legends as in
Figure 4.8.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

B.8 Parity-check matrix of Tanner [755, 334, 14], (3,5) regular LDPC code. . . 181
B.9 The only possible topology of (5, 5) absorption sets. . . . . . . . . . . . . . 182
B.10 The only possible topologies of (6, 6) absorption sets. . . . . . . . . . . . . 182
B.11 Possible topologies of (7, b) absorption sets. . . . . . . . . . . . . . . . . . 182
B.12 Three possible topologies of (8, b) absorption sets. . . . . . . . . . . . . . 183
B.13 The error rates of the Tanner [755, 334, 14] (3, 5) code using a standard min-

sum decoder with LLR∈ [−10, 10] and maximum iteration=50 on AWGN
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



B.14 The percent of codewords of the error events of Tanner [755, 334, 14] (3,
5) LDPC code using a standard min-sum decoder. Note that weight-dmin
codeword is represented by green and all other codewords by yellow. . . . . 186

B.15 A topology of dmin codeword of the Tanner [755, 334, 14] (3, 5) LDPC code. 187
B.16 Parity-check matrix of Tanner [186, 35, 36] regular (5, 6) LDPC code. . . . 188
B.17 The only possible topology of (4, 8) absorption sets. . . . . . . . . . . . . . 190
B.18 Three possible topologies of (5, b) absorption sets. . . . . . . . . . . . . . 190
B.19 The only possible topology of (6, 0) absorption set or length-6 codeword. . 190
B.20 Two possible topologies of (6, 12) absorption sets. . . . . . . . . . . . . . 191
B.21 Four possible topologies of (7, 13) absorption sets. . . . . . . . . . . . . . 191
B.22 Histograms of Tanner [186, 35, 36] codewords. . . . . . . . . . . . . . . . 193
B.23 The error rates of the Tanner [186, 35, 36] (5, 6) code using a standard min-

sum decoder with LLR∈ [−10, 10] and maximum iteration=50 on AWGN
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

B.24 Parity-check matrix of Tanner [104, 30, 14] regular (3, 4) LDPC code. . . . 196
B.25 Histograms of Tanner [104, 30, 14] codewords. . . . . . . . . . . . . . . . 199
B.26 The error rates of the Tanner [104, 30, 14] (3, 4) code using a standard min-

sum decoder with LLR∈ [−10, 10] and maximum iteration=50 on AWGN
channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201



List of Symbols

∅ Empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
βj→i The message from check node j to variable node i . . . . . . . . . . . . . . . . . . . . . . . . 16
γ Log-likelihood ratio (LLR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
ε The erasure symbol of the BEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
λ Channel intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
λ(ex) Extrinsic signals to an absorption set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
µi→j The message from variable node i to check node j . . . . . . . . . . . . . . . . . . . . . . . . 16
µmax Maximum eigenvalue of the product VC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
σi,j Sub-matrix of the IEEE 802.3an LDPC code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

A
One of the four coefficients used in PAS to characterize the contribution of λ and
λ(ex) to the error floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Absorption set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
(a, b) Absorption set with a variable nodes and b unsatisfied check nodes . . . . . . . . . 33

B
One of the four coefficients used in PAS to characterize the contribution of λ and
λ(ex) to the error floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C
One of the four coefficients used in PAS to characterize the contribution of λ and
λ(ex) to the error floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C Permutation matrix based on the satisfied check nodes of absorption sets . . . . 42
C Binary linear codewords set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
c A codeword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Ci The set of check nodes connected to variable node i . . . . . . . . . . . . . . . . . . . . . . . 16

D
One of the four coefficients used in PAS to characterize the contribution of λ and
λ(ex) to the error floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

D The signal space area where the decoder fails to produce the correct output . . 12
Deg(v) Degree of variable node v in its absorption set subgraph . . . . . . . . . . . . . . . . . . . 35
dfrac The minimum pseudocodewords distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
dist(·) The distance between two binary sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
dmin The minimum distance of a code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
(dv, dc) (Variable node degree, Check node degree) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Ej The set of all subsets of Vj with even cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . 24
f Pseudocodeword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
g The length of the smallest cycle in a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
g(·) The generator polynomial of a code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Gk×n Generator matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
GF(·) Galois field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
hji Elements of the matrix Hm×n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Hm×n Parity-check matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
I The set of all variable nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
I Identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



J The set of all check nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
m The number of parity-check equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
[n, k, d] [Codeword length, Number of information bits, Minimum Hamming distance] 8
N
(
m,σ2

)
Gaussian distribution with mean m and variance σ2 . . . . . . . . . . . . . . . . . . . . . . . 18

Ns The number of samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ni Gaussian noise sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
O The big O notation for complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
o(·) The order of an element in its field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159
P Linear programming polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
p Channel error probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
PAS The probability of an absorption set falling in error . . . . . . . . . . . . . . . . . . . . . . . . 45
Pe Error probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
P̃e Error probability estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Pr[·] Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Q The polytope of Linear programming decoding on LDPC codes . . . . . . . . . . . . 25
Qj The local polytope per the check node j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
R Code rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
S Stopping set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
sign(·) Sign function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
supp(·) The non-zero positions of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
V Variable node function matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Vj The set of variable nodes connected to check node j . . . . . . . . . . . . . . . . . . . . . . . 16
V (P ) The set of all vertices of polytope P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
V (Q) The set of all vertices of polytope Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
vmax Eigenvector of VC corresponding to µmax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
w(·) The weighing index in importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
wt(·) Weight of a binary sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
X The set of input symbols of a channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Y The set of output symbols of a channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
y Transmitted binary codeword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
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Chapter 1

Introduction

Nowadays, the number of applications which involve information transmission is rapidly
increasing, as well as the requirements for quality of service. Ad-hoc networks, satellite
communications, single and multi-antenna wireless communications, Internet packet trans-
mission are just some of the large variety of examples. Each transmission link is exposed
to noise corrupting the data sent from source to destination. Therefore the fundamental
component of information transfer over any communication link is error control coding.
The code introduces redundant information to the transmitted data in order to correct the
errors and recover the original transmitted message at the receiver. Hence understanding
the performance of an error control code is critical for designing a communications system.

If we intend to communicate over a distance, the messages originally sent very often
become distorted, weakened, or lost. For example, if Bob received a message from Alice
saying that “I found a rlog in the riverbed today”, this would not make very much sense to
him, apparently. Requesting Alice to resend the message is out of the question because she
is actually currently on a mission on Mars. Hence Bob has to guess the word based on what
he received plus the context. The candidates “frog”, “clog” and “blog” are all very close
to the received message. However only the first two would make the sentence meaningful
in context. Bob decides that there is more chance that Alice is trying to tell him that she
found a frog, instead of a clog, in the riverbed on Mars. That decision is probability-based.
In other words, it is also quite possible that the original message could be “I found a rock
in the riverbed today”. All depends on the level of distortion the message experienced.

In this communications context, the role played by Alice is usually called the transmit-
ter, which makes Bob the receiver. The words of the original message from the transmitter
belong to a special technical vocabulary, termed the codewords, which is known to both the
transmitter and receiver. For example, the English words are valid codewords in the code
we call language. Technically, of course, the codewords are more typically sequences of
binary digits that are processed by computers.

If there is a word in the received message that does not match a codeword in the vocab-
ulary, we say an error has occurred during the transmission or an error has been detected at
the receiver. So Bob detected the error “rlog” in his received message. The receiver will try
the best to recover the original message or correct the error by mapping the erroneous word
to the closest codeword, considering operational constraints. This process is referred to as
operating a decoding algorithm. “Frog”, “clog” and “blog” are all valid codewords that
differ from the erroneous word “rlog” in one letter. Therefore they, along with potentially
others, are considered the closest codewords to the erroneous word. Unfortunately, assum-
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ing letter errors occur with equal likelihood, there is an equal chance that any of them could
be the original transmitted codeword. Even taking into account the context that “rlog” was
found in a riverbed, Bob was still not able to limit the candidates to a single one. Given
that it would be impractical, time- and cost-wise, to ask Alice to sent the message from the
Mars again, Bob has to make a decision and is taking the risk of making a decoding error.

In this example, the distance between two codewords is defined as the number of letters
where the two codewords differ. And the decoding rule is to decode to the valid codeword
with the smallest distance from the received word. There may be multiple choices, in which
case, the decoder will pick one randomly. To minimize the probability of decoding errors,
the code designer will pick the codewords carefully such that they are spread far apart in
terms of letter differences. With high probability now, the received word will fall in the
“neighborhood” of a unique codeword, which is the nearest codeword to the error.

In addition, the nature of the media, primarily the channel in which the message is trans-
mitted, can be studied and simulated by employing mathematical models. Taking advan-
tage of the knowledge of the channel, the decoding algorithm can be adapted accordingly.
In other words, learning how the channel affects transmissions will help a decoder improve
its efficiency and accuracy.

Some of the key components of a communication scheme are plotted in Figure 1.1.
The message y is distorted by the noise when passing through a channel. Thus a decoder

y // Transmitter
Noisy

Channel
// Receiver // ỹ // Decoder // y∗

Figure 1.1: An illustration of a communication scheme.

is applied on ỹ to correct the distortion and get what was originally transmitted. In other
words, the decoder output, y∗, is supposed to be the same as y, ideally. However, the
performance of decoding algorithms depend on both the code structure and the channel
characteristics. The most common communications channel models are the binary sym-
metric channel (BSC), the binary erasure channel (BEC), and the additive white Gaussian
noise (AGWN) channel. In this thesis, the noisy channel in Figure 1.1 is modeled only by
binary-input memoryless channels, which are characterized by the conditional probabilities:

Pr
noise

[output|input]. (1.1)

That is the formulation that allowed Shannon to show the channel capacity mathematically,
[66]. The channels will be explained more in the next chapter where the decoding module
is introduced. Before that, the basics of the code are reviewed in the rest of this chapter.

1.1 Binary Linear Block Codes

Prior to transmission, a message will be mapped to a sequence that consists of zeros and
ones, i.e., a digitized binary sequence. This binary sequence will be partitioned into equal-
length blocks and fed into an encoder block by block. The output of the encoder will be
binary codewords with a one-to-one correspondence to the input blocks. The “distance”
between two codewords is a way to characterize the resemblance or difference of them.

In information theory, the Hamming distance, or distance for simplicity, between two
strings of equal length is measured as the number of positions where their corresponding
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digits differ. The Hamming weight or weight of a string is the Hamming distance between
the string and the all-zero string, or, equivalently, the number of non-zero entries of the
string.

Example 1.1. The distance between y1 = [10010101] and y2 = [11010101] is one since
they differ at the second position. The weights of y1 and y2 are 4 and 5, respectively.

Note that the distance between y1 and y2 is equal to the weight of their “sum”, y1⊕y2,
where the operation “⊕” represents bit-wise addition modulo two, also known as the logical
operation exclusive disjunction or exclusive or, often denoted by XOR or EOR.

wt (y1 ⊕ y2) = wt ([1⊕ 1 0⊕ 1 0⊕ 0 1⊕ 1 0⊕ 0 1⊕ 1 0⊕ 0 1⊕ 1])(1.2)

= wt ([01000000]) (1.3)

= 1 (1.4)

= dist (y1,y2) , (1.5)

where wt and dist are meant for “weight” and “distance”, respectively.

Definition 1.1. The minimum distance of a code C is defined as

dmin = min {dist (ci, cj)| ci ∈ C, cj ∈ C and ci 6= cj} . (1.6)

However, the following theorem is more practical for finding the dmin of binary linear
codes.

Theorem 1.1. The minimum distance equals the minimum weight of non-zero codewords.

Proof. Let ci and cj be any two different codewords in code C. Let ck = ci ⊕ cj . Hence,

dist (ci, cj) = wt (ci ⊕ cj) = wt (ck) . (1.7)

Note that ck is also a codeword in C due to its linearity. In addition, ck 6= 0, otherwise we
must have ci = cj . Therefore, (1.6) becomes

dmin = min {wt (ck)| ck ∈ C and ck 6= 0} . (1.8)

Another commonly used consequence of the linearity is that 0 is always a codeword of
any binary linear code C, in that the addition to a codeword itself must be a codeword, as
well, and

ci ⊕ ci = 0. (1.9)

The channels through which the codewords are sent are often simulated by binary sym-
metric or additive white Gaussian noise (AWGN) models. The former is one of the simplest
channels to analyze, whereas the latter is a close model to reality. In the binary symmetric
channel, it is assumed that a given bit will be “flipped” with a small probability.

To decode, the received sequence of bits will be checked against the code structure,
which can be represented as a bipartite graph, introduced by Tanner [74], a small example
of which is illustrated in the example below.
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Figure 1.2: The Tanner graph of a linear block code of length 8.

Example 1.2. Figure 1.2 depicts the Tanner graph of a block code of length eight.
Each bit in a codeword here denoted by ci = {0, 1}, i = 0, 1, . . . , 7, corresponds to a

solid node in Figure 1.2. Such nodes are called the variable or bit nodes of the Tanner graph.
In order to be a codeword, the addition of all bits incident to each box fi, i = 0, 1, 2, 3,
called the check nodes, has to be 0 modulo 2, or zero under binary addition:

c1 ⊕ c3 ⊕ c4 ⊕ c7 = 0 ←− f0

c0 ⊕ c1 ⊕ c2 ⊕ c5 = 0 ←− f1

c2 ⊕ c5 ⊕ c6 ⊕ c7 = 0 ←− f2

c0 ⊕ c3 ⊕ c4 ⊕ c6 = 0 ←− f3

. (1.10)

In other words, Figure 1.2 is merely a graphical representation of the conventional
parity-check matrix expressions of linear block codes:

H =


0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0


4×8

. (1.11)

Note that there is no connection between the variable nodes and the check nodes, hence the
graph is bipartite.

For example, the received message

ỹ1 = [1 0 0 1 0 1 0 1] (1.12)

enables the equality
HỹT

1 = 0T (1.13)

in the binary field, which is equivalent to saying that ỹ1 satisfies all the equality constraints
in (1.10) and hence is a codeword and no decoding will be carried out.1 If, instead,

ỹ2 = [ỹ0 ỹ1 ỹ2 ỹ3 ỹ4 ỹ5 ỹ6 ỹ7] (1.14)

= [1 1 0 1 0 1 0 1] (1.15)

was received, then (1.10) is not fully satisfied or

HỹT
2 6= 0T, (1.16)

1Note that the right hand of (1.13) is an all-0 vector.
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and the receiver will start decoding in an iterative manner. To illustrate this process, the
bit-flipping decoding algorithm [30, 31] is assumed at the decoder:

À First Step: c→ f . All variable nodes ci send their received i-th bit to their neighbor-
ing check nodes fj (two in our example).

For example, c0 sends ỹ0 = 1 to f1 and f3, c1 sends ỹ1 = 1 to f0 and f1, c2 sends
ỹ2 = 0 to f1 and f2, and so on.

Á Step 2: f → c. Every check node fj calculates a response to each input ci. The
responding message contains the bit that fj believes to be the correct one for this
node ci assuming that all other nodes connected to fj are correct.

For example, f0 receives [c1 c3 c4 c7] = [ỹ1 ỹ3 ỹ4 ỹ7] = [1 1 0 1]
which does not fulfill (1.10). As a consequence, f0 will send 0 (= c3⊕ c4⊕ c7) back
to c1, 0 (= c1 ⊕ c4 ⊕ c7) to c3, 1 (= c1 ⊕ c3 ⊕ c7) to c4, and 0 (= c1 ⊕ c3 ⊕ c4) to
c7, respectively.

Note that f2 receives [c2 c5 c6 c7] = [ỹ2 ỹ5 ỹ6 ỹ7] = [0 1 0 1] which
satisfies the third equality in (1.10). When all equalities are fulfilled at the same time,
the decoding algorithm will terminate and output the values at the nodes ci, which
will be a valid codeword, although not necessarily the originally transmitted one.

Â Step 3: c→ f . The variable node uses the additional inputs received from its incident
fj’s to decide if it needs to modify its originally received bit. One simple way to do
this is via a majority vote. Then the nodes ci send the “corrected” bits to the incident
check nodes fj .

In our example, c0 = 1 and the variable node representing c0 receives “suggestions”
0 and 1 from f1 and f3, respectively. Thus c0 will stay as 1 by majority vote. On the
other hand, c1 = 1 and the variable node representing c1 receives 0 from both f0 and
f1. Thus c1 will flip to 0.

Ã Go to Á and repeat Steps 2 and 3.

Given enough iterations, this decoding algorithm should be able to return a codeword, al-
though not necessarily the originally transmitted codeword since it depends on how far off
the received message is from the original one.

To satisfy the curiosity of the readers on how this decoding illustration ends, the al-
gorithm will terminate after two iterations and output y∗2 = [1 0 0 1 0 1 0 1]
which is a one-digit-corrected codeword from the received ỹ2 = [1 1 0 1 0 1 0 1].

This concludes our demonstration of the process in this example.

As shown above, the messages passing along the edges in the Tanner graph can be as
straightforward as binary digits, {0, 1}, or more generally, a probability which stands for
the amount of “belief” that the bit is a “0” or a “1”.

Let ỹi denote the received bit for the originally sent yi. Then the following probabilities
can be estimated using the channel characteristics:

Prnoise[ỹi|yi = 0] = The likelihood of receiving ỹi given yi = 0 was transmitted;
Prnoise[ỹi|yi = 1] = The likelihood of receiving ỹi given yi = 1 was transmitted.

(1.17)
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Thus, assuming that all codewords have equal probability,

y∗i =

{
0, if Prnoise[ỹi|yi = 0] > Prnoise[ỹi|yi = 1] or, equivalently, Prnoise[ỹi|yi=0]

Prnoise[ỹi|yi=1] > 1;

1, otherwise.

(1.18)

For more numerically stable computation, the likelihood ratio that appeared in (1.18) is
often replaced by

γi = ln

(
Prnoise[ỹi|yi = 0]

Prnoise[ỹi|yi = 1]

)
, (1.19)

also called the log-likelihood ratio (LLR), where ln (·) denotes the natural logarithm, the
logarithm to the base e, an irrational and transcendental constant approximately equal to
2.718281828. Then the magnitude comparison of probabilities in (1.18) translates into dis-
tinguishing the polarity of LLRs. The sign of the LLR determines whether the transmitted
bit is more likely to be a “0” or a “1”:

y∗i =

{
0, if γi > 0;
1, otherwise.

(1.20)

These LLRs play an important role in the iterative decoding algorithms.
At each iteration, the variable nodes will aggregate the probabilities, taking the form of

LLRs that they receive and then send the accumulated LLRs back to start a new iteration.
Depends on the way of aggregating the LLRs, this process can be named sum-product, min-
sum, min-sum with correction factor, etc. Compared to bit flipping, this type of decoding
algorithms is called message passing or belief propagation [30, 31, 55]. To calculate the
probabilities defined in (1.17), statistical knowledge of the channel has to be employed.
As a consequence, message passing yields a better decoding performance than simple bit
flipping.

The tradeoffs are that the belief messages flowing within the Tanner graph become
more complex which induces a floating-point calculation at the decoder. From an opera-
tional point of view, floating-point calculation is impractical and had better be replaced or
approximated by, for example, integers. The real axis can be partitioned into equal-size bins
with each bin assigned an integer in an ascending order. The LLR falling into the range of
a bin will be represented by its bin value, so that the magnitude and the sign of the LLR
will be preserved to some extent. One can tell that the smaller the width of the bin, the
more accurate the approximation. Also, this process can be easily translated to the binary
operations that most digital devices use.

Furthermore, either this floating-point accumulated LLR or the corresponding integer
representation cannot be allowed to grow indefinitely, due to implementation constraints,
such as limited memory on a decoder. The LLRs will have to be clipped at some point,
to comply with such limits. The cutoff point is usually called the clipping threshold of the
message passing in the decoder.

In addition, also because of the computational restrictions, the algorithm has to be ter-
minated after a number of iterations, sometimes, before a codeword is found. In this case,
an incorrect decoded word with a decoding error will be returned by the decoder. The er-
ror rate is a critical factor to evaluate the decoding performance with respect to a decoding
algorithm of a certain code on a particular channel.
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1.2 Low-Density Parity-Check Codes

A low-density parity-check (LDPC) code is associated with a sparse parity-check matrix,
denoted by Hm×n, an example of which is shown in (1.11). Every column of H represents
a code bit, and every row constitutes a parity-check equation. The code length is n, but the
number of information bits k ≥ n−m, since H is not necessarily full rank. If every column
and every row of H have the same number of non-zero elements, then we have a “regular”
LDPC code, otherwise the code is irregular. A regular LDPC code can also be represented
by a two-tuple (dv, dc), where dv and dc are the Hamming weights of each column and
each row, respectively, together with an interleaver. The parity-check matrix (1.11) used in
Example 1.2 represents a regular (2, 4) LDPC code, which can also be readily seen from its
corresponding Tanner graph, shown in Figure 1.2. Figure 1.3 shows the parity-check matrix
of a length-155 (3, 5) regular LDPC code, where non-zero elements are plotted as solid dots
and zeros are left blank, a commonly used display practice when the matrix dimensions are
large. We can easily see that there are three dots in each column and five in each row, with
the aid of the thin line blue separation segments.

Figure 1.3: A parity-check matrix H with dimension 93× 155.

Check nodes will correspond to the rows of the parity-check matrix, and variable nodes
will correspond to the columns of the matrix. Then every non-zero entry in H indicates a
connection between these two disjoint sets, as shown in Figure 1.2.

LDPC codes are a class of linear block codes, which provide a near-optimal perfor-
mance. Their name stems from the characteristic of their sparse parity-check matrix. They
were first introduced by Gallager in his PhD thesis in 1960 [30]. However, the true strength
of these codes was not recognized in the beginning, due in part to a lack of sufficient com-
puting power for their implementation at the time. Recently, much work has focussed on
LDPC code construction and analysis [51, 69, 72, 47, 44, 64, 57, 6, 40, 41, 42, 2]. Some
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large irregular LDPC codes have been shown to perform within 0.04 dB of the Shannon
capacity [14].

In the literature, LDPC codes usually refer to block codes. However, there exists a vari-
ation of the LDPC block codes (LDPC-BCs), named LDPC convolutional codes (LDPC-
CCs) [45]. The time-varying LDPC-CCs also have capacity-approaching performance. A
recent decoder comparison between LDPC-BCs and LDPC-CCs conducted in [8] shows
that for a fixed number of iterations, an LDPC-CC decoder achieves a better through-
put/silicon area efficiency and latency than an LDPC-BC decoder, in terms of compara-
ble BER performance, only when the LDPC-CC decoder parallelism, including both the
iteration dimension and the node dimension, exceeds a certain threshold.

Today, LDPC-like codes are used and included in many current digital communica-
tions standards, such as W-CDMA, UMTS (Universal Mobile Telecommunications Sys-
tem), DVB (Digital Video Broadcasting), and IEEE 802.3an.

Following the convention in coding theory, LDPC block codes can also be denoted by
[n, k, dmin]-C, where n is the codeword length, k is the code dimension, and dmin is the
minimum Hamming distance among all codewords of C. The minimum distance is often
used to evaluate the correcting capability of the code.

There are still many open problems in LDPC coding, such as the reduction of the error
floor, the avoidance of trapping sets, the design of codes and iterative decoding methods for
high-speed hardware implementation. The design of a decoding algorithm is usually the
most difficult part in the design of an error-correcting coding system, especially for those
methods that operate close to the theoretical capacity limits.

Just as speaking louder may let you be understood better, increasing the power of a
signal before transmission can help the signal overcome the channel attenuation and noise.
Hence the received message will be less distorted and has a better chance of being decoded
successfully. This is exactly what we observe in the error rate curves — the number of
errors drops rapidly with increasing signal power. However, a further increase in power
leads to a surprising effect in that the error curves tend to flatten out, regardless of the code
size. This observation has troubled researchers and spawned much activity in finding an
explanation and solution. The technical term for this phenomenon is called the problem of
the error floor [58].

In the literature, it is now widely accepted that these error floors are caused by trapping
sets [58], from particular subgraphs in the Tanner graph of the LDPC code. The iterative
decoding algorithm can get locked up in these subgraphs and cause the decoder to produce
one or more output errors. The iterative message-passing algorithm cannot overcome such
weaknesses and gets trapped in these subgraphs, causing decoded patterns which are easily
identifiable as erroneous since they are recognizable as not being valid codewords, but
difficult to overcome or correct. These trapping sets are dependent on the code, the channel
used, and also on the details of the operation of the decoding algorithm.

An example of a trapping set is depicted in Figure 1.4. The solid red nodes represent the
trapping set members. All their neighboring parity-check nodes are shown as green (lower)
and blue (upper) boxes, whereas the rest of the code bits and their connected check nodes
are hidden. The set shown is the dominant trapping set [85] of a length-155 regular (3, 5)
LDPC code, constructed by Tanner [75, 76]. This trapping set has only eight members,
while the minimum distance among the codewords of this Tanner code is 20. The decoder
is much more likely to get trapped in this set than to produce a genuine codeword error.

The trapping set behaves similarly to a codeword in that when all but the set bits are
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Figure 1.4: The subgraph induced by a trapping set of size-8 of a Tanner LDPC code.

“0”, the green check nodes plus all the hidden ones are satisfied. Only the two blue check
nodes, representing a very small fraction of the number of check equalities in (1.10), are
not fulfilled. As a consequence, the satisfied green check nodes will “tell” the nodes in
the set to remain in the “1” state, that is in error, even while the unsatisfied blue checks
suggest otherwise, but lose to a majority vote taken at the nodes. The set will remain in
error and the decoder will stay stuck. Since the size of the smallest trapping sets are usually
smaller than the minimum distance between codewords [58], they tend to dominate the code
performance rather than the codewords. Further, the smaller the size of a trapping set, the
more impact the set has on the error floor [85, 64, 63, 62].

By enumerating the “smallest” trapping sets of a given code along with a linearized
dynamics analysis, we are able to estimate the contribution to the decoding degradation
from the trapping sets in the low-error region where conventional numerical methods are
impractical due to excessive run times, which would take years even in simple cases [85,
64, 63, 62].

Figure 1.5 [64] shows that the error floor of the IEEE 802.3an LDPC code starts at an
SNR of around 5 dB and is dominated by length-8 trapping sets. The x-axis represents the
signal-to-noise ratio, i.e., the ratio of signal power to the background noise power, which
is determined by the channel. The y-axis denotes the ratio of erroneous bits to all the bits
transmitted. Note that the BER does not refer just to the information bits. The red curves
are our analytical estimation based on the dynamics of these dominant trapping sets, whose
subgraph is shown in Figure 1.6.

More importantly, during the process of developing our analysis, we found that the
code, the channel, the decoding algorithm and, last but not least, the decoder settings play
important roles in the error behavior of the decoder in the error floor regime [85].

The topology of these trapping sets is largely determined by the code structure, as can
be seen from Figure 1.4, and is quite independent of the code size. Therefore, simply in-
creasing the size of a code has only a small impact on its error floor behavior. With growing
code length, finding and enumerating these trapping sets becomes a formidable combina-
torial problem, making code performance analysis in the error floor regime an extremely
difficult problem. Finding a generic solution to disable the entire family of the trapping
sets appears to be an attractive research avenue. In our work we therefore concentrate on
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modifying the decoder, targeting the entire ensemble of trapping sets rather than any par-
ticular subset. Such a solution would allow us concentrate on designing codes with large
distance, without worrying about the existence of trapping sets [77, 71]. Once a decoder
is able to handle sub-graphs such as the ones shown in Figure 1.4 or Figure 1.6, without
getting trapped and causing an error floor, there will be no need to carry out an exhaustive
trapping set search [64, 24].

In fact every channel has its own characteristics and the decoding algorithm applied to
it should be customized accordingly. This causes the trapping sets for each channel to be
slightly different. Thus, targeting specific trapping sets for a specific channel and modify-
ing the associated decoding algorithm is required to address the performance problem for
different channels. Not surprisingly, this can also be addressed at a cost of an increase in
the decoder’s complexity by adding extra functionalitiy to the decoding algorithm. Good
examples of post-processing targeted to eliminate the effect of trapping sets are given in
[89, 46, 85].

1.3 The Influence of the Decoding Algorithm

Consider the trapping set example shown in Figure 1.4 together with the bit-flipping de-
coding algorithm presented earlier. It is easy to see that no matter how many iterations we
run, the decoder will remain locked on the trapping set and will repeatedly cause the corre-
sponding bit errors. Hence simply increasing the maximum iteration number at the decoder
has no effect on correcting the trapping sets, but rather costs more running time since the
decoder will never converge to an output from a trapping set until the decoder reaches its
maximum allowed iterations and is forced to stop, which is one of the decoding stopping
criteria introduced in the first section of this chapter.

The situation is much the same when we turn to decoding algorithms for more popular
channels, which exchange probabilistic messages that represent the amount of likelihood of
a given bit’s value. Again, increasing the number of iterations alone will often have little or
no success in correcting trapping sets.

In this context we began to investigate a key parameter in the decoder — the clipping
threshold, which prevents the accumulated log-likelihood ratio values within the decoder
from growing too large and causing numerical overflows. There is no rigid guideline for
specifying how this parameter should be set. It is usually chosen as a compromise between
computational effort and performance. The values chosen are typically found via extensive
simulations. However, as far as the error floor is concerned, extensive simulations would be
extremely time and resource-intensive.

However, in our experiments and analysis, we found that the dominance of the trapping
sets in determining the error floor is highly related to this clipping threshold [85]. By al-
lowing the messages to grow larger, the number of trapping sets at the output of the decoder
drops significantly. As a result, the error rate is improved. In fact, we can theoretically
show that, if the accumulated LLRs are allowed to grow unbounded in length, the “correct”
probabilistic information from the blue unsatisfied checks will eventually grow big enough
to break the trapping set, therefore correcting the erroneous bits in the trapping set. In other
words, unlike codewords, these trapping sets should not pose a fundamental limitation to
the decoding algorithm.

Besides helping the decoder conquer the trapping set failure patterns and consequently
improve the error rate, setting the LLR clipping threshold high has some other conse-
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quences. An apparent problem will be an increased demand on decoder memory and com-
putational complexity, which may lead to design challenges and expenses. Another issue is
the role played by the number of iterations when the decoder will no longer lock up after a
finite number of iterations. To answer this question, we remind the reader of why iterative
decoding was conceived in the first place: given enough iterations, the decoder should re-
turn a codeword from any given input signal. Of course, in reality, a maximum number of
iterations is commonly used to strike a balance between run time and error rate. Without
the obstruction from trapping sets, however, the error rates will be highly dependent on this
number of iterations, and other stopping criteria may be preferable.

1.4 Importance Sampling

The error floor happens at high SNR values, and commonly the error rates are too low to
be simulated using conventional methods. Hence, importance sampling (IS) targeting the
dominant trapping sets becomes an alternative for estimating the error rate.

Importance sampling is a method to increase the number of significant events in a low
event-rate testing environments such as bit error rate testing or simulation [82, 58, 36, 64,
86]. The basic principle of importance sampling is based on Monte-Carlo sampling. Specif-
ically, in our case we wish to evaluate the probability that noise carries an original signal x0
into the decision region of another signal, causing an error. IfNs noise samples are selected
according to the channel’s noise distribution, then an error estimate can be obtained as

P̃e =
1

Ns

Ns∑
i=1

w(yi). (1.21)

P̃e is an unbiased estimate of the true error probability

Pe =

∫
D
Pr(y|x0) dy, (1.22)

where the weighting index is

w(y) =

{
1, if y ∈ D;
0, otherwise.

(1.23)

D is the signal space area where the decoder fails to produce the correct output x0, and
Pr(y|x0) is the conditional probability density function of the received signal y given the
transmitted signal x0, which is related to the noise distribution, for example, the Gaussian
noise density in our case.

Unfortunately, for low values of Pe, one has to generate in the order of 10/Pe samples
to obtain statistically relevant numbers of error events. For instance, the error floor of the
IEEE 802.3an LDPC code appears below a bit error rate of 10−10, as shown in Figure 1.5,
which requires 1011 to 1012 samples to be simulated and tested.

One way of increasing the number of error events, or positive counts, is to distort the
noise distribution to cause more errors. This is typically done by shifting the mean of the
noise towards a convenient boundary of D (mean-shift importance sampling) [82, 58].

Since trapping sets are examined as the primary causes of the significant events in the
error floor region, we add such a mean shift, or bias, to the members belonging to both
x0 and a dominant trapping set. Having identified and enumerated the dominant trapping
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sets of an LDPC code, we technically need to do this for each trapping set separately, but
symmetries can often be exploited in reducing this task. Gaussian-distributed noise is added
to the biased codeword x0. As a result, the biased received y will have an increased chance
of causing an error. Consequently the sample size Ns can be significantly reduced, which
translates into what is called “the gain” of importance sampling.

Taking into account the bias value and the dominant trapping set selected in the opera-
tion, the estimation formula (1.21) along with the weighting factor (1.23) must be adjusted
accordingly, leading to a weight term w(y) � 1. The combined effect of measuring more
significant events and ascribing them lower weight will produce the same error rate measure
in (1.21) if the shifting is done correctly. In Chapter 3, Figure 3.12 shows the results of im-
portance sampling for the IEEE 802.3an code compared to regular (no-bias) Monte-Carlo
simulations which are also presented in Figure 1.5. As a word of warning: it is common for
importance sampling results to become “biased” and cause erroneous error measurements,
and therefore extreme caution is needed.

1.5 Two Example LDPC Codes

The IEEE 802.3an length-2, 048 LDPC code has been widely used as a “poster boy” exam-
ple code in error floor research [88, 89, 64]. One reason is because its error curve clearly
demonstrates a turning point from waterfall to error floor, as shown in Figure 1.5. However,
it is almost impossible to simulate bit error rates of 10−10 and below.

On the other hand, the length-155 Tanner code used in our examination does not create
major difficulties in simulating its error floor, which enables us to plot error floor statistics in
the following chapters to understand the dominance the trapping sets and verify analytical
approaches. However, a short code like this has a very “weak” error floor which is not
easily visually identifiable from the waterfall region.

Both codes have an error floor caused by trapping sets. By studying their dominant
trapping sets, their error floors can be estimated using a linearized analysis. The accuracy
of this analysis is confirmed by importance sampling. We identified the LLR range at the
decoder as a major trigger of trapping sets. These errors will all go away when the LLR
clipping value is set high enough, and given a sufficient number of iterations.

1.6 Organization of this Thesis

We started by introducing the characteristics of some classical decoding algorithms of
LDPC codes on different channel models in Chapter 2. The decoders most often used
for LDPC codes are based on message-passing (MP), where messages are iteratively sent
across a bipartite graph of the code. While the performance of message-passing is excellent
in practice, analyzing its behavior is often difficult particularly due to cycles in the code’s
graph.

Because of inherent structural weakness of LDPC codes, with increasing SNR, the error
probability does not fall as rapidly as expected, after some point. At small SNR, the error
probability decreases rapidly with the SNR and the curve forms the so-called waterfall re-
gion. The decrease slows down at moderate values turning into the error floor asymptotic at
very large SNR. Under MP decoding, the underlying reason for error floors is the existence
of trapping sets [58]. In Chapter 3 we provide a linear analysis based on the minimal trap-
ping sets of LDPC codes to accurately predict the error floor. This is useful especially when
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the code has a low error probability at high SNR and software or even hardware simulations
are no longer practical. Two LDPC codes are showcased in this chapter. One code is widely
recognized as a good-length error correcting code and utilized in one of the IEEE standards.
The other has fewer code bits that enable the software simulation and error pattern statistics
in the high SNR region. The enumeration process of the absorption sets of the two codes is
systematic but a bit tedious, thus it is presented in two appendix chapters, respectively.

Once we understood that how the primary decoding failures are contributing the error
floor, Chapter 4 describes an effort to eliminate such a contribution. As we carefully exam-
ined our estimation formula that was derived in Chapter 3 and accurately approximates the
error floors, we find out that code construction, channel properties, the decoding algorithm
and decoder settings are all responsible for the formation of the absorption sets as domi-
nant decoding error patterns. By adjusting the decoder settings, LLR clipping threshold and
maximum iteration number to be exact, which are configured to reduce the computational
complexity of the decoding algorithm, we show that the error floors of the two LDPC codes
showcased in Chapter 3 can be lowered very effectively.

Lastly, the Linear programming (LP) decoding technique, an alternative decoding method
proposed recently, is believed to be able to achieve better performance than message-
passing decoding since it is closely related to the optimal maximum-likelihood decoding.
However the connection between message-passing and linear programming decoding tech-
niques is still being studied [11]. Regarding LP decoding, pseudocodewords are the main
reason that cause decoding failure. A recent numerical result [13] implies that there is
some connection between pseudocodewords and trapping sets, which is examined at the
end of Chapter 3. The explicit link between those two is as yet unknown. Proposed work is
described in Chapter 5.

14



Chapter 2

LDPC Decoding Algorithms

An LDPC code is defined by a parity-check matrix:

Hm×n = [hji], where hji ∈ {0, 1}, j = 1, 2, . . . ,m and i = 1, 2, . . . , n, (2.1)

where n is the codeword length and m is the number of parity-check equations.
If every row and every column of H has the same number of 1’s, respectively, it is called

a regular LDPC code, otherwise the code is irregular. Let dv denote the number of 1’s in
each column and dc denote the number of 1’s in each row of a regular LDPC code. They
are called variable node degree and check node degree of the LDPC code, respectively. A
regular LDPC code can also be denoted as a (dv, dc) LDPC code.

In 1981, Tanner [74] introduced a bipartite graphical representation for LDPC codes,
now called a Tanner graph. The nodes of the graph are separated into two distinct sets,
named variable nodes set and check nodes set, and edges only connect nodes of two dif-
ferent types. The Tanner graph consists of m check nodes, each corresponding to one
parity-check equation, and n variable nodes, corresponding to the codeword bits. There is
an edge connecting check node j and variable node i, whenever hji = 1.

Note that message-passing decoding is based on the Tanner graph, whereas linear pro-
gramming decoding is not. Let us see how they work one by one.

2.1 Iterative Decoding

Although maximum-likelihood decoding is optimal, it is too complex to implement for
codes of useful length. On the other hand, iterative decoding performs extremely well.
The idea of iterative decoding is that each check node combines all the information sent
to it and returns a likelihood/suggestion back to the variable nodes connected to it. The
variable nodes can either make a decision of the incoming messages, for example, a major-
ity vote, or add them up and send them back out to the check nodes for another iteration
cycle. The process will stop when all check nodes are satisfied, i.e., a valid codeword is
encountered, or the decoder reaches a maximum number of iterations allowed.

Decoding is monotonic in that the more iterations the decoder runs, the better the perfor-
mance. But monotonicity is true only for cycle-free codes. When the codes have cycles, the
messages passing along the edges become dependent after a few iterations, which degrades
the final decoding performance. Therefore, constructing a code with large girth became one
option to improve performance. However, we pursue another direction which is not linked
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to designing the code. We instead modify the decoding algorithm to achieve a better error
rate.

The algorithm used to decode LDPC codes was discovered independently several times
and as a matter of fact comes under different names. The most common ones are the
message-passing algorithm, or the belief-propagation algorithm.

Let I = {i : i = 1, 2, . . . , n} and J = {j : j = 1, 2, . . . ,m} be the set of variable
nodes and the set of check nodes, respectively. For each j ∈ J , define Vj = {i : i =
1, 2, . . . , n and hji = 1} as the set of neighbor variable nodes of j, i.e., all variable nodes
connected to j. And for each i ∈ I , define Ci = {j : j = 1, 2, . . . ,m and hji = 1} as the
set of neighbor check nodes of i, i.e., all check nodes connected to i.

We start with the hard-decision bit-flipping decoding algorithms prior to considering
the more complex soft-decision message-passing decoding.

2.1.1 LDPC Decoding Algorithm on BEC

The binary erasure channel is, in some sense, error-free. When the receiver gets a bit, it
is 100% certain that the bit is correct. The only confusion arises when the bit is erased.
If ỹi = ε then the received symbol i has been erased and the variable node i is said to be
unknown. The decoding algorithm will try to determine whether i should be 0 or 1 based
on the knowledge of other variable nodes [50]. An illustration of the BEC is shown in
Figure 2.1, where X and Y denote the sets of input and output symbols, respectively.

0

p
**VVVVVVVVVVVVVVVVVVVV

1−p //0

X ε Y

1

p

44hhhhhhhhhhhhhhhhhhhh
1−p

//1

Figure 2.1: A binary erasure channel with probability of erasure p.

Step 1. Initialize

di = ri = 1− 2ỹi =


1, if ỹi = 0;
0, if ỹi = ε;
−1, if ỹi = 1,

(2.2)

for each variable node i ∈ I .

Step 2. All variable nodes send
µi→j = di (2.3)

to each check node j ∈ Ci.

Step 3. Check nodes connected to variable node i send

βj→i =
∏

l∈Vj\{i}

µl→j (2.4)

to variable node i. That is, if all incoming messages are different from 0, the check
node sends back to i the value that makes the check consistent, otherwise it sends
back a 0 for “unknown”.
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Step 4. At the variable node i, if i is unknown and at least one βj→i 6= 0, then set di = βj→i
and declare i to be known. Note that, under BEC, the values of all non-zero βj→i’s
will be identical.

Step 5. Stop when all variable nodes are known or after a fixed number of iterations have
been executed. Otherwise go back to Step 2.

2.1.2 Gallager’s LDPC Decoding Algorithm A for BSC

The binary symmetric channel is a frequently used model for a noisy transmission medium,
where the binary input bits are flipped with a small probability, called crossover probability.
An illustration of the BSC is shown in Figure 2.2. The BEC, like the BSC, is popular in
information theory and coding theory for its simplicity.

0

p

&&MMMMMMMMMMMMMMMMMMMMMMM
1−p //0

X Y

1

p

88qqqqqqqqqqqqqqqqqqqqqqq
1−p

//1

Figure 2.2: A binary symmetric channel with crossover probability p.

Step 1. Initialize
di = ỹi (2.5)

for each variable node i ∈ I .

Step 2. All variable nodes send
µi→j = di (2.6)

to each check node j ∈ Ci.

Step 3. Check nodes connected to variable node i send

βj→i =
∏

l∈Vj\{i}

µl→j (2.7)

to variable node i. That is, the check node sends back to i the value that would make
the parity check satisfied.

Step 4. At the variable node i, if
⌈
dv
2

⌉
or more of the incoming messages βj→i disagree

with di, change the value of variable node i to its opposite value, i.e., di = di ⊕ 1.

Step 5. Stop when no more variables are changing, or after a fixed number of iterations
have been executed. Otherwise go back to Step 2.

Note that, in Step 4, a majority vote is taken at the variable node to make it satisfy the
majority check nodes.
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2.1.3 Message-Passing Algorithm on AWGN

The additive white Gaussian noise (AWGN) channel is the most important model of prac-
tical channels, especially for wireless communications. The output of an AWGN channel
model is the sum of the input signal and a Gaussian (or normal) distributed noise.

ỹi = yi + ni, (2.8)

where the noise samples are independently and normally distributed:

ni ∼ N
(
0, σ2

)
. (2.9)

It approximates a “real” environment better than the BEC and the BSC do.
Now we get to the message-passing decoding of LDPC codes on AWGN channels:

Step 1. Initialize

λi =
2ỹi
σ2

(2.10)

for each variable node i ∈ I .

Step 2. All variable nodes send
µi→j = λi (2.11)

to each check node j ∈ Ci.

Step 3. Check nodes connected to variable node i send

βj→i = 2 tanh−1

 ∏
l∈Vj\{i}

tanh
(µl→j

2

) (2.12)

to variable node i.

Step 4. Variable nodes connected to check nodes j send

µi→j =
∑

l∈Ci\{j}

βl→j (2.13)

to j.

Step 5. When a fixed number of iterations have been completed or the estimated codeword
y∗ satisfies Hy∗T = 0T, output y∗ as the decoded codeword and stop. Otherwise go
back to Step 3.

All values in this algorithm are within the log-domain, so-called LLRs. Let us show
how those LLRs are derived.

Similar to what we did in Section 2.1.1, let us map yi from {0, 1} to {1,−1}:

yi = 1− 2yi =

{
1, if yi = 0;
−1, if yi = 1.

i = 1, 2, . . . , n. (2.14)

Note that

Pr
noise

[ỹi|yi] = Pr
noise

[yi + ni|yi] (2.15)
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= Pr
noise

[ni] (2.16)

= Pr
noise

[ỹi − yi] (2.17)

=
1√
2πσ2

exp

(
−(ỹi − yi)2

2σ2

)
. (2.18)

Then this LLR

ln

(
Prnoise[ỹi|yi = 1]

Prnoise[ỹi|yi = −1]

)
= ln

exp
(
− (ỹi−1)2

2σ2

)
exp

(
− (ỹi+1)2

2σ2

)
 (2.19)

= −(ỹi − 1)2

2σ2
+

(ỹi + 1)2

2σ2
(2.20)

=
2ỹi
σ2

(2.21)

as given in (2.10).
To show how to get (2.12), we shall go back to the probability domain and define

rji(b) = Pr [check node j is satisfied|yi = b and all messages µl→j where l ∈ Vj\{i}] ,
(2.22)

where b ∈ {−1, 1}. Therefore

βj→i = ln

(
rji(1)

rji(−1)

)
. (2.23)

In the same way, µi→j in (2.13) can be written as

µi→j = ln

(
qij(1)

qij(−1)

)
. (2.24)

To connect rji(b) and qij(b), Gallager has showed [30]:

Lemma 2.1. Consider a sequence of M independent binary digits ai for which Pr[ai =
1] = pi. Then

Pr
[
{ai}Mi=1 contains an even number of 1’s

]
=

1

2
+

1

2

M∏
i=1

(1− 2pi). (2.25)

Proof. By induction on M ,
M = 1: P1 = 1− p1;
M = 2: P2 = (1− p1)(1− p2) + p1p2;
M = 3: P3 = (1− p1)(1− p2)(1− p3) + p1p2(1− p3) + p1(1− p2)p3

+(1− p1)p2p3;

M = k: Assume Pk =
1

2
+

1

2

k∏
i=1

(1− 2pi);

M = k + 1: Pk+1 = (1− pk+1)Pk + pk+1(1− Pk) =
1

2
+

1

2

k+1∏
i=1

(1− 2pi).
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In addition, with the correspondence between pi and qij(−1), we have

rji(1) =
1

2
+

1

2

∏
l∈Vj\{i}

(1− 2qlj(−1)) . (2.26)

In other words, when yi = 1 (representing 0), the variable nodes {l ∈ Vj\{i}}must contain
an even number of −1’s in order to satisfy the check node j. By noting that

rji(1) = 1− rji(−1)
qij(1) = 1− qij(−1)

, (2.27)

(2.26) becomes:

rji(1) =
1

2
+

1

2

∏
l∈Vj\{i}

(qij(1) + qij(−1)− 2qlj(−1)) (2.28)

⇒ 2rji(1) = 1 +
∏

l∈Vj\{i}

(qij(1)− qlj(−1)) (2.29)

⇒ 2rji(1) = rji(1) + rji(−1) +
∏

l∈Vj\{i}

(qij(1)− qlj(−1)) (2.30)

⇒ rji(1)− rji(−1) =
∏

l∈Vj\{i}

(qlj(1)− qlj(−1)) . (2.31)

Due to the fact that

tanh

(
1

2
ln
(a
b

))
=

(
a
b

) 1
2 −

(
a
b

)− 1
2(

a
b

) 1
2 +

(
a
b

)− 1
2

(2.32)

=
a− b
a+ b

, (2.33)

we can substitute (2.31) by

rji(1)− rji(−1) = (rji(1) + rji(−1)) tanh
(
1

2
ln

(
rji(1)

rji(−1)

))
(2.34)

= tanh

(
1

2
βj→i

)
(2.35)

qij(1)− qij(−1) = (qij(1) + qij(−1)) tanh
(
1

2
ln

(
qij(1)

qij(−1)

))
(2.36)

= tanh

(
1

2
µi→j

)
(2.37)

to get (2.12), finally.
The tanh rule is preferred in analysis due to its conceptual simplicity. However, in

order to avoid the multiplication in the implication, (2.12) can be equivalently expressed as
a sign-adjusted sum [4]:

βj→i = 2 tanh−1

 ∏
l∈Vj\{i}

tanh
(µl→j

2

)
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=

 ∏
l∈Vj\{i}

sign(µl→j)

 · f
 ∑
l∈Vj\{i}

f (|µl→j |)

 , (2.38)

where

sign(x) =


1, if x > 0;
0, if x = 0;
−1, if x < 0,

(2.39)

and

f(x) = − ln
(
tanh

(x
2

))
(2.40)

= ln

(
ex + 1

ex − 1

)
(2.41)

= ln

(
1 +

2

ex − 1

)
, (2.42)

where none of the incoming LLR µl→j can be zero.

Proof. First we have

tanh
(y
2

)
=

n∏
i=1

tanh
(xi
2

)
. (2.43)

Let y = sign(y) · |y| and xi = sign(xi) · |xi|. Since tanh(x) is an odd function on its
domain, we obtain

sign(y) =

n∏
i=1

sign(xi) (2.44)

tanh

(
|y|
2

)
=

n∏
i=1

tanh

(
|xi|
2

)
. (2.45)

Taking − ln(·) of both sides of (2.45) yields:

f (|y|) =
n∑
i=1

f (|xi|) , (2.46)

where f(x) is given by (2.40). Due to the fact that

f (f(x)) = ln

(
1 +

2

eln(1+
2

ex−1) − 1

)
(2.47)

= ln

1 +
2(

1 + 2
ex−1

)
− 1

 (2.48)

= ln (1 + (ex − 1)) (2.49)

= x (2.50)

for all x > 0, we can apply f(·) to both sides of (2.46), yielding:

|y| = f

(
n∑
i=1

f (|xi|)

)
, (2.51)

which, after combining with (2.44), gives (2.38).
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Furthermore, to avoid the complex tanh(·) calculation, we first note that the message
with the minimum magnitude will dominate the tanh(·) value. Some approximations have
therefore been proposed, such as min-sum decoding algorithm (and min-sum with correc-
tion factors) [81] [39] [61], in which the messages sent to variable nodes from check nodes
are approximated by:

βj→i = min
l∈Vj\{i}

(|µl→j |)
∏

l∈Vj\{i}

sign(µl→j). (2.52)

The message-passing algorithm does really well on AWGN channels and has numer-
ous practical applications. It is the algorithm that is almost exclusively used in practical
decoders.

2.2 Linear Programming Decoding

To motivate the linear programming decoding of LDPC codes, we will start with the optimal
decoding method, i.e., maximum-likelihood (ML) decoding. We then show that it results
in an equivalent linear programming (LP) problem. Therefore LP solvers can be applied to
the decoding of LDPC codes.

One disadvantage of LP decoding is that it may output real-valued solutions, while only
integer solutions are meaningful. But restricting all LP variables to be integers does not help
at all in the sense of complexity. A common strategy to mitigate this effect is to remove the
integer restriction. This approach is called linear programming relaxation. After that, we
will see how LP decoding works.

2.2.1 Maximum-Likelihood Decoding

Assume that all codewords have equal probability, then

Definition 2.1. ([43]) Maximum-likelihood decoding aims to find the codeword y∗ that
maximizes the likelihood of what was received from the channel ỹ, given a codeword y

was transmitted:
y∗ = argmax

y∈C
Pr
noise

[ỹ received|y transmitted]. (2.53)

ML decoding is optimal but NP-hard [52]. Therefore, we hope to find an alternative
sub-optimal but still efficient decoding method to approximate optimal ML decoding. The
following theorem motivated the idea of applying linear programming to decoding.

Theorem 2.2. ([25]) For any binary-input memoryless channel, ML decoding is equivalent
to finding an optimal solution that minimizes a linear function of the codeword.

Proof.

y∗ = argmax
y∈C

Pr
noise

[ỹ received|y transmitted] (2.54)

= argmax
y∈C

(
n∏
i=1

Pr
noise

[ỹi|yi]

)
(2.55)

= argmax
y∈C

(
ln

(
n∏
i=1

Pr
noise

[ỹi|yi]

))
(2.56)
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= argmax
y∈C

(
n∑
i=1

ln

(
Pr
noise

[ỹi|yi]
))

(2.57)

= argmax
y∈C

(
n∑
i=1

ln

(
Pr
noise

[ỹi|yi]
)
−

n∑
i=1

ln

(
Pr
noise

[ỹi|0]
))

(2.58)

= argmax
y∈C

(
n∑
i=1

(
ln

(
Pr
noise

[ỹi|yi]
)
− ln

(
Pr
noise

[ỹi|0]
)))

(2.59)

= argmax
y∈C

 ∑
i:yi=1

(
ln

(
Pr
noise

[ỹi|yi]
)
− ln

(
Pr
noise

[ỹi|0]
)) (2.60)

= argmax
y∈C

 ∑
i:yi=1

ln

(
Prnoise[ỹi|yi = 1]

Prnoise[ỹi|yi = 0]

) (2.61)

= argmin
y∈C

 ∑
i:yi=1

ln

(
Prnoise[ỹi|yi = 0]

Prnoise[ỹi|yi = 1]

) (2.62)

= argmin
y∈C

 ∑
i:yi=1

γi

 (2.63)

= argmin
y∈C

(
n∑
i=1

γiyi

)
. (2.64)

(2.55) is due to the memoryless property of the channel. Next (2.56) follows from the fact

that ln(·) is a strictly increasing function. Subtracting a constant term
n∑
i=1

ln

(
Pr
noise

[ỹi|0]
)

from (2.57) does not compromise the argument. Canceling the identical terms in (2.59)
gives us the summation in (2.60). Flipping the ratio in (2.61) results in a minimizing ar-
gument (2.62). By (1.19), the summation in (2.62) becomes a summation of γi over all i
where yi = 1. This summation can be extended over all i ∈ [1, n] in (2.64), since yi’s are
either 0 or 1.

2.2.2 Linear Programming

In mathematics, linear programming problems involve the optimization of a linear objec-
tive function, subject to linear equality and inequality constraint functions ([65]). These
constraint functions define the domain of the objective function. Regarding LP, this domain
is also called a polytope, denoted by P . Every LP problem has an associated polytope and
the goal is to find a point in the polytope where the objective function achieves its extreme
value. Further, there always exists a solution to an LP problem and the solution is always
obtained on a vertex of its polytope ([65]). So the set of the vertices, denoted by V (P ), is
the feasible solution space.

In (2.64), we have a linear objective function. The question then becomes how to adapt
the constraint y ∈ C into linear constraints. One straightforward way is to restrict all vari-
ables to be integers, then we obtain an integer linear programming (ILP) problem. Unfor-
tunately, ILP is NP-hard [32] and does not have straightforward efficient solution methods.
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Even if we require all variables to be either 0 or 1, which is called binary integer program-
ming, a special case of ILP, it is still NP-hard. Therefore, the next feasible approach seems
to be simply removing the integer restrictions, for example, by allowing the variables to
belong to the real interval [0, 1] instead of just 0 or 1, and then solving the resulting LP.
This technique is called linear programming relaxation.

• ILP

Objective function: min

n∑
i=1

γiyi

Constraints: y ∈ C
(2.65)

• LP relaxation

Objective function: min
n∑
i=1

γiyi

Constraints (polytope P ): 0 ≤ yi ≤ 1
y ∈ V (P )

(2.66)

In ILP, the solution space is exactly the set of codewords. In LP relaxation, the solution
space is extended to real values. In other words, we enlarge the original domain to make
the problem solvable. As a consequence, the set of vertices (solutions) is enlarged, as
well. We may have both integral and fractional vertices. Even worse, some of the integral
vertices may not be valid codewords. In the following section, we will see, however, that
every integral vertex of the LP decoding polytope still corresponds to a codeword. But the
LP decoding polytope also contains fractional vertices, which are potential outputs of the
decoder, so we call all vertices of the LP decoding polytope as pseudocodewords.

2.2.3 Linear Programming Decoding for LDPC Codes

After we explore the connection between LP and decoding, let us study the performance of
LP decoding for LDPC codes, by looking at their polytope.

A codeword y = [y1, y2, . . . , yn] must satisfy

HyT = 0T. (2.67)

In other words, we can solve this system of binary linear equations (2.67) to find a codeword
y. There are m equations in this system and we can solve them one by one. If we call the
solutions to one equation as local solutions, then the solutions to the entire system (2.67),
named global solutions, will be the intersection of all local solutions.

Consider one equation from (2.67) now. There are dc binary variables involved. If an
even number of these dc variables equal 1 and the rest of them are equal to 0, then this is a
solution to this equation. Note that there are n variables, and the ones not involved in this
equation could be either 0 or 1. Then mathematically, for each parity-check equation j we
can enumerate the local solutions as follows.

Let Ej be the set of all subsets of Vj with even cardinality:

Ej = {S ⊆ Vj : |S| even}, ∀j ∈ J. (2.68)

Vj contains the dc variables in the j-th equation of (2.67). Then for each S in Ej :

yi =

{
1, if i ∈ S;
0, if i ∈ Vj\S.

∀i ∈ Vj (2.69)
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constitutes a local solution. So (2.69) will generate |Ej | local solutions.
In LP terminology, each local solution defines a local polytope. Likewise, the global

solution defines the global polytope, which will be the intersection of all local polytopes.
We start by building the local polytope [25]:

1. Let wj,S indicate that the local solution to check node j uses configuration S ∈ Ej :

wj,S =

{
1, use the configuration S;
0, not use the configuration S.

(2.70)

In addition, we need to keep in mind that we are eventually trying to enumerate
all global solutions. One potential global solution will be the intersection of one S
from each j, i.e., each check node is satisfied. For a given global solution, only one
particular S can be in effect at node i. Hence by (2.70):∑

S∈Ej

wj,S = 1. (2.71)

2. Let f = [f1, f2, . . . , fn] be the relaxed version of y:

0 ≤ fi ≤ 1, i = 1, 2, . . . , n. (2.72)

3. Obviously, wj,S and fi are dependent of each other. The value of fi at each vari-
able node i must be consistent with the point in the local polytope defined by w =

[wj,S1 , wj,S2 , . . .], where Sk ∈ Ej for check node j. So

fi =
∑

S∈Ej ,S3i
wj,S , ∀i ∈ Vj . (2.73)

To interpret this, if fi = 1, then one and only one of S ⊆ Ej containing i must be in
effect, where “in effect” means wj,S = 1. If fi = 0, then none of S ⊆ Ej containing
i should be in effect.

To avoid a mixed integer linear programming problem, we relax the indicator variables
(2.70) as well:

0 ≤ wj,S ≤ 1, ∀S ∈ Ej . (2.74)

By combining (2.72), (2.74), (2.71) and (2.73) altogether as our constraint functions, we
have the local LP polytope:

Qj =


(f ,w)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 ≤ fi ≤ 1, ∀i ∈ I;
0 ≤ wj,S ≤ 1, ∀S ∈ Ej ;∑
S∈Ej

wj,S = 1;

fi =
∑

S∈Ej ,S3i
wj,S , ∀i ∈ Vj .


, j = 1, 2, . . . ,m. (2.75)

The global polytope is then
Q =

⋂
j∈J

Qj . (2.76)
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Finally, our LP problem for LDPC codes becomes

min

n∑
i=1

γifi s.t. (f ,w) ∈ Q. (2.77)

We should point out that in the literature, two fast general-purpose LP optimization al-
gorithms are widely used. One is called the Simplex method, practical but in the worst-case
is greater than polynomial-time [70]; the other is named Ellipsoid, provably polynomial-
time but slow in practice [34]. Ongoing research focusses on customizing the general-
purpose algorithms to the decoding problem by making more use of the code structure.

Now let us examine the properties of this polytope Q.

2.2.3.1 ML certificate

Firstly, it can be shown that all integer vertices of Q are valid codewords:

Q
⋂
{0, 1}n = C. (2.78)

So if we obtain an integer solution from an LP decoder based on Q, this solution must be a
valid codeword from C. Given this is true, the ML decoder will output the same codeword.
This is called the ML certificate. This property is one of the touted advantages of LP
decoding [25].

2.2.3.2 Fractional Distance

In linear codes, the minimum Hamming distance among all codewords d is used to charac-
terize the performance of the code. In parallel, there is a similar concept in LP decoding.

Definition 2.2. ([25]) Define the fractional distance of Q as the minimum (pseudocode-
words) distance between any integral vertex, i.e., codeword, and any other vertex:

dfrac = min
y ∈ (V (Q)

⋂
{0, 1}n)

f ∈ V (Q)
f 6= y

n∑
i=1

|yi − fi|. (2.79)

Obviously, f can be a codeword. Then the absolute values in (2.79) will be equivalent to
the Hamming distance which is used in calculating the minimum code distance d. Therefore
dfrac is upper bounded by d.

Recall that an [n, k, d] linear code can correct up to
⌈
d
2

⌉
− 1 errors [43]. Regarding LP

decoding we have

Theorem 2.3. ([25]) The LP decoder using Q will be successful if at most⌈
dfrac
2

⌉
− 1 (2.80)

bits are flipped by a binary symmetric channel.
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2.2.3.3 C-Symmetry

We say that the LP decoder succeeds if the transmitted codeword is the unique optimal
solution to the LP. If there are more than one LP optima, the LP decoder fails.

Pr[error|y transmitted] = Pr

[
∃f ∈ Q, f 6= y

∣∣∣∣∣
n∑
i=1

γifi ≤
n∑
i=1

γiyi

]
. (2.81)

In coding theory, the all-zeros codeword 0 is widely applied as reference to evaluate
decoding failure probability, which is based on the fact that the error probability is indepen-
dent of which codeword is transmitted and 0 is always a codeword. In addition, d is equal
to the minimum Hamming weight of non-zero codewords. Both are due to code linearity.
As a matter of fact, in LP decoding, the (absolute) difference of an integral vertex and any
other vertex is still a vertex. This is interesting in that, firstly, (2.79) can be computed as the
minimum weight of non-zero vertices:

dfrac = min
f∈(V (Q)\{0})

n∑
i=1

fi. (2.82)

Note that (2.82) is an LP problem, so it can be solved by an LP solver, say based on Simplex.
An improved procedure computing dfrac was provided by Feldman in [25]. It says that one
should first pick up a non-zero vertex of Q. There will be some constraints defining Q that
are not met with equality by this vertex. Then for each of those constraints do the following.
Derive a new polytopeQ′ fromQ by making the constraint into an equality constraint. Then
minimize the summation of (2.82) over Q′ by an LP solver. The minimum value obtained
over all Q′’s is dfrac. It works due to the fact that a vertex of a D-dimension polytope is
uniquely determined by D linearly independent constraints, which are met with equality by
this vertex. The initial vertex must meet D linearly independent constraints. By forcing
one other constraint to be an equality, we will get a D − 1 dimensional polytope Q′ and
the vertices of Q′ will be checked to see if the optimal value is achieved. After all Q′ are
checked, it is guaranteed that all vertices of the original Q have been examined. Thus we
obtain the solution to (2.82).

Second, as Q “looks” exactly the same from any other codeword in C,

Theorem 2.4. ([25]) For any LP decoder using Q under a binary-input memoryless sym-
metric channel, the probability that the LP decoder fails is independent of the transmitted
codeword.

So we may assume that 0 is transmitted under LP decoding scheme. By Theorem 2.4
and (2.81), we have

Corollary 2.5. ([25]) The LP decoder based on the polytope Q will fail iff ∃f ∈ Q with a
value of its objective function less than or equal to zero, where f 6= 0.

Pr[error|y transmitted] = Pr[error|0 transmitted] (2.83)

= Pr

[
∃f ∈ Q, f 6= 0

∣∣∣∣∣
n∑
i=1

γifi ≤ 0

]
. (2.84)
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As remarked earlier, the LP polytope is enlarged from the ML polytope through relax-
ation. The greater the relaxation, the poorer the decoding results. So we want the polytope
to be as small as possible, i.e., to make V (Q) as small as possible, to reduce the number
of fractional vertices which can cause the decoding failure. However, on the other hand, to
shrink the polytope by adding more linear constraints, the complexity will grow. We must
balance the trade-offs between the computation complexity and the decoding performance.

2.2.4 Comparison with Message-Passing Decoding

The sum-product algorithm performs very well in practice [17]. However, it does not always
converge. In addition, it does not have the ML certificate property. But it should be noted
that in practice, for large block length LDPC codes, when the sum-product decoder outputs
a codeword, it is extremely rare for it not to be the ML codeword [25]. Also, we can make
use of LP duality to give message-passing algorithms the ML certificate [25].

Comparing the computational complexity of LP decoding and message-passing decod-
ing is still very much an open issue, both in theory and practice. Theoretically, the LP
decoder is far less efficient than the message-passing decoders, most of which run in linear
time (for a fixed number of iterations). Intuitively, this is because that LP decoding has to
“pay” computationally for the ML certificate property.

In a numerical experiment run in [25], it was noted that the performance of the LP de-
coder for LDPC codes lies in between the performance of min-sum and sum-product. It is
interesting that when the BSC crossover probability becomes very small, LP even outper-
forms sum-product. But still, there is a big gap between them and optimal ML decoding.
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Chapter 3

Error Floor Estimation

The error floor in modern graph-based error control codes such as low-density parity-check
codes is caused by inherent structural weaknesses in the code’s interconnect network. The
iterative message-passing algorithm cannot overcome these weaknesses and gets trapped
in error patterns which are easily identifiable as erroneous (in LDPC codes), and are thus
not valid codewords, but difficult to overcome or correct. These weaknesses were termed
trapping sets by Richardson in [58], a summary definition for the patterns on which the
message-passing algorithm fails for Gaussian channels. These trapping sets are dependent
on the code, the channel used, and to a lesser degree also on the details of the decoding
algorithm.

The message-passing decoding is based on the assumption that the Tanner graph is
a tree, i.e., there is a unique path connecting any two distinct variable nodes. Then the
messages passing along the edges are independent of each other. However, the actual code
graph can never be a tree. The highly structured parity-check matrix will introduce all kinds
of cycles to the graph, which compromise the independence of the passed messages. After
a few iterations, whose number depends on the girth of the Tanner graph and the number of
cycles, the probabilities will become dependent on each other. And that causes the decoding
failure, eventually. This also explains that why trapping sets are cycles or unions of cycles.

Therefore, making the girth as large as possible is one of the primary objectives when
constructing LDPC codes. The value of girth can be as small as 4. Four 1’s at the four
corners of any sub-matrix in the parity-check matrix corresponds to one 4-cycle. This can be
avoided by carefully constructing the H matrix. To avoid 6-cycles seems to be much more
complicated. However, some 4-cycle free LDPC codes provide pretty good performance
already [21].

Prior work on identifying the weaknesses of LDPC codes on erasure channels led to the
definition of stopping sets in [16]. Stopping sets, being the weaknesses of LDPC codes on
erasure channels, also play a role on Gaussian channels, but are not typically the dominant
error mechanism. In [88] the authors define absorption sets, which are the subgraphs of the
code graph on which the Gallager bit-flipping decoding algorithms fail for binary symmet-
ric channels. The authors observed that these absorption sets also show up as the dominant
trapping sets in certain structured LDPC codes. In [89] they devise post-processing meth-
ods to reduce the effects of these absorption sets and lower the error floor of the codes in
question.

In this chapter we present a linear algebraic approach to the dynamic behavior of ab-
sorption sets. We show that these sets follow a geometric growth phase during early iter-
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ations where messages inside the absorption set grow towards a largest eigenvector which
characterizes the absorption set. The seemingly erratic behavior of the messages at early
iterations is due to the decreasing influence of lesser eigenvectors. We define the gain of
an absorption set and show how it affects the influence of the extrinsic messages that flow
into the absorption set at each iteration from the remainder of the code network. The im-
portance of set extrinsic information was already informally observed in [83], who reported
a lowering of the error floor with increased extrinsic connectivity. We use our analysis to
produce accurate error formulas for the error floor BER/FER and support these results with
importance sampling simulations targeting the absorption sets.

As illustrations we carefully identify and classify absorption sets of the regular [2048, 1723]
LDPC code recently designed in [21], which is used in the IEEE 802.3an standard, and a
length-155 Tanner code. Topological features of dominant absorption sets are identified and
a search algorithm is presented which finds the leading dominant sets.

3.1 Error Patterns of LDPC Codes on BEC

Stopping sets completely determine the performance of graph-based decoding of LDPC
codes on erasure channels, i.e., on channels where the transmitted binary symbols are either
received correctly, or are erased, as shown in Figure 2.1. A complete statistical treatment
of stopping sets was given in [16]. Aptly named, a stopping set is a subset of uncorrected
variable nodes where the decoder stops, i.e., makes no further correction progress. It is
simply defined as:

Definition 3.1. A stopping set S is a set of variable nodes, all of whose neighboring check
nodes are connected to the set S at least twice.

Figure 3.1 shows the Tanner graph of a length-20 regular (3, 4) LDPC code. A size-6
stopping set is plotted as black nodes. The check nodes that are incident to the set nodes
are colored blue. It is quite straightforward to see that if erasure decoding is performed
following Gallager’s decoding algorithm [61] the variable values in the stopping set cannot
be reconstructed. The variable nodes will keep receiving all 0’s from their neighbor check
nodes and stay “unknown”, as from Step 3 in Section 2.1.1. Valid codewords are trivially
stopping sets, but the set of stopping sets is larger than the set of valid codewords.
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Figure 3.1: Example of a stopping set.
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3.2 Bit-Flipping on BSC

An absorption set is an extension of the notion of a stopping set to the binary symmetric
channels [88] [89], and is defined as:

Definition 3.2. An absorption set A is a set of variable nodes, such that the majority of
each variable node’s neighbors are connected to the set A an even number of times.

Figure 3.2 shows the same LDPC code as shown in Figure 3.1. However, one of its
length-4 absorption sets is highlighted. The set’s neighboring check nodes are in blue and
red, representing satisfied and unsatisfied checks, respectively, as used in Figures 1.4 and
1.6. It can be verified that Gallager-type bit-flipping decoding will not be able to correct
an absorption set, since a majority of messages impinging on each variable node will retain
the erroneous sign for each iteration, and the messages carrying correct information will
lose the majority vote at Step 4 of Section 2.1.2. Consequently, the algorithm locks up. It
is believed that the smaller the weight of the absorption sets, the more severe impact on
the error curve. Thus by knowing the structure and the multiplicity of the first less weight
absorption sets, the error floors of LDPC codes over BSC can be well predicted [12].

# # # #  

�������������������

2222222222222222222222

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP # #  

����������������������

777777777777777777777777

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE  

����������������������

�������������������

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE # #  

}}}}}}}}}}}}}}}}}}}}}}}}}}}}}

"""""""""""""""""""

'''''''''''''''''''' # # # # # # # #

� � � � � � � � � � � � � � �
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Figure 3.2: Example of an absorption set.

3.3 Message-Passing on AWGN

The Gaussian channel is different from the binary symmetric and binary erasure channels
and causes a more complicated error behavior on LDPC codes. Richardson [58] first seri-
ously explored the error floor of LDPC codes on Gaussian channels and defined trapping
sets as the failure mechanism. Noting that typically very few trapping sets dominate the
error floor region, he proposed a semi-analytical method which amounts to a variant of im-
portance sampling to numerically predict the error floor from the knowledge of a code’s
trapping sets.

While finding trapping sets remained a largely open problem, [88] observed that in cer-
tain structured LDPC codes the dominant trapping sets are absorption sets, i.e., the failure
mechanism of the code on binary symmetric channels. In [89], algorithmic modifications
were proposed to “eliminate” the error floor caused by these absorption sets.

Table 3.1 lists the specific terms of trapping sets used according to each channel model.
Due to its popularity and extensive exposure, we will start with the [2048, 1723] regular

LDPC code [21] used in the IEEE 802.3an standard. This code has been extensively ana-
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Table 3.1: The dominant failure patterns of iterative message-passing decoding.
Channel Decoding Algorithm Failure Pattern

BEC Hard Decision Stopping Set S (Definition 3.1)
Trapping SetBSC Hard Decision

Absorption Set A (Definition 3.2)
AWGN Soft Decision

lyzed. It has a low error floor that appears at Eb/N0 ≈ 5 dB at a BER of 10−12, that is too
low to be efficiently explored using conventional simulations1.

Despite the fact that this code has a visually identifiable error floor in the high SNR
region, it turns out that its code length in the 2k range does not simplify analysis of the
code or the absorption sets behavior or even help prove the accurateness of our estimation
formula in the error floor region.

Therefore, another regular LDPC code with length 155 introduced by Tanner caught
our attention during the course of our search for a smaller code to facilitate the error floor
analysis. This code possesses a similar symmetry in its parity-check matrix, and hence
cause the symmetric-looking Tanner graphs of the absorption sets, for which we already
have a valid enumeration technique. The compromise is that there is no readily-seen error
floor in its error rate curve. We had to catch all error events at each given SNR value
during the simulation process, and then sort them, and finally calculate the contribution of
absorption sets to the error rate, in order to determine where the error floor starts. One
benefit of this approach is that it is confirmed once again that there exist absorption sets
that dominate the decoding failures in the error floor region. Another surprise from this
tedious error event collecting and sorting approach is that it provides us a means to evaluate
our efforts to lower or even eliminate the error floors. We have run several experiments
to counter-act the absorbing phenomenon, based on the insights from our formula. One of
them gives us the best result in terms of error rate.

In the rest of this chapter, we will analyze the dynamics of both the popular IEEE
802.3an LDPC code and the more simulation-friendly length-155 Tanner code. The analy-
sis will include identifying absorption sets and applying our error floor estimation to both
codes. Then a solution to eliminate the appearance of the absorption sets as decoding fail-
ures will be proposed in the following chapter.

3.4 Decoding Failures of the IEEE 802.3an LDPC Code in its
Error Floor Region

Figure 3.3 shows the structure of the dominant absorption set of this code (see also [89,
Figure 2]). There are 14, 272 such sets in this [2048, 1723] code. They dominate the error
floor since they are the minimal absorption sets of this code (for definitions of minimal and
dominant, see Definition 3.4).

1Even an FPGA-based simulation running at 100Mb/s requires about a week for a single data point.
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Figure 3.3: A dominant absorption set of the regular (6, 32) IEEE 802.3an code (not all
check node connections are shown).

3.4.1 Finding Dominant Absorption Sets

The [2048, 1723] rate 0.8413 regular LDPC code [21] considered here has a highly struc-
tured parity-check matrix:

Hm×n =


σ1,1 σ1,2 σ1,3 · · · σ1,32

σ2,1 σ2,2 σ2,3 · · · σ2,32

σ3,1 σ3,2 σ3,3 · · · σ3,32
...

...
...

. . .
...

σ6,1 σ6,2 σ6,3 · · · σ6,32


384×2048

, (3.1)

where each σi,j is a carefully selected 64×64 permutation matrix. The detailed construction
steps can be found in Appendix A.1.

We point out that the appearance of this matrix is different in the IEEE 802.3 standard
and in [21]. However the two matrices are equivalent as one is simply the permuted version
of the other. Therefore the performance is identical, however the topologies of absorption
sets might be different. Figure 3.4 shows the non-zero elements of the matrix as solid cir-
cles, whereas the zeros are left blank. We found that the matrix that came directly from [21]
possesses more symmetric properties, which is reflected in the absorption sets enumeration,
for instance, the statistics shown in Figure 3.7 that will be presented later.

Definition 3.3. Let a two-tuple (a, b) denote an absorption set, where a is the size of the set
(number of variable nodes) and b is the extrinsic message degree (EMD), i.e., the cardinality
of the set of the neighboring check nodes that are connected to the set an odd number of
times (the unsatisfied check nodes).

Example 3.1. For example, Figures 3.2 and 3.3 show a (4, 4) and an (8, 8) absorption sets,
respectively.

Table 3.2 shows the first few absorption sets of the code [21]. Note that the ratio b/a is
the average EMD for an (a, b) absorption set. The smaller this ratio, the smaller the portion
of “correct” extrinsic messages that “help” recover the transmitted bits. This motivates the
following definitions.

Definition 3.4. (i) An (a, b) absorption set is called minimal if no (a′, b′) absorption set
exists with a′ < a and b′/a′ ≤ b/a, i.e., fewer variable nodes and smaller average EMD.
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Table 3.2: The first few absorption sets of the IEEE 802.3an LDPC code.
a b Existence Multiplicity Gain (µmax)
< 5 No
5 10 No

6

6

No
8
10
12

7

0

No

2
4
6
8
10
12

Yes
65, 472 3.29

14 14, 720 3

8

0

No
2
4
6
8 Yes 14, 272 4
10 No
12

Yes
44, 416 3.5

14 88, 896 3.25
16 661, 824 3

9

0

No

2
4
6
8
10
12

Yes ?

3.67
14 3.44
16 3.22
18 3

10

0

No
2
4
6
8 ?
10

Yes

> 192 4
12

?

3.8
14 3.6
16 3.4
18 3.2
20 3
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Figure 3.4: Square pattern plots of the binary parity check matrix: Top: output of [21];
Bottom: used in the IEEE 802.3an standard.

(ii) A minimal (a, b) absorption set is called dominant if no (a, b′) absorption set exists with
b′ < b, i.e., smaller EMD.

The smaller the absorption set, the more severe the effect on the error floor. Thus our
target is to find the dominant absorption sets in terms of a, b and b/a. Since the variable
node degree dv = 6, a ≥ 5 by the definition of absorption sets and using the fact that the
code is 4-cycle free. In addition, b ∈ [0, 2a] and must be even. The coefficient 5−b/a is the
gain of the absorption set, which determines how fast the extrinsic information enters the set
— see later. Also note that an (a, 0) absorption set corresponds to a weight-a codeword in
C. Thus the existence of (a, 0) absorption sets implies the existence of weight-a codewords,
and vice versa.

Let us introduce additional notation needed to prove the existence of absorption sets.

Definition 3.5. (i) For any variable node v in an absorption set, let Deg(v) denote the
number of neighboring check nodes of v that are connected to the set an even number of
times. Deg(v) is the degree of vertex v in the topology graph with check nodes hidden. (ii)
Let an unordered integer array [Deg(vi) : i = 1, 2, . . . , a] denote a class of (a, b) absorption

sets, where Deg(vi) ∈
{⌊

dv
2

⌋
+ 1,

⌊
dv
2

⌋
+ 2, . . . , dv

}
and

a∑
i=1

Deg(vi) = adv − b.

Example 3.2. Obviously, all five nodes of an (5, 10) absorption set have Deg(v) = 4 as
can be seen in Figure 3.5. Thus, there exists only one class of the (5, 10) absorption sets

that can be denoted as [4, 4, 4, 4, 4], which satisfies
a∑
i=1

Deg(vi) = 6a− b = 20.

Note that there are a total of
a∑
i=1

Deg(vi) = 6a − b edges that need to be paired up in

one graph. Therefore the sum has to be even. It follows that b has to be an even number, as
seen in Table 3.2.

Theorem 3.1. (i) There are no size-5 absorption sets. (ii) There are no size-6 absorption
sets. (iii) There are no (7, b) absorption sets with b < 12. (7, 12) and (7, 14) absorption
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sets do exist. (iv) For b < 8, there exist no (8, b) absorption sets.2 For b = 8, there exists
no (8, 8) absorption set that contains a degree-6 variable node. (v) The number of (8, 8)
absorption sets is 14, 272 and they all have the topology of Figure 3.6(e).

Proof. (i) Clearly b can only equal 10 when a = 5 and there is only one possible connecting
topology shown in Figure 3.5. The parity-check matrix H of [21] is searched by Algorithm
1, observing the constraints imposed by this topology, combined with some of the properties
listed in [23, 24, 22] for array-based LDPC codes.
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(b) Check nodes hidden.

Figure 3.5: The only possible topology of (5, 10) absorption sets.

(ii–iv) When the sets are growing bigger, it is getting more difficult to find absorption
sets, even by making use of Algorithm 1-type methods, due to their extremely low ap-
pearance and the combinatorial complexity. Hence we take advantage of Definition 3.5 to
classify the absorption sets first. For each pair (a, b), there may be several classes of ab-
sorption sets, and each class may exhibit several topologies. What we are trying to do is
to reduce one unknown absorption set to a smaller absorption set whose non-existence is
known by eliminating nodes from the original set. We can then argue that there is only a
limited number of topologies that have to be searched algorithmically. See Appendix A.2.3
or [63] [64] for details.

(v) By (iv), the only possible class of (8, 8) absorption set would have connectivity
[5, 5, 5, 5, 5, 5, 5, 5]. It can be shown that graphically, there exist five possible topologies for
this connectivity as shown in Figure 3.6 [63] [64]. By searching all those topologies against
the H matrix, the proof is completed.

It is interesting to note that because of the block structure of the H matrix, certain
groups of variable nodes do share the same multiplicity, as listed in Table 3.3, although the
average multiplicity of each variable node appeared in such sets is 14272 × 8 ÷ 2048 =

55.75, as shown in Figure 3.7(a), as well.

3.4.2 Less Dominant Absorption Sets

There definitely exist larger and less dominant absorption sets. Examples are listed in [64].
With the size of the absorption sets growing, it is getting extremely difficult to enumerate

2As a corollary, since there is no (8, 0) absorption set, the minimum distance bound of this LDPC code [21]
is strengthened to dmin ≥ 10. Therefore, there are no (9, 0) absorption sets since a (9, 0) absorption set is a
length-9 codeword.
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Input: Parity-check matrix H384×2048 and Figure 3.5.
Output: Absorption sets.
foreach variable node v ∈ {0, 1, 2, . . . , 2047} do

Pick 4 out of 6 neighboring check nodes of v denoted c0, c1, c2 and c3,
respectively;
foreach one out of 31 neighboring variable nodes other than v of c0, denoted as
v1 do

foreach one out of 31 neighboring variable nodes other than v of c1, denoted
as v2 do

if v2 and v1 are not connected then
re-pick v2;

else
foreach one out of 31 neighboring variable nodes other than v of c2,
denoted as v3 do

if v3 and v1 or v3 and v2 are not connected then
re-pick v3;

else
foreach one out of 31 neighboring variable nodes other than
v of c3, denoted as v4 do

if v4 and v1 or v4 and v2 or v4 and v3 are not connected
then

re-pick v4;
else

follow Definition 3.3 to determine if this candidate
set is an absorption set;

Algorithm 1: Algorithm for finding (5, 10) absorption sets.
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Figure 3.6: Possible topologies of (8, 8) absorption sets.

Table 3.3: The multiplicity of each variable node in (8, 8) absorption sets.

Group Variable Nodes Multiplicity Group Variable Nodes Multiplicity
1 0—63 63 17 1024—1087 54

2 64—127 55 18 1088—1151 66

3 128—191 74 19 1152—1215 49

4 192—255 60 20 1216—1279 40

5 256—319 67 21 1280—1343 75

6 320—383 68 22 1344—1407 41

7 384—447 54 23 1408—1471 56

8 448—511 60 24 1472—1535 59

9 512—575 57 25 1536—1599 47

10 576—639 66 26 1600—1663 36

11 640—703 60 27 1664—1727 59

12 704—767 49 28 1728—1791 59

13 768—831 39 29 1792—1855 37

14 832—895 47 30 1856—1919 52

15 896—959 61 31 1920—1983 69

16 960—1023 62 32 1984—2047 43
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Figure 3.7: Histograms of the multiplicity of 2,048 variable nodes in (8, 8) absorption sets,
where the horizontal thin red line marks the average multiplicity 55.75.
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them all. However, compared to the smaller sets, their contribution to the error curve can
be ignored.

The enumerating process of absorption sets gets exhaustive and lengthy with increasing
set size, due to the exponentially increasing combinations of the nodes and connectivities.
Hence the detailed and systematic absorption sets search is moved to Appendix A.2.

3.5 Error Floor Estimation of the IEEE 802.3an LDPC Code

After we confirmed that the absorption sets are responsible for the error floor, we studied
their dynamic in the decoding process and used this knowledge to build a formula to ap-
proximate the error rate caused by absorption sets. We will keep using the IEEE 802.3an
LDPC Code in our illustration, followed by a numerical analysis.

3.5.1 Dynamic Analysis of Absorption Sets

We now present a linearized analysis to gain insight into the behavior of absorption sets
starting with the leading (8, 8) absorption set, shown in Figure 3.3. First we note that the
variable nodes perform simple addition, as shown by (2.13). Furthermore, the check nodes
basically choose the minimum of the incoming signals. If we make the reasonable assump-
tion that the absorption set converges more slowly than the remaining nodes in the code,
and due to the fact that each (satisfied) check node is connected exactly to two absorption
set variables, the minimum absolute-value signal into the participating check nodes will
come from one of the absorption set variables. If this is true, the check nodes simply ex-
change the signals on the connections to the absorption set variable nodes. We will refine
this approximation below.

Additionally, each absorption set variable node is singly connected to a “lone” floating
extrinsic parity check node, all of whose other connections go to other, set-external variable
nodes. The messages through these eight extrinsic check nodes are the extrinsic messages
into the absorption set, and are of crucial importance since the error messages introduced
by the set nodes will be circling around within the local network of absorption sets. Al-
gorithmically, they play exactly the same role as the intrinsic channel values which are fed
into the variable nodes by virtue of the summation function executed at the variable nodes.

Figure 3.8 shows two examples of the dynamic behavior of the absorption set variables
close to its decision threshold boundary. The seemingly erratic behavior resolves after a
number of iterations when all variables follow highly correlated trajectories. This observa-
tion is the basis for the following analysis.

Denote the outgoing solid edge values from the variable nodes by xi, i.e., x1, x2, . . . , x5
leave variable node v = 0, x6, x7, . . . , x10 variable node v = 1, etc. Collect the xi in the
length-40 column vector x, which is the vector of outgoing variable edge values in the
absorption set. Likewise, and analogously, let y be the incoming edge values to the variable
nodes, such that yj corresponds to the reverse-direction message. Now, at iteration i = 0

x0 = λ, (3.2)

where the initial input is the vector of channel intrinsics

λ =
[
λ1, . . . , λ1︸ ︷︷ ︸
eight entries

, λ2, . . . , λ2︸ ︷︷ ︸
eight entries

, . . . . . . , λ8, . . . , λ8︸ ︷︷ ︸
eight entries

]T
(3.3)
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Figure 3.8: The accumulated LLRs at an (8, 8) absorption set nodes of the IEEE 802.3an
LDPC code verses iterations, assuming that the all-zero codeword is transmitted.
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duplicated onto the outgoing messages. It undergoes the following operation at the check
node:

y0 = Cx0 = Cλ, (3.4)

where C is a permutation matrix that exchanges the absorption set signals as discussed
above.

C =



�
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�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
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�
�

�
�

�
�


40×40

. (3.5)

At iteration i = 1 we obtain

x1 = Vy0 + λ+ λ
(ex)
1 (3.6)

= VCλ+ λ+ λ
(ex)
1 , (3.7)

where V is the variable node function matrix, i.e., each output is the sum of the other four
inputs from the check nodes plus the intrinsic input.

V =



� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �

� � � �
� � � �


40×40

. (3.8)

The extrinsic inputs from the remainder of the code graph are contained in λ
(ex)
1 . Following

the linear model, at iteration i = j extrinsic signals are injected into the absorption set as

λ
(ex)
j =

[
λ
(ex)
j1 , . . . , λ

(ex)
j1︸ ︷︷ ︸

eight entries

, λ
(ex)
j2 , . . . , λ

(ex)
j2︸ ︷︷ ︸

eight entries

, . . . . . . , λ
(ex)
j8 , . . . , λ

(ex)
j8︸ ︷︷ ︸

eight entries

]T
(3.9)
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via the extrinsic check nodes. By induction on i:

x2 = Vy1 + λ+ λ
(ex)
2 (3.10)

= VCx1 + λ+ λ
(ex)
2 (3.11)

= (VC)2λ+VCλ+ λ+VCλ
(ex)
1 + λ

(ex)
2 (3.12)

=
2∑
i=0

(VC)iλ+
2∑
i=1

(VC)2−iλ
(ex)
i , (3.13)

x3 = Vy2 + λ+ λ
(ex)
3 (3.14)

= VCx2 + λ+ λ
(ex)
3 (3.15)

=

2∑
i=0

(VC)i+1λ+

2∑
i=1

(VC)3−iλ
(ex)
i + λ+ λ

(ex)
3 (3.16)

=
2∑

i=−1
(VC)i+1λ+

3∑
i=1

(VC)3−iλ
(ex)
i (3.17)

=
3∑
i=0

(VC)iλ+
3∑
i=1

(VC)3−iλ
(ex)
i , (3.18)

we obtain at iteration i = I

xI =
I∑
i=0

(VC)iλ+
I∑
i=1

(VC)I−iλ
(ex)
i (3.19)

=
I∑
i=0

(
(VC)iλ+ (VC)I−iλ

(ex)
i

)
, (3.20)

where (VC)0 = I and λ
(ex)
0 = 0. Applying the spectral theorem we obtain

(VC)iλ→ µimax

(
λTvmax

)
vmax, (3.21)

where vmax is the unit-length eigenvector of the maximal eigenvalue µmax of the matrix
VC.

The absorption set in question falls in error if

β = xT
I · 1 (3.22)

≈

(
I∑
i=0

(
µimax

(
λTvmax

)
vT
max + µI−imax

(
λ
(ex)
i

T
vmax

)
vT
max

))
· 1 (3.23)

= µImax

(
I∑
i=0

(
1

µI−imax

(
λTvmax

)
vT
max +

1

µimax

(
λ
(ex)
i

T
vmax

)
vT
max

))
· 1 (3.24)

= µImax

(
I∑
i=0

(
1

µI−imax

(
λTvmax

)
vT
max

)

+
I∑
i=0

(
1

µimax

(
λ
(ex)
i

T
vmax

)
vT
max

))
· 1 (3.25)
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= µImax

(
I∑

k=0

(
1

µkmax

(
λTvmax

)
vT
max

)

+
I∑
i=0

(
1

µimax

(
λ
(ex)
i

T
vmax

)
vT
max

))
· 1 (3.26)

= µImax

(
I∑
i=0

(
1

µimax

(
λTvmax

)
vT
max

)

+

I∑
i=0

(
1

µimax

(
λ
(ex)
i

T
vmax

)
vT
max

))
· 1 (3.27)

= µImax

(
I∑
i=0

(
1

µimax

((
λ+ λ

(ex)
i

)T
vmax

)
vT
max

))
· 1 (3.28)

≤ 0. (3.29)

With the Gaussian assumptions and the fact that β is a linear combination of indepen-
dent Gaussian variables, the probability of (3.29) happening can be calculated as

PAS = Pr (β ≤ 0) (3.30)

=
1

2

1 + erf

 −mβ√
2σ2β

 (3.31)

=
1

2

1− erf

 mβ√
2σ2β

 (3.32)

= Q

 mβ√
σ2β

 . (3.33)

To find mβ and σ2β , let us drop the factor µImax and rewrite (3.28) into two parts

β =

I∑
i=0

(
1

µimax

(
λTvmax

)
vT
max

)
· 1+

I∑
i=0

(
1

µimax

(
λ
(ex)
i

T
vmax

)
vT
max

)
· 1 (3.34)

=
(((

λTvmax

)
vT
max

)
· 1
) I∑
i=0

1

µimax︸ ︷︷ ︸
,β1

+

I∑
i=1

(
1

µimax

(
λ
(ex)
i

T
vmax

)
vT
max

)
· 1︸ ︷︷ ︸

,β2

. (3.35)

So mβ = mβ1 +mβ2 and σ2β = σ2β1 + σ2β2 .
Finding mβ1 is trivial as

mβ1 =
(
mλ1

Tvmaxv
T
max1

) I∑
i=0

1

µimax

(3.36)

= mλ

adv−b∑
j=1

vj

2
I∑
i=0

1

µimax

. (3.37)
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Even though findingmβ2 , σ2β1 and σ2β2 cannot be generalized, the error probability does
have a general form:

PAS = Pr (β ≤ 0) (3.38)

= Q


Amλ

I∑
i=0

1

µimax

+B

I∑
i=1

m
(i)

λ(ex)

µimax√√√√2Cmλ

(
I∑
i=0

1

µimax

)2

+ 2D
I∑
i=1

m
(i)

λ(ex)

µ2imax

 (3.39)

= Q


Amλ

µI+1
max − 1

µI+1
max − µmax

+B
I∑
i=1

m
(i)

λ(ex)

µimax√√√√2Cmλ

(
µI+1
max − 1

µI+1
max − µmax

)2

+ 2D

I∑
i=1

m
(i)

λ(ex)

µ2imax

 , (3.40)

where the coefficients A =
∑adv−b

j=1 vj , B,C and D characterize the significance of λ and
λ(ex) to the error floor. Note that, without loss of generality, vmax is chosen such thatA ≥ 0,
so it can be canceled out of the square root in the denominator inside the Q function, which
can be seen in the example below.

Example 3.3. Consider the subgraph induced by a (5, 3) absorption set of the [155, 64, 14]
regular (3, 5) Tanner code, as shown in Figure 3.9.
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(b) Check nodes hidden.

Figure 3.9: The only possible topology of a (5, 3) absorption set.

Label the variable nodes as 1 to 5 in Figure 3.9(a), from left to right. And label the solid
edges emanating from the variable nodes as 1, 2, . . . , 12 from left to right. Then we have
the channel intrinsics

λ =
[
λ1, λ1, λ1︸ ︷︷ ︸

node ¶

, λ2, λ2︸ ︷︷ ︸
node ·

, λ3, λ3︸ ︷︷ ︸
node ¸

, λ4, λ4︸ ︷︷ ︸
node ¹

, λ5, λ5, λ5︸ ︷︷ ︸
node º

]T (3.41)

and extrinsics

λ
(ex)
i =

[
0, 0, 0︸ ︷︷ ︸
node ¶

, λ
(ex)
i2 , λ

(ex)
i2︸ ︷︷ ︸

node ·

, λ
(ex)
i3 , λ

(ex)
i3︸ ︷︷ ︸

node ¸

, λ
(ex)
i4 , λ

(ex)
i4︸ ︷︷ ︸

node ¹

, 0, 0, 0︸ ︷︷ ︸
node º

]T
, (3.42)
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associated with the matrices

V =



0 1 1
1 0 1
1 1 0

0 1
1 0

0 1
1 0

0 1
1 0

0 1 1
1 0 1
1 1 0


12×12

, (3.43)

C =



1
1

1
1

1
1

1
1

1
1

1
1


12×12

. (3.44)

Then we will find µmax and the corresponding unit-length eigenvector vmax of VC.
Let vmax = [v1, v2, . . . , v12]

T. Then

β1 =
(((

λTvmax

)
vT
max

)
· 1
) I∑
i=0

1

µimax

(3.45)

=
(
λTvmax

) (
vT
max1

) I∑
i=0

1

µimax

(3.46)

= ((v1 + v2 + v3)λ1 + (v4 + v5)λ2 + (v6 + v7)λ3 + (v8 + v9)λ4

+(v10 + v11 + v12)λ5) ·

 12∑
j=1

vj

 I∑
i=0

1

µimax

(3.47)

β2 =
I∑
i=1

1

µimax

(
λ
(ex)
i

T
vmax

)(
vT
max1

)
(3.48)

=

I∑
i=1

1

µimax

(
(v4 + v5)λ

(ex)
i2 + (v6 + v7)λ

(ex)
i3 + (v8 + v9)λ

(ex)
i4

) 12∑
j=1

vj

 . (3.49)
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Therefore

mβ1 = mλ

 12∑
j=1

vj

2
I∑
i=0

1

µimax

(3.50)

σ2β1 = σ2λ

(
(v1 + v2 + v3)

2 + (v4 + v5)
2 + (v6 + v7)

2 + (v8 + v9)
2

+(v10 + v11 + v12)
2
)
·

 12∑
j=1

vj

2(
I∑
i=0

1

µimax

)2

(3.51)

= 2mλ

(
(v1 + v2 + v3)

2 + (v4 + v5)
2 + (v6 + v7)

2 + (v8 + v9)
2

+(v10 + v11 + v12)
2
)
·

 12∑
j=1

vj

2(
I∑
i=0

1

µimax

)2

(3.52)

mβ2 =
I∑
i=1

m
(i)

λ(ex)

µimax

(v4 + v5 + v6 + v7 + v8 + v9)

 12∑
j=1

vj

 (3.53)

σ2β2 =

I∑
i=1

σ2
λ
(ex)
i

µ2imax

(
(v4 + v5)

2 + (v6 + v7)
2 + (v8 + v9)

2
) 12∑

j=1

vj

2

(3.54)

= 2
(
(v4 + v5)

2 + (v6 + v7)
2 + (v8 + v9)

2
) 12∑

j=1

vj

2
I∑
i=1

m
(i)

λ(ex)

µ2imax

. (3.55)

Now, let

A=
12∑
j=1

vj (3.56)

B= v4 + v5 + v6 + v7 + v8 + v9 (3.57)

C = (v1 + v2 + v3)
2 + (v4 + v5)

2 + (v6 + v7)
2 + (v8 + v9)

2 + (v10 + v11 + v12)
2(3.58)

D= (v4 + v5)
2 + (v6 + v7)

2 + (v8 + v9)
2 (3.59)

Then we have

mβ1 = A2mλ

I∑
i=0

1

µimax

(3.60)

σ2β1 = 2A2Cmλ

(
I∑
i=0

1

µimax

)2

(3.61)

mβ2 = AB
I∑
i=1

m
(i)

λ(ex)

µimax

(3.62)

σ2β2 = 2A2D

I∑
i=1

m
(i)

λ(ex)

µ2imax

. (3.63)

So, we obtain

PAS = Pr (β ≤ 0) (3.64)
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= Q

 mβ√
σ2β

 (3.65)

= Q

 mβ1 +mβ2√
σ2β1 + σ2β2

 (3.66)

= Q


A2mλ

I∑
i=0

1

µimax

+AB
I∑
i=1

m
(i)

λ(ex)

µimax√√√√2A2C

(
I∑
i=0

1

µimax

)2

mλ + 2A2D

I∑
i=1

m
(i)

λ(ex)

µ2imax

 (3.67)

= Q


Amλ

I∑
i=0

1

µimax

+B
I∑
i=1

m
(i)

λ(ex)

µimax√√√√2C

(
I∑
i=0

1

µimax

)2

mλ + 2D
I∑
i=1

m
(i)

λ(ex)

µ2imax

 , (3.68)

which completes this example.

For a special case (a, b), where b equals a multiple of a and all b unsatisfied check nodes
are evenly distributed among all a variable nodes, we can derive a general expression of the
factors A,B,C and D as follows.

Both λ and λ
(ex)
i have adv − b non-zero members. Every row of V has exactly dv −

b/a−1 non-zero elements. So does each row of VC, since right-multiplying a permutation
matrix C to V simply permutes the columns of V. Therefore, by the Perron-Frobenius
theorem [56, 29], µmax = dv − b/a− 1 and the corresponding unit-length eigenvector will
be vmax = 1√

adv−b
[1, 1, . . . , 1]T. Hence,

β =
(((

λTvmax

)
vT
max

)
· 1
) I∑
i=0

1

µimax

+
I∑
i=1

(
1

µimax

(
λ
(ex)
i

T
vmax

)
1Tmax

)
· 1 (3.69)

=
1

adv − b
(
λT1

) (
1T1

) I∑
i=0

1

µimax

+
1

adv − b

I∑
i=1

1

µimax

(
λ
(ex)
i

T
1

)(
1T1

)
(3.70)

=
(
λT1

) I∑
i=0

1

µimax

+
I∑
i=1

1

µimax

(
λ
(ex)
i

T
1

)
(3.71)

=

(dv − b

a

) a∑
j=1

λj

 I∑
i=0

1

µimax

+

I∑
i=1

1

µimax

(dv − b

a

) a∑
j=1

b/a∑
k=1

λ
(ex)
ij,k

 (3.72)

=

(
dv −

b

a

) I∑
i=0

1

µimax

a∑
j=1

λj +

(
dv −

b

a

) I∑
i=1

1

µimax

a∑
j=1

b/a∑
k=1

λ
(ex)
ij,k . (3.73)

Then

mβ = a

(
dv −

b

a

)
mλ

I∑
i=0

1

µimax

+ b

(
dv −

b

a

) I∑
i=1

m
(i)

λ(ex)

µimax

(3.74)
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σ2β = aσ2λ

((
dv −

b

a

) I∑
i=0

1

µimax

)2

+ b

(
dv −

b

a

)2 I∑
i=1

σ2
λ
(ex)
i

µ2imax

(3.75)

= 2amλ

(
dv −

b

a

)2
(

I∑
i=0

1

µimax

)2

+ 2b

(
dv −

b

a

)2 I∑
i=1

m
(i)

λ(ex)

µ2imax

. (3.76)

So

PAS = Pr (β ≤ 0) (3.77)

= Q

 mβ√
σ2β

 (3.78)

= Q


amλ

I∑
i=0

1

µimax

+ b
I∑
i=1

m
(i)

λ(ex)

µimax√√√√2a

(
I∑
i=0

1

µimax

)2

mλ + 2b

I∑
i=1

m
(i)

λ(ex)

µ2imax

 . (3.79)

The following lemma holds:

Lemma 3.2. The largest eigenvalue of VC for the (8, 8) set is µmax = Deg(v) − 1 =
dv − 2 = 4, and its associated eigenvector is vmax = [1, 1, . . . , 1]T.

Proof. First write VC = 4M. By inspection M is a probability matrix, i.e., the sum of
each row equals unity. M is irreducible due to the facts that V denotes a strongly connected
graph and C is a permutation matrix. As a special case of the Perron-Frobenius theorem
it is known that the largest eigenvalue of a probability matrix is 1, therefore the largest
eigenvalue of VC equals 4. By inspection VC[1, 1, . . . , 1]T = 4[1, 1, . . . , 1]T.

In the case of the (8, 8) absorption set, vmax = 1√
40
[1, 1, . . . , 1]T and

β =

 I∑
i=0

µimax

 5√
40

8∑
j=1

λj

vT
max + µI−imax

 5√
40

8∑
j=1

λ
(ex)
ij

vT
max

 · 1 (3.80)

=

 I∑
i=0

µimax

 5

40

8∑
j=1

λj

 · 1T + µI−imax

 5

40

8∑
j=1

λ
(ex)
ij

 · 1T
 · 1 (3.81)

=

I∑
i=0

µimax

5
8∑
j=1

λj

+ µI−imax

5

8∑
j=1

λ
(ex)
ij

 (3.82)

= 5
8∑
j=1

I∑
i=0

(
µimaxλj + µI−imaxλ

(ex)
ij

)
(3.83)

= 5µImax

8∑
j=1

I∑
i=0

(
λj

µI−imax

+
λ
(ex)
ij

µimax

)
(3.84)

= 5µImax

8∑
j=1

(
I∑
i=0

λj

µI−imax

+

I∑
i=0

λ
(ex)
ij

µimax

)
(3.85)

49



= 5µImax

8∑
j=1

(
I∑

k=0

λj
µkmax

+

I∑
i=0

λ
(ex)
ij

µimax

)
(3.86)

= 5µImax

8∑
j=1

(
I∑
i=0

λj
µimax

+
I∑
i=0

λ
(ex)
ij

µimax

)
(3.87)

= 5µImax

8∑
j=1

I∑
i=0

λj + λ
(ex)
ij

µimax

(3.88)

≤ 0. (3.89)

The eigenvalue µmax = dv − 2 is the gain of the absorption set and it is determined by
the variable node degree.

Exact knowledge of λ(ex)
ji is not available to the analysis since these values depend on

the received signals. However, assuming that the code structure extrinsic to the absorption
set operates “regularly”, we may substitute average values for the λ(ex)

ji . Note that λi is

Gaussian distributed from the channel, and that we may assume that λ(ex)
ji is also Gaussian

distributed as is customary in density evolution analysis [15] [61]. Furthermore, like λi,
we assume that λ(ex)

ji has a consistent Gaussian distribution with σ2 = 2m, where m is the

mean. We therefore only need the mean of λ(ex)
ji , which we can calculate from a Gaussian

density evolution calculation3, i.e.,

m
(i)

λ(ex) = φ−1
(
1−

[
1− φ

(
mλ + (dv − 1)m

(i−1)
λ(ex)

)]dc−1)
, (3.90)

where mλ = 2Es/σ
2 is the mean of λi, m

(i)

λ(ex) is the mean of the extrinsic signal λ(ex)
ji , and

φ is the check node mean transfer function [61].
With the Gaussian assumptions and the fact that β is a linear combination of indepen-

dent Gaussian variables, the probability of (3.89) happening can be calculated as

PAS = Pr (β ≤ 0) (3.91)

= Pr

 8∑
j=1

I∑
i=0

λj + λ
(ex)
ij

µimax

≤ 0

 (3.92)

= Pr

 8∑
j=1

(
I∑
i=0

1

µimax

)
λj +

8∑
j=1

I∑
i=0

λ
(ex)
ij

µimax

≤ 0

 (3.93)

= Q

 mβ√
σ2β

 (3.94)

= Q


8

I∑
i=0

mλ

µimax

+ 8
I∑
i=0

m
(i)

λ(ex)

µimax√√√√8

(
I∑
i=0

1

µimax

)2

σ2λ + 8

I∑
i=0

(
1

µimax

)2

σ2
λ
(ex)
(i)

 (3.95)

3For details and definitions, see [61, Chapter 11].
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= Q


8

I∑
i=0

mλ +m
(i)

λ(ex)

µimax√√√√16

(
I∑
i=0

1

µimax

)2

mλ + 16
I∑
i=0

1

µ2imax

m
(i)

λ(ex)

 (3.96)

= Q


2mλ

I∑
i=0

1

µimax

+ 2

I∑
i=1

m
(i)

λ(ex)

µimax√√√√( I∑
i=0

1

µimax

)2

mλ +
I∑
i=1

m
(i)

λ(ex)

µ2imax

 , (3.97)

which is a special case of (3.79) when plugging in a = b = 8.
The probability PAS needs to be multiplied with the multiplicity factor of 14, 272 in

order to obtain a union bound. In order to compute a BER estimate, we further multiply
this number by 8/1723, since there are eight errors that occur in a frame of 1, 723 bit errors
due to this absorption set.

Figure 3.11 shows PAS for the first most dominant absorption sets. Also shown are
general tendencies of PAS as a function of a and b:

PAS = Q (f(a, b)) , (3.98)

where f(a, b) is defined by (3.99).

f(a, b) =

amλ

I∑
i=0

1

µimax

+ b

I∑
i=1

m
(i)

λ(ex)

µimax√√√√2a

(
I∑
i=0

1

µimax

)2

mλ + 2b
I∑
i=1

m
(i)

λ(ex)

µ2imax

. (3.99)

The number of non-zero elements in each row of matrix V for an (a, b) absorption set
is determined by Deg(vi), i = 1, 2, . . . , a. From the equality in Definition 3.5 (ii), the
average of all Deg(vi) is

Deg(v) = dv −
b

a
. (3.100)

Thus by the Perron-Frobenius theorem again, the gain of the set µmax of VC can be closely
approximated by:

µmax ≈ Deg(v)− 1 = dv −
b

a
− 1 = 5− b

a
. (3.101)

This was used in (3.99) and Figure 3.11 to plot the curves.
It can be seen that the (8, 8) absorption set is the most dominant, which is consis-

tent with numerical observations. Additionally, some sets, like the majority of (7, 12)
sets, are “contained” in larger sets, that is, such (7, 12) absorption sets are not stable
under bit flipping and will evolve into (8, 8) sets, of which they are subgraphs. There
are 179, 648 (7, 12) absorption sets. They all have the topology shown in Figure 3.10,
which can be obtained from Figure 3.6(e) by removing one node. However, the (8, 8) sets
generate 14272 × 8 = 114176 (7, 12) absorption sets (no duplicates). Hence there are
179648− 114176 = 65472 (7, 12) sets that are not contained in the (8, 8) ones.
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Figure 3.10: Topology of the (7, 12) absorptions sets.
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Figure 3.11: Error probability of the dominant absorption sets at Eb/N0 = 5 dB and ap-
proximation functions based on a and b. (Curves are drawn only for possible or existing
parameter combinations.)

52



To have an idea how dominant the µmax is, we calculated all forty eigenvalues µj of
VC, the product of (3.8) and (3.5), in (3.103).

det (VC) =

40∏
j=1

µj (3.102)

= 4

×

(
1

2
+

√
15

2
i

)2(
1

2
−
√
15

2
i

)2(
−1

2
+

√
15

2
i

)4(
−1

2
−
√
15

2
i

)4

×

(
−3

2
+

√
7

2
i

)(
−3

2
−
√
7

2
i

)
×113(−1)12, (3.103)

with magnitudes 4, 2 and 1, respectively.

3.5.2 Numerical Verification

Figure 3.12 shows the analytical error floor calculation using (3.148) and the multiplicity
of 14, 272. Lesser absorption sets have an impact more than an order of magnitude lower,
and so they are not considered. The figure also shows hardware simulations using an FPGA
platform, as well as importance sampled simulations using the same absorption sets as bias
targets. Regular mean-shift importance sampling was utilized and each of the absorption
sets containing a specific variable node was biased separately. As evidenced by the figure,
our linearized analysis provides an accurate picture of the error floor behavior of this code
and illustrates the dominance of the (8, 8) absorption sets.

3.6 Error Floor of the Tanner [155, 64, 14] Regular (3, 5) LDPC
Code

In [75] and [76], Tanner introduced a class of regular LDPC codes composed of blocks of
permutation matrices, called circulant matrices. The parity-check matrix H of these codes
has a dv × dc array of circulant permutation matrices Ii,j , where each Ii,j denotes a p × p
identity matrix with its rows shifted cyclically to the left.

H =


I0,0 I0,1 · · · I0,dc−1
I1,0 I1,1 · · · I1,dc−1
...

...
. . .

...
Idv−1,0 Idv−1,1 · · · Idv−1,dc−1


dvp×dcp

(3.104)

Immediately, we can tell that each row of H has exactly dc non-zero elements and each
column dv, making the code a regular (dv, dc) LDPC code. Its length is dcp and the number
of check nodes is dvp. Its “design” code rate is 1 − dv/dc, however the actual rate R will
be slightly higher in that within every row block, all p rows add to an all-one vector and at
least dv − 1 rows are linearly dependent.

The dimension of the base identity matrix p was originally designed to be prime to
eliminate 4-cycles. In [76], p was extended to non-primes, where the girth, the shortest
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Figure 3.12: IS simulations, FPGA hardware simulations, and analytical error floor analysis
for the [2048, 1723] regular (6, 32) LDPC code.

cycle in the Tanner graph and denoted by g, can be as short as 4. It can be shown that g is
upper bounded by 12, no matter how big n is taken to be [75, 27]. The minimum distance of
a Tanner code is bounded by dmin ≤ (dv+1)! [53]. When dv is small, this upper bound can
be met by carefully selecting the parameters [53, 76]. Tanner code comes with relatively
large girth and/or minimum distance, and provide good error floor performance. However,
inherent structured flaws cause the existence of absorption sets.

Tanner presented a [155, 64, 20] regular (3, 5) LDPC code in the “Recent Results” ses-
sion of 2010 IEEE International Symposium on Information Theory (ISIT 2010). Its block
structure parity-check matrix is given by

H =

I1 I2 I4 I8 I16
I5 I10 I20 I9 I18
I25 I19 I7 I14 I28


93×155

, (3.105)

where each Ix is derived by shifting the rows of a 31× 31 identity matrix cyclically to the
left by x positions.

Example 3.4. Let I denote a 5× 5 identity matrix.

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . (3.106)
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Then I1 is obtained by shifting the rows of I cyclically to the left by one position:

I1 =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 . (3.107)

And so on and so forth,

I2 =


0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 (3.108)

I3 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

 (3.109)

I4 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 (3.110)

I5 = I0 = I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 . (3.111)

Its binary structure is shown in Figure 1.3. This Tanner code has rate R ≈ 0.4129 and
is equipped with a large girth g = 8 and dmin = 20. We will use this code as an example in
this section.

The detailed generation of Tanner codes is explained in Appendix B.

3.6.1 Absorption Set Identification

Following the enumerating methods in [63, 64], we list the first few absorption sets of this
Tanner [155, 64, 20], (3, 5) LDPC code in Table 3.4. Figure 3.13 shows a subgraph induced
by the (8, 2) absorption set, which we believe to be the dominant absorption set of this code.

We observe that, from Figure 3.13(b), the (8, 2) absorption set consists of cycles of
lengths 8, 10, 12, 14 and 16. In addition, it is also a hybrid of lower weight absorption sets.
As a matter of fact, all (4, 4), (5, 3), (6, 4) and (7, 3) sets are contained in (8, 2) sets. And
50% of (5, 5), 4.1% of (6, 6), 8.6% of (7, 5) sets are contained in (8, 2) sets, respectively.
We claim that this (8, 2) set is the dominant absorption/trapping set of this Tanner code on
the Gaussian channel under iterative message-passing decoding. Actually, Figure 3.13(a)
looks very much like a codeword in that if all those eight variable nodes are erroneous and
the rest are correct, then all but two check nodes remain unsatisfied.
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Table 3.4: First few absorption sets of the [155, 64, 20] regular (3, 5) Tanner code.

a b Existence Multiplicity Gain (µmax)
< 4 No
4 4 Yes 465 1

5
1 No
3

Yes
155

5 3, 720

6
2 No
4

Yes
930

6 22, 630 1

7

1 No
3

Yes

930
5 16, 275
7 140, 430 1

8

2 465 1.7870
4 5, 115
6 196, 540
8 823, 515 1
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Figure 3.13: The topology of the (8, 2) absorption set of the [155, 64, 20] regular (3, 5)
Tanner code.
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3.6.2 Linear Algebraic Estimation of the Error Rate

Now let us apply the error formulation to this Tanner code using the (8, 2) absorption set
structure.

The variable nodes in Figure 3.13 are labelled as 1 to 8. We also label the solid edges
emanating from the variable nodes of Figure 3.13(a) as 1, 2, . . . , 22 from left to right. De-
note the outgoing values from the variable nodes to the satisfied check nodes along these
edges by xi, i.e., x1, x2, x3 leave variable node ¶, x4, x5, x6 variable node ·, etc. Col-
lect the xi in the length-22 column vector x, which is the vector of outgoing variable edge
values in the absorption set. Likewise, and analogously, let y be the incoming edge values
to the variable nodes, such that yj corresponds to the reverse-direction message on edge j,
j = 1, 2, . . . , 22. Now, at iteration i = 0,

x0 = λ, (3.112)

where the channel intrinsics vector λ is defined in (3.113).

λ =
[
λ1, λ1, λ1︸ ︷︷ ︸

node ¶

, λ2, λ2, λ2︸ ︷︷ ︸
node ·

, λ3, λ3, λ3︸ ︷︷ ︸
node ¸

, λ4, λ4︸ ︷︷ ︸
node ¹

, λ5, λ5︸ ︷︷ ︸
node º

, λ6, λ6, λ6︸ ︷︷ ︸
node »

, λ7, λ7, λ7︸ ︷︷ ︸
node ¼

, λ8, λ8, λ8︸ ︷︷ ︸
node ½

]T
.

(3.113)
It undergoes the following operation at the check node:

y0 = Cx0 = Cλ, (3.114)

where C is a permutation matrix that reflects the incoming messages back to the absorption
set and is defined in (3.117). By induction, we obtain at iteration i = I:

xI =

I∑
i=0

(
(VC)iλ+ (VC)I−iλ

(ex)
i

)
, (3.115)

where λ
(ex)
i is the extrinsics vector and defined in (3.116),

λ
(ex)
i =

[
0, 0, 0︸ ︷︷ ︸
node ¶

, 0, 0, 0︸ ︷︷ ︸
node ·

, 0, 0, 0︸ ︷︷ ︸
node ¸

, λ
(ex)
i4 , λ

(ex)
i4︸ ︷︷ ︸

node ¹

, λ
(ex)
i5 , λ

(ex)
i5︸ ︷︷ ︸

node º

, 0, 0, 0︸ ︷︷ ︸
node »

, 0, 0, 0︸ ︷︷ ︸
node ¼

, 0, 0, 0︸ ︷︷ ︸
node ½

]T
, (3.116)

and the variable node addition matrix V is defined in (3.118). Note that (VC)0 = I and
λ
(ex)
0 = 0.
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C =



1
1

1
1

1
1
1
1

1
1
1
1

1
1

1
1

1
1

1
1

1
1


22×22

(3.117)

V =



0 1 1
1 0 1
1 1 0

0 1 1
1 0 1
1 1 0

0 1 1
1 0 1
1 1 0

0 1
1 0

0 1
1 0

0 1 1
1 0 1
1 1 0

0 1 1
1 0 1
1 1 0

0 1 1
1 0 1
1 1 0


22×22

(3.118)

Now we calculate the maximum eigenvalue µmax of VC and its corresponding unit-
length eigenvector vmax.

We list all eigenvalues and their norms of VC, the product of (3.118) and (3.117), in
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(3.119).

µ =



1.7870
1.4142i
−1.4142i

−1.2733 + 0.4949i
−1.2733− 0.4949i
0.2565 + 1.3239i
0.2565− 1.3239i
0.5734 + 1.1433i
0.5734− 1.1433i
−0.9501 + 0.8428i
−0.9501− 0.8428i
0.4551 + 1.0987i
0.4551− 1.0987i
−0.4551 + 1.0987i
−0.4551− 1.0987i

1
1
1
1
−1
−1
−1


22×1

, |µ| =



1.7870
1.4142
1.4142
1.3660
1.3660
1.3485
1.3485
1.2790
1.2790
1.2700
1.2700
1.1892
1.1892
1.1892
1.1892
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000


22×1

. (3.119)

Then the maximum eigenvalue is denoted as µmax with corresponding eigenvector
vmax.

µmax ≈ 1.7870 (3.120)
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vmax =



v1
v2
v3
v4
v5
v6
v7
v8
v9
v10
v11
v12
v13
v14
v15
v16
v17
v18
v19
v20
v21
v22



≈



0.2369
0.2369
0.2273
0.2031
0.2031
0.2651
0.2254
0.2254
0.1660
0.1261
0.1483
0.1483
0.1261
0.2031
0.2651
0.2031
0.2369
0.2369
0.2273
0.2201
0.2201
0.2544



. (3.121)

Therefore, applying the same argument used in (3.29) [63, 64], the (8, 2) absorption set
falls in error if

β = xT
I · 1 ≤ 0. (3.122)

Applying the spectral theorem

(VC)iλ→ µimax

(
λTvmax

)
vmax, (3.123)

we can approximate β using (3.124). The validity of this approximation will be revisited
in Section 3.7.3. For simplicity, once again, we separate this expression into two parts as
shown in (3.125).

β ≈ µImax

[ (((
λTvmax

)
vT
max

)
· 1
) I∑
i=0

1

µimax︸ ︷︷ ︸
,β1

+
I∑
i=1

(
1

µimax

(
λ
(ex)
i

T
vmax

)
vT
max

)
· 1︸ ︷︷ ︸

,β2

]

(3.124)

= µImax (β1 + β2) , (3.125)

where β1 and β1 can be expanded as

β1 = ((v1 + v2 + v3)λ1 + (v4 + v5 + v6)λ2 + (v7 + v8 + v9)λ3

+(v10 + v11)λ4 + (v12 + v13)λ5 + (v14 + v15 + v16)λ6

+(v17 + v18 + v19)λ7 + (v20 + v21 + v22)λ8)

 22∑
j=1

vj

( I∑
i=0

1

µimax

)
(3.126)
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β2 =

I∑
i=1

1

µimax

(
(v10 + v11)λ

(ex)
i4 + (v12 + v13)λ

(ex)
i5

) 22∑
j=1

vj

 . (3.127)

Then, we obtain the means and variances of β1 and β2, individually, as shown in
(3.128)–(3.131).

mβ1 = mλ

 22∑
j=1

vj

2(
I∑
i=0

1

µimax

)
(3.128)

mβ2 = (v10 + v11 + v12 + v13)

 22∑
j=1

vj

 I∑
i=1

m
(i)

λ(ex)

µimax

(3.129)

σ2β1 = 2mλ

(
(v1 + v2 + v3)

2 + (v4 + v5 + v6)
2 + (v7 + v8 + v9)

2

+(v10 + v11)
2 + (v12 + v13)

2 + (v14 + v15 + v16)
2

+(v17 + v18 + v19)
2 + (v20 + v21 + v22)

2
) 22∑

j=1

vj

2(
I∑
i=0

1

µimax

)2

(3.130)

σ2β2 = 2
(
(v10 + v11)

2 + (v12 + v13)
2
) 22∑

j=1

vj

2
I∑
i=1

m
(i)

λ(ex)

µ2imax

. (3.131)

Let

A =
22∑
j=1

vj = 4.6052 (3.132)

B = v10 + v11 + v12 + v13 = 0.5489 (3.133)

C = (v1 + v2 + v3)
2 + (v4 + v5 + v6)

2 + (v7 + v8 + v9)
2 + (v10 + v11)

2

+(v12 + v13)
2 + (v14 + v15 + v16)

2 + (v17 + v18 + v19)
2 + (v20 + v21 + v22)

2

= 2.8981 (3.134)

D = (v10 + v11)
2 + (v12 + v13)

2 = 0.1507. (3.135)

Then (3.128)–(3.131) simplify to

mβ1 = A2
I∑
i=0

1

µimax

mλ (3.136)

σ2β1 = 2A2C

(
I∑
i=0

1

µimax

)2

mλ (3.137)

mβ2 = AB

I∑
i=1

m
(i)

λ(ex)

µimax

(3.138)

σ2β2 = 2A2D

I∑
i=1

m
(i)

λ(ex)

µ2imax

. (3.139)
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So, the probability of this absorption set falling in error is given by:

PAS = Pr (β ≤ 0) (3.140)

= Q

 mβ√
σ2β

 (3.141)

= Q

 mβ1 +mβ2√
σ2β1 + σ2β2

 (3.142)

= Q


Amλ

I∑
i=0

1

µimax

+B
I∑
i=1

m
(i)

λ(ex)

µimax√√√√2Cmλ

(
I∑
i=0

1

µimax

)2

+ 2D

I∑
i=1

m
(i)

λ(ex)

µ2imax

 . (3.143)

The factors A,B,C and D are determined by the absorption set topology. The knowl-
edge of (a, b) and dv is concealed in them. For this Tanner code, B or D are much smaller
than A or C, compared to the case of the dominant absorption set of the IEEE 802.3an
LDPC code as shown in (3.97) or, the more general form, (3.79). This implies that the
critical extrinsic information has very low impact on the error rate of the absorption set.
Therefore, it would be more difficult to improve this error rate than that of the IEEE 802.3an
code.

3.7 Error Probability Formula Refinement

Besides the relative simplicity of (3.143), one of the important insights we gain is that µmax

and vmax play a crucial role in the decoding failure mechanism. Absorption sets with large
µmax tend to have more impact on the code performance. However, we do notice that there
are a few places where the error formula can be improved. In this section, we revisit its
derivation to obtain a more accurate error probability estimation formula.

3.7.1 External Variable Nodes

A couple of refinements can be added to this analysis, taking into account the activity of the
variable nodes that are incident to an absorption set.

The exchange of extrinsics through the matrix C is an approximation in two ways: (i)
as long as the remaining dc− 2 inputs to the “satisfied” check node are relatively small, the
entries of C are strictly less than unity, and, (ii) in case one of the extrinsic incoming check
node messages has the wrong polarity, the returned signal to the absorption set switches
polarity.

Case (i) is approached as follows. Using a Taylor series approximation we show that
the quintessential check node operation

tanh−1

(
tanh(x)

dc−2∏
i=1

tanh(xi)

)
=

dc−2∏
i=1

tanh(xi)x+O
[
x3
]
, (3.144)
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where
dc−2∏
i=1

tanh(xi) can be interpreted as a check node gain. If we use for xi the mean

m
(i)

µ(ex) of the signals µ(ex) from the variable to the check nodes, an average gain can be
computed as

gi = E

dc−2∏
i=1

tanh

m(i)

µ(ex)

2

 (3.145)

= E

tanh
m(i)

µ(ex)

2

dc−2 (3.146)

=
(
1− φ

(
m

(i)

µ(ex)

))dc−2
, (3.147)

where the last equality results from the definition of the density evolution function φ(·).
With this result the probability in (3.97) is modified to (3.148), using the formula to estimate
the error rate of the IEEE 802.3an LDPC code as an example.

PAS = Q


2mλ + 2

I∑
j=1

(
m

(j)

λ(ex) +mλ

µjmax

j∏
l=1

1

gl

)
√√√√√
1 +

I∑
j=1

j∏
l=1

1

glµmax

2

mλ +
I∑
j=1

m
(j)

λ(ex)

(
j∏
l=1

1

glµmax

)2


. (3.148)

In the case of general (a, b) sets we need to work with (3.29) instead, and compute µmax

and vmax numerically using the set topology.
Case (ii) can be handled by the linear analysis as well in the following way. If an

external variable to the absorption set has an incorrect sign, this reverses the polarity of
the signal returned to the absorption set from that particular check node. During the first
iteration, these extrinsic signals are basically the received channel LLRs from the connected
variable nodes. The probability that these are in error is given by the raw bit error rate

Pe = Q

(√
2
Es
N0

)
. (3.149)

There are dc − 2 = 30 external inputs impinging on each check node of the absorption set,
therefore the probability that a returned signal experiences a polarity reversal is given by

Pp =

15∑
k=1

(
30

2k − 1

)
P 2k−1
e (1− Pe)31−2k . (3.150)

The model in (3.148) can now be expanded by injecting a correction value into the absorp-
tion set node whenever an external value is in error. We assume that if a polarity reversal
occurs, the minimum value of the check node is likely to be close to zero, therefore the in-
jected correction value needs to cancel the absent feedback signal and is set to−λex,i/µmax.
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If k check nodes are in error, then 2k correction values are injected, one for each message
going back to the absorption set. The injected correction values will alter the mean value of
the decision variable to

mean→ 8

mλ

(
1− k

4µmax

)
+

I∑
j=1

(
m

(j)

λ(ex)

µjmax

j∏
l=1

1

gl

) (3.151)

and the variance is adjusted accordingly, where care needs to be taken how the correction
values accumulate. We have used an upper bound on the variance.

Note that these modifications only include check node polarity reversal at the first iter-
ation, but an extension to subsequent iterations is straight-forward if perhaps messy. Fur-
thermore, as seen in Figure 3.12 (dashed curves), the addition of this mechanism has only
a minor effect on the results.

3.7.2 PAS Reinforcement

We interpreted the probability of (3.122) or (3.29) happening to constitute the probability
that an absorption set falls in error in [63, 64]. This condition can be strengthened because
at the last iteration I , all elements of xI , defined in (3.115), are negative by virtue of (3.120)
and (3.121). So the failure probability is more accurately given as

PAS = Pr(xI ≤ 0). (3.152)

In addition, all elements of xI are a linear combination of λ1, λ2, . . . , λ8 and λ(ex)i4 , λ
(ex)
i5 ,

where i = 1, 2, . . . , I , the elements of (3.113) and (3.116) in the case of the [155, 64, 20]

Tanner code, without loss of generality. In other words, they are linearly dependent. There-
fore, (3.152) is equivalent to saying

PAS = Pr

(
adv−b
max
j=1

(xI,j) ≤ 0

)
(3.153)

= Pr

(
22

max
j=1

(xI,j) ≤ 0

)
. (3.154)

Analogously, we rewrite (3.115) into vectors β1 and β2.

β1 = λ+
I∑
i=1

(VC)iλ (3.155)

≈ λ+

[(
I∑
i=1

µimax

)(
λTvmax

)]
vmax (3.156)

β2 = λ
(ex)
I +

I−1∑
i=1

(VC)iλ
(ex)
I−i (3.157)

≈ λ
(ex)
I +

I−1∑
i=1

µimax

(
λ
(ex)
I−i

T
vmax

)
vmax (3.158)

If we take the mean of every entry of β1 and β2, individually, we obtain

mβ1
= mλ1+mλA

(
I∑
i=1

µimax

)
vmax (3.159)
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mβ2
= m

(I)
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0
...
0
1
1
1
1
0
...
0


+B

I−1∑
i=1

µimaxm
(I−i)
λ(ex)

vmax. (3.160)

It can be seen that the maximum entry of vmax, shown in (3.121), v6 or v15, is dominating
the elements of mβ1

+mβ2
. Thus (3.154) becomes

PAS = Pr (xI,6 ≤ 0) . (3.161)

Our refined error probability formula can be derived accordingly, using the same technique
developed in Section 3.6.2. It will retain the form of (3.143), but is more accurate.

We point out that this modification will not change the result that we had obtained pre-
viously for the IEEE 802.3an LDPC code [63, 64]. Due to the more symmetric appearance
of the (8, 8) absorption set of the IEEE 802.3an code and (3.3) and (3.9), its mβ1

remains
the format shown in (3.159), whereas

mβ2
= m

(I)

λ(ex)
1+B

I−1∑
i=1

µimaxm
(I−i)
λ(ex)

vmax. (3.162)

Besides, the vmax of the dominant absorption set of the IEEE 802.3an code is an all-one
vector. Therefore, we have

Pr
(
xT
I · 1 ≤ 0

)
= Pr

(
40

max
j

(xI,j) ≤ 0

)
, (3.163)

in that case.

3.7.3 Spectral Approximation

In (3.23), (3.124), (3.156) and (3.158), we use the approximation

(VC)iλ ≈ µimax

(
λTvmax

)
vmax, i = 1, 2, . . . , I. (3.164)

This is not very accurate when i is small. The results from the early iterations are of great
importance. So we will drop this approximation and use the matrix formulation (3.115)
when plotting the error rate estimates.

This refined formula predicting the error floor of the Tanner [155, 64, 20], (3, 5) code is
plotted in Figure 4.12. The blue circles represents Monte Carlo simulation on a standard
sum-product decoder and the solid black curve depicts the error formula utilizing the same
decoder configuration. In addition, the error rate of a min-sum decoding is presented in
Figure 3.14.
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Figure 3.14: The numerical and analytical results of the performance of Tanner
[155, 64, 20], (3, 5) LDPC code, assuming min-sum decoding and BPSK modulation on
AWGN channel and maximum iteration=50.

3.8 Some Other LDPC Codes

During our search for a good code with a small length yet and an easy-to-reach error floor,
we have found a few other interesting Tanner codes. For example, the error floor of a length-
755 regular LDPC code is completely dominated by weight-dmin codewords. For two other
codes with lengths between 100 and 200, it is possible to enumerate their codeword spec-
trums, whereas the error rates drop too fast with growing SNR to simulate the error floors
due to their relatively large minimum distances among the codewords. Interested readers
are directed to Appendix B for more information.

3.9 Error Patterns of Linear Programming Decoding

Analogous to absorption sets which are the reason for the error floor of LDPC codes under
message-passing decoding, pseudocodewords cause the error floor under LP decoding. We
first present the studies of [9, 13, 11] on LP decoding on the binary symmetric channel. [13]
suggests that one class of the absorption sets of the Tanner [155, 64, 20] regular (3, 5) LDPC
code is responsible for the error floor of the LP decoding on BSC. However, when we try to
connect the failure patterns of LP decoding with the ones of message-passing decoding, we
find out that such connection is unclear as an error pattern of the former is not necessarily
an absorption set of the latter.
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3.9.1 Linear Programming Decoding on BSC

In this section we will introduce a concept called the instanton, which is a binary vector
that leads to a non-zero pseudocodeword in the LP decoder [9, 13, 11].

Let us represent the non-zero positions of a vector by its support:

Definition 3.6. The support of a vector r = [r1, r2, . . . , rn] is the set of its non-zero posi-
tions:

supp(r) = {i|ri 6= 0, i = 1, 2, . . . , n.}. (3.165)

For a BSC, using the crossover probability shown in Figure 2.2, the log-likelihood ratio
γi in (1.19) can be scaled as:

γi =


ln
(
1−p
p

)
, 1, if ỹi = 0;

ln
(

p
1−p

)
= − ln

(
1−p
p

)
, −1, if ỹi = 1.

i = 1, 2, . . . , n. (3.166)

Then the objective function in (2.77) becomes

n∑
i=1

γifi =
∑

i/∈supp(ỹ)

fi −
∑

i∈supp(ỹ)

fi (3.167)

, C(ỹ, f). (3.168)

Therefore, If ỹ is the input, then the LP decoder converges to the pseudocodeword
which minimizes C(ỹ, f):

DecodeLP (ỹ) = arg min
f∈V (Q)

C(ỹ, f). (3.169)

Right away, we observe that
C(ỹ,0) = 0. (3.170)

So if there exists an f with C(ỹ, f) ≤ 0, then ỹ will not converge to 0 under LP decoding,
assuming that 0 was transmitted. However it does not necessarily imply that ỹ has to
converge to this particular f .

Definition 3.7. For a non-zero pseudocodeword f = [f1, f2, . . . , fn], let e be the smallest

number of components fi such that their sum is at least
n∑
i=1

fi/2. Then the BSC pseu-

docodeword weight of f is defined as

wBSC(f) =


2e, if

∑
e

fi =

n∑
i=1

fi/2;

2e− 1, if
∑
e

fi >

n∑
i=1

fi/2.

(3.171)

Definition 3.8. The medianM(f) of f is a binary vector with supp(M(f)) = {i1, i2, . . . , ie},
such that fi1 , fi2 , . . . , fie are the e largest components of f .
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Note that the median M(f) is an integer vector, while f is not.
With this definition, the connection between (3.171) and (3.167) becomes more clear.

Rewrite the rightmost part of (3.171) as∑
e

fi −
n∑
i=1

fi/2 ≥ 0 (3.172)

⇒ 2
∑
e

fi −
n∑
i=1

fi ≥ 0 (3.173)

⇒
∑
e

fi −
∑
n−e

fi ≥ 0 (3.174)

⇒
∑

i∈supp(M(f))

fi −
∑

i 6∈supp(M(f))

fi ≥ 0 (3.175)

⇒ C(M(f), f) ≤ 0 (3.176)

⇒ DecodeLP (M(f)) 6= 0. (3.177)

These weight-e binary vectors cause LP decoding to fail. Finding the ones with min-
imum weight will enable us calculate the error probability (2.84). This leads to our next
definition.

Definition 3.9. The BSC instanton is defined as a binary error vector that will not be cor-
rected by LP decoding, and any vector reduced from this vector by flipping any of its non-
zero entries to zero, will converge to 0.

In other words, instantons are the “minimal-weight” error patterns under LP decoding.
Any vector with support contained in the support of an instanton will be corrected, whereas
any vector with support containing the support of an instanton will be decoded to a non-zero
pseudocodeword.

Instantons can be found algorithmically as follows.

Step 1. Randomly choose a binary vector as the initial input. If it decodes to a non-zero
pseudocodeword f , then calculate its median M(f). This binary vector M(f) cannot
be corrected by LP decoding.

Step 2. Use M(f) as an input now. Once again, M(f) does not have to converge to f . If
M(f) is decoded to some pseudocodeword f ′, it can be shown that the weight of this
f ′ must be no more than the weight of f [11].

Step 3. IfwBSC(f
′) < wBSC(f), then calculateM(f ′) and go back to Step 2. IfwBSC(f

′) =

wBSC(f), then flip any one of non-zero bits of M(f ′) to zero. Put all these lower-
weight binary vectors derived from M(f ′) through the LP decoder. If they all con-
verge to 0, then M(f ′) is what we are looking for, a so-called instanton. If any one
of them cannot be corrected, then use it as the new input and go back to Step 2.

It can be shown that the weight of the pseudocodeword used in each iteration is strictly
decreasing. Thus this is not an infinite search loop. Moreover, this algorithm terminates in
at most 2k0 steps, where k0 is the weight of the initial input binary vector.

We must point out that this algorithm is not guaranteed to find the minimal instantons
nor to find all of the instantons. However, by Theorem 2.3 the weight of instantons is lower
bounded by ddfrac/2e.
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3.9.2 Relationship between LP and MP on BSC

What interest us are the numerical results on the [155, 64, 20], (3, 5) Tanner code, obtained
by [13]. Note that 155 distinct weight-5 instantons have been found. All of them share the
same subgraph shown in Figure 3.15(a), which is merely an equivalent appearance of the
ones shown in Figure 3.9. In addition, the number of this weight-5 instanton matches our
record in Table 3.4.
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@@@@@@@@@@@@

~~~~~~~~~~~~

(a) Weight-5 instanton.
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@@@@@@@@@@@@

~~~~~~~~~~~~

(b) (4, 4) absorption set.

Figure 3.15: Error patterns of the [155, 64, 20], (3, 5) Tanner code.

First, the topology in Figure 3.15(a) corresponds to the (5, 3) absorption set under
message-passing. It seems that LP decoding also tends to fail on absorption sets.

Secondly, by calculating the dfrac of the LP polytope of this Tanner code [13], it can be
shown that these 155 sets are the minimal-weight error patterns that cannot be corrected by
the LP decoder. In other words, any error pattern with weight less than 5 will be corrected
by LP decoding. However, removing any one of the three degree-2 variable nodes from
Figure 3.15(a) reduces it to a (4, 4) absorption set, as shown in Figure 3.15(b). This weight-
4 error pattern will still fail the message-passing (bit flipping) decoder, though it will lead
to a weight-5 absorption set. So, in terms of correcting capability, LP decoding outperforms
message-passing decoding on the BSC, at least on this code.

We point out that an error pattern for LP decoding may not be an absorption set for
message-passing decoding, where such patterns are provided in the following examples.

Example 3.5. Assuming dv = 3, we can construct a weight-9 instanton E as shown in
Figure 3.16.

Consider 0 being transmitted and this E is received as ỹ and input to an LP decoder.
Considering bit-flipping decoding under BSC, we are able to find a point f in the polytope
Q defined in (2.76), such that the objective function in (2.77) or (3.168) achieves a negative
value.

1. Let fi =

{
0, i 6∈ E;
2
5 , i ∈ E.

Hence (3.168) equals −9× 2
5 < 0.

2. We need to show that f ∈ Q:

(a) Obviously, the first condition in (2.75) is satisfied.

(b) For any check node j, let M(j) = N(j)
⋂
E, where N(j) is the set of neigh-

boring variable nodes of j. Only the ten check nodes involved in Figure 3.16
need to be considered.

69



�

������������������

------------------ �

wwwwwwwwwwwwwwwwwwwwwwwwwww

GGGGGGGGGGGGGGGGGGGGGGGGGGG �

������������������

------------------

         

�

------------------

����������������������
�

------------------

wwwwwwwwwwwwwwwwwwwwwwwwwww

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq �

������������������

wwwwwwwwwwwwwwwwwwwwwwwwwww �

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq �

GGGGGGGGGGGGGGGGGGGGGGGGGGG

------------------
�

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

GGGGGGGGGGGGGGGGGGGGGGGGGGG

������������������
�

;;;;;;;;;;;;;;;;;;;;;;

������������������

Figure 3.16: A size-9 instanton of LP decoding.

• For the satisfied check nodes j, |M(j)| is even. Let

wj,S =


2
5 , S =M(j);
3
5 , S = ∅;
0, else.

(3.178)

Then (2.75) is satisfied at these j’s.
• Regarding the unsatisfied check nodes j, let M(j) = {i1, i2, i3} and

wj,S =


1
5 , S = {i1, i2} or {i1, i3} or {i2, i3};
2
5 , S = ∅;
0, else.

(3.179)

So (2.75) is satisfied at these j’s, as well.

Therefore f ∈ Q.

To be clear, this does not imply that the LP decoder will necessarily return this f as a
decoding output, but rather than that it will definitely not converge to the all-0 codeword.

Note that Figure 3.16 in Example 3.5 shows a cycle-4-free topology. A smaller topology
that contains 4-cycles is shown in Example 3.6.

Example 3.6. Still supposing dv = 3, we can construct a weight-6 error patten as shown in
Figure 3.17.
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Figure 3.17: A size-6 instanton of LP decoding.
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Chapter 4

Error Floor Reduction

After achieving the estimation formula (3.143), this general format helps us look for the
contributing factors that come into play to establishing the error rate .

The absorption set structure determines the magnitude of µmax, which affects how fast
the power of µmax grows as it is usually greater than one. The coefficients A, B, C and D
are the results of operations involving vmax, for instance, as shown in (3.132)–(3.135), and
set topology. Hence, altering the code design to eliminate the minimal absorption set will
affect the values of these parameters, thus improve the error rate.

The mean of the intrinsics mλ is solely dependent on the channel characteristics, which
is out of our control as an approach for tackling the error floor.

The maximum number of iterations allowed at the decoder, denoted by I , also shows up
in (3.143). As we pointed out at the beginning of Chapter 3, it is commonly understood that
simply increasing this value will not solve the trapping set problem, but only add complexity
to the algorithm. This is because that the absorption set will stabilize after a few iterations.
No matter how many more iterations we run the decoder at it, the error pattern will not
break up and be corrected. To better demonstrate this, we recorded the accumulated LLRs
at the variable nodes of an (8, 8) absorption set of the IEEE 8023.an LDPC code and plotted
them against iteration index in Figure 3.8, [64].1

The last variable appeared in the estimation formula is mλ(ex) , the mean of the signals
injected to the absorption set through its unsatisfied check nodes, shown in blue color in
Figures 3.3(a) and 3.13(a). By observing (3.143), one way to reducePAS is to raise the value
of m(i)

λ(ex)
. As a matter of fact, λ(ex) carries the deemed correct information accumulated

out of the absorption set. Thus, scaling up its value is equivalent to increasing its weight
that would increase the chance of correcting the LLRs trapped within the absorption set’s
network. We also know from (3.143) that this has to be done during the first few iterations.
Otherwise the exponential denominator µimax will diminish the effect quickly.

4.1 Extrinsics Scaling

By observing (3.143), increasing the value of m(i)

λ(ex)
to reduce PAS seems to be the only

option since we can do nothing to the other arguments in (3.143) without changing the code
1Note that the decoding process would have stopped when the frame is converged, i.e., all variable nodes

have positive LLRs. But we kept it running till the maximum iteration number was reached, just to have enough
evidence to study the behavior of the LLRs.
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design. So if we can boost up the values λ(ex)ij which are sent to the absorption set through
the unsatisfied check nodes, then PAS can be decreased, therefore lowering the error floor.
This has to be done during the first few iterations. Otherwise the exponential denominator
µimax will diminish the effect quickly.

Sticking with the Tanner [155, 64, 20], (3, 5) regular LDPC code, we modify the stan-
dard iterative SP decoding algorithm as follows:

1. During the initial 4 iterations, multiply the LLRs returning from all unsatisfied check
nodes by a factor of 2;

2. After 4 iterations, revert back to the standard SP decoder.

The simulation results are shown in Figure 4.13. Due to the short length of this code,
there is no visible turning point between waterfall and error floor regions. So we analyze
the composition of the error patterns from the simulation results in Figure 4.14. For a
standard SP decoding, the ratio of the dominant absorption set to all error events is approx-
imately 30% at 4 dB and increases to nearly 80% at 6.25 dB, as shown in Figure 4.14(b).
Applying the boosting SP will reduce this percentage by approximately 10%, as shown in
Figure 4.14(b). The percentage of all absorption sets to the number of decoding failures
also decreases 10% as can be seen in Figure 4.14(a). It also indicates that the error floor
of this Tanner code starts showing up at 4 dB and is caused by absorption sets and, in par-
ticular, the (8, 2) absorption set is the dominant one. Going back to Figure 4.13, it can be
seen that the modified SP algorithm outperforms the original SP in the error floor region by
nearly an order of magnitude at 6.5 dB.

We observe from Figure 4.13 that the boosting algorithm does not compromise the
waterfall region. We also point out that the question of how many iterations to boost and
how much to scale depends on the channel SNR and decoder configurations, such as the
LLR clipping threshold, maximum iterations, etc., which can be seen in (3.143), as well.

4.2 LLR Range

It caught our attention that applying the boosting SP decoding algorithm will reduce the ra-
tio of the dominant absorption set to all error events by approximately 10% only, compared
to a standard SP decoder, as illustrated by a bar plot Figure 4.14(b), [85]. So the absorption
sets are still the main contributing error patterns of the modified decoder.

When we look further, we realize that there is an additional contributing factor not
shown up explicitly in (3.143), i.e., the LLR clipping threshold. Theoretically, the range of
the messages λ(ex)i can be unconstrained. However, to reduce the computational complexity,
the λ(ex)i are typically clipped at a value which is preset at the decoder. This threshold value
serves as a hidden variable in (3.143) and will have an effect on the code performance.

The extrinsic message λ(ex) is definitely bound by this clipping value. Thanks to the
fast growing LLRs in the iterative decoding algorithm, the magnitude of λ(ex) will quickly
reach the typical clipping limit, say 10, within the first few iterations. In that case, the
boosting action presented above has a very limited effect. As a consequence, the error rate
of this Tanner code is reduced but still dominated by absorption sets.

This turns our focus on the relationship between LLR range and absorption sets. We
also ran simulations of a standard SP decoder with increased clipping threshold, as shown in
Figure 4.13, [85]. Then we achieved a significant reduction on the appearance of absorption
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sets as error patterns. Fewer than 10%2 of the observed decoding failures in the error floor
region are caused by absorption sets when the LLRs are allowed to grow longer than 10

in magnitude, compared to 80–90% when the clipping threshold is set at 10, as shown in
Figure 4.14(a), [85].

Furthermore, if we let the LLR grow freely at the decoder, utilizing the soft-bit decoding
in the tanh domain [37], then there is a noticeable decoding gain, as can be seen in Fig-
ure 4.13, which is further supported by the error pattern statistics in Figure. 4.14. In other
words, the higher the LLR clipping threshold, the less the threat from the absorption sets.
Sooner or later, the extrinsic LLR λ

(ex)
i , which carries the correct information from outside

of the absorption set, will grow reliable enough to win the majority vote at the absorption
set nodes, thereby correcting this error pattern.

However, from Figure 4.13, there is not much difference between the blue and the green
circles, where the LLRs are clipped at ±10 and ±100, respectively. Evidently the failures
of the decoder with higher clipping threshold are not dominated by the absorption sets at
all, as shown in Figure. 4.14. This also explains why the estimation using clipping threshold
100 does not match the simulation results, as shown in Figure 4.12. The black dashed curve
in Figure 4.12 represents the contribution from the dominant absorption set, which does not
dominate the decoding failures, to the error rate, when the LLRs are clipped at ±100.

To understand why the bit error rate with raised LLR clipping limit is not improved
while absorption sets are not dominating the failures any longer, we examine the numeri-
cal evidence hidden during the process of decoding an individual frame, as we did in the
analysis for the IEEE 802.3an LDPC code in Figure 3.8 in [64].

Unlike the sum-product and soft-bit decoding [37] algorithms adopted in our earlier
work [63, 64, 85], here we apply a corrected min-sum algorithm, which computes the check-
to-variable LLR as

λj→i =

(
min

l∈Vj\{i}
|λl→j |+CF

) ∏
l∈Vj\{i}

sign (λl→j) , (4.1)

where CF represents a correcting factor and is defined as

CF =


− ln (dc − 1)

4
, if min

l∈Vj\{i}
|λl→j | ≥

3 ln (dc − 1)

8
;

0, otherwise,

(4.2)

in the one-step degree-matched check node approximation [38], in order to avoid any tanh(·)
calculation that causes a software saturation problem at points ±1 as illustrated in Fig-
ure 4.1. This problem is also pointed out in [5].

Firstly, we caught an input frame that led to an (8, 2) absorption set error event at
the min-sum decoder, where the LLRs are limited between ±10. Figure 4.2(a) shows the
accumulated LLRs at the eight absorption set variable nodes against iterations. The errors
or the set quickly locks up and stays erroneous for the rest of the iterations. When we pass
exactly the same frame to the decoder however increase the LLR clipping threshold to 38,
the frame converges to the all-zero codeword, as shown in Figure 4.2(b). Clearly we can
see two phases, namely linear growth and bit flipping, the same as the case of the IEEE
802.3an code, shown in Figure 3.8.

2It turns out that this 10% can also go away if the maximum number of iterations, I , is also increased in
conjunction with raised LLR clipping threshold.
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Figure 4.1: The tanh(x/2) value will be treated as 1 for all |x| > 55 ln 2 ≈ 38.

Secondly, we ran the same test on another frame that caused an (8, 2) set when LLRs are
confined between ±10, as shown in Figure 4.3(a). Seemingly, there is no difference from
the previous (8, 2) set’s behavior, shown in Figure 4.2(a). But when we raised the threshold
to 38 for this second frame, the set surely behaves erratically, as seen in Figure 4.3(b). Note
that after 50 iterations, some of the set nodes have positive LLRs, while some others do not.
Those variable nodes with negative LLRs will be counted as errors but this error event will
not be classified as an (8, 2) absorption set.

Then we looked further at the extrinsic LLRs entering this absorption set from the two
unsatisfied check nodes that are trying to correct the errors. They grow quickly when clip-
ping is at 10, but as erratically as the accumulated LLRs when clipping is 38, as seen in
Figure 4.4.

To see how the oscillation evolves, we extended the iteration limit to 500. The second
(8, 2) absorption set gets corrected, eventually, after 100 iterations, as shown in Figure 4.5.

Therefore, the extrinsics need not only space but also time to grow strong enough to
overwhelm the accumulated LLRs trapped within the absorption set’s network.

The numerical results of the min-sum decoding algorithm with different LLR clipping
thresholds and maximum iterations are shown in Figure 4.6. As can be seen, when I =

50, the curves are consistent with the ones in Figure 4.13, where sum-product decoding
was applied. However, the error rate is significantly improved when I is raised to 500 in
combination with LLR clipping at 38.

Figure 4.7 also shows the error rates of the Tanner [155, 64, 20] LDPC code. Once
again, with higher LLR clipping value, (3.143) predicts that the error rate will decrease
accordingly. This is supported by IS when the clipping threshold is raised from 10 to
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(b) The input frame is corrected when LLRs are clipped at 38.

Figure 4.2: The accumulated LLRs at the first (8, 2) absorption set nodes of the Tanner
[155, 64, 20] LDPC code when the input frame is decoded by a min-sum decoder with
different clipping thresholds, assuming all-zero codeword is transmitted at 6 dB.
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Figure 4.3: The accumulated LLRs at the second (8, 2) absorption set nodes of the Tanner
[155, 64, 20] LDPC code when the input framed is decoded by a min-sum decoder with
different clipping thresholds, assuming all-zero codeword is transmitted at 6 dB.
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Figure 4.4: The extrinsic LLRs at the (8, 2) absorption set nodes of the Tanner [155, 64, 20]
LDPC code when the input framed is decoded by a min-sum decoder with different clipping
thresholds, assuming all-zero codeword is transmitted at 6 dB.
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Figure 4.5: The accumulated LLRs at the second (8, 2) absorption set nodes of the Tanner
[155, 64, 20] LDPC code when the input framed is decoded by a min-sum decoder with clip-
ping threshold=38 and maximum iteration=500, assuming all-zero codeword is transmitted
at 6 dB.
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100. However, the IS results of LLR clipped at 1,000 are not as low as suggested by
(3.143), see the black stars in Figure 4.7. This is due to the short length of this code.
Shortly after the decoding procedure begins, the LLRs will become so correlated that the
extrinsics λ(ex)i start to depart from the behavior predicted by density evolution. However,
eventually, the absorption set is still corrected given more iterations are permitted [85]. The
qualitative observations made above are therefore valid also for short codes, even though
the quantitative prediction power of the error formulas breaks down.
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Figure 4.7: Bit error rates of the Tanner [155, 64, 20] LDPC code using both formula (3.143)
and importance sampling (IS) with LLR clippings at 10, 100 and 1000, respectively. The
maximum iteration number is set to 50.

We also analyze the composition of error patterns of the min-sum decoding in Fig-
ure 4.8(b), which is consistent with the statistics of the sum-product decoding shown in
Figure 4.14(b), as well.

Regarding the IEEE 802.3an LDPC code, all frames causing its (8, 8) absorption sets,
that we have captured, can be corrected successfully by raising the LLR clipping threshold
to 38 with the iteration number 12 untouched. We believe that this is due to the length
of the code and the less trouble-causing absorption set topology. An example is shown in
Figures 4.9 and 4.10.

For a bigger code as the IEEE 802.3 LDPC code, we have shown our estimation formula
matches the simulations nicely in [63, 64]. If we increase the LLR clipping threshold for
this code, the contribution of its dominant absorption set to the error floor also reduces
significantly, as shown in Figure 4.11 [87, 86, 60]. The dashed curves plot (3.97) for I = 10

and mλ and m(i)

λ(ex)
are bounded by 10, which is the clipping threshold. The circles are the

numerical results of importance sampling (IS) utilizing (4.1) with the same I and LLR
clipping threshold. When the threshold is increased to 100, the error rate decreases as
(3.97) predicts, also shown in Figure 4.11, and as supported by IS simulation. The error
rate further decreases with the even bigger LLR clipping value of 1,000.
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(a) The percent of all absorption sets of all error events.
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(b) The percent of the (8, 2) absorption sets of all error events.

Figure 4.8: The percentage of absorption sets to the decoding failures of the Tanner
[155, 64, 20] LDPC code, assuming min-sum decoding on AWGN channel with maximum
iteration=50.
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(a) The input frame converges to an (8, 8) absorption set when LLRs are clipped at
±10.
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Figure 4.9: The accumulated LLRs at an (8, 8) absorption set nodes of the IEEE 802.3an
[2048, 1723] LDPC code when the input framed is decoded by a min-sum decoder with
different clipping thresholds, assuming the all-zero codeword is transmitted at 5 dB.
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Figure 4.10: The dynamics of the eight extrinsics of the (8, 8) absorption set nodes of the
IEEE 802.3an [2048, 1723] LDPC code when the input framed is decoded by a min-sum
decoder when the LLR clipping limit is 10, assuming all-zero codeword is transmitted at
5 dB.
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Figure 4.11: Bit error rates of the IEEE 802.3an LDPC code using both formula (3.97)
and importance sampling (IS) with LLR clippings at 10, 100 and 1000, respectively. The
iteration number is set to 10.

83



0 1 2 3 4 5 6 7 8 9
10

−20

10
−15

10
−10

10
−5

10
0

E
b
/N

0
 (dB)

B
E

R

 

 

Standard SP@LLR10
Importance Sampling@LLR10
Standard SP@LLR100
Linear Estimation@LLR10
Linear Estimation@LLR100

Figure 4.12: The numerical and analytical results of the performance of Tanner
[155, 64, 20], (3, 5) LDPC code, assuming BPSK modulation on an AWGN channel and
maximum iteration=50.
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Figure 4.13: The numerical results of the performance of Tanner [155, 64, 20], (3, 5) LDPC
code, assuming BPSK modulation on an AWGN channel and maximum iteration=50.
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(a) The percent of all absorption sets over all error events.
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(b) The percent of the (8, 2) absorption sets over all error events.

Figure 4.14: The percentage of absorption sets to the decoding failures of the Tanner
[155, 64, 20] LDPC code, assuming sum-product decoding on AWGN channel with maxi-
mum iteration=50.
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4.3 Iterations and Complexity

Larger LLR clipping thresholds imply more complexity in practice, since wider bit widths
are needed to represent the messages. Figure 4.11 shows how much gain can be achieved
by increasing the clipping values, in terms of lowering the error rate of the IEEE 802.3an
LDPC code. We note that the theoretical results correlate well with the IS simulations.

Regarding the Tanner [155, 64, 20] code, simply increasing the clipping threshold to
over 100 alone has no additional benefit. as shown in Figure 4.7. The correlations among
the LLRs of this small code compromise the growth of the extrinsic information entering
the absorption sets.

Motivated by these observations, in this section we explore the impact of message quan-
tization and number of iterations on a code’s error floor. Arguably, the product of bit-width
and number of iterations is an accurate measure of the computational complexity of a de-
coder since this number is directly related to the switching activity of a digital decoder (see
[60]), and hence also the energy expended by the decoder.

In order to verify our theoretical results, we resort again to importance sampling (IS). IS
is an ideal tool to explore variations of a decoder, such as finite precision operation, where
the impact of design changes need to be explored for ultra-low error rates. One way of
increasing the number of error events, or positive counts, is to distort the noise distribution
to cause more errors. This is typically done by shifting the mean of the noise towards
a convenient boundary of the signal space region where the decoder fails to produce the
correct output (mean-shift importance sampling). The key questions are where to shift the
transmitted signal and by how much.

A priori knowledge of the dominant error mechanisms is extremely important for proper
use of IS, since otherwise a mean shift can actually mask an error by moving the signal
further away from the dominant error event. Furthermore, the correct amount of the shift is
also important. If the shift value is too small, not enough simulation speed up is achieved; if
the shift value is too large, a phenomenon called over-biasing causes the IS error estimate to
dramatically underestimate the true error contribution by the dominant event. This happens
when the biased simulated samples occur too far away from the decision boundary, but
inside the error region. These samples are weighed with a index that is too small. Not
enough samples are generated close to the decision boundary from where the majority of
the actual error contribution originates.

Since absorption sets are examined as the primary causes of the significant events in
the error floor region, we add such a mean shift, or bias, towards the bits that make up
the absorption set. Having identified and enumerated the dominant absorption sets of an
LDPC code, we technically need to perform this shift for each absorption set separately, but
symmetries can often by exploited in reducing this task.

Richardson [58] used a version of IS where this mean shift assumes a continuous dis-
tribution over which the simulations are averaged. This method appears to alleviate the
over-biasing, but also obscures the phenomenon. In our approach we carefully choose the
mean shift by assuring that small changes do not alter the computed error rate. Mean shift
values used for some of our simulations are marked in the figures. We finally wish to note
that, unlike sometimes implied in the literature, IS can only properly reproduce an error
floor if the causes of the error floor are sufficiently well understood to apply proper biasing.
Hence our two-step procedure in Sections 3.4 and 3.5 for the IEEE802.3an LDPC code,
and Section 3.6 for the length-155 Tanner code.
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Taking into account the bias value and the dominant absorption sets selected in the oper-
ation, the estimation formula (1.21) along with the weighting factor (1.23) must be adjusted
accordingly, leading to a weight term w(y) � 1. The combined effect of measuring more
significant events and ascribing them lower weight will produce the same error rate measure
in (1.21) if the shifting is done correctly. Figures 4.11 and 4.7 show the results of impor-
tance sampling for the IEEE 802.3an and the Tanner [155, 64, 20] LDPC codes compared
to our formulas for floating point calculations.

In a hardware implementation, however, finite precision arithmetic is used. The more
digits used in the decoder, the more power and computational effort is required, but better
performance will results. It is therefore vitally important for implementations to understand
this cost-benefit tradeoff. For the IEEE 802.3an code, IS simulations with both floating
and fixed point calculations at different LLR clipping values are shown in Figure 4.15. Not
surprisingly, for smaller clipping values, smaller numbers of bits are required to adequately
represent the messages. While 6 bits of quantization are required for a clipping threshold
of 10, 10 bits are needed for a clipping threshold of 100, and 14 bits of quantization are
required to exploit the full benefit of a clipping threshold of 1000.
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Figure 4.15: Error rates of the IEEE 802.3an LDPC code via importance sampling (IS)
with finite precision, where the LLRs are clipped at 10, 100 and 1000, respectively. The
maximum iteration number is preset at 10.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we started by reviewing the basics of the low-density parity-check
codes, a class of linear block codes. Their sparse parity-check matrices enable efficient
software and hardware decoder implementations and therefore make them popular in ap-
plications. LDPCs have been the focus of extensive research activities over the last two
decades because of their extraordinary performance, their ability to closely approach chan-
nel capacity, the excellent distances among codewords, and ease of implementation. De-
spite all of their good qualities, there are still challenges posed by LDPCs, especially with
growing demands on speed and ultra-low error rates.

The efficient iterative message-passing decoding algorithms for each of the popular
communications channels, to be exact, the binary erasure, the binary symmetric and the
additive white Gaussian noise channels, were reviewed at the beginning of this thesis.

The error rate of LDPC codes decreases quickly as the signal-to-noise ratio increases
and is bounded from below by the maximum-likelihood decoding error probability, related
to the minimum-weight non-zero codewords. However, when utilizing the sub-optimal, but
more practical iterative decoding methods, such as message passing or linear programming,
a marked increase of this lower bound tends to appear which has the shape of an error floor.
This is caused by inherent structural weaknesses in the code’s interconnect network, which
the iterative decoder cannot overcome. Once trapped in certain error patterns the decoder
cannot recover. Such decoding failures were studied in [81, 28, 26], and initially dubbed
trapping sets in [58].

Trapping sets depend not only on the code but also on the channel and the decoding
algorithm. Trapping sets of the binary erasure channel are known as stopping sets [16],
whereas the dominant trapping sets of LDPC codes on the Gaussian channel are called
absorption sets [88], which is also the failure mechanism on the binary symmetric channel.
The Gaussian channel differs from the binary symmetric channel and the binary erasure
channel in that the error behavior of the LDPC decoder is more complicated.

An absorption set is a set of variable nodes such that the majority of the neighboring
check nodes of each variable node in the set are connected to the set an even number of
times. Considering Gallager’s bit flipping decoding [31], for instance, a majority of mes-
sages sent to an absorption set will retain the erroneous sign. Therefore, the decoder will
not be able to correct the bits in the absorption set and it will lock up in an erroneous state.
It is believed that the “smaller” the absorption set, the more severe its effect on the error
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floor phenomenon [58, 48, 63, 64]. This is similar to the observation that lower weight
codewords have more impact on the error rate than higher weight codewords. Therefore,
minimal absorption sets play a critical role in the error floor.

Due to the growing popularity of LDPC codes, effort have been expended to understand
the dynamics of absorption sets [24, 79]. An immediate application of such knowledge is
to predict the error floor. This is of great interest especially when the error floor is too low
to be simulated even by hardware implementations. Furthermore, the error floor can be
lowered by modifying the code design or decoding algorithms targeting the absorption sets
[72, 47, 78, 35, 44, 89, 63, 64, 10, 33, 46, 40, 41, 42].

After identifying the dominant absorption sets, we developed a linear model to analyze
the error floor error probability. We first identified and enumerated the minimal absorption
sets, which dominate the decoding performance in the error floor region. Then, by charac-
terizing the dynamics of the log-likelihood ratios in the absorption set variables using the
set structure, and making use of density evolution, we derived a closed-form formula that
closely approximates the probability that an absorption set will fall in error.

Both the IEEE 802.3an [2048, 1723] regular (6, 32) LDPC code, which is used for
10 Gbit/s Ethernet over twisted-pair copper cables, and the Tanner [155, 64, 20] regular
(3, 5) LDPC code were considered to illustrate our algebraic approach. The estimation
from our formula matches the numerical results accurately.

We also developed a systematic method to enumerate the absorption sets of those codes.
As a byproduct of the enumeration process, the minimum distance of the IEEE 802.3an
code has been tightened to either 12 or 14. However, fully classifying the absorption sets is
a largely unsolved, and perhaps unsolvable, problem. Our analysis of the existence of larger
sets heavily depends on the results of smaller sets. In addition, classification of absorption
set using an unordered array to denote the point degrees in the subgraph induced by an
absorption set is of crucial importance, especially when the variable node degree is greater
than five. Last but not least, extreme caution must be practiced when exhaustively listing all
possible topological structures and determining whether topologies obtained from different
approaches are identical or not.

After successfully approximating the error floors, guided by the error probability for-
mula, a simple but effective method to improve the code performance in the error floor
region without altering the code construction is proposed, by introducing a boosting factor
to the log-likelihood ratios returned from unsatisfied check nodes during the early decoding
stages. The effect of this modification is that the likelihood of getting trapped in the ab-
sorption set is generally reduced. The effect materializes in the first few iterations since the
modification cannot “correct” an absorption set once the error has stabilized. The intention
is to prevent the decoder from getting trapped into the absorption sets at the early stages of
decoding. Such a modification can be easily implemented and extended to schedules other
than flooding [67, 54, 68, 90, 59, 73, 80, 3]. We point out that this approach is different
from the ones proposed in [89] and [46], which target “fixing” the absorption sets by post-
processing or backtracking the trapping sets, usually as a final decoding stage. Modifying
the code structure to eliminate the dominant absorption sets has also been considered by
some authors [44].

It is shown that the effect of the dominant trapping sets is reduced, but only a limited
number of absorption set error patterns can be eliminated. In other words, the dominance
of the absorption sets is reduced but remains.

So we looked further and found out that the impact from absorption sets can be reduced
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significantly such that they are not dominating the error rate any more, by extending the
computational range of the LLRs at the decoder. Such range is realized by a decoder setting,
called the LLR clipping threshold, which serves as a hidden variable in our formula. By
allowing the LLRs to grow bigger, the messages from the unsatisfied check nodes of the
absorption sets, which we were trying to boost up, will become strong enough to eventually
overcome the incorrect LLRs trapped within the set’s network. In that case, absorption sets
will no longer exist as primary error patterns of the iterative decoders. Therefore, the error
rates will, again, be dominated by the maximum allowed iterations at the decoder and the
low-weight codewords.

In the field of optical communication, 100G is regarded by the industry as the most
important transmission rate of the next generation. As the 100G coherent transmission
technology has become the mainstream 100G transmission technology, whereas the non-
coherent transmission technology has been widely used in the 10G and 40G transmission
systems, it makes LDPC-based soft-decision forward error correction (FEC) continuously
a good candidate for 100G long-haul transmission [6, 19, 20, 18, 49]. LDPC-based soft-
decision FEC will provide a promising solution to further improve the performance of 100G
and even 1T transmissions. Therefore, our error floor analysis will become very beneficial
in the low error rate region of the high rate transmission schemes.

5.2 Future Work

The linear analysis that we provided is general. However the enumeration of the small ab-
sorption sets is code-specific and costs a lot of effort, even though it is already significantly
better than any brute-force searching algorithm. It is possible to fill in more gaps in Ta-
ble 3.2. To do that, future work could find a better way to enumerate them. By better, we
mean faster or more efficient, and more generalized.

To further strengthen the generality of our linear analysis, we would like to apply our
analysis to more LDPC codes. Tanner codes and MacKay codes are some good options.
Then the impact of the LLR clipping threshold and, perhaps, maximum iteration number
on the error rate could be tested further.

When moving on to other codes, the V and C matrices of their dominant absorption
sets may not be as regular as (3.8) and (3.5) of the IEEE 802.3an LDPC code, according
to Definition 3.2 of an absorption set. For instance, within the absorption set subgraph, the
satisfied check nodes may be connected with four or six variable nodes from the set. This
is highly dependent on the code structure, or the parity-check matrix H. When the check
nodes send their message back to the neighbor variable nodes in the decoding algorithm,
they are not simply performing exchanges any more. But we still need to show that the
maximum eigenvalue of VC is larger than 1, so the LLRs will keep growing at each de-
coding iteration. It would be convenient to figure out a general method to approximate the
maximum eigenvalue, µmax, which seems to be closely related to the variable node degree,
dv, and the set dimensions, a and b, without calculating the eigenvalues numerically for
each absorption set structure. However, by including that approximation into our estima-
tion formula, we expect a degraded result in estimating the error floors, due to the precision
lost in approximations.

Furthermore, Richardson attributed the failure mechanism to trapping sets or “near
codewords”, which are sets with a relatively small number of variable nodes such that the
induced sub-graph has only a small number of odd degree check nodes [58]. Apparently

90



absorption sets are (dominant) trapping sets. However is it true that all trapping sets are
absorption sets? The answer seems to be “yes”, since we have successfully predicted the
error floor by making use of minimal absorption sets and no error pattern other than absorp-
tion sets has been seen or, if not impossible, could be constructed. However, to make our
analysis more complete, we need to come up with more solid argument for the conjecture.

Another interesting perspective of the error floors is to look at the connection between
the iterative message-passing and the optimization-searching linear programming (LP) de-
coding algorithms.

The LP decoding algorithm has attracted much attention recently since its performance
approaches that of optimal ML decoding. Although the message-passing decoding algo-
rithm is the exact decoding algorithm only for cycle-free LDPC codes, it performs very
well in practice for real LDPC. However, it does not always converge. In addition, it does
not have the ML certificate. But we must remark that in practice, for large block length
LDPC codes, when the message-passing decoder outputs a codeword, it is extremely rare
for it not to be the ML codeword [25]. From the experiments results [25], it seems that in
very low noise conditions LP decoding even outperforms message-passing decoding. So
the position of LP decoding lies between ML and MP.

In the binary erasure channel, it is known that message-passing fails if and only if a
stopping set exists [7]. While it is shown in [25] that the performance of the LP decoder is
equivalent to belief propagation on the BEC, we do not have the same conclusion for the
symmetric channel. The error patterns of LP decoding on BSC are named instantons, as de-
fined in Definition 3.9. The instantons of the Tanner [155, 64, 20] regular (3, 5) LDPC code
correspond to its (5, 3) absorption sets. The correspondence between these two decoding
failures of different decoding algorithms remains inconclusive as it is possible to construct
an instanton whose topology does not resemble that of an absorption set.

Active research topics in this field include tightening up the relaxation, strengthening
the lower bound of dfrac, adapting the general LP Simplex algorithm to decoding-oriented
algorithm, comparing the computational complexity of LP decoding and message-passing
decoding, etc. But what we would like to do is to concentrate on linking LP decoding to our
analysis, i.e., studying the error patterns of LP decoding, specifically on BSC and AWGN
channels. As intantons have been identified as the failure mechanism of LP decoding on
BSC channels and the minimum weight instantons correspond to “dominant” absorption
sets, we would like to understand the connection between absorption sets and instantons
or pseudocodewords. It is also unclear that why LP decoding failed on the absorption sets
of the [155, 64, 20], (3, 5) Tanner code. Absorption sets are cycles or unions of cycles,
on which the message-passing decoding does not work very well. It looks like that those
cycles are causing trouble in LP decoding as well. There seems to be some connection
between cycles and pseudocodewords. Thus the topological structure of instantons has to
be examined.

We know that pseudocodewords are vertices of the LP polytope Q, and the Q comes
from the intersection of all local polytope Qj’s (2.75). The relaxations as part of the con-
straints might be able to help explain the connection between cycles and instantons. We
will also try to get some insights from the intanton search algorithm shown in Chapter 3.
Noting that an LP decoder is involved in the search algorithm, the way of reducing the
weight by calculating medians could also be applied by the algorithm. This method might
also provide us some insight.
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Appendix A

IEEE 802.3an RS-based LDPC Code

A.1 Code Construction

The IEEE 802.3an RS-based Low-Density Parity-Check code belongs to a special class of
binary linear block codes, constructed in [21, 84]. We first introduce the general construc-
tion procedure, in order to reveal that some of the code properties, such as, minimum cycle
length, symmetry, etc., are the intended results of the construction. We generate a tiny code
as an example to assist us understanding the steps, for illustration purposes only.

Then the [2048, 1723] IEEE 802.3an LDPC code will be constructed with proper selec-
tions of the construction parameters and modules.

A.1.1 A Class of LDPC Codes Based on Reed-Solomon Codes

Consider the Galois field GF (ps), where p is a prime and s is a positive integer. Let α be
a primitive element of GF (ps). Then GF (ps) =

{
0, 1, α, α2, . . . , αp

s−2}. Let ρ be an
integer such that 2 ≤ ρ < ps. Then the generator polynomial1 of the cyclic Reed-Soloman
(RS) code C with length ps − 1, dimension ps − ρ+ 1 and dmin = ρ− 1 is

g(X) =

ρ−2∏
i=1

(
X − αi

)
(A.1)

= g0 + g1X + g2X
2 + · · ·+ gρ−3X

ρ−3 +Xρ−2, (A.2)

where gi ∈ GF∗ (ps) , i = 0, 1, . . . , ρ− 3.
The code C can be shortened by deleting the first ps − ρ− 1 information symbols from

each codeword of C. The shortened RS code Cb [ρ, 2, ρ− 1] has a generator matrix:

Gb =

[
g0 g1 g2 · · · gρ−3 1 0
0 g0 g1 g2 · · · gρ−3 1

]
2×ρ

(A.3)

,

[
r1
r2

]
. (A.4)

There are p2s codewords with three different weights, zero, ρ−1 and ρ. As a matter of fact,

Cb =
{
kGb =

[
k1 k2

]
·Gb

∣∣k1, k2 ∈ GF (ps)
}
. (A.5)

1Note that this is the generator polynomial of the code, not the generator polynomial of the field.
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For example, r1 and r2 are two weight-(ρ − 1) codewords, and r1 + r2 is a weight-ρ
codeword. Therefore, any two distinct codewords in Cb have at most one location with
the same code symbol. This can be proved by way of contradiction. Let c1, c2 ∈ Cb and
c1 6= c2. Let c = c1 + c2. Then c ∈ Cb and c 6= 0. Hence weight (c) = ρ− 1 or ρ, which
implies that c1 and c2 are different in at least ρ− 1 places.

Now let c ∈ Cb with weight ρ. Then the set C(1)b =
{
βc
∣∣∀β ∈ GF (ps)

}
contains ps

codewords in Cb. In addition, each of the ps − 1 non-zero codewords has weight ρ. Thus,
any two codewords in C(1)b differ at every location. To see this, let ci represent a symbol
of the codeword c and β1, β2 ∈ GF (ps). Then β1ci = β2ci implies (β1 − β2)ci ≡ 0

(mod ps). Since ci 6= 0, we must have β1 − β2 ≡ 0 (mod ps) or β1 ≡ β2 (mod ps).
Partition Cb into ps cosets, C(1)b , C(2)b , . . . , C(p

s)
b , based on the subcode C(1)b .

Cb =

ps⋃
i=1

C(i)b (A.6)

C(i)b
⋂
C(j)b = ∅, (i 6= j). (A.7)

Hence, any two codewords from two sets C(i)b and C(j)b , respectively, have at most one
component in common, due to the codeword weight can only be 0, ρ− 1 or ρ. In addition,
any two codewords in each coset C(i)b must differ in all locations. In other words, if we
arrange all the ps codewords c1, c2, . . . , cps of a coset C(i)b into a ps × ρ array:

Bi =


c1
c2
...

cps

 (A.8)

=


c1,1 c1,2 · · · c1,ρ
c2,1 c2,2 · · · c2,ρ

...
...

. . .
...

cps,1 cps,2 · · · cps,ρ


ps×ρ

, i = 1, 2, . . . , ps, (A.9)

where each row represents a codeword over GF (ps), then all the ps elements of any column
of the array are different.

Now let us map each element of GF (ps) to a binary array. Let z = [z0 z1 · · · zps−1]

denote a binary ps-tuple corresponding to the elements of GF (ps) as

z(0) = [1 0 · · · 0] (A.10)

z
(
αi
)

= [0 · · · 0 1︸︷︷︸
zi+1

0 · · · 0], i = 0, 1, . . . , ps − 2. (A.11)

Then any codeword c = [c1 c2 · · · cρ] ∈ Cb can be represented by a binary ρps-tuple:

z(c) = [z(c1) z(c2) · · · z(cρ)] . (A.12)

Therefore, the array Bi, composed of all ps codewords from C(i)b , can be denoted by a
ps × ρps binary matrix:

Ai = z(Bi) (A.13)
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=


z(c1)
z(c2)

...
z(cps)

 (A.14)

=


z(c1,1) z(c1,2) · · · z(c1,ρ)
z(c2,1) z(c2,2) · · · z(c2,ρ)

...
...

. . .
...

z(cps,1) z(cps,2) · · · z(cps,ρ)


ps×ρps

, i = 1, 2, . . . , ps. (A.15)

Properties of the matrices Ai’s:

I. The row weight of each Ai is ρ. This is because that each block entry z(ci,j) is a
weight-1 length-ρ binary vector.

II. The column weight of each Ai is 1. Since, within each block column, there are no
two distinct blocks z(ci,j) and z(ck,j) that share the non-zero entry. In other words,
Ai consists of a row of ρ ps × ps permutation matrices.

III. Any two rows from two different matrices, Ai and Aj , respectively, have at most one
entry in common, thanks to (A.6)–(A.7) and the weight spectrum of Cb.

Select a positive integer γ such that 1 ≤ γ ≤ ps. Then the following matrix represents
a (γ, ρ) regular LDPC code.

H =


A1

A2
...

Aγ


γps×ρps

. (A.16)

Properties of this regular LDPC code denoted by the parity-check matrix H:

I. Code length is ρps.

II. Variable node degree is dv = γ.

III. Check node degree is dc = ρ.

IV. Design code rate is R = 1− dv/dc = 1− γ/ρ.

V. The corresponding Tanner graph is free of cycles of length 4, since no two rows in H
have more than one non-zero entry in common.

The following example will illustrate the detail construction steps.

Example A.1. Let p = 2 and s = 2. Then the field GF
(
22
)
= Z/2Z =

{
0, 1, α, α2

}
has

ps = 4 elements. We select the monic irreducible polynomial

f(x) = x2 + x+ 1 (A.17)

over Z/2Z, i.e., neither 0 or 1 is a root of f(x) over the binary field GF(2). Therefore we
have

α2 + α+ 1 = 0 (A.18)
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or
α2 = α+ 1. (A.19)

Then
α3 = α · α2 = α (α+ 1) = α2 + α = (α+ 1) + α = 1. (A.20)

Let ρ = 3, so we can construct a shortened RS code [3, 2, 2] Cb. The generator polyno-
mial of this code can be calculated using (A.1).

g(X) =

ρ−2∏
i=1

(
X − αi

)
(A.21)

= X − α (A.22)

= α+X, (A.23)

where g0 = α and g1 = 1. Then the associated generator matrix:

Gb =

[
g0 g1 0
0 g0 g1

]
2×ρ

(A.24)

=

[
α 1 0
0 α 1

]
2×3

. (A.25)

There are (ps)2 = 16 choices of information bits:

k ∈


[0 0] , [0 1] , [0 α] ,

[
0 α2

]
,

[1 0] , [1 1] , [1 α] ,
[
1 α2

]
,

[α 0] , [α 1] , [α α] ,
[
α α2

]
,[

α2 0
]
,
[
α2 1

]
,
[
α2 α

]
,
[
α2 α2

]
 . (A.26)

Hence the codewords can be enumerated

Cb = {kGb} (A.27)

=


[0 0 0] , [0 α 1] ,

[
0 α2 α

]
,
[
0 1 α2

]
,

[α 1 0] ,
[
α α2 1

]
, [α α α] ,

[
α 0 α2

]
,[

α2 α 0
]
,
[
α2 0 1

]
,
[
α2 1 α

]
,
[
α2 α2 α2

]
,[

1 α2 0
]
, [1 1 1] , [1 0 α] ,

[
1 α α2

]
 .(A.28)

We can see the weights are 0, ρ− 1 = 2 or ρ = 3.
To construct the cosets, let the weight-ρ codeword be c = [1 1 1]. Then

C(1)b =
{
βc
∣∣∀β ∈ GF

(
22
)}

(A.29)

=
{
[0 0 0] , [1 1 1] , [α α α] ,

[
α2 α2 α2

]}
(A.30)

C(2)b = [0 α 1] + C(1)b (A.31)

=
{
[0 α 1] ,

[
1 α2 0

]
,
[
α 0 α2

]
,
[
α2 1 α

]}
(A.32)

C(3)b = α [0 α 1] + C(1)b (A.33)

=
{[
0 α2 α

]
,
[
1 α α2

]
, [α 1 0] ,

[
α2 0 1

]}
(A.34)

C(4)b = α2 [0 α 1] + C(1)b (A.35)

=
{[
0 1 α2

]
, [1 0 α] ,

[
α α2 1

]
,
[
α2 α 0

]}
. (A.36)
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First, it can be seen that

Cb =

4⋃
i=1

C(i)b (A.37)

C(i)b
⋂
C(j)b = ∅, (i 6= j). (A.38)

Second, if we rewrite the cosets as a ps × ρ array,

B1 =


0 0 0
1 1 1
α α α
α2 α2 α2

 (A.39)

B2 =


0 α 1
1 α2 0
α 0 α2

α2 1 α

 (A.40)

B3 =


0 α2 α
1 α α2

α 1 0
α2 0 1

 (A.41)

B4 =


0 1 α2

1 0 α
α α2 1
α2 α 0

 , (A.42)

where each row represents a codeword. Note all the ps elements of any column of the array
are different.

Let us map the field elements to binary arrays:

z(0) = [1 0 0 0] (A.43)

z (1) = [0 1 0 0] (A.44)

z (α) = [0 0 1 0] (A.45)

z
(
α2
)

= [0 0 0 1] . (A.46)

Therefore,

A1 = z(B1) (A.47)

=


1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1


4×12

(A.48)

A2 = z(B2) (A.49)

=


1 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 0 0 1 0


4×12

(A.50)
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A3 = z(B3) (A.51)

=


1 0 0 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0


4×12

(A.52)

A4 = z(B4) (A.53)

=


1 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 0 0 0


4×12

. (A.54)

Suppose γ = 2, then a (2, 3) regular LDPC code can be constructed as

H =

[
A1

A2

]
(A.55)

=



1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1


8×12

. (A.56)

It is clear that each block is a permutation matrix and there are no four non-zero entries
located at the four corners of a rectangle, thus it is cycle-4 free. This also concludes this
example.

A.1.2 IEEE 802.3an LDPC Code

Regarding the LDPC code used in the IEEE802.3an standard, the parameters are selected
as p = 2, s = 6 and ρ = 32. A shortened RS code [32, 2, 31] was constructed over
GF

(
26
)
= Z/6Z =

{
0, 1, α, α2, . . . , α62

}
. The generator polynomial of this code is

g(X) =
30∏
i=1

(
X − αi

)
(A.57)

= g0 + g1X + g2X
2 + · · ·+ g29X

29 +X30, (A.58)

which gives the associated generator matrix as

Gb =

[
g0 g1 · · · g29 1 0
0 g0 g1 · · · g29 1

]
2×32

. (A.59)

There are
(
26
)2

= 4, 096 codewords in Cb with weights 0, 31 and 32. It then can be

partitioned into 26 = 64 cosets, C(1)b , C(2)b , . . . , C(64)b , each of which has 64 codewords of
Cb. Thus the dimensions of the matrices Bi, i = 1, 2, . . . , 64, over GF

(
26
)

are 64 × 32.
After rewriting the field elements into length-32 binary arrays, we obtain the candidate
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matrices Ai = z (Bi) , i = 1, 2, . . . , 64, with 64× 2048 entries, for constructing the LDPC
code. Finally, we select γ = 6 of Ai’s to be the rows of the parity-check matrix H384×2048.

The specifications of the code are listed below.

• Regularity: dv = 6, dc = 32.

• The number of variable nodes or code length: N = 2048.

• The number of check nodes: 384.

• Information bits: k = 1723.

• Design code rate: 1− dv/dc = 0.8125.

• Actual code rate: R = k/N ≈ 0.8413.

• Minimum distance: dmin ≥ dv + 1 and even, so dmin ≥ 8 [21].

• 4-cycle free: girth g = 6.

• Parity-check matrix H384×2048 possesses a block structure 2:

H =



σ1,1 σ1,2 σ1,3 · · · σ1,32

σ2,1 σ2,2 σ2,3 · · · σ2,32

σ3,1 σ3,2 σ3,3 · · · σ3,32

σ4,1 σ4,2 σ4,3 · · · σ4,32

σ5,1 σ5,2 σ5,3 · · · σ5,32

σ6,1 σ6,2 σ6,3 · · · σ6,32


384×2048

, (A.60)

where each σi,j is a 64× 64 permutation matrix.

A.2 Absorption Sets

We have identified the existence of the first few absorption sets of the IEEE 802.3an LDPC
code and are able to enumerate the smaller ones. The results are listed in Table A.1, which
is the same as Table 3.2 in Chapter 3.

Recall by Definition 3.3 that an ordered pair (a, b) denotes an absorption set, where a
is size of the set and b is the number of unsatisfied check nodes attached to the set.

It is believed that the “smaller” the absorption set, the more severe the effect on the
error floor phenomenon. Thus our target is to find the minimal absorption sets in terms of
a, b and b/(6a).

Since dv = 6, then a ≥ 5 by the definition of absorption sets and this 802.3an LDPC
code is 4-cycle free. In other words, if a ≤ 4, it is impossible to connect a nodes with at
least 4a edges without creating any cycles of length 4.

Now let us start with a = 5 to show every number in Table A.1 is true in the following
subsections.

2In this write-up we use the H matrix from [21] rather than the one listed in the IEEE 802.3 standard, since
it has a very symmetric structure.
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Table A.1: The first few absorption sets of the IEEE 802.3an LDPC code.
a b Existence Multiplicity b

adv
3

< 5 No
5 10 No

6

6

No
8
10
12

7

0

No

2
4
6
8
10
12 Yes 65, 472 0.2857
14 Yes 14, 720 0.3333

8

0

No
2
4
6
8 Yes 14, 272 0.1667
10 No
12 Yes 44, 416 0.2500
14 Yes 88, 896 0.2917
16 Yes 661, 824 0.3333

9

0

No

2
4
6
8
10
12 Yes ? 0.2222
14 Yes (at least from (10, 10)) ? 0.2593
16

Yes ?
0.2963

18 0.3333

10

0

No
2
4
6
8 ?
10 Yes > 192? 0.1667
12

Yes ?

0.2000
14 0.2333
16 0.2667
18 0.3000
20 0.3333
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A.2.1 a = 5

Each variable node in such set is able to connect the set at most 4 times without generating
any 4-cycle. Clearly there is only one connecting topology as shown in Figure A.1, which
is identical to Figure 3.5.
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(a) Check nodes shown.
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(b) Check nodes hidden.

Figure A.1: The only possible topology of (5, 10) absorption sets.

Theorem A.1. The number of size-5 absorption sets is 0.

Proof. Search the H matrix by applying the topology, plus making use of some of the
properties listed in [23] for array-based LDPC codes. Algorithm 1 was developed and no
(5, 10) set was found.

Algorithm 1 can be used to either determine the existence of absorption sets, or to enu-
merate all (5, 10) sets. However, we note that it may output duplicates due to the symmetric
structure of the absorption sets.

A.2.2 a = 6

With more nodes, hence more edges, involved, the graphical combinations of possible ab-
sorption sets grow dramatically. Let us develop a couple of notations to help prove the
existence of absorption sets in an organized fashion.

Following Definition 3.5, the degree of each vertex v in the topology graph with check
nodes hidden, Deg(v) , must satisfy the following constraints:

Definition A.1. Let an unordered array [Deg(vi) : i = 1, 2, . . . , a] denote a class of (a, b)

absorption sets. Clearly Deg(vi) ∈ {4, 5, 6} and
a∑
i=1

Deg(vi) = 6a− b.

We start with the smallest possible b since we would like to find the minimal absorption
sets. In addition, because there are only six nodes, then Deg(v) ≤ 5 for any v in such sets
to avoid 4-cycles.

1. b = 6: graphically, only one class, [5, 5, 5, 5, 5, 5], exists and there is only one possi-
ble topology, which is very symmetric as shown in Figure A.2(a). By removing any
node from Figure A.2(a), we will get [4, 4, 4, 4, 4], exactly the one in Figure A.1(b).

2. b = 8: there is only one class [5, 5, 5, 5, 4, 4] as shown in Figure A.2(b).

Removing either degree-4 node will reduce to [4, 4, 4, 4, 4], Figure A.1(b), as well,
since there is no connection between the two degree-4 nodes.

106



3. b = 10: there exists only one class [5, 5, 4, 4, 4, 4] and one possible topology shown
in Figure A.2(c).

4. b = 12: there is only one class [4, 4, 4, 4, 4, 4] and one possible topology shown in
Figure A.2(d).
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(a) (6, 6)
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(b) (6, 8)
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(c) (6, 10)
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(d) (6, 12)

Figure A.2: Possible topologies of (6, b) absorption sets.

Hence only Figures A.2(c)–A.2(d) need to be searched against H.

Theorem A.2. The number of size-6 sets is 0.

Proof. Firstly, (6, 6) and (6, 8) absorption sets do not exist. Otherwise it is contradictory to
Theorem A.1. Then, by searching the H matrix via inputting the topologies Figures A.2(c)
and A.2(d) into an Algorithm 1-type of searcher, no such sets are found.

A.2.3 a = 7

A.2.3.1 b < 12

Lemma A.3. The number of (7, b) absorption sets with b < 12 is zero.

Proof. We apply Definition A.1 and the pigeonhole principle to prove this.

1. b = 0. (7, 0) absorption set is a weight-7 codeword. Since dmin ≥ 8, b 6= 0 when
a = 7.

2. b = 2. By the constraints in Definition A.1, there are two classes:

(a) [6, 6, 6, 6, 6, 5, 5]: by removing either degree-5 node, it will give us a (6, 6)

absorption set which does not exist by Theorem A.2. Hence this class of (7, 2)
absorption set does not exist, either.
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(b) [6, 6, 6, 6, 6, 6, 4]: this setting graphically cannot exist, because the group of
degree-6 nodes emanate out at least six edges which are impossible to be all
connected to one degree-4 node.

3. b = 4. By the constraints in Definition A.1, there are three classes:

(a) [6, 6, 6, 5, 5, 5, 5]: removing any degree-5 node will give us a (6, 8) absorption
set.

(b) [6, 6, 6, 6, 5, 5, 4]: removing the degree-4 node will get us a (6, 6) absorption
set.

(c) [6, 6, 6, 6, 6, 4, 4]: this is infeasible since the group of five degree-6 nodes re-
quires ten edges coming out of the couple of degree-4 nodes.

4. b = 6. By the constraints in Definition A.1, there are four classes:

(a) [6, 5, 5, 5, 5, 5, 5]: removing any degree-5 node will get us a (6, 10) absorption
set.

(b) [6, 6, 5, 5, 5, 5, 4]: removing the degree-4 node will get us a (6, 8) absorption
set.

(c) [6, 6, 6, 5, 5, 4, 4]: each of the degree-5 nodes and each of the degree-6 nodes
needs at least one and two edges coming out of the two degree-4 nodes, respec-
tively. That makes eight. So there is no connection between the degree-4 nodes.
Thus removing either of them will get us a (6, 8) absorption set.

(d) [6, 6, 6, 6, 4, 4, 4]: each of the degree-6 nodes needs three edges coming out of
the two degree-4 nodes. That makes twelve. So there is no connection among
the three degree-4 nodes. Thus removing any of them will get us a (6, 8) ab-
sorption set.

5. b = 8. By the constraints in Definition A.1, there are four classes:

(a) [5, 5, 5, 5, 5, 5, 4]: removing the degree-4 node will get us a (6, 10) absorption
set.

(b) [6, 5, 5, 5, 5, 4, 4]: let us study the intrinsic connections between the two degree-
4 nodes:

 

�������

��������

,,,,,,,  

,,,,,,,

66666666

�������

(a)

 

�������

,,,,,,,  

,,,,,,,

�������

(b)

Figure A.3: Possible intrinsic connections between two degree-4 nodes.

i. Not connected as shown in Figure A.3(a). Removing either degree-4 node
will reduce to a (6, 10) absorption set.

ii. Connected as shown in Figure A.3(b). We consider the connections be-
tween the two degree-4 nodes and the other five nodes in the set. The other
five nodes need at least six edges coming out of the two degree-4 nodes, so

108



there is no degree-5 node connected to both degree-4 nodes. Thus remov-
ing both of them generates a (5, 10) absorption set.

(c) [6, 6, 5, 5, 4, 4, 4]: the two degree-5 nodes and the two degree-6 nodes need at
least ten edges coming from the three degree-4 nodes. Hence there should be at
most one connection among the group of degree-4 nodes:
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(d)

Figure A.4: Possible intrinsic connections among three nodes.

i. No connection as shown in Figure A.4(a). Removing any degree-4 node
will reduce to a (6, 10) absorption set.

ii. One connection as shown in Figure A.4(b). Removing the topmost degree-
4 node will reduce to a (6, 10) absorption set.

(d) [6, 6, 6, 4, 4, 4, 4]: the three degree-6 nodes are all interconnected and, hence,
need exactly twelve edges coming from the four degree-4 nodes. This leaves
Figure A.5(d) the only feasible case. Then removing either the top or the bottom
pair of degree-4 nodes in Figure A.5(d) will reduce it to a (5, 10) absorption set.
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Figure A.5: Possible intrinsic connections among four nodes.

6. b = 10. By the constraints in Definition A.1, there are three classes:

(a) [5, 5, 5, 5, 4, 4, 4]: the four degree-5 nodes need at least eight edges coming from
the three degree-4 nodes. Hence there should be no more than two connections
among the group of degree-4 nodes:

i. No connection as shown in Figure A.4(a). Removing any degree-4 node
will reduce to a (6, 12) absorption set.

ii. One connection as shown in Figure A.4(b). Removing the topmost degree-
4 node will reduce to a (6, 12) absorption set.

iii. Two connections as shown in Figure A.4(c). No node can be removed
to get another absorption set. It is straightforward that there is only one
possible topology to satisfy this as shown in Figure A.6(a). Therefore we
have to go check its existence against the H matrix.

(b) [6, 5, 5, 4, 4, 4, 4]: the two degree-5 nodes and the degree-6 node need twelve or
ten edges emanating from the four degree-4 nodes. Hence there should be two
or three connections among the group of degree-4 nodes, respectively.
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i. Two connections: there are two cases:
A. Figure A.5(c) is infeasible since the bottom-right node cannot achieve

degree 4.
B. It is straightforward that there is only one possible topology to satisfy

Figure A.5(d) as shown in Figure A.6(b).
ii. Three connections: there are three cases:

A. We claim that Figure A.5(e) is infeasible since the bottom-right node
can only have three connections at most.

B. There is only one possible topology to satisfy Figure A.5(f) as shown
in Figure A.6(c).

C. There is only one possible topology to satisfy Figure A.5(g) as shown
in Figure A.6(d).

(c) [6, 6, 4, 4, 4, 4, 4]: there is only one possible topology in this class as shown in
Figure A.6(e).
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(e)

Figure A.6: The possible topologies of (7, 10) absorption sets that cannot be ruled out
without searching against the parity-check matrix H.

Note that since a is large enough, the neighboring check nodes are able to be connected
to the absorption set four times rather than only two, as shown in Figure A.7, which also
falls in the [6, 5, 5, 4, 4, 4, 4] class.

After checking against the H matrix, the (7, 10) absorption sets listed in Sections 6(a)iii,
6(b)iB, 6(b)iiB, 6(b)iiC, 6c and above, corresponding to topologies shown in Figure A.6 and
Figure A.7, do not exist.
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Figure A.7: One check node connecting to a (7, 10) absorption set four times.
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Figure A.8: Topology of the (7, 12) absorption set.

A.2.3.2 b = 12

Lemma A.4. The (7, 12) absorption set exists and there are 65, 472 of them.

Proof. The existence can be seen, at least, as a reduction from (8, 8) sets, which will be
studied in Section A.2.4.2. As a matter of fact, 179, 648 such sets have been enumerated
and all of them share the topology shown in Figure A.8, which is a reduction from the
topology of the (8, 8) absorption set shown in Section A.2.4.2.

Even though this topology can be obtained by removing one node from the one of the
(8, 8) absorption set, apparently not all (7, 14) sets can be obtained that way. We will see
that there are 14, 272 (8, 8) sets and they can generate only 14272 × 8 = 114176 (7, 12)

absorption sets (no duplicates). Hence there are 179648−114176 = 65472 (7, 12) sets that
are not contained in the (8, 8) ones.

Note that the extrinsic degree is large now. Recall that our priority is to identify the
minimal absorption sets. We will see soon in next section that there are smaller b’s.

A.2.3.3 b = 14

Lemma A.5. There exist 14, 720 (7, 14) absorption sets which share two topologies..

Proof. There are three candidate topologies. Let us show how the first two are derived. The
third one will be presented at the end of the proof.

Evidently there is only one class: [4, 4, 4, 4, 4, 4, 4]. We start with Figure A.9.
There exist two cases.
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Figure A.9: Step 1 in constructing a (7, 14) absorption set.
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Figure A.10: Step 2 in constructing a (7, 14) absorption set: Case I.

1. Case I: the bottom two nodes are not connected. Then we have Figure A.10.

By connecting the remaining nodes in the only possible way, we achieve the first
possible topology as shown in Figure A.11.
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Figure A.11: Case I of (7, 14) absorption sets.

2. In Case II, the bottom two nodes in Figure A.9 are connected as shown in Figure A.12.

Then the the other bottom node has two options.

(a) Case II.A as shown in Figure A.13.
By finishing connecting the remain nodes in the only feasible way, Figure A.14
shows another sketch.

(b) Case II.B of Figure A.12 is shown in Figure A.15.
Finishing up the connections, we get another topology in Figure A.16
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Figure A.12: Step 2 in constructing a (7, 14) absorption set: Case II.
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Figure A.13: Step 3 in constructing a (7, 14) absorption set: Case II.A.
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Figure A.14: Case II.A of (7, 14) absorption sets.
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Figure A.15: Step 3 in constructing a (7, 14) absorption set: Case II.B.
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Figure A.16: Case II.B of (7, 14) absorption sets.

By reorganizing the nodes, it turns out that the sketches under Case I and Case II.A
are identical. In other words, both Figure A.11 and Figure A.14 can be arranged to the
appearance shown in Figure A.17(a). Figure A.16 can also be arranged to a nicer equivalent
looking as Figure A.17(b).
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(a) Case I or Case II.A.
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(b) Case II.B.

Figure A.17: Two out of three possible topologies of (7, 14) absorption sets.

Similar to Figure A.7, check nodes can be connected to the set four times as shown in
Figure A.18. By searching against the H, such configuration does not exist.

By searching against the H matrix, there are 2, 304 (7, 14) sets that share the connec-
tivity of Figure A.17(a), 12, 416 of Figure A.17(b) and none of Figure A.18. The average
multiplicity of each variable node appeared in such sets is 14720 × 7 ÷ 2048 = 50.3125.
Due to the block structure of the H matrix, certain group of variable nodes do share the
same multiplicity, as listed in Table A.2.

Combining Lemmas A.3, A.4 and A.5, we obtain

Theorem A.6. The number of (7, b) absorption sets with b < 12 is 0, while both (7, 10)
and (7, 14) sets exist.

A.2.4 a = 8

If a = 8, then b could only be even numbers.
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Figure A.18: The last of the three possible topologies of (7, 14) absorption sets where one
check node is connected to the set four times.

A.2.4.1 b < 8

Lemma A.7. For b < 8, there exits no (8, b) absorption set.

Proof. We apply Definition A.1 and the pigeonhole principle to prove this.

1. b = 0. It will be a class of [6, 6, 6, 6, 6, 6, 6, 6] absorption sets. We obtain the perfect
symmetric Figure A.19 again as Figure A.1(b) or Figure A.2(a).
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Figure A.19: Only possible topology of (8, 0) absorption set.

Removing any node will reduce it to a (7, 6) absorption set.

2. b = 2. By the constraints in Definition A.1, there are two classes:

(a) [6, 6, 6, 6, 6, 6, 5, 5]: removing either degree-5 node will get us a (7, 6) absorp-
tion set.

(b) [6, 6, 6, 6, 6, 6, 6, 4]: removing the degree-4 node will get us a (7, 4) absorption
set.

3. b = 4. By the constraints in Definition A.1, there are three classes:

(a) [6, 6, 6, 6, 5, 5, 5, 5]: removing any degree-5 node will get us a (7, 8) absorption
set.

(b) [6, 6, 6, 6, 6, 5, 5, 4]: removing the degree-4 node will get us a (7, 6) absorption
set.
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Table A.2: The multiplicity of each variable node in (7, 14) absorption sets.
Group Variable Node Multiplicity Group Variable Nodes Multiplicity

1 0—63 49 17 1024—1087 42

2 64—127 64 18 1088—1151 41

3 128—191 61 19 1152—1215 48

4 192—255 69 20 1216—1279 59

5 256—319 33 21 1280—1343 59

6 320—383 71 22 1344—1407 49

7 384—447 53 23 1408—1471 65

8 448—511 49 24 1472—1535 41

9 512—575 49 25 1536—1599 42

10 576—639 37 26 1600—1663 25

11 640—703 44 27 1664—1727 30

12 704—767 50 28 1728—1791 58

13 768—831 54 29 1792—1855 44

14 832—895 49 30 1856—1919 53

15 896—959 67 31 1920—1983 56

16 960—1023 57 32 1984—2047 42

(c) [6, 6, 6, 6, 6, 6, 4, 4]: removing both degree-4 nodes will get us a (6, 10) or (6, 8)
absorption set, depends on if the degree-4 nodes are incident or not.

4. b = 6. By the constraints in Definition A.1, there are four classes:

(a) [6, 6, 5, 5, 5, 5, 5, 5]: removing any degree-5 node will get us a (7, 10) absorp-
tion set.

(b) [6, 6, 6, 5, 5, 5, 5, 4]: removing the degree-4 node will get us a (7, 8) absorption
set.

(c) [6, 6, 6, 6, 5, 5, 4, 4]: let us study the intrinsic connections between the two degree-
4 nodes:

i. Not connected as shown in Figure A.3(a). Removing either degree-4 node
will reduce it to a (7, 8) absorption set.

ii. Connected as shown in Figure A.3(b). We consider the connections be-
tween the two degree-4 nodes and the other six nodes in the set. There
are six edges coming out of the two degree-4 nodes and at least four of
the six edges must go to the four degree-6 nodes, respectively. So at most
two edges coming out of the two degree-4 nodes can be connected the two
degree-5 nodes.
A. If either of the two degree-5 nodes is connected to the two degree-4

nodes at most once, then removing both degree-4 nodes will get us a
(6, 8) absorption set.

B. If one degree-5 node is connected to both degree-4 nodes, then remov-
ing the other degree-5 node will get us a (7, 10) absorption set.

(d) [6, 6, 6, 6, 6, 4, 4, 4]: let us study the intrinsic connections between the three
degree-4 nodes:
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i. No connection as shown in Figure A.4(a). Removing any degree-4 node
will reduce it to a (7, 8) absorption set.

ii. One connection as shown in Figure A.4(b). Removing the topmost degree-
4 node will reduce it to a (7, 8) absorption set.

iii. More than one connections as shown in Figure A.4(c) and Figure A.4(d).
There are at most eight edges coming out of these three degree-4 nodes.
However, there are five degree-6 nodes, which require ten edges from the
three degree-4 nodes. Thus they will not match each other. These are not
feasible connections.

We have exhausted all possibilities above, considering the satisfied check nodes are
connected to the absorption set only twice. In Figure A.20, we present the topologies when
a check node is connected four times to an absorption set.

�

���������

~~~~~~~~~~~~

*********

@@@@@@@@@@@@

 

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''

����������������

 

'''''''''

����������

|||||||||||||

qqqqqqqqqqqqqqqqqq �  

"""""""""

77777777777

����������

xxxxxxxxxxxxxx
�  

FFFFFFFFFFFFFF

2222222222

���������

�����������
�  

MMMMMMMMMMMMMMMMMM

BBBBBBBBBBBBB

----------

���������

�

@@@@@@@@@@@@

~~~~~~~~~~~~

(a) (8, 4).
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(b) (8, 6) Type I.
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(c) (8, 6) Type II.

Figure A.20: One check node connecting to (8, 4) and (8, 6) absorption sets four times.

Figure A.20(a) represents an (8, 4) set of class [6, 6, 6, 6, 5, 5, 5, 5]. Removing any
degree-5 node will reduce it to a (7, 10) absorption set. Figure A.20(b) denotes an (8, 6) set
of class [6, 6, 5, 5, 5, 5, 5, 5]. Removing either degree-5 node in the bottom row will reduce it
to a (7, 10) absorption set. Figure A.20(a) represents an (8, 4) set of class [6, 6, 6, 5, 5, 5, 5, 4].
Removing the degree-4 node will reduce it to a (7, 10) absorption set.

Thus the lemma follows.

Corollary A.8. The minimum distance is lower bounded by 10.

Proof. No (8, 0) absorption set implies that there is no weight-8 codeword, as seen in Fig-
ure A.19. Thus, dmin > 8, and has to be even [21]. Therefore dmin ≥ 10.

A.2.4.2 b = 8

Lemma A.9. There exits no (8, 8) absorption set that contains any degree-6 variable node.
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Proof. By the constraints in Definition A.1, we have the following four classes, each of
which contains at least one degree-4 variable node.

1. [6, 5, 5, 5, 5, 5, 5, 4]: removing the degree-4 node will reduce to a (7, 10) absorption
set.

2. [6, 6, 5, 5, 5, 5, 4, 4]: let us study the intrinsic connections between the two degree-4
nodes:

(a) Not connected as shown in Figure A.3(a). Removing either degree-4 node will
reduce to a (7, 10) absorption set.

(b) Connected as shown in Figure A.3(b). We consider the connections between
the two degree-4 nodes and the other six nodes in the set. There are six edges
coming out of the two degree-4 nodes and at least two and at most four of the
six edges must go to the two degree-6 nodes, respectively. So at most four and
at least two edges coming out of the two degree-4 nodes can be connected the
four degree-5 nodes.

i. Two edges between the group of degree-4 nodes and the group of degree-6
nodes are shown in Figure A.23(a). Note that under the conditions in the
these two cases, the two degree-6 nodes are connected to each other and
either of them has to be connected to all the degree-5 nodes. In addition,
there are four edges coming from the degree-4 nodes to the four degree-5
nodes. Thus,
A. if there is no degree-5 node sharing the two degree-4 nodes, then re-

moving the two degree-4 nodes will reduce it to a (6, 10) absorption
set.

B. if there is one and only one degree-5 node sharing the two degree-4
nodes, then there exist two topologies as shown in Figure A.21.
Removing the two degree-4 nodes and that degree-5 node, all in blue in
Figure A.21, will reduce them to (5, 10) absorption sets, respectively.

ii. Three edges between the group of degree-4 nodes and the group of degree-
6 nodes are shown in Figure A.23(b). Note that under the conditions in
the above two cases, the two degree-6 nodes are connected to each other
and the bottom-right degree-6 node has to be connected to all the degree-5
nodes. In addition, there are three edges coming from the degree-4 nodes
to the four degree-5 nodes. Thus,
A. if there is no degree-5 node sharing the two degree-4 nodes, then re-

moving the two degree-4 nodes will reduce it to a (6, 10) absorption
set.

B. if there is one and at most one degree-5 node sharing the two degree-4
nodes, then the topology can be obtained as shown in Figure A.22(a).
Removing the two degree-4 nodes and that degree-5 node will reduce
it to a (5, 10) absorption set.

iii. Four edges between the group of degree-4 nodes and the group of degree-6
nodes are shown in Figure A.23(c).
A. if there is no degree-5 node sharing the two degree-4 nodes, then re-

moving the two degree-4 nodes will reduce it to a (6, 10) absorption
set.
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(b)

Figure A.21: Two possible topologies of (8, 8) absorption set with degree-6 variable nodes.

B. if there is one and at most one degree-5 node sharing the two degree-4
nodes, the topology is shown in Figure A.22(b).
Removing the two degree-4 nodes and that degree-5 node will reduce
it to a (5, 10) absorption set.

3. [6, 6, 6, 5, 5, 4, 4, 4]: The intrinsic connections among the three degree-4 nodes:

(a) No connection as shown in Figure A.4(a). Removing any degree-4 node will
reduce it to a (7, 10) absorption set.

(b) One connection as shown in Figure A.4(b). Removing the topmost degree-4
node will reduce it to a (7, 10) absorption set.

(c) Two connections as shown in Figure A.4(c). Now, there are eight edges coming
out the group of degree-4 nodes. However, each of the two degree-5 nodes and
each of the three degree-6 nodes needs one and two connections from the group
of degree-4 nodes, respectively. That makes eight. Thus, removing the three
degree-4 nodes will reduce it to a (5, 10) absorption set.

(d) Three connections as shown in Figure A.4(d). There are only six edges coming
out of these three degree-4 nodes. And they will not match the group of degree-
4 nodes and the group of the other five nodes remained in the set.

4. [6, 6, 6, 6, 4, 4, 4, 4]: The group of degree-6 nodes need at least twelve edges from the
group of degree-4 nodes. So

(a) if there is no connection among the four degree-4 nodes as shown in Fig-
ure A.5(a), then removing any degree-4 node will reduce it to a (7, 10) ab-
sorption set.
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Figure A.22: Another two possible topologies of (8, 8) absorption set with degree-6 variable
nodes.
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Figure A.23: Possible intrinsic connections between two groups of variable nodes which
are grouped by degrees. The top row represents the degree-4 nodes, whereas the bottom is
degree-6.
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(b) if there is only one connection among the four degree-4 nodes as shown in
Figure A.5(b), then removing either topmost degree-4 node will reduce it to a
(7, 10) absorption set.

(c) if there are two connections among the four degree-4 nodes, we have two cases:

i. Removing the bottom-right degree-4 node in Figure A.5(c) will reduce it
to a (7, 10) absorption set.

ii. Removing either the top or the bottom couple of degree-4 nodes in Fig-
ure A.5(d) will reduce it to a (6, 10) absorption set.

(d) if there are more than two connections among the four degree-4 nodes, then
there will be less than twelve edges going out from the group of degree-4 nodes
to the group of degree-6 nodes.

Once again, for an absorption set with this many members, a satisfied check node is
able to be incident to more than two variable nodes. The possible connectivities are shown
in Figure A.24 and Figure A.25, which can be obtained by removing edges from the ones
shown in Figure A.20.

Removing the degree-4 node, the bottom-left degree-4 node or the bottom-right degree-
4 node in Figures A.24(a), A.24(c) or A.24(e), respectively, reduces it to a (7, 10) absorption
set, while removing the two degree-4 nodes in Figure A.24(f) reduces it to a (6, 10) absorp-
tion set. By checking against the H matrix, the ones shown in Figures A.24(b), A.24(d) and
A.25 do not exist.

Note that Figures A.24(b) and A.25 are in the class [5, 5, 5, 5, 5, 5, 5, 5]. We claim that,
graphically, there exist five possible topologies under this class of the (8, 8) sets. Let us
find the other three by restricting that a satisfied check node can only be connected to the
set twice.

We start with node ¶ as shown in Figure A.26.
Next, we discuss the connection between º and » in the following two cases.

1. Case I: º and » are not connected. Then both of them have to be connected to the
remaining five nodes, as shown in Figure A.27. After connecting the remaining five
nodes in the only possible way, we obtain Figure A.28. Reorganize this figure into a
symmetric form as Figure A.35(a).

2. Case I: º and » are connected. Then node » has to connect four of the nodes ·, ¸,
¹, ¼ and ½. Without loss of generality, assume Figure A.29 is the case.

Now regarding node º, there are two connecting choices for it.

(a) Case II.A: If º is not connected to ·, then it has to connect ¶, ¹, ¼ and ½, as
shown in Figure A.30.
Then node · has only one connecting choice as shown in FigureA.31.
By connecting the remaining nodes, we obtain another possible topology for an
(8, 8) absorption set as shown in FigureA.35(b).

(b) Case II.B: if º is connected to ·, then without loss of generality assume it is
connected to ¸, ¹ and ¼, as shown in Figure A.32.
Node · has two choices:

121



�

���������

~~~~~~~~~~~~

*********

@@@@@@@@@@@@

 

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''

����������������

 

'''''''''

����������

|||||||||||||

qqqqqqqqqqqqqqqqqq  

"""""""""

77777777777

����������

xxxxxxxxxxxxxx
�  

FFFFFFFFFFFFFF

2222222222

���������

�����������
�  

MMMMMMMMMMMMMMMMMM

BBBBBBBBBBBBB

----------

���������

(a)

�

���������

~~~~~~~~~~~~

*********

@@@@@@@@@@@@

 

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''

����������������

 

'''''''''

����������

|||||||||||||

qqqqqqqqqqqqqqqqqq �  

"""""""""

77777777777

����������

xxxxxxxxxxxxxx  

FFFFFFFFFFFFFF

2222222222

���������

�����������
�  

MMMMMMMMMMMMMMMMMM

BBBBBBBBBBBBB

----------

���������

(b)

�

���������

~~~~~~~~~~~~

*********

@@@@@@@@@@@@

 

��������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''

���������������

 

����������

|||||||||||||

qqqqqqqqqqqqqqqqqq �  

"""""""""

77777777777

����������

xxxxxxxxxxxxxx
�  

FFFFFFFFFFFFFF

2222222222

���������

�����������
�  

MMMMMMMMMMMMMMMMMM

BBBBBBBBBBBBB

----------

���������

(c)

�

���������

~~~~~~~~~~~~

*********

@@@@@@@@@@@@

 

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''

� ��������������

 

'''''''''

����������

|||||||||||||

qqqqqqqqqqqqqqqqqq �  

"""""""""

����������

xxxxxxxxxxxxxx
�  

FFFFFFFFFFFFFF

2222222222

���������

�����������
�  

MMMMMMMMMMMMMMMMMM

BBBBBBBBBBBBB

----------

���������

(d)

�

���������

~~~~~~~~~~~~

*********

@@@@@@@@@@@@

 

��������

���������

""""""""  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

��� �����������

 

'''''''''

����������

|||||||||||||

qqqqqqqqqqqqqqqqqq �  

"""""""""

88888888888

����������

xxxxxxxxxxxxxx
�  

FFFFFFFFFFFFFF

2222222222

���������

�����������
�  

BBBBBBBBBBBBB

----------

�

@@@@@@@@@@@@

~~~~~~~~~~~~

(e)

�

���������

~~~~~~~~~~~~

*********

@@@@@@@@@@@@

 

��������

���������

""""""""  

��������

���������

""""""""

'''''''''  

��������

���������

""""""""

'''''''''  

��������

""""""""

'''''''''

��� �������� ���

 

'''''''''

����������

|||||||||||||
�  

"""""""""

88888888888

����������

xxxxxxxxxxxxxx
�  

FFFFFFFFFFFFFF

2222222222

���������

�����������
�  

BBBBBBBBBBBBB

----------

���������

�

@@@@@@@@@@@@

~~~~~~~~~~~~

(f)

Figure A.24: One check node connecting to (8, 8) sets four times.
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Figure A.25: Two check nodes connecting to (8, 8) set four times.
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Figure A.26: Step 1 in constructing an (8, 8) absorption set.
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Figure A.27: Step 2 in constructing an (8, 8) absorption set: Case I.
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Figure A.28: One topology of an (8, 8) absorption set: Case I.
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Figure A.29: Step 2 in constructing an (8, 8) absorption set: Case II.
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Figure A.30: Step 3 in constructing an (8, 8) absorption set: Case II.A.
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Figure A.31: Step 4 in constructing an (8, 8) absorption set: Case II.A.
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Figure A.32: Step 3 in constructing an (8, 8) absorption set: Case II.B.
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i. CaseII.B.1: if · is connected to ½, without loss of generality, assume it is
connected to ¸ and ¹, as shown in Figure A.33.
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Figure A.33: Step 4 in constructing an (8, 8) absorption set: Case II.B.1.

By connecting the remaining nodes, we obtain Figure A.35(c).
ii. CaseII.B.2: if · is not connected to ½, we must have the connectivity as

shown in Figure A.34.
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Figure A.34: Step 4 in constructing an (8, 8) absorption set: Case II.B.2.

After connecting the remaining node, this gives us FigureA.35(a) again.

So eventually we obtain the other three possible (8, 8) topologies in Figure A.35.
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Figure A.35: Another three out of five possible topologies of (8, 8) absorption sets.

Theorem A.10. By checking the H matrix, the number of (8, 8) absorption sets is 14, 272
and they all share one topology shown in Figure A.35(b).

The ratio b
6a = 1

6 . Next possible absorption set with this ratio would be (10, 10). In
addition, the dominant eigenvalue of the VC matrix is 4 and the corresponding eigenvector
is an all-1 vector.
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In addition, from Figure A.35(b), we can get (7, 12) absorption sets, by removing one
node.

A.2.4.3 b = 10

The conductivities can be divided into four classes:

1. [6, 6, 6, 4, 4, 4, 4, 4];

2. [6, 6, 5, 5, 4, 4, 4, 4];

3. [6, 5, 5, 5, 5, 4, 4, 4];

4. [5, 5, 5, 5, 5, 5, 4, 4].

By searching the H matrix, none of them exist.
Note that enumerating all possible topologies like what we did in previous sections does

not interest us any longer, since we have found the dominant (8, 8) absorption set. Besides,
the enumeration process gets extremely complicated as b and a grow.

A.2.4.4 b = 12

We simply skip topology construction and list the existence and multiplicity of the possible
three classes below:

1. [6, 6, 4, 4, 4, 4, 4, 4]: 11, 008 such sets.

2. [6, 5, 5, 4, 4, 4, 4, 4]: none exists.

3. [5, 5, 5, 5, 4, 4, 4, 4]: 33, 408 under this class.

So there are 11, 008 + 33, 408 = 44, 416 (8, 12) absorption sets in total. Some topologies
are shown in Figure A.36.
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Figure A.36: Some topologies of (8, 12) absorption sets.

A.2.4.5 b = 14

The (8, 14) absorption set does exist. There are two classes and all (8, 14) sets fall in the
second class:

1. [6, 4, 4, 4, 4, 4, 4, 4]: none;

2. [5, 5, 4, 4, 4, 4, 4, 4]: there exist 88,896 sets of this class.
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A.2.4.6 b = 16

There is only one feasible class [4, 4, 4, 4, 4, 4, 4, 4]. We start with the sketch shown in
Figure A.37.

 

qqqqqqqqqqqq

�������

;;;;;;;

MMMMMMMMMMMM

    

   

Figure A.37: Step 1 in constructing an (8, 16) absorption set.

Dependent on the connectivity among the bottom three nodes, we have four cases.

1. Case I: there is no connection among them. Then there is only one way to connect all
the nodes as shown in Figure A.38.
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Figure A.38: First topology of (8, 16) absorption sets: Case I.

Its equivalent symmetric appearances are shown in Figure A.39.

2. Case II: there is only one connection among the three bottom nodes which implies
that there is only one connection among the middle level four nodes, as shown in
Figure A.40.

Next, we connect the bottom-right node as shown in Figure A.41.

Then the rest can be connected as Figure A.42.

It has some symmetric forms, as well, as shown in Figure A.43.

3. Case III: there are only two connections among the three bottom nodes as shown in
Figure A.44.

In this case, it implies that there are only two connections among the middle level
four nodes, which gives us two options.

(a) Case III.A: the connection shown in Figure A.45.
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(d)

Figure A.39: Equivalent appearances of the first topology of (8, 16) absorption sets: Case
I.
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Figure A.40: Step 2 in constructing an (8, 16) absorption set: Case II.
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Figure A.41: Step 3 in constructing an (8, 16) absorption set: Case II.
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Figure A.42: Second topology of (8, 16) absorption sets: Case II.
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Figure A.43: Equivalent appearances of the second topology of (8, 16) absorption sets:
Case II.
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Figure A.44: Step 2 in constructing an (8, 16) absorption set: Case III.

 

qqqqqqqqqqqq

�������

;;;;;;;

MMMMMMMMMMMM

    

   

Figure A.45: Step 3 in constructing an (8, 16) absorption set: Case III.A.
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Figure A.46: Step 4 in constructing an (8, 16) absorption set: Case III.A.

Next, we connect the rightmost node in the center row as Figure A.46.
Now the center node of the bottom three has two choices.

i. Case III.A.1: firstly as shown in Figure A.47.
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Figure A.47: Step 5 in constructing an (8, 16) absorption set: Case III.A.1.

Then we connect more and obtain Figure A.48.
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Figure A.48: Step 6 in constructing an (8, 16) absorption set: Case III.A.1.

Finally, we find the third possible topology as shown in Figure A.49, since
the bottom-left and bottom-right are symmetric.
We list one of its equivalent topologies in Figure A.50.

ii. Case III.A.2: another choice to connect Figure A.46 is shown in Fig-
ure A.51.
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Figure A.49: Third topology of (8, 16) absorption sets: Case III.A.1.
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Figure A.50: Equivalent appearance of the third topology of (8, 16) absorption sets: Case
III.A.1.
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Figure A.51: Step 5 in constructing an (8, 16) absorption set: Case III.A.2.
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Figure A.52: Another topology of (8, 16) absorption sets: Case III.A.2.
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By connecting the rest, this gives us Figure A.52.
Actually, it can be arranged to the ones shown in Figure A.43.

(b) Case III.B: Figure A.44 can also be connected as Figure A.53.
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Figure A.53: Step 3 in constructing an (8, 16) absorption set: Case III.B.

Next we have Figure A.54.
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Figure A.54: Step 4 in constructing an (8, 16) absorption set: Case III.B.

Then we connect more in Figure A.55.
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Figure A.55: Step 4 in constructing an (8, 16) absorption set: Case III.B.

The center node of the bottom three has two choices.

i. Case III.B.1: firstly, it can be as Figure A.56.
So we connect the remaining nodes and get Figure A.57.
This is another appearance of Figure A.50.
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Figure A.56: Step 4 in constructing an (8, 16) absorption set: Case III.B.1.
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Figure A.57: A topology of (8, 16) absorption sets: Case III.B.1.
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Figure A.58: Step 4 in constructing an (8, 16) absorption set: Case III.B.
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ii. Case III.B.2: secondly, Figure A.55 can be connected as Figure A.58.
Then we have another topology shown in Figure A.59.
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Figure A.59: Another topology of (8, 16) absorption sets: Case III.B.2.

Equivalently, it can be like Figure A.60.
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Figure A.60: An equivalent appearance of the topology of the (8, 16) absorption set: Case
III.B.2.

4. Case IV: there are three connections among the three bottom nodes of Figure A.37,
as shown in Figure A.61.
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Figure A.61: Step 2 in constructing an (8, 16) absorption set: Case IV.

In this case, it implies that there are only three connections among the middle-row
four nodes, which gives us two options.

(a) Case IV.A: first, it is connected as Figure A.62.
Next we obtain Figure A.63.
The second node of the middle level four has two choices.
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Figure A.62: Step 3 in constructing an (8, 16) absorption set: Case IV.A.
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Figure A.63: Step 4 in constructing an (8, 16) absorption set: Case IV.A.
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Figure A.64: Step 5 in constructing an (8, 16) absorption set: Case IV.A.1.
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i. Case IV.A.1: as shown in Figure A.64.
Now, the third node of the middle level four has two choices.

A. Case IV.A.1.i: first choice is as Figure A.65.
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Figure A.65: Step 6 in constructing an (8, 16) absorption set: Case IV.A.1.i.

Hence, we get to another topology shown in Figure A.66.
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Figure A.66: A topology of (8, 16) absorption sets: Case IV.A.1.i.

This is identical to Figure A.60.
B. Case IV.A.1.ii: another choice is like Figure A.67.
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Figure A.67: Step 6 in constructing an (8, 16) absorption set: Case IV.A.1.ii.

Hence, the topology under this case can be achieved in Figure A.68.
This is also the same as Figure A.50.

ii. Case IV.A.2: a case as shown in Figure A.69.
Next, more connections are shown in Figure A.70.
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Figure A.68: a topology of the (8, 16) absorption set: Case IV.A.1.ii.
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Figure A.69: Step 5 in constructing an (8, 16) absorption set: Case IV.A.2.
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Figure A.70: Step 6 in constructing an (8, 16) absorption set: Case IV.A.2.
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Figure A.71: A topology of (8, 16) absorption sets: Case IV.A.2.
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Hence, connecting the rest gives us Figure A.71.
It has a nicer symmetric look shown in Figure A.72.
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Figure A.72: An equivalent appearance of the (8, 16) absorption set: Case IV.A.2.

(b) Case IV.B: Figure A.61 can also be connected as Figure A.73.
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Figure A.73: Step 3 in constructing an (8, 16) absorption set: Case IV.B.

Next, we connect more nodes as Figure A.74.
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Figure A.74: Step 4 in constructing an (8, 16) absorption set: Case IV.B.

Then we achieve the last possible sketch in Figure A.75.
Equivalently, we rearrange it to Figure A.76.

To summarize, we have narrowed down to (at most) six topologies, as shown in Fig-
ure A.77, to search against the H.

By searching them algorithmically, we list the multiplicity of the (8, 16) absorption sets
per topology below.
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Figure A.75: A topology of (8, 16) absorption sets: Case IV.B.
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Figure A.76: An equivalent appearance of the (8, 16) absorption set: Case IV.B.
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(a) Case I.
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(b) Case II or Case
III.A.2.
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(c) Case III.A.1 or
Case III.B.1 or Case
IV.A.1.ii.
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(d) Case III.B.2 or
Case IV.A.1.i.
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(e) Case IV.B.
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(f) Case IV.A.2.

Figure A.77: Possible topologies of (8, 16) absorption sets.
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1. Figure A.77(a): 156, 064;

2. Figures A.77(b) and A.77(c): 58, 944;

3. Figures A.77(d) and A.77(f): 86, 272;

4. Figure A.77(e): 360, 544;

which add up to 661, 824.

A.2.5 a = 9

We only try to enumerate the topologies that may have larger µmax which affects the error
estimation formula, instead of going through all possibilities like what we have done for
smaller a, which is not practical any more.

First, we assume only double check nodes connections are allowed. The more compli-
cated cases are studied afterwards.

1. b = 0. By Corollary A.8, weight-9 codeword does not exist.

2. b = 2. There are two classes:

(a) [6, 6, 6, 6, 6, 6, 6, 5, 5]: removing either degree-5 node will reduce it to an (8, 6)

absorption set.

(b) [6, 6, 6, 6, 6, 6, 6, 6, 4]: removing the degree-4 node will reduce it to an (8, 4)
absorption set.

3. b = 4. Three classes:

(a) [6, 6, 6, 6, 6, 5, 5, 5, 5]: removing any degree-5 node will reduce it to an (8, 8)
absorption set. Since we know that only one type of (8, 8) sets exist, then we
know that there is only one possible topology for this class of (9, 4) sets as
shown in Figure A.78.
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Figure A.78: A possible topology of the (9, 4) absorption sets.

Algorithmically, we pick a node randomly and check if it is connected with any
5 nodes from (8, 8) sets. We found none that exists.

(b) [6, 6, 6, 6, 6, 6, 5, 5, 4]: removing the degree-4 node will reduce it to an (8, 6)

absorption set.

(c) [6, 6, 6, 6, 6, 6, 6, 4, 4]: removing both degree-4 nodes will reduce it to a (7, 6)
or (7, 8) absorption set.
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4. b = 6. There are four classes:

(a) [6, 6, 6, 5, 5, 5, 5, 5, 5]: removing any degree-5 node will reduce it to an (8, 10)

absorption set.

(b) [6, 6, 6, 6, 5, 5, 5, 5, 4]: removing the degree-4 node will reduce it to an (8, 8)
absorption set. Since we know that only one type of (8, 8) sets exist, then we
know that there is only one possible topology for this (9, 6) class as shown in
Figure A.79.
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Figure A.79: A possible topology of the (9, 6) absorption sets.

We pick a node randomly and check if it is connected with any 4 nodes from
(8, 8) sets. None of such connectivity exists.

(c) [6, 6, 6, 6, 6, 5, 5, 4, 4]: if the two degree-4 nodes are

i. Not connected: removing one degree-4 node reduces it to an (8, 8) set with
a degree-4 node. Such class of (8, 8) sets does not exist.

ii. Connected: then let us involve the degree-5 nodes as follows.

degree-5:   

degree-4:   

(a)

degree-5:   

degree-4:   

(b)

degree-5:   

degree-4:   

(c)

degree-5:   

degree-4:   

666666666

(d)

degree-5:   

degree-4:  

���������  

666666666

(e)

degree-5:   

degree-4:  

���������  

666666666

(f)

Figure A.80: Possible intrinsic connections between two groups of variable nodes which
are grouped by degrees. The top row represents the degree-5 nodes, whereas the bottom
degree-4.

A. No connection between the two groups as shown in Figure A.80(a).
Removing both degree-4 nodes gives a (7, 8) set, or removing one
degree-5 node gives a (8, 10) set.
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B. One connection between the two groups as shown in Figure A.80(b).
Removing both degree-4 nodes gives a (7, 8) set, or removing the top
right degree-5 node gives an (8, 10) set.

C. Two connections between the two groups, firstly as shown in Fig-
ure A.80(c). Removing both degree-4 nodes gives a (7, 8) set. Or
as shown in Figure A.80(d). Removing the top right degree-5 node
gives an (8, 10) set.

D. Three connections between the two groups as shown in Figure A.80(e).
Each of the degree-6 nodes requires at least two connections from the
rest, whereas the above topology can provide at most 10. Thus re-
moving the degree-4 and the left degree-5 nodes reduces it to a (6, 8)
set.

E. Four connections between the two groups as shown in Figure A.80(f).
This is infeasible since it can provide at most 8 connections to the
group of degree-6 nodes.

(d) [6, 6, 6, 6, 6, 6, 4, 4, 4]: let study internal connectivity within degree-4 nodes.

i. No connection as shown in Figure A.4(a): removing one degree-4 node
reduces it to an (8, 8) set with class [6, 6, 5, 5, 5, 5, 4, 4].

ii. One connection as shown in Figure A.4(b): removing the top degree-4 node
that is not connected reduces it to an (8, 8) set with class [6, 6, 5, 5, 5, 5, 4, 4].

iii. Two connections as shown in Figure A.4(c): each of the degree-6 nodes
requires one, or two connections from the group of degree-4 nodes. In
other words, no degree-6 node can be connected to all degree-4 nodes.
Thus, removing all degree-4 nodes gives a (6, 8) set.

iv. Three connections as shown in Figure A.4(d): by the same argument in the
above item, removing all degree-4 nodes gives a (6, 6) set.

5. b = 8. There are five classes.

(a) [6, 5, 5, 5, 5, 5, 5, 5, 5];

(b) [6, 6, 5, 5, 5, 5, 5, 5, 4]: removing the degree-4 node reduces it to an (8, 10) set.

(c) [6, 6, 6, 5, 5, 5, 5, 4, 4];

(d) [6, 6, 6, 6, 5, 5, 4, 4, 4];

(e) [6, 6, 6, 6, 6, 4, 4, 4, 4].

However, since we cannot rule out enough cases by connecting them to known ab-
sorption sets, actually running a general program to check the possibility containing a
degree-6 node is more effective, although brutal. The search program found no (9, 8)

sets containing a degree-6 node.

6. b = 10. There are five classes.

(a) [5, 5, 5, 5, 5, 5, 5, 5, 4];

(b) [6, 5, 5, 5, 5, 5, 5, 4, 4];

(c) [6, 6, 5, 5, 5, 5, 4, 4, 4];

(d) [6, 6, 6, 5, 5, 4, 4, 4, 4];
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(e) [6, 6, 6, 6, 4, 4, 4, 4, 4].

By removing the single degree-4 node in first class reduces it to an (8, 12) set. By
checking against the enumerated (8, 12) sets, such connectivity does not exist. Re-
garding the remaining classes, once again, a general program has found no (9, 10)

sets containing a degree-6 node.

7. b = 12. There are four classes.

(a) [5, 5, 5, 5, 5, 5, 4, 4, 4];

(b) [6, 5, 5, 5, 5, 4, 4, 4, 4];

(c) [6, 6, 5, 5, 4, 4, 4, 4, 4];

(d) [6, 6, 6, 4, 4, 4, 4, 4, 4].

One (9, 12) absorption set is shown in Table A.3 as evidence of the existence.

Table A.3: An example (9, 12) absorption set that falls in the first class.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
1563 29 120 150 217 264 336
1628 40 75 171 248 264 373
176 43 78 174 251 267 376
314 8 125 150 251 300 368
560 40 78 177 199 313 368
1258 29 79 137 213 313 370
1988 30 125 171 213 267 336

8. b = 14. There are three classes.

(a) [5, 5, 5, 5, 4, 4, 4, 4, 4]: its existence can be seen by removing one node from the
(10, 10) absorption sets found in the following section.

(b) [6, 5, 5, 4, 4, 4, 4, 4, 4];

(c) [6, 6, 4, 4, 4, 4, 4, 4, 4].

9. b = 16. There are two classes.

(a) [5, 5, 4, 4, 4, 4, 4, 4, 4];

(b) [6, 4, 4, 4, 4, 4, 4, 4, 4].

An example is shown in Table A.4.

10. b = 18. There is only one class, [4, 4, 4, 4, 4, 4, 4, 4, 4], and one such set is shown in
Table A.5.
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Table A.4: An example (9, 16) absorption set that falls in the first class.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
90 15 120 140 253 305 338

1460 2 79 184 238 307 365
580 7 102 148 253 307 376
890 15 87 181 229 261 349
1194 38 87 148 228 319 360
1775 2 126 176 228 261 338
1881 33 84 176 229 300 360

Table A.5: An example (9, 18) absorption set.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
90 15 120 140 253 305 338
629 15 86 161 248 268 381
1063 1 109 178 236 312 349
504 20 85 174 197 258 338
802 49 86 154 197 300 363
1299 6 124 178 247 305 381
1789 20 109 150 247 265 363
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Now, if the satisfied check nodes are allowed to be connected to the set more than twice,
we are able to enumerate all possible topologies but cannot prove the existence for all of
them by simply removing nodes and relating them to the known smaller sets.

1. If the check nodes are connected to the set 6 times, then there is only one possible
topology which gives a (9, 12) absorption set as shown in Figure A.81.
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Figure A.81: One check node connecting to a (9, 12) absorption set six times.

It falls in the class [6, 6, 6, 4, 4, 4, 4, 4, 4]. Removing any two degree-4 nodes will
give us a (7, 14) set.

2. There can be up to two check nodes that are connected 4 times to the set.

(a) When there are two such check nodes, they can either share one variable node
or not.

i. First, we sketch the topology that the two check nodes do not share any
variable node.
The smallest would be (9, 2), as shown in Figure A.82, both of which can
be reduced to the un-existed (8, 8) sets.

�

������

ttttttttt

//////

JJJJJJJJJ

 

////////////

???????????????

JJJJJJJJJJJJJJJJJJJJ  

////////////

???????????????

������������
 

////////////

������������

���������������  

������������

���������������

tttttttttttttttttttt

 

~~~~~~~

oooooooooooo

jjjjjjjjjjjjjjjjjj

ggggggggggggggggggggggg

@@@@@@@

OOOOOOOOOOOO

    

�

/////

JJJJJJJJJ

�����

ttttttttt

(a)

�

������

ttttttttt

//////

JJJJJJJJJ

 

////////////

???????????????

JJJJJJJJJJJJJJJJJJJJ  

////////////

???????????????

������������
 

////////////

������������

���������������  

������������

���������������

tttttttttttttttttttt

 

~~~~~~~

oooooooooooo

jjjjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTTTT

@@@@@@@

OOOOOOOOOOOO

    

�

/////

JJJJJJJJJ

�����

ttttttttt

(b)

Figure A.82: Two possible topologies of (9, 2) absorption sets with two check nodes con-
nected to the set four times.
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(b)

Figure A.83: Two possible topologies of (9, 4) absorption sets with two check nodes con-
nected to the set four times that are derived from Figure A.82(a).
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Figure A.84: Another three possible topologies of (9, 4) absorption sets with two check
nodes connected to the set four times that are derived from Figure A.82(b).
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Such (9, 4) and (9, 6) sets can be derived by removing one or two edges
from them, respectively, as illustrated in Figure A.83 and Figure A.84.
Removing the two blue degree-5 nodes in Figure A.83(a) gives us a (7, 10)
set. Removing the degree-4 node in Figure A.83(b) gives an un-existed
(8, 8) class. Removing all the degree-5 nodes in Figure A.84(a) gives a
(5, 10) set. Removing the degree-4 node in Figure A.84(b) gives an un-
existed (8, 8) class. Removing either degree-4 node in Figure A.84(c) gives
an un-existed (8, 8) class.

ii. Secondly, if the two check nodes are both connected to one variable node
as shown in Figure A.85.
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(b)

Figure A.85: Two possible topologies of (9, 4) absorption sets with two check nodes con-
nected to the set four times and sharing one variable node.

Removing the degree-4 node in Figure A.85(a) gives us a (7, 10) set. Re-
moving the two degree-4 nodes in Figure A.85(b) gives us a (7, 8) set.
Also we could derive (9, 6), (9, 8), (9, 10), (9, 12) and (9, 14) from them
by removing edge(s). A few example of (9, 6) sets are shown in Fig-
ure A.86.

(b) If one check node is connected to the set four times, the smallest possible con-
nectivity results in a weight-9 codeword as shown in Figure A.87 which cannot
exist.
Then the (9, 2), (9, 4), (9, 6), (9, 8), (9, 10), (9, 12), (9, 14), (9, 16) and (9, 18)
absorption sets can be derived by removing edge(s). We can show that such
(9, 2) and (9, 4) absorption sets do not exist.

i. There are two possible (9, 2) set topologies, as shown in Figure A.88.
Removing the bottom-left degree-5 node in Figure A.88(a) gives an (8, 6)
set. Removing either degree-5 node in Figure A.88(b) gives an (8, 6) set,
as well.

ii. (9, 4) sets are shown in Figure A.89 and Figure A.90.
Removing either degree-5 node in Figure A.89(a) gives an un-existed (8, 8)
class. Removing the degree-4 node in Figure A.89(b) gives an (8, 6) set.
Removing either bottom degree-5 node in Figure A.89(c) gives an un-
existed (8, 8) class. Removing the degree-4 node in Figure A.89(d) gives
an (8, 6) set. Removing any bottom degree-5 node in Figure A.89(e) gives
an un-existed (8, 8) class.
Removing the degree-4 node in Figure A.90(a) gives an (8, 6) set. Remov-
ing any bottom degree-5 node in Figure A.90(b) gives an un-existed (8, 8)
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Figure A.86: A few possible topologies of (9, 6) absorption sets with two check nodes
connected to the set four times and sharing one variable node.
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Figure A.87: One check node connecting to a (9, 0) absorption set four times.
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(b)

Figure A.88: Two possible topologies of (9, 2) absorption sets with one check node con-
nected to the set four times.
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(e)

Figure A.89: Five possible topologies of (9, 4) absorption sets with one check node con-
nected to the set four times that are derived from Figure A.88(a).
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(d)

Figure A.90: Another four possible topologies of (9, 4) absorption sets with one check node
connected to the set four times that are derived from Figure A.88(b).

class. Removing the degree-4 node in Figure A.90(c) gives an (8, 6) set.
Removing any degree-5 node in Figure A.90(d) gives an un-existed (8, 8)
class.

A.2.6 a = 10

We do not find out the multiplicity of any size-10 absorption sets as it is costly time-wise,
but rather trying to figure out the existence of sets with large µmax or small b/a ratio. In
addition, we only assume that the satisfied check nodes are connected to the set only twice,
in this section.

A.2.6.1 b = 0

Since a (10, 0) absorption set can be reduced to a (9, 6) set by removing any degree-6
variable node, we are able to further tighten up the lower bound on the minimum distance.

Corollary A.11. Because there is no weight-10 codeword, the minimum distance is bounded
by dmin ≥ 12.

Note that a weight-14 codeword, as shown in Table A.64, has been found during our
simulation. Therefore we narrow the minimum distance down to dmin = 12 or 14. The
authors of [1] have also found (14, 0) absorption sets, and the multiplicity is lower bounded
by 1, 407, through an absorption set searching algorithm.

4The indexes are according to v2c.txt.
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Table A.6: A weight-14 codeword.

Variable Node Six Neighboring Check Nodes
131 10 80 150 234 290 329
148 55 112 179 226 298 327
282 33 118 137 199 298 383
315 55 115 162 234 263 379
375 45 122 164 218 287 345
378 42 92 150 226 263 383
833 23 118 164 206 260 329
871 42 66 140 218 262 355
1028 58 112 137 238 287 355
1039 45 115 185 206 262 364
1174 33 66 185 224 290 379
1182 23 122 140 238 312 327
1228 58 80 162 224 260 345
1270 10 92 179 199 312 364

A.2.6.2 b = 2

There exist two classes.

1. [6, 6, 6, 6, 6, 6, 6, 6, 5, 5]: it can be reduced to a (9, 6) set by removing one degree-5
node.

2. [6, 6, 6, 6, 6, 6, 6, 6, 6, 4]: it can be reduced to a (9, 4) set by removing the degree-4
node.

A.2.6.3 b = 4

There exist three classes.

1. [6, 6, 6, 6, 6, 6, 5, 5, 5, 5]: it can be reduced to a (9, 8) set by removing one degree-5
node.

2. [6, 6, 6, 6, 6, 6, 6, 5, 5, 4]: it can be reduced to a (9, 6) set by removing the degree-4
node.

3. [6, 6, 6, 6, 6, 6, 6, 6, 4, 4]: it can be reduced to a (9, 6) set by removing one of the
degree-4 nodes, if there is no connection between them. Otherwise, removing both
gives an (8, 6) set.

A.2.6.4 b = 6

There exist four classes.

1. [6, 6, 6, 6, 5, 5, 5, 5, 5, 5]: it can be reduced to a (9, 10) set by removing one degree-5
node.
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2. [6, 6, 6, 6, 6, 5, 5, 5, 5, 4]: it can be reduced to a (9, 8) set by removing the degree-4
node.

3. [6, 6, 6, 6, 6, 6, 5, 5, 4, 4]: again, let us divide the nodes into two groups: one of
degree-6 nodes and another of the rest. Then we study the connections within the
second group.

(a) If there is no connection between the degree-4 nodes, then it can be reduced to
a (9, 8) set by removing either degree-4 node.

(b) If the degree-4 nodes are incident, then it becomes tricky. Let us go through all
possible connections.

i. If the degree-4 nodes are not connected with the degree-5 nodes at all, then
it can be reduced to a (9, 10) set by removing either degree-5 node.

ii. If the degree-4 nodes are connected with each degree-5 node at most once
as shown in Figures A.80(b) and A.80(c), then they can be reduced to an
(8, 8) set where there is at least one degree-4, by removing both degree-4
nodes, respectively.

iii. If the degree-4 nodes are connected with each degree-5 node twice, then
we have to take into account the connection between the degree-5 nodes.

degree-5:   

degree-4:   

666666666

(a)

degree-5:   

degree-4:   

666666666

(b)

degree-5:   

degree-4:  

���������  

666666666

(c)

Figure A.91: Possible intrinsic connections between two groups of variable nodes which
are grouped by degrees. The top row represents the degree-5 nodes, whereas the bottom
degree-4. (Supplementary to Figure A.80.)

A. The topologies shown in Figures A.80(d) and A.91(a) can be reduced
to a (9, 10) set by removing the top-right degree-5 node, respectively.

B. First, the topology shown in Figure A.80(e) induces a tricker situation.
We intend to remove all but the top-right node. If those three are not
connected to one degree-6 node from the first group, then it will reduce
to a (7, 8) set. Otherwise, we have to eliminate that degree-6 node,
which is for sure not incident to the top-right degree-5 node and gives
us a (6, 8) set.
Secondly, the topology in Figure A.91(b) shows that the second group
emanates eight edges. The structure guarantees that removing all of
them reduces to a (6, 8) set.

C. The group of degree-6 nodes emanates at least six edges, whereas the
second group emanates eight or six, respectively. Either case of Fig-
ures A.80(f) and A.91(c), it is legitimate to remove the entire second
group to get a (6, 8) and a (6, 6) set, respectively.
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4. [6, 6, 6, 6, 6, 6, 6, 4, 4, 4]: in terms of degree, the nodes can be divided into two groups.
Let us study the intrinsic connection within the degree-4 group.

(a) If there is no connection as shown in Figure A.4(a), then removing any degree-4
node will reduce it to a (9, 8) absorption set.

(b) If there is only one connection as shown in Figure A.4(b), then removing the
topmost degree-4 node will reduce it to a (9, 8) set.

(c) If there are two connections as shown in Figure A.4(c), then we want to remove
all these three nodes. It would reduce to a (7, 8) absorption set only if none
of them are all incident to a single degree-6 node. Otherwise, let us remove
that degree-6 node, as well, to get a (6, 8) set. The structure guarantees that it
is legal, because the degree-4 nodes now have to be connected with the three
degree-6 nodes, respectively, which are not incident to the removed degree-6
node. In addition, the remaining two edges from the bottom two degree-4 nodes
cannot be incident to only one of the degree-6 nodes. So removing those fours
nodes would result a valid absorption set by definition.

(d) If all three nodes are connected as shown in Figure A.4(d), then we, once again,
try to remove all these three nodes. It would reduce to a (7, 6) set, if none
of them are all incident to one degree-6 node. Otherwise, let us also remove
that degree-6 node, to get a (6, 6) set. The structure guarantees that it is legal,
because the degree-4 nodes now have to be connected with the three degree-6
nodes, respectively, which are not incident to the removed degree-6 node.

A.2.6.5 b = 8

The (10, 8) absorption set enumeration is inconclusive. There exist five classes and two of
them have been studied.

1. [6, 6, 5, 5, 5, 5, 5, 5, 5, 5];

2. [6, 6, 6, 5, 5, 5, 5, 5, 5, 4]: it can be reduced to a (9, 10) set by removing the degree-4
node.

3. [6, 6, 6, 6, 5, 5, 5, 5, 4, 4];

4. [6, 6, 6, 6, 6, 5, 5, 4, 4, 4];

5. [6, 6, 6, 6, 6, 6, 4, 4, 4, 4]: let us study the connection within the degree-4 group.

(a) If there is no connection among the degree-4 nodes at all as shown in Fig-
ure A.5(a), then it can be reduced to a (9, 10) set by removing any degree-4
node.

(b) If there is one edge as shown in Figure A.5(b), then it can be reduced to a (9, 10)
set by removing either of the top-row degree-4 nodes.

(c) If there are two connections, the one shown in Figure A.5(c) can be reduced to
a (9, 10) set by removing the bottom-right degree-4 node, whereas another one
shown Figure A.5(d) can be reduced to an (8, 10) set by removing either row of
degree-4 nodes.
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(d) When there are three connections, Figure A.5(e) can be reduced to a (9, 10)
set by removing the bottom-right degree-4 node. As of the other two shown
in Figures A.5(f) and A.5(g), we will have to remove the entire group. Note
that the degree-4 group emanates ten edges to the degree-6 group. If none of
the degree-6 nodes connect to the degree-4 group more than twice, three times
to be exact, then removing all degree-4 nodes gives a (6, 10) set. Or, if there
exists one degree-6 node that is incident to three degree-4 nodes, then remove
this node as well as all degree-4 nodes. Each of the remaining nodes connects
to the removed ones exactly twice. Thus it reduces to a (5, 10) set.

(e) If there are four edges as shown in Figures A.5(h) and A.5(i), then, this time, the
group emanates eight edges which guarantee that no degree-6 node connecting
to this group more than twice. Therefore, the topologies can be reduced to a
(6, 8) set by removing all degree-4 nodes, respectively.

(f) If there are five edges as shown in Figure A.5(j), now the group emanates six
edges so that each degree-6 node connects to this group exactly once. Therefore,
the set can be reduced to a (6, 6) set by removing all degree-4 nodes.

(g) The degree-4 nodes cannot be fully connected as shown in Figure A.5(k), since
the other group demands at least six edges.

A.2.6.6 b = 10

There are six classes and we are sure at least two of them exist.

1. [5, 5, 5, 5, 5, 5, 5, 5, 5, 5]: there are 192 (10, 10) absorption sets under this class. After
checking thirty-two representative nodes, each of which is from one group, we found
that there is only one topology as shown in Figure A.92.
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Figure A.92: (10, 10) absorptions sets.

The average multiplicity of each variable node appeared in such sets is 192 × 10 ÷
2048 = 0.9375. Once again, certain group of variable nodes share the same mul-
tiplicity, as listed in Table A.7. As we can see, some groups are not involved at
all. Therefore, the average multiplicity of each involved variable node in such sets is
192× 10÷ 1408 ≈ 1.363636.

2. [6, 5, 5, 5, 5, 5, 5, 5, 5, 4];
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Table A.7: The multiplicity of each variable node in (10, 10) absorption sets.

Group Variable Nodes Multiplicity Group Variable Nodes Multiplicity
1 0—63 1 17 1024—1087 1

2 64—127 1 18 1088—1151 0

3 128—191 1 19 1152—1215 0

4 192—255 1 20 1216—1279 2

5 256—319 0 21 1280—1343 2

6 320—383 2 22 1344—1407 0

7 384—447 0 23 1408—1471 1

8 448—511 2 24 1472—1535 1

9 512—575 1 25 1536—1599 1

10 576—639 1 26 1600—1663 0

11 640—703 1 27 1664—1727 2

12 704—767 2 28 1728—1791 2

13 768—831 0 29 1792—1855 1

14 832—895 2 30 1856—1919 1

15 896—959 1 31 1920—1983 0

16 960—1023 0 32 1984—2047 0

3. [6, 6, 5, 5, 5, 5, 5, 5, 4, 4];

4. [6, 6, 6, 5, 5, 5, 5, 4, 4, 4]: the existence of this class is shown by Table A.8.

5. [6, 6, 6, 6, 5, 5, 4, 4, 4, 4];

6. [6, 6, 6, 6, 6, 4, 4, 4, 4, 4].

A.2.6.7 b > 10

The bigger (10, 12), (10, 14), (10, 16), (10, 18) and (10, 20) absorption sets do exist and
an example of each are shown in Tables A.9–A.13.
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Table A.8: An example (10, 10) absorption set.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

591 56 65 159 207 302 327
1405 32 120 159 225 314 337
1904 0 119 184 249 314 379
210 42 65 160 248 286 335
732 30 118 157 223 312 335
1676 36 77 183 223 286 376
616 30 119 160 194 275 373
834 42 85 157 249 302 373
892 36 118 142 225 275 327

Table A.9: An example (10, 12) absorption set.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
90 15 120 140 253 305 338

1460 2 79 184 238 307 365
1320 46 67 140 248 307 320
1543 51 72 145 253 312 320
931 45 88 160 252 305 376

9 46 110 174 238 302 366
1104 33 67 145 252 282 349
1316 51 88 156 199 302 365

Table A.10: An example (10, 14) absorption set.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
90 15 120 140 253 305 338

1460 2 79 184 238 307 365
931 45 88 160 252 305 376

9 46 110 174 238 302 366
1121 15 110 156 198 315 321
1316 51 88 156 199 302 365
1432 33 121 160 226 315 338
1549 45 121 142 198 300 366
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Table A.11: An example (10, 16) absorption set.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
90 15 120 140 253 305 338

1045 23 110 184 199 306 336
176 43 78 174 251 267 376
39 15 79 143 207 271 335
305 23 78 132 201 259 335
1048 19 76 143 253 262 354
1189 43 76 132 234 300 326
1444 19 110 140 207 317 326

Table A.12: An example (10, 18) absorption set.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
90 15 120 140 253 305 338
170 49 124 184 196 283 366
931 45 88 160 252 305 376
253 63 124 174 226 259 336
1121 15 110 156 198 315 321
1432 33 121 160 226 315 338
1549 45 121 142 198 300 366
2016 9 113 156 196 259 349

Table A.13: An example (10, 20) absorption set.

Variable Node Six Neighboring Check Nodes
0 56 120 184 248 312 376

109 56 79 174 199 300 349
90 15 120 140 253 305 338
358 52 68 184 255 315 327
1056 10 115 135 248 300 333
574 15 80 169 255 316 333
712 52 125 147 198 316 347
862 10 125 174 242 285 325
1207 25 68 140 232 285 356
1837 42 79 147 253 293 356
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Appendix B

Tanner Codes

In [75, 76], Tanner introduced a class of regular LDPC codes composed of blocks of shifted
identity matrices, named circulant matrices. By carefully configuring the parameters, 4-
cycles can be avoided and the constructed code may achieve the upper bound of the mini-
mum distance.

The parity-check matrix H will have a dv × dc array of circulant permutation matrices:

H =


I0,0 I0,1 · · · I0,dc−1
I1,0 I1,1 · · · I1,dc−1
...

...
. . .

...
Idv−1,0 Idv−1,1 · · · Idv−1,dc−1


dvp×dcp

. (B.1)

Immediately, we can tell that it is a (dc, dv) regular LDPC code. The code-length is N =
dcp and the number of check nodes is dvp. The actual rate R will be slightly higher than
the design code rate, 1 − dv/dc, in that within every row blocks, all p rows add to an all-1
vector and it leads to that at least dv − 1 rows are linearly dependent.

The dimension of the circulant matrices p is a prime and also has the property that
dv|φ(p) and dc|φ(p), where φ(n) is the Euler’s totient function that is defined to be the
number of positive integers less than or equal to n that are coprime to n. Hence φ(p) =
p− 1.

Now, we need to find two parameters m and n, which are nonzero elements from the
Galois field GF(p) = {0, 1, . . . , p− 1}, such that

o(m) = dc
o(n) = dv

. (B.2)

In other words, m and n have to satisfy

mdc ≡ 1 (mod p)
ndv ≡ 1 (mod p)

. (B.3)

Conditions dv|(p− 1) and dc|(p− 1) on p guarantee the existence of such m and n.
Then we create a matrix in GF(p) to denote the number of shifts x of each circulant

matrix.

X = [xij ] (B.4)

=
[
mjni

]
(B.5)
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≡


1 m m2 · · · mdc−1

n mn m2n · · · mdc−1n
n2 mn2 m2n2 · · · mdc−1n2

...
...

...
. . .

...
ndv−1 mndv−1 m2ndv−1 · · · mdc−1ndv−1


dv×dc

(mod p), (B.6)

where i = 0, 1, . . . , dv − 1 and j = 0, 1, . . . , dc − 1.
Last, the parity-check matrix is obtained as

H = IX =


I1 Im Im2 · · · Imdc−1

In Imn Im2n · · · Imdc−1n

In2 Imn2 Im2n2 · · · Imdc−1n2

...
...

...
. . .

...
Indv−1 Imndv−1 Im2ndv−1 · · · Imdc−1ndv−1


dvp×dcp

, (B.7)

where each Ix denotes a p× p identity matrix with rows shifted to the left by x positions
The size of the base identity matrix p seems to play an important role during the con-

struction process. In [76], p was extended to non-primes. Also the authors showed that for
prime p, the girth of the derived code g is lower bounded by 6, whereas it can be 4 using
non-prime p.1 Either case, it can be shown that g is upper bounded by 12, no matter how
big the code grows, [75, 27]. Using the analysis of [53], the minimum distance is bounded
by dmin ≤ (dv + 1)!. When dv is small, this bound can be met by carefully choosing the
parameters. As a matter of fact, Tanner presented a [155, 64, 20], (3, 5) code with g = 8 in
the “Recent Results” session of the 2000 International Symposium on Information Theory,
in Sorrento, Italy.

Tanner codes come with relatively large girth or/and minimum distance, as to provide a
good performance. However, the inherent structure flaw causing the existence of absorption
sets, therefore the error floor problem, still cannot be corrected. In the following sections,
we will showcase three Tanner codes and analyze their decoding performance.

B.1 Tanner Code [155, 64, 20], (3, 5)

Let us start with (dv, dc) = (3, 5) with a design rate 0.4. In order to satisfy both dv|(p −
1), dc|(p − 1) and p being a prime, the smallest value will be p = 31. Thus the minimal
code length will have to be dc × p = 155. A solution to (B.3) is

m = 2
n = 5

. (B.8)

Substituting into (B.6) results to

X =

 1 2 4 8 16
5 10 20 9 18
25 19 7 14 28


3×5

, (B.9)

1During the course of our enumeration of absorption sets, including codewords, the multiplicities are mul-
tiples of this base matrix dimension p. This suggests that there might be a non-exaustive type of search by
making use of the field knowledge plus code design. However, the absorption set topologies are necessary in
estimating the error rate, unless a close estimation of the maximum eigenvalue and corresponding eigenvector
is available.
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which in turn gives the parity-check matrix representing this Tanner code as

H = IX =

I1 I2 I4 I8 I16
I5 I10 I20 I9 I18
I25 I19 I7 I14 I28


93×155

. (B.10)

The specifications of the code are listed below.

• Regularity: dv = 3, dc = 5.

• The number of variable nodes or code length: N = 155.

• The number of check nodes: 93.

• Information bits: k = 64.

• Design code rate: 1− dv/dc = 0.4.

• Actual code rate: R = k/N ≈ 0.4129.

• Minimum distance: dmin = 20 [76].

• Girth: g = 8 [75].

• Block structure of H [76]:

H =

I1 I2 I4 I8 I16
I5 I10 I20 I9 I18
I25 I19 I7 I14 I28


93×155

, (B.11)

where each Ix is derived by shifting the rows of a 31 × 31 identity matrix cycli-
cally to the left by x positions, in other words, which are all permutation matrices.2

The binary presentation of H is depicted in Figure 1.3, where non-zero entries are
represented by solid nodes and zeros are not shown.

B.1.1 Absorption Sets

Facts on the first few absorption sets are shown in Table B.1. They are enumerated in the
same way as the absorption sets of the IEEE 802.3an LDPC code in Appendix A.2, except
it is way easier here and less time consuming thanks to the short length.

Since g = 8, then a ≥ 4 by the definition of absorption sets. Recall we defined an
unordered integer array [Deg(vi) : i = 1, 2, . . . , a] to denote a class of (a, b) absorption
sets in Definition 3.5. To satisfy the number of edges in the subgraph generated by an

absorption set,
a∑
i=1

Deg(vi) = adv − b = 3a − b, to be even, a and b have to be both even

or both odd at the same time.
Now let us start with a = 4 to show how the multiplicities in Table B.1 are distributed

among every topology.

B.1.1.1 a = 4

There are 465 of (4, 4) sets, which all share one topology in Figure B.1. It is actually a
length-8 cycle. In addition, each variable node appears exactly 465× 4÷ 155 = 12 times.

2Or it can be defined alternatively—see another paper of Tanner’s [75].
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Table B.1: First few absorption sets of Tanner code [155, 64, 20] (3, 5).

a b Existence Multiplicity Gain: µmax

< 4 No
4 4 Yes 465 1

5
1 No
3

Yes
155

5 3, 720

6
2 No
4

Yes
930

6 22, 630 1

7

1 No
3

Yes

930
5 16, 275
7 140, 430 1

8

2 465 1.7870
4 5, 115
6 196, 540
8 823, 515 1

  

  

Figure B.1: The only possible topology of (4, 4) absorption sets.
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B.1.1.2 a = 5

Now b can be 1, 3 or 5. However, since g = 8, b 6= 1. Therefore, the only possible
connections will be the ones shown in Figure B.2.
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(a) (5, 3)
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(b) (5, 5)

Figure B.2: The only possible topology of (5, 5) absorption sets.

There are 155 of (5, 3) sets. And each variable node appears exactly 155×5÷155 = 5

times. Note that each (5, 3) set can reduce to three (4, 4) sets by removing any of the three
degree-2 nodes in Figure B.2(a) with counting possible duplicates. By checking, all 465
(4, 4) sets are contained in (5, 3) sets.

There are 3,720 of (5, 5) sets. And each variable node appears exactly 3720×5÷155 =
120 times. Note that each (5, 5) absorption set is a cycle of length 10, as shown in Figure
B.2(b).

B.1.1.3 a = 6
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(a) (6, 4) Type I
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(b) (6, 4) Type II
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(c) (6, 6)

Figure B.3: The only possible topologies of (6, b) absorption sets.

There are 22,630 of (6, 6) sets. And each variable node appears exactly 22630 × 5 ÷
155 = 876 times. No (6, 4) sets with topology Figure B.3(b), but 930 of Figure B.3(a)3.

By checking, half of (5, 3) sets can be reduced from (6, 4) sets, by removing either of
the bottom two nodes of Figure B.3(a).

B.1.1.4 a = 7

There are 930 of (7, 3) sets. And each variable node appears exactly 930 × 7 ÷ 155 = 42
times. There are 16,275 of (7, 5) sets4. And each variable node appears exactly 16275 ×
7 ÷ 155 = 735 times. There are 140,430 of (7, 7) sets. And each variable node appears
exactly 140430× 7÷ 155 = 6342 times.

3930× 6÷ 155 = 36.
4Include 7,440 of Figure B.4(c).
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(a) (7, 3) Type I
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(b) (7, 3) Type II
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(d) (7, 7)

Figure B.4: Possible topologies of (7, b) absorption sets.

By checking, all (5, 3) and (6, 4) sets can be reduced from (7, 3) sets. All (5, 5) sets
can be reduced from (7, 5) sets. There are 9, 300 (6, 6) sets that can be reduced from (7, 5)
sets.

B.1.1.5 a = 8
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(a) (8, 2)
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(b) (8, 6)
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~~~~~~

  

(c) (8, 8)

Figure B.5: Possible topologies of (8, b) absorption sets.

There are 465 of (8, 2) sets, which all have connectivity Figure B.5(a). And each vari-
able node appears exactly 465× 8÷ 155 = 24 times.

Let us take a closer look at the subgraph induced by this (8, 2) absorption set in Figure
B.6, which is identical to Figure 3.13. We observe that one (8, 2) set contains

• two (7, 3) sets by removing either degree-2 node;

• three (7, 5) sets by removing any of ¶, · and ½;

• two (6, 4) sets by removing either ¸ and ¹ or » and ¼;
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(b) Check nodes hidden.

Figure B.6: The topology of the (8, 2) absorption set.

• two (6, 6) sets by removing either ¶ and · or ¶ and ½;

• one (5, 3) set by removing ¹, º and »;

• four (5, 5) sets: ¶ · ¸ ¹ º, º » ¼ ½ ¶, ¶ · ¼ » º, and ¶ ½ ¸ ¹ º;

• three (4, 4) sets: ¶ · ¸ ½, ¶ · ¼ ½, and · ¸ ½ ¼.

As a matter of fact, all (4, 4), (5, 3), (6, 4) and (7, 3) sets are contained in (8, 2) sets. And
1, 860 (5, 5), 930 (6, 6), 1, 395 (7, 5) sets are contained in (8, 2) sets, respectively.

In addition, there are 5,115 of (8, 4) sets. And each variable node appears exactly
5115 × 8 ÷ 155 = 264 times. There are 196,540 of (8, 6) sets. And each variable node
appears exactly 196540 × 8 ÷ 155 = 10144 times. There are 823,515 of (8, 8) sets. And
each variable node appears exactly 823515× 8÷ 155 = 42504 times.

B.1.2 Error Events Analysis

First we simulated the standard iterative min-sum (MS) decoding using: AWGN channel
module, Binary Phase Shift Keying (BPSK) modulation and Max Iteration=50, floating
LLR values confined within [−10, 10]. All-zero codeword is assumed to be the original
transmitted message.

The simulation will not stop until more than one hundred decoding failures are col-
lected. Then the composition of the error patterns is analyzed and tabularized. We run these
simulations at SNRs from 4 to 7 dB at step size 0.25 dB.

Then we increase the LLR clipping range at the MS decoder and run all those exper-
iments again. We only found that that the dominance of the error rate by the absorption
sets is decreasing dramatically and that results in a lower error floor, which can be seen in
Tables B.2–B.14. The raw data displayed in those tables can also be converted to ratios and
presented as bar plots to help read the results. Figure 4.8(a) shows that the decoding failures
are dominated by absorption sets. Whereas Figures 4.8(b) and B.7 demonstrate that (8, 2)
absorption set is the dominant one.
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Table B.2: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 4 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 557,604 510,169 453,019 460,295
Total Error Frames 300 298 298 297

Total Error Bits 3,479 4,070 3,925 4,076
FER 5.38E–04 5.84E–04 6.58E–04 6.45E–04
BER 4.03E–05 5.15E–05 5.59E–05 5.71E–05

Codeword 0 0 0 0
(5,3) 0 1 0 1
(7,3) 2 3 4 6
(7,5) 0 0 0 1
(8,2) 66 7 16 11
(9,3) 0 0 0 2
(9,5) 0 0 0 2
(10,2) 16 1 3 1
(10,4) 0 2 1 0
(12,2) 1 0 0 0
(12,6) 0 2 0 0
(15,7) 1 0 0 0
(17,7) 0 0 0 1

Total Absorption Sets 86 16 24 25
Other Error Frames 214 282 274 272
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Table B.3: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4.25 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 4.25 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 1,323,688 1,298,475 1,220,096 1,211,145
Total Error Frames 299 298 298 297

Total Error Bits 3,231 3,807 3,643 3,869
FER 2.26E–04 2.30E–04 2.44E–04 2.45E–04
BER 1.57E–05 1.89E–05 1.93E–05 2.06E–05

Codeword 0 0 0 0
(4,4) 0 0 2 0
(5,3) 0 3 1 1
(7,3) 2 10 9 5
(7,5) 0 0 1 1
(8,2) 94 19 10 14
(8,4) 0 1 0 0
(9,3) 0 1 0 0
(9,5) 0 1 0 0
(10,2) 22 0 5 2
(12,2) 0 0 1 1

(16,10) 0 0 0 1
Total Absorption Sets 118 35 29 25
Other Error Frames 181 263 269 272
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Table B.4: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4.5 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 4.5 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 2,587,330 2,916,995 2,655,520 2,495,830
Total Error Frames 297 299 295 299

Total Error Bits 2,932 3,845 3,876 3,604
FER 1.15E–04 1.03E–04 1.11E–04 1.20E–04
BER 7.31E–06 8.50E–06 9.42E–06 9.32E–06

Codeword 0 0 0 0
(4,4) 0 1 1 0
(5,3) 0 1 2 1
(6,4) 0 0 1 1
(7,3) 1 2 9 7
(7,5) 0 1 0 0
(8,2) 116 8 10 18
(8,4) 1 4 3 0
(9,3) 1 0 0 1
(10,2) 35 2 1 3
(10,4) 0 0 1 1
(10,6) 0 0 1 0
(12,2) 2 0 0 1
(13,5) 0 1 0 0
(14,2) 1 0 0 0
(14,8) 0 0 1 0
(16,2) 1 0 0 0

Total Absorption Sets 158 20 30 33
Other Error Frames 139 279 265 266

168



Table B.5: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 4.75 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 4.75 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 5,518,124 7,173,802 6,076,975 6,761,129
Total Error Frames 293 297 295 292

Total Error Bits 2,677 3,962 3,539 3,254
FER 5.31E–05 4.14E–05 4.85E–05 4.32E–05
BER 3.13E–06 3.56E–06 3.76E–06 3.11E–06

Codeword 0 0 0 0
(4,4) 0 2 0 1
(5,3) 1 0 1 1
(6,4) 0 0 1 0
(7,3) 0 8 13 13
(7,5) 0 0 1 1
(8,2) 140 16 15 7
(8,4) 0 0 2 1
(9,3) 0 0 2 1
(10,2) 27 1 1 4
(10,4) 0 0 0 1
(12,2) 1 0 0 0
(18,2) 1 0 0 0

Total Absorption Sets 170 27 36 30
Other Error Frames 123 270 259 262
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Table B.6: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 5 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 11,729,572 18,723,480 15,481,708 15,134,469
Total Error Frames 293 291 295 293

Total Error Bits 2,573 3,639 3,647 3,595
FER 2.50E–05 1.55E–05 1.91E–05 1.94E–05
BER 1.42E–06 1.25E–06 1.52E–06 1.53E–06

Codeword 0 0 0 0
(4,4) 0 0 1 1
(5,3) 0 0 4 0
(5,5) 0 1 1 0
(6,4) 0 0 0 1
(6,6) 0 0 1 0
(7,3) 3 5 7 4
(7,5) 0 2 2 1
(8,2) 177 27 21 12
(9,3) 0 0 0 1
(10,2) 37 0 2 4
(11,3) 1 1 0 1
(12,2) 2 0 1 1
(14,2) 1 0 0 0

Total Absorption Sets 221 36 40 26
Other Error Frames 72 255 255 267
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Table B.7: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5.25 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 5.25 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 24,346,162 44,881,001 48,725,120 42,295,870
Total Error Frames 295 287 290 285

Total Error Bits 2,519 3,115 3,370 3,539
FER 1.21E–05 6.39E–06 5.95E–06 6.74E–06
BER 6.68E–07 4.48E–07 4.46E–07 5.40E–07

Codeword 0 0 0 0
(4,4) 0 2 0 1
(5,3) 1 2 1 1
(5,5) 0 0 1 0
(6,4) 0 0 1 0
(7,3) 0 5 10 10
(7,5) 0 1 0 1
(8,2) 198 17 14 15
(8,4) 0 1 0 0
(9,3) 0 1 2 0
(9,5) 0 1 0 0
(10,2) 36 3 5 3
(12,2) 1 0 1 0

Total Absorption Sets 236 33 35 31
Other Error Frames 59 254 255 254
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Table B.8: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5.5 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 5.5 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 54,449,507 125,913,015 121,893,114 119,291,880
Total Error Frames 286 286 279 284

Total Error Bits 2,396 3,636 3,600 3,764
FER 5.25E–06 2.27E–06 2.29E–06 2.38E–06
BER 2.84E–07 1.86E–07 1.91E–07 2.04E–07

Codeword 0 0 0 0
(4,4) 0 0 1 2
(5,3) 3 0 0 0
(5,5) 0 0 1 0
(6,4) 0 1 0 0
(6,6) 0 1 0 0
(7,3) 2 9 10 3
(7,5) 0 0 2 0
(8,2) 198 12 12 17
(8,4) 0 1 0 0
(9,3) 1 0 0 0
(9,5) 0 0 1 0
(10,2) 37 0 2 4
(12,2) 2 0 0 0
(16,4) 1 0 0 0

Total Absorption Sets 244 24 29 26
Other Error Frames 42 262 250 258
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Table B.9: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 5.75 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 5.75 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 117,059,584 340,548,946 331,125,421 352,913,708
Total Error Frames 291 268 279 286

Total Error Bits 2,410 3,288 3,740 4,103
FER 2.49E–06 7.87E–07 8.43E–07 8.10E–07
BER 1.33E–07 6.23E–08 7.29E–08 7.50E–08

Codeword 0 0 0 0
(5,3) 0 1 0 3
(5,5) 0 1 0 1
(6,4) 0 2 3 2
(6,6) 0 0 1 0
(7,3) 1 7 5 8
(7,5) 0 0 0 1
(8,2) 226 13 15 15
(8,4) 0 0 2 1
(9,3) 0 1 0 0
(9,5) 0 0 1 0
(10,2) 32 3 4 2
(10,4) 0 1 0 0

Total Absorption Sets 259 29 31 33
Other Error Frames 32 239 248 253
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Table B.10: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 6 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 305,329,921 1,043,715,615 932,949,538 1,038,563,352
Total Error Frames 290 261 257 260

Total Error Bits 2,371 3,881 3,612 3,495
FER 9.50E–07 2.50E–07 2.75E–07 2.50E–07
BER 5.01E–08 2.40E–08 2.50E–08 2.17E–08

Codeword 0 0 0 0
(4,4) 0 0 2 0
(5,3) 1 0 1 0
(5,5) 0 1 0 1
(6,4) 0 0 0 2
(7,3) 1 5 5 3
(8,2) 229 15 8 8
(8,4) 0 0 1 0
(8,6) 0 0 0 2
(9,3) 1 0 0 0
(9,5) 0 1 0 0
(10,2) 26 2 1 2
(12,2) 1 0 0 1
(14,2) 1 0 0 0
(14,4) 0 0 0 1

Total Absorption Sets 260 24 18 20
Other Error Frames 30 237 239 240
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Table B.11: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6.25 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 6.25 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 826,962,468 3,623,931,874 2,556,722,831 2,688,364,511
Total Error Frames 272 247 243 241

Total Error Bits 2,255 3,519 3,567 3,531
FER 3.29E–07 6.82E–08 9.50E–08 8.96E–08
BER 1.76E–08 6.26E–09 9.00E–09 8.47E–09

Codeword 0 0 0 0
(4,4) 0 1 1 1
(5,3) 1 0 0 2
(5,5) 0 0 0 1
(6,4) 0 1 1 2
(7,3) 3 7 1 3
(8,2) 214 12 6 8
(8,4) 0 1 0 0
(9,3) 3 0 0 0
(10,2) 31 2 2 0
(12,2) 1 0 0 0

Total Absorption Sets 253 24 11 17
Other Error Frames 19 223 232 224
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Table B.12: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6.5 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 6.5 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 1,994,568,368 9,156,248,969 8,488,881,290 8,729,152,294
Total Error Frames 258 197 215 208

Total Error Bits 2,096 3,009 3,512 3,307
FER 1.29E–07 2.15E–08 2.53E–08 2.38E–08
BER 6.78E–09 2.12E–09 2.67E–09 2.44E–09

Codeword 0 0 0 0
(4,4) 0 0 0 1
(5,3) 1 1 2 1
(5,5) 0 0 1 0
(7,3) 1 2 4 4
(7,5) 0 1 0 0
(8,2) 215 4 6 8
(8,4) 0 0 0 1
(9,3) 1 0 0 0
(9,5) 1 0 0 1

(10,2) 24 0 0 0
(10,4) 0 0 1 1

Total Absorption Sets 243 8 14 17
Other Error Frames 15 189 201 191
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Table B.13: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 6.75 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 6.75 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 5,534,970,894 28,814,519,101 29,174,130,466 28,453,186,304
Total Error Frames 263 151 183 175

Total Error Bits 2,103 2,291 3,692 2,977
FER 4.75E–08 5.24E–09 6.27E–09 6.15E–09
BER 2.45E–09 5.13E–10 8.16E–10 6.75E–10

Codeword 0 0 0 0
(4,4) 0 1 0 0
(5,3) 1 1 0 1
(6,4) 0 1 0 0
(7,3) 3 1 3 3
(8,2) 224 2 1 4
(8,6) 0 0 0 1
(9,3) 1 0 0 0
(9,5) 0 0 0 1
(9,7) 0 1 0 0
(10,2) 20 2 1 0
(12,2) 1 0 0 0

Total Absorption Sets 250 9 5 10
Other Error Frames 13 142 178 165
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Table B.14: A breakdown of error events of Tanner [155, 64, 20] (3, 5) code at 7 dB of a
min-sum decoder with different clipping values.

Eb/N0 = 7 dB Clipping@10 Clipping@38 Clipping@100 Clipping@∞
Total Tested Frames 15,357,623,747 90,768,900,266 161,114,248,732 77,339,128,967
Total Error Frames 242 104 183 141

Total Error Bits 1,903 1,387 3,692 2,910
FER 1.58E–08 1.15E–09 1.14E–09 1.82E–09
BER 7.99E–10 9.86E–11 1.48E–10 2.43E–10

Codeword 0 0 0 0
(5,3) 3 1 0 0
(6,4) 0 1 0 0
(7,3) 6 4 3 0
(7,5) 0 1 0 0
(8,2) 209 7 1 1
(8,6) 0 1 0 0
(9,3) 1 0 0 0
(10,2) 7 0 1 0
(11,3) 1 0 0 0
(12,2) 1 0 0 0

Total Absorption Sets 228 15 5 1
Other Error Frames 14 89 178 140
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Figure B.7: The percent of (8, 2) absorption sets of all absorption sets of Tanner [155, 64,
20] (3, 5) LDPC code. (Note that it shares the same legends as in Figure 4.8.)
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B.2 Tanner Code [755, 334, 14], (3, 5)

Using the same (dv, dc) = (3, 5) but with a bigger prime p = 151 we can construct a longer
Tanner code with N = dc × p = 755. Now a solution to (B.3) is

m = 8
n = 32

. (B.12)

Substituting into (B.6) results to

X =

 1 8 64 59 19
32 105 85 76 4
118 38 2 16 128


3×5

, (B.13)

which in turn gives the parity-check matrix representing this Tanner code as

H = IX =

I1 I8 I64 I59 I19
I32 I105 I85 I76 I4
I118 I38 I2 I16 I128


453×755

. (B.14)

The specifications of the code are listed below.

• Regularity: dv = 3, dc = 5.

• The number of variable nodes or code length: N = 755.

• The number of check nodes: 453.

• Information bits: k = 334.

• Design code rate: 1− dv/dc = 0.4.

• Actual code rate: R = k/N ≈ 0.4424.

• Minimum distance: dmin = 14 [76].

• Girth: g = 10 [75].

• Block structure of the parity-check matrix H [76]:

H =

I1 I8 I64 I59 I19
I32 I105 I85 I76 I4
I118 I38 I2 I16 I128


453×755

, (B.15)

where each Ix is derived by shifting the rows of a 151×151 identity matrix cyclically
to the left by x positions. The binary presentation of H is depicted in Figure B.8,
where non-zero entries are represented by solid nodes and zeros are not shown.

B.2.1 Absorption Sets

Facts on the first few absorption sets are listed in Table B.15.
By the same reason stated in Appendix B.1.1, both a and b have to be even or odd at the

same time. Due to the minimal cycle length g = 10, there are no a < 5 sets. So let us start
with a = 5 to show every number in Table B.15 is true.
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Figure B.8: Parity-check matrix of Tanner [755, 334, 14], (3,5) regular LDPC code.

Table B.15: First few absorption sets of Tanner code [755, 334, 14] (3, 5).

a b Existence Multiplicity Gain: µmax

< 5
No

5
1
3
5 Yes 4, 530 1

6
2

No
4
6 Yes 21, 895 1

7

1
No3

5
7 Yes 163, 080 1

8

2
4 No
6 Yes 50, 585
8 No
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(b) Check nodes hidden.

Figure B.9: The only possible topology of (5, 5) absorption sets.

B.2.1.1 a = 5

The only possible connection will be a length-10 cycle as shown in Figure B.9.
So we are looking for the multiplicity of 10-cycles, which is 4, 530. In addition, every

variable appears in the sets exactly 4530× 5÷ 755 = 30 times.

B.2.1.2 a = 6

Similarly, the possible topology will be a 12-cycle as shown in Figure B.10.
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Figure B.10: The only possible topologies of (6, 6) absorption sets.

By searching against the H, the multiplicity of (6, 6) sets is 21, 895 and every variable
appears in the sets exactly 21895× 6÷ 755 = 174 times.

B.2.1.3 a = 7

Due to the constraint g = 10, b 6= 1 or 3. So we have the following topologies.
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(b) (7,7)

Figure B.11: Possible topologies of (7, b) absorption sets.
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By searching against the H, only (7, 7) absorption sets exist and its multiplicity is
163, 080. Every variable appears in the sets exactly 163080× 7÷ 755 = 1512 times.

B.2.1.4 a = 8
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(a) (8, 4)
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(b) (8, 6)
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(c) (8, 8)

Figure B.12: Three possible topologies of (8, b) absorption sets.

Figure B.12(c) shows a 16-cycle, whereas Figure B.12(b) can be seen as a joint of two
10-cycles.

By searching against the H, the multiplicity of (8, 6) sets is 50, 5855 and every variable
appears in the sets exactly 50585× 8÷ 755 = 536 times.

(8, 4) and (8, 8) sets do not exist.

B.2.2 Error Events

Adopting the same simulation environment used before, we listed the breakdown of all
error events gathered at the decoder in Table B.16 and in the format of percentages in
Figure B.14. It is evident from Figure B.14 that the weight-dmin codeword is dominating
the decoding failures of this code. Actually the slope of the curves at 3 dB in Figure B.13
is approximately 16 and tends to be 14, which equals dmin, when the SNR gets higher.

5Including 15, 855 of topology Figure B.12(b).
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Figure B.13: The error rates of the Tanner [755, 334, 14] (3, 5) code using a standard
min-sum decoder with LLR∈ [−10, 10] and maximum iteration=50 on AWGN channel.
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Figure B.14: The percent of codewords of the error events of Tanner [755, 334, 14] (3, 5)
LDPC code using a standard min-sum decoder. Note that weight-dmin codeword is repre-
sented by green and all other codewords by yellow.

B.2.3 Minimum Weight Codeword

It seems that starting at 1.5 dB, far more codewords, especially the weight-dmin ones, are
making appearance than absorption sets. So weight-dmin codewords are dominating the
error floor.

One example of the codeword consists of the following variable nodes: {2, 75, 146, 153,
155, 226, 231, 290, 297, 326, 470, 477, 555, 557}, which has the topology shown in Figure
B.15. Noticing that this topology consists of two disjoint (6, 6) absorption sets, we can take
advantage of the knowledge of the already enumerated (6, 6) sets to find all codewords with
this connectivity. It turns out that there are 755 of them.

However, to make sure all weight-dmin codewords share this topology, we will have to
enumerate all minimum weight codewords without specifying any particular connectivity
but common constraints only. The algorithm searching for absorption sets applies here
finding codewords, but it is beyond our intention in studying the error floors caused by
absorption sets. Besides, (non-zero) codewords are deemed as valid output of a decoder.
This kind of errors can be treated by improving dmin which involves code design. That
concludes our exploration on this Tanner code.

B.3 Tanner Code [186, 35, 36], (5, 6)

Now we turn to a low rate Tanner code with (dv, dc) = (5, 6). To meet the constraints
dv|(p− 1), dc|(p− 1) and p being prime, the smallest candidate will be p = 31. A solution

186



 

FFFFFFFFFFFFFFFFFFFFFF
rrrrr  

xxxxxxxxxxxxxxxxxxxxxx MMMMM

 

%%%%%%%%%%%%%%%%%%%%%%%%%%

�����  

��������������������������
:::::

 

������

CCCCCCCCCCCCCCCCCCCCCCCCCC  

------

{{{{{{{{{{{{{{{{{{{{{{{{{{

 

------  

������

 
:::::  

�����

 
MMMMM  

rrrrr

  

Figure B.15: A topology of dmin codeword of the Tanner [755, 334, 14] (3, 5) LDPC code.

to (B.3) is
m = 6
n = 2

. (B.16)

Substituting into (B.6) results to

X =


1 6 5 30 25 26
2 12 10 29 19 21
4 24 20 27 7 11
8 17 9 23 14 22
16 3 18 15 28 13


5×6

, (B.17)

which in turn gives the parity-check matrix representing this Tanner code as

H = IX =


I1 I6 I5 I30 I25 I26
I2 I12 I10 I29 I19 I21
I4 I24 I20 I27 I7 I11
I8 I17 I9 I23 I14 I22
I16 I3 I18 I15 I28 I13


155×186

. (B.18)

Note that this matrix makes use of all I1, I2, . . . , I30 that are possible to cyclicly shift a
dimension 31 identity matrix.

The specifications of the code are listed below.

• Regularity: dv = 5, dc = 6.

• The number of variable nodes or code length: N = 186.

• The number of check nodes: 155.

• Information bits: k = 35.

• Design code rate: 1− dv/dc ≈ 0.1667.

• Actual code rate: R = k/N ≈ 0.1882.

• Minimum distance: dmin = 36.
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• Girth: g = 6.

• Block structure of H[76]6:

H =


I1 I6 I5 I30 I25 I26
I2 I12 I10 I29 I19 I21
I4 I24 I20 I27 I7 I11
I8 I17 I9 I23 I14 I22
I16 I3 I18 I15 I28 I13


155×186

, (B.19)

where each Ix is derived by shifting the rows of a 31 × 31 identity matrix cyclically
to the left by x positions. The binary presentation of H is depicted in Figure B.16,
where non-zero entries are represented by solid nodes and zeros are not shown.

Figure B.16: Parity-check matrix of Tanner [186, 35, 36] regular (5, 6) LDPC code.

B.3.1 Girth

First we checked that no any two rows of H share more than one non-zero element. There-
fore, this code is 4-cycle free. Then a 6-cycle was identified. So the girth of this code
is

g = 6. (B.20)
6By carefully choosing the configuration, we avoid constructing 4-cycles.
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B.3.2 Absorption Sets

Since dv = 5, then a ≥ 4 by the definition of absorption sets and it is 4-cycle free. In
addition, by the same argument in Appendix B.1.1, both a and b have to be even or odd at
the same time. Now let us start with a = 4 to show every number in Table B.17 is true.

Table B.17: Absorption sets of Tanner code [186, 35, 36] (5, 6).

a b Existence Multiplicity Gain: µmax

< 4

No

4 8

5
5
7
9

6

0
2
4
6
8
10
12 Yes 1, 860 2

7

1

No

3
5
7
9
11
13 Yes 11, 160

8

0

No

2
4
6
8
10
12

Yes
1, 395

14 43, 710
16 26, 040 2

B.3.2.1 a = 4

By g = 6, the only possible absorption set is (4, 8) as shown in Figure B.17 and none exists.

B.3.2.2 a = 5

It is readily seen that 5 ≤ b ≤ 10 and odd. No topologies shown in Figure B.18 exist.
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Figure B.17: The only possible topology of (4, 8) absorption sets.
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(c) (5, 9)

Figure B.18: Three possible topologies of (5, b) absorption sets.

B.3.2.3 a = 6

Graphically, (6, 0) absorption set topology exists as shown in Figure B.19. However, since
each (6, 0) set can be reduced to (5, 5) absorption sets, shown in Figure B.18(a), by remov-
ing any one of the six nodes, there cannot be any (6, 0) absorption set.
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Figure B.19: The only possible topology of (6, 0) absorption set or length-6 codeword.

(6, 0) absorption set topology also represents a length-6 codeword. As a useful corol-
lary, dmin > 6. Because dmin has to be even [76], we have dmin ≥ 8.

By removing edges from Figure B.19, we can construct the rest topologies of (6, b)

sets, where b = 2, 4, 6, 8, 10, 12, accordingly. There is no (6, 2) set, since it will give (5, 5).
However, thanks to the short length of this code, we simply did an exhaustive search rather
than a topology analysis one by one. Only (6, 12) sets are found. Theoretically, there exist
two connectivities of (6, 12), as shown in Figure B.20.

By searching against the H, the multiplicity is 1, 860 and every variable appears in the
sets exactly 1860×6÷186 = 60 times. A topology check confirms that all (6, 12) sets share
the connectivity Figure B.20(a), by the existence of 6-cycles and all check nodes degree is
either 1 or 2 within the induced subgraph.
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(a) With 6-cycle.
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(b) Without 6-cycle.

Figure B.20: Two possible topologies of (6, 12) absorption sets.

B.3.2.4 a = 7

Both (7, 1) and (7, 3) absorption sets do not exist since they can be reduced to (6, 4) or
(6, 6) sets.

There must be at least one degree-4 node in (7, b), where b = 5, 7, 9, 11, 13. Again, by
exhaustive search, only (7, 13) exists, and the only possible class is [4, 3, 3, 3, 3, 3, 3]. There
exist four connectivities, as shown in Figure B.21, for this class. By searching against the H,
the multiplicity is 11, 160 and every variable appears in the sets exactly 11160× 7÷ 186 =
420 times. It turns out that topology as Figure B.21(d) does not exist and there are 5, 580,
3, 720 and 1, 860 (7, 13) sets as Figure B.21(a)–B.21(c), respectively.
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Figure B.21: Four possible topologies of (7, 13) absorption sets.

B.3.2.5 a = 8

Both (8, 0) and (8, 2) absorption sets do not exist, because they can be reduced to (7, 5) set.
Therefore the minimum distance has been pushed further as dmin ≥ 10 and even.

By searching against the H, there are 1, 395 (8, 12) sets and every variable appears in
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the sets exactly 1395 × 8 ÷ 186 = 60 times, 43, 710 (8, 14) sets and every variable node
appears 43710× 8÷ 186 = 1880 times, and 26, 040 (8, 16) sets and every variable appears
26040× 8÷ 186 = 1120 times.

B.3.3 Codeword Spectrum

For a code with this length, it is affordable, nowadays, to find the codeword spectrum, as
shown in Table B.18. The minimum distance is dmin = 36, and there are 31 weight-dmin

codewords.7 The codeword distribution is also plotted as histograms shown in Figure B.22.

Table B.18: Codeword spectrum of Tanner [186, 35, 36] (5, 6) LDPC code.

Codeword Length Multiplicity Codeword Length Multiplicity
0 1 186 1
36 31 150 31
46 558 140 558
48 186 138 186
50 279 136 279
52 558 134 558
54 930 132 930
56 1,860 130 1,860
58 13,206 128 13,206
60 26,970 126 26,970
62 150,210 124 150,210
64 417,105 122 417,105
66 1,534,097 120 1,534,097
68 4,480,368 118 4,480,368
70 13,254,732 116 13,254,732
72 34,459,786 114 34,459,786
74 81,915,144 112 81,915,144
76 178,960,272 110 178,960,272
78 357,797,598 108 357,797,598
80 657,805,926 106 657,805,926
82 1,098,017,427 104 1,098,017,427
84 1,684,019,138 102 1,684,019,138
86 2,374,135,155 100 2,374,135,155
88 3,071,687,607 98 3,071,687,607
90 3,651,598,128 96 3,651,598,128
92 3,969,591,912 94 3,969,591,912

Total 34, 359, 738, 368 = 235

7Recall that the block permutation matrices of this code has dimension p = 31.
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Figure B.22: Histograms of Tanner [186, 35, 36] codewords.
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B.3.4 Error Events

The code performance is displayed in Figure B.23. It can be seen, together with Table
B.19, that the error patterns are not dominated by absorption sets yet, while the error rate
is already very low. This is due to the relatively large minimum distance of this code. In
addition, it seems like that (13, 9) absorption set is going to be the dominant one, which is
bigger than the typical dominant absorption sets that we have observer. This also can be
contributed to the large minimum distance. Therefore this code cannot help us example the
relation between absorption sets and error floor.
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Figure B.23: The error rates of the Tanner [186, 35, 36] (5, 6) code using a standard min-
sum decoder with LLR∈ [−10, 10] and maximum iteration=50 on AWGN channel.

B.4 Tanner Code [104, 30, 14], (3, 4)

Here we try (dv, dc) = (3, 4) with a nonprime p = 26. Thus the code length is N =
dc × p = 104. A solution to (B.3) is

m = 5
n = 9

. (B.21)

Substituting into (B.6) results to

X =

1 5 25 21
9 19 17 7
3 15 23 11


3×4

, (B.22)
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Table B.19: A breakdown of Tanner [186, 35, 36] (5, 6) error events from a standard min-
sum decoder with LLR∈ [−10, 10].

Eb/N0 7 dB 7.25 dB 7.5 dB 7.75 dB

Total Tested Frames 10,276,165 38,836,263 179,026,287 878,340,338
Total Error Frames 1,000 1,000 1,000 1,000

Total Error Bits 27,190 27,067 26,844 25,714
FER 9.73E–05 2.57E–05 5.59E–06 1.14E–06
BER 1.42E–05 3.75E–06 8.06E–07 1.57E–07

Codewords 0 0 0 0
(11,11) 0 0 1 1
(13,9) 4 7 12 25
(16,10) 0 0 0 1
(17,9) 0 0 0 1
(17,11) 0 0 0 1

Total Absorption Sets 4 7 13 29
Other Error Frames 996 993 987 971

which in turn gives the parity-check matrix representing this Tanner code as

H = IX =

I1 I5 I25 I21
I9 I19 I17 I7
I3 I15 I23 I11


78×104

. (B.23)

The specifications of the code are listed below.

• Regularity: dv = 3, dc = 4.

• The number of variable nodes or code length: N = 104.

• The number of check nodes: 78.

• Information bits: k = 30.

• Design code rate: 1− dv/dc = 0.25.

• Actual code rate: R = k/N ≈ 0.2885.

• Minimum distance: dmin = 14 [76].

• Girth: g = 6 [75].

• Block structure of H [76]:

H =

I1 I5 I25 I21
I9 I19 I17 I7
I3 I15 I23 I11


78×104

, (B.24)

where each Ix is derived by shifting the rows of a 26 × 26 identity matrix cyclically
to the left by x positions. The binary presentation of H is depicted in Figure B.24,
where non-zero entries are represented by solid nodes and zeros are not shown.
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Figure B.24: Parity-check matrix of Tanner [104, 30, 14] regular (3, 4) LDPC code.
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B.4.1 Absorption Sets

Facts on the first few absorption sets are shown in Table B.20 and enumeration steps are
skipped. Interested readers are referred to the previous sections.

Table B.20: First few absorption sets of Tanner code [104, 30, 14] (3, 4).

a b Existence Multiplicity Gain: µmax

< 4 No
4 4 Yes 465 1

5
1 No
3

Yes
155

5 3, 720

6
2 No
4

Yes
930

6 22, 630 1

7

1 No
3

Yes

930
5 16, 275
7 140, 430 1

8

2 465 1.7870
4 5, 115
6 196, 540
8 823, 515 1

B.4.2 Codeword Spectrum

The minimum distance of this code is dmin = 14, and there are 156 weight-dmin code-
words.8 The codeword distribution is listed in Table B.21. It is also plotted using his-
tograms, as shown in Figure B.25.

B.4.3 Error Events

The decoding performance of this code is shown in Figure B.26. It can be seen from Table
B.22 that the dominance of the (8, 2) absorption set to the error floor starts showing at
7 dB. By the time it completely dominating the decoding failures as the case of the Tanner
[155, 64, 20] LDPC code, the error rate will be too low to simulate. Therefore this code
does not quality as a good example to analyze the relation between absorption sets and
error floor.

8Recall that the block permutation matrices of this code has dimension p = 26, and 156 is a multiple of p.
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Table B.21: Codeword spectrum of Tanner [104, 30, 14] (3, 4) LDPC code.

Codeword Length Multiplicity Codeword Length Multiplicity
0 1 104 1
14 156 90 156
16 234 88 234
18 1,820 86 1,820
20 1,560 84 1,560
22 11,284 82 11,284
24 6,396 80 6,396
26 22,632 78 22,632
28 12,480 76 12,480
30 29,536 74 29,536
32 157,209 72 157,209
34 336,440 70 336,440
36 1,891,006 68 1,891,006
38 3,238,872 66 3,238,872
40 13,390,468 64 13,390,468
42 17,768,712 62 17,768,712
44 59,044,648 60 59,044,648
46 61,001,460 58 61,001,460
48 153,498,748 56 153,498,748
50 118,915,680 54 118,915,680
52 215,083,140

Total 1, 073, 741, 824 = 230
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Figure B.25: Histograms of Tanner [104, 30, 14] codewords.
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Table B.22: A breakdown of Tanner [104, 30, 14] (3, 4) error events from a standard min-
sum decoder with LLR∈ [−10, 10].

Eb/N0 7 dB 7.25 dB 7.5 dB 7.75 dB

Total Tested Frames 146,688,836 340,220,598 934,396,191 2,491,868,947
Total Error Frames 917 887 855 820

Total Error Bits 6,469 5,770 5,490 5,010
FER 6.25E–06 2.61E–06 9.15E–07 3.29E–07
BER 4.24E–07 1.63E–07 5.65E–08 1.93E–08

dmin Codeword 5 0 3 0
Other Codewords 1 0 1 0

(4,4) 1 5 1 6
(5,3) 0 0 0 1
(5,5) 7 5 5 5
(6,4) 10 8 12 16
(6,6) 1 0 1 2
(7,3) 5 7 7 10
(7,5) 5 3 2 2
(8,2) 25 32 69 84
(8,4) 2 3 4 2
(8,6) 2 1 1 1
(8,8) 1 0 0 0
(9,3) 0 1 0 0
(9,5) 1 1 3 0
(9,7) 1 0 0 0

(10,2) 1 0 8 4
(10,6) 2 2 2 4
(11,3) 0 0 1 0
(11,5) 0 0 1 1
(11,7) 0 0 2 0
(12,2) 1 1 0 2
(13,9) 0 0 1 0

Total Absorption Sets 65 68 120 140
Other Error Frames 846 819 731 680
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Figure B.26: The error rates of the Tanner [104, 30, 14] (3, 4) code using a standard min-
sum decoder with LLR∈ [−10, 10] and maximum iteration=50 on AWGN channel.
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