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Abstract 

Municipal drainage systems have a key role in public health and are considered one of the main 

components of every modern city's infrastructure. However, as the drainage system ages, its pipes 

gradually deteriorate at rates that vary based on the different conditions of utilization. To prevent 

unexpected failures, municipalities have adopted a proactive approach that relies on regular 

condition assessments of their assets from which data-driven maintenance, rehabilitation, and 

replacement plans are developed. From a practical standpoint, this data-driven planning relies on 

assessment information used in conjunction with deterioration models to evaluate the risk of failure 

associated with structural and operational anomalies. In this respect, data-driven plans can be very 

useful in assisting municipalities insofar as budget and process management are concerned. The 

most popular deterioration models rely on statistical analysis and statistical models whose 

accuracy depends heavily on the quality and the quantity of data collected as part of underground 

pipe inspections, e.g. the number of cracks, fracture, roots, etc. However, understanding the 

development of defects over time will not only help improve the accuracy of the existing 

deterioration models but will also provide valuable information in terms of understanding the 

relationship between the various factors affecting defect development and pipe deterioration. This 

research presents an image registration framework for extracting crack development information 

from the CCTV videos of sewer pipes. Image processing techniques are used to estimate a relative 

change in a defect from images taken at two different times to determine the relative growth of the 

defect. The framework was implemented on two case studies and a visual validation was applied 

to the results. In this respect, since the camera is not expected to be identical for the image time 

series, the accuracy of Area Scaler (AS), which is used so as to have a similar scale between the 
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images, is examined. This scaling procedure is illustrated using a case study, containing 49 pairs 

of images, leading to a 95.5% accuracy. 
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Chapter 1: Introduction 

1.1 Background and motivation 

Human societies depend greatly on drainage systems in order to maintain a high level of public 

health and hygiene, which constitute a fundamental in terms of avoiding large-scale epidemics 

(Meeker 1971). Generally, municipalities or private utility companies are responsible for installing 

and/or maintaining underground infrastructures such as drainage or water supply systems. Because 

buried pipes are subjected to mechanical stress (e.g., vibrations from traffic, tree roots, ground 

settlement) and aggressive chemical environments (e.g. corrosive gases, chemical aggregation of 

particles), they can age at a rapid pace. Around the world, the age of existing underground 

infrastructure can be as old as the city itself. The burden on municipalities to prioritize and 

maintain rapidly deteriorating sewer pipelines is increasing (Chughtai and Zayed 2008). A 

preventative maintenance practice aims at detecting as early as possible the structural and 

operational deterioration of sewer pipes in order to take the most appropriate corrective actions, 

e.g., repair, rehabilitation, or if the damage is extreme, replacement of the faulty sections( Yin et 

al. 2020). In practice, a wide range of pipeline inspection techniques is used to investigate the 

structural and operational status of pipes from which deterioration models are built in order to 

predict their rate of failure. Presently, one of the most widely used practices for conducting sewer 

pipe inspections is closed-circuit television (CCTV) (Daher 2015) because this technology is 

reliable, robust, easy to set up (in the field), and more importantly because it allows sewer 

technologists to review the collected data (in the form of video footage) anytime if needed. In 

practice, the use of CCTV videos is generally limited to identifying and classifying defects 

according to some standardized code that can be internal to the organization or as defined by a 

professional association. However, despite the widespread of CCTV technology for sewer pipe 
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inspection, only limited efforts have been devoted to extracting additional information that can 

benefit longitudinal defect modelling and maintenance planning. Such information can be detected 

using time-series images of the same pipe and can be employed to gain a deeper understanding of 

the deterioration process in underground pipes and build more robust deterioration models. 

1.2 Research objectives 

This research introduces an image-based framework that takes advantage of the time series of 

CCTV inspection videos in order to extract information conveyed by more than one image. More 

specifically, the output of the proposed framework is the relative geometrical development of 

specific defects over the service period of the sewer pipes, which addresses a significant research 

gap in the preventative maintenance of sewer pipes. Such deterioration information is valuable in 

terms of gaining a deeper understanding of how sewer defects evolve locally (over time), so as to 

both schedule the appropriate maintenance that will prevent the collapse of a sewer pipe and to 

build more robust deterioration models. The objectives of this research are outlined as follows: 

a) exploring the possibility of extracting additional value by stacking images in the form of a 

time series allowing time-dependent data-driven deterioration modelling to be conducted; 

b) proposing a framework for calculating the relative growth of a defect in an underground 

pipe; 

c) integrating image processing algorithms in order to automate the process of image 

registration in the field of underground pipe; and 

d) using case studies to validate and implement the framework on a dataset of real sewer pipe 

images. 
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1.3 Thesis organization  

This thesis is organized into five chapters starting with the introduction in Chapter 1, which 

introduces the topic and research objective and provides an overview of the research. Chapter 2 

provides a literature review of the methods used in underground condition assessment, the process, 

and the application of image registration and the previous studies of underground pipes 

deterioration models. Chapter 3 comprises an overview of the proposed research methodology, 

explaining the main parts of the defect development detection system, and illustrating the area 

scaler concept. Chapter 4 includes an explanation of the implementation of the proposed system 

as applied to case studies. Finally, Chapter 5 covers the general conclusion, along with research 

contributions and limitations. 
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Chapter 2: Literature Review 

2.1 Overview 

This chapter reviews research studies of relevance to the present research. First, background 

information is provided in the form of statistics and an overview of infrastructure systems in 

Canada, including the contribution of sewer systems and their associated costs for inspection and 

maintenance. Next, a literature review of various inspection and condition assessment techniques 

is presented with a particular focus on the CCTV process, which is the input data source of the 

present research. Thereafter, the image registration process is explained in terms of the main steps 

and classification depending on the application domain, in addition to a review of previous 

research pertaining to image registration employment. Finally, the literature regarding 

deteriorations in the sewer pipes is reviewed, with a focus on the models used to evaluate and 

predict the condition of the underground pipes.  

2.2 Background 

In Canada, most of the infrastructure is reaching the end of its service life. The majority of this 

infrastructure and facilities are managed and owned by municipalities and were constructed 

between the 1950s and 1970s, which means they are on the verge of failure. Given the tight fiscal 

situation in most municipalities, the quality of services provided is compromised (Mirza 2007). 

Table 2.1 shows the proportion of different infrastructure in Canada that is managed by 

municipalities as of 2000.  

Table 2. 1: Canada's municipal infrastructure stock (2000) (Mirza 2007) 

Canada's municipal infrastructure stock (2000) 

Transportation and transit 55% 
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Water and wastewater 30% 

Other infrastructure (recreation, public building) 15% 

 

In a report for the Federation of Canadian Municipalities, Mirza (2007) categorized the 

infrastructure according to its age and found that infrastructure that is more than 80 years old 

represents about 28% of the total stock, while infrastructure that is between 40 and 80 years old 

represents 31% of the stock. The remaining 41% per cent of Canadian infrastructure is 40 years 

old or less. Table 2.2) shows the percentage of the infrastructure classified in each age group. 

Table 2. 2: Age of Canada’s infrastructure (years) Mirza (2007) 

Age of Canada’s infrastructure (years) 

0–40 years 41% 

40–80 years 31% 

80–100 years 28% 

 

Drainage systems in Canada are not exempt from aging and rapid deterioration as approximately 

80% of sewer systems have reached the expected service life of 50 years (Zhao 1998). Mirza 

(2007) has found that the deterioration rate is generally correlated with the maintenance level. 

Proper and adequate maintenance increases the service life of the infrastructure. Figure 2.1 

shows the effect of four different levels of annual maintenance on the infrastructure condition. 

It is widely understood that in the absence of maintenance, the deterioration rate will increase 

rapidly, and the infrastructure/facility will be out of service in a relatively short time. However, 

the deterioration rate can be lowered, and a longer service life can be achieved by investing 2% 

of the annual facility cost in its maintenance. 
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Figure 2. 1: Infrastructure condition as determined by maintenance(Mirza 2007) 

 

Pipe inspection is one of the essential steps in assessing the condition of the pipes in the network 

and determining which parts need to be maintained before a catastrophic failure occurs. Table 2.3 

compares the costs for some commonly used inspection methods. Inspection methods have been 

evolved significantly over the past 50 years. Data collected by pipe inspection has improved in 

terms of quality and quantity due to the updating of methods used and by incorporating the latest 

technologies.  

Table 2. 3: Cost comparison of several commonly used inspection methods for 

underground pipes(Zhao 1998) 

Method Used Unit Cost ($/mm diameter) 

CCTV $0.009 

Sonar $0.030 

Man-Entry $0.007 

Combined CCTV/Sonar $0.013 

Zoom Camera $0.033 



7 
 

2.3 Types of sewer systems 

There are two main types of urban drainage systems: the combined sewer system (CSS) and the 

separate sewer system (SSS) (Toffol et al. 2007). In CSS, waste water from domestic, commercial, 

and industrial uses and storm water are collected and run in a single pipe to a publicly owned 

treatments works (POTW). Mohammadi (2019) mentioned that CSS is convenient when the city 

needs both sanitary and storm sewers as it is less expensive compared to constructing two separate 

systems. Large cities tend to have combined drainage systems in order to help with flood control. 

Figure 2.2 shows an illustration of a combined sewer system. 

 

Figure 2. 2: Combined sewer system (CSS) (Mohammadi 2019)(EPA, 2004) 

SSS depends on independent pipes that are completely separated from each other. One of the pipes 

transports sanitary water from different uses and the other transports the stormwater. This type of 

system is less expensive for municipalities that desire only wastewater collection; however, this 

system is not designed to manage a large amount of water from wet weather events as there is a 

separated network for dealing with the stormwater. Figure 2.3 shows a drawing of a SSS system 

(EPA, 2004).  
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Figure 2. 3: Separate Sanitary Sewer and Storm System  (SSS) (Mohammadi 2019) (EPA, 2004) 

 

2.4  Assessment techniques of underground Pipes 

Wastewater infrastructure systems are subject to a combination of physical and chemical factors 

that cause deterioration over time. A preventative maintenance practice aims at detecting as early 

as possible structural and operational deteriorations of sewer pipes in order to take the most 

appropriate corrective actions, e.g., repair, rehabilitation, or if the damage is extreme, replacement 

of the faulty sections (Yin et al. 2020). The pipes inspection process helps in reducing the cost of 

emergency repairs, which are 50% more expensive than repairs under normal circumstances 

(Mohammadi 2019). Interest in buried pipeline inspection first emerged after World War II 

(Allouche and Freure 2002). Of the various inspection methods, the man-entry method, considered 

the most basic inspection method, is a method in which trained personnel physically enter the pipe, 

performs the inspection, and records the notes. However, safety issues, the high cost, and the 

physical constraints, such as the diameter of the pipe that allows the inspector to enter and perform 

the inspection, make this technique less popular compared to other methods. Factors such as the 
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pipe’s diameter, age, material, and the service it delivers are important factors that determine the 

suitable inspection method among those shown in Figure 2.4. 

 

Figure 2. 4: Pipeline inspection methods (Allouche and Freure 2002) 

The following is a brief description of the various inspection methods commercially used for the 

condition assessment of wastewater pipes: 

2.4.1 Smoke testing 

One effective tool for leak detection is smoke testing as it is a fast and low-cost technique that 

involves generating non-toxic smoke and pushing it into the system using a blower installed on a 

manhole when a part of the network has been isolated by rubber flanges or other stoppers to confine 

the smoke. As a result, smoke escapes from faulty connections, or cracks, which allow the 

detection of these defects. Figure 2.5 shows the smoke testing process.  
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Figure 2. 5: Typical smoke testing operation (Allouche and Freure 2002) 

2.4.2 Dye testing 

In the dye testing method, a non-toxic dye is used to detect any unrecorded connections between 

the stormwater drains and sanitary sewers. The non-toxic dye which has a fluorescent colour is 

applied in the area of interest, for example, through drain leaders, driveways, or local drains. Then, 

a manhole located downstream from the area of dye application is monitored, as shown in Figure 

2.6, to detect the trace of the dye (Allouche and Freure 2002; Khazraeializadeh 2012). 

  

 

Figure 2. 6: Dye testing (Khazraeializadeh 2012) 
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2.4.3 Zoom camera technology 

A visual inspection is performed by using a high-tech camera equipped with a long-range zoom 

lens. The interior of the pipe is illuminated by means of powerful halogen lights and the camera 

provides a continuous image of the pipe’s interior surface. This method depends on the penetration 

depth of the lights which can achieve an operational range of a zoom camera with a range of 25m 

in pipes that have a diameter of 250 mm or less, or a maximum range of 50m in a pipe with a larger 

diameter (Allouche and Freure 2002). 

2.4.4 Sewer scanners and evaluation technology (SSET) 

Sewer scanners and evaluation technology (SSET) provides a continuous, 360-degree view of the 

interior wall of the pipe through a high-resolution scanner. One advantage of this method is 

producing unfolded image (2D image) that improve the accuracy of the defect’s detection (Koo 

and Ariaratnam 2006)(see Figure 2.7). Another advantage of SSET that it can achieve better 

productivity as there is no need for frequent stops at the defects. (Iseley et al. 1997; 

Khazraeializadeh 2012;). 

 

 

Figure 2. 7: SSET survey machine and an example of typical output 

(Blackhawk Inc., 2000; Allouche and Freure 2002) 
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2.4.5 Ground penetration radar (GPR) 

 In this method, radio waves are sent into the ground in the area of interest. Travel time and the 

strength of the reflected signals of the short pulses of the electromagnetic energy are received and 

recorded (Duran et al. 2002). GPR is an easy to set up, effective method in locating the 

underground pipe and identify any gaps or voids surrounding the pipe. Recently GPR has been 

used to evaluate the rehabilitation by installing the GPR in a crawler and sending it through the 

pipe. Conductive material such as clay minerals can negatively affect the accuracy and the depth 

of penetration of this method ( Khazraeializadeh 2012; Mellett 1995). 

 

Figure 2. 8: Locating pipelines using ground penetrating radar technology 

(www.gprps.com)(Khazraeializadeh 2012) 

2.4.6 Ultra-sonic inspection (sonar) 

Ultra-sonic or sonar inspection is a non-destructive method that use high frequency sound waves 

to inspect the interior wall of a pipeline(Khazraeializadeh 2012).  The waves are directed to the 

pipe and the differences in the amount of the energy reflected and the travel times of these waves 

are used to calculate the depth of the object and identify its location. Ultra-sonic inspection has 

higher Capability of detecting fine Defects such as small size cracks and fractures in addition to 

pipe-wall deflection and displacement(Koo and Ariaratnam 2006)(see Figure 2.9). In addition, 
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information about the structure of the pipe, such as thickness, and the material in the surrounding 

area of the pipe can be obtained (Allouche and Freure 2002). 

 

Figure 2. 9: Ultrasonic inspection for cracks 

 (www.ppsa-online.com)(Khazraeializadeh 2012) 
 

2.4.7 Laser interferometer 

The laser interferometer method works by way of a similar mechanism to the sonar method. 

However, in a laser interferometer, a laser light will be directed toward the pipe, a surface with 

defects will reduce the amount of light reflected. The 3D shape of the pipe and the defects are 

obtained, which helps in locating any defects so accurate measurements can be obtained (Allouche 

and Freure 2002). 

2.4.8 Infrared thermography 

Infrared thermography relies on the principle that different objects have different thermal 

conductivities; thus, the flow of heat energy will vary in terms of speed when it moves between 
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objects with different temperatures (from warm areas to cooler ones). An image is obtained that 

shows different colours representing the different objects depending on their level of infrared 

radiation (see Figure 2.10). Infrared thermography is a safe method in terms of using only thermal 

radiation(Duran et al. 2002). Leaking points and voids around the pipe can be effectively detected; 

however, the exact location and the extent of the defects cannot be defined accurately 

(Khazraeializadeh 2012). 

 

Figure 2. 10: Infrared thermography inspection(Khazraeializadeh 2012) 

(www.maverickinspection.com)  

2.4.9  Impulse hammer 

The impulse hammer method involves monitoring the response of the inspected sewer to the 

dynamic broadband frequency generated by a dynamic hummer placed at a manhole (see Figure 

2.11). The impulse hammer method is mainly used to inspect the structural soundness of brick 

sewers (Khazraeializadeh 2012; Sibbald et. al. 1995). 
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Figure 2. 11: Impulse hammer and accelerometers (www.used-line.com) (Mellett 1995) 

2.4.10 Closed-circuit television (CCTV) 

 The most common technique used for the inspection of sewer pipelines is closed-circuit television 

(CCTV)(Koo and Ariaratnam 2006). The emergence of CCTV occurred after World War II as 

most of the sewer systems were damaged and needed to be inspected (Allouche and Freure 2002). 

Although the basic concept behind CCTV is to drive a crawler equipped with a camera through 

the drainage pipe and the camera televises the interior image of the pipe, many improvements have 

been introduced to the method. The camera that is driven inside the pipe (see Figure 2.12) can be 

remotely directed and a zoom lens can be added to focus on detected defects. 

 

Figure 2. 12: CCTV crawler(Kashani 2014) 

The visual inspection enables the observing of the defects in the pipe, however, the interpretation 

of the images depends on the operator, which can result in differences in the description of the 

detected defects provided by the different operators. There are several protocols for condition 

http://www.used-line.com/


16 
 

assessment of the sewer systems that are used by operators to recognize and define defects (kashani 

2014). A wide range of defects in sewer pipes can be detected by visual inspection, such as crack, 

fracture, holes, and deposits (see Figure 2.13). 

 

Figure 2. 13: Examples of defects and example of a tap in sewer pipes (Yin et al. 2020) 

The CCTV process team usually consists of four members: a) one flusher operator who flushes 

the pipes before the CCTV inspection process, because flushing dirty pipes helps in obtaining 

clearer images and opens the path for the crawler; b) One CCTV personnel who performs the 

inspection process by driving the crawler, recording the videos and making the daily reports; c) 

two general swampers who help with opening the manhole, installing the crawler, organizing the 

traffic, and supporting the CCTV process in general. A CCTV unit is a modified truck to support 

the process that is equipped with all the needed tools. Table 2.4 shows the various tools typically 

contained in a CCTV truck. The truck also has space to do the office work and is equipped with a 

computer and a printer to prepare the daily reports (see Figure 2.14). 
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Table 2. 4: List of CCTV equipment inside a CCTV Truck (Navab-kashani 2014) 

No. Tools/Equipment Description  Quantity 

1 Canvas trap 1 

2 Traffic cones 8 

3 Safety signs (Men working) 2 

4 Snap ring pliers 1 

5 Yellow poly rope 1 

6 25 pc hex key set 1 

7 5-piece pliers set 1 

8 7" strait jaw visa grip  1 

9 Cutter wire stripper 1 

10 Utility knife & blades 1 

11 6", 10" and 12" adjustable wrench 1 

12 12-piece screwdriver set 1 

13 Nut driver 5/16" 1 

14 Tape measure 1 

15 Pick 1 

16 Sledgehammer  1 

17 2-way mallet 1 

18 Multimeter 1 

19 Heat gun 1 

20 Walkie-talkie radios 2 

21 Gas detector 1 

22 Measuring heel 1 
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Figure 2. 14: Working area inside a CCTV truck (Navab-kashani 2014) 

2.5 Image registration 

Comparing images of the same scene captured at different times from different viewpoints can be 

a challenging task for algorithms not using any manual guidance. The images need to be aligned 

at the pixel level (i.e. registered) so that differences can be detected (Kuppala et al 2020). A means 

of correspondence should be established between images of interest in order to have a meaningful 

comparison (i.e. difference). There is no one method that can fit all cases of image matching. That 

is because of the diversity of degradation and distortion in images to be compared. Every method 

should consider not only the assumed type of geometric deformation between the images but also 

noise corruption and required accuracy (Zitová and Flusser 2003).In this respect, when it comes 

to the registration of two or more images for the purpose of pixel-based comparisons and 

differencing, Song et al. (2014) and Zitová and Flusser (2003) divided image registration onto four 

main steps as shown in Figure 2.15: 
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 Figure 2. 15: Registration process main steps (Wyawahare et al. 2009) 

• Feature detection: Distinct points that represent the salient elements in the image are 

detected (Siddharth and Rajeev 2014). These points can usually be used as control points. 

Examples of features could be lines intersections, corners, contours. 

• Feature matching: When features are detected, they are usually described based on the 

designs and patterns of their surrounding pixels. Different algorithms use different 

formulas to assign a signature of a feature point (Siddharth and Rajeev 2014). One example 

of these descriptors is calculating a bit string description of an image patch constructed 

from a set of binary intensity tests for a set of sampled pairs of pixels that surround the 

feature point. This process is significant as it is considered the foundation of features 

matching. Various similarity measures then can be applied to the values of the descriptors 

in order to find the matching points. 

• Transform model estimation: in this step, the parameters that would account for the various 

deformations in the image are estimated(Deshmukh and Bhosle 2011). These parameters 

are called transformation model parameters. Transformations are classified into three 

Feature detection 

Feature matching 

Transform model estimation 

Image transformation and overlying 
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categories: 1) Rigid transformations which include scaling, Rotation, and translation. In a 

rigid transformation, the overall relationships between points do not change. 2) Affine 

Transformations that are restricted to preserve collinearity and allow besides rotation and 

translation also scaling and shearing 3) Non-rigid transformations in which objects in the 

images do not retain their relative shape and size and the overall relationships between 

points change. perspective transformation is an example of a non-rigid transformation. 

(Brown 1992)   

• Image resampling and transformation: In this step, the two images are overlaid on each 

other by transforming one of them depending on the estimated transformation model (Song 

et al. 2014). 

A classification of four categories of image registration is introduced by Zitová and Flusser (2003) 

depending on the application, as shown in Figure 2.16. 

 

Figure 2. 16: Image registration applications 
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• Different times: This application is used when changes during the time of an object or 

movement of the object is required to be detected. Thus, the information exists in more 

than one image taken at different times. Time-series images acquired for the same view are 

required(Zitová and Flusser 2003). Some examples of this application are detecting the 

growth of tumors in the medical field(Oliveira and Tavares 2014), motion detection in 

computer vision, and changes in land usage in remote sensing fields. 

• Different viewpoints: Changing the sensor’s (e.g. camera) viewpoint is particularly 

important when several images need to be assembled to mosaic a large area or to build a 

3D representation of an object. 

• Different sensors (multimodal analysis): This is used when different sensors are used to 

get images for the same view in order to build a complex model for the view depending on 

the information flows acquired by the different sensors. This is widely used in aerial or 

satellite remote sensing. 

• Scene to model registration: the aim of this type of registration is to register images of the 

view with a model built for the same view in order to compare them. A model, for example, 

can be GIS layers and the image is an aerial image taken for the same area(Zitová and 

Flusser 2003). This type is widely used for remote sensing to localize images, such as aerial 

photos, on the map, and making comparisons. 

Image registration has been applied in different research areas. Song et al. (2014) proposed an 

image registration approach for remote sensing in which the authors employ a histogram of triangle 

area representation (TAR) and feature matching strategy. In their research, the approach is based 

on a robust transformation parameter estimation algorithm called the histogram of TAR sample 

consensus, which was developed to replace the existing random sample consensus (RANSAC) and 
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progressive sample consensus (PROSAC) methods that have been widely used in the 

transformation parameter estimation step of remote-sensing image registration. Zelinski et al. 

(2018) presented a non-rigid image registration algorithm for remote sensing that uses publicly 

available tools such as python, NumPy, SciPy, OpenCV, and SIFT to find anomalies associated 

with human activity for the purpose of detecting underground nuclear explosions. A good deal of 

research in the area of image registration has been done in the medical field (Oliveira and Tavares 

2014). For example, Foskey et al. (2005) proposed and validated a framework, based on 

deformable image registration, for the automatic processing of serial 3D CT images used in image-

guided radiation therapy. In the field of civil engineering, few attempts have been made to apply 

image registration techniques when compared with the medical and remote sensing fields. One 

example of those attempts is the work by Sohn et al. (2005) in which a framework using a 

multitemporal image of a crack was proposed to quantify the development of cracks in a concrete 

specimen. The images were obtained from an off-the-shelf digital camera. Two-dimensional 

projection based on a modified iterated Hough transform algorithm was applied to retrieve the 

geometric transformation parameters. The output of the system is the crack of concrete surface 

changes (length and width). Chen et al. (2006) studied the relationship between the expansion of 

concrete and crack width, in which a time series of photos was taken to examine the accelerated 

process of cracking generated by putting an alkali-containing concrete plate in a hot environment 

to produce cracks quickly. Then cracks were segmented from the images by applying a greyscale 

thresholding based on the observation that cracks have lower grey value than their surroundings. 

Another related study by Adhikari et al. (2014) proposed a framework to extract the properties of 

cracks in bridges using image process techniques. A Fourier Transform of digital images was used 

to estimate the transformation parameters in the registration process for change detection. Kim et 
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al. (2015) developed a crack detection system using unmanned aerial vehicles and digital image 

processing. The inherent structure of the crack in captured images was detected using morphology 

techniques. The system uses segmentation, feature extraction, and decision-making components. 

Yang et al. (2018) focused on detecting changes in thin cracks on reinforced concrete surfaces. In 

their study, several processes were integrated, namely, image-matching based on optical flow and 

subpixels, camera calibration to make up for the deformation caused by a change in perspective, 

and other required geometric transformations. The outputs of the system are detection of early-

stage fine cracks that are unobservable by the naked-eye and an estimation of the width of the sear 

crack opening. An image-based framework for multiview change detection in concrete was 

proposed by Buatik et al. (2019) to compare images produced by 3D reference models built from 

a set of images of the structure with new acquired images in order to detect any changes over time. 

The complexity of transformation (the third step shown in Figure 15) that is required for an image 

registration application for detecting changes in defects in underground pipes is a challenging task, 

as there are different conditions affecting the choice of the suitable transformation model. In most 

cases, different perspectives of the video camera caused a change in relative shape and size of 

objects in the images taken. Perspective distortion has two effects:1) scaling, which causes the 

imagery to appear smaller the further it is from the camera; and 2) foreshortening, which causes 

the imagery to appear more compressed the more it is inclined away from the camera (Brown 

1992).  

Information regarding camera specifications and geometric measurements, such as distances from 

the objects, are required to eliminate perspective distortion effects. This information is not 

available most of the time in the context of sewer pipe inspections, especially for the distances 

between camera and objects, which makes the estimation of the transformation parameters a 
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complicated process. In fact, it is crucial to have a correspondence that is within an acceptable 

accuracy limit and can simplify the complexity of estimating the transformation parameters, which 

is difficult in underground pipes images as previously explained. When this correspondence 

between underground pipes is established, the information conveyed in more than one image can 

be retrieved, and in our case, this includes the development of defects (e.g., cracks) based on 

images for the same defect taken at different times.  

2.6 Sewer pipe deterioration models 

In the case of a failure of a sewer system, there will be catastrophic consequences affecting most 

sectors of society. For that, wastewater is rated with zero tolerance for failure (Khazraeializadeh 

2012). 

To predict the health condition of sewer pipes, various deterioration models have been developed 

over the years. In order to understand the short-term and long-term behavior of sewer pipes, 

information collected from underground pipe inspections is used to build and structure the 

mathematical tools that can help to estimate the future condition of drainage pipes. Mohammadi 

(2019) classified the commonly used sewer deterioration models into two groups, statistical and 

artificial intelligence models, as shown in Figure 2.17. 
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Figure 2. 17: Classification of sewer deterioration models(Mohammadi 2019) 

The following is a brief description of the various types of statistical and artificial intelligence 

models.  

 

2.6.1 Statistical models 

In statistical models, a random variable X which represents a quantity, whose outcome is uncertain, 

is described depending on analyzing the probabilistic nature of historical data. The probability 

estimates which output of the statistical model can be used to predict the future condition of sewer 

mains (Coles 2001). The quality of data is an important factor that affects the performance of 

statistical models that are sensitive to noisy data according to Tran (2007). The probabilistic nature 

of the deterioration process makes statistical models a good choice for use in modelling sewer pipe 
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deterioration. A linear regression model is the simplest statistical model and it depends on 

predicting the value of a dependent variable by mean of an independent variable. Multilinear 

regression models are more complicated in that several independent variables are combined in a 

linear model to estimate the value of a dependent variable(Li et al. 2019). Exponential regression 

models, which are nonlinear models, are more flexible than linear models and can be better fitted 

with fewer parameters to represent the response between the dependent and the independent 

variables (Chatterjee and Simonoff 2013). Gedam (2016) used data obtained via closed circuit 

television (CCTV) inspection of a sewer system to build a linear regression model. They conclude 

that pipe age is the most significant factor in determining the condition of the pipe. Other factors, 

such as pipe installation depth, also have an impact on the regression analysis. The pipe material 

and pipe diameter are found to be less important. Logistic regressions are used to analyze the 

relationship between multiple independent variables and a categorical dependent variable (Hawari 

et al. 2020). El-Assaly et al. (2006) proposed a framework to estimate the cost of rehabilitation of 

sewer pipes in the city of Edmonton, using logistic regression deterioration to predict the pipe 

condition and the cost of the repair. Five factors was considered in the model; age, waste type, 

material type, diameter, and depth. Park (2009) categorized logistic regression models into three 

groups: logistic regression, multinomial logistic regression, and ordinal logistic. Rigid sewer pipe 

deterioration and failure was the focus of a study presented by (Davies et al. 2001). They developed 

a logistic regression model to predict the structural condition of rigid sewer pipes by considering 

the factors that affect the process of deterioration which in turn are grouped into three categories, 

namely, construction features, local external factors, and other factors. The result indicated that 

pipe material, diameter, length, sewer type, location, groundwater, and soil corrosivity are the 
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influencing factors that affect the deterioration of sewer pipes. Koo and Ariaratnam (2006) 

presented a logistic regression model to measure th 

e extent of deterioration of the infrastructure system. They used data that was collected by ground 

penetrating radar (GPR) and digital scanning and evaluation technology (DSET). To generate the 

binary regression model pipe age, maximum velocity, and cumulative flow were used. They 

concluded that pipe age and cumulative flow are important factors in the process, while maximum 

velocity is not a main factor. A Bayesian logistic framework is developed by Kabir et al. (2018) to 

predict the structural condition of sewers. To validate the effectiveness of the proposed framework 

a total of 12,728 sewer mains belonging to the wastewater network of the city of Calgary, Canada, 

were used. The factors used to build the model are pipe age, material, diameter, length, slope, 

depth, rim elevation, up invert, and down invert. The results of the study show pipe age and length 

are the main factors in the deterioration of cementitious and clay sewers, whereas sewer age and 

diameter are enough to capture the effect for metal (cast iron, or ductile iron) and plastic sewers.  

Markov chains were developed by Andrei Markov in 1906 as a discrete-time stochastic process. 

Markov chains provide information about the probabilities of condition changes in a system 

(Hawari et al. 2020). Wirahadikusumah and Abraham (2002) developed Markov chain-based 

models that are optimized for extending infrastructure management modelling to sewer systems. 

Pipe material, depth, groundwater level, and type of soil were used to generate the model. The 

result showed that municipalities and sanitary departments must routinely inspect their sewer 

systems and collect system-wide condition data in order to obtain significant improvements of 

deterioration models. Hyung et al. (2005) developed a Markov chain-based deterioration model to 

estimate the transition probabilities for a sewer system using the ordered probit model. They 

concluded that factors such as depth of the pipes, soil condition groundwater level, and the 
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frequency of sewage overflows should be collected and evaluated in order to predict more accurate 

and detailed deterioration patterns. Scheidegger et al. (2011) presented a novel network condition 

simulator (NetCoS) that produces a synthetic population of sewer sections with a given condition-

class distribution. A semi-Markov chain to calculate transition probabilities based on user-defined 

survival functions was used in the deterioration model. 

2.6.2 Artificial intelligence (AI) models 

The interest in employing neural networks and machine learning methodologies to build 

deterioration models has increased. That is because AI models have the capability to solve complex 

problems such as estimation of the ordinal ratings or nonlinear deterioration behaviour 

(Mohammadi 2019). Charniak and McDermott (1985) define AI as “the art of creating machines 

that perform functions that require intelligence when performed by people”. Early AI work was 

developed in 1943 by McCulloch and Walter Pitts based on an understanding of three components, 

namely, the basic physiology and function of neurons in the brain, propositional logic, and 

Turing’s theory of computation (Russell and Norvig 2010). In the following section, neural nets, 

genetic algorithms, and machine learning will be discussed briefly. A) Neural nets and genetic 

algorithms: The principle of neural nets and genetic algorithms is to instruct connections between 

entities or nodes that work like the human brain. Neural net models are used for different functions 

and applications. In the field of underground pipes, fuzzy set theory and neural networks (NNs) 

were employed to model deterioration by Tran et al. (2007), and Mohammadi (2019). Najafi and 

Kulandaivel (2005) developed an artificial neural network (ANN) model for predicting the 

condition of sewer pipes based on the historical condition assessment data. Identifying the pipes 

in bad condition was the output of the model and the input is a set of known values. The model 

showed a good learning tendency; however, the noisy data was a big problem toward gaining high 
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accuracy. They concluded that using ANN models for underground pipe condition prediction is 

feasible; however, acquiring higher accuracy requires a larger and more inclusive data set. Tran et 

al. (2006) presented a probabilistic neural network (PNN) to model the structural deterioration of 

concrete pipes. Approximately 650 data points were used to build the model, and the data were 

provided by the City of Greater Dandenong in Victoria, Australia. Pipe diameter, age, depth, slope, 

location, number of trees, hydraulic condition, soil type, and soil moisture were the input variables 

considered in this model. The results show that the PNN model has a better predictive power and 

uses significantly more input variables (i.e., explanatory factors) than the discriminant model. 

Khan et al. (2010) presented a study that uses artificial neural networks to investigate the 

importance and influence of certain characteristics of sewer pipes with respect to their structural 

performance. The data was provided by the municipality of Pierrefonds, Canada. Pipe material, 

diameter, depth, bedding material, length, and age were used to build the model. Back propagation 

and probabilistic neural network (NN) models were developed and validated. The developed NN 

models were used to rank the parameters, in order of their importance/influence on pipe condition. 

The developed models indicated that neural network is capable to prioritize inspection and 

rehabilitation plans for existing sewer mains. Sousa et al. (2014) evaluate the performance of 

artificial intelligence tools, namely artificial neural networks (ANNs) and support vector machines 

(SVMs), in predicting the structural condition of sewers. The results showed that ANNs have the 

potential to achieve the best results when compared to the SVMs and are sensitive to the approach 

used in the development and their performance may vary in a wider range of results when 

compared to the SVMs. However, the SVMs are also less sensitive to the independent variables 

used in the model. Due to overlapping in the solution space for both models, it was not possible to 

select the best model in this study. The superiority of one model over the other depends on the 
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goal of the inspection and the development method of the tool. A trade-off between lower 

performance and less variability (support vector machine) and higher performance and more 

variability (artificial intelligence) should be considered. Jiang et al. (2016) proposed ANN model 

to predict the corrosion processes of concrete sewer pipes. the expected start time of corrosion and 

the rate of development can be predicted by the developed model. Actual field measurement of 

Australian sewer pipelines were used  to develop and validate the model. Alsaqqar et al. (2017) 

compared the performance of multiple discriminant model (MDM) and neural network 

deterioration models (NNM) to predict the condition of sewer system in the city of Baghdad. They 

found that NNM has higher overall prediction with an efficiency of 87.3%. Age, traffic, diameter, 

material, type, slope, length, and depth are considered in developing the models. B) Machine 

learning: Machine learning is a branch of artificial intelligence that intersects with other fields, 

especially statistics, mathematics, physics, theoretical computer science, and more. Gobeyn et al. 

(2019) reformulate the definition of machine learning as a field of study that uses computer 

programs or algorithms that can adapt or change (i.e. train) from an experience (data) given a 

performance measure. Machine learning algorithms are categorized into three broad categories 

based on the method of learning: according to Sathya and Abraham (2013) and Mohammadi 

(2019)  

• Supervised learning: Learning from an experience by providing training data that includes 

examples of input variables and their corresponding output. The machine learns from the data 

provided and infers a function to get the output from the corresponding input. 

• Unsupervised learning: Learning from an experience by providing training data that includes 

only input data without a corresponding output.  
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• Reinforcement learning: Like unsupervised learning in terms of providing input data without 

their corresponding output. It learns from the interaction with the different factors through the 

trial and error approach, for example, by mean of reward and penalties method. 

Various machine learning algorithms, such as support vector machine (SVM), decision trees 

random forest, and Bayesian regressions, have been used to model the deterioration process of 

underground pipes. Mashford et al. (2011) investigated the use of support vector machine (SVM) 

models to predict the condition of sewers. CCTV footage collected of the sewer system in 

Adelaide, Australia, was used to build the model. The data has discrete condition grades for the 

inspected pipes that vary between 1 (good) and 5 (very poor). The input variables of the model 

were pipe diameter, age, road type, slope, start invert, end invert, material, soil type, soil 

corrosivity, grade, angle, sulphate soil, and groundwater level. The SVM model was tested by 

using this sample data before being applied to predict the condition of the remaining assets in the 

sewer system. The results of the study proved that the SVM achieves good predictive performance 

with 91% accuracy and can be used as a new approach to model deterioration of sewer pipes. 

Syachrani et al. (2013) developed a decision tree–based deterioration model for drainage system 

pipes. The study used different factors as an input of the model, namely, pipe age, diameter, length, 

slope, and the number of pipe defects. The data were provided by Johnson County Wastewater 

(JCW) in Kansas, United States. Conventional regression- and neural network–based models that 

use the same data sets were developed and a comparison of the performances was undertaken. The 

outcome reflected that the decision tree model consistently outperforms regression and neural 

network models. Laakso et al. (2018) developed random forest and binary logistic regression 

models to predict condition rating of sewer pipelines. The databases used in this research were 
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collected from southern Finland. The results showed the random forest model (accuracy 62%) 

slightly outperformed the binary logistic regression model (accuracy 56%). 

As it can be seen from the literature review study, almost all the deterioration models focus on 

predicting the overall health condition of sewer pipes rather than the local evolution over-time of 

an anomaly. Previous research focused on quantifying the collective impact of defects (in the form 

of deterioration) and purposely overlooked the importance of local changes of defects. In fact, 

according to the well-known “process of sewer collapse” theory, the collapse of a sewer pipe 

proceeds in three stages. In the initial deterioration stage, the pipe suffers one or several minor 

defects evolve in size (which during the second phase is referred to as deterioration) to reach the 

final stage of deterioration at which point the pipe collapses (Davies et al. 2001). As a result, it is 

important to gain a deeper understanding of how sewer defects evolve locally (over time) so as to 

schedule the appropriate maintenance that will prevent the collapse of a sewer pipe. In summary, 

the geometrical development of specific defects over the service period of the sewer pipes 

constitutes a significant research gap in the preventative maintenance of the sewer pipe 
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Chapter 3: Methodology 

3.1 Overview 

This research focuses on two main objectives: (1) proposing a framework for calculating the 

relative growth of defects in underground pipes using image processing techniques (see Figure 3); 

and (2) validating the framework by implementing it on case studies using real-life sewer pipe 

images. The process flow underlying in this framework includes three main parts. (1) Image pre-

processing is the step-in which images are converted from colour into greyscale form. 2) Feature 

detection and area scaler (AS) calculation that uses ORB (Oriented FAST (Features from 

Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary 

Features)) as the feature detection and matching algorithm. 3) Defect segmentation and change 

calculation. ORB is a rigid and affine invariant algorithm, which means that the algorithm is 

consistent under any rigid or affine transformation. Rigid deformation includes translation, 

reflection and rotation. The affine transformation includes, in addition to the rigid transformations, 

shear and scaling transformations. 

The simple form of affine transformation, which covers the rigid transformation and the uniform 

scaling can be given in Equation (1) as follows (Brown 1992): 

 
(
𝑥2

𝑦2
) = (

𝑡𝑥
𝑡𝑦

) + 𝑠 (
cos⁡(𝜃) −sin⁡(𝜃)
sin⁡(𝜃) cos⁡(𝜃)

) (
𝑥1

𝑦1
) (1) 

where:

(𝑥1, 𝑦1)⁡coordinate⁡of⁡a⁡point⁡in⁡the⁡first⁡image, (𝑥2, 𝑦2)⁡coordinate⁡of⁡a⁡point⁡in⁡the⁡second⁡image, 

𝜃⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛, 𝑆⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑢𝑛𝑖𝑓𝑜𝑟𝑚⁡𝑠𝑐𝑎𝑙𝑒⁡𝑓𝑎𝑐𝑡𝑜𝑟, 𝑎𝑛𝑑⁡𝑡⁡𝑖𝑠⁡𝑡ℎ𝑒⁡𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛⁡⁡ 

Equation (1) map the point (𝑥1, 𝑦1)⁡ in the first image into the point (𝑥2, 𝑦2)⁡in the second image. 
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The general 2D affine transformation, which can account for more general spatial distortions such 

as a shear and changes in aspect ratio, can be expressed as shown in Equation (2): 

 (
𝑥2

𝑦2
) = (

𝑎13

𝑎23
) + (

𝑎11 𝑎12

𝑎21 𝑎22
) (

𝑥1

𝑦1
) (2) 

A shear component of an affine transformation can be given as: 

𝑆ℎ𝑒𝑎𝑟𝑥 = (
1 𝑎
0 1

) , 𝑆ℎ𝑒𝑎𝑟𝑦 = (
1 0
𝑏 1

) 

A shear along one axis causes a distortion of pixels along one axis, proportional to their location 

on the other axis. 

If the scaling in the images is not uniform, the scale along axis x is different from the scale along 

axis y then the aspect ratio is the relative scale between x and y axes. 

𝑆𝑐𝑎𝑙𝑒 = (
𝑆𝑥 0
0 𝑆𝑦

) 

An affine transformation, which can be obtained by applying any combination of translation, 

rotation, scaling, and shear, describes the cumulative distortions. 

ORB detects features in the images, gives the detected feature a description value (descriptor) 

which depends on the designs and patterns of their neighboring pixel and matches the features. 3) 

Defect segmentation and change calculation. The common features identified by ORB in the two 

images are then used to determine the area scaling factor allowing areas encapsulating identified 

defects to have the same reference. As a result, using the oldest image as a reference, the areas of 

the defects in newer images will be scaled thus allowing the relative change (in size) for defects 

of interest to be quantified. 
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3.2 Framework for detection of defect development 

The overview of the proposed system framework is presented in Figure 3.1. Time-series images 

that are extracted from CCTV inspection videos serve as the original data source. Main processes 

are developed and implemented in python programming language for which several image 

processing libraries are readily available such as OpenCV, an open-source library for image and 

video analysis by Intel. OpenCV is related to computer vision, such as feature and object detection 

and machine learning(Mistry and Saluja 2016). Other libraries include scikit-image, which is an 

image processing library that implements algorithms and utilities for use in research, education 

and industry applications (Walt et al. 2014), and Pillow(PIL), which provides extensive file format 

support, an efficient internal representation, and fairly powerful image processing capabilities 

(Clark and Lundh 2020). The main algorithm used is ORB image matching, which has three main 

components, namely, feature point extraction, generating feature point descriptors, and feature 

point matching (Luo et al. 2019). Contour, Hough Lines, and curve detection are used for crack 

segmentation. Some manual processes are required such as extracting frames with defects and 

drawing triangles bound to the defects in images. The main processes will be discussed in detail 

in the next sections. The output of the framework is the relative growth of the defect shown in the 

images in the form of area of the bounding box, approximately bounded rectangle length change, 

and approximate bounded rectangle width growth. 
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Figure 3. 1: Overview of the automated defect development detection system 

 

3.2.1 Input data 

Input data of the framework are pairs of images showing the same defect at two different times, as 

shown in Figure 3.2. These images are extracted from CCTV inspection videos of the same pipe 

at different times. It is important to mention that when CCTV videos are collected, recordings of 

the same pipe will not necessarily start at the same point (i.e. from the “zero”) and although the 

NASSCO standard recommends a speed of 9 m/min (approximately 30 ft/min) for the crawler, in 

practice this speed cannot be maintained at a constant (Yin et al. 2019). These variabilities during 

data collection make it impossible to rely on the information reported by the crawler to overlay in 

a straightforward way the frames from different videos (footage of the same pipe). In this work, a 

semi-automatic two-step approach is proposed: (1) a deep-learning automatic defect detection and 

classification procedure is applied to CCTV videos (of the same pipe) to output a list of frames 
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containing anomalous features (e.g. cracks, fractures, breaks, etc.); and (2) frames representing the 

same defect are then manually arranged in sets which are then fed to the proposed procedure. An 

example of the data input is shown in Figure 3.2. 

  

Figure 3. 2 Time-series sewer pipe defect image in 2008 and in 2010 

 

The images show the same scene of pipe segment number 53003 on two different dates: 

08/21/2008 and 09/07/2010. After feeding the time-series frames of the same defect to the ORB 

algorithm in order to calculate AS, the defect of interest should be bounded by drawing a 

containing rectangle for the defect in each of the images. Luckily, the deep-learning 

implementation YOLOv3 for image-based feature recognition draws an (approximate) bounding 

box around each feature of interest it has identified in the image (Yin et al. 2020). As a result, 

these frames could be used as input to the proposed procedure provided that the bounding boxes 

are adjusted to best fit the associated defects in order to get an accurate and consistent dimension 

for the defects. Figure 3.3 shows an example of a defect with a bounding box manually drawn 

(left) and as reported by YOLOv3 object detection algorithm (right).  
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Figure 3. 3: Image on the left shows manually bounding the defect using Microsoft PowerPoint 

software, image on the right shows YOLOv3 defect detection and bounding 

3.2.2 Output of the framework 

When it comes to condition assessment of infrastructure, the introduction of new technologies 

geared towards improving consistency and efficiency led researchers to explore the benefits of 

image segmentation and computer vision algorithms to identify and label defects. In this regard, 

underground drainage pipes are no different, since in recent years CCTV inspections have become 

very popular worldwide. While traditional inspections of sewers provide valuable information 

regarding the structural and operational condition of this infrastructure, this information is only a 

snapshot at a specific time. To extend the capability of the traditional practice of condition 

assessment, this research explores the possibility of extracting additional value by stacking images 

in the form of a time series allowing time-dependent data-driven deterioration modelling to be 

conducted. The outputs of the proposed framework are the relative changes of the defects in the 

images, which are estimated from the changes in the dimensions of the best fitting bounding-box 

around the defect of interest. An assumption of the uniform scaling in the images has been made 

and then a dimension scaler is calculated depending on the calculation of AS. Then, the relative 

change in the length of the defect is calculated.  
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3.3 Experiments of AS method 

3.3.1 Area scaler (AS) 

From three matching points that are not aligned in two images, a triangle in each image can be 

drawn using the coordinates of matching points and the AS can be calculated. 

Depending on the calculated 𝐴𝑆 = Area1 Area2⁄ , according to Equation (3), a bounding area of 

any defect (Area4) in one image can be scaled to be compared with the bounding area of the same 

defect in the second image (Area3) and the change in the area can be determined as can be shown 

in Figure 3.4. Thus, the proposed AS could be the tool of correspondence to compare and detect 

changes between images. However, an accuracy and consistency evaluation should be done to 

validate the degree of invariance that AS could suffer when taking the effect of deformation result 

from image acquisition. 

 

Figure 3. 4: Illustration of the AS  
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 𝐴𝑆 = ⁡𝐴𝑟𝑒𝑎1/𝐴𝑟𝑒𝑎2 (3) 

 𝐴𝑆 = ⁡𝑆𝑐𝑎𝑙𝑒⁡𝐹𝑎𝑐𝑡𝑜𝑟⁡2⁡⁡⁡⁡⁡𝑤ℎ𝑒𝑛⁡𝑡ℎ𝑒⁡𝑠𝑐𝑎𝑙𝑖𝑛𝑔⁡𝑖𝑠⁡𝑢𝑛𝑖𝑓𝑜𝑟𝑚 (4) 

When the coordinates of matching points are known, the area of the formed triangle can be 

calculated as per: 

 𝐴𝑟𝑒𝑎1 = 𝐴𝑟𝑒𝑎𝑎𝑏𝑐 = √𝑆(𝑆 − 𝑎𝑏)(𝑆 − 𝑏𝑐)(𝑆 − 𝑎𝑐) (5) 

  The lengths of the sides of a triangle can be calculated using Equations (6) through (8): 

 𝑎𝑏 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (6) 

 𝑎𝑐 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (7) 

 𝑏𝑐 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 (8) 

where⁡𝑆⁡is⁡the⁡half⁡of⁡the⁡perimeter⁡as⁡calculated⁡using⁡Equation(9):⁡⁡⁡ 

 
⁡⁡S =

𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐

2
 (9) 

The same calculation is done for the 𝐴𝑟𝑒𝑎2. 

If AS is consistent (has the same value all over the images), matching areas can be scaled and a 

growth in an area can be detected. 

3.3.2 The experiment of AS concept on CCTV images 

When the aim of comparing images is measuring changes, a mean of correspondence that can 

account for variations affecting dimensions of objects in the images is required. 

In case of CCTV inspection process, videos are recorded for the same pipe segment at different 

times. Although these videos are inspecting the same pipe, the geometric characteristic of the video 

frames could be different. Geometric deformations could be classified as either rigid, affine, or 

non-rigid deformation. In rigid deformation, the overall relationships between points do not 
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change. Rigid transformations, which include translation, reflection, and rotation, preserve the 

points, lines, length, angles, and the parallelism of a set of two lines. This means a triangle in one 

image maps onto a matching triangle in the second. Affine transformations are restricted to 

preserve collinearity and allow, besides rotation and translation, also scaling and shearing. Thus, 

the area scale is constant and does not change all over the image under any affine transformation. 

Any transformation that falls out of rigid and affine transformation categories is called non-rigid 

transformation (Davari et al. 2017). An example of a non-rigid transformation, which is popular 

in the image registration field, is perspective deformation, which is distortion occurring when 

images of the same scene are taken from different perspectives. Perspective distortion causes 

imagery to appear smaller the further it is from the camera and more compressed the more it is 

inclined away from the camera (Brown 1992).  

AS is invariant for rigid and affine transformations. Therefore, AS could be a suitable tool to 

correspond matching images if the purpose is to quantify the change in defect area that occurs 

between two different times. However, deformations that result from a different perspective of the 

CCTV camera affect the globality feature of AS. That means when there is a difference in 

perspective, AS will not be constant all over the image.  

To study the effect on the globality of AS due to differences in perspective of the images collected 

during underground pipe inspections, a set of 49 pairs of sewer pipe matching images taken at 

different times will be examined. 

Data used in this experiment were extracted from two sets of videos collected at different times 

and provided by our industry partner. Figure 3.5 shows the flowchart of the AS experiment process. 

The process will be explained and applied to two pairs of images.  



42 
 

Manual Part

Algorithm 

Part

Find a pipe that has 

inspections in two different 

times 

Get frames for same scene 

in both videos

CCTV 

Videos

Manually select three 

points in the first frame 

Manually select 

corresponding points in the 

second frame 

Get the coordinate of both 

set of points  

Record and end

Start

Calculate Areas bounded 

by each set of points in 

both images 

Calculate Area scale(AS)

 

Figure 3. 5: A flowchart of AS experiment process 

In the following we show the process applied on two pairs of images:  

The images are obtained from inspection videos for two pipe segments which have the IDs 30796 

and 53003. For each pair of images, the coordinates of 3 pairs of associated points are shown in 
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Figures 3.6 and 3.8. To test the globality of AS, the selected points should be distributed all over 

the images (see Figures 3.7, 3.9). The AS was then calculated, recorded, and is detailed in this 

section. 

3.3.2.1 Example 1: Pipe segment: 30796 

 
Figure 3. 6: a) A pair of matching images from pipe segment 30796, b) The first pair of matching 

areas, c) The Second pair of matching areas, d) The third pair of matching areas 
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Figure 3. 7: A plot of the selected points in each image.  

 

Using Equations (5) through (9), 𝐴1⁡𝑎𝑛𝑑⁡𝐴2 for each pair of matching areas are calculated, then 

the AS is calculated using Equation (3).  

Table 3. 1: AS calculation for the first pair of images 

 

Coordinates of 

matching points 

x1 y1 x2 y2 x3 y3 A1 A2 

AS = 

A1/A2 

Pair1 

First image 250 264 704 87 719 268 42414  
0.782 

Second image 238 345 760 115 796 307  54252 

Pair2 

First image 618 136 158 409 81 324 30060.5  
0.737 

Second image 667 163 41 451 135 538  40767 

Pair3 

First image 527 177 703 86 868 379 33291.5  
0.763 

Second image 552 207 761 117 973 443  43607 
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After calculating the three values of AS, further calculations (see Tables 3.2, 3.4) are done to 

quantify the effect of the perspective deformation on the globality of AS.  

Difference-Range represents the error that results if only one set of matching areas was used to 

calculate AS. It is calculated as Equation (10) as follows:  

 Difference-Range= |max(AS1, AS2, AS3) − min(AS1, AS2, AS3)| (10) 

Then the average value of AS is calculated using Equation (11).  

 Avg = (𝐴𝑆1 + 𝐴𝑆2 + 𝐴𝑆3)/3 (11) 

Difference-Range (Avg) represents the maximum error that results from using the average of three 

values of AS and can be determined by the max absolute value of  Avg-AS1, Avg-AS2, and Avg-

AS3: 

 Difference − Range(Avg) = 𝑚𝑎𝑥(|Avg − 𝐴𝑆1|, |Avg − 𝐴𝑆2|, |Avg − 𝐴𝑆3|) (12) 

In the following, we apply Equations (10) through (12) to calculate the values shown in Table 3.2 

for the first pair of images: 

Difference-Range:⁡0.782⁡– ⁡0.737⁡ = ⁡0.049⁡ = ⁡4.9⁡% 

Avg⁡ = ⁡ (0.782⁡ + ⁡0.737⁡ + ⁡0.763)⁡/3⁡ = 0.760 

|⁡Avg − 𝐴𝑆1| = ⁡ |0.760⁡– ⁡0.782| ⁡= ⁡⁡0.021 

|Avg − 𝐴𝑆2| = ⁡⁡ |0.760⁡– ⁡0.737| ⁡= ⁡⁡0.023 

|Avg − 𝐴𝑆3| = ⁡⁡ |0.760⁡– ⁡0.763| ⁡= ⁡⁡0.003 

Difference-Range (Avg)= max(2.1%, 2.3%, 0.3%) = 2.3% 

Table 3. 2: Results summary of AS experiment for the first pair of images 
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30796 7 0.782 0.737 0.763 4.5% 0.761 0.021 0.024 0.002 2.37% 



46 
 

3.3.2.2 Example 2: Pipe segment: 53003 

 

Figure 3. 8: a) A pair of matching images from pipe segment 53003, b) The first pair of matching areas, c) 

The Second pair of matching areas, d) The Third pair of matching areas 

Using Equations (5), (6), (7), (8), (9), 𝐴1⁡𝑎𝑛𝑑⁡𝐴2 for each pair of matching areas are calculated, 

then the AS is calculated using Equation (3).  
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Table 3. 3: AS calculation for the first pair of images 

 

Coordinates of 

matching points 

x1 y1 x2 y2 x3 y3 A1 A2 AS = 

A1/A2 

Pair1 

First image 341 157 598 169 881 419 30427   

0.918 
Second image 317 133 591 152 896 415   33133.5 

Pair2 

First image 514 299 765 51 737 327 31166   

0.941 
Second image 469 294 731 308 778 290   33111.5 

Pair3 

First image 488 30 386 463 885 420 105840.5   

0.899 
Second image 463 7 354 449 896 412   117765.5 

 

 

Figure 3. 9: A plot of the selected points in each image. 
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In the following we apply equations (10, 11, 12) to calculate the values shown in Table 3.4 of the 

second pair of images: 

Difference-Range = 0.941 – 0.899 = 0.042 = 4.2 % 

Avg = ⁡ (0.918⁡ + ⁡0.941⁡ + ⁡0.899)/3⁡ = ⁡0.919 

|⁡Avg − 𝐴𝑆1| = ⁡0.919⁡– ⁡0.918⁡ = ⁡⁡0.001 

|⁡Avg − 𝐴𝑆2| = ⁡0.919⁡– ⁡0.941⁡ = ⁡⁡0.022 

|⁡Avg − 𝐴𝑆3| = ⁡0.919⁡– ⁡0.899⁡ = ⁡⁡0.02 

Difference-Range (Avg) = max(0.1%, 2.2%, 2%) = 2.2% 

Table 3. 4: Results summary of AS experiment for the second pair of images 
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53003 7 0.918 0.941 0.899 4.2% 0.919 0.001 0.022 0.020 2.17% 

Table 3.5 shows the result of examining the globality of AS using 49 pairs of images. 

Table 3. 5: The results of applying the concept of AS on 49 different pairs of images.  

S
eg

m
en

t#
 

S
et

#
 

A
S

1
 

A
S

2
 

A
S

3
 

D
if

fe
re

n
ce

-R
an

g
e 

A
v
g
 

A
v
g
-A

S
1

 

A
v
g
-A

S
2

 

A
v
g
-A

S
3

 

D
if

fe
re

n
ce

-R
an

g
e 

(A
v
g
) 

30796 1 0.718 0.695 0.729 3.4% 0.714 0.004 0.019 0.015 1.90% 

30796 2 0.626 0.655 0.66 3.4% 0.647 0.021 0.008 0.013 2.10% 

30796 3 0.765 0.806 0.819 5.4% 0.797 0.032 0.009 0.022 3.17% 
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30796 4 0.787 0.735 0.724 6.3% 0.749 0.038 0.014 0.025 3.83% 

30796 5 0.802 0.797 0.743 5.9% 0.781 0.021 0.016 0.038 3.77% 

30796 6 0.633 0.66 0.617 4.3% 0.637 0.004 0.023 0.020 2.33% 

30796 7 0.782 0.737 0.763 4.5% 0.761 0.021 0.024 0.002 2.37% 

30796 8 0.613 0.627 0.633 2.0% 0.624 0.011 0.003 0.009 1.13% 

53003 1 0.741 0.719 0.771 5.2% 0.744 0.003 0.025 0.027 2.73% 

53003 2 0.886 0.893 0.862 3.1% 0.880 0.006 0.013 0.018 1.83% 

53003 3 0.903 0.885 0.93 4.5% 0.906 0.003 0.021 0.024 2.40% 

53003 4 0.995 1 1.013 1.8% 1.003 0.008 0.003 0.010 1.03% 

53003 5 0.791 0.764 0.783 2.7% 0.779 0.012 0.015 0.004 1.53% 

53003 6 0.678 0.714 0.699 3.6% 0.697 0.019 0.017 0.002 1.90% 

53003 7 0.918 0.941 0.899 4.2% 0.919 0.001 0.022 0.020 2.17% 

53003 8 0.713 0.696 0.693 2.0% 0.701 0.012 0.005 0.008 1.23% 

53003 9 0.96 0.909 0.911 5.1% 0.927 0.033 0.018 0.016 3.33% 

53003 10 1.028 0.986 1.001 4.2% 1.005 0.023 0.019 0.004 2.30% 

53003 11 0.953 0.954 0.935 1.9% 0.947 0.006 0.007 0.012 1.23% 

53003 12 0.899 0.92 0.901 2.1% 0.907 0.008 0.013 0.006 1.33% 

53003 13 0.91 0.922 0.934 2.4% 0.922 0.012 0.000 0.012 1.20% 

53003 14 0.957 0.999 0.984 4.2% 0.980 0.023 0.019 0.004 2.30% 

53003 15 0.984 1.012 1.032 4.8% 1.009 0.025 0.003 0.023 2.53% 

53003 16 0.837 0.876 0.828 4.8% 0.847 0.010 0.029 0.019 2.90% 

53003 17 0.861 0.818 0.851 4.3% 0.843 0.018 0.025 0.008 2.53% 

53003 18 0.855 0.874 0.858 1.9% 0.862 0.007 0.012 0.004 1.17% 
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52759 1 0.879 0.899 0.918 3.9% 0.899 0.020 0.000 0.019 1.97% 

53052 1 0.857 0.899 0.876 4.2% 0.877 0.020 0.022 0.001 2.17% 

53052 2 0.866 0.874 0.821 5.3% 0.854 0.012 0.020 0.033 3.27% 

53052 3 0.964 0.979 0.931 4.8% 0.958 0.006 0.021 0.027 2.70% 

85707 1 0.875 0.898 0.906 3.1% 0.893 0.018 0.005 0.013 1.80% 

85707 2 0.741 0.763 0.751 2.2% 0.752 0.011 0.011 0.001 1.13% 

85707 3 0.839 0.821 0.795 4.4% 0.818 0.021 0.003 0.023 2.33% 

85707 4 0.601 0.593 0.583 1.8% 0.592 0.009 0.001 0.009 0.93% 

85707 5 0.978 0.99 0.963 2.7% 0.977 0.001 0.013 0.014 1.40% 

85707 6 0.8 0.835 0.845 4.5% 0.827 0.027 0.008 0.018 2.67% 

85707 7 0.825 0.826 0.807 1.9% 0.819 0.006 0.007 0.012 1.23% 

85707 8 0.679 0.712 0.697 3.3% 0.696 0.017 0.016 0.001 1.70% 

85707 9 0.918 0.912 0.89 2.8% 0.907 0.011 0.005 0.017 1.67% 

85729 1 0.917 0.922 0.907 1.5% 0.915 0.002 0.007 0.008 0.83% 

85729 2 0.892 0.894 0.924 3.2% 0.903 0.011 0.009 0.021 2.07% 

85729 3 0.8 0.767 0.774 3.3% 0.780 0.020 0.013 0.006 1.97% 

85729 4 0.713 0.763 0.737 5.0% 0.738 0.025 0.025 0.001 2.53% 

85729 5 0.893 0.941 0.937 4.8% 0.924 0.031 0.017 0.013 3.07% 

85729 6 0.962 0.976 0.929 4.7% 0.956 0.006 0.020 0.027 2.67% 

85729 7 0.754 0.768 0.799 4.5% 0.774 0.020 0.006 0.025 2.53% 

85729 8 1.069 1.067 1.068 0.2% 1.068 0.001 0.001 0.000 0.10% 

85729 9 0.902 0.916 0.925 2.3% 0.914 0.012 0.002 0.011 1.23% 

85729 10 1.016 1.082 1.085 6.9% 1.061 0.045 0.021 0.024 4.50% 
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The results show that the maximum recorded variation in AS value over a pair of images is 6.9%, 

(see Figure 3.10), which can be related to the effect of camera angle variation. This means that 

calculating the AS value using only one set of matching points will give an overall accuracy of 

approximately 93%. Thus, finding an area of a defect could have a maximum inaccuracy of 6.9%. 

 

Figure 3. 10: Maximum recorded variation in AS value over a pair of images 

However, taking the average AS value of three sets of matching points in a pair of matching images 

would improve the overall accuracy of the scaling process. As the results demonstrate, when taking 

the average AS of three sets of matching points, the maximum variation recorded over all the pairs 

is 4.5% and this error is within reasonable bounds for practical estimates (see Figure 3.11). 
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Figure 3. 11: Maximum variation in AS taking the average of three iterations 

 

To summarize the results, Figure 3.12 shows the comparison between the Difference-Range and 

the Difference-Range (avg) from our 49 sets of experiments. It can be shown from the figure that 

the value of Difference-Range (Avg) is lower than the Difference-Range in terms of the overall 

trend (see the line chart in Figure 3.12), mean value and deviations (see the boxplot and histograms 

in Figure 3.12), The lower number of the indicator means that using the average value of 3 

iterations (Avg) is more stable than taking a single value of AS. In conclusion, taking the average 

improves the accuracy of AS to reach 95.5 %. 
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Figure 3. 12: Comparison between “Difference-Range” and “Difference-Range (Avg)”  
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Chapter 4: Implementation Process of the Framework 

The implementation process can be divided into three sections, namely, 1) image pre-processing, 

2) feature detection and AS calculation, and 3) defect segmentation and change calculation. The 

three boxes (i.e., those shown in red, blue, and yellow) in Figure 4.1 indicate what is included in 

each of the three sections. The red box includes image preparation and pre-processing, which is 

described in Section 4.1. Pairs of images that have been prepared in the red box processes will be 

fed to the algorithm in the blue box and the yellow box. The blue box includes the application of 

the feature detection algorithm, feature matching algorithm, and the AS calculation, which 

altogether will be described in more detail in Section 4.2. The yellow box includes the defect 

segmentation and relative change calculation, which will be explained in Section 4.3. 
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Figure 4. 1: Implementation of the framework proce
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4.1 Preparation and preprocessing 

4.1.1 Data preparation 

In this step, the original pairs of images without bounding boxes are converted to greyscale to be 

processed by the feature-matching algorithm in order to get AS. The defects in the images are 

delimited by manually adjusting the boxes determined by the deep-learning defect detection 

algorithm. Given that the bounding boxes are proxies for the evolution of the defects, they need to 

fit (perfectly) the features of interest. The images with the bounding boxes will be fed to the 

segmentation algorithm in order to calculate the dimensions of the bounding box and estimate the 

relative change of the defect. Figure 4.2 shows a flowchart to properly prepare the input images 

for feeding the framework. 
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start
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times

Draw bounding box 

for the defect in 
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algorithm 

Feed to segmentation 

Algorithm  
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Figure 4. 2: Flow chart of input data preparation 
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4.1.2 Grey scale conversion 

Converting the color image into a greyscale image is one of the more important and technically 

useful image processing techniques used for various purposes (Saravanan 2010). For some image 

processing applications, color images have no additional merit than greyscale images. In fact, it 

requires a complex algorithm to deal with color images and increased the computational 

requirements. A greyscale image has one channel of color which is the grey, where a colour image 

has three channels, which are red, green and blue. Greyscale images contain brightness information 

only and no colour information (Padmavathi and Thangadurai 2016) There are many different 

ways to do the colour to greyscale conversion, and, in the following section, three of them are 

discussed. The basic and most simple method is the arithmetical average method by taking the 

average of the three colours in the colour image (Kanan and Cottrell 2012), as shown in Equation 

(13):        

 𝐺𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒 = (𝑅 + 𝐺 + 𝐵)/3 (13) 

This method is very simple, but it does not account for the effect of the color wavelengths and how 

humans perceive them. 

The lightness method averages the most prominent and least prominent colors, as shown in 

Equation (14): 

 𝐺𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒 = (max(𝑅, 𝐺, 𝐵) + min(𝑅, 𝐺, 𝐵))⁡/2 (14) 

The weighted method or luminosity method considers how the human eye perceives the colour 

and accounts for the lighting information. Since the colour red has more wavelength of all the three 

colours, and green is the colour that not only has less wavelength than red, but also green is the 
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colour that has a more soothing effect on the eyes (Kanan and Cottrell 2012). The luminosity 

conversion is given by Equation (15): 

 𝐺𝑟𝑒𝑦𝑠𝑐𝑎𝑙𝑒 = ((0.299 ∗ 𝑅) + (0.587 ∗ 𝐺) + (0.114 ∗ 𝐵)) (15) 

Equation (15) gives more weight, i.e., 0.587, to the colour that contributes most, which is the green, 

and decreases the contribution of the red to 0.299 and the blue to 0.114. 

Figure 4.3 shows the application of the three previously explained methods of greyscaling on a 

sample image. Although it is difficult to discern the difference between the different methods, 

Kanan and Cottrell (2012) concluded that luminosity method helps in reducing the loss of 

information carried by the human brightness perception and in improving the performance of 

feature detection algorithms, especially when there is significant change in illumination conditions, 

which is one main noise factor in underground pipe inspection images.  

 

Figure 4. 3: Applying different grey scaling methods, 1) coloured image, 2) average greyscaling 

method, 3) lightness greyscaling method, 4) luminance greyscaling method 



59 
 

The ORB matching algorithm, which will be discussed in the following section, operates on 

greyscale images. It compares the intensity of one pixel with others. The intensity of a pixel is its 

grey colour degree that varies in the range between 0 which is black and 255 which is white. The 

ORB feature adopts the third method, the luminosity method, to make the greyscale conversion. 

4.2 ORB feature detection and matching: 

The first step of image registration is feature detection and description. In order to detect points of 

interest and key points in an image, or what are generally called features, a feature detector is 

needed. Feature detectors work on identifying features which are typically corners, lines, edges, 

intersections etc. (Tareen et al. 2018). When features are detected, they are described based on the 

designs and patterns of their surrounding pixels. This process is significant as it is considered the 

foundation of later matching detected features. Detected features are assigned with a distinctive 

value that is used for the purpose of recognition and matching. ORB is an affine invariant feature-

detector (Tareen et al. 2018).  

FAST (Features from Accelerated Segment Test) detector covers the feature detection process in 

the ORB Algorithm. FAST has been improved by adding an orientation component (Rublee et al. 

2011). The well-known algorithm known as the binary robust independent elementary features 

(BRIEF) algorithm performs feature matching (Calonder et al. 2010). BRIEF is a bit string 

description of an image patch constructed from a set of binary intensity tests. After the description 

step is done, feature matching can be performed using one of many available methods such as 

Threshold based matching; Nearest Neighbor; Nearest Neighbor Distance Ratio etc. However, as 

BRIEF is a binary descriptor, Hamming distance is the feature-matching method that is used with 

BRIEF (Tareen et al. 2018). Figure 4.4 shows a flowchart that illustrates the process of ORB 

algorithm. 
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Figure 4. 4: Flow chart of image matching process based on the ORB algorithm (Luo et al. 2019) 

 

4.2.1 FAST corner detection algorithm 

Many corner detection algorithms have been developed and used for various purposes, such as 

tracking, localization, image matching, and recognition. Most corner detection algorithms depend 

on computing corner response (C), which is a score function to determine if a point is a candidate 

to be a corner by comparing the response score to a threshold value. If the response value of the 

candidate corner is greater than the specified threshold value, then a further step is performed to 

ensure that only one corner is retained in a specific spot(local maximum) (Rosten and Drummond 

2006). 

4.2.1.1 Basic FAST key-points detection 

FAST uses the intensity of the candidate pixel in order to determine if it is a corner or not. In 

simple words, a pixel is a corner candidate if there is a substantial difference in intensity between 
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that pixel and the neighboring pixels (Luo et al. 2019). Rosten and Drummond (2005) introduced 

the corner response test as follows: considering a circle of 16 pixels around the corner candidate 

which is denoted with p. Then, p is considered a corner if 𝑛 adjacent pixels of the surrounding 

circle have more intensity than⁡𝑝 by a specified threshold 𝑡 or 𝑛 adjacent pixels of the surrounding 

circle have less intensity than p by a specified threshold 𝑡. In other words, 𝑛 adjacent pixels of the 

surrounding circle are all brighter than 𝑝 by a threshold 𝑡 or 𝑛 adjacent pixels of the surrounding 

circle are all darker than p by a threshold 𝑡. 

The following image shown in Figure 4.5, which is from a study by Rosten and Drummond (2006), 

illustrates the test of corner detection with a circle of 16 pixels. 

 

Figure 4. 5: Corner detection test Rosten and Drummond (2006) 

In the image, 𝑛 was given as 12, 𝑝 is classified as a corner as there is at least 𝑛 = 12 continuous 

pixels represented by the dotted line that are brighter than 𝐼𝑝 + 𝑡.  
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In order to find the local maximum, a score function to compare the confidence of a candidate to 

be a corner is required. The candidate with the highest score is considered a corner and the 

neighboring candidates with a lower score are removed. FAST uses the sum of the absolute 

difference between the pixels in the contiguous arc and the center pixel.  

 

𝑉 = 𝑚𝑎𝑥 ( ∑ |𝐼𝑝↠𝑥 − 𝐼𝑝|

𝑥𝜖𝑆𝑏𝑟𝑖𝑔ℎ𝑡

− 𝑡, ∑ |𝐼𝑝 ⁡− ⁡𝐼𝑝↠𝑥|

𝑥𝜖𝑆𝑑𝑎𝑟𝑘

− 𝑡⁡⁡) (16) 

where: 

𝑉 is the sum of the absolute intensity difference between the pixels in the contiguous arc and the 

center pixel; 

𝐼𝑝 is the intensity of the center corner; 

⁡𝐼𝑝↠𝑥 is the intensity of a surrounding pixel; and 

𝑡⁡is the intensity threshold. 

4.2.1.2 Feature point screening 

ORB adds an improvement to the basic FAST detector by applying the Harris function to calculate 

the response and sort the corners detected by the basic FAST (Harris and Stephens 1988(Harris 

and Stephens 1988; Luo et al. 2019)Luo et al. 2019). The Harris function is calculated as follows 

in Equations (17) and (18): 

 𝑅 = 𝐷𝑒𝑡(𝑀) − 𝐾 ∗ (𝑇𝑟(𝑀))2 (17) 

 
𝑀 = ∑𝑊(𝑥, 𝑦) [

𝐼𝑥
2 𝐼𝑥 ∗ 𝐼𝑦

𝐼𝑥 ∗ 𝐼𝑦 𝐼𝑦
2 ] (18) 

where: 

𝑅 is the Harris score value; 
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𝑀 is a 2*2 matrix; 

𝐾 ranges from 0.04 to 0.06; 

𝑊(𝑥, 𝑦) is image window 

𝐼𝑥⁡is the variation of the feature point in the horizontal direction; and 

𝐼𝑦 is the variation of the feature point in the vertical direction. 

After calculating the Harris response score for the detected corner, they are sorted and then N 

points with the highest score are selected to the next step of matching. 

4.2.1.3 Image scale pyramids 

The image pyramid gives a flexible, convenient multiscale resolution presentation that reflects the 

multiple scales of processing in the human visual system (Choudhary et al. 2012). To improve the 

scale invariance of FAST, getting the same result even if the size of the image changes, Rublee et 

al. (2011) proposed the construction of image scale pyramids, which is a multiscale representation 

of the image at different resolutions. These pyramids are scale-invariant in the sense that an 

object’s scale change is offset by shifting its level in the pyramid. Intuitively, this property enables 

a detector to detect objects across a large range of scales by scanning the model over both positions 

and pyramid levels (Zhao et al. 2019). Figure 4.6 shows an example of a multiscale pyramid of an 

image. Each scaling level of the pyramid is examined by applying FAST algorithm to detect the 

key-points in the image with respect to both the spatial coordinates and the scale level in the 

pyramid. Thus, image features at different scales are located effectively and the scale invariance 

characteristic is improved in ORB feature detection and matching algorithm. 
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Figure 4. 6: A pyramid or multiscale representation of a single image 

4.2.1.4 Feature points orientation 

The orientation of detected features can be described in different methods. For example, SIFT 

algorithm depends on histograms of gradient computations and SURF Algorithm uses 

approximation by block patterns. The basic FAST algorithm does not have an orientation operator, 

therefore another improvement to basic FAST was added by(Rublee et al. 2011) which is an 

orientation depending on the concept of intensity centroid. “The intensity centroid assumes that a 

corner's intensity is offset from its center, and this vector may be used to impute an orientation”. 

The following shows the computation of intensity centroid (Luo et al. 2019; Rublee et al. 2011; 

Rosin 1999). 

The moment of the image block is calculated as Equation (19):  

 𝑚𝑝𝑞 = ∑ 𝑥𝑝𝑦𝑞⁡𝐼(𝑥, 𝑦)⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑝, 𝑞 = {0,1}

𝑥,𝑦𝜖𝐵

 (19) 
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where 𝑥 and 𝑦 are pixel coordinates, and 𝐼(𝑥, 𝑦) is the grey value of the corresponding pixel. 

Thereafter, the centroid is calculated depending on the moment according to Equation (20): 

 𝐶 = (
𝑚10

𝑚00
,
𝑚01

𝑚00
) (20) 

where 𝑚00calculated for 𝑝 = 0 and 𝑞 = 0 is referred to as the mass of the image block while 

𝑚01and 𝑚10are known as the centroid of the image block. 

The final step is to get the orientation of the block by obtaining the direction vector 𝑂𝐶⃗⃗⃗⃗  ⃗ according 

to Equation (21): 

 𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑚01/𝑚10) (21) 

These added orientation calculations make the algorithm more accurate by improving the rotation 

invariance. 

4.2.2 BRIEF (binary robust independent elementary features) 

The main idea of the BRIEF matching algorithm is to simply compare the intensities of pairs of 

points surrounding the candidate feature to create a binary descriptor (Calonder et al. 2010). It 

relies on a relatively small number of intensity difference tests to represent an image patch as a 

binary string. This approach was inspired by earlier work on classifying image patches depending 

on a small number of pairwise intensity comparisons that are used as training data to classification 

trees or naive Bayes classifiers. On the other hand, when there are a relatively large number of 

detected key points, the dimensionality of the data will be relatively high. Thus, relying on the 

Hamming distance between the key points in two matched images is inefficient (Gionis et al. 

1999). However, the binary structure of the descriptors facilitates the use of different searching 

algorithms to make the matching process faster and more efficient. 
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After applying the FAST detection algorithm to find the key-points in an image, the BRIEF 

algorithm is applied to create a binary feature descriptor that contains only values of 1s and 0s. 

The length of this binary vector falls in the range from 128 to 512 bits string.  

The first step in BRIEF is to smooth the image in order to reduce the negative effect of high- 

frequency noise on the descriptor, thus increasing the stability and repeatability of the descriptor. 

For the purpose of smoothing, Gaussian kernel is used. The next step is to sample random pairs of 

pixels in the patch of the key-point, which is a pre-defined square of selected width and height 

pixels around the key-point, considering the size of patch p is (S × S) and assuming the key-point 

is located in the center of the patch. Calonder et al. (2010) tested five different distributions to 

sample from: 

1. (𝑥, 𝑦) ⁡∼ ⁡𝑖. 𝑖. 𝑑. 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−𝑆/2⁡, 𝑆/2⁡) 

𝑥 and 𝑦 pixels in the random pair is sampled using uniform distribution (-S/2, S/2 ) around the 

key-point; 

2. (𝑥, 𝑦) ⁡∼ ⁡𝑖. 𝑖. 𝑑. 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(0,
1

25
𝑆2) 

Gaussian distribution with µ = 0 and 𝜎 =
1

5
𝑆 around keypoint is used to sample 𝑥 and 𝑦 

pixels in the random pair. 

3. 𝑥 ∼ ⁡𝑖. 𝑖. 𝑑. 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (0,
1

25
𝑆2) , 𝑦⁡ ∼ ⁡𝑖. 𝑖. 𝑑. 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥𝑖,

1

100
⁡𝑆2)⁡ 

A Gaussian distribution centred around the key-point with mean µ = 0 and a standard 

deviation 𝜎 =
1

5
𝑆 is used to sample the first pixel. The second pixel (𝑦) in the random pair 

is drawn from a Gaussian distribution centred around the first pixel (𝑥) with mean µ = 𝑥𝑖  
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and a standard deviation of 0. 1⁡ × ⁡𝑆. This forces the test(pair) to be more local. Test(pair) 

locations outside the patch are clamped to the edge of the patch. 

4. 𝑇ℎ𝑒⁡(𝑥𝑖, 𝑦𝑖)𝑎𝑟𝑒⁡𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦⁡𝑠𝑎𝑚𝑝𝑙𝑒𝑑⁡𝑓𝑟𝑜𝑚⁡𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒⁡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠⁡𝑜𝑓⁡𝑎⁡𝑐𝑜𝑎𝑟𝑠𝑒⁡𝑝𝑜𝑙𝑎𝑟 

⁡𝑔𝑟𝑖𝑑⁡𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑖𝑛𝑔⁡𝑎⁡𝑠𝑝𝑎𝑡𝑖𝑎𝑙⁡𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛. 

Both x and y pixels in the random pair are sampled from discrete locations of a coarse polar 

grid introducing a spatial quantization. 

5. ∀𝑖 ∶ ⁡𝑥𝑖⁡ = (0, 0)⁡𝑎𝑛𝑑⁡𝑦𝑖 ⁡𝑖𝑠⁡𝑡𝑎𝑘𝑒𝑠⁡𝑎𝑙𝑙⁡𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒⁡𝑣𝑎𝑙𝑢𝑒𝑠⁡𝑜𝑛⁡𝑎⁡𝑐𝑜𝑎𝑟𝑠𝑒⁡𝑝𝑜𝑙𝑎𝑟⁡𝑔𝑟𝑖𝑑⁡𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔⁡𝑛𝑑⁡𝑝𝑜𝑖𝑛𝑡𝑠. 

The first pixel(x) in the random pair is at (0, 0) and the second pixel(y) in the random pair 

is sampled from discrete locations of a coarse polar grid 

Sampling method number 2 has been found to have relatively preferable advantages over other 

distributions, thus it has been accredited to be the sampling method with ORB algorithm. In the 

ORB algorithm, distribution number 2 is used to perform the sampling which is a gaussian 

distribution centred around the key-point. BRIEF selects the number of N random pairs, tests them, 

and assigns a value of 1 if the first pixel is brighter than the second pixel, and a value of 0 otherwise. 

The test is defined on patch P of size S × S as: 

 𝜏(𝑃; 𝑥, 𝑦) ≔ {
1⁡⁡⁡⁡⁡𝑖𝑓⁡𝑃(𝑥) < 𝑃(𝑦)
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟⁡𝑤𝑖𝑠𝑒⁡

 (22) 

where 𝑃(𝑥) is the pixel intensity or the grey value at the first pixel in the randomly N pairs chosen, 

and 𝑃(𝑦) is the grey value at the second pixel in that pair (Calonder et al. 2010; Luo et al. 2019). 

After testing the intensity values of each of the 𝑁 random sampled pair pixels, an N dimensional 

vector with N binary string can be assigned as a descriptor for the given key-point using the 

formula shown in Equation (23): 
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 𝑓𝑁(𝑝) = ∑ 2𝑖−1

1≤𝑖≤𝑁
⁡𝜏(𝑃; 𝑥𝑖 , 𝑦𝑖) (23) 

4.2.2.1 rBRIEF: Rotation-aware BRIEF 

Since BRIEF is not designed to be rotationally invariant, which means that the descriptor 

calculated for a patch around a key-point will change if the patch is subject to a rotation (Calonder 

et al. 2010). Thus, its performance falls off dramatically when the image is rotated. In other words, 

BRIEF does not have a rotation invariance and its rotation tolerance is no more than a few degrees. 

Rublee et al. (2011) improved the BRIEF descriptor by adding orientation information calculated 

at the key-point, thus, steering BRIEF according to key-point orientation (Rublee et al. 2011). A 

rotation matrix 𝑅𝜃 is obtained as shown in Equation (24): 

 𝑅θ =⁡(
cos θ sin θ

− sin θ⁡ cos θ
) (24) 

For each detected key-point, N tests are performed to obtain the binary descriptor. Thus a 2 × n 

matrix defines the location x, y of the tests as follows: 

𝑆 = ⁡ (
𝑥1 …… , 𝑥𝑁

𝑦1 …… , 𝑦𝑁
) 

Then the steered version of S, 𝑆θ is obtained using the patch orientation θ and the corresponding 

rotation matrix𝑅θ: 

 𝑆θ = 𝑅θ × 𝑆 (25) 

Finally, the steered directional descriptor can be obtained as shown in Equation (26): 

 𝑔𝑛(𝑃, θ) ≔ ⁡𝑓𝑁(𝑝)|(𝑥𝑖, 𝑦𝑖)𝜖𝑆θ⁡ (26) 

4.2.3 Feature point matching 

The last step in the feature matching process is to decide if two key points are matches. That is 

done by measuring the similarity between two features that are detected at two images taken at 

different times. As BRIEF algorithm describes detected features as a binary vector of 0,1 forms, 
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the Hamming method is used to measure the distance between two given binary vectors that 

describes the two features. The Hamming distance between two binary vectors is the number of 

bits that must be changed in one vector to get the second one. It is the number of places where two 

vectors 𝑢 and 𝑣 differ. Where u, v are the vectors that have been obtained from BRIEF descriptor 

for the given features. The simple Hamming distance measure is efficient when the dimensionality 

of the data is small; however, in an image matching process, the dimensionality of the data could 

be relatively large so a more effective search structure for performing similarity search over high 

dimensional data has garnered much interest (Gionis et al. 1999). In rBRIEF, locality sensitivity 

hashing (LHS) is used as the nearest neighbour searcher. Hash tables are used to store the 

descriptors of the key points. Then the matching buckets for a given descriptor are determined and 

a brute force matching technique is applied to compare the given descriptor with all the elements 

of the matching buckets. 

4.3 Defect segmentation and change calculation 

The last technique to be applied in the proposed framework is extracting the bounding box of the 

defect in order to calculate its development. The extracting process depends on isolating the range 

of the colour that the bounding box has. For example, if the bounding box is green, we will try to 

extract the green range by defining the lower value of components (G, R, B) of green colour and 

the upper values. Once we segment the bounding box, the Hough line technique is applied to find 

coordinates of the bounding rectangle corners.  

Once the coordinates of the bounding box are ready, the bounding box area is calculated. 

Thereafter, the change in the length of the bounding box, which is an estimation of the defect 

length is calculated. 
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4.4 Case studies 

4.4.1 Case study 1 

 In order to validate the framework, it will be applied to real images of defects in sewer pipes. The 

images are extracted from CCTV inspection videos that were taken in 2012 and 2013. The first 

pair of images are for a crack (see Figure 4.7). Table 4.1, 4.2, and 4.3 shows the calculation of the 

area scaler values in the first case study. 

Table 4. 1: The calculation of the first value of Area Scaler in the first case study 

Matching Points coordinates 

C1 C2 

X Y X Y 

  172.8 59.04 198 60.48 

  184.8 132.6 209 129 

  89.85 124.41 114.04 129.6 

Area 3069.68 3256.13 

Area Scaler 0.94 

Table 4. 2: The calculation of the second value of Area Scaler in the first case study 

Matching Points coordinates 

C1 C2 

X Y X Y 

  172.8 59.04 198.72 60.48 

  184.8 123.6 209 129 

  102.02 99.53 124.41 104.5 

Area 2527.69 2771.96 

Area Scaler 0.92 
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Table 4. 3: The calculation of the third value of Area Scaler in the first case study 

Matching Points coordinates 

C1 C2 

X Y X Y 

  184.8 123.6 209 129 

  102 99.53 124.4 104.5 

  93.6 131.04 121.2 139.2 

Area 30396 32773 

Area Scaler 0.93 

𝐴𝑆1 = 0.94⁡      First value of AS 

𝐴𝑆2 = 0.92       Second value AS 

𝐴𝑆3 = 0.93       Third value of AS 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝐴𝑆 =
0.94 + 0.92 + 0.93

3
= 0.93 

Difference-Range (Avg)= max(1%, 0%, 1%) = 1% the maximum error that can be result in 

this case study. 

Assuming that the image is scaled uniformly, the scaling factor is given as following: 

𝑆 = √𝐴𝑆 = √0.93 = 0.964 

An estimation of the relative change in the length of the defect will be calculated. The length of 

the best fit rectangle of the crack in the first image is 117 pixels and in the second image is 127 

pixels, then the relative change is given as following: 

ɛ = ⁡L2 × s − L1 = 127 × 0.964 − 117 = 4.92⁡Pixel
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Figure 4. 7: Implementation of the framework for the first case study
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4.4.2 Case study 2 

The proposed framework is applied on a second pair of images for a crack extracted from CCTV 

inspection videos that were taken in 2008 and 2010. Table 4.4, 4.5, and 4.6 shows the calculation 

of the area scaler values in the first case study. Figure 4.8 shows the implementation of the 

framework on the images of the crack. 

Table 4. 4: The calculation of the first value of Area Scaler in the second case study 

Matching Points coordinates 

C1 C2 

X Y X Y 

  414 238 380 231 

  643 319 630 307 

  1067 390 1100 373 

Area 9042 9606 

Area Scaler 0.94 

Table 4. 5: The calculation of the second value of Area Scaler in the second case study 

Matching Points coordinates 

C1 C2 

X Y X Y 

  437 547 411 525 

  573 144 563 119 

  1105 382 1133 367 

Area 123382 134558 

Area Scaler 0.916 
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Table 4. 6: The calculation of the third value of Area Scaler in the second case study 

Matching Points coordinates 

C1 
C2 

X Y 
X Y 

  392 523 
359 503 

  653 200 
637 181 

  426 248 
392 229 

Area 30396 32773 

Area Scaler 0.921 

𝐴𝑆1 = 0.94⁡      First value of AS 

𝐴𝑆2 = 0.916       Second value AS 

𝐴𝑆3 = 0.921       Third value of AS 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝐴𝑆 =
0.94 + 0.916 + 0.921

3
= 0.926 

Difference-Range (Avg)= max(0.5%, 1%, 1.4%) = 1.4% the maximum error that can result 

in this case study. 

Assuming that the image is scaled uniformly, the scaling factor is given as follows: 

𝑆 = √𝐴𝑆 = √0.926 = 0.962 

An estimation of the relative change in the length of the defect will be calculated. The length of 

the best fit rectangle of the crack in the first image is 194 pixels and in the second image is 201 

pixels, then the relative change is given as follows: 

ɛ = ⁡L2 × s − L1 = 201 × 0.962 − 194 = 0.638⁡Pixels 
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Figure 4. 8: Implementation of the framework in the second case study
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The validation of the framework is limited to visual validation as there is no available measurement 

of the defects. For the first case study, visually, a small growth in the crack could be noticed. The 

result reflects the visual inspection and a small increase in the crack length is measured. The 

growth is estimated to be 4.92 pixels. 

For the second case study, the crack seems to be unchanged and no development can be detected 

visually. When applying the framework, it would be assumed the framework should give no 

change in the crack length. The calculated measurement of the defect development is 0.638 pixels. 

The result of the framework is a relative change in pixels and future researches can be focused on 

how to integrate the information of the camera specification and the geometric distance between 

the camera and the defect in order to convert this measurement into metric units.
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Chapter 5: Conclusion and future work 

5.1. General conclusion  

With the advent of new technologies in the field of image segmentation and computer vision 

algorithms, both the efficiency and the accuracy have been greatly improved and that brings many 

benefits in terms of identifying defects and defect labelling. In this regard, CCTV inspections of 

underground drainage pipes have become very popular worldwide. Although conventional 

inspections of sewers provide valuable information about the structural and operational condition 

of this infrastructure, this information is discrete and only a snapshot at a specific time. However, 

the ability to access and interpret the information inherent in a time series of images, such as the 

development of defect, is still a gap in this field of research. In this research, image processing 

algorithms have been employed to extract the relative change in defect growth from images 

obtained from CCTV inspection videos. However, the change in the dimension of a defect is 

measured in pixels, thus, it is still a relative change. The AS factor has proven to be an effective 

means to correspond matching images. However, the results show that the maximum recorded 

variation in AS value over a pair of images is 6.9% which can be related to the effect of camera 

angle variation. This means that calculating the AS value using only one set of matching points 

will give a maximum error of approximately 6.9%. 

However, taking the average AS value of three sets of matching points that represent areas from 

different parts of the set of matching images improves the overall accuracy of the scaling process. 

As the results demonstrate, when taking the average AS of three sets of matching points, the 

maximum error that could be resulted is 4.5%. 
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5.2.Research contribution  

The research extends the capability of the traditional practice of condition assessment, this 

contribution explores the possibility of extracting additional value by stacking images in the form 

of a time series allowing time-dependent data-driven deterioration modelling to be conducted. AS 

factor has been experimented with as a corresponding mean.it has proven to be an effective means 

to correspond matching images with an accuracy of 95.5%. The ORB detection and matching 

algorithm was integrated with other pieces of python codes to implement and automate the main 

process of the introduced framework. 

The outputs of the proposed framework are the relative changes of the defects in the images, which 

are estimated from the changes in the dimensions of the bounding-box best fitting the defect of 

interest. An assumption of the uniform scaling in the images has been made and then a dimension 

scaler is calculated depending on the calculation of AS. Then, the relative change in the length of 

the defect is calculated.  

5.3. Research limitations 

• The performance of the framework depends on the quality of the images, noisy and low-

quality images will affect the framework at the feature matching step giving false matching 

features. 

• The calculated output of the framework depends on the bounded rectangular boxes on the 

defect. The object detection algorithm sometimes gives inaccurate bounding boxes, which 

may affect the results. 

• The calculation of the dimension scale factor neglects the scaling inconsistency over the 

image. Images with a large difference between vertical scale factor and horizontal scale 

factor can negatively affect the accuracy of the output of the framework. However, this 



79 
 

error could be avoided by taking the frames with the original size that normally have 

uniform scaling factors horizontally and vertically. 

5.4.Recommendation and future work  

The developed framework can be a foundation for future studies on deterioration modelling and 

condition assessment of underground pipes, such as the following: 

• The framework has the potential to be developed and integrated with a defect detection 

algorithm such as YOLO, which employed in the field of underground pipes by Yin et al. 

(2020)Yin et al. (2020) to automatically provide the framework input data. 

• The ORB algorithm was chosen in this research in the role of feature matching algorithm; 

however, there are other algorithms that can be used in order to determine the algorithm 

that results in the best algorithm. 

• In this research, three different values were used to calculate the average value of AS 

because of the limited number of correct matching points. As higher quality images can be 

obtained, increasing the number of values to calculate the average AS will be possible and 

will result in higher accuracy. 

• In this research, the concept of area scaler is used as a corresponding measure between the 

given images; however, there is the possibility to experiment with more complicated 

transformation models in order to further improve the accuracy of the framework. 
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