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ABSTRACT

This thesis is concernéd primarily with aﬁ invest-
igation of the influence of eigenvectors and eigenvalues on
linear system characteristicé such as disturbance rejection
and eigenvalue insensitivity to system parameter variaﬁions.

Existing design procedures for eigenvector/eigen-
value assignment are briefly reviewed and lhe results re-
interpreted using range space restrictions. Such analysis
readily sgows that for a nth order controllable system with
r inputs, complsfe state feedback allows arbitrary assign-
ment of n eigenvalues and up to r elements of each of the n
eigenvectors. . - |

The importance of eigenvectors in the design of
control systeNs is illustrated by an investigation of the
‘disturbability' characteristics of multivariable systems.

A linear system is defined as 'undisturbable' with respect
to a particular input bariéble 1f the state or output var-
iables of inqérest are not disturbed by arbitrary yaria—
tions in that‘input. Undisturbability is cloéely reléted
"to the system properties of uncontrollability and strﬁé:
tural uncontroilability, but is not identical. Necessary
and sufficient conditions for k £ r state variables to be

>

undisfurbable with respect to the jth disturbance, require

that the system matrix (or equivalently the matrix of
eigenvectors) be quasi-triangular‘&ith a kxn-k off-
diagonal partition of zero elements and that the corres-

'ponding k elements of the jth column of the input

iv



distgrbance matrix be zero. These results together with
existipg eigenvector/eigenvalue assignment techniques provide
é simple, straightforward design procedure to produce
undisturbability in linear systems. The problem of asymp-
totic setpQint tracking in closed-loop undisturbable systems
was also considered and it is shown that a solution to this
problem is almost always pqssible.

Feedback and feedforward controllers designed to pro-
duce undisturbability were evaluated by experimental applic-
ation to a computer controlled, pilot-plant evaporator.

The results were superior to conventional multiloop control-

lers, and comparable to controllers designed using optimal

.quadratic techniques. The design method was also applied
to llth and 20th order models of two different binary dis-

tillation célumns and evaluated by digital simulation.

-

For. the class of systems which do not satisfy the

L
~» necessary and sufficient conditions for undisturbabildity, a

8esign procedure is proposed that uses state feedback control
to: (i) minimise the effect of external disturbances on
system outputs of interest and (ii) carry out arbitrary

eigenvaliﬁ assignment in the closed-loop system. An exper-
imental evaluation of. this procedure on the pilot=plant

- 4
evaporator demonstrated the practicality of this approach.

“

Using duality this procedure is also app2ied to the design
of full order observers to-minimise the effect of unmeas-
" urable -external disturbgnces on the state estimate of in-

terest. o .-



A set of simple, constructive conditions for achieving
cigenvalue invariance to arbitrary variations in specified
system parameters is derived in terms of the closed-loop
system eigenvectors. An illustrative example quonstrates
the superiority of this prbcedure over conventional pole

placement techniques using unity-rank state feedback.

vi
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CHAPTER 1

INTRODUCTION

The basic ébjective of this thesis was to invest-
igate the effect of external disturbances on specified
system state, or outputvariables, and to develop design
procedures for controllers that would eliminate or min-
imise the effect of such disturbances. Most process
systéms operate in én engironment whdre unknown exter--
nal disturbances are almost always present and hence good
regulatory control is usually a'prime objective. Signif-
icant theoretical advances have been made in recent years
in the control of linear multivariables systems but, very
few of these new techniques have been primarily concerned
with the effect of external disturbances on the overall
system response. In fact, most multivériable synthesis
techniques do not-make full use of information avail-
able in the process model about th§;effect of disturb-
ances, and maﬁy design techﬁiques ignore disturbances
altogether, or consider only special classes of dis-
turbances such as impulses. Therefore, this study set
out to look at state space models of systems and to

determine under what conditions, if any, the state '

and/or ocutput variables of such systems could be made

invariant to arbitrary, unknown disturbances in one or



more system inputs. The main emphasis in the study was

to be on the structural aspects of system models.

1.1 Relationship to Previous Work

>

Over the past 10 years a number of research pro-
jects have been carried out in the Department of Chem-
ical Engineering concerned with the development and
experimental evaluation of modern control techniques

such as optimal multivariable feedback control, (Newell

[1], Fisher and Seborg [2]); adaptive control (Oliver
(31,12]); multivariable frequency domain methods (Ruon
(4]): and eigenvalue assignment by state feedback (Park
[5],Topaléglu [6]). These investigations iﬁcluded ex-

perimental applications on a computer controlled, pilot
plant evapgrator which showed that most of the modern
control technigques gave significantly better pérformance
than conventional single input, single sutput design
techniques. However, some difficulty was experienced
with the experimental implementation of state feedback
controllers which had been designed to assign eigen-
values to spécified locations. 1In many cases the ex-
perimental responses wére unstable and it became clear
that the design procedure should impose other conditions

in addition to the location of specific eigenvalues.



Therefore, one of the concefns of this investigation was
the 1dentification of additional conditions that should,‘
and could, be incorporated into pole-placement design
procedures.

It is not difficult to show from a modal
analysis of the time domain response of the state var-
iables of a system, that the eigenvectors as well as the
eigenvalues, play a key role in determining the time
domain response; system sensitivity; input/output
decoupling; and systemvdecomposition. In fact the
elgenvalues of the closed-loop system serve only as
exponential weighting factors on the terms making up
the system time domaiﬁ response and thus affect the form
of the response.  Thus, the inifial directian taken in
this study was to investigate the role of eigenvectors
in multivariable feedback control systemsgand to deter-
mine what specifications could be put on the eigenvectors
during the design procedure.

In addition to the theoretical studies and the
deVeloPment of a practical design procedure, the basic
objectives of this thesis also included an experimental

evaluation of the theoretical deve. -ments and design

techniques.



1.2 Thesis Organisation

The‘ﬁain contribution of this thesis is the
development of the concept of system undisturbability and
the determination of necessary and sufficient conditions
for a system to display this property. 1In general terms,
system state and/or output variables are said to be
undisturbable by a particular input disturbance if they
are unaffected by arbitrary variations in that input.
These theoretical concepts are discussed in Chapter 3
with the main emphasis being on the structural .aspects
of these results. The design procedure that was dev-
e}oped based on these theoretical results requires the
use of eigenvectoré/eigenvalue assignment techniques
and hence this project also included the evaluation and
intetpretation of such techniques.

The necessar? and sufficient conditions for
undisturbability are not overly restrictive and are
usually not difficult tg satisfy. However, for those
cases where thgy cannot be satisfied an alternative
design procedure was developed that minimises the
effect of external disturbances on selected state and/or
output variables and also permits arbitrary eigenvalue
assignment. The investigations of the structural aspects
of the results for disturbance localisation aiso led to

conditions under which specific closed-loop eigenvalues
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could be made invariant to arbitrary and unknown vari-
ations in system parameters. The theoretical results
and design procedures developed for disturbance local-
isation, disturbance minimisation and eigenvalue invar-
iance were all evaluated by numerical simulation and by
experimental application to the pilot-plant evaporator.
The order of the chapters in this thesis has been dé-
signed to present the above results in a convenient order.
Chapter 3 contains the main theoretical results and is
a prerequisite to the full understan@ing of all the fol-
lowing chapters. However, the other chapters are
relatively independent of each otherland may be read
in any order.‘\
- c

Chapter 2 presents a brief review of the main
results on exigting eigenvector/eigenvalue assignment
techniques and conditions which specify how many and
which elements of the eigenvectors cap be arbitrarily
assigned are giveAwin terms of range-space restrictions.
The implications of controllability on eigenvector
assignment is also discussed.

In Chapter 3, the concept of undisturbability
is formally defined and related to uncontrollability
and étructural controllability. Here the necessary
ana sufficient conditions for a system to have undis-

turbable state or output variables are expressed in



terms of the structure of the coefficient matrices of

the state space model and the structure of the eigen-
vector matrix. These results are thenaused in conjunc-
tion with the eigenvector/eigenvalue asgignment élgorithm
discussed in Chapter 2 to arrive at a design procedure
for disturbance localisation.

The experimental evaluation of multivariable con-
trollers designed to produce undiéturbability is
presented in Chapter 4. The performance of  the dis-
turbance localisation controllers is compared with the
performance of.LOnventiOnal multiloop controllers and
w%th those designed using optimal control techniques.

The design procedure to achieve undisturbability 1is

also applied to 20th and llth

order stat? space models
of two different distillation columns. A discﬁssiqn of
the combination of prOportional,state'feedback with
integral feedback of specific state variables of interesc:
is also included in this chapter. |

In Chapter 5, a method is bresented for design-
ing state feedback controllers which assign eigenvalues
of the closed-loop system to specified positions, and
also minimise the effect of external disturbances or¥
state variables of interest. Results from the egper—

imental application of this method to the double-effect

evaporator are also included. An application of the
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method to the design of full order observers for systoms
with unmeasurable disturbanees, is also included.

In Chapter 6, a method'{s presented for desiqn;
1ng constant multivariable feedback controllers that
make selected closed-loop elgenvalues invariant tofin-
known.perturbdtions of arbitrary magnitude in system
parameters. The sutficient conditions for eigenvaluce
invariance are expressed in terms of the structure of
the closed-loop gystem matrices.

Some overall conclusions and recommendations for
future work are presented in Chapter 7.

Appendix A is devoted to the discussion of sel-

ected geometric concepts which are used in the main

'body of the thesis. Appendix B outlines in detail the

difficulties associated with eigenvector assignment
using output feedback. Appendix C contains a descrip-
tion of the pilot-plant double effect evaporator; the
associated instrumentation; and the computer equipment.
Thé relationship between the concepts of invariant
Subspéces, invariant zeros and parametric sensitivit:
is discussed in Appendix D. A new algorithm to compute
the- invariant zeros of a system is also presented in

this Appendix.



CHAPTER 2

EIGENVALUE /FEIGENVECTOR AéSTGNMENT FOR

MULTIVARIABLE SYSTEMS

v

H

Abstract .

Existing design procedures for eigenvalue/
qiqenvector assignment are briefly reviewed. The prob-
lem of eigenvalue/eigenvector assignment using state or
ontput feedback is considered using range space restric-
tiorns. This readily shows how many and which elements
of the closed-loop system eigenvector or reciprocal
basis vector can be specified. The implications of
controllability in eigenvector assignment is also dis-

cussed.



2.1 Introduction

Since 1962 when Rosenbrock [1] .first introduced

!

modal control as a possible design aid in the control of
“large chemical plants, considerable attention has been
paid to control system design by assigning the eigen-
values of the closed-loop system. Eigenvalue assignmen£
techniques.have been widely used in the control‘system
‘design literature to improve system stability and the
speed of response of interacting processes. A wide var-
iety of different algorithms/methods exist for eigenvalué
placement via staﬁe feedback. Most of the well-known
algorithms and results in this area, prior to and

around 1973, have been summarishd in surveys by Topaloglu
[2] and Park [3].

It is well known that for a linear, coﬁfrollable
system, eigenvalues can Be assigned to‘qrbitrary positions
by using state .~ dback. Conventionally this has been
achieved either by using unity—rénk state feedback
(simultaneous design) or by non-unity rank state feedback
(recursive design). ‘However, for muiti—input systems the
controller 1is not unique since more than one feedback
controller can be designed to achieve the desired eigen-
value placement. Different feedback controllers result

in different system performance. Closed-loop system



eigenvectors are equally important in determining system
performance. This becomes evident at once from a modal
analysis of the closed-loop system.
For an nth order controllable system with r inpu&p,

only n degrees of freedom are required to assign all n
eigenvalues to arbitrary locations. The remaining
nx(r-1) degrees of freedom available in the design of
state feedback controller can be utilized to assign com-
ponents of the eigenvectors. However, very few algorithms/
methods are available at the present time that fully
utilise all degrees of freedom available to arbitrarily
assign some elements of the eigenvectors as well as all
of the closed-loop system eigenvalues.

| Srinathkumar and Rhoten [4] have proposed an
algorithm -for the computation of a state feedback'matrix
that assigns closed-loop eigenvalues as well as certain
elements of the closed-loop eigenvectors. The relatioﬁ—
ship between their algorithm and the matrix pseudoinverse
approach was shown as part of this work (cf. Section 2.2
and Shah et al. {5]). 1In [5], application of simple
geometric concepts also showed how many and which elements
of the closed-loop eigenvectors can be assigned arbit-
- rarily. More recently Moore [6] has provided a simple,
but general, mathematical characterization ofdthe class

of all closed-loop eiéenvector sets which can be obtained

10
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for a given set of distinct closed-loop eigenvalues.
Using avminimisation procedure, Ramar and Gourishankar
(7] have also proposed a method whereby all the closed-
loop éystem eigenvalues and some or all of the elements
of the closed-loop eigenvector matrix can be assigned.
In deriving an alternative proof for.conditions for. pole
assignability, Kimura [8] has also shown how-eigénvalues
and eigenvec;ors can be assigned using state tfeedback
control.

Eigenvalue/eigénvector assignment procedures are
discussed here because they form an important part of the
design pfocedures deve;oped in later chapters. The
present chapter is organized as follows. The problem of
eigenvalue/eigenVector assignment using state .feedback
is considered in Section 2.2. The implications of con-
.trollability in eigenvector assiqnment is discussed in
Section 2.3. The difficulties aSsociated with eigenvalue/
eigenvector assignment using incomplete state feedﬁack is
considered in Section 2.4 followed by some concluding
remarks in Section 2.5.

i

2.2 Assignment of Closed~loop Eigenvalues and

Eigenvectors

Consider the nth order completely controllable,

linear, time-invariant system.



A x(t) + B u(t)

H

x(t)
(2.1)
C x(t)

y{t)

with r inputs, m outputs and a state feedback control

law

u(t) = K x(t) (2.2)
P :

The resulting closed-loop system matrix, H, can be ex-

pressed as
H=A + BK = WIV (2.3)

where J is the Jordan canonical form defined by the desired
closed-loop eigenvalues; W is the closed-loop system
eigenvector matrix; and V=W'—l is the matrix of reciprocal
basis vectors. The following r=.ationships apply when
the closed-loop system matrix, H or WJV, is fully speci-

fied

i) A control matrix K which exactly satisfies egn.

(2.3) exists if and only if

Range ' (WJV-A) < Range B | (2.4)
ii)‘ If condition (2.4) is satisfied, then a control
matrix K, which exactly‘satisfies eqn (2.3), can
be computed from . ’ .

K = B*(WJV—A) , (2.5)
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* ' .
where B denotes the pseudoinverse of B given by

—lBT

*
B = (BTB) and T denotes the transpose of a

matrix.

The manner in which condition (2.4) determines
Cx ‘ s
how many, and which, elements of W can be specified
arbitrarily is illustrated by writing eqn. (2.3) in the

‘partitioned form:

I i ] M - . | 0T v A ) ] ]
A1t P12 By [%1 Ko| | ¥aad Wiz|]%10 O [|V11 1 V12
| : : -
T T T STTTTTTHW T T
| [} | |
AZIE Ara B, Wopd Won |0 1 Iof1Vay t V22
l . . | L | L ! . I J —
(2.6)

where All’ Bl’ Kl’ wll’ Jl andJVll are rxr matrices, A22,
>

J., and V are (n-r)x(n-r) matrices and B is assumed

Wa2r J2 22 ‘
to have full rank. From the above eqn; (2.6) it is not
difficult to see that the rxr entries in Wiy and the
rx(n-r) entries in wiz cén be chosen to be compietély
érbitrary if and only if Range (Bl) = Rr, i.e. if and

: . :
only if B, is nonsingular. Implicit in the above, condition

1

!

1
is the requirement, since V = W —, that W be nonsingular.
This in turn implies that the closed-loop system should
have distinct eigenvélues. Such a restriction, however,

is not limiting. Note that specifying the first r elements

of each of the n eigenvectors requires only rxn-n degrees
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of freedom, i.e. rxn-n elements of K, providing that at
least one of the r specified values in each eigenvector

1S nonzero. Once Wll and le are so chosen, w21 and w22
are computed such_that condition (2.4) is satisfig@.

'Ohe method of calculating w21 and W22.is to use
the algorithm présented by Srinathkumar and Rhoten [4].
They start with an equation identical to eqn. (2.6) and
by algebraic manipulation detefmine the degrees of freedom
available for specifying elements of W. The algorithm
uses state feedback co&trol tb‘assign the closed-loop
eigenvaiues as wellvas elements of the eigenvector matrix.
The derivation of the algorithm requires some tedious

algebraic manipulations, as shown in Appendix B. The

two main equations of the algorithm are:

w21J1 - szl = TWll + SwllJl s (2.7)
W22J2 - PW22 = TW12 + SW12J2 (2.8)
where
— -1 — - - -
s = BZBl , T = A21 SAll and P = A22 SA12.

When the right hand terms in eqns. (2.7) and (2.8) are
known, the algorithm represents a set of nz—nr linear

equations in as many unknowns. It can be shown that,

11 and W;, are chosen arbitrarily and W,, and W,, are

calculated by the above algorithm, then the reéulting 1)

if W



will satisfy condition (2.4). It therefore follows that
K can be computed using the matrix pseudoinverse approach
as in eqn. (2.5). Note that an identical K can also be
evaluated from egn. (2.6). There is a computational
advantage in using the pseudoinverse approach, that is it
is applicable genefally. For example, when condition
(2.4) is not satisfied exactly due to numerical round-off
errors, no control matrix can satisfy eqn. (2.3) . However,
the control matrix computed from eqn. (2.5), using the
pseudoinverse of B, satisfies eqn. (2.3) in the least-
squares sense. | |

Moore [6] has characterised the class of all
cloéed—loop eigenvector sets which can be obtained for a
given set of distinct closed-loop eigenvalues using
state feedback. This™is a more general result that does
not require Bl to be nonsingular. His result requires

a
that if, for a given closed-loop eigenvalue Al,

= 0 (2.9)

T [
Where the column vectors of [NA- MA-L sparmr Ker [AiI—A: B].
, i i S

Then for this system only those eigenvectors, W., corres-

. pqnding to Xi can be assigned such that



i) w, € span (in)

ii) for i ¢ n vectors w, are linearly independent

. n
vectors in €, and

iii) w, = w. whenever Ai = Xj’ where =~ denotes a com-

plex conjugate.
In [6] Moore has made somé remarks regarding controllabil;
ity and eigenvector assignment. While equivalence of
controllability and pole aésiqnability is well known, the
relationship between conﬁrolldbility and eigenvector
assighment, however, 1is not so well known. The following
section céntains a discussion of controllability consid-
erations in eigenvector assignhent based on the algorithm

in [4].

2.3 Controllability Considerations in Eigenvector

Assignmenf

Consider an nth order, r-input uncontrollable
system. Let the Kalman canonical form of such a system
be characterised by the pair (A,B), where matrices A and |,

B in their partitioned form are:

—~ Sl o527 T
B | P12 | P12 S
!
: |
=1 ~1 1 32 ~1
Asq A5, ! As, , B, (2.10)
l
A SN S e
0 o 1 &l 0
- A I

16
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N rXr = rxr 1 ~1 fxr
?n eqn. (2.10), All € R ' Bl e R , A21 and 82 e R ,
Aéz € RZx(n*r—E) and Agz E REXE. To relate the parti-

tioned form for the pair (A B) in eqns. (2.6) and (2.10)

it should be observed that:

]
‘ -1 |
- A
- =1 a2 - | B _— Y
Al = [Alz :A13] , P21 T -] and Ay, = -
{
|

From eqn. (2.10) it is clear that the system under con-

sideration is uncontrollable and that the eigenvalues of

A;2 correspond to the uncontrollable modes of the system.
Application of the eigenvector/eigenvalue assignmén:
algorithm, i.e. eqns. (2.7) and (2.8) from [4] to the

~ -~

pair (A,B) as shown in (2.10) leads to the following re-

sults. : ‘
(1~ -1 ' .
BB,y : S 8,
S = which can be rewritten as =
0 0 0
S T .
Ao Sq| Ar1751811 T, T
T = -— All = = 2.11
0 0 0 0 0
El 3\57 S p
22 22 1| Py 2
’ e -q | S ~ 4
:1 B22| 0 0 Ay,

where matrices S,T{Snd P have been defined in egn. (2.8).

Since the primary concern here is the implications of
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assigning eigenvectors corresponding to uncontrollable
modes, eqn. (2.8) will now be considered. For an arbit-

rary choice of W and J2 given by

12
1 2 1
Y12 Wi Jy 0
Wip = v I F
43 o4 . 2
12 12 Y2

where Wio and J2 have been compatibly partitioned with
respect to matrices T and S, the appropriate elements of

w22 are given by:

1 .1 1 3 2 .2 2 4
W22J2 P NopPoloy | Wy, T5-P W =P W,

Wo2Jm 25000, Wo2da=By Wy

3 .1 74 3 J 4 2 4 4
|

‘ 1 .1 4 2
1W1o¥ T oS W T +S W +SW

J2+SW

1292 J

=W
N
ol >

Eqn. (2.12) clearly implies that diag (Jg) = o(i;z) and

that W3 is the eigenvector matrix of 532. Since

22
distinct eigenvalues have been assumed to have been

specified, egn. (2.12) also implies that w;z = 0, which

is intuitively expected. This leaves two matrix linear

1 2 .
22 and w22 which can be

solved for any arbitrary value of W

equations to be solved for W

12 (Note that if



one or more Vectors in w12 are selected to be zero then
the corresponding éigenvalue in J2 should be the approp-
‘riate eigenvalue of P). The conclusion to be drawn
from the above analysis‘is that the r elements of each of
the eigegvectors i.e. wiz and w?z'corresponding to the
uncontrollable modes can be‘arbiérarily assigned, while
the corresponding £ eigenvalues remain invariant under
feedback and thﬁs they should be specified in the Jg
matrix block to be identical to ﬁhe eigenvalues of 522.
The main point #o note here is that while con-
trollability is necessary and sufficient for pole
" assignment it is not necessary for eigenvector assign-

ment (i.e. for assigning r elements in eacg eigenvector).

2.4 Eigenvalue/Eigenvector Assignment Using Output

Feedback

Consider egn. (2.1) in conjunction with the
ocutput feedback control 1law,
‘ult) = Fy(t) ‘= Fcx(t) (2.13)

the resulting closed—loop-system matrix is given by

(A + BFC) = wWJV | woo (2.14)



‘'For a given closed-loop system matrix, WJV, the approp-
riate F exists if and only if condition (2.4 and-the

t
.

following condition are satisfied:
) T T
Range /WJV - A)" C Range C (2.15)

conditions (2.4) and (2.15) impose significant restric-
tions on the specificafion of the elements of the closed-
loop system eigenvectors and reciprocal basis Qectors,
and hence in the general case a numbe{ of difficulties
arise in the design of F. ‘These are discussed at the

end of this section. Normal}y,{n of the rxm’available
degrees of freedom (&ssuminq rxm > n) are used to assign
khe closed;loop eigenvalues, leaving oﬁly I XM~n degrees

of freedom available for assigning elements of the

eigenvectors or of the reciprocal basis vectors. Thus,

in the deneral case, it is probably not wortHwhile ts\(;;A

attempt to assign elements of the eigenVectorg or recip-

rocal basis vectors unless rxm>>n.

The output-feedback design probleﬁ for the
special case of an n-input, n~state, m-output (m X n)
system can be readily handled because condition (2.4) -
is always satisfied for such systems, and hente only
condition (2.15) need be considered for the design pro-

cedure. The algorithm for this case is the dual (or

adjoint) of the one for state feedback contrnl and can
’ ]

20



be obtaiped by using algebra. . mipulations on the
dual of the syatem of eqn. (; . Alternatively, it
can also be derived by cohsidering the following part-

1tioned form of eqn. (2.14)

;
211 Poo B,
- | o ‘ —
i1l Wi [;; Lo Vit Vi
] | |
——~—ﬁ—-—— —~—ﬁ—— ——-~}-——— (2.16)
i | |
| | |
Mot Moo | [0 1 o [ Vo V22 |
Where All’ Cl’ wll’ Jl and Vll are now mxm matrices;
A22, w22, J2 and 99 are (n-m) x (n-m) matrices; Bl is

an mXr matrix; F is an rxm matrix; and C1 and B are
assumed nonsingular, obtained, if necessary, by reorder-

ing of the state variables. Bearing in mind that

Range CI = Rm,
and the' (n-m)xm entries in V21 can be chosen arbitrarily,

subject only to the requirement, since W = V_l, that

1t follows that the mxm entries in Vll

V be nonsingular. Once vll and V21 are chosen, V12 and
V22 can be computed such that condition (2.15) is
satisfied. Algebraic manipulation of egn. (2.16) to-
gether with the use of the identity VW = I leads to the

following two equations for calculating V12 and sz:

)



JVio T VIEB\\f Vi v (2-17)
JVoy = Vo,R o= IV,Q + v, M (2.18)
here 6 = C_lC M = ;\ - A .0, R =A - A0
v ST 2 T Ay 1= ° 7 S 21

The derivation of these equations is discussed in detail
in Appendix B. Eqns. (2.17) and (2.18) are linear in .
Vip and v, and permit .J,, Jg, Vyp and V,, to be speci-
fied. It can also be shown that V,, and V,, obtained
trom eqns. (2.17) and (2.18) satisfy condition (2.15)
arfd hence this is a practical approach for designing
output feedback controllers~for n-input, n-state
systems.

) The output feedback matrix can also be‘computed
using the pseudoinverse approach. | If condition (2.15)

helds the following equation leads to the same output

feedback maté&x as eqn. (2.16):

F o= “B™Y (wiv - ajc* ’ - (2.19)

x

-1 denotes the pseudoinverse

where . c’ = C?(CCT)
of C. -

" The restrictions that conditions (2.4) and (2.15)
impqse on the éeneral output-feedback design problem for

r<n for eigenvalue/eigenvector assignment can now be
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realized by considering the follrwing steps in the design
procedure, further details of which are discussed in

Appendix‘B.

c

1) Arbitrary choice of Vll’ V21’ wll and le is

made subject to the constraint that the identity:

’

wllvll + wlzv12 z Im (from WV = I) be prese;ved,

117 V2l’ Wll and le‘have been specified,

V12 and V5,5 can be calculated from eqns. (2.17)

11) After V

and (2.18) (to satisfy condition (2.15)) and W2l
and w22 calculated from the dual form of egns.
(2.17) and (2.18) i.e. egns. (2.7) and (2.8).
1ii) - With Vv and W determined, a check must be made to
determine if the identity WV = I holds. If not,

the entire procedure is repeated with a differ-

w and W, ..

Vao1r Y1 12

‘ent choice of vll’

Implicit in the above mentioned procedure is the
assumption that the eigenvalues of thevclosed-loop
system can be arbitrarily assigned. ~ This usually implies
*“at (r+m-1)2n, Topaloglu and Seborg [9]. If arbitrary
assignment of all eigenvalues is not assumed then the
algorithm would becon. prohibitively complex. There-
fore in general, unless rxm>>n (as remarked earlier)
and (r+m-1)2n, it is probably not worthwhile to attempt
to carry out eigenvalue/eigenvector assignment usihg out-

put feedback;
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The problem of eigenvalue/eigenvector assignment
using incomplete state feedback can also be considered
by noting that the ith column, ki of tﬁe state feedback
matrix, K, can be expressed as -a function of hi and ai,

the ith columns of H and A respectively, by:

k, = B (h; -a)) | , (2.20)

It 1s easily observed from egn. (2.20) "that if measure-

ment of X4 is not available then one possible way of

making ki = 0 is to have hi = a,. However, it is not
always easy to choose Wll and Wlé such that=the resulting
hi = (WJV)i = a.. There are some exceptions to this

case and these will be discussed in the application of
the eigenvalue/eigenvector assignment algorithm to the
distillatioh column example in Chapfer 4, where eqn.

(2.20) is used to advantage in reducing the number of

state variables required for feedback control.

f.S Conclusions

The problem of eigenvalue/eigenvector assign-
ment using state or output feedback has been
considered using range space restrictions. For the
state feedback case such an analysis readily shows how
many ‘and which elements of the élosed—lOOp systeh

eigenvector can be specified. The implications of



contrdllability on eigenvector assigﬁment are discussed
ahd it is shown that in usiﬁgjthe algorithm in f4],
éontrollability is not necessary for eigenvector assign-~
ment. An eigenvalue/eigenvector ?ssignment method for
output feedback control of nth order: n-input, m-output
(m<n) systems is also presented. The restricted set of
range space conditibns énd the associated difficulties‘
in eigenvector/eigenvalue assignment for a general (nth
order, r-input, m-output) system using output feedback

"

.are discussed.
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CHAPTER 3

UNDISTURBABILITY OF LINEAR MULTIVARIABLE SYSTEMS

Abstract o : .

The concept of‘undisturbability,-is formally
defined and related to unéontrollabilit& and structural
controllability. Neceséafy and sufficient conditions for
a system to have undisturbable étate‘or output variables
are expressed in terms -of the structure of the coefficient
matrices in the state-space model and the structure of the
eigenvector matrix. These results and the eiggnvector/
eigenvalue assignment algorithm,as discussed in Chapter 2,
pro&ide the basis of a deéign procedure. for synthesizing
multivariable\controllers which achieve disturbance loc-

A

alisation.
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3.1 Introduction.

Practical control systems must operate in envir-
onments where unknown external disturbances are invariably

present. Some typical examples of such disturbances in

control problems are: load fluctuations in power systens;

ambient temperature changes and unexpected variations in

feed conditions in distillation columns, chemical reactors,

etc.; wind gusts and tu;bulence acting on aircrafts, etc..
Despite the inevitability of such external disturbances,
synthééis techniques for multivariable control systems
usually ignore them or consider only a special class of
disturbances sudh as impulses. Consequently, the résﬁlt—
ing multivariable confrollers méy not perform satisfact-
orily in the presence of other types of disturbances,
particularly suétained or persistently fluctuating dis-
turbances. |

In;this chapter a linear system is said to be
"undisturbable; with respect to a partiéular input var-
iable if the state 6r output variable(s) of inEergstvare
not disturbed by arbitrary variations in that input. The
properfy of undisturbability is of conéiderablé interest
to control engineers because it implies perfect regulatory
control in the sensevthat the input disturbance does not

affect the system variable(s) of interest in any way.

27



In the present investigation, the problem of con-

trolling systems subjected to persistent, unknown external -

disturbances is considered ﬁrom a system structure point
of view. Necessary and sufficient conditions for an open-
loop or closed-loop system to have undisturbable state or
output variables are expressed in terms of the structure
of the state space matrices. An alternative set of nec-
essary and sufficient conditions for undisturbability are
also derived in terms of the closed-loop system eigenvec-
tors. These latter c0nditious and the eigenveetor/‘
eigenvalue assignment elgorithm considered in Chaptet 2
pProvide a design basis/for synthesizing multivariable
contrellers which produce disturbance localisation.

These results are equivalent to existing necessary
and sufficient conditions on‘disturbance localisation(ae—
rived from a geometrical characterization of the problem.
However, in contrast to previously known geometfic re-
sults, the necessary ‘and sufficient conditions deVeleped
here are easier and more straightforward tQ'use,kboth
from a computationai as well as, appllcatlons point of
view. 1In contrast, the geometrlc results that already
exist do not lend themselves easily to computer imple-
mentation; furthermore, the computational operatlons
that they require are subject to the hazards of numerical

1ll—cond1tioning.
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3.2 . Previous Work

The problem of controlling systems subjected to
befsistent, ﬁnknown, external disturbances, i.e. the
regulatory control problem has been one of the oldest and
most fuhdameﬁtal problems of control. The regulatory
control problem has been widely researched. There is a
variety of terms used iﬁ the literature to describe this
and related problems. The main terms t@at will appear in
the discussion below are: distﬁfbance Zo;alisation, dis~-
turbance rejection and system invariance.

Rutﬁan and Epelman [1] were amongst the first
res« rchers to carry out a formal tfeatment of this sub-
jéct in the}r study of the effect of externél distur%z

ances on the output of a system. They defined a system

output to be invariant with respect to a disturbance if

the output was completely independent of the disturbancé}

and they obtéined4necessary and sufficient conditions for
a single-input, single-ou&put sjstem to‘be invariant.
Préminger and, Rootenberg t2] dqﬁined a system to be
Steady state invariant or completely inVafiant to a

class of disturbances depending onywhether the steady
state or the entire effect of £he disturbahces is elimin-
ated. - They also discussed;'heuristically, the design of
compénsators to attain complete invariance. Using vari-

ational methods Rozoner [3] also obtained necessary and
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sufficient conditions for a single-input, single-output
system to be invariant. By using Rozoner's.reSUlt, Wang
(4] related the concept of invariance to uncontrollability
and unobservability. Later Cruz and Perkins [5,6] gener-
alized the results on invariance to the multivariable case
and also obtained results relating invarﬁance to unobserv-
ability.

| As early as 1966, C.D. Johnson [7] conceived the
idea of invariant hyperplanes andrdiscussed tﬁeir‘role in
state space theory. - Geometrically, a hyperplane passing
through the origin is a subséace. Johnson's results were
actually based on a series of earlier Soviet publications.
‘It was a geometric concept related to this, namely that

of (A,B)-invariant subspaces that finally led to general
results on diéturbance localisation. 1In a later public-
Etion, Johnson [8] considered regulation of a linear
System subjected to cbnstant disturbances using an optimal
control formulation; In a series of papers [9,10], he
.extended these results to a class of uﬂkhown disturbance.
that satisfy a specified linear differential equation, or
that can be characterized by certain waQeform types or
modes.

Basile and Marro [11] and Wonham and Morse [12]

independently introduced the concept of (A,B)—invariant
»
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subspace and (A,B)-controllability subspace. These con-
cepts played a basic role in the derivation of a general
result on disturbance localisation by Wonham and Morse
[12]. The main result of Wonham and Morse is a suff1c1ent
and necessary condition that is also a synthesis result
for disturbance localisation using state feedback control,
By considering the problem of zeroing the disturbance
transfer function in a linear system, Bhattacharyya fl3]‘
has also derived a set of equivalent geometric necessary
and sufficient conditions for disturbance localisatibn.
Using an algebraic approach Shah et al. (14] - (cf.
Section 3.5) have also derived a set of necessary and .
sufficient conditions for disturbance localisa£ion. In
contrast to the synthesis fesult in [12] the resultslin
[13,14] are structural results, and as would be expected
they are weaker than the conditions given in [12]. 1In
an earlier investigation McLane and Davison [15] have
also reported algebraic conditions which are sufficient
for disturbénce localisation. An extensive treatment 2
of the regulator problem based on an algebraic approach
can also be found in Silverman and Payne [1l6]. |

In a more recent paper Fabian and Wonham [17] have
reported necessary and sufficient conditions for simult-
‘aneous distufbance localisation and input-output decoup-~

ling. TheyAhave also proved conditions for disturbance
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rejection and closed~loop stability. Using a geometric
approach, Chang and Rhodeé [18] have also derived neces-
sary and sufficient conditions for simultaneous disturb- -
ance localisation and pole assignment or closed-1loop
stability.

In [13] Bhaﬁtacharyya-derived“solvability condi-
tions for disturbance localisation using feedback plus
feedforward control. Shah [19] (cf. Secﬁibn 3.6) has
defived necessary and sufficient conditions for the
existence of a feedforward controller that would localise
theweffect of external disturbances. More recently
Bhattacharyya [20] has described a design procedure for
designing a disturbance localisation controller that
uses aynamic feedback and feedforward compensators.

An alternative design strategy is to design a
controller which reduces the effects of disturbances on
selected state or output:variablés. Willems [21] and
Muller’a: Luckel [22] have reéently proposéd synthesis
procedures for the desigh-of state feedback controllers
that minimise or reduce the effect of disturbances on
buﬁputs of interest. Chapter 5 presents a similar
procedure ' = minimises the effects of disturbances on
outputs of interests and also allows arbitrary pole
assignment.

By a geometrical characterization of the regulator
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problem, Bhattacharyya et al. [23] have deriﬁed conditions
under which a zero output of a system is maintained at
zero, and any nOngero output due to non-zero iAitial
conditions or impulse-type disturbances is made to approach
zero. Davison [24] and Grasselli and Nicolo [25] have

also considefed the design of oﬁtpﬁt feedback controllers
to accommodate a class of disturbances that can be des:
aribed by a set of differential equations. Johnsbn's

work [8,9,10] which was discussed earlier, also félls in

this category except that he requires state feedback.

3.3 Statement of the Problem

Consider the linear time-invariant dynamic system

x(t) = Ax(t) + Bu(t) + DE(t)

(3.1)
Cx(t)

<
o
i

where x € R" is the state, u & R¥ is the input, £ € RY is

the disturbance and y € R™ is the output; A, B, C and D

are constant matrices of appropriate dimensions. If a .

;J “;

feedback~feedforward control system of the form \
ult) = Kx(t) + K'F £(t) (3.2)

is employed, the resulting closed-loop system is

x(t) = Hx(t) + LE(t) ~(3.3)
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where H and L are defined by

jost
]

A + BK (3.4)'

and

’

L =D + BK'F (3.5)

i

The disfurbance localisation problem can now be posed as
follows: For the closgg:loop system in eqn.'(3.3). is it
.possible to decoup%p the effedé of g(;) from the system
outputs (or some of the state variables), for all t > 0

by an appropriate choice of K (or K and KFF if feedforward

control is possible)?

3.4 Definitions

The time response, x(t), of .the system in egn.
(3.3) can be expressed as the sum of’two terms: x° (),
due to the initial state x(0); ~and xg(t),_dUe'to the

disturbances, i.e.

x(t) = x°(t) + x(¢) (3.6)
where xo(t)‘=4éxpkﬂt)kfﬁyuaﬁa ”‘—"\“~—‘——~——*f-——~—;;--——-
. t . |
X7 (t) = j exp{H(t~71) }JLE (1) dr . (3.7)
o .

*

In this investigation, the term, xg(t), is the.primary



concern.  For simplicity, the disturbance re ﬂ?Cti(U]
characteristics of system (3.3) Jin be considered in'
terms of a single disturbance, &j, oo (2,000 ,q).
However, the rasults that are obtained can be easily
Jeneralized to all q disturbances. It is clear from

an. (3.7) that the disturbance rojocr;un ‘haracteristics
Ol system (3.3) with respect to disturbance, &j, are

characterised by the pair (H,Fj) for the state variables,

, T .th \ . . th
and by (H,(j,ci) for the 1t output where (j 15 the 7

' T _th T
column of I, and c. 1s the 1 row of C.
Definition Lo State Mndisturbab ity
- N . . .
e state var.oable, P of oonyetem characterised by

the palr (H,0.) (o sald to be wundicturbable with vespeet

to disturbance, €., L for avbitvary {.(t), and for all
; . ; ;

£ Lt

, i - C
to> 0, x s the element of a7, catisfies:
N
£
x.(t) =0 (3.4)

Definition 20 Ouipuwt Unldiocurlabillty

L Eh . . P
The 1 output, y., of a aystem characterised by (H,Ef,cf)
| r th CL - 1 .
voore er 1o the @ row of " Te salld to bo owundisturbable

with respeet to :disturbance, gj, 1) for arbitrary Ej(t),
L2

£ Jth .8 . .
and for all ¢+ > 0, y;, the 1 element of 47, satisfies

-

.
yy(t) =0 (3.9)
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"When condition (3.8) (or (3.9)) is not satisfied
for some &j(f) #~O and some t > 0, then the ith state
variable (o output variable) is said to be isturbable.
When all elements of the state (or output) vector are
undisturbable or disturbable, the moaifier complete is
used; for examplé, as 1in complete stéte (or'output) dis-
turbability. Complete state undisturbability implies that
the disturbance has no effect on the system, as would be
the case with a "perfect" control policy.

The concept of undisturbability is closely related
to the éoncepts of uncontrollability and structural con-

trollability, as will be discussed in Section 3.10.

»

3.4.1 Undisturbability in terms of signal flowgraphs

State undisturbability of linear systems can also
be considered in terms of a signal flowgraph formutation.
Consider the following third order open~-loop system with

the pair (A,dj) in the following form:

a ) o0 ]
i1 %2 O 0 ,
A=la, a,, O a; =|o | (3.10)
(%31 %32 233 1934

where d3j and all elements of A are nonzero except for
ajs and ajs- The signal flowgraph of the system charact-

erized by the pair‘(3.10) is shown in Figure 3.1.
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‘ .
In gignal flowgraph terminoloqy, the state vari-
? 2, N
able, xi,iﬁ%zonaccm;sz'blu to F,j., if and only if there is

no possibility of reaching X4 starting from £ and prbceed—

3
ing in the direction of the arrows along any of the paths
in the signal flowgraph of the pair (A,dj). Similar con-
siderations for the closed-loop system,‘(H,ej) lead to the

following equivalent definition of state undisturbability.

Definition 3: State Undi:turbability in Signal Flowgraph
Terminoloqy :

L th .
The state variable, ., of a system character-

tsed by the pair (H,Fi), ls said to be undisturbable with

respect to Jdisturbance, {i, f . L85 nonaccessible to Ej.
. €

3

Fig. 3.1 Signal flowagrioh of the pair (A,dj) as in
egqn. (3.10).



3.5 Necessary and Sufficient Conditions for Output

Undisturbability Using an Algebraic Approach.

The necessary and sufficient condition of Wonham
and Morse [12] for disturbance localisation using state
feedback control is based on the concept of an‘(A,B)—

invariant subspace. This condition is as follows:
D < y* (3.11)

where D denotes the range space of D and V* is the maximal
(A,B)~invariant éubspace ¢contained in Kernel C.

It.is well known that the (A,B)-invariant subspace
1s spanned by the eigenvectors of the closed-loop system,
and hence it is possible to express the necessary and
sufficient conditions‘for_disturbance localisation (or
decoupling) in terms of #he c'msed-loop system eigenvecpors.

Assuming distincé.eigenvalues for the closed-1loop

system, the output yg(t) of the system of egqn. (3.3), can

be represented by

t
vo(e) = ¢ J (W exp{A (t-1}VIDE (1) dr (3.12)
O

where W exp{p (t-7)}V = exp{H(t-1)}

that is, W 1is the closed~loop system eigenvector matrix,

W=V ", and Since distinct eigenvalues have been assumed
A is a diagonal matrix whose diagonal elements are the

'.closed-loop system eigenvalues.

-
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Now define the m x g matrix M(¥) by
™M(t) = CW exp{A(t-T)]}VD (3.13)

It is .then clear from eqn. (3.12) that the necessary and

]

sufficient condition for output undisturbability is
M(t) =0 for T >0 - (3.14)

In terms of element mkj(r) of M(1), the condition of

.egn. (3.14) -becomes
m (1) = # cT W.VTd.exb{A.(t—r)j =0 |
J i=1 k i i7j i
(3.15)
where superscript T denoteé the transpose of a
h N th

vector,‘c£ is the kst .
1

row of C, w, and v are the 1
eigenvector and reciprocal eigenvector, respectively;

. .th . .th . :
d. 1is the j column of D and Xi 1s the 1 elgenvalue.
Aséuming that the eigenvalues are distinct, and that‘eaph
element of M(t1) is equal to zero for all T > 0, it is~

easy to show that the necessary and sufficient conditio:.

expressed by eqgn. (3.15) is equivalent to

T T . .
» N Sy wividj =0 k e€em, i€ n, jeqg (3.16)
where k =1,2,...,m, i = 1,2,;..,n, j=1,2,...,q9 are

abbrevigted as\k em, ien ‘and j e q, respectively.

. Using egn. (3.16), the followinq result is stated in the



form of a theorem:

Theorem 3.1

i
The eondition cTw.de. =0, kem, i € n, j € q ecan be
k1 1y
satisfied 1f and only 1f Dc V< Ker O, where D denotes
_the range space of D; and V is8 the space spanned by at

least q linearly independent eigenvcctors.

Proof of Theorem 3.1

To prove the theorem, define an nxn real

matrix G consisting of linearly independent columns

[9y+ 9yr---,9,] such that
[9yr 9grev-rg, ) = [@) 0 05, ... Re(By), Im(B), ... ]

in any order)éhhere ai,are the real- closed-loop system
eigenvectqrs and Bi are the complex symmetric eigenvectors.
‘Re(Bi)‘and Im(Bi) represent the real and imaginary part
of B, respectively. By thé“original definition of W, w.
repfesents any one of ai,Bi or Ei (the complex cbnjugate
of Bi).

For necessity suppose that wj & Ker ci, i € n;
then (ciwi)# 0, at least for one value nf k for each i.

This implies that (vfdj) -0, ien, j€eq, that is VD = 0.

- This is not possible. Therefore some of the eigenvectors,
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say p, must lie in Ker C. After renumbering thesé
eigenvectors such that CEWi =0, k em, 1 € p, let the

first p columns of G correspond to the real and imaginary
parts of these p eigenvectors, and define V to Be

the space spanned by these p column vectors, {gl,gz,...,gp}T
Thén V< Ker C. Now, for each i ¢ {1,2,...,p} there exists

at least one k such that cgwi # 0. This implies that
vid. =0 for jeq and i ¢ {1,2,...,p}.. Since all n

columns of G span the real n-space, dj can be written as

D (

d; = 121 Y;9; J €q

For all i ¢ {lu2,...,pf, j € g, v?d. = yv.. = 0. Hence
i77 ij
dj = Yijgl T Y2j92 ...+ ijgp' Thus
. #*
v _
Dc Vc Ker C ‘ (3.17).

From this inélusion relationship it is also easy to see
that p > é, that is 'V 1is spanned by at least g, linearly
indépendent eigenvectors. ( |

With {gl,gz,.ﬂa,gp} defined as above, and V as
the Space spanned by these p columns vectors, the condition
Dc Vc Ker C implies ciw.v.d. =0 k€m, i €n, j€q.

k 1 i’
Therefore sufficiency is clear
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Remark 3.1: Note that expressidn (3.17) represents'a
fWeaker condition than (3.11). The result in (3.17) is a

structural result rathgr than a synthesis result but in
conjunction with the eigenvalue/eigenvector assignment
technique it provides useful insight' into the synthesis or

the design problem.

[

3.6 Output Undisturbability Using Feedforward Control

It is easy to extend the necessary and sufficient
condition of Wonham and Morse {12] given by expression
(3.11) to include the case when feedback plus feedforward

control is allowed. This can be done by simply replacing

D in expression (3.11) by L, where L denotes the range space

of L =D + BKFF, (eqn. (3.5).) The necessary and suf-

ficient condition for disturbance localisation using feed-
M . . ,

“back plus feedforward control then becomes

L < v (3.18)

or, since L =D + BKFF, expression (3.18) can also be

written as

)

- Dc V* + B : _ (3.19)

Bhattacharyya [12] has derived “ust this result by start-

ing with a transfer function, . GL(s,K,KFFL relating .y and
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£, and investigating conditions under which GL(s,K,KFF) =

for all s:

GL(S,K,KFF) = c(sI—(A+BK)71(D¢BKFF) =0

for all s ) " (3.20)
However, when feedforward control is used alone
Bhattacharyya in [12] claims that the solvability condi-

tion is:

Dc B ' - (3.21)

Unfortunately this condition is incorfect, és shown by
the following discussion, (see also Shah (19]).
When feedforward control only is used the transfer

function, GL(S,KFF), relating v and £ is
G (s,K" ") = c(s1-a) "1 (p+BKFF) o (3.22)

The éondition for complete disturbance fejection is that .
Y(t) = 0 for all t > 0 and for every possible £(t). This

. 1s equivalent to the requirement that

G (s,K'F) 20 for all s (3.23)

Now define thevsubspace
n-1 ' i
8 = M (Ker caty ; (3.24)
' 0

3

1=

~

- which is the subspace of unobservable states, that is,



o

(C,A) is observable if and only if 0 = 0.  ‘The Cayley-
Hamilton Theorem insures that 0 is A-invariant (e.q.:
x € 0 implies A x € 6) (see Appendix 1). 1In fact 0 is
the largegé A-invariant subspace gcontained in qu cC.

The solvébility condition for disturbance rejec-
tion with only feedforward control allowed, is now pre-
sented in the form of a theorém. |

* .
-

Theorem 3.2

There exists a kK'T such that GL(S,KFF) 20 for all « if
and only if

[ B’+ §]

Proof of Theorem 3.2

Necessity: Bhattacharyya [12] has shown that condition

(3.23) is equivalent to

"

FF

cA* (D+BK' ) = 0 or CA'L = 0 ie0,1,...,n-1

(3.25)

This equivalence relationship can be shown by writing

‘the characteristic equation of A as: . .

n-1 n-2 -0

IGL(S), = s - a, s - a,s T..... - a, =

44
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!

Using a Bezoutian expansion for (sI—A)_l (Gantmacher [26})
it follows that
GL(s,KFF) = e—-l—v— (CBOLsn—l + CBlLsn—z + ...
IGL(S)I
+ CB Ls + CB L} (3.26)
n-2 n-1 .
where
B =1I, B = AB, - a.I, jel,2,...,n-1
o} 3 J-1 J .

@

Using (3.26) it is not difficult to show that condition

(3.23) is equivalent to (37251. From (3.25)
Range (p+BkFE) ¢ 6 (3.27)
Exgression (3.27)-ipplies that
Dc o + B ' (3.28)vl

which proves necessity.

FF

Sufficiency: It is possible to chose K so that

Range (D+BK ') ¢ ©

c

From (3.24)

Range (D+BKFF) < 0 < Ker C



hence

cat o+ ) = 0, i 0,1,...,n-1

which is equivalent to

H(S,KFF) - 0 for all s

This completes proof of the Ehé§

S/ ) g
Remark 3. 2-'// The SOlVﬁbill\_ o n expﬁissed by
(3.28) is more general than the solvhn}llty condition (3.21)
of Bhattacharyya [13] as shown bv the following discussion.

In the conventional feedforward control problem KFF s

determined by solving the equation:

»

D + BKFF =0 (3.29)

Note that for completel§ observable linear dynamic
systems, condition (3.28) reduces to condition (3.21) as
presented by Bhattacharyya, and both are equivalent td

eqn. (3.29). Howevér, for the case where 6 is non-zero,
condition (3.21) fails but (3.28) still holds and in fact
-shows that the solvability condition (3.28) is more gen-~
gral. As 1is vaidps ffom (3.28), the solvability condition
'for_unobservab}e systems is weaker than thag for observ-

P

able systems.

..
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In summarising the main contents of sections 3.5
and 3.6 one can say that the necessary and‘sufficienﬁ
conditions for the existence of state feedback controllers
that will decouple the effect of disturbances, £(t),
from outputs, y(t), can be‘defined in qeometrlgffér;;/;;///

e

follows:
1) the range %Dace of D must lie within the maximal
(A, B) - invariant subspace contained in Kernel C
(Wonham and Morse ([12], Bhattacharyya [13]) or that
~ .
2) the range space of D must lie within the space

spanned by at least q of the closed~loop system
eigenvectors (where g is the dimension of the
disturbance vector, £), which in turn must be

contained in Kernel C (Cf. Theorem 3.1).

However, in the results to be presented below these
conditions are not tested directly. Instead it is shown
via Theorems 3.3 and 3.5 that the névessary and suffic-

w

ient conditions for state undisturbebility‘canfbe expres-
sed in terms of the structure of the system~matrix, H, ot
equlvalently, the structure of the closed loop eigen-
vector matrix, W. Then a design procedure 18 presented
that generates the requlred controller matrices based on °*

eigenvalues and elements of the closed-loop elgenvectors

/chosen by the de51gner

A
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e

e

3.7 Undisturbability and Closed-loop System Structure

The following result forms the basis for design

of undisturhable systems.

Theorem 3.3

A system®characterised by the pair (H,fj)-has k(1<k<n)
undisturbable state variables with respect to Ej’ if

and only <Zf,
1) Rank (Zj) = 1 and the'pair (Hf[f) s in the fol-

a suitable reordering of the state vartables:

I
H] : 0 0 9
____%___ R —— (3.30)
H H 2, .
3 : 4 27
where H. e kak’ ¥ e R(n—ﬁ)x(n—k), I R(n—k)
7 4 1 2J
NS and Tys Tos wuns xé are the k undisturbable state
| " variables of the pair (H,Zj).
o - | 7
t7) &, = 0. This corresponds to a trivial case.

s “
< o

To prove the thebrem the following 1emma will be used,

L

Herstein [27].

~* Note: H.,, H,, H, and ¢_. can he time varyjfg. since the
1 3 4, 23 ad -

only restriction is Hy = £(A,,B K]

lowing form, or can be brought into this form, by;
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Lemma 3.1

Let M be a nonempty set of nxn matrices in R";
. n . . . .
if W{WekR™) is an invariant subspace under M ¢ M and is of
N

dimension (n-k) over R, then there exists a basis of RP

over R such that every M ¢ M in this basis is of the form,

I S . (3.31)

Rk““ and M4 € R(n—k)x(n-k).

this basis M, jp the natrix representation of the, restric-

where Ml € Furthermore, in
tion of M to W and'Ml is the restriction ofM to R"/w.
The proof of the lemma is straightforward and is given

in Appendix A.

PrOof of Theorem 3.3
7

.3»’

5 o EY ,
<y
»,

8l : sk ' .
Létgihe“flrs;fkiqtatc variables of the system

féalr (H, ( ) be represented by xl1,

[xy () x,(8) .. x, (£)17F

,?Sufflcieﬁby*fs clear from the structure of the pair
: AR oy

»;CH fj) 1n eqn. (3.30), since

) RN

CE T : . ' .
o oL x17(t) = 0.for allt > 0 and arbitrary Ejep).

< R



Necessity Cong}der a system charactgygised by the pair
(H,Fj) which has k state variables which are undisturb-

able with respect to Ej. Let the system be brought into

av

the form of cqn. (3.32), by reordering the state variables
if necessary, such that x = [xl x2]T where x1 = [xl, Xy
.,ka? contains the k undisturbable state variables and
- akxk ~ 5 (n-k)x (n-k) - ok
”l ¢ R , 114 £ R and é)lj e R™:
(;1 (t) Hy H, x17(t) tlj
—————— = ———ge———- ————— 3 ——— ()
3 ! : !
x27(t) H3 J H4 x2'(t) (2ﬁ
553.32)
Since undisturbability impliés‘xli(t) = 0 for "~iitrary

A\

£4(t) and for 1 £ > 0, eqn. (3.32) reduces to the fol-

lowing two ¢ :ations:

e . .
0 = H2x2 (t) + Eljnj(t) .- (3.33) -

x2"(t) = Hyx2" (8) + 0, 5. (t) (3.34)

D ,f

S P+ HE, + B2 v ... 4 a1, (3.35)
]“ 3 J ,_ ] .

’/

4 4 ‘
In facfgwﬁis the H-invariant subspace of states which Ej

can control. Let dim(W) = p.‘ Then it 1s clear that



P > (n-k). Since the effect of &j on X 1s given by eqgn.

(3.34), it 1s correct to say that the matrix represent-

ation of the restrictiqn of H to W in the standard basis

is H4. Two cases will now be considered: (1) dim (w) =
o= n-k whd  (ii) dim(W) = p < (nek).

o e o “

A ‘. “A ¢ - . i L4
‘.3he l: p = n-k ‘ ‘ "
AR ﬂ '

ngincq the matrlx repreqpntatlon of the restrlctlon of

’3' H to U in the standard basis is H,, then by Lemma 1 the

p standard basis vectﬂrs: {ek+l’ €1 par ce en} span the

thnvarlant subspace w This implies thétwllj = 0, and

@’

smnge X2 is dlsturbable, it follows from eqn. (3.33)

that Hy, = 0.

e

Case 2: p < (n-k)

Now H, can no longer be the ma* - representation of the

restriction of H to W; but it st1ll follows that p of

the (n-k) standard basis vectors, {ek+l’ Cp4nr e en},
'span W. This once again implies that Clj = 0, and as in
the previdus case, that H2 = 0. 55; by

In either case elj =0 and H, = 0 which means
that the undisturbable system (3 32) exists in, or can be
~ e .
brought into, the form of eqn. (3. 30) .This shows neces%

sity and completés the proof of the theorem.

51



52

Remark 3. 3: The condition rank ((j) = 1 is equivalent

to the condition k < n in the sense that each implies

the other. The significance of the cond. tion, rank (fj) =
l(or k < n), that a system charac 2d by the pair
(H,Ej) has at leaSt.one disturbable state variable. This
conclusion also follows directly from geometric concepts

and the principle of conservation of energy. "

Remark 3.4: A non—triviai:system (i.e. [j # 0) charac-

terised by the pair (H,Zj) has no undisturbable state

variables (i.e it is completely state disturbable) if

eith-r Kj or H do not contaifi any zero elements.

14

Theorem 3.4

The'ith output, u,, of a system characterised by "
c _ 3

. R
(H,Kj,c?) 15 un bable with respect to Ei(t),lzf and

only ©f

W c Ker'cg, (3.36)

Proof of Theoyem 3.4

For 4Cto be undisturbable with respect to Ej

then . yE(t) =0 for all t and every possible

Ej (t), or eqhivalently that

-



eilsT-HITMe. T 0 for all s,

Using eqn. (3.26) the above condition can be shown to be

equivalent to

c.HZ. =0 me 0,1,...,n-1 (3.37)
1 J ' ' ‘ o

Both sufficiency and necessity then follow easily from

s.ean. (3.37) and egn. (3.35) which defines .

Remark 3.5 Note that Theorem 3.3 can alsé be.derived

as a direct consiquence of Theorem 3.4, in the followiﬁg N
manner. For system (3.32), where xl, Xor wuey X, are
the undisturbable state variables, by Theorem 3.4 the

following necessary and sufficient condition needs to be 6*

s

satisfied:

T

W < Ker [e e (3.38)

llezl°"l k]

p]

there W is defined by eqn. (3,35) and €17 €5rnnn, e, are
the standard basis vectors. This clearly means that
. ‘ | o

A .
{ek+l’ €y 4o e ) span W. Hence it follows that

Klj = 0, and from egn. (3.33), that H, 0.

Egn. (3.38) also provides an interpretation of V*
for the case when Yi = %5, i=l, ..., k. For this case,
: 3
V* is the largest subspace of states which can be made

unob  rvable at y = Cx, where m = k.



3.8 Closed-loop Eigenvector Structure and Undisturbability

The following theorem relates the property of

undisturbability to the closed-loop system eigenvectors.

Theorem 3.5:

Constider a system characterised by theqﬁ%%ﬁ fWgﬁj) where
I has distincet eigenvales; this system has k(1<k<n) un-

disturbable state variables with rcsbcct to disturbance,

Ej’ tf and only if:

1) the closed-loop system eigenvector matriz, W,
is of the following -form or can be brought
into the following form through rearrange-

'
¢ ment of 1tsé columns.:

!0
|
|
U e (3.39)
1
|
Yy
where W, ¢ ckak, v, e c-Kain=k)
ii) L.,+i8 of the form:
AR %
g, ,
— b}"" .
e e
> A ' - ". . .
e~ |2 g S (3.40)
J . ; N
‘K I VRN
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(n-%k)

where £,. € R and the first k elements

27
are zero and correspond to the k undisturb-

able state variables.

To prove the theorem the following Lemma will be

used.

Lemma 3.2

Let M be a set of nxn mé@fices in RM with distinct

eigenvalues. Then M & M is of the following form:

Moo
i
M o= e . (3.41)
| o
M3 My 4
k xk K -k e
where Ml € R X ’ M4 € R‘n )x(n ), and 1 < k <%n, if

and only if W, the eigenvector matrix of M, is in the form

shown in egn. (3.39). {

Préof of Lemma 3.2

With W in the form of eqn. (3.39), sufficiency is

clear since M = WAV, where v = W_l and A denotes the nxn

~diagonal matrix whose diagonal elements are the eigenvalues
of M.

'

To prove necessity, note- that since M inleqn. (3.41) ¢

S
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is a lower quasi~trianqgqular matrix, its determinant is
the product of the determinants of the di: onal blocks,

Gantmacher [26], i.e. |M| = IMll |M4[. This means that,
on) = 0(M) U o (M)

where o (M) denotes the spectrum of M. For this part of
the proof assume that A and W are partitioned so as to

be compatible with the partitions of M in eqn. (3.41):

[ 1 [, ] ]
A= --——%--- , W = ————%A—— (3.43)
I ' |
i i
° e "3 o1 M
where A, e @ka, A, e ¢ (n~kIx(n-k) .4 they are'arrénged
such that:
é;
o(Ml) = diagonal elements of Al (3.44)
o(M,) = diagonal elements of A, (3.45)

Since WAis the eigenvector matrix of M, it follows that:
MW = WA - . (3.46)
From eqns. (3.41), (3.43) and (3.46), it follows that:

« MW= W,A . (3.7
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and

M.W. = WA (3.48)

Clearly, W, in egn. (3.47) is the eigenvector matrix for

i

M, . Since Al # Agl eqn. (3.48) implies that W, = 0,

which proves necessity.

-

Proof of Theorem 3.5

In view of the necessary and sufficient conditions
for undisturbability in Theorem 3.3, it suffices to prove

that the clased-loop system matrix H is of the form

— —
Hl : 0 |
I
H = | ——==k-—- (3.49)
|
! t
I
where H, ‘€ REXK ang H, e R(n—k)x(n—k)r if and’only‘if its o

1 4 g
eigenvector matrix W is, or by rearrangement of its columns}» '
can be brought into the form shown ™ eqn. (3.39). Clear-

ly, the proof for sufficiency and neceééify both follow

from the result of Lemma 3.2.

Remark 3.6  The assumption that H has distinct eigen-
- values entails little'lbss of generality, since almost
any feedback matrix, K, will yield a closedfloop system

with distinct eigenvalues (Davison and Wang [28].
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Remark 3.7: The extension of the results of Theorem

3.5 to discrete-time systems is obvious.

Theorem 3.5 helps to relate the two sets of
necgssary and sufficient conditions considered in
Theorems 3.1 and 3.3 in the following way. The necessary
and sufficient conditions for disturbance localisation
in Tﬁeorem 3.1 are expressed in terms of the subSpaoe
spanned by some -of thé closed—ioop eigenvectors, i.e.
the'(A,B)—invariant subspace V. The necessary and suf-
ficient conditions for undisturbability in Theorem 3.3
are oiven in terms of the structure ofrcoefficient mat-
-rices of the state—soace model. Theorem 3.5 is basically
an exten51on of Theorem 3.3 and shows that the two sets
of necessary and sufficient conditions in Theorems 3.1
and 3.3 ar‘sequivalent. In contrast to previous results
on’disturoance,localisation (Wonham and Morse [12],

’ [ 4

Bhattacharyya [l3]),the‘results in Theorems 3.3 and 3.5

' " . v ~ 1] . ot . .
are structural results. However, in conjunction with \

> K

%ﬂhg.eigenValue/eigenvector assignment technique these
results 1ead to a very simpie desion prooedure'f In
:contrast tarthat the results of WOnham and Morse [12] do
not lend themselves éa51ly to computer lmplementatlon .
One of the maln dlfflcultles is the evaluation of V*

wﬁlch is subject to the hazards of ill- condltlonlng,'

4Bhattacharyya et al [23].

. .
* 'The design pracedure based ‘on Theorem 3.5 allows the
user to specify the elements «f Wl, whlch 1s not 90551ble
in previous methods [12]. S R
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3.9 Output Undisturbability and Closed-loop System

Structure

When the system outputs are a subset of the
state variables then the coﬁdtions for state undisturb-
ability (Theorems 3.3 and 3.5) can'be applied directly'
to determine output undisturbability. However, when
outputs are a linear combination of the state variables
then conditions for state undisturbability do not apply -
directly. 1In this case output‘undisturbability can be
handléd by transforming the system prior to applying |
the conditions of'Théorem 3.3. The first step is to

)

define a new vector, z, of dimension n, such that (c£.]36]):

G

J

'z = p-—x = 9"k (3.50)

po
where C is the mxn outpﬁt matrix of f;é original sYstem.
(assumed to Be of‘full rank) and E'is a’ Qp—m)xn matrix
chosen arbitrarily such that iﬁs (n-m) ro@% are linearly
.indepgndeﬁt of the rows of C. Under these conditions Q  ;
exists, and the original system defined by egn. (3.1)
AW ‘

becomes: ,f’
. <

1

lg u + Q D ¢ A

(3.51)

N
]

o tagz+ 0
Y=CQZ @L\

-
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The closed-loop systems can now be represented by eqgn.

(3.3) where:

1

1a Q+Q "BK and s (3.52)

ool
il

2

Q-—lD + Q—lB KFF

&
it

The conditions for séate undisFurbability éan therefore
be applied directly tb the transforhed éystem and since
{zi = Yis i=l,..;,m} they provide a basis for the déé%gn
of systems with ugh@sturbable outputs. This is illustrated
in one of the following examples (Section 3.;2).1‘(

g | .

3.10 Discussion of Theoretical Results

3.10.1 The relationshig,between undistﬁrbability and

.vJ

uncontrollability

v

From'a géometric viewpoint- the QSSential d;ffer-’”N
~ence between undisturbability and uncontrollability is
the following. With W defined by’ (3.35), then from

-

Lemma 3.1 it is clear that-an‘gpen—léop system charaétef-v
ised by the pair (A,dj) is "uncontrollabie" if and,énly
if a linear transformation can bring it inﬁo the'form of
(3.30). On the other hand, the pair (A,d,) has k undis- .

turbable state variables if and only if it can be brought

into the form of (3.30) through a particular class of
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of Linearrtransformations,'namely, permutations of coor-

dinates to reorder the staté variables. This class of

linear transformations also allows the undisturbable

"~ state variables to be identified. These considerations

lead to the following conclusions:

i) ?ompiete state controllability of the pair (A,dj)

' implies complete state disturbability of the

pair (A,dj), However, the converse is not always
true.
ii) if some of the state variables of the system

(A,aj) are undisturbable, then it follows that
the pair.(A,dﬁ) is uncontrollable. However, +he
converse is not necessarily true. Even\if the
pair:(A,gj)Lis uncontrollable it iS'poséible that
(A,dj) is complete}y state,disturbable. Note
that analogous results also apply for output
disturbability.

. As is- evident from the.above discussion, undis-
turbability of thé‘pair (A,dj) canno£ always be.detefmined
from controllability concepts. However, uncontrollability
of the péir (é’dj) can often be inferred by application
of the undistﬁrbabiiity criterion; that is, the pair
(A,dj) isluncoptrollable if the pair (ALdE) hgs some
undisturbable state variables (cf. Section.3.10.2). These
relationships are draphically summarised in the venn dia-

gram of Figures 3.2 and 3.3.
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DISTURBABLE
SYSTEMS
IS S
/////~”§§RUCTURALLY
CONTROLLABLE \
SYSTEMS \

/////”’"'—_\\\\ | :

CONTROLLABLE
SYSTEMS :

-

-

Figure 3* v\'}enn diagram to graphically illustrate

. "the relationship between disturbable,
controllable and structurally control-
lable systems.

[~

////// UNCONTROLLABLE NG
- SYSTEMS | N
Vd /—”‘,__~________~ e \\\
~ —~UNCONTROLLABLE

~

~—"STRUCTURALLY . \

UNDISTURBABLE \
SYSTEMS j

<:;\\\ SYSTEMS S
. A PO ///
\\\

. L Y

~

}Figute 3.3:

w

Venn diagram to graphically illustrate

the relationship between undisturbable,

uncontrollable and structurally uncontrol-
_lable systems.
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3.10.2 The relationship between undistﬁrbability and

structural controllability

The class of undisturbable systems are a special
class of uncontrollable sysﬁems, namely those which are
not ”S@ructurdlly controllable", a concept recently in-
tro@ucod by }&h {29]. Structural controllability ;s afﬂ
property that is useful in determining the Controllabilﬁt%
characteristics of a system from a knowledge o% only the
Ze10 entries in matrices of the pair (A,B). A system
which 1o not structurélly controllgble'can ge brought
into two possible‘forms throudﬁ‘permutatioﬁ_o% coordinates.
One of these forms is identical to the form of (3530).
Thus there is a close relatignship bctween;undisturbabil—
ity and structural dncontrollability. Undisturbability
c%? also be investiqatq@ without knowledge of the exact.
n;merical valu®s of the non-zero elements of matrices A

-and D since only knowledge of the rero clements of these

|

: i
matrices is required. |

Theorem 3.3, which is based on algebraic concepts,

v

can be used to show the equiValckce of the following -two

properties for the system in eqn.
i) T+ signal flowgraph of th ntrivial pair (A,dj)

does not contain any non-accessible state variables,

M the system is completely disturbable) .

63



11) there is no permutation »f coordinates which

brings the pair (A,dj) into the form of (3.30).

-

By contrast, Lin [29] has used a graph theoretic approach

to study structural controllability and to show the
equivalence of results s%milar to (f} and (ii) above
far structural controllability. The relationship be-
then d&sturbability, controllability and st:uctural
cdhtrollabiligy is summarised in the venn diagram of
Fiquree 3.2 and 3.3.

\

7

%

. _ ° :
3.10.3 The relationship between undisturbability and,

-y

“.zeros of Rosenbrock's system matrix.

'{& ‘iJ - - . . >
01 B .
In Sectlon 3.10.1 the relatlon§h1p between 5

blllty and uncontrollabg&iiy was consldered

undistur
Earlier we also remarked about the rel&ﬁxbnshlp between

undisturbability and unobservabllld?. In the,ensuinq
: _ . N

. discussion we will investigate afmbgg definitive mathe- -

matical relationship Between these three concepts hy
considering Rosenbrock's systems matrix. In Rosenbrock
[35] the ideas of controllability and observability have

been embodied int e following definitions.

~

Controllability: The pair (A,B) is controllable if and

only if (sI-A) and B are relatlvely left prlme

M
N
e .

64
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“¥

Observability: The pair (C,A) is.observable if gnd only
i l
if (sI-A) and qbare relatively right prime.
‘ a 2 . ‘ '

LS ) -, v.' : ‘ o w . \
- According . to ROWC}@ [35], the eigenvalue "
correspondipg to .a mode h is completely decoupled

© - .
~from. an input i® said to be an input decoupling (i.d.) ...

’t. L] N .
zZero. In-the,samelmhézgr, the eigenvalue correspondlnq

4

to a mode ‘which 1s completely decoupled from an output

is said to be an output degoupllng (o d. ) zero. ﬁﬁ%%pally,
. b . g\s a4 :
the elqenvalue correspogdlnq to a mode whlch is comﬂ@etely@ e

-

decoupled both from the 1nput as well as the output 156 ,”ﬁ
ob> :
sald to be ,an 1nput output decoupllnq (1 o.d zero, oo
o a"'? - 1{3 "..,4‘
W1th,thsswbr1efgrev1ew of basic system matrix terminology e J
gp : o ' y . ) Y ‘ abs
: ‘we now pr¢ -nt the following result in the form' of a-~
7, “( . - ) . ‘ . ~
theorem: - S X . -
: ) oo :
v PR " . o
& > o ¢ »
. ) R R s T
. Theorem 3.6
) . @7 N - e g
An m 't apden Sustem oharacteriscd bu the frﬁplt (F L,F)
e completely output undis turbablp zj and onlj Lf
i
3.+ 3. - 23, =n
! Yo 1o <
where 3. Jdenotes the number of 1.d. seros, z, Ztnote“ .

1.
the number of o.d. zeros, and 320 is the number of i1.0.d.

Jeros.,

r T
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Remark 3.8: " The statement of Theorem 3.6 in pffect‘
.savs that (sT-H) and L are relatlvely (left) prime and
‘(sI-H) and ¢ are relatively {right) prime. Note also
that the triple (A,D,Cf can be tegarded as a special !

case of (H,L,C) and hence the reiylt of Theorem 3.6

applies to both open as well as closaa—loqpusystems.
. R Ty

- Proof of Theorem 3.6: )
. (3 \ *
, ‘ ' s :
:Suff1c1en¢y 1s c¢lear since Ziv¢vzo -z, =N impiies |
that the mih;mal syst€mM- order = 0, thagﬁis tﬁtsay that
. * . ’& Voo % v
_ gyl T | ,
y(s) = c(sl H)“gq; O?;.. | .- e 3’
Necessity: Far thlS assume “that the outputs are a s

set pf the statc;[.):tvarlablesi‘g §¥‘thls ls"pot the case,
‘the sysgem. can always be transfdrmed into a set of new
coyrdlnates where the outputs are 4 subset he new
statﬁ variable~»(cf. iﬁitlon 3. 9) ~ Once thlS\T§ done
\tkén u51ng the anguments of Tﬁeorems 3 3 and 3.4 .it cag
be shown that' the system matrix P(s) for the undisturb-

able system characterised by the'triple~4H,L,Cf is of

9 . .
the form: g
: 0 Of—
SI—Hl :
______ T_-—__—-dh—_—J
P(s) = —H3 : SIfH4 L2
| < "
by
“In | 0 0
- - i _

& .
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With the above form of ' (s), the traﬁsfer function. be-
ween y(s) and {(s) c» be evaluated as: ’ N
¢ . 5 . . B A
_ ~1 .
y(s) = .~H) "L, or |
— — — — -1
I 0 SI—Hl 0 1 Ol I 0 ¥
y(s) = [T 0] - x
0 sI-H, 0 | -Hy Ifj0 sI-a, .
A S
sI-H, 0 I ]
X = [Im 0] . '
R R I ~H, g
. Wy K\ 0
From the above matrix equality it is clear that the i.d.
“zerop ¥e the poles of ISI-HII, i.e. the.eigenvalues of .
S g : . s » \
Hi» ¥nd the o.d. zeros are the poles of 1sI—H4] or the
. eigenvalues of %ﬂ’ Now H 1is a quasi-triangular matrix
'4;;‘:/ - R N 4 o B -
‘therefore eigenvalues of H are o(Hl)Uo(Hilf Since W
is nth order, zi *z = n. 'Note that in some cases the
Y-

q{%etldf i.d. zerosl{set >f o.d. zeros} # 0 (e.g. if Lé

<

: . .
has one or morevzero rows), in this case the system has ‘.

(L.0.d.) zeros as well. Bé@%use-of tHis zi+zO > n and

. hence we need t& subtract Zi 5 to satisfy the equality:
L S o .

- )
< L _ . s 1
Zp tozg 4oz 7 n. This completes t§e preof of the,

theorem. <

W

b4

e
bkl
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Remark 3.9: Tt is interesting to note that conceptually

the proof of this theorem becomes readily'apparent when

the definition of undi: :urbability is considered from a

signal flowgraph terminology - just as the concept of

decoupling zeros becom's clear from a signal flowgraph

» ) _ N
of a.ssystem in thﬁafalman canonical form. Forvexample
the eigenvalues associated with the non»acce551ble modes

Or thegﬁndlsturbable modes can be ldentlfled with i\ d

-zeros and the eigenvalues associated with the accessihle

modes (the dlsturbable modes) can be identified with the

Ly sy "~
o.d. ;ﬁce there is no path f:Pm,g to y. '
¥ et ' * = ) -
v . ) o - ;‘.'\ . ﬁ . 3,'_’,' . .
L v "
3.11 Design Considerations A

-

It was mentioned in Section 3.5 that the necessary

~

~and sufficient'conditions for disturbance localisation’

4

reported by Wonham and Morse [12] and Bhattacharyya [13]

were express®# in terms of V*, the maximal (A,B)~-inveriant

‘ subspacé contained»in-kerner C.’ Athough W'~ plays a.kgx

]

role in @@@umber of control problemsb(Morse and’ Wénham,

[301) it is not edsily calculated (Bhattacharyya (317,
_ L e ,

Bhattacharyya et al.‘[23])f 'By confrast, the result of

Theorem 3.5 1n cdnjunctlon w1th elgenvalue and eigen-
. RO SN A S o Ay
vector assignment technlques allows 1n51ght 1nto the

design problem and is also useful from a synthesis point

&

68
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In thls section a g#Sigh procedure to achleve

The closed- loop sy%aﬁm ma rix can be

H

partitioned as:

A

+

G | ==

BK

’

TWAY

where V is defined by, V =y

fluenceAthefdesign proceﬁube Wi 

71

’

technique (Srlnathkumar ang Yhoten [32]

: : . FF
and if feedforward control 43 néceﬁsarY)chen K

EgR.

(3.53), can b

dlsturbance localisation wl}l b& developed based on
Theorem 3.5 and the elgenvalhe/eliz?veCtor a531gnment
(cf. Chapter 2)).
" From Theoremv3i5 it is clegs that in order to gchieve
disturbance localisation, k Must be specified so that

the closed-loop eigenvectorxs are in the form 0f_eqﬁ.(3.39)

must

be specified so that L is. \9_th& form oOf eQﬂ (3. 465
The manner in which “the dea;ﬁn ObjeﬁtJVes of" arbltrary

eigenvalue assignment and Q;Stufbaﬂee localisation in-

Ff-w be con51dered

gﬁsgtessed as:

(3.53) -

Y

5

69

v,
}‘}
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In equation (3.54) the partitions of I' .1 W are denoted
by double subscripts (e'g"wll) to : - 1d ¢ rfusion with
the partltlons 1n eqns. (3.30) and (:.Z which have

'dlfferent dlmen510ns Matrlces Hll' 11" 1, l' ll’ Al’

and Vll are rxr matrlces where r is the number of inputs;

Hysr A 297 22,ti: and V22 are (n—rﬂx(nhr) matrlces‘andﬂ
B, is asgumed to™be nonsingular. (If necessary the

‘1 .
state variables caﬂ be reordered to make B nons1ngular.,‘ ¢

Note that ‘W and consequently A and V can be complex S ¢

Lom ‘eqn. (3. 54) it follgws that Range (B ) =
y%ﬂv
ex1sts such’ that the rxr elements of wll

- v % S

) .elements” 8% w12 can be chosen arbltrarily,

nidtrices.

[ \\ )
subject only to the requlrement ‘that W be n0n51ngular

(since V = w l). .Once A1 asd /\2 (i.e.'all the closed-

| loop system eigenvalues) and Wll and le are chosen, W21
and W,, can be calculated (Srinathkumar and -Rhoten, [32]4* -
from eqns. (3.55) and (3.56) which follow from egn. (3.54):

e

o _ - 'ft
. w21Al PW2J. 'I'wll + swllAl, .(3.55)
w22A2 -, PW22 = Tw12 + swl?_/\2 (3.5.6)

W .

where ; . P



P

" exact solution to egn./ (3.53) since w21 and w22 have

Q
B -1 N
S = B2B1
T = Ay - SAp, § (3.57)
r
P = A2"2 - SA12

Then K can be computed from eqn. (3.53) by using\the

pseudoinverse of'ﬁ,(chapter 2, see dlso Shah et al.
Note tggt the pseudoinverse solutidn.for K provides\ an
|

been chosen so as to satisfy egns. (3. 55) ang (3.56).
Spec1fy1nq the first r e%gmgnts of each of the

n elgenvectors requires only (¥

n g &
i.e. (rxn-n) elements of K, prpvidifg that at least,qne

of the r specified@ values in each eigenvector is nonzero.

The remaining n degrees of freedom can be used to arbit-

rarily assign the closed-loop eigepvalues. Thus in
genegal, simultaneous e%éenvalue and eigenvector assign-
ment-are pdssible\provided‘that at least oﬁé"of the
flrst r entrles in each elgenvector is chosenato be

nonzero, and tha the 1nal eigenvector matrlx w is non-
g

singular.

4 Al '
4

3:11.1 Steps in the design procedure

The main steps in the design procedﬁre can be

summarized as follows: N
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i) After forﬁulating th control objeptives, métrix
D is inspeéted to determine’ if the selected state
or output vari;;les‘can'be made undisturbable by
feedback control of whether feedbaCk—ggedforward
control is required. If D has the fogm in eqn.
(3.40), then only feéaback control is required;

if not, then feedforward—feedback control must

be ﬁsed.

1i) Matrices W.. and W in eqn. (3.54) are assigned
. 11 12 1

accéording to the result in Thedrem 3.5.
oy .

-

iii) 4heé closed-loop eidgenvalues in Ay and A, are .

& ,assigned.. T ' e
iv) Matricés W,, and W, are calculated from eqgns.
(3.55) and (3.56) and a check is made to determine
whether the resulting eigenvecﬁor maérix, W is \
nonsingular. If W iS'singular,_éfep.ii) is
repeated with a different choice'of wli and W, ,.
v) Feedback matrix K is cabetlated from eqn. (3.53)

N - using the pseudoinverse of B.

vi) If feedforward control is used, kFF g5 then de- o
gigned so thatu the’approg;iate elements in L are N

zero. 'cf. “eczion 3.12-fof.illustrative examples) .®
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' Note that‘%xk .esent design procedure suffers f#’% ‘the

disadvantage thqt if Bl is singular, then not all of the
control objectives can be met and therefore new control )
objegtives haQe to be formulated such Epat the final Bl
obtainéd after reordering state vériables is nonsingular.
However, the{g are exceptions to this case; tbat i§ in
some instances the origiﬁal‘aesign objectives can be

met even if B, is singular, as for example, the distilla-

1
tion column example considered in Chapter 4. Moore [34)

has recently proposed a method for eigenvalue/eigenvector

e to th pprdadh
7y L
?d in Chapter 20

assignment which does not require Bl to be nonsingular

and thug pi‘ovides an important altern@’& 'ﬁ

of Srinathkumar and Rhoten [32] as co
2 e

3.11.2 Simultaneous disturbance localisation and eigen-

value assignment 4
’ -

From a design point'of view, -it is desirable to

L]

R L8 f“ <o '
be able to arbitrarily assign all n closed-loop eigenvgiues

as well as achieve disturbahce loralisation. However,
- ,‘L e : . ‘
it is not aIways possible to sgtisfy both objectives if
the- elgenvector/elgenvalue design’ technlque presented 1n
X‘\

‘Chapter 2 is used [see also Srﬁihthkumar and Rhoten [32]
‘h’
-and Shah et al. [33]). In partlcular, when tﬁe ée51red

L 4
number of undisturbable state variables is less than the

ya
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numbef of control Oarlables (i.eT k<r), then simultaneous
eiée:value assignment and disturbance localisation is
pos%iblé, but when k=r not all eigenvalues can be arbi-

trarily assigned. The reason for this limitation will
be considerdl} in _the following discussion

In order to make k state varlables xl, SN xk

undisturbable,'the kx (n-k) matrix, W,, must satisfy the

JeRS

“.comdition in Theorem 3.5 that W, = 0. However, jn the -

eigenvalue/eigenvector design algorithm, arbitrary

eigenvalue aésignment is possible only if there'is éi

least one nonzero element among the flrst r elements.of.

-~

each closed—loop elgenvector These.tqiﬁcondltlons

- 5

arBitrary elgenvalue assignment can be achieved by
l

sggilng W = 0 and ass;gnlng nonzero. values to at leaqt

‘oné of the remalnlng r-k elements in each column of WL2

(cf. eqgn. (3.54)). By contrast, when k=r some closed—kFOp ¥
eigenvalues cannot be arbitrarilx assigned. In this case

y _ 0 R _

“Theoreh 3.5 requires that W, = W, = 0 for Jisturbapge, ',
. F

localiﬁation«but when le = 0, it follows from e&g 3.56)

?

iy
fﬁé% the n-r eigenvalues of A2 are the elgenvalues of P
’y
andwthus they cannot be prbltraglly assigned. Consequently,

3

‘2 when ¥=r the stability of the closed—loop system depends

N . ,
on the.eigenvaluyes of P, Necéssary and sufficient con-

L] t -
ditions for simultaneous disturbance localisation and

N o
- - -



closed-loop staRility have recently been re%brted by

Fabian and Wonham [17] and Chanq.and Rhodes [18].

3.12 Illustrative Eka@ples‘v | »

;?‘ To 1llustrate the concepts' and design procedures

f Sectlon 3.11 two examples will be con51dered

f‘\ . . L]

‘A hypothetical thltd order system w1th_,/knph s"
s \
< outputs and 2 dlsturbances is shown 1n eqns. }3.58) and

e,

(3. 59 - | LT
=1.25  0.75 ~-0.75 2, 1]
A= 1.0 ~-1.5 ~0.75], B={0 ~1] = (3.58)
1.0 -1.0  =-1.25[ = 1.1
and ’
1 0 , 1]
L. \ ) : '
C'= , D = 2 . ' (3.59)
0 & 2

- \ E 'l
The eigehvalﬁes of A are —0.5, -1.25"and -2.25. Thedkem

" 3.3 and inspection of the system in edms. (3 58) and
(3 ,59) reveal that all of the—state and output varlables

arewdlstarbable w1th respect to each dlsturbance, since -

A contains no zero elementé""

- I

P
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B

'le in eqn. (3.54)

e

Suppose that the primary controi'objective ia to
make Xy undisturbable with respect to disturbance, El
Fof convenlence, let h, i3 and Wi denote the (1.])‘
elements of H and W respectlvely Then k=1 and from

P,;I‘heorem.3.5 it tellows that w2 w [w12’w13] must‘be chosen

so that w s W5 = 0. Thi# choice means that h12 = hiB =

12
0 and th%s H and dl' the flrst column o%!b, are in the

requlred !ng @f eqn. %?QO) The eigenvalue/eigehvector

» a551gnmeht methpd ‘of Sectlon 3.11., can be- used to calculate
4

T

%

the remalnlnﬁﬁgiements of W. Slnce 1% tﬁas example,.r‘=-2,

""

all six elements in. the first two rows of W (i.e. Wll;and

d

be arbltrarlly assigned. For . .

w

example,“wll'and W can be‘specified as:

(3.60)

. o

all three closeqéloop eigenvalues/can be

selected «s -3 -4 and -5, then

4 -0
. o T | . / |
r - R A, = [~3] - (3.61)
0 -5 /
. .o
~ H
y4W1th wll, 12° Al and A2 epec1f1ed w21 and w22 can be

evalhated from eqns (3 55) and (3 26) and K calculateaa

e
A2

‘from eqn (3. 54) to glve-

rarily.’ If the cl2§ed~lpép-eigenyalhee;are

© -

o]
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' 0 0 : —
e -1.594 -1.906 2.938
W = ] 1 1 K =
' 0.438 3.062  5.125
1 -0.100 -0.357 ; _
‘The closed-loop response to a unit step change in
A is shown in Fig. 3.4 and illustrates that'x1 has been
made undisturbable. with respect to 51. It is interesting

N

to note that x, is only slightly affected byf,. This 1is

due to the presence of a small (but nonzero) element*in .

hi,- ;

Example 3.2:

oo

Again consider the system in eqns. (3.58) and
(3.59) but now assume that the control objective is to
make_x1 and X5 undiséurbable with respect to both 51 and
52. Clearly, this is a much more ambitious desigﬁ ob?ec—
tive than the one considéred in Example 3.1; -

In view of the structure of the matrices in
Theorems 3.3 and 3.5 it is convenient to reorder the
state vector so that state variables, x, and Xy which
are to be made uhdisturbable appear as the first two state

variablés. Thus the new state vector, x, 1s defined by:

L] X =-[xl X, x3] = [xl X3 x2] (3.63)

Similarly, let A and D denote the appropriate permutations

of matrices A and D corresponding to the state vector x,

77
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-1.25 -0 755
~ ' -~
A = 1.0 -1.25 1 -T.0 | D = (3.64)
—— e ) = — - ——— - ——— -
r.0 _0.75 | -1.5

e N ,
and let H denote the corresponding permutation .of B.

Theorem 3.3 indicates that in order for Xy and X, to be

undisturbable with respect to El and Ez, it is necessary

13\= h23 = 0 and the first two rows in L must also

be zero. Since dll = d21 = 0, it is possible to design

that h

¥ so that x, and X, are undisturbable with respect to:El.

1
However, since d12 and d22 aFe nonzero, xl and x2 cannot
be made undisturbable with respect to &2 by using only
" gtate feedback control. In %his case feedforward control

of 52 must be used in conjunction with feedback control.

Consider the feedback-feedforward control 1aw'of

»

egn. (3.65):

W) = Kx(t) + KT 2 (8)  (3.65)

Combiﬁing‘Fqns. (3.65) and (3.1) gives the closed-loop system
x = HX(t) + LE(t) ~ (3.66)

.3
The corresponding closed-loop system expr~ssed in terms

of x is:

% = Hx(t) + LE(t) (3.67)



- ~ o T~ ~

where H = A + BK, L = BKFF

+ D,

In order for il and iz to be undisturbable with

respect to 52’ the second column %f L, 82, must have the

form‘tzT = [0,0,a] where a is to be determined. Then KFF
and a can be calculated from
) - FF ~ ~

B K + d2 = 82 . (3.68)
to give ) :

FF _ [ 1 |

K K and x = 3.0 (3.69)
Fa .

. -

" To complete the Control}gr design, the state

feedback matrix K must be calculated. The undisturbabil-

ity objectives and Theorem 3.5 require that w2 must be

chosen as W, = W = 0 while W can be selected arbit-

2 12 11 -
rarily as ’ ‘
- 1 0 ’ .
W = _ ¢3.70)
11 1 1 |
Since wlz = 0 and k=r, it is not possible to arbitrarily

assign all of the ~losed-loop eigenvalues, as discussed
in Section °~ .I. in fact egn. (3.57) indicates that P

is a scalar quantity with a numerical value of -4.25 and
consequently, one of the closed-loop eigenvalues, AB' has

a value of -4.25. Then from egn. (3.56) if follows that

Wo2
values to be the desired values ofk17= -4 and xz = -3,

= 1. After dpecifying the remaining two closed-loop

79



W and K can be calculated using the eigenvector/eigen-

value assigdment procedure of Section 3.11. This gives

|
-0.75 -1.75 2.50 1 0 | 0 X
K = _ , W=|1 1 + 0] (3.71)
-1.25 2.75 -4, 2 “—3——2:—8—;-——1——

Figures 3.5 and 3.6 compare the open—lq’p and
closed-loop responses to unit step changes in El and 52,
respectively, and show that 3 and X4 have been made

undisturbable."

Example 3.3:

o1

Another 4th order hypothetical state-space system
will now be considered to illustrate the design procedure
for achieving &Sutput undisturbability. The form of the

open-loop system‘is as defined in egn. (3.1) and the

coefficient matrices are:

[=0.932 0.850 -1.668 0.854 |
-~0.060 -2.018 2.060 =-1.030
A =
-=1.190 0.958 -1.810 0.710
-0.320 1.424 -1.680 0'3§_J
[ 5.30.  1.60  1.96] 2.4 -0.04 ]
-3.50 -2.0 -1.20 -3 1.3
B = D =
-0.50 -1.50 0.60 0 1.3
1.0 0 1.80 1.8 0o
L ] __ ]

80
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The eigenvalues‘of A are -3.0, +0.1, -1.0 and -0.51 and’
hence the system is open-loop unstable. Also, since A
does not contain any zeros the pair (A,D) does not safisfy
the conditions for unéisturhability defin!d by expression
(3.30) or alternatively by Remark 3.4, and hence all four
of its state variables are disturbed by either of the two
disturbance variables. Since Yo =X, the second output
variable is disturbable but since Yy is a linear combina-
tion of X, and xz‘i‘t;is not possible‘ to araw any immediate
conclusions aé‘to whether Y is disturbable or not.

The control objectives for this example are
defined as: (i) to make the closed-1loop system stable;
(ii) to make both Y ?nd Y, undisturbable by €, and £,
(this will illustrate the degign of a'system for output
undisturbability, cf. Section 3.9); (iii) to specify
complex eigenvalues and eigenvectors (just to illustrate
that they can be handled directly); and (iv) to use a -
control law of the form u=Kx, plus feedforward control
where necessary. "

Because the specification ig fér output undis-
turbability and y is not a subset of‘*, it is necessary

to transform the system. The tra?sformation (cf. eqgn.

(3.50) is

81
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[~ — _—
1 0.8 0 0
_1 ¢ 0o 0 1 o
"z =Q x = |---|x = X (3.72)
£ 0 1 0 0
oo 0o

and the coefficient matrices of the transformed system

defined by eqn. (3.51) become

[-0.98 -0.02, 0.02 0.03
-1 - ~1.19  -1.81  1.91  0.71
QAQ=A"= (3.73)
-0.06 2.06 =-1.97 -1.03
-0.32 -1.68 1.68 . 0.35
- —
0 1]
0 1.3
o-lp 2 pt =
) -3 1.3
1.8 0 .

Comparison of the syséem charggterized-by {A+, o)
with the conditions in eqn. (3.30), reveals that state
variable z,=Y; is "almost undisturbable" with respect to
disturbance»g1 since dIléO and aIz, aI3 and aI4 are very
small relative to the other eléments‘of A, , .
However, feedback control will be required to gen-
erate the conaitions necessary for compi?te output undis-

turbability.



Since dIl aqd dIz are both zero, the condition
implied by eqn. (3.40) is already met bx dI and hence Yy
and Y, €an both be made undisturbable to El without the
use of feedforw@rd control. However, feedforwird control @
will be required to give l; the proper gtructuée to make
tho~system undisturbable to 52.

In the transfé}med éystém the number of inputs,
r=3, and the specified number of undisturbable states, °

“~k=2. Therefore it is possible to arbitiarily specify

all the eigenvalues and three elements of each eigenvector

as follows:

A = diagonal {-2+j, -2-j, -3.0, -4.0} (3.74)

1 1 ' 0 o
. I

143 1-3 + 0 0

W= |meemm—mem—a—e -'L ———————— (3.75)

0.5-3 0.5+, 1 1
l
l

| Y41 Y42 | W43 Yy

Note that the unspeciffed elements wij are to be calcul-
ated as part of the design procedure and that the complex
eigenvalues and eleﬁents of the eigenvectors must oécur
as complex conjugate pairs. _

It is obvious thatAw defined by egn. (3.75) meets
the condition for undisturbabiiity specified by egn. (3.39)

and that the system is closed-loop stable. The feedback

.83
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controller matrix is then calculated from eqn. (3.53)

and is~GQown in eqn. (3.77) below. The variables Z,%Y;

ot the closed-loop system are undisturbable by El when

this feedback controller is/ﬁyéd, but a feedforward con-
.

troller must be designed to’make them undisturbable by &2.

In order to give f; the structure requined by eqn. (3.40)

it is noted that in this example:

(3.76)

e |
If £2 1s set equal to {0,0,1.3,8} where the 1.3 is arbitrary

then KFF and B can be calculated from eqn. (3.76). .Note

that the solution for KFF is exact.

——

The feedban contfoller K+ is theh transformed
Sy

to correspond to tée original system by using the relation-

' - * 4
ship K=K+Q 1 and the final controller matrices are:

v
——

0.1342 0.4032 -1.3094 0.9886
K = —0.446%////0.5135 1.6138 -0.8569| (3.77)
a
‘ -2.3555 -2.6438 4.2935 -2.5016
K'F = [-0.1231 0.6308 -0.6923]7

Simulated Results: Figure 3.7 (left). shows the simulated
response of yI.and Y, to a step change in gl under both
open-loop and closed;100p conditions. As expected the

open-1loop féSbonse of Yq is essentiadly zero. The



unstable open-loop response of y2 is made undisturbable
by the feedback controller and undisturbability of Y,
maintained. Note that the cldsed—loop system has zero
offset even though it uses proportional feedback control
only; is subjected to a sustained step disturbance; and
has no natural integrating modes.

Figure 3.7 (right) shows the simulated system
responses to a step change in Ez. The open-loop responses
of Yy and Yy, are improved considerably by the feedback
controller but as predicted by theory both feedforward
plus feedback control is needed to make Yy and Y, undis-

turbable by 52‘

3.13 Conclusions

The system property of undifturbability has been
formally defined and related to the concepts of uncontrol-
lability, non-accessibility, and structural uncontrolla-
bility. Necessary and sufficient conditions for undisturb-
ability have been expressed in terms of both the structure
of the coefficients matrices of the state-space médel s
and also in terms of the structure of the system eigen-
vector matrix. These results provide new insight into
the structure of linear multivariable systems and have

interesting design implications for the synthesis of

regulatory controllers. Specifically the results allow
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(1) determination of the property of undisturbability
of specific input-output pairs by a simple inspection

of the zero entries in the appropriate matrices, and
(ii) they lead to a simg}e a;d constructive design pro-
cedure for the design of requlatory controllers to achieve
undisturbability. An important ch{racteristic of this
design procedﬁre is that it makes use of the information
contained in the model abqut the effect of disturbances,
whereas other design schemes for feedback controlierg do
not. In comparison to existing design schemes for dis-
turbance localisation the main advantage of the proposed
design procedure is its computational simplicity. The
main alternative design scheme besides requiring complex
algorithms suffers from the hazards of numerical ill-
conditioning.

Undisturbability is closely related to ghe system
property of uncontrollability, and also structural uh—
controllability but is not idenfical. It is also re-
lated to observability. The controllers designed to
produce output uhdisturbability can be thought of as
modifying khe closed-1loop éystem so that disturbance(s)
affect only the unobservable modes, i.e. those that do not
contribute to the output variables of interest.

Three numerical examples illustrate the applica- -

bility of the new theofetical results and the proposed

syntheéis procedure.
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1.0 -

0.8 |- | | L

Figure 3.4: Transient response- of the closed-
loop system in Example 3.1 to a
unit step change in El.
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CHAPTER 4

7
PRACTICAL APPLICATIONS OF MULTIVARIABLE CONTﬁOLLERS
DESIGNED TO PRODUCE UNDISTURBABILITY
-~ /
Abstract

[y

The design procédupe for undisturbability devel-

oped in Chapter 3 is applied to the design of feedback

d

and feedforward controllers for the 3r and Sth order

models of é double'effect evaporator, an ]1th order model
‘of{an‘ﬁ tray.binary'disldllation cqlumn, anc a 20" order
)modelvof another 8 tray, pilot scale,bina;y distillation
column. uExperimentél application of feedback and feed-
fo£Ward conérolleré designed to produce undisturbability

of the main vériables of interest in the computer con-

>

trolled, pilot-plant evaporator gave reéults superior to
c0nvention§l_controngré. The problem of simultaneous dis-

n

turbance localisation and asymptotic set point tracking
| & '

is also discusse€d. Some results on disturbance local-
isation using proportional plus integral feedback are

~also included. | :
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4.1 Introduction

In this chapter the design procedurc for undis-
turbability, developed in Chapter 3, is applied to the
design of muitivariable regulators for a double-effect
evaporator. Feedback and feredforward multivariable reg-
ulators designed to produce undisturbability were eval-
uated experimentally by application to a computer¥controlled,
pilot-plént evaporator at the University of Alberta. A
detailed description of the evaporator, its models, and
a schemglic diagram is included in Appendix C. The
performance of the evaporator with these ﬂgativariable
regulators impiemented is compared with optimal-quadratic
multivariable controllers, and a multiloop scheme that
have been applied previously fo the same evaporator.

Each control system was evaluated by introducing

o~ ‘
a step change in one of the disturbance variables of the
system; Three different disturbi.ces ~an be used to upset
the’pilot—plant évaporator: féef f1 'w feed concentra-
tion and feed temperature. Only t: £ rst two have been

used in this study. Feed flow has been found to be the

most severe dist

I

Gﬁ?aﬁce in the system and this was the main
reason for_usiﬁg it. The feed concentration disturbance
has been used tb evalhate the degree of interaction in

the control system. The controllers were implemented on



an IBM 1800 d}qital data acquisition and control computer,
which is interfaced to the pilot-plant evaporator, using
a computer control package developed by Newell [11.

The simplicity and practicality of the design pro-
cedure of Chapter 3 was also demonstrated by its applic-
ation to the design of multivariabie reqgulators for an
llth and 20th drder models of two different distillation
columns. The perforﬂ?hce of these requlators was eval-
uated by a digital computer simulation.

Two areas that become important when actual
applications were investigated are: (1) provision for
making setpoint change d (i1i) possible addition of
integral control to th:vgfsturbance localisation control-
lers. While regulatory control in the presence of external
disturbances is the prime control objective in most pro-
cess control sygtems, asymptotic setpoint trackiwmg or
following is also an additional importgnt requirement in
" an tncreasing number of supervisory computer control
applications. 'In this chapter the problem of simultaneous
disturbance localisation and asymptotic setpoint following
is also considered. Because of the quasi-triangular
structure of the closéd—loop system matrix for undisturb-
ability (cf. Theorem 3.3) and the assumption of non-

singularity of B. (cf. Section 3.11), it is shown here

1
that the additional requireﬁent of asymptotic setpoint
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following is almost always sati;fied. Using these results
setpoint controllers were also designed for che double
effect evaporator, and the llth and 20th order models of -
the two distillation columns. These controllers were evalu-
ated experimentally by application to the evaporator, and
by digital simulation of the distillation column models.,
Model inaccugacies, parameter fluctuations occur
in m®st practical applications and thus the original de-
sign objectives may not be achieved, e.g. in the case of
disturbance localisation the state variables of interest
may no longer be undisturbable. In such situations the
possibility exists that the introdﬁction of integral feed-
back of the undisturbable state-variables would compen-
sate for the effect of model inaccuracies Or unexpected
disturbances, especially sustained disturgances. In
this chapter such a conjecture is shown to be false.
The present chapter is organiséd as follows: The
results on simultaneous disturbance localisation and
asymptotic setpoint tracking are first discussed. in
Section 4.2. IﬁISection 4.3, the'possibility of intnéi
ducing integral feedback of undisturbable state Qariables
to compensate for the effect of parameter variations,'modei
inaccuracies, and/or sustained unexpected disturbances 1is
shown to be non—existent The experimental evaluation
of multivariable regulators designed to produce undisturb-

ability is discussed in Section 4.4. The application of



h h

the design procedure of Chapter 3, to an 11t and 20t order

models of two different distillation columns is considered

in Sectio? 4.5 followed by concluding remarks in'Section
.\“ .

4.6.

4.2 Simultaneous Disturbance Localisation and Asymptotic

Setpoint Tracking

The problem of’regulation when a system ié subject
to external disturbance$ with simultaneous decoupling
was first considered by Mclane and Davison [2], and more
recently by Fabian and Wonham [3]. 1In [3] geometric nec-
essary and sufficient conditions for simultaneous disturb-
ance iocalisation, decoupling and stabilizability are
given. In addition to [3], this problem has also received
attention in [4]. The requirement for complete decoupling
as well as disturbance losalisation results in a set of
restrictive'neéessary and sﬁfficient conditions; steady-
sﬁate decoupling is a suitably weaker réquirement and
" Yields a setpoint controller of constants which is easy
to implement. Davison [5] has recently introduced the
notion of steady—state»invertibility and has deriQed nec-
essary and sufficient conditions for a system to be steady-
state invertible. Thisisection is concerned with the

investigation of the problem of simultaneous disturbance
_ PIOD.
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)
localisation and steady-state decoupling. The méin prop-
erty of interest here is the steady-state decoupling of a
quasi-triangular (or undisturbable) closed-loop system

characterised by matrices C, B, H and L, where

c = [mio]. e
' = o (4.1)
Hy1 0 0 7] :
H = [-=<-=--] and L = |--{
icH] “2]

The \output vector, vy, for the above system is
assumed to be of dimension m £ r (r = number of inputs)

and y is also assumed to be a subset of the state vector.

Further in eqn. (4.1), Bl € Rmxr,,Rank (Bl) ='m, Hl € Rmxmr

H, e g (n-m) x (n-m) and L, e g (n-m)xq By application of
Theorem 3.3. it is clear that the outputs of the closed-
loop system characterised by matrices C, H and L in eqnj
(4.1) are undisturbable with respect to the g disturbances

AN

E1r Epr wees Eq.' Let the system of eqn. (4.1) be governed

by the following control law,
u(t) = Kx(t) + Ké\l_)yd(t) _ (4.2)

Such that A + BK = H. The transfer function between the 8

outputs, y(s), and desired setpoint values, yd(s), is

given by:
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C(sI - H)'lsxspy’d(s)

. y(s)

-1 SP_ ,
(sI - H;) "BiK" y,(s) | (4.3)

From eqn. (4.3) and the finai value theorem, it
is clear, for the class of inputs where the
limit of (syd(s)) is a vector of constdnt terms, that

s + 0
v

v{t) = yd(t) as t + o if:

H B. K = -1 (4.4)

For expression (4.4) to be satisfied with the given

assumptions, KSP has to be calculated from the equation:

B,K” = - H - . (4.5)

With r = m and Bl assumggl to be nonsingular (cf. Section

3.11), KSP is uniquely defined by

H, -~ ' .+ (4.6)

For r>m, egn. (4.5) results in a set of (m;:T~3§!&$£pns

in (rxm) unknowns. Hence, there is no unique solution
i

for KSR. One wéy to solve for KSP in such a case is to
assign arbitrary values to (rxm - mxm) parameters in

x5® ang then solve for the remaining (mxm) unknowns.
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v
Alternatively out of r available control inputs one‘could
choose the most suitagle m ingyts and thﬁs solve for a
unique k°F.  For the case where r<m, i.e. the number of
outputs is greater than the ;nputs, eqn. (4.5) cannot
be satisfied exactly. Héwevef, such a case is not very
common in control applications. .

It is clear from éqn. (4.5) that for the more
general case where r2m, and where.undisturbability of
the m ouéput variables has been achieved, i.e. Hl_l
exists by design, and Rank'(Bl) = m, then simultaneous
disturbance localisation, and asymptotic tracking af ‘a
certain,clasé of inputs is alwéys possible. Design ex-
amples to demonstrate dégrge of decoupling achieved

using this procedure will be considered in Sections 4.4

and 4.5.

4.3 Disturbance Localisation Using Proportional Plus

Integral Feedback

Model inaccuracies and parameter variations

occur in most practical appii~ tions and thus the orig-

inal design objectives for wh state feedback con-

troller may have been desigred for undisturbability,
may ﬁot be realised. In such s- . .ons the poscibility
exists that the introduction of at -2l Fwedgack of the

undisturbable state variables wou. i - e te for the
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effect of model inaccuracies, and/or parameter variations,
and/or sustained unexpected disturbances. In the follow-
ingh analysis it is shown that theoretical difficulties'arise.

The design procedure for undisturbability as
developed in Chapter 3 is based on eigenvector/eigenvalue
assignment.' Moore [6] has recently characterised the
class of all closed-loop eigenvector sets which can be
obtained ;ith a given set of distinct closed-loop
eigenvalues, by providing conditions which the closed-
loop system eigenvectors must satisf; (cf; Section 2.2).
In the ensuing analysis use is made of these conditions
to show why integral feedback of the undisturbable state
variables is not possible when H, = 0.

Integral feedback compensation will be considered

by augmenting the original state vector x(t) with a £xl

vector z(t) where z(t) is defined by: .

Z2(t) = T x(t) - (4.7)

ﬁgn, and it consists of { appropriate

In eqn. (4.7) T € R
rows to inclu&e a subset of state variables or a linear
combination of state variables requiring integral feed-
back. Note that because of controllability conditions

on the augmented system, £ir. Let A and B now denote
the augmented system state matrix and input matrix;

respectively. Let the pair (A,B) be first partitioned

in the form:

7



l 7
A Ao 0 By
————— "-————-—————- b — —
! .
A21 : A22 0 , 82 | (4.8)
' ‘
T, ! 7T 0 0
1 2 _ L
k xk {n-k)x(n-k) ¢xk
Where All E R ’ A22 e R . , Tl e R and
kxr .
Bl e R . If the state variables X1 Xor weey xk are

to be made undisturbable,then the structure of the

‘

closed-loop system matrix.H and the corresponding

eigenvector matrix W must be of the form (cf. Theorem

;

3.3.and 3.5):
I ] w1 o o |
11 0 11 |
el I e o
H = 1Hy 5 Hyy, Hyg - W= Wy E Waz  Wa3
{ |
H I H H W ' W W
__31 P32 3§J | 31 732 3§J
7
- (4.9)

In (4.9) matrices H and W have Been partitioned so as,
to be compatible with the partitions of A in (4.8).

The design procedure for eigenvalue/eigenvector assign-
ment requires that the closéd—loop system eigenvalues
be distinct which in turn implies that the closed-~1gop

—

system eigenvectors mﬁgg’be linearly independent. This

4

requirement will pl;§ a Key role in the following
/

a s
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investigation. The main result of this study with

respect to integral control is this: The closed-loop

elgenvectors of an undisturbable system with state plus ~
integral feedback will not be linearly independent i f

Rank (T,) # €, where T, has been defined in (4.8).

Remark 4.1: From an inspection of expression (4.8)
the main consequence of the above result is this: TIf

integral feedback of an undisturbable state variable,

x; (iZk), is required then the (i,i)™" (i<¢) element of
Tl should be equal to unity; however, for the design
procedure to be possible the closed-loop eigenvectors
must be lineérly independent, i.e. Rank (T,) = £, which’
implies that ‘the ith row of T2 should at least have one
nonzero term in it. This means that integral feedback
of x; with a linear combination of other ®tate variables
x; (k<jin) is possible, and integral feedback of X; alone
is not possible.

The proof for the above résult procéeds in the
following way. For the eigenvectors in (4.9) to be lin-
early independent, W—l must exist. Since W is quasi-
triangular this implies that wl-l and w4—l must egist,

where using the notation of Theorer 3.5, Wl and W, are

defined by:
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W = (4-10)

Now for kZir, wl can be chosen arbitrarily and thus

existence of wl'l can be assured. For W, to exist it

is necessary that the ¢ rows formed by [w32 Wiyl be

linearly independent. To find conditions under which Rank
[w32 w33] = {, consider the class of eigenvectors that
characterise W4 by using the result of Moore [6], i.e.

the ith eigenvector, w., must satisfy the equation:

AL T<A ) ' 1wt

ity TR 0 v By 1
' 2

. - A, I- 0 ' B Yi | =0
Ay AI-A,, v By 1=

i v 3

—_ — —_ ] 3

' T1 Ti XiI X 0 1

L t — M
My

(4.11)

In egns. (4.11) W corresponds to Xi and M, 1is defined by eqgn.
LS i .

(2.9). TFor k < i S n + &, wil= 0 (cf. eqn. (4.9)).

This means that wi2 and wi3 for all k < i £ n + £ must

- satisfy the equation:

3 2

-Xini = Tyw (4.12{

Equation (4.12) clearly implies that Range [w32 w33]‘£

Range T = £ only if Rank T, = Z.

/N

2° Then Rapk [W32 W33]



Thus if Rank T2 # ¢, then Rank [w32 w33] < ¢ which
implies that w4"1 does not exist. This completes the
proof.

The important point to note is that T2 can have
no zero rows. This means that it is not possible to
" have independent integral feedback control of an un&is—
turbable variable by using eigenvector assignment tech-
niques; For example, if X (ik) is to be made undis-
turbable and it is also desired to have an integral feed-
back of xi'alone, then this is not possible. However,

n

with x, undisturbable integral feedback of (x. + I x.a,
. " j=k+1 7 J

with at least one aj # 0 1is possible. If H2 is made non-

zero (egq. Qilipdicate parameter variations in A2',-Bl or K
then it is possible to design an integrél controller for

X, alone.
i

4.4 Evaporator Application

»

The design procedure for undisturbability' devel-
oped in Chapter 3 was evaluated by application to the
computer-controlled, pilot-plant evaporator at the
University of Alberta. This evaporator has been used in
a number of other studies to evaluate differént_modern
multivariable control techniques (Fisher and Seborg, [7])
and hence it is possible to make direct comparisons be-

tween alfernative control techniques.:

102

),

)



A 5escription of the pilot-plant evaporator and
its"models is given in Appendix C. A schematic diagram
of the evaporator and the conventio;m\al multiloop ®ontrol
scheme used as the 'base case' for cdmbarison is also
shown in Figure C.1, Appendix C. The primary control
objectivé is to keep the groduct concentration, C2,
constant despite disturbanées in the feeqk lowrate, F,
the feed concentration, CF,.and/or t§ feed enthalpy,
"HF.," It is also necessary to keep thef two liguid holdups
'w1,-§nd W2, within' operating IXT}ts but small varia-
.tions in these variables are acceptable. The control
(manipulated) variables are the steam flowrate, S, and
the bottom product flowrate from each of the two effects,
Bl and B2. 1In sdmmary, the evaporator has 3 output var-
iables, 3 contgol variables and 3 disturbance variables.

1S

These variable nd their normal operating steady state

2

values are definel in Appendix C.

A number gf different models of the evapora-or
have been derivéd in previous studies (e.g. Newell and

Fisher, [8]). The models used in this study are the

3rd and Sth order, -discrete, state-space models defined -

by the coefficient matrices listed in Tables C.2 and

rd =

C.3. The 3 order mﬁnél is not as accurate as the

th

5 and lOth order models used in other studies, but is

in reasonable agreement with experimental data and makes

103



1t much ecasier to follow the desiqgn procedure. Hence,

the design of a controller to produce undisturbability

will be first considered for this jrd order model.

4.4.1 Controller design for the 3rd order model

The 3rd order model has as its state variables,
Wl, W2 and C2; as its input variables S, Bl and B2; and
as its disturbance variables, F, CF, and HF. Previous
operating experience has shown that the most frequent
and severe disturbances in product concentrat;on, cz,
are produced by variations in feed flowrate, F. Therc-
fore for purposes of this application the design ob-
jectives for the controller are: V
i) - to make C2 undisturbable by F.
i1) to assign all closed-loop eigenvalues closer
to the origin.

1i1)” to preserve the open-loop undisturbability of

W1l and W2 by CF.

The linearised model in the discrete form as

used in this study® can be represented byﬁ

x(n+l) = ¢x(n) =+ Au(n) +79d (n)

with the coefficient matrices, ¢, 4 and 7 and elements of

x, u and d given in Appendix C.
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According to the 3rd order model,‘the evaporator,
under open-loop conditions, is only conditiona}ly-stable
since thé eigenvalues of ¢ are 0.96, 1 and 1. The two
unit eigenvalues in ¢ follow directly from the "integrat-
ing nature" of the two liquid holdups. Inspection of
the coefficient matrices £6r the 3% order model “indic-
ates that under open-loop conditions, all three state
variables are disturbable with respect to F and HF,
while W1l and W2 are undisturbable with respect to CF.

(As noted in Remark 3.7 of Chapter 3, the results in
Sec'lon 3.7 can easily be exténded to discrete-time

systems.)
\

Since 05, * 0 it is not possible to make C2
undisturbable with respect to F by feedback control alone.

However, a feedback feedforward coﬁtrol law of the form:

u(n) = K x(n) + K'TF(n)
* reqg.. 'ed. In the discrete form of the closed-loop
~ .
S| © equatioun, L = 0§ + AKFF, apd hence it is possible.

by feedforward control to produce the required structure

in L. Setting ZlT = [a, B, 0] with o and B arbitrarily
chosen as 0.12 and 0.0032 gives, KFFl as:
0.32 :
L= | Zo.12

-0.55
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Note that if o and B were chosen as zero, than all three

state variables would.pe undisturbable with respect to F.

b ”
THis is possible because in this particular example A

is non-singular and conseqbently the equation, Zl = Ol +
AKFF, has an exact solution for KFF. To complete the
controller design, the feedback matrix K is calculatea
using the eigenvector/eigenvalue assignment procedure
describéd in(Chapters 2 and 3. Since in this example,
r=n, it is possible to assign all elements of the eigen-
vector matrix W. If W is chosén to be the same. as the
Oopen-~loop éigenVector-ﬁatrix (a diagonal matrix since ¢

is diagonal), then the following design objectives are

realized: ' - X

.
v

1) C2 is undisturbable with respect to F since W

‘and £l are in the form of eqns. (3.39) and (3.40).

Y

ii) Wl-anc¢ ~. are undisturbable with respect to CF
(as was the case for the open-1loop éystem):

{ . .
Thus choosing W to be the open-loop eigenvector matrix, i<e.

W = I, and assigning the closed-loop eigenvalues to be
0.28, 0.47 and 0.65 leads to the following state feedback

.control matrix; Kdﬂl:



2.70 0 -9.69

Kdﬂl = (3.23 0 3.88 (4.13)

4.29 13.05 17.17
©

Table 4.1 contains a summary of this and other

controllers used in the experimental evaluation.

tosw

l‘
4.4.2 Ssignal flow graph analyses

The signal flow graph in Figure 4.1 (left) shows
that in the simplified, 3rd ofder evaporator model, all
three states are accessible to a disturbance‘in feeaflow,
F, but only the product concentration'is accessible by
a d;stufbancebin feed chcentratién, CF. 1In other words
Wl, W2 and C2 are disturbable by F and W1 and W2 are
undisturbable by CF. | |

Figure 4.1 (éentre) is the signal flow-=graph of
the closed~loop evaporator system using:the disturbance
localisation controller discussed above. Comparison
with the dpen—loop system flow graph qhows thatvthe
feedforward controiler eliminates the path:from F to C2
and hence makes C2 inaccessible and undisturbable by F.

Figure 4.1 (right) is the signal flow graph”of
'the evaporator system Ssing the basic multiloop control

Schem~ shown in Fig. C.1. The multiloop contrél&er,

o
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K ¢pr-used in this comparisqn is shown in Table 4.1.
Note that in using this controller all states become
accessible to both disturbances, and that a number of
interactions are introduced»when previously there were
none. Th%s emphasizes the importance of examining

the structure of open -and closed-loop system matrices.

4.4.3 Experimental results

Figure 4.2 shows the rE§§63§6\8£<fhe evaporator

to | 30% step changes in feed concentratibn, introduced
at the times indicated by the arrows on the time axis.
Controller, Kdﬂl’ was designed to retain the open-loop
undisturbability of the liquid levels to concentration
changes and Fhe'results in Figure 4.2 confirm that there
is no significant effect of CF on W1 br w2. The con-
troller was ﬁot degigned to make C2 undisturbable by'CF
and a small offéet in C2 is obvious in Figure 4.2. Note
‘that this controller is an. ideal modal controller since
?he open-loop and clbsed—IOOp eiéenvectors are ident- ;
ical:

-The evaporator respénse to ¥ 30% changes in
feed coﬂcéntration using the multiloop controller, szg

is shown in<Figure 4.3. This experimental data confirms

the COnclusionvderived from the signal flow graEh analyses,
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that the ntultiloop control scheme introduces significant

interactions.

b

Figure 4.4 shows the evaporator response to *+20%
step disturbances in feed flowrate using the feed-
back plus feedforwara controller, Kdzl.plus KFFl. Figure
4.5 shows the evaporator response to +20% step disturb-
ance in F using feedback control, 5&21’ alone (equivalent
to the case where disturbance measurements are unavail-
‘able). Another controller, Kd£2’ which retains the same
open-loop eigenvector strucéure but assigns eigenvalues
at 0.59, 0.43 and.0.34 was also designed. The response
of the evaporator with a +20% disturbance in feed flow-
rate using only the feedback‘controller KdZZ is shown in
Figure 4.6. Comparison of Figures 4.5 and 4.6, and
controllers Kdﬂl and KdZZ serves to illustrate the design
freeaom available, i.e. arbitrary eigenvalue/eigenvector
aseignment. <::4* |

Figures 4.7 and 4.8 show the evapofator response
to the same disturbance using (i) the multlloop con-
troller sz and (ii) the feedback plus feedforward
Jcontroller,‘szeand KFF2 as shown in Table 4.1. Also.
.listed in Teble>4.l is a third order optimal proportional

controller, For the purpoges of comparison with

Koptl'
'Figures 4.3 to 4.8, two experimental runs were.pegformed,

-using this optimal controller. The results for a +20%



disturbance in feed flowrate are plotted in Figurec 4.9
and Figure 4.10 §hows the evaporator respénse to a 130%
disturbance in féed compositidh.

The reﬁponse of the evaporator to aqt20% aisturb—
ance in feed fiowrate or a 330% disturbance in feed com-
position using controller, Kle or Kd£2 was superior
than the performance of the mulﬁiloop controller, sz,
and betéer than,or'at least comparable to, the perform-
ahce of optimal controller, Koptl'

With the feed forward control-mode implementéd

the overall pérformance of the centroller Kle plus KFFl

is better than the performance of Kmt and KFFz. It should

be noted that when implementing feedforward-control with
' y FF2

the multiloop control configufation,'ﬂl =6, + AK =0,
that is the signal flow paths from f to W1, W2 and’C2
'have all been ‘'cancelled out' by the effect of control. !
In contrast to this the feedfong;d'control action in
conjunction with Kdzl;or Kd£2 requires that oniy~the sig?
nal flow path from F to CZ. be 'cancelled out'.- The
net result of this is that feedforward cogtroller, KFFZ’
with the multiloop control coﬁfigufétion musg generate
more congrol action, i.e. use higher géins than the
feedforward controilgr, RFFl, This is also evident

from a compafi;on of the steam, S, to feed flowrate, F,

FF1 FF2

gains in K and K .
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In general, the design procedure for 'undisturb-

ability' was found to be practical, was easy to use,

and performed well experimentally.

4.4.4 Controller design for the Sth order model

The ﬁaih reason for using the st th order model of
thevevaporator was to demonstrate the use of the d851gn
procedure of Chapter 3, for the general case where the
number of inputs, 1, is less than the number‘of state

t

variables; n. Application of the design procedure to
the 5 th order model 1s also usele in demonstratlng the
use of thE\stablllty criterion for disturbance locali-
sation, i.e. to check if the closed-loop system is
stable (cf. Section 3.11.2). A discrete 5" orger
model of the evaporator is shown in Table C.2. ‘The
state variables for the Sthvorder model are: W1, C1l
(first effect compqeition), H1 (first effect enthalpy),
W2 and C2. The Qontrol_inputs, disturbences end the
Outputs are identical tdlthose'for the 37d der medel.
The main control objective as before is to make C2 and
W2 undisturbable with respect ot disturbance F and also
to retain the open-loop uhéisturbability of W1 and W2 to
‘CF. |

As a preliminary first step the state vector x
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was reordered as §T= [c2,w2,w1,cl,Hl]T and the state,
chtrol and disturbance matrices were permuted accord-
ingly and designated by &, g and 5. Since thebfirst
three rows of Z are linearly independent it is possible
‘to assign arbitrary entries in the first three rows of
the closed-loop system eigeﬁvector matrix using the
eigenvalue/eigenvector;assignment technique;‘ In order

to reéliserthe above mentioned control objectives the

following values of W, and W, were selected:

1 2
Ny
— — _ -
1 0 0 0 0
wo=1lo 1 o and w,=|0 o0 (4.14)
o -0 1 0 0
Observe that since %2 = 0 it is not possible to assign
eigenvalues corrésponding to these t eigenvectors (cf.
. S :
v .
Section 3.11.2). This necessitates use of the stability

criterion to check if the resulting closed-loop system
is stable. Equation (3.57)shows that for this case the

matrix P is:

0.90 0
(4.15)

-0.31 -0.76

and thus has eigenvalues: 0.9 and -0.76 which are inside

the unit circle. This means that two of the closed-loop
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\\\§ystem igenvalues are -0.76 and 0.9 while the remaining
éhzge n be chosen arbitrarily as 0.28, 0.47 and 0.65.
The f;nal closed-loop eigenvector matrix & y&s evaluated’
from egns. (3.55) and (3.56) and?is

pr——e

1 0 0 : 0 0 ’
f
0 1 0o |, © 0 .
b~ |
W = 0 0 1, 0. 0 (4.16)
_______________ ,l___\_____& ’ :

-5.33 0 1.12, 1 -.19

-

W as shown above iscnon-singular and in thefre-
quired form for uhdisturbabilit? (cf. Theorem 3.5). The
feedback;controller KdZS’ was fhen calculated dsing the
pseudoinverse of g‘and is shown in Table 4.1. The re-

sulting closed—loop'system matrix is:

. : |
r—.28 0 ¢ 0 )
|
0 .47 o 0 .0
L -~ o~ J : ‘
¢ + A Kype = 0 0 65 l 0 0 (4.17)
. "_—__--'—_——"_—'—_-‘-‘— —————————— -1
-.40 0 11 .90 0
|
-5.35 0 1.45 |-.31 ~-.76
- . : : hal
Since Gl does not have zero entries in appropriate

places a feedforward controller is also required to

. -

complete the design requirements for undisturbability.
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For the purposes of illustration, the design of two dif-

FF3 FF4

ferent feedforward controllers K and K was consid-

ered in this application. KFF3 was designed to make C2

and W2 undisturbable with respect to F (i.e. ElT =

4

(0 0 o B ¥]), and kFF4 was designed to make all

three output variab}es C2, W2 and W1 undisturbable with

respect to F (i.e.,KlT = [0 0 O v ul]). These two

feedforward controllers are defined in Table 4:1.

[

\

4.4.5 Experimental results

Figures 4.11, 4.12 and 4.13 show the evaporator
responses to a +20% step disturbance in feed flowrate
with feedback controller, KdES’ ;mplemente&7‘w1th Kars

FF3 implemented; and with Kdﬁs plus.KFF4 implemented.

plus K
For comparison purposes the evaporator response to a
+20%- disturbance in feed flowrate using a:5th order pro-

portipnél optimal controller is also shown in Figure 4.14.
' ' _th

The evaporator performance using any one of“thesé 5t

_ordér state feedback controllers implemented in each of
the four.experimental rhﬁs-is better than that obtaihed

uéing a 374 order controller. This would be expected

becaqse the Qrd,order model is not as aécuréte as the
th

5 order model. From an overall performance.point of

view the evaporator response to feed disturbances using

<



feedback controller, Kd[S’ plus feedforward controller,
KFF3, or that obtained using only feedback controller,
Kd(S’ is at least comparable to or even better than the
proportional optimal control. Another 5th order con-
troller, KlG,‘as designed by using a simultaneous
eigenvalue‘assignment procedure (Park [9]) was also
implemented on the evaporator. Some difficulty was
experienced in implementing tﬁis controller. Its per-
formance as shown in Figure 4.15, was found to be
oscillatory. Difficulty was experienced in implement-
ing other controllers designed by the same method. A

3td order modal controllgg; G19, based on Rosenbrock's
approximate modal control method [10] was also implement-
ed on the evaporator. The performance of this controller
to step disturbances in the feed flowrate, as shown in

Figure 4.16, was satisfactory but not as éood as the

response of controller, K,,,, as shown in Figure 4.5.

~

4.4.6 Design of setpoint controllers for the double-

effect evaporator

The 39 order evaporator model has 3 state-
variables, 3 inputs and 3 outputs. Because of the dis-
crete nature of the evaporator models, with only minor

modifications, the results of Section 4.2 can be applied >
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directly to calculate the setpoint controller, KSPl’ for

the discrete 379 order evaporator model. The condition

for asymptotic setpoint tracking or following in dis-
Crete systems for the 3rd order evaporator model

requires that:

1 SP1

(I - (¢ + AK )~ AK’ =TI (4.18)

del

The resulting,‘Kspl, for the Brd.order model is listed

in Table 4.1. For the discrete Sth order evaporator model,
KSP3, is given by: *

-1
1

SP3

e ¢ I T (4.19)

where H is the upper left 3 x 3 matrix partition of

1
H ¢ é»f fid as .shown in eqn. (4.17); A‘l is the
3 x 3 matrix partition of A with ibs first three
rows corresponding to state variables C2, W2 and Wl.
"The resulting setpoint controller, KSP3, for the Sth
- order model is listed in Tab%e 4.17 The evaporator

response to a *10% step change in the'setpoint of C2
» , SpP1 SP3
wlith controllers Kle plus'K ’ and de_5 plus K
implemented is shown in Figures 4.17 and 4.18. As

expected the evaporator response to *10% step change in

the setpoint of C2 with controller KdZS plus KSP3 was

better than that of the Brdvorder controller, Kypy Plus

XSPl. It should be noted from Figures 4.17 and 4.18,
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that in each éa§e the aEymptotic setpoiqt ﬁracking

property of controllers KSPl and Kspais approximatel?
satisfied. For the burpose of comparison, the evapora-

tor response to a‘*10% step change in the setpoint of

C2 using an optima. controller, Koptl plus KSPZ’ was

also evaluqted experimentally and is shown in Figuré

4.19. The evéporator response in Figureé ;.17 and .
4,18 is better than or at least as good as that in

Figure 4.19. .

In this section results on experimental eval-
uation of the design‘grocedure for undisturbability
have been preseﬁted.‘ In geﬁéral zhe desigh proéedure
for undisturbability was found to be practical and con-
vénient. It was easy to use, gave considerable insight
into system performance, rlaced the closed—loop-eigen—‘
values and eigenvectors in thezdesired locatioﬁs, pro-
duced practical controllers with reasonable géips; and
performed very well experimentally. To the best of the
author's knowledge, this is the first re?orted applic-
ation of this design approach. ”

_ Experimental evaluatipn of controlleré, Kd(i plus
KSPl, and KdZS plus KSP3 also»c0nfirmed the results of
Section 4.2 that simultaneous dis;qrﬁance localisation

and asymptotic setpoint following is possible. The

desigp procedure for calculating such setpoint controllers
, , v
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is ecasy tol use and gives easil, 1. nlementable constant

setpoint coftrollers.

4.5 Distillation Column Application

4.5.1 llth order distillation column model of Davison [11]

A state space model of an 8 tray binary distilla-

tion column with variable column p}éSsurc has been de-
rived by Davison [11]. The linearized equations of the
llth order system with 3 inputs, 3 outputs and 1 main

disturbance are as follows:

X(t) = A x(t) + B u(t) + Dw_(t), y(t) = C x¢t)
(4.20)

The state vector, x(t), and the output vector, y({t), are:

T

X = (xc, Xqo Xor ceer Xgr Xy p) and

T _,

Y = (xcl xbl p)
with X, = composition of more volatile component in con-
denser (mole fraction); X, = composition ef more vola-
tile component on plate i, i'= 1,2, ..., 8 (mole fraction);
Xy = .composition of more volatile component in reboiler
(mole fraction); uy = reboiler temperature; u, = conden-

ser temperature; ug reflux flow (lb-mole/sec); p =



\
pressure in the system (atm) and W feed composition.
Numerical values of matrices A, B and D) are given in
(12].
According to Davison [12], the main control ob-—

jective in the design of a controller for the column is
to regulate thg top (ylL and bottom product (y2) com-
positions, and the pressure (y3) in the presence of com-
position fluctuations in the input feed streém. The
Open—loob distillation column 1is stabie. Inspection of
matrices A, B and D reveals the following: -

i) Elements of D corresponding to state variables

~

X Xy and p are zero, hence no feedforward con-

trol will be required in the design for undis-

- turbability-
ii) The row of B corresponding. to state variable x,
‘ has all zero elements. Consequently the corres-
ponding partition Bl is singular. This means

that the design technique for undisturbability
cannot be applied directly,and hence the control

objectives have to be modified.
iii) In modifying the control objectives use is made
of the following important characteristic of

the system: that is since x_ cannot be in-

fluenced directly by any one of the three inputs,

119
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the corresponding row of A will also be the row of the
closed-loop system matrix, H. ‘nspection‘of the first
row of A corresponding to X also reveals that, X is

accessible to the control inputs via a coupling

[AXS

1

be tween X and x,. 'This is important because it means
that if xl‘is made undisturbable then X will also be-

come undisturbable, especially since the first row of A
is invariant under any feedback . .Thus the modified
control objecfive will be to make X r Xy and p undis-
turbable with respect to W Then once xlibecomes non-
accessible to W undisturbability or nonacceésibility

of X to W, €an also be assured. Observe that the first

Ehree rows of B, as denoted by Bl corresponding to the

modified system with x = [Xl’ Xyr pr X Xou x3(..., XSJ

are now linearly independent. The restiof the design

v

procedure is now simple. With a choice W= I, and

w2‘= 0 (cf. Theorem 3.5), and Al = diagqg. (—.3,—.25,—.2);
a check is made to see if’the eiggnvalues of matrix P
(cf. egn. (3.57)) are in the left:half of.the complex
plane (Section 3.1i.2). The eigenvalues of P do indeed

turn out to be in thé left half of the complex plane.

a

With this check complete, K is very simply evaluated from

the equation:

1

;) - [H

iy - - ' iy i . -
K = Bl ([Al; A 11 0]), with H, =.47

k4.21)

120
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Notice that computation of K only requires inversion of
a 3x3 matrix, and matrix multiplication. The computed K

was found to be:

1-4271.6 2975.7 =247.3 =-176.5 >—08.7 0 0 0 d 0 301.5

4

= 4271.6 =3031.1 =-147.2 121.1 68.7 0 0 0 O 0O =-301.5
-37.6 -54.5 =-2.1 -1.5 -0.6 0 0 0 0 0O -5.4

(4.22)

The resulting closed-loop system matrix, H = A + BK and
9 .. -

the disturbance’matrix D are shown in Table 4.2. Both

& and D are in the required form for xl, Xy P und'xc
to be undisturbable. Figure 4.20, shows the responsem
of Xor Xy and P to a unit step disturbance 1n W Also
super imposed on each of plots in Figure 4.20, is the cor-
responding open-1lo0p system response to a step disturb—~
aﬁce in W For the purpose of qpmparison an attempt was
also made to‘reproduce the response of the distillation
column with a conventional controller and another con-=
troller desighed by Davison [12]. However, diffi-
culties* were eﬁcountered in reproducing these two
résults, and hence each plot in Figure 4.20 has an insert
from [12]) showing the nature of these responses. For
conveniencé the controllers_depicted as 'conventional

control' and 'new control system' in the figure caption

in the inserts are also repfoduced here:

* - Use of the numerical values in [12] led to unstable
responses.



New control system [12]:

o

1 - lOOQ X, + 600 Xy - 1000 P - 45.2 Wt 9010 W

c
I

o
il

1000 x., - 600 X, - 1000 P - 223 w_ + 49900 w
2 2 7 m m

- 1000 x2 - 1000 x7 - 286 wm + 64900 W

=}
w
It

Conventional control system [12]:

Wy, = 100,000 X '

c
]

-100,000 p

;
!

Notice that Davison's controller requires feedforward

N

control of wm‘and also computation of &m
: \
Usin§ the results of Section 4.2, a setpoint
controller,/KSP, was also designed for the above distil-

_létion column. This was calculated to be:

14578.2 -3731.3 272.6
k5P = -14578.2 3731.3 162.2. (4.23)
128.3 67.2 2.1

Implementation of KSP as shown above results in an

almost completely non- 1nteract1ng system as evident by
the response of the distillation column to unit step
setpoint changes in each of the variables X, Xy and p

o

(Figure 4.21).

122 .
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4.5.2 20 h order distillation column model of McGinnis

McGinnis [13] has derived a 20th order linear
state space model of a pilot scale distiilation column
. L
at the University of Alberta. This model has been de-
rived by considering stage enthalpies and liquid flows

\
at each of the ten stages. A reduced 2rld

order model

- has also been obtained from this higher order model,

and haé been used in previoué control applications,

Wood and McGinnis [14]. The 20th order model has 2
inputs, 2 outputs and 3 disturbaﬁces. The outputs of
interest are the liquid phase enthalpy in the reboiler,
h1(=yi), and the liquid pﬁaéé enthalpy in thg condenser,
ho (=y10). The:3 disturbances of interest are feed
flowrate, feed enthalpy and condenser heat duty. Of
these, feed flowrate has been fodnd;to be the most severe

disturbance and hence the main cohtrol objective in this

study is to make the two state variables or the outputs,

hl and th’ undisturbable with respect to this disturb-
ance. The 2 control variables are ﬁeflux flow (R): and
steam flow or reboiler duty (QR). Numerical values of

matrices A, B and D are given ‘in [13].
As would be. expected feed flowrate disturbance

directly affects only the feed stage, i.e. state variables



h5 and L (liquid phase enthalpy and liquid flowrate
at stage 5), and then propagates to all of the .remaining
state variables by dynamic coupling between each of the
stages. It is then clear that as far as feed flowrate
and enthalpy‘areconcerned the rowsvof D corresponding

to h and th have zero entfies. In other words feed-
forward control action is not required for undlsturbabll—
ity of hl and h10 w1th respect to feed flowrate and feed
enthalpy. Just like in the 11 th order model, the

row of B corresponding to state variable hlO has two
'ze;o elements. Consequently, the partition Bl is sing-
ular. However, the effect ef control directly reaches
hg\and since there exists a signalkflow path froﬁ h9 to
hlo' the original control objective is modified to make

. :

and h, undisturbable. It was known that in carrying.

1 9
out such a strategy, the ofiginalvcontrol objective would.
be realised because the'row of A corresponding to h10 is

invariant under any feedback The design procedure for

undlsturbablllty was then applled to the augmented system

~p -
wlth x - [hl, h9’ hlo' hz, h3, « s o h8’ 1, 2"00-, lo]-
With a choice Wl = I2, W2 = 0, and Al = diag(-2.5, -16.0),

eigenvalues of the matrix p were evaluated (cf. eqn.
(3.57)). The eigenvalues of P were found to be in the
left half of the complex plane. Wlth the: check for

stablllty complete, K was evaluated from the equation:

124
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~ ~ 1~ o~ N ‘ -
K = Bl ([Al A2] - [Hl 0}1), with Hl = /\l

(4.24)

Notice that the computation for a state feedback éon—
troller for a 20th order systém only requires inversion
of a 2x2 diagonal matrix and its multiplication by a
sparse 2x20 matrix. The point to note is that the de-
sign prpéedure for undisturbability is very simple and
easy to use, and as illustrated by the above example it
can often be carried out without the aid of a computer,
even for such large order systems. A setpoint con-
troller based on results of Section 4.2 was also de-
signed for this system. The final control law for the

<
above system was found to be

o SP
R = 4.95 hy + 2.10 hy, + 16.28 h8\ 47.99 h,
Sp

-3.40 h, + 3.12 L., + 37.48 th

2 2

‘QR = ~-17.69 hl’

(4.25)

The response of hl and th to uﬁit step‘distUrbances in
feed flowrate with the control law of egn. (4.25) im-
plemented is shown in Figure 4.22. The perfo;mance of
the sétpoint'controller was also éQaluated by appliéation‘

~of unit setpoint changes in hl and hlo‘ The remarkably
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large degree of non—lnteractlon achieved with a simple

:asymptotlc setpoint controller is also ev1dent in

Figure 4.23.

A remark on the practicality of the control

scheme of egn. (4.25) is in order here. State variables

\

1+ hys hgs hy and hlO are directly proportional to the "

temperatures at each of corresponding stage and hence

h h h

these are easily available for state feedback. State
variable, L2, represeénts the liguid flowrate frém the
bottom tray to the reboiler. This measurement is no£ ’
available at the present»timé on thg‘pilot scale dis-
tillation columh. However, a reasonable estimate of

L2, can be obtained by writing a material balance equa-
tion around the reboiler, and assuming that the vapqur
flowrate is directly prOportioqal’to steam flowrate into
the reboiler. It is aiso important to emphasize here,
that by using the structural aspects of the results on

- undisturbability, the form and structure of the control
scheme (such as in eqn. %4.24)) for this or a similar
system could have been predicted with a knowledge of
only the zeroelements of matrices A, B, and D. Such

a preliminar} analysié prior to actual design and

modelling can be useful in planning of sensor locations.

‘It should also be noted that the control scheme
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shown in eqgn. (4.25) requires only measurement of 6
state variables. The reason for this is that because
-0of the sparse open-loop system matrix A, and the zero
elements of ﬁz as required for undisturbability;na
large number of columns of the difference matrix

(1A, A, [}Nil‘ 0)) are zero (cf. Section 2.4). Thus
from eqn. (4.24) it is easy to see ithat feedback of

state Variables,icorresponding to zero columns of the

difference matrix, is not required.

[

4.6 Conclusions

The design proéedure for'undisturbability
developed in Chapter 3 was apﬁlied to the design of
feedback axnd feedforward controllers for the computer
controlled, pilot-plant evaporator, an llth order model
of an 8 tray binary Qiétillation column, and a 20th order
model of an 8 tray pilot SCale‘binary distillation
column. The problem of simultaneousﬁdiéturbénce.local—
isation andbasymptotic setpoint tracking has also bee..
discussed here. The proposed solution to this problem
i; both practical and simple. The possibility of having
an independent integral feedback coﬁtrol of an undis-
turbable variable wzs also investigated and® such a

possibility was shown to be non-existent.
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?

Experimental results from the computer-controlled
pilot-plant evaporator -at the University of Alberta
demonstrated that the use of design procedure: produced
thd expected undisturbability; provided better control
than conventional single variable controllers; and the
perfbrmance of the resulting controllers was at least
comparable if not better than controllers desigﬁed using
other modern multivariable contfol techniques such as
optimal-quadratic control. Evaluation of the controllers
for the two distillation column models by digital sim-
ulation also demonstrated the effectiveness of the de-
sign method is eliminat%ng the effect of specific dis-
turbances on outputs of interest. The computational
requirements for the design procedure wére shown to be
only marginal even in its application to large order
systems. Experimental evaluation and digital simulation’
of setpoint cQ;trollers.designed to retain £he disturb_
ance localisation property and at the same time asymp-
totically track a certain class of inputs gave good
results and_coﬁfirmed the practicality of such an
approach;

In general, the design procedure for undisturb-
ability was found to be practical and convenient. It
was easy to use, gave COnéiderable insight into system

performance, placed the closed—loop'eigenvalues and
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eigenvectors in the desired locations, produced practi-
cal controllers with reasonable gaihs, and éerformed
well experimentally. To the best of the author's
knowledge, this is the first reported experimental

application of this design approach.
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€igure 4.20: Simulated responses of the llth order dis-
’ tillation column model comparing closed-
loop and open-loop response of X, or Yy

top plot), X, Or y, (centre plot), and p ‘or
- Yy (bottom plot), to unit step disturbance in
in W, (feed composition).
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turbance in feed flowrate.
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Figure 4.23: Simulated response of the ZOth order dis-
tillation column model (with feedback plus
setpoint controller), to unit step setpoint
changes in h; (top plot), and h;, (bottom
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CHAPTER 5

D?STURBANCE MINIMISATION AND POLE ASSIGNMENT IN LINEAR

SYSTEMS WITH APPLICATIONS TO OBSERVER DESIGN

Abstract

A method is presented for designing a state feed—‘
back controller to assign eigen&alues iﬁ a closed-loop
system and also minimise a quadratic performancesfndek\\
wﬁich includes a measure of éOupling between disturb-
'akces and the ouﬁpuﬁs. Two illustrative examples are
providedJ' ;démonstrate the use of the method. An
éxpefimenx }application of tr}e proposed procedure wa‘sv
carried out oﬁ a pilot\plaﬁt double effect evaporator
and this evaluation is also inéluded here. An appiic—
ation of the method to the design of fqll order observ-

ers for systems with unmeasurable disturbances, is also

considered.
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5.1 Introduction

Pvactical‘control systems must operate in environ-
ments where unknown external disturbances are invariably
present. Desplte thd'incvitability of .external disturb-
agges, few multivariable synthesis techniques make” use of
fhv“Lnquﬁqtion usually available in procees modelgﬂthat
describes the effect og‘ external dlstuxbance.. Fo#zéxample.
optimal control systems }n which a quadratlc performance
'indeklis minimiSed; or conventional pole-placement tech-
niques‘thically ignore disturbances o; only consider
impulse-type disturbances:s‘Consequently sueh syetems
give satisfactory control when the disturbanced occurripq
in the syetem'are of an imeulsiVe—nature, but may not
perfofm Qeil when the éisturbances are sustained,.which
unfortunately is ffequently thu vase.

THB preqcnt chapter poses: and deals with the fol-
lowing two quest1ons; 1) Is 1t possible to formulate
the reqqlaﬁpr problemifrom'an optimisation point of view
.suéh that the effect of arbi rary and ueknqyﬁ external
aistdfbances en~system'oﬁtput:.of interest is minimised?‘

2): " How does one construét a: feedback strategy

whlch ‘OVldeS max1mum attenuatlon of dlqturbances in the

resultlng closed- loop system “and whlch ensures that the

Mgenvalues are at spec1f1ed locations in the left

half of the complex plane?

#

/*j



The main difference between the approach adopted
here and the related results on disturbance localisation

(or rejection). by Wonham and Morse (1], Bhattacharyya [2]

anq‘ih Chapter 3 ‘(see also Shah et al. [3]) is thatTthe

‘results derived here can be applied to any linear,: con- . .
. A2

. 5 | ! &
trollable multivariable system, i.e. even systems which

‘do not, satisfy the necessary and sufficient conditions

for disturbance localisation.

o

. k . '
This chapter is organized as follows- bectlon
5 2 provides an outllne of related prev1ous work S e

5.3 cons1d¢rs the formulatlon of the performance ind.
¥,

or ob% ctlve functlon to be minimised 1n a deneral form,

namgly, a functlonal WblCh is a linear comblnatlon,ot,t
i : T o

i

(i) 4 measure of couplinq or"transmif;ancé‘between the

< o

disturbances and the outputs, and&iégi a quédrdtic per—

.‘,q

formance index. Section 5. 4 shows howﬁséablllty and/ox

a bltrary pole a551gnment conqtraﬂﬁks can be lncorporared
L
nto the above formulation. The design algorithm is a@Mo

utlined in this section. Section 5.5 contains two
numerical examples to demonstrate the use of the proposed
design procedure. The application of the design procedure

’

to the de31gn of © rvers, so that the effect of unmeas-

\4

urable dlsturbances is mlnlmlsed, is the subject of dis-

cussion in Section 5.6.
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5.2  Previous Work .
T B o3
wOnhaﬁrand“Morse'{$], and Bhattachagyya 12] have '.
outlined qeqmétrlc new and sufficient conditions .
for thc eﬁaftenpe ,0f s c feedback control to elimiﬁate

the effect of external disturbances on éysﬁem outputs.. . .
In Chapter 3,thé’t5§3}undisturbable rofers to a system

in which selected state variables are invafiant to arb-

itrary changes in a specxgped dlsturbancc ana$§ecessary S

~and suff1c§ent cond1t§pns for undlsturbablllty arémfxwx:yé T

.\-.'d

?ressed 1n terfis of the structurg of the coefflclent¢tnuj?gv
matrlces ,in ‘the state space mqdel. C 3 QUJ
~\\\\ ; ‘s QBy a geome;rlcal characterlratlon sglthe requlatdg‘;d N
\ 'problém,~}attdcharyya et al [4] have d@rlwed condxklonq S
under whlch an- inltlal}y zero output of a s%%%bm-ls main- “\
talned at; zero, and any non zero butpu€ c;'uek\% non-zero
o i Nt e PR

lnltlal congztlons or 1mpu&se type dlsturﬁﬁﬁées is made

, po‘approacﬂ?zgro. An extensive treatment of the requla-w)
éor problémfbaéed on an algebraic approach can also be
found in SilVer;an and Payne [5]. Johnson .[6, 7] hag g
also studied, ffom an optimisation point of viéw:vthe
regulation probleﬁ in the presence of»a‘class\ék untknown
distdrbances'that can be character}ied by certain waveform:

types or modes.

Dav1sgn,and Smith [Q] have derived nqgeséary a?ﬁﬁf
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sufficient conditio s for the exlstence of a m;nlmal'

* order, Leallzable, state feedback controller such that’
the eigen®alues of the closgd-loostyslem take. on pre-
assigned values in the le : émplex plane, dand such

that the outputs tend to Eero as t + w, in the presence

of constant unknOWn dlstu;bance:" tﬂ a la;er paper, . |

Davison [9] has extenged uhg solutlon of t%e above problem‘

,0” * v .
to also ‘take into account a clgss of uni lix lgérblt—.-

\

.rary dlsturbances that - saty;fy a dlffe ol ot

In a more recent paper wlllems {10} has derlveu a set of

(;'{

crlterla sucb that e effect on the &ﬂtpaﬁ of unmeasur-

able arbltraryuﬁﬁstufbances can be reduced as mugh a&’ &

kY

deQ1red by means of sultablaﬁstablllz;nq state feedbqu

A=

’ . . - N

5.3 Statement of the Problem ., s ‘.
v - Consider the follow1ng linear tlme%ﬁian; mult-
1va)r1ab]5e;qomr'ollab,‘sys%tem . )

— . ‘ ’ ¢ ’
),t=Ax+Bu+DC » R
- "L (5.1)
y = Cx “
$ P

‘ N ’ | . :
Vwhere x € R is the, state, u e R /is the input, & e RY

is the disturbance and y € R™ is the output; A, B, C and

D are constant matrices of appropriate dimensions. For

the systeém in egn. (5.1) let the control/objective be “to
T _ .
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FS

.,\<

A

W

awcoﬁﬁrol

. o . & .
so that (i) a spec . fied performance index or an objective

functional is minimised and (ii) the resulting closed-loop

systém

e

3

is stable. Tt is well known that of the r x n

ddgrees of freedom available in the design of a state

"-dosiqn or construct a state feedback matrix K, to generate

164*

feedback matrix for a’controllable sysgpﬁ, only n elements, °

or degrees of freedom are

He

values of the system

(r x n - n) free elements or degrees of fregﬁquin4K that

: .
in®ax.

’

applicable andMseful for@ of %'performance index 15 a
. woE - - .

: , 7 » .
linear combination of a quadratic performance indéx

“

K

LA
to the desired locatigns.. i# leaveas
? 9 » LN .

~-For the reguiatO{g control pro

blem a widely

i ca élnjlized towards minimising a spécifia%

s

L

required to assign‘ali_n eigen-

S
and

. . . r T .
an indéx or measure of coupling ‘between the disturbances
» Coa : _ )

and the .outputs, . An pbvious. index or measure of coupling

) ) . i -
between a disturbance, {.,..and output, yj, is the mag-

!

nitude of the transmittance between"'F,i and yj. There-

4

e . ) & ’ . . .
fore in its gengral'fogp the objective functional to, be

/ . .
¥inimised car? be rebresented by:

J

o Qa

L

L

+

/

\

J
A q

’

A S

(5.3)

7erfdrmandb

i

é

¢

f\

e
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where JL 1s a measure of the coupling between the dis-

turbances and outputs, Jq is a quadrdtic performance

criterion and ap aq are weighting factors. JLtis defined

as:

— . 2 : T
JL = frac\ (iél hi]GL(Jmi) G m )]3 . (5.4)

where || dnnotesiibsolute value of elements of CLT Gpi the

, index{';l, «.-+, 0 denotes the range of frequen01ps Wyv Woy
i -
Wy over which the objective functional is to be mln-

o4

imised Bi is the weighting factor to take into account
: \

the con&x}b@ﬁlon of each measure of dl!ﬁbrbanteﬁeutput‘

iy

am&é or coupling at a‘faitﬁe;éfr frequenty, and

transmr-

GL(jw%) is the wef@hted transmlttance at frequency ws
1, A

between the dlsturbances/‘ and outputs vy, and it 1ts

general form is defined as: _
W) = P.CGGu.T - ~lpy. 5
GL(]wi) : PiC(]wiI (A + BK))) DMi ﬁ)fS)

| where P. ande are m x m and qxq welghting matrltes

for the outputs and the dlsturbances, resbéctlvely‘»_gy

]

assumlng@gﬁknown dynamic model of the dlsturbancés, '

”

MulMer and Luckel® [22] have alsq considered th& design
. . S anTes

of state. feedback.controlkers\that minimise”the effect of

external dlstur&ances on the state variables of the
X - " ‘\¥ T 1:9n .~. . R .'.:. i 3 e
system. They have quantafled the lnfluence of dlsturb—

ances by mlnlm;i}ng a measure of modal dlsturbablllty -

L
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o

that is theinnerproduct of the reciprocal eigenvectors

-

of the closed-doop system and the disturbance vector, d; of

interest.” The well known quadratic performance index,
o -2 . .

J , is: -~
q “

Jq = I (xTQx + uTRu)dt - - (5.6)
\ .
o ; o 3‘¥ s

where Q is a symmetric, positive, semidefinite matrix,

and R is a symmetric, positive, defini%e matrix A remark

regardlng the form of thﬁysystem deflned by eqns (§;r)

l..\

and (5.2) and the form of JL and Jq ﬂeflned by egns. (5.4)

and (5.6) is in order here.

*
S 4 o
.

>

‘ ) N “. ’ ' TR e, SRR T . L . ,

‘ Remark'S‘.l: ' The control law as defined w@n (5.2)
gl

and the correspondlnq performance index, J, as deflned by

-

eqn. (5.3) are in no way llmlted to a ciosed~loop system
w;th only proportiOnal state feedbackr Dynamic (integral)

feedbaek.compensation is easily. considered by'simply/aug~
menrihé“the Sfiginal system of eqn. (5.1) to include *

additional state variebles.representingl'for example,
integrals of the outputs. : |
Note alSo‘thaé\in general an,opjectivé ¥unctional

such as the one’defined by eqn._(5:4);sqffers frbm the

fbllov dlsadvantage For finite values gf JL to exist, -
P I '
B v
stability ¢onditions need to be 1ncorpo;§ted inte the
e

* Note: a zero row in’@ﬁi implies®an undisturbable mode.
| .

BN
Y



the functional defined by egn. (5.3} This 1is the main

subject of discussion in the foll - nqg s. --ion.

3
W

5.4 Stability Considerations

. oo . .
To incorporate Stabilityvoon%traints“intd the

‘ X . ) , . -
system of eqnw~(5.1) and (5.2) use 1is made of an importent

proper%y of the ;ransformation of-a system to a phase—“

variance canonlcal form, that is the invarfance” of the !

P o
9

~ﬁt@ansformqt&on under state\feedback The ensuing analy51s

oy

A Y

Q&he approach adopted by Gourlshankar

,12] in thbir mlnfmlsa91on grocadure for

eigenOa ue sen51t1v1ty, and also,vlndlrectly, “the e1g9n~‘&

value assrgnment procedure Qf Topaloglu and Seborg [13].
By considering state feedback 6f the form in

eqn. (5.2), but one that only utilizes (r - 1) control -

P

N N

. L darn e
inputs, i.e. a control law of the form u' = K'x ¥here u'

L .o
= Ful, Uy wes Uj_gy Uypp e u ] 2

m S
.,kr]T,‘the system of eqn. (5.1) can be put

and K' = [kl, k
] -1°? kJ+l

into the following single input form:

ﬂ

* mT - o
= (A + L b.k: + biu, + D{ = Ex + b.u. + D
x (vlll )x + byus + D& = jU5 + DE

R AT

(5.7)
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where bi is the ith column of k, and krli‘ is the

ith row of K. If now the single input system as

characterized by the pair (E,bj) is controllable and

%168

" feedback via.uj is admitted, then by a choice of ‘#ajtable

k., the resulting system can be assigned‘ desired eigen-
values. It is known that almost any feedback'matrix K'
will make the system of egn. (5.7) cpntrollable"with.
respecﬂﬁto inpuo uj (Davison and Wﬁng'[l4]). The result-

L 4

ing closed-loop system matrix, H, is then given by:

H= (A + ! b, k T, b.k.T) = (E +‘ JR.T "
(A + T bk e bk = B, T) (5.8

i#j

. N, . . .
Now denote by matrix T(K') ™ix T which is a

function of K') the nonsiogular ffangfoymation that ttrans-
forms the matrix pair (E'b.3 fo a phase-variable canon-
ical form, Wllkle and Perkins [15] have shown that such

a trapsformation matrix}is invarieant under state feedback

In the preeent investigation ‘this fact was found to be

useful for eigenvalue assignment in the sing¥é input .

o

system (Eﬁbj)' Note that there are mény Otheﬁﬁmays of
assigning eigeovaluesﬁ@bﬁ the pair (E,bj) (for example
via eqn. (2.5)) end'ﬁhen’evaluatinq H. However, in this
case the procedure via the phaSe varlable canonical form
was found to be convenlent, with H glven by the following
equatlon:; . - | o - ' . -

. H = T(K')HG(K')

‘Where for a desired set of closed-ioop eigenvalues ﬁ is
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*
(I

the phase-variable form of H, and G(K') = T(K')—l. With

'H defined by eqnﬂ (5.9), JL can be evaluated from:

J, = trace( f B. | (P.C((Fw )anﬂom:fnm C((juw )I—H)_lDM')“
L _ ; i 1 i _ 1 i i 1

1=]1

. ﬂ' . (5.10)

)

Likewise J_  can also‘be evaluated as a function of K',

Ramar an@jGourishankar [12]. With the control law of the

form:

= K'x - (5.11)
the qualiratic performance index, Jq(K?) is given by:

B

. H
o ! -

5 (k9 é,[ (xTox + u'TRu')dt = j xT(Q + K'TRK') xdt -

- (5.12)
For initial conditions x(u) = X0 Jq(K')'Ean be expressed
as ' |
3 (K') = x% Vi(K')x N (5.13)
q o ) ;

where V(K') is the symmetric pd®€¥tide-definite solution

ofs the matrix Lyapunov equatidn o » .

V(K''lU + HW(K') + Q + K'TRK' = 0 (5.14)
<+ ’ '.'

A criterion wnrich is not dependent on the initial condi- -

tions X and is '~rtimal' in the average sense can be
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*

. il

§io A
e T 4.
consideredMy ‘medifying (5.13) to [251: -ﬁ%?
o “3; ;. _ &
IR o '
: Jq(K') = trace[V(K'}] , (5.15)

.~

Thus Jq(K'i“can_be evaluated for different values of K'

by solving for V(K') in eqn. (5.14). ,

5.4.1 The glesign algorithm

Thus, very simply, the main step in the design
procedure for minimising J requires I and Jq to be com-
puted for a given set of desired eigenvalues and a
choice of gain parameters.in'K' as determined bf‘a numef—

ical s,earch procedure. In detail th&algorithﬁonsist‘s

of the following steps: ' s :&*

i» An initial choice of K' is ma

ii) T(K') and G(K') are evaluated for the matrix pair

(.E; bj). ! .

iii) With'the desired ¢losed-loop eigenvalues specified,

the closed-loop system characteristic poIYgomial

W IR

~

aﬁdnhence H)are evaluated. H is then computed
hd ) L

'frém egn. (5.9).

Bt
A

8

‘iql, Ji is computed' from eqn.- (5.10) and Jq is computed

*  from egn. (5.14) and (5.15).
K A :
v) A numerical search p%?%edure is used to estimate
» \ ™ '\ e h .
a new set of values for K' and steps (ii) to
¢ ) .
is found that gives a

.pt
J S R ) R

(iv} repeated until‘a Ké

7



L

[
y ‘ 171
‘n'»g;\ ‘ )g,‘,u. " , .

’

. minimum Uﬁlue of J =93+ J .
1 \) » . L . q

Vi) kj 1s computed from the_final.T(Képt) and the
desired set of closed-loop eigenvalues‘to yield

a final K
opt.
(Y

Note . hat unless J = 0 the final Kopt that is sel-

ected is not truly optimal, since J is also a function of

@% and the measure of controllability (eqg. cf. Simon and

]

Mitter [26]). Thus for the true optiﬁai solution ,the pro-

‘cedure is repeated for j = 1; ... r (assumlng that (fy. b

“‘Q« | XV j

is always controllable) and the final Kopt is select@.’to
. . ) D.b o,

ey
be that corresponding to the minimum aJ(bj)' 3 iQ%aQ&ur. 1
. —“,’) i . . - g . . .. ‘g |

It is easy to extend the minimisation procedu#

[ PO |
[ M“v

QfOposed above to the design of a unity rank feedbacﬁ,”

)

: ~ : |
matrlx of the type " K =‘ng;‘where g 1s an r x 1 vector
ﬁat ‘ ¢ ‘ ) '

and f is ann x 1 vector In this case the minimisafion

procedure selects parameters in the vector g to mlnlmlse o

L4

the performance index deflned in egn. (5. 3), whlle

the yector £ is used to assign déglred elgenvalues
& - « [

~Such'a procedure has clear advantages over conven nal

Y

?ﬁ,pglé:placeheht schemes where the choice of g depends

'y

only on the controllability of@the pair (A, Bg) and is
Ty N . \ . .

otherwise arbitrary. In addition thisydesign procedﬁre
‘Cah\be used as an.aiternatige when the minimisation

procedure for the design of nonunity rank feedback matrix

o

I - . ) ; ' - . -’

-
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cannot be easily applied to high ofder systeﬁs because of
computational difficulties\usually encountered in high

dimensional search problems.

?P5.4.2 Disturbance localisation vs. disturbance

- minimisation B
e . : . th
5 The time response of the i system output, ' (t)
in the presence of external dlsturbance, £j, with the

m—

~

. , .
Q;Alnltlal state or, x(O = 0, is given byi#////// /;//' \\
. g : K.

‘ (

n..po 7
14

yi(t) = j T, iV ed. exp{k (t —,T)dg (T)dT-

O£=l ) { "“, au};"'..-

{
N o . . : \ ' o (5'.1‘6})’_; \

3

the it row of C, wZ and VK are the ¢ th eigen- -

eclprocal elgenvector of H,Vdj is the 3 th cot-

v ¢
—

Mo D, Xg 1s the ¢ th eigenvalue and Cj.lS the .j th com-
::::;z, f dlsturbance,‘g.' The necessary and sufficiert .

e

T .
where c; 1

vecto. and

condltlon for dlsturbagce locallsatlon or 1nvar1ance of

y (t) in the\presence of Ei(t) is, Shah et.al. [l§l (cf.

Chapter 3); ‘ ) S | ' f/ ’
. e . 2

ST T B
ciwﬂvtdj = O? for all_P£ =3, 2, ... n

S e ' - (5.17)

v

- !
-

‘ In contrast to thls, dlsturbance mlnlmlsatlon over a w1de
w'*; ’ .
range of frequencies requgges that the express1on of eqn,

&~
o
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(5.4) be a minimum. For example, J. =.0 at s-= jw =0
implies asymptotic tracking, in the pPesence of step

disturbances this isg

n .T T 1 _ . ’
eE Ciwe"F('Tz)dj = 0 (5.18)

» Note that frequéntlnyor low order systems with r = n it

is possible to carry out thée minimisation scheme analytic-
’ .

ally for s. '0 by uslng expre531oh (5. EBQ and thus achleve

¢

_fzero off%q¢ Wﬁthout intéﬁral control - N

- R S - Ty , - o
N ) R & . C N
5.5 Illus @ : ‘Examples - h ' ' Sy

- To demonstrate the usé'of the propbsbd deslgn

progedure, a numer, 1 Search proeedure of Fletcher [17]

'.ewton method .{and avallable as

Fie

subroutlne ZXMIN 1n the apternatlonal Ma%ﬁematlcal and
‘n

Statlstlcal lerarles, IMSL lerary l Edltlon 5, 1975)

"ab based on .a qua'

e

was appll d to a second order systeﬂ with coefflulent

r D and © glven by,

" | 1
' B = . D =
-3 ‘0 1 s
|
- 1
4 ‘ (5.19)
C = I?‘ /

s



simplicity, consider only the minimisation of JI; that

y
15, in eqn. (5.3) choose QIL = ] an(l‘nq - 0. Furthermore,
assume that ! is themain disturbance variable of

1
4
interest 1n the above system so that th£ main objective |
15 to requlate YT ¥ well in the presence of disturbance
and to a lesser extent - . Por “the purpose of com-
parison ot the present.design stheme with other control

schemes it was decided to limit the absolute value o

the gain elements in the controller to 16.

5.5.1 Proportional control

The values of parameters ¢, w(, s, Pi, Mi as
- i . 1

'

defined“in egn. (5.4) and the resulting disturbance min-
imisatiop controller, Kl, aré sﬂown in Table 5.1. Also
shown in Table 5.1 is an optimal controller, KZ’ designed
for the system of egn. (5.19) by minimising a qﬁadratic
éerformance index. The choice of state and control
weighting matrices Q and R respectively is shown 1n

Table 5.1. Since B—l exists for the second order system,
1t was possible to also design a controller, K3 by a
combination 0f pole-placement and analytical minimisation

technigues. Detai{s of controller, K3, are also shown in

Table 5.1.
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Figures 5.1 and 5.2 show the resbonse Hf xl(t)
to a unit step disturbance in Ez(t), respecsivély, when
~each of the three feedback matrices Kl’ K2 and K3 are
implemented. 1In each case, as would be ekpected, the
response of the system with the disturbance minimisa-
‘tion controller Ky is better or at least comparable to
that of the optimal system. Figure 5.3 and 5.4 sﬁow
the response of x2(t) to a unit step disturbance in
Cl(t) and Fz(t) respectively. In Figums 5.3 tge res-
ponse of xﬁT%) to a unit step disturbance in El(tf'is »
worse than that of the system with optimal or pole-
placement controller. This is intuitively expected
since i; tryinq to reduce the effect of Sl(t‘ on l(t)
as required for fhe design objective with limited
gains and therefore iimited control energy, the effect |
of the disturbance:is necessarily diverted to the
remaininé state vafiable of the system, which in this

-

case 1is x2(tL.

5.5.2 Proportional plu _integral control

By augmenting the original system of egn. (5.19)
to a third order system where §3 = Xy, integral feed-
back of Yy or“xl can also be considered. A disturbance

: %

minimisation controller, K4, was designed for the above:

System and is shown in Table 5.2, together with the
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values of required paramecters as defined in egn. (5.4).
For the purpose of comparison an optimal P! controller,

K designed by minimising a quadratic performance index

5!
was also calculated and is shown in Table 5.2. Finally

two different unity rank state feedback matrices Ké and

K7 were also designéd. These are also shown in Table.

5.2. Controller K, was designed by using a conventional

6
pole placement scheme with an arbitrary choice of

£ -
g = [0 l]T, where K6 = ng. K, was designed by applic-

ation of the minimisation procedure in the optimal

-

choice of the g.

"Figure 5.5 and 5.6 show the response of yl(t%

to unit step disturbances in gl(t) and gz(t) respectively.
v

»

In each case, as would be expected, the aisturbance
minimisation controller, K4, outperforms the conven-
tional pole placement controller K6 and is better than
or at least comparable to the performance of the optimal
systém. » o

1

5.6 Applications to Observer Design

An immediate use of the above method is in its
application to the dual or adjoint of system of eqgn.
(5.1) and thus to the design of observers in which the
effect of ummeasurable disturbances on the state estim-

ates of interests can be minimised. The method is of



course only directly applicablé to the design of ident-
ity, or full-order observers, and not‘to the design of
reduced order observers which have necessarily limited
deqrees of freedom. The flexibility offered by the
method in dllowing arbitrar&leigenvalue placement 1is
especially useful here.

Johnson has considered the synthesis‘problem.of
unknown input observers by modelling the unknown inputs
by a dynamical system or approximating them by a poly-
nomial function; all of his results have been succintly
summarized in [18].

Basile and Marfo [19] have discussed the design
of full order observers for systems with ugknown inputs
and disturbances. Their method requires a recursive
algorithm for design, but the procedure for determina-
tion of stability conditions requires a complex
algorithm. Mita [20] haé recently proé&sed a method
fof the design of a reduced order oﬁservers for multi-
variablé systems such that the required state estimates
are made insensitive to unknown inputs or disturbances.

More recently Goﬁrishénkar et al. [21] have
aiso considered £he problem of dé;igning observers for
systems subjected to unmeasurable inputs that can be

approximated by a polynomial type function. They

have also derived a set of necessary and sufficient

.

-
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conditions that can be readily applied to degermine‘the
existence of an observer for such.a case.

For completeness the main steps involved in
the design of an nth order observer for the system of

‘eqn. (5.1) are now summarized:

i) If the output matrix C in the system of eqn. (5.1)
does not satisfy é = [Imol then tﬁé system of
eqn. (5.1) is transformed such that the final

v transformed system has an output matrix C'’, where
c' = [ImO]. For convenience of notation drop the

superscript ' and always assume from here on that
¢ 1s in the required form. ’
ii) Let the dynamics of the observer be governed by

the following equation:

z = Fz + Gy + Bu (5.20)

with F = A - GC, and ‘the required estimate, y_, de-

z
; & ) ST A
fined by y, = [xm+l’ Xyt e xn] = .
[z o z ceer 2 ]T “(Note that ZT = [viv_].)
S m+l’ "m+2f  %nt o _ vav, .
'Thus the.observer outout equation is
y_ = Nz, where N?,is a basis matrix (5.21)

z
for qu C.

iii) The error dynamics of actual spates Xosel Xma2’

e ceer 2
roXy gnd the observer states z_ i/ 2 .5/ v 2,

184
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are given. by the transfer function ma:>ix:

e(s) = N IsI -~ (A - co)]1 1p r(s) (5.22)
where e(t) = (e (B) = Zmar o (o (B) Ze2 (D)
‘ A
cee s (xn(t) - zn(t))J. "Thus for a system with

state matrix AT, input matrix CT, disturbance mat-

. T : . .
rix N, and output matrix DT, the method of-

.

Sections 5.3 dnd 5.4 can he applied directly to

construct GT such that the following measure of

coupling or transmittance between £(s) and e(s)

is minimiged:

<

4 m
JLO = trace (.E Bi’(P.DT(sI - (A*_CTGT))“I NTM,LT
1=1 1 1
b : PiDT(sI - (AT—CTGT))-l NTMi)' (5.23)
i
5.6.1 Example N

‘\
Consider the following state space matrix A,
4

A
" the output matrix C and the disturbance matriv L »f a

third order system for which an observer to ¢« ‘tim-te

.X;(t) is to be designed.



‘ l‘\lgf)

Pl

;- 0 0
1 0 1
A= |1 1 C =
; v |0 1 0
0. 1 _~ _
1
. and D = 0 (5.24)
2
- o

If the disthrbanci §, is unmeasurable, then it is clear
from the error dynamics' of the full order §bserver (cf.
eqn; (5.22)) that the error in the estimate of xl(t)

has a non-zero value for constant disturbances.’ us,

let the main objective in the design of an observer for
the system of eqn. (5.24) be to obtain a good estimate

of xl(t) even in the presence of unknown disturbances

in 7, (). | . o

AN

N

By considering the dual éf the above system
where the state matrix is AT, input matrix is CT, -
output matrix is DT and disturbance matrix is [1 0 017,
the proposed proceduresfor disturbance minimisation can

be applied to determine an optimum observer gain matrix,
. &,

~

G. Three different  observer gain matrices, Gl,"G2 and
~

G3 were designed incorporating different design para-
o

meters and specified closed-loop eigenvalues. Values .

G, and G, and the corresponding details of the

of G > 3

ll



-

parameter values used in the design scheme are shown
in Table 5.3, Fiqure 5.7 shows the error vl(t) tor the

eatithate of x, (), 1n. the presence of a unit step dis-

1

turbance 1n ﬂl(t). “The time response of ol(t) 1n
‘Figure 5.7 graphically illustrates the design freedom
N /

: /
. . . ‘ . -
Aavailable in the disturbance minimisation schomo/

namely, arbitrary eigenvalue assianment plus minimisation

~

of sturbances at one or more frequencies. To compare
the design of the observer gain matrix by a disturbance
minimisation scheme to otWer conventional desiqgn schemes
for a full order observer, the optimal control scheme
was applied to the dual of the systemlof eqn. (5.4}

The resulting gain matrix G, as well As the weighting

4

matrices Q and R are shown in Tablé 5.3. A reduced

-y “

order observer was also designe%{and the resulting

w.th other design details is shown in

5 Vs

Table 5.3. Figure 5.8 shows the error el(t) in the

gain matrix G

presence of a unit Step~distu1ndnce in il(t) when three

o

different gqain matrices G3, G4 and G, are implemented

for the systembof‘ggn._(3.24). As would be expected,

the galn matrix “3, designed by using the disturbance
~minimisation scheme performs better than the two

other schemes.

187/
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5.7 Experimental Evaluation

The design approach developeé here to minimise
the effect of external disturbances on outputs of
interest was evaluated exper@mentally by designing a
controller for the reducéd third-order modél of a com-
puter-controlled, pilot-plant evaporator at the Univer-
sity of Alberta. A schematic diagram of the evaporator,
with details on its mode of operation, and a table of
importart variables together with its discrete third-
order state space model: are given in Appendix C. This
evaporator has beéﬁ used previously to evaluate a
number of modern multivariable control methods (Fisher

and Seborg, [23]) and hénce it is possible to make direct

comparisons between alternative control techniques.

The third order.eQaporator model has 3 state variables
(thch are also the 3 output variables), 3 inéuts and
3 disturbances. |

The main output variable of interest is the
second-effect or product concentration, C2. Previoﬁs
operating experience has shown that the mdst frequent
and severe distufbances in product concentration, cz,
are produced by variations in feed flowrate, F. There-
fore for the purpose of this applicaﬁion the design

objectives for the controller are:

-~

N
~
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a) to minimise the effect of feed disturbance, F,
on the product concentration, C2, and
b) to assign all closed-loop eigenvalues closer to

the origin.

A simple inspection of matrices ¢,A (for the
third order model as tabulated iﬁ Appendix C) reveals
that the input vériable, B2, can only céntrol or man-
ipr the state variable, W2, i.e. C2 and Wl are
sti ally uncontrqlléble by B2. For this reason B2
was first used to assign the eigenvalue of the mode |
. corresponding to W2. The resulting 3rd order system,
‘with 2 inputs, 3ﬁdisturbanceé and B2 = 13.05*W2 is

“showﬁ below:

1 0 0 -0.0325 -0.0811
o' =|0 0.47 0o |, A = 1-0.0377 0.0854
0 0 0.96 | 0.0527 -0.0441

0.120 0 -0.0135

6 =| 0.0032 0 -0.0156

~0.0218 0.0398 o.oigi

The above step serves two main purposes. ‘First, it
chénges the analytically simple control problem (be-
cause A can be inverted) into a not so straightforward

problem. This is useful in demonstrating the practiocality
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" of the method. Secondiy, it‘reduces the dimeﬁsion—
ality of the ‘merical search procedure from_;?;"to 3,
which is‘computationally eaéier to handle. Wiih the
two control objectives; a) and b) inimind, the
proﬁosed design procedure was used to minimise the

. effect of disturbance , F, on C2, at steady state, i.e.

’

at w = 0. The desired eigenvalues of the closed-loop

system were chosen as 0.65, 0.47 and 0.28. The result-

.

« ing controller, K, . , is as shown in Table 5.4. Also
~dmin

shown in Table 5.4 is controller, K designed by

opt’
usiﬁg optimal control method, Wilson [24]. The Qalues
chosen for matrices, Q and R in‘computing Kopt are
,also'shown in Table 5.4.
| The responsé'of the closed-loop system to a
+ 20% distufbance in feed flow rate with controller 5
“dmin

o K and Kppt'implemented is shown in Figures 5.9 and
\ 5.10 respectively. As expected, the controller K

dmin ~
reduces the steady state offset in C2 to almost zero.-
The performance of this controller is better than or
at least as good as the -performance of the optimal

controller KO . Operating experience on the evaporator

pt
_has shown that disturbances in feed concentation,
does not significantly affect the product concentration,

C2. To check if minimising the effect of F on C2 had

not made C2 more sensitive to disturbances in CF, a
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rtional feedback control
‘MO/3, CO/3, + 20% F)
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’ . N
+ 30% disturbance was introduced in the feed concentra-

tion, CF, with controller K implemented. Figure

dmin
5.11 shows the results of this run. Even when most of’

the control effort (via design) was concentrated in
minimising the effect of F on C2, the product concentra-

tion sensitivity to CF had not increased.

5.8 Conclusions

i) The suggested procedure aﬂé9&s simuitaneous
eigenvalue assignment and disturbance minimisation
..
and has‘immediate applications to the design of
observers for systems with Qnmeasurable disturb-

ances.

\

ii) The objective functional defined by egn. (5.3)

is more easily evaluated than in Willems, method

[10]. The basic computational requirements for \\,//
the design procedure are modest except for the
numerical search procedure which does not always

perform well, especially for higher order

systems.

1ii) The illustrative example shows the advantages
of the proposed method in comparison to methods -

such as pole assignment by unity-rank state

feedback Wihteh-—@0 not take into account the in-

~formation available in the disturbance matrix, D,

of the process models.
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1v) An experimental evaluation of the proposed design
scheme on the pilot-plant double effect evaporator
gave good results and also demonstrated the

- practicality of the method.

Soﬁe‘aspects of the proposed procedure are worthy
of further considerations. For example, it would be
useful to investigate necessary and sufficient conditions
for a minimum JL = 0 to exist (at certain w # 0) for
a class of unknown disturbances that satisfy a differ-
ential equation. Obviously the results in [1-3] are

sufficient but not necessary for JL to be identically

zero.

S



CHAPTER 6

EIGENVALUE INVARIANCE TO SYSTEM PARAMETER VARIATIONS

BY EIGENVECTOR ASSIGNMENT

Abstract:

A method is presented for designinq constant
multivariable feedback controllers ﬁhat make selected
closed:loop eigenvalues {nvariant to wunknown perturbations
of arbitrary magnitude in system parameters. . The suffic-
ient conditions for eigenvalue invariance afe expreésed
in terms of the structure of the closed-loop system
metrices, and a numerical example is included to show how
eigenvalue/eigenvector assignment techniques can be used
to produce the desired eigenvector structureﬁand thereby,

’

eigenvalue invariance.

N\
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6.1 Introduction

In most industrial applications, perturbations or -
errors in the system parameters and/or feedback gains are
quite common. Tﬁese perturbations or errors might be due
to changes in the plant model, faulty instrumentation,
etc. If the control system design is based on a specific.
set of assumed model parameters, then perturbations in
these parameter values can cause deterioration in the
plant performance, or may even result in an unsﬁablc
system.

Eigenvalue or pole-placement algorithms have been
widely used in both single variable and multivariable
design applications because they give the usér the ability
to spécify system stability and general characteristics
of the time domain response. Hence it would be dgsirable
when using pole placement (or other modern design techni-
ques that rely on system models) to ensure, as muc¢h as

IS

possible, that perturbations in system parémeters do not
negate the original design objectives. »

The pdrpose of this chapter is to show how, and
under what conditions; selected closed-loop eigenvalues
can be made invériant to perturbations in the system C
parameters. The question of how many, and which eigenval-

ues can be made invariant to perturbations is also con-

sidered.
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This chapter is organised as follows. Section

6.2 discusses relevant previous work carried out in ﬁhe
area of eigenvalue insensitivity, Section 6.3 formulates
the control problem and Section 6.4 is concerned with
derivation of results to athieve eiqenvalue insensitivity
to small perturbations. In Sections 6.5 and 6.6 we con-
sider the more important result, namely achieving eigen-
value invariance to arbitrary perturbations by eigen-
-vector assignment, Section 6.7 deals with a numerical
example to illustrate the design paper and is followed by

Section 6.8 'n Conclusions.

6.2 Previous Work

The problem of sensitivity reduction of closed-
*

loop eigenvalues has been previously considered by
A\

Tzafestas and Paraskevopoulos [1], who designed a state

A}

feedback ¢ .. - -r to assign closed-loop eigenvalues
and to re e’ yv%%ue sensitivity to parameter varia-
tions. More i.cently, M.ra and Ngamkajornvivat [2] have

-

outlined a method for single—input.systems that achieve
eigenvalue invar%ance to a clasé of unity-rank perturba-
tioﬁs in the system matrix. Seraji [3] has proposed a
method in which unity rank state feedback control is
employed to assign ciosed—IOOp elgenvalues and also make

the dominant eigenvalues insensitive to given variations



in the system parameters. This procedure is not suitable
for programming on a computer, and also leads to various
difficulties whgn{applied to H{gh order‘systems. Gouris-
hankar and Ramar E4] have outlined methods for the design
of unity and non-unity rank -state feedback éontrollers
which assign closed-loop eigenvalues and also minimise a
measure of eigenvalue sensitivity to given parameter
variationsf Karlin et al. [5] have considered the
synthesis of feedback control laws which make linear
system state or oufput trajectories insensitive to small
pérameter variations. ‘The?existence oflsuch control laws
necessarily requires restrictive conditions.

A
6.3 Statement of the Problem

Consider the following nth order, completely
controllable, linear multivariable system with r inputs,

u(t), g disturbances, ¢ - and m outputs, y(t):

x(t) = Ax(t) + Bu(t) + DE(t)

(6.1)

i

y (t) Cx(t)
and the state feedback control law:

u(t) = Kx(t) ' (6.2)
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P

The resulting closed-loop system is described by:
x(t) = Hx(t) + DE(t) ‘ (6.3)

where H = A + BK.

In terms of individual matrix elements:

h.. = a.. + bTk. (6.4)

ij ij i3

where hi. and aij represent the (i,j)th elements of  H and
A respectively; bz represents the ith row of B; and kj
represents the jth column of K. Let the perturbations
or variatiohs in H, due to variations in A or K, be denoted
by 6H. 1In this investigation the main queétioné of
interest are: |
i) Under what conditions can the closed-loop
eigenvalues be made invariant to .perturbations
SH?
ii) How many and which eigenvalues can be made
inpvariant?
iii) What design procedure will produce eigenvalue
invariance using only proportional feedback

3 ~
control?

6.3.1 Practical Significance

* The case wheré the perturbations §H must be known,

constant values is of little practical significance



because it would then usually be poséible to carry out
the desién of the control system based on the corrected
system matrix (H + 8H). However, the case where the
perturbations are unknown is of coﬁsiderable importance.
For example, modelling errors and/or real-time variations
can produce errors 1in the ith column of A, which directly
affect thé ith column of H. Variations in the transducer
‘gains in the ith loop, and any other perturbations that
affect only the ith column oflK, can also be handled dir-

ectly since they coritribute only to the ith column of H.

Thus variations in the ith column of H can be represented
as:
[ 0...8a.. + bT(8k.) ... 0
R 1 1 i
§8H = | 0...6a,. + be(8k;) 0
- Q:. 2i X 2 i o-'c
0...6a . + bT(6k.) .. 0 .
L """ T Tni- n it e ,J

where bz represents the ith row of B.

Note that for the genéral case, varilations 'in
elements of B cannot Le handled by the procedureé pre-
sented in thisApaper. However, Ramar and Gourishankar
[6] have recently proposéd a method for the design of
‘unreétrictéd ranKTState feedback that miniﬁises the sen-
sitivity of closed-loop poles to variations in matrices

-

B or K. For special cases where the number of inputs is
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equal to n then complete eigenvalue invariance to perturb-
ations in B can be achieved by considering the dual or
the adjoint of the system in eqn. (6.1) (Chapter 2, see

also Shah et al. [71).

6.4 Eigenvalue Insensitivity to Small Perturbations

Faddeeva and Faddeev [8] have ghown that the fol-
lowing first-order relationship can be used to approximate
the éhange in a distinct eigenvalue, Ki,’due to émall
perturbations in the elements of the system matrix H:

sx. = vT(6H) w. ‘ (6.6)
i i i
|

*

where w; and v, are thexith e;genvector and reciprocal

eigenvector of H respectively; Therefore, for a given

system the ith eigenvalue will be invar:+#nt to. small

perturbations, if the right ﬁénd side of egn. (6.6) is
. 14

identically zero. The four anditions under which this

can occur are:

Il
(o]

b) v; (8H) = 0
(6.7)
c) (8H) w, = awj where i # j and o is a
non-zero scalar
T T . . . )
d) v (6H) = ij where i # j and B is a

TN non-zero scalar



-6.4.1 Eigenvalue Insensitivity by Eigenvector Assignment

The épproach taken first.in the following analysis
is to examine the system eigenvectors and determine  under
what conditions egn. (6.7a) is satisfied.

Obyiously, if |

{ w; } C Ker({sH} i=1, ..., p (6.8)

where p = dimension qu{éﬁ}‘then eqn. (6.7a) is satisfied
and at least the p closed-loop eigenvalues corresponding
to the eigenvectors {wi, i=1, ...,pl are insensitive to
any small perthrbations, SH. -

One approach to the design problem would be to

specify the closed-loop eigenvectors such that they satisfy

condition (6.8) directly. Unfortunately when constant
state feedback control i's used to4assign closed-1loop
eigenvalues and eigenvectors, then only r elements (where
r ié the number of inputs) of each of the n eigenvectors
can be aésigned arbitrg}ily, and this is possible'if and

2

only if:

1) the résulting n eigenvectors are linearly
;ndependent, and

ii) the corresponding r rows of the input
matrix B‘are linearly independent.

¢

(cf. Chapter 2, and [7]).
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Because (n-r) elements of each eigenvector cannot be

assigned arbitrarily, .and because it is important to

Ty

distinguish between .arbitrary and known system perturba-
tions, it is convenient to reorder the columns of 6&H

(1f necessary) and partition 8H such that:
SH = {8H '6H2:6H } (6.9)

where 6H1 is an nxk matrix containing all the unknown

perturbations (k < r)
6H2 is an nx(r-k) matrix of known constant per-
I - . . :

turbations

6H3 is an nx(n-r) matrix of known constant per-

turbations.

Then, if the ith eigenvector is partitioned into an rxl

vector Wli'and a (n-r)xl vector, W2i, eqn. (6.7a) can be

rewritten as:

WL,

[6H156H2§6H3] Wi% =0 ; (6.10)
1 R

Since the r elements of Wli'can be assigned arbitfarily,

it is usually possible (subject to the two consgtraints

noted above) to satisfy the condition:

[8H)16H,] W1, = 0 for i =1,..., p (6.11)
! .

1
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However, the second part of the sufficiency condition in

eqn. (6.10) requires that:’ R

6H3 w2i =0 f?r i=1, ..., p (6.12)

nd W2i cannot be specified arbitrarily. Sufficient

conditions for egn. (6.12) to hold are:

6H3 A3 = 0

GHB A4 = 0 | ’ (6.13)
and

6H3_B2 =0

where A3, A4 and B2 are partitions of A and B as shown
. P

in the following partitioned form of H = A + BK = WJV: -
Vv ! I |
0] I o WY N i W R L W A Eb R 01 1V1iVa
Pl (VSR N — S N R R T
H3:H4; »A3:A4 32 1 2 WB:W4 0 :J V3:V4
(6.14)

. rXr, (n-r)x(n-r)
where Al, Bl’ Kl and Hle R ; A4 and H4e R ;

B, € R(n—rxxr matrix; K, e Rrx(n—rxj; and W, J and V = w_l,u

2

have also been appropriately partitioned.

/
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Proof for Sufficicney

The sufficient conditions for egn. 6.12) to

hold, as given by eqn. (6.13), can be derived starting

(%

with the following two equations which are a consequence

of eqn. (6.14):

W3J1Vl + W4J2V3 = A3 + BZKl
(6.15)

Wyd V, + W,J,V, = A, + B,K,

-

Assuming eqn. (6.13) to be true, then pre-

multiplying both of egns. (6.15) by 6H3} post—multiplYiﬂg

the first equation in (6.15) by Wy and the second by W3;

and then adding the two equations yields:

SHWJ) (VW) + V,Wi) + SH W, J, (VW + V, W) = 0

(6.16)

From the" identity VW = I it is known that
Vlwl + V2w3 = Ir and V3wl + V4W3 = 0 and hence, know-

ing thaf Jl # 0, eqn. (6.16) implies

5H3W3 =0 (6.17)

Likewise pre-multiplying both equations in (6.15) by

SH post-multiplying the first equation by W2 and the

3;

second by w4; and then adding the two equations yields:
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+ Vv + V4W4) =0

6H3W Jo (VoW 5

391 VW, W4) + SH_ W J2(V3W

2 374

(6.18)
By the use of the identity VW = I, eqn. (6.18) implies:
6H3W4 = 0 ' (6.19)

since,

(W2, W2, ... W2, .... W2 ] = [W; W] «

\

eqns. (6.17) and (6.19) show that eqn':l; (6.12) holds if

\
the conditions expressed by eqn. (6.13@ are correct. <:://

/
This proves sufficiency. 7
! [ /

The sﬁfficient conditions for eigenvalue invar-
iance expressed in eqn.‘(6.}l) and (6.13) are obviously
very restrictive but it should be noted'tha£ they are
satisfied for the special case when Hy = 0, i.e. when
there are no Variations in at least (n-r) cqQlumns of H.
‘In this case at least p eigenvaiues can be made invariant

where;
p = n-rank {ﬁHi}'— rank {6H2} - (6.20)

Normally, since all k columns of éHl‘contain arbitrary
A : 2 ' .
elements, it can be assumed that rank {GHl} = k, and ‘

that its columns are linearly independent wigh those of

~

SH,, . ' L



The above development of conditions governing
eigenvalue invariance to small perturbations in H was
based on eqgn. (6.7a). Howevér, it can easily be shown
that if eqn. (6.7a) is satisfied then the use of eqn.
(6.7b) will not(léad to any additional invariant eigen-

values. This follows’ since eqn. (6.8) implies that rank

(6H) = n-p and that the eigenvectors {wi, i =p+l,..., n}

span SH. Thefefore v?(dH)# 0 for i = p+1, ..., n , i.e.
if condition (6.7a) is satisfied, condition (6.7b) can-
not be met for i>p. \Aiso it was not possible to develop
an impréved design proceduré based on egns. (6.7c)- and
(6.7d) and hence they a;e not éonsidéred further in this
éaper.
The results of the ébéve discussion can be sum-
marized as follows. Sufficient conditions for (n-k)
eigenvalues of the closed-loop system to remain insen-
sitive to unknown perturbations in elements of H are:
i) = that the perturbations be small, -
ii) - that the perturbations occur in only thé~
first k columns where k is less than or
equal to the number of inputs, r,:
iii) .that the elements in therremaining (n-k)
columns of H be known constant values,

iv) the first k elements of each of the (n-k)

eigenvectors fw,» i = k+1, ..., n} be zero.
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In the following sections, sufficient conditions
under which cigenvalues can be made invariant to unknown
perturbations, 6ﬁ, of arbitrarily large magnitude are
developed and a dedign procedure is presented that will
produce a closed-loop system that meets these conditions.

. ¥
6.5 Eigenvalue Invariance to Arbitrary Perturbations

The following sufficient conditions for eigenvalue

'

invariance are derived based on the properties of quasi-
triangular matrices rather than starting with eqn. (6.6)

’
which 1s only a first order approximation.

THEOREM 6.1:

’ ]
A sufficient condition for (n-k) of the eigen-

values of the closed-loop system matrix, H, to remain
invariant to arbitrary and unknown perturbations in the
first k columns of H, ts that H be of the following form, .
or that tt can be brought into the following form by

reordering of the state variables:

H 0
o= |t (6.21)
Hay fy
where H, € kak, pooe p{M-Klzin-kJ. the (n-k) invariant

1 4 ?
eitgenvalues {Xk+1’ Ak+2’ C ey An} are the eigenvalues

TR
N
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of Hi and all pevturbatTons arve asoamed o ocour in HZ

v

ol or i

Proof of Theorem 6.1:

If H is quasi-trianguluar as defined by eqn. (6.21),
then the n eiqenvalues of H are the k eigenvalues of Hl
and the (n-k) eigenvalues of Hy. By assumption the per-
turbations occur only ih Hl and/or H3 and hence H4, and
its eigenvalues are invariant. Alternatively, from eqn.

i = = +B.K d
(6.14) it follows that H2 A2+BlK2 and H4 A4 -k, an

hence are invariant to perturbations in Al, A3 and Kl.

> -

»

Remar~ 6.1: The sufficient conditions holds for kih

but design using eigenvector assignment requires k<r.

Remark 6.2: If H2 = 0 then the eigenvalues of H are
t

the eigenvalues of'Hl plus H4, which are both independent

of A3. Therefore all of the n closed-loop eigenvalues

are invariant to perturbations in A3.

Remark 6.3: The time domain trajectories of the state
variables {xi, 1 = k+1, ...n} due to initial condition

or disturbance excitation are invariant to perturbations
in the first k columns of H if the theorem is satisfied
and the initial. conditions and the disturbance matrix, D,

satisfy the conditions:



x(0) = 0
(. 'H.ID - 0 ; ' ‘ (6.22)

whoere H2 = 0

/

Cruz and Perkins [9] have also derived a similar result.
However, their result is not constructive, 1t 1s ossent-

ially a structural result.

Hemarek o, 4= Tf the output matrix C is of the form
C :'[ka 0] then the system modes associated with the
invariant elgenvalues are unobservable. Furthermore,

for such é C, the invariant zeros defined and discussed
by Bengtsson {10] are the same as some (or all) of the
invariant eigenvalues ds de i ined by Theorem 6.1. The
relationship between invariant zeros and eclgenvalue

invariance is explored in detail in Appendix D.

femark 6.5: An H matrix which satisfies the conditions
oEWTheorem 6.i, also satisfies the sufficient conditions
fony insensiéivity to small perturbations discussed in
Section 6.2. However, Theorem 6.1 provides sufficient
conditions for invariance-to perturbatioﬁs of arbitrary
magnitude.

) ,As‘shown 1n the next section an@ by the numerica)

example, it is possible to design state feedback control-

ler3\that produce a closed-loop system matrix, H, with-the



structure defined in eqn. (6.21), and hence invariant

clgenvalues.

6.6 Design Procedure for Eigenvalue Tnvariance
It has been shown in Chapter 3 that if H, = 0
i

then W? -\0 and vice-versa (see also Shah et al. [11]).

Therefore an alternative condition to that expressed

in Theorem 6.1 is that W have the structurec:

wl:O
W o= |-omie - (6.23)
W3:W4
Thus ény eligenvector assignment procedure that sets w2 = 0

will result in a system with (n-k) eigenvalues that are
invariant to perturbations in the first k columns of H.
The algorithm developed by Srinathkumar and Rhoten [12],

discussed in Chapters 2 and 3, permits arbitrary assign-

Y4
‘u

ment of up td r elements of each eigenvector plus all of

the system eigenvalues and thus can be used to achieve

eigenvalue placement and invariance. The main restrictions
o , :

aroe:
L

i) The eigenvalues must be distinct; V = wl

must exist; and B, (cf eqn. 6.14) must be

non-singular as noted earlier.
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11) If k, the number of columns of H containing
arbitrary and unknown pertur; _ions, is less
than the number of.inputs, r, then w2 can bé
set to zero and all eigenvalues can bg
ass;gned arbitrarily. However, if k = r
then (n-r) eigenvalues of the closed-loop

system are the eigenvalues of (A, - BzBl_lAzI

and cannot be specified arbitrarily (cf. Chap-

ter 3).

6.7 A Numerical Example

A linear, third-order system with two inputs
(Gourishankar and Ramar, [4]) is used to illustrate the
design procedure for eigenvalue invariance. The system
is open-loop, unstable with eigenvalues at 0, 1 and l.and

coefficient matrices (cf. eqn. 6.1):

0 1 0 1 0
A=10 1 1 : B=10 1 (6-24)
0 0 1 1 0

N\
—

For the purpose of this paper it is assumed that there
are errors in the transducer =ins associated with X
plus perturbations in the 'second column of A. The design

objective is to place the eigenvalues at -1, -2 and -3



respectively and also to make the dominant eigenvalues
invariant to the errors associated with X5 and to the

parameter variations in A.
. {

The first step is to reorder the state vector

such that ;T = [x2, xl, x3] and hence that all of the

arbitrary and unknown variations are in the first column

of H. (The superscript = denotes the reordered system) .-

Then eqn. (6.20) indicates that at. least p = 3~1-0 = 2

eigenvalues can be made invariant. The design procedure

for eigenvalue/eigenvector assignment using constant

state feedback (Srinathkumar and Rhoten [12]) can then be

used to assign the eigenvalues to'—3, -2, -1 and the
first two elements of each eigenvector as (cf. eqn. (6.14)) .
0.1 0 0
W, = : W, =1 (6-25)

1 1 , 1

The resulting closed-loop eigenvector and system matrices

are:

=0
It
—
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The corresponding feedback control matrix calculatéd
from the relationship H = A + BK, using the pseudoinverse
of B is'denoped by K1 and ié shown in Table . 6.1. It is
obvious that w, and hence ﬁ, in egn. (6.26) have the
structure specified by Theorem 6.1 with k=1. Hence,
Theorem 6.1 shows that the (n-k) eigenvalues -2 and -1
will be invariant to arbitrary perturbations in the first
k=1 columns of é. (Note the following discussion 1is in
terms of the original rather than;the rebrdered system.)

Table 6.1 includes the numerical values for
Dxi/ahjz, i.e. the sensitivity of the ith eigenvalug to
variations in the jth element of the second column of H.
These values confirm that eigenvalue/eigenvector assignment
de:. gn procedure did make the two dominant eigenvalues,
-1 and -2, invariant to arbitrary variations in the second
cdlumn of H. For comparison purpéses three other feed-
back matrices that position the closed-loop eigenvalues
at -1, -2 aﬁd -3 were also considered. The results of
Gourishankar and Ramar [4], who employed a numerical min-
imisation approach to reduce eigenvalue sensitivity to
variations in h,, and-h, for the same example, are in-
cluded in Table 6.1 where K2 denotes their state feedback
matrix. Téble 1 also includes resdlts for two unity-
rank feedback matrices, K3 and K4, designed using conven-

tional pole assignment techniques.

The sensitivity of the eigenvalues of the closed-

P



loop systém_usinq K2 as the state feedback controller
' (Gourishankar and Ramar [4] is small as would be expected
from using a minimisation proceduré. the, however, that
the elements of K2 are generally larger than those of Kl.
The proposed eigenvector design method is relatively

H .
straightforward and requires much less computational ef-
fort than does the minimisation procedure. Furthermore,
the proposed method avoids the convergence and dimension-
ality problems encountered in minimisation procedures

such as the one used in [4].

It is well known that when a state feedback matrix,
K, is constrained to havé the unity rank structure,
K = ng, the choice bf the rxl vector, é, is ambitrary as
long as the single-input éystem (A, Bg) is controllable.
In computing K3 the choice, g = [1 l]?, was made. For this
controllér the senéitivity of the eigehvalués to variations
in the second column of H was found to be high (see row 3‘
"of Table 6.1). Different values of g‘&eré then selected
by trial and error and it was found that for\g,: (1 01%,
the resulting controller, K4, had reduced eigenvalue sen-
sitiQity to variations in the second column of H. The
point to note here is that most conventional pole place-
ment design techniques give little guidance as to how g
should be selected so as tdjreduce eigenvalue sensitivity.

The significance of the numerical values of the

eigenvalue sensitivity coefficients is illustrated by the
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simﬁlated responses in Fig. 6.1. Here, the closed-loop
response of x, to the initial condition, x,(0) = 1.0 is
shown for each of the four controllers (solid line) .
Also included inlthe figure is the closed-loop response
when a 20% error in X, exists due to variations in ﬁhe
transducer gain (dashed curves). The figure clearly
illustrates the advantages of using an éigenvalue invar-
iance, or a minimum eigenvalue‘sensitivity procedurevff
when designing for pole placement. |

T?é results are not reproduced here, but the
time-domain trajectories of x; 'and X, (using K;) to initial
conditions excitation of xl(O) = 1.0 and 33(0) = 1.0 were
~completely invariant to the errors in Xy since‘the system
meets the conditions of Theorem 6.1 and Remark 6.3.

Note that Theorem 6.1 means that even if the con-
troller design 1is based én a model thét contains errors
in the firét k columns of A (or of H), then n-k eigenvalues
will still retain their assigned values and be invariant.
In this example, as implied by Remark 6.2, all of the
'systeT eigenvalue§ are completely invariant to arbitrary
, variations in ;3,‘i.e. in 521 and 531;. Variationé\in

A, = a

1 11 would affect only the eigenvalues of ﬁl'
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6.8 Conclusions

Theorem 6.1 provides sufficient conditions for
iﬁvariance of (n-k) eigenvalues of a closed-loop system
to arbitrary and unknown perturbations in k columﬁs of
the closed-loop system matrix, H. By contrast, most
previous work is based on'first—order approximations to
the variations in closed-~loop eigenvalues and provides
only insensitivity to small and/qr known perturbation55
However, the important result from a desigh point 6f
view is that in many practical applications} selected
eigenvalues can be made invariant to factors such}as
poor parameter estimates, modelling errors, variations
in transducer gains, etc. The illustrative example
shows the advantages of the gigenvalue/eigenvectof assign-

A

hent technique in comparison to other methods for reduc-

ing the effect of parameter variations on selected closed-

loop eigenvalues. , \
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K3

no measurement error

-——— -20% error in transducer
gain: for x,

K4
-1 ! 1 1
0 2 4 6 8
TIME
"FIGURE 6.1: Simulated closed-loop responses of the

state space model defined by equation
(6.24) and the four proportional feed-
back controllers in Table 6.1.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1 Contribution of This Thesis

The main contributions of this study are:

i) Derivation of necessary and sufficient conditions
for uhdisturbability, and the use o these‘and‘
reiated reéults is the basis for the development

-

of a simple systematic, design procedure;

il) A basis for direct analysis of the structure of
systems which 1s easy to apply, and 1is useful from

a control system design point of view;

iii) A detg;led evaluation of the néw design tech-
nique, by experimental application to the double
effect evaporator, and by digital simulation of
llth and 20th order models of two different g;nary

disfillation columns.

—r
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iv) Development of a new procedure for designing
state feedback controllers‘to assign closed-1loop
system eigenvalues and also minimise the effect
of external disturbances on system outputs of

interest;

v) Development of a simple and constructive result
for designing constant multivariable feedback
controllers to make selected_closed—loop eigen-
N

\ . . . . . .
values 1invariant to arbitrary variations 1in

system parameters;

vi) An algorithm to compute the invariant zeros of

a system,

7.2 Conclusions

1}

In this tﬁesis the role of eigenvalues and
eigenvectors in multivariable control systems design has
been illustratec by relating the properties of undis-
turbability and gigenvalué invariance to the structure of
the open or closed~loop system eigenvector matrix.

The concept of undisturbability has been formally
defined and relét:r ~0 such concepts as uncontrollability,
non-accessibility, «¢nd structural controllability. Nec-

essary_and sufficient conditions for undisturbability



have been expresged in terms of both the structure of

U the céefficient matrices of the state-space model and
also in terms of the structure of the system eidenvector
matrix. These results provide new insiqhtvinto the
structure of linear multivariable systems and

provide a basis for the analysis and synthesis of
regulatory controllers. Specifically, the results
allow determination of the property-of undisturbabiliﬁy

A

of specific input-output pairs by a simple inspection

of the zero entries in the appropriate matrices. Exist-
]

ing design procedures for eigenvalue/eigenvector
assignment have been reviewed and Qonditions for eigen-
value/eigenvector assignment have been discussed here
in terms bf range space restrictions. The results on:

undisturbabi Yy, togpther with an existing algorithm

for eigenvallie/eigenvqctor assignment lead to a simple
and constrjuctive design pfocedure for synthesizing
multivari, le controllers which provide désturbance
localisation. An important characteristic of- this de-

sign procedure is that it makes use of the imformation

contained in the model about the effect of disturbances,

whereas many ner design schemes for feedback control- .

lers do not.

Experimentai evaluation of fe;Bback‘plus feed;

forward controllers designed to produce undisturbability .

was carried out by applicdtion to a computer controlled,
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pilot-plant evaporator. The design procedure was
further evaluated by digital simulation of llth
and 20th order models of two different distillation
columns. These applications demonstrate'the simplicity
of the design procedure in its applica%ion to large
order systems. The problems of simultaneous disturb;
ance localisation with asymptotic setpoint tracking,
and disturbance loqa}isation using propor?iqnal lus
integral feedback have alsg been investigated.

A design procedure for minimising the effé;tﬂofv
external disturbances on specific system outputs.of
interest and assigning eigenvalues in a closed«loop
system, has been developed. This method can also ge
used in the deéign of full order observers for systemé
with unmeasurable disturbances. Experimental evaluation
of the proposéd minimisation scheme on the dQouble effect.
evaporator gave good results and also demoﬁstrated the
practicality of the method.

Simple constructive results for the design of
"cpnstant multivariable feedback controllers, to make
selected closed:aoop eigenvalues invariant to unknown
peréurbations of arbié;ary magnitude in system para-=

meters, are given. In general, these results show the
. By

advantages of having a quasi-triangular (or decomposed)



o

system structure either for undisturbability, or for
. . . q .

making dominant eigenvalues Invariant to arbitrary
perturbations in specitied system parameters. A discus-
sio01. on the relationship between such concepts as invar-
lant zeros, (A,B)-invariant subspaces, and param tric
sensitivity is also included. One outcome of this dig-

CUsSs. . has been a simple algorithm for computing the

invariant zeros of a system.

7.3 Recommendations for Future Work

As a result of work done in this study, several
New research areas worthy of further consideration have

been identified. Some of these are: \

7.3.1 Structural Observability

Lin [1] first introduced the idga of structural
v “trollability in 1974. Since th. 'hields and Pearson
I+ and Glover and Silverman (3] have extended this con-
cept to also apply to multi-input s stems. The duality
of these results for investigating 'structural' observ-
ability ha“ not been fégmally established. Because of
the algebraic nature of the result« on undisturbability,
duality between undisturbability and unobseérvability is

not difficult to establish. "When a one to .one
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correspondence between undisturbable modes and state
variables exists, the undisturbable modes in a dual or
adjoint system are - he unobservable modes or state
variables. In fact, the discussion on undisturbability
and structural controllability can be immediately trans-
lated by using duality to relate undisturbability to
'structural' unobservability. However, the limitation
here is that the dual of undisturbable subspace 1is

smaller than or equal to the 'structurally' unobserv-

able subspace,  and therefore the complete class of

structurally unobservable subspaces cannot be identified.

Tt is not difficult to sec that the concept of
structur~l observability can be of great use in sensor
location and measurement studies in the plant design

\

stage (sce remarks on the control scheme for the 20th

o;der distillatdion EOlan - Sectipn 4.5.2). vStructural
obsérvabiligy considerations can also influence sensor
location and measurement in systems that require state
estimation or filtering, i.e. thé‘object here would be

to locate sensors such that the ' (structural) observa-

bility index' is maximised.

7.3.2. Use of structural analysis in system design

Determination of structural disturbability,
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controllability (an

‘Lobscrvability') in a system

i .7 . .
requires very little Information - i.e. only knowledge
of the zero elements 1n the system. As a result such

an analysis prior to the actual plant desi.in and con-
‘structian stage can be of help in avoiding potential
pitfalls (e.qg. in avoiding ineffective control inputs),
or it can help identify and suggest modifications
that may help the final control of the plant (e.g.
in modifying the‘feed system to marc a critical plant
process undisturbable). Such an analytical technique
needs to be systematised for use as an effective design
tool.

It is not difficult to see that the structural
results on‘undisturbability etc. also apply to graph
or node related structures, for example computer flow
diagrams or critical pathEFChedules. Consequently,
it would be worthwhile to investigate the application and
relation of these concepts to such areas as the design
and develOpmenf of large fault-tolerant (~ undisturbable)
computer programs, or in the planning of critical path

scheduling in face of uncertain tasks.

7.3.3 Disturbancegg:::» ' .on as a design tool in

the frequency - Zontext

The absolute magnitude c¢i t.ic transmittance
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between a disturbance and an output has been used as
a measurevof disturbance/output coupling in the design
procedure‘for‘disturbance minimisation in Chapter 5.
Extension of this idea in the frequency domain context
would consist of plotting a Nyquist array of the load
transfer function matrix, GL(S)' and then computing a
dynamic or constant precompensator, K(s), to minimise
the effect of disturbances on specific outputs at a
specific frequency rangelof interest. There is a close
parallel between the approach suggested here and the
procedure due to Hawkins [4] which 1is conéerned with
pseudo—diagonalisatioq;£9% the Iﬁyerse Nyquist array
method of Rosenbrock [5].

Obviously Fhe‘final design procedure would
involve working gimultaneously‘wikh Ny juist arrays of

: |

the process and the load transfer! function matrices,
G(é) and GL(sz, respectively. Even though the comput-~
ational requirements for such a procedure are significant
(i;e. it would‘requiré use of an interactive computer‘
graphics faciligy) there seems to be considérable scope
for a design procedure that simultaneously considers

the two important design requirements: regulatior and

setpoint following through a realisable controller, K(s).
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7.3.4 Eigenvalue/eigenvector assignment using output

feedback

Insthis thesisesome of the difficultijes assoc-
lated with eigqpvaluo/eiqenvector assignment using

output feedback control have been identified. 71t

appears from the Wwork carried out here that such a

direct procedure is prohibitively complex. An alterna-
tive procedure worthy of further consideration is the
control law reduction techniques of Wilson [6]1 and
Bengtsson [ 7] or the modification of these methods such that

the reduced order output feedback control law guarantees

Ssystem stabil:- ind also approximately retains the
favourable eig- Ctor structure of the closed-loop
system matrix (with state feedback). Development of

new or modified control law reduction techniques, that
would preserve desired structural characteristics is a

worthwhile area for future work.
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v»cbﬁ% leEters, e.g. A,B,C,D are used for patrices

NOTATION

General:

The field of real numbers and the field of
complex numbers are denoted by R and ¢ respectively.

The n-dimensional vector space over .the real numbers >

is%writteh R™, and over the complex numbers. €. Upper

(linear maps). The range space of a matrix D is denoted
by the corresponding script letter D (or D : Image‘D).
Script letters, e.g., V, W are also used to denote linear
subspaces. The distinction between range spaces and
subspaces is clear from the context. The null space 9f

a matrix C is written as Kernel (C) or sometimes as

Ker (C). Lower case letters with or without subscripts,
e.g./bi, dj’ 81, denote vectors. Sometimes lower case
letters also denote scalars. The distinction between
vectors and scalars is clear from the conte;t. The
symbol, +, will be used for summation of linear subspaces,
and the symbol ®, for the direct sum. 0&') is used ﬁo
denote the spectrum or eigenvalues of the matrix (argqu-
ment) . (A/W) denotes the matrix representation of the

restriction pf A to W and X/W denotes the quotient space

of X modulo .
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state coefficient matrix
control wr input coefficient matrix
partitions of B
pseudoinverse of B
output coéfficient matrix
disturbance or load coefficiené métrigfé?y .
partition of a transformation matrix .
transfer function matrix
closed-loop system matrix

identity matrix
canonical state matrix

state feedback control matrix
feedforward_gontro%imatrix
number of unéisturbabie-state variables
disturbance (or load) coefficient matrix
for the élosed-loop system with feedforward
control

th

j column of L

dimension of output vector

‘dimension of state vector

dimension of digturbance vector
. : | e
dimension of control vector-s

Laplace opeta#%f 1 3”;



Sgécific (continued)

u

\Y

Greek Letters

control vector, rxl

qlosed—lOOp system reciprocal (or left)
eigenvector matrix (v=w'1) |

closed-loop system eigenvector métrix

state vector, nxl

state response of the closed-loop system to
disturbance

output vector mxl ‘ <

output response of the closed-loop system to

disturbance

o

¢

state coefficient matrix for the discrete’
system |
control coefficient matrix for the discrete
system | /

disturbance coefficient matrix for the \
discrete system

nxn diagonal matrix whose diagonal elements

.are the eigenvalues of H

disturbance vector, gxl

249
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Superscripts
FF ' feegforward
-1 matrix invefse
T transpose " a vector ®r matrix

1

.

i B transform of a matrix
* pseudoinverse of a matrix
1,2,3,4 or

} refer to partitions of a matrix
11,12,21,22

o \

Subscripts

i component of a vector or row of a matrix

J component of a vector or column of a mdtrix

Notation for Table 4.1 ard Computer Plots of Evaporator

Resgonse e

-n

Each figure caption includes a string of char-
¢ . \

acters‘délimited by parenthesis and/or semicolons which
completgly define the design and application conditions.

The general form and order of this information is

i
o

‘as follows:
(run number)

(controller type (Table identification); model order;

control type; run conditions).

The codes used for each of these specifications

aré defined in the following sections:
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Run number

DL - disturbance localisat%on run .

ML - multiloop run

OPT - optimal control run

3

EA - eilgenvalue as‘hqnment run

MC - modal control run

P - proportiénal feedback contfol
P+Fé - proportional féedbéck plus feedforward control
P+SP,'_— proportional feeaback>plus setpoint control

Controller type -

Subscript .
ae - disturbance localisation controller
m{ - -multiloop ;ontroller
opt - optiﬁal controllér
Superscript .
FF - feedforward ~controller
Sp - setpoint cdntréller )

Model order

MO =-3 signifies controller désign based on the 3rd
order model .
MO = 5° signifies controller design baged on the 5th

N

order model



Control type

FB = unless specified this denotes state feedback.

FF - feedforward control of feed flowrate
Sp - setpoint contro]

Run conditions

730% Ccr - denotes -30% step in CF followed by a +30%
step in CF.

+20% F - denotes +20% step in F followed by a -20%

step in F.
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féQ. PRELIMINARIES |

APPENDIX A

A.l Matrilrpseudoinverse (cf. Greville [A.1l]):

ﬁ:; matrix inverse is defined for square matrices

oniy; it is used in the solution of sets of linear

‘equations of the form Mx=y, so that x=M~ly. In such

linear equations the number of unknowns is equal to
the number of equations. For nonsquare matrices used

to describe systems of equations where the number of

equations is not equal to the number of unknowns, the
equivalent operator is the pseudoinverse.- If a matrix.

B has more rows than columns, the pseudoinverse 1is

defined as . ["

¢

B* = (87p) 15"

~

prqvided ipTB) is nonsingular. ; In tﬁe solution of

A : . e
linear equations, the set of equa;ions, Bmég ar :he
so—célléd overdétermined case-— where there are‘'more
equatiéns than ungnowns. The result%ng solution
XéB*y is best in a least-ﬁquaréS’sense. If a matrix,
éay C has more columns thgn rows, its péeudoinvérse is

then defined asf



7 \

¢ = cT(ccT)"l

This corresponds to the undetermined case - there are

fewer equations than unknowns.

-~

A.2 A-Invariant Subspace (Wonham and Morse '[A.2])

A subspace V < X is said to be A-invariant if
veVdAvelV, ° e. AV C V.. The restricted map A: V>V
is defined so tha£ Av = Av for ail v € V. The restrié-
‘tion of A to V is denotedﬂby A/V. Some examéles of

\

A-i1nvariant subspaces are:

i) If.wi is the ith eigenvec£%§ of A, i.e.

A, = x.w:, then clearly the subspace
Wil i1i" .

vV = {wl,w ey wi} is A-invariant. Further-

2’
more if WyrWoo -+ .swW, o are linearly inaependent

then dimension (V) = 1. .

ii)  Let Ro denote the subspace of controllable
statés. Ré is given by:
Ry, = B + AB + A%B + .... + aP71g

-

By Caley-Hamilton, AR _C R, 1i.e. R_ 1is
o o' o

A-invariant.

iii) TIf 8 dehotes the subspace of unobservable state,

where 8 is given by:



n ‘ .
O = N (Kernel (CAl 1

i=1

))

v

then by Caley-Hamilton A6 C 0, i.e. 6 is also

A-invariant.

Such subspaces play an important role in deter-
mining the internal structure of linear dynamical systems.
For example if R_® S_ = X, and AR ¢ R then it is

o “o o o
possible to choose a basis (see Lemma 3.1, in this Appen-
dix) such that o(A): = O(A/RO) correspond to the eigen-
values of the controllable modes and. o(A/R,) correspond
to the eigenvalues of the uncontrollable modes (cf.

Kalman Canonical form, [A.3]).

A.3 (A,B)-Invariant Subspace

The idea of an A—invariant subspace discussed
éarlier can be generalized to take into aécount the
effect of state feedback as follows. For a state
feedback controller,rx, the closed-loop system dynamics

are described by the equation:
x(t) = (A + BK)x(t)

A subspace VC X is called (A,B)-invariant if it is
(A + BK)—inviriant, that is (A + BK)V C V. One import-

. / . . . .
ant p01n%/iyout V' being (A + BK}-invariant is the
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.
following: There exists a K such_ that (A + BK)V c v
if and only if AV C B + V. One obvious example of
(A,B}~invariant subspace is the space'spanned by the
closed-loop system eigenvectors.

The hain usefulness of (A,B)-invariant sub-
spaces arises out of the fact that many control problems
can be cast interms of‘(A,B)-lnvarlant subspaces. .
Oqce this is done, the solution for K can be obtainsd
Since (A,B)~invariant subspaces can SE msde (A + BK)-
invariant by a suitable choice of K. For example if V¥
has been-constructed to satisfy some conditions‘thes adQ

suitable K can be computed as follows:

AV S Yo+ B%AV= [ViB]§, R = [V/B]*AV

'whepé V is now a basis matrix of V, i.e. the columns
N
of V are linearly independent and they span V, and the
* .
superscript. denotes the pseudoinverse. If now

*
[VIB]  is partitioned as

* Ll]'
[ViB] = [—-
L,

so that the dimensions of L, and L, are comparable with

those of Vv and B, then

L : .
AV = [V!'B] il AV = .VLjAV + BL,AV



The above ecquation can be written as:

(A = BLLA)V = VLAV

1

comparing this to the definition for U as: (A + BK)V .- V

yields, K agy shown below:

K = /Lzl\‘ 7
. . \ : i‘/

Further discussion on this and related topics can be
found in Wonham [A.4], Basile and Marro | .5] and

Morse [A.u].

[N

Proof of Lemma 3.1 2

Lemma 3.1

Let M be a nonempty set of nxn matrices in
n &(l} n
R™; if W is an invaxiant subspace (' C R) under M ¢ M

and is of dimension (n-k) over R, then thore exists a
. 1 ' . . .
basis of R" over R such, that every.M ¢ M in this basis

is of the form

. \

1 (A.1)
30 My
where Ml e‘RRXR and M4 - R(n—k)x[n—k). Furthermore, in
thi g4 ' e matrix representation of the

restriction of M tozw and M, 'is the restriction of M to

1
R™/w. . w )



Proos: If dimension (X)=n then let \ = W(®H I. Let
r.. . o . . N
(hl, zz, e ey hk) be a basis for ¢ and (wk+1, wk+2, .
wn) be a basis - for . Then (21,22, A wk+l'
Wiy e wn) is a‘basis for \. Tt is clear that‘_}
. K '
z € 2 o»r» 2z = YN a.z. (A.2)
. i
1=1 B
ind that - .
' v (A.3)
A N — 3
\r 3 wye W w Wy .

% "v'_i=}.(‘+l

M’I‘hus‘.whenuzi and w, are operated on by M, it is easy

to seé that:

m, .z, +

dn‘dl - Mw. = »
o130 {

n eqn. (A.5) the elements my

atrix representation ot M to W.
©

M-invariant, in eqn. (A.5), mij

i = k+1,n(*M, = 0). This means

(21,22, e T MR

L2

are the elements of the
Because - W is
= 0 for 1 1,k and

that M in the basis

,...,ws) is of the form:

w
n _
Soomgawe o (A.4)
=k+1 ;
W
n SN
Tooomy Two OSEE (AL5)!
=k+1 ) ! L

!

e
{2}



and‘that M, iIs the matrix representatioﬁﬁof the restric-

&+ ~tion of leo w. .Also‘TMl\M3]T is #fe matrix represepta-
tjon of the resrricfiog of M t‘?( x dvsince @Y repreqonts
the zero olemonferhtho untien Q)ACO R“/w, M1 1s the
matrix repkesentation ,of the restriction to R /w; or M1

is the matrix of the 11né%ﬁ“agp on R“/w induced by M (in

Lt wy, (22 + Wy, ...hH. o

RS o -
S Do
. . .

the baqis t (2

SF

. 5

R B > o ) ) ] } . ; .
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. APAENDIX B

’/
v“
ETGENVALUE/EIGENYECTOR ASSIGNMENT USING
OUTPUT FERDBACK. CONTROL
This appendix is in support of thg material \
~Covered in Chapter 2. The following discussyon outhn‘es
the algebréic man’ipu]atio‘ns requiréd“"t'o arrive at an ,
N L& ,” ‘,““

algorithm- for eigenva1ue‘(.;eigenvector' assig‘_nmen.t wm’._

output feedback. It also points out “the difficu'tﬁe'-"wﬂ ,
assocfated with the proposed a’L’gorlthm o o 4 s
Consider a Hnear é&tﬁ order multwamab]e h . «

- SRR |

L9 IR A

system with r inpwts and mbutputs as given by - ‘
| I I . o
x(t) = AX(t)ﬁiﬂBu(t)" 55 . o

. : ~ (B.1)
y(t)e= qk<t) . 7 g
\ | ﬂﬂ?ﬂﬁa"
and subJect) to the output feedb k cbntrm] law N
Fwe ‘é;» . ' ' .
TTu(t) = Ky(t) FKkex(t) .. (B.2)
) ; v -

"The resu]fing closed-1o0p sysStem matrix is given by:

(A + BKC) = WiV @ L (8.3
Parti}oning eqn. (B.3) gives | /
1 T ! 7 IF— 1 - : ar K 7
LREH 8] K[C15C2J " “12] oy Lo [y vy,
: | i' : | | :
-l - - - + - - = cm e e -y b= - - L s “
o L : R :
. ] ) ] 1
Ror i haz| B2 Wop 1 Wagl |0 1ol Vo i Vs
- . J Vo .J ' - , - = ' -



i

~Assuming r = m, ‘then in the above equation Aprs Bys Cys Wy

Jr
o~

using the identity V]]N]] + V12“21 = [ qgives

-

04

Vi2¥ardiVyz * Viada¥er | (B.13)

261

Q]‘ahq Vi3 are mxm$gatrices; Rops Wsny U, and szhara (n-m)}
ot w
(n-m) matriges;'K,is mxm and B] a C] are assumed to b @
singular, ob;ained‘if necessar: reordering of xhéhstl&
variables. .
From eqn. (B.3): ’
Ay + BiKEy = Wpdy Vg *alypdoVa (B.4)
App * BoKC = MgV + WapdyVyy (B.5)
and hence
_ | a = )
Bk = (Vg * Myl - AndG . - (8.6)
and  BEK = (Woqd Vg + Woodo Voo = Ao )0y ) (8.7) M
4 B 2191V13 * HadoVoy - Ao dey s (B]) oW
Also . oL .
| e 8 , | |
& Pt Bzggagg:“21f1v12 t ooV (B.8):
! AL ' '=¢ ’ i . H ; . ;’ l'
and Ayp * By KCp= My dyYyp W 3oV (8.9)
- o \ . : L. \ W - 3
Substituting (B.7) into (R 8) gives: ' - o
. ’\_/ -
‘ ) . "r E _] _ . K
Rpo * Bl Iy Vi agdaVar = Ry )ly G T M Ye * HaadaYer
a & “ : .
. and substituting (B.6) in“o‘(B;g) gkves ..+ (B.10)
> : ) o1 ;
Arg + (M) Yy * MipdaVa = Ay @ = HypdyVyg + Wpdaly
A e " , . (B.11)
Let Q = C]..__ C2. ‘Premu]_t‘lmy _(grll), by Vll'
. ( . \ ad e
/ . .
W1W1%VHQ*'W1W2%JNQ' A it e
| : Vi1M292Y22 ‘-V11“1§ o (8a2)

IV = VAR VgAyg - gV = Vgl d i - Vygida¥p 0 -
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Pre-multiplying (B.10) by V;, gives

VoW, J Vi + Vo W, 0V VoW, 0d,V

Aop = ViaRo1Q = Voo 0 Vgo # VokondoVos = VioWa d Vi@ - VyoloodoYs,

V12

(B.14)

Using the identity V”w]2 = —V]ZN22 giv-.

VigRoo = ViaRo1Q = Voo dy Vo = Vg HyodoVos = VioWagdy Vg Q@+ Ve odoYs
’ ‘ 'B.15)
Substituting (B.15) into (B.lgipgives
w
IV - Vo Uy - ApqQ) = 9qV 0+ V(A - AQ) | (B.16)
et Let L= A, = AnQand R = A,y = A0
Then (8-16) becomesv.‘-’:d;! ¢‘ . '}c -
) IV S V..R% ,_h';.‘jQ +V L‘ lﬁ."‘ o - (B.17)
- VY, %héﬂﬁ "V NER T
,‘ X N w0 4‘ - ’*W R
Premu]tiplying eqn. (‘B.los by V22 gives ;:; "5' 4

L 4

Voo hss = VoA 0 = Vo W Vi, + Vo W, 0V, - V22w21J]V]]Q - V22N2292V2]Q

22897 = Va1 @ = Vooardy iz ¥ VaokaadoV22
\ . (B.18)
Using the identity v21w11'= QV?2N2] gives ’ ‘) .
Vaghap = VaoRa1@ = ~VorHyqdyVig + VoohapdaV o * Vorhydiing@ - VogpadoVa
' ‘ : i . _
<\ e -+ - (B.19)7

”A A '1 ‘ :3:’ . . . ;} v “.
Prethnp]ylnggéqp. (B.11) bY.qu gives

: | o A
Varhiz = ViR @ VoHindy Vg @ Yoyt adaVn 8 = ValdiVig + Vartpdale;

“ '!' "‘*"';‘.J ' -\. ‘ . N . 'f B i ‘{1 ‘%" e - : . :- ) ) (B ) 2 0 )
“/‘fw‘" R . . . - LIRS . PR R . . ; O
Using the. identity Vz]w]2 =1 - szwzzfgrves

[

Va1h12 = VoA @ ¥ 9V Q - WpVop = VpgygdqVap = VoakopdoVan -

) = | Vot @ * Vaaklaao VR (B.21)
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substituting (B.19) into (B_‘J.Zl) gives
IVgp = VoolAyy = ApgQ) = JpVp0Q + Vo (A, = Ajq0Q) (8.22)\

Using expressions for L and R gives:

1

UpVop = VpoR =.05V50Q + Vyl % (B.23)

From eq<n; (B.4)

) _] .
KCy = By T(Wyqdy ¥y + WpdoVny - Ay

and from egn. (B.9)

ca
KCo = By TlHyydyVig * WypdpVsp = A

PR .
Ly .
w ®

Substituting (B.24) into “(B.5)

Let S = 5281‘] -
“a Ry 42%”11J]V11 fléh;;J2V21.' 5A11'=U”21varmﬂ;5$f“' ((B-26)
Substituting (8.25) into (8.8) o 3Ef!%}f
Ao, + SWy d Voo + SW. J.V SA =rw‘ I Vo % W0 . (B.27)

22 111 1712 1292722 ~ °M2 2171712 2272722

Post-multiplying (B.26) by Wyq and (B.27) by Wop gives:

A - SA Sy (1= Vyolay) = Hp dy (T = Voo ) + Hynd Vg g

2191 1

\

127272171

‘-x - SW,,J,V, W o N (B.28)
which on simplification gives: ) . Xy

A

" b4
[

21M1) 7 SRy SHydy = W0y = S0 Ve Wpy = Wy d Vgl

—

HWplVartny - SHdlpyy o (B229)
2 2 R

oL @ . o ,,fh o

Roghpy = SAyaHay = WopdyVyghoy ™+ Hosd Voolny = Sy daVy,Hy)

and

%

7

- SUpdglgay - (B.30)

”
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! o

3

u51ng.the identify V21N11 = ?szwz]

Raahar = Shighpy = =SWydyVyghay *+ HapdyVyghpy - Moyl Vo
" | | + SHy W
supstituting (8.31) fnto (8.29) gives:
Ay - SRy ¥ SHydy - Hpqdy T SRy - Agoi, .
A;hat is, ~1F‘ | - p
Hpydy = (Ryp = SAyadMpy = SH] ) + (A, - SAU)NH__“_
Letting T = A, - SA,, ’ ’ | |
‘and P = Aoz~ SMr . ’
Eqn. (B.32) can’be : o 'h»
S e ™

In the same manner post multiplying (BL26} by le,dnd
(B.27) Qy N?Z g1ve§: -

2

J

}i w22

2

o e
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(B.31)

(B.32)

(B.33)

(3.3¢)

Equations (B.17), B.23),(B.33) and (B.34) are redevant

Mor the design procedure. - Inspection of-eqns. (B.7) and

(B.33) shows that these two equations have to be solved

That is,

’

iteratively with the identity: LS LR LY

,‘haying made an arbi;rgry choice of Wy, and V]j-g“?1 and Vqo

are evaluated from edns. (B.1Y) and (B.33) respectively, and -

a:check is made to see if the 1dentfty v]]w]1“+sv]2w2]

is satisfied; if not, new choices are made for 1n{tia1;

= 1

L d
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R A ’ | & : ’

-

auﬁps of W and V and the procedurﬂ repeated. Clearly
¥ SRR 11 .

c(nvérgence cannot be guaranteed for such a procedure

anaq%¢ becomes at once evident that the procedure can be
quite ftngthy. Oncé-an appropriate choice of w]] and V]f‘k
is made and wz] and V]2 have been computed such that the
required identity is satisfied, then a choice of wjz and

-

V., *is made and eqns. (B.23) and (8.34)‘are solved for

21
V22 and w22, rqpbéttive]y Now a test is made to deter-

v
mine whether the following identities are satlsf1ed

Vi * Vighpy = 00 Vpplyy + Vyplpy = 0 and .

. , K d
[ If not, the procedgg’%is repeate
Iwus clear

Yor¥ia * Vpo¥ap =
for different choices of Wy, and V,,. 'r“

. i 5t
that the algorithm can be extremely lengthy ahd that . i

tﬁ%ré are considerable difficulties involved with the

. )
design procedure for eigenvalue/eigenvector assignment
using output feedback. |
.V, Note that the procedure qutlined briefly at the -~

Y
end of Re¢ferdnce Blmay at first appear to be s]ight1y3§i;/

different\tlan the one above. However, both are//gu1v”‘““

alent. n1t1a1]y choo.ing qaﬂym and/VT] arbitrarily

then com ut1n w21 ‘and V]2 (from egns.-(B.17) and (B.33))
*and f*na] y checking to see if the identity VH ]]'+
I hoJds, the procedure as proposed “above should

e slight/ly e sier to fol]ow. Note that convergence,



i.e. getting the correct values of V and W such that

VW © T holds as well as eqns. (B.17), (B.23), (B.33) and

(B.34), is not guaranteed

9

This appendix essent1a11y points out the 1ea‘thy

and difficult design procedure that follows as a result

N

"of difficulties 1mposed by the rather restrictive set of
necessary and sufficient conditions for eigenvalue/

e1genvector ass1gnment using output. feedback as outlined

in Chapter 2.
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PILOT P EVAPORATOR AND ITS MODELS

The Evaporator

ies. This pilot plang has been .described iﬁ detail by
Fisher and ‘Seborg [C.l]. The major pieces of process
equipment are shown'in, the schematic diagram in Figure C.1.
The' control loops shown in Figure C.1 represent the multi-
loop control scheme applied to the évaporaﬁor iﬁ previous
sthdis& (C.1].
The first effect has natural circulatit

its 18 inch long, 3/4 inch 0.D. tubes. It is
Vo

process steam. The second effect is ‘a long tube vertlcal

unit whlch is run in its forced c1rculatlon mode. It

has three, six foot long, one inch O;Dl tubes. Ip is
operated at a lower pressu&é‘phan the first éfcht and is
heated by the vapour prodﬁced in the first effect. . ’f?,*
i 'The evaporato;"is fuily inst;umen;ed and can.bé, N
-controlled‘by“ei&her Foxboro electronic controllers or

” -

underlerect Dlgltal Control (DDC) from an, IBM 1800 Data

[}

'Acqu151¢10n and Control Computer dﬁeraﬂtgg under MPX

Multiloop DDC can be applied dlrectly u51ng the cpmputer E

L4
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control package and %dvaﬂstd control schemes by user

written pxp¢)ams which utlllze a set of svstem programs

e

to interface between the user and system control‘programs.

N

C.2 The Evaporator Model
o

The complete (evelopment of the double~éffect

evaporator model has been‘preéented by Néwell [C.2] who

derived ff#th and tenth order non-linear models. Based

on these models Wilson [C.3]) calculated discrete five-

state and three-state, linear, time-invariant models 'gigﬁ:
using a 11nearlzatlon procedure‘7ﬁd Marshall's model J»id’
. e ‘ﬁygagas
reduction method, " . ., ﬁiﬁ“‘ . o mﬁz i
. , RLUESS o
The linearized models in the discreterform can lnhiag
be represenged by: o f ' B
: ' |
*wex(n+l) = dx(n) + Audn) + 0d(n) ‘ (C.1)
and 1" . : ,
L4 . N ! A d
y(n) = C x(n) _ (C.2)

“The elements of the vectors x, (\\\v~“/ye deflned a;; .

as qe;mallzed perturbatlon varlables

: E ",/"{'\3" ) :
» W, - W ’
\ K ,
. xy = 1ss . " ‘ (C.3) .
.9 o wlss : ‘
*where wiss iéfthe normal steady statesvalue of Wl.

L N -
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“The vectors X, u,- d and y for the fifth order
discrete model are defined in Téble C.1l. The coefficient
matrices of this discrete time model; with a 64 second
sampling. interval, are showﬂ it Table C.2.

For the third order discrete model the state

Ly ’ >

vector x?FSjgiven by:

é@ x = (W1, w2, c2)T ' (C.4)

B
4 )

A . .
The eigents of the state vecvtror are defined in Table C.1.

)

The V?gﬁbrs u, d and y are equal to the ones defined in

! Table}é.l. The coefficient matrices for thi§»medéii/ ;o
(¥ . ! Jf
X - _ \ _ | i -
with a.64 second sampling interval, are shown in Table. .
, s ‘
c.3. . o, ity
. A . s ‘ oo

R
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TABLE C.1

DESCRIPTION OF' THE EVAPORATOR-VARIABLES

State Vector, x : ‘ - Normal Stéady Sféte Value
B x| - T, o1, w2, c2) |
R First effect holdup - ° L 45.5 1b.
Cl  First effect concentration 4.5&!'glycol
\ M First éffe6t engba1p§ | we L IBQ.ElQTU/Jb%
. W2 Second effect holdup * T 415 1.
€2 . Second effect Foncezﬁfg;}ohe‘ - - ” 04T glyeol

B
" Control Vector, u

ol = [s, Bl,ﬂazj_‘}f~
.»‘$ A G o

“%:  Steam flow Y 2.0 13.4T1n.

Bl First effect bottoms flow 3.485 1 /min.

»B2 Second effect bottoms flow T 4.581 1b./min. . -
Lo . . ¢
i Disturbance Vg .. s . _ ,
P T A PN S
s Ll T /
$= [F, CF,“ HF] . M . . S /,’
F . Feed flow - - ' ‘,; e 5.0 1b./min. /
, . ) . i / :
.CF  Feed conténtration * . - - 3.2% glycol
HF  Feed enthalpy | ~ 156.9 BTU/1b.
o ;" coe
Qutput Vettor, y
E i . _
T - : T e e
y = [W1, W, c2] L
_ _ , , AT
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TARBLE C.2

FIFTH ORDER DISCRETE EVAPORATOR MODEL (T - 64 sec.)
. \

1.0 -0.0008 -0.0012 o o |
0 0.9223 0.0871 0 0—
5= |0 £0.0042 0.4376 0 0
0 -0.0009  -J.1052 1.0 0.000]
0 0.0391*  0.1048 0  0.9603
. . ¢ .
. + ] — , - T
-0.0119  -0.0817 0 0.1182 0 -0.0050
0.0116 0 0 » -0.0351 0.0/t5  0.0049
0.0116 0 0 p = |-0.0136  -0.0002 T 0.0662
-0.0138 0.0848  -0.0406 0.0012 0 -0.0058
0.0137  -0.0432 4 0 | 0.0019 0.0016 o'.ooss_J
1 0 0 ~
c= |o0. 0 1 0
0 0 0 1

.~

TABLE C.3

THIRb ORDER DISCRETE EVAPORATOR MODEL (T = 64 sec.)

10 0o o0 -0.0326  -0.0811 0
0 1.0 0 5= 0.0378 0.0854  -0.0406
0 0 0.9602 0.0529 -0.0442 0
0.1200° 0 -0.0135 i\ 0 0
AN 5 y
0.0033 0 -0.0157 C=10 «\\Q Q///
-0.0219 0.0400 0.0219 0 d““”'1-_J




272

"YI0M STU3l 103 posn I03exodend Jueld 3OTTd

309334 STGnog 8yl 3o weabeig oT13PWLAYDS 1D mm:uHm
123443 aNOD3S 1253443 1Syl i)
¢l
D
‘g
12NQ00yd

JLVSN3IANOD

ONITOQOD O« |
WNNDVA 0= «

EIN/N olvl@tﬂ@ |



APPENDIX D g

ON INVARIANT ZEROS, INVARIANT SUBSPACES

AND PARAMETRIC SENSITIVITY

D.1 Introduction

This Appendix extends the discussion of Chapters
3 and 6 and is particularly concerned with Telating the
following three relatively new concepts: (i) invariant
zeros (as defined by .Bengtsson [D.1l]), (ii) (A,B)-invar-

'ggnt subspaces [D.2] (see also Appé%dix A), and (iiig

eigenvalue insensitivity to variations in system para-
meters [D.3])(see also Chapter 6).

In [D.1] the invariant zeros of a MIMO system
have ‘been defined as ‘those zefos*of a system that are;
invariant under state feedback in the sense that the
open-loop system denoted by S(A,B,C) énd the closed-loop
system"$(A+BK,B,C) have the same set of zeros for a class
of linear maps K. The COnéept of (A,B)-invariant subspace
has playec a key role in a number of control problems [D,2].
The most far-‘liar .re is the disturbance localisation
problem. 1., the following discussion these two concepts
will be reiated. It will be shown that when certain set

of conditions are imposed on (A,B)-invariant subspaces,

then a simple algorithm to compute the invariant zeros of

* for the general definition of zeros of multivaria‘ le
" systems see Macfarlane and Karcarias [D.47].

273



a (left)

invertible system can be derived.
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In order to

show a use for such an algorithm we will ‘relate invariant

zeros to insensitive eigenvalues.
be shown that the invariant zeros
eigenv§lues which are .nuonsitive
arbitrary‘parameter variations in

the A or K matrices. In contrast

In particular, it will
aré‘the same as thoée
or invariant to

specified columns of

to résults il the first
part of Chapter 6 which are strictly valid only for eigen-
value invariance or insensiﬁivity to gmall, arbitrary
»pértﬁrbations in specifie? coluﬁns of A or K, it will be
shOWn here that the analysis carried out herq_ allows a
designer to make certain eigenvalues invariant to unknown
-Variations of arbitrary magnitude in specified columns of

-~

A or K (Cf. Theorem 6.1).

D.2 1Invariant Zeros and Invariant Subspaces

hY
In [D.2] it is shown that the maximal (A,B)-in-
variant~sub3pace, Vm, contained in Kernel C, can be ob-

tained by the following sequence (see also discussjion of

(A,B) - invariant subspaces in Appendix.A).
Vo = Kern?l C B : -
W o= v,on AYu. &t i=1,2,....n
i i-1 i-1 ree
where B denotes Range B and



275

-1 _ ne
ATV, +B) = {xeR7[Axe (Vi + B},

Then let p be the first integer such that'vp+l = Vp,

’
then V™ = Vp. This sequence donverges after at most
v steps, where v = dim (Kernel ¢).

Note that to simplify the calculation of V™ we

impose the following condition on (v° + B), i.e. assume

that dimension (VO + B) = n. Then

v. =v.n At w8 = v = vm‘L Kernel C

1 o ‘o) *
For thq case where k =r (i.e.\the number of undisturb-

able state variables or outnuts (k) is, equal to the number

of input or control variables (r)), the condition:

dimension (V° + B) = n,
implies the fglfb&in&g FER
. \\ | \
1) The f;rst k rows of B must be linearly independent.
ii) In addition dimension V2= n-x sin§e C can be
written as C =°[Ik Ol, and in oréér toirealise the
property (A + BK)V°C V° it is requiredjthat (n-x)
of the eigenvectors of (A + BK) lie in Vo, i.e. (n-k)
of the closéd-loop eigenveétors\lie in.Kernel cC.
Using the g&genvector/eigenvalue assignment techﬁi;ue
(of Chapter 2; it becomes clear that for (n-k) of
. d-loop eigenvectors to l%g in Kernel C, //
- The eigenvalues correspdhding to these _
eigenve;:¥rs are then given by; -
{

—_ /
PHyy = Woy Ay
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' - l
= - A
yhere P A22 BZBl 12

and the diagonal elements of /\2 are the eigenvalues

of p'ﬁ

-

D.2.1] A new algorithm to Compute invariant zeros of a

"

system
Note that for the above case o (A’ + BK|Vm) = o(P).
From [D.1], invariant zeros of a left invertible system S
are O(A + BK]Vm). Hence we have the following

_new algorithm to compute the invariant zeros of a system:
If dimension (V° + B) = n and k = r, i.e. the

~first k or r rows of B are linearly independent then the

!

invariant zeros of the system are given by the eigenvalues

-1. .
of B,B, A12) where A, is the (n-k) x (pn-k)

(Ayy = .
lower right matrix partition of A and A, is (k x n-k)
upper right matrix partition of A. Bl and 82 are the top
k x r (note k = r) (or k x k) and bottom (n - k) x r

s

(or (n-k) x k) partitions of B respectively.

R

Example D.1l:

Consider a system with the triple (A,B,C) given

by: r .
-1 0 1 0
- 1 0 1
A = 0 -1 B =10 1 C =
s |1 1 0
0 0 0 2 ’
\ - .
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To rewrite the output matrix of the above syvstem as

cC = | 12 0], use will be made of the transformation

(Cf. Section 3.9) X = QZ where Q 1s given by:

»
- 4
1 o 17t 1 o -1]"
Q= |1 1 0 = -1 1 1
0 0 1 0] 0 1
Then L_\ ) 4 i —
Y- o Cx=coz=gu - L7 '
. , 0 1 v 0]
Thus :
' +
. V = Ker C =
‘5‘1‘ O
\‘\’A‘/
+ -1
A =290 AQ =
B+ = Q—l B =

4

b
clearly dimension (Vo + R)

|
dimension o, 1, 1 S = 3
‘ i
|
\
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: N
4
4.

and with first two rows of B limearly independent in-

variant zeros of the above system are given by

\\\ =
! A+)
BB

Ceen B AR

a (= 3+4) = 1.0}

.T.
= O (A -

Example D.2

AL
Consider the SISO system with the triple ~(A,B,C)

8 ‘.‘

given by:
¢ | ~
1 o0 -0 1
‘A =,k77k -1 0 B =1 c=1(1 -1 1]
= 0o, 0 -2 1 '

/ ) c
“using €;; transforﬁation (Cf. Section-3.9) X = QZ

17 -1 1 .11 1 -1
where 0= 10 1 0 ////; o 1 0
0 0o 1 -1 0 0 1
c’=co = (1 to 0]
Taab oo 0w to1,t
L -1 S s B
A'=Q a0 =1 0 | -1 0 = ¥V i
A, + A,
| » 4
0o 0, -2 :



%]
~d -
Mol

1 BI
st = o7 lp =1 2 .
B I
1 2
0 o]~
Now V_ = Ker € =¢{1 , 0 , also dim. (V + B =3
0 1 J ’
and since the first row (k = 1) of B  is linearly inde-

pendent the invariant zeros of the above system are

+ Y _+-1 _+
=0 (A, - B,B, T A,)
1 0 ' 1
l1.e. eigenvalues of - (0 -1)]

0 =2 1

L _

]
- _
-1 1
=g = {-1, -1}

0 -1 i

Note that these are precisely the eigenvalues which can-
not be assigned arbitrarily in the design of a state

feedback controller to make Zl(:vﬂ undisturbable.



D.3 Invariant Zeros and Parametric Insensitivity

\ . .

-. For the class of systems considered here, namely
where C [Ik O], the first k rows of B are linearly

independent "and k = r{’and hence UO = V™ = Kernel Cc, it

.

is clear that in order to satisfy (A + BK) V°c VO,(n—k)

of the closed-loop system eigenvectors must lie in

Kernel C. In other words the first k elements of the
.
(n-k) eigenvectors must be zero, i.e. Wi, = 0. For

~—

such a class of systems there are (n-k) invariant zeros.
For such cases it can be shown that:
-
1) it is possible(lo make as many eigenvalues invariant

Oor insensitive to parameter variations (in specified

columns of A or K), as the number of invariant zeros

Q.}emain un-

ii) the invariant or insensitive eigenvalues

of the system, and

¢

kS

moved despite arbitrary aﬁd unknown parameter
changes in specified columns of K and hence ghe A
matrix. Note also that these parameter variations
need not necessarily be small. This point will be
clarified shortly.
For a left invertible system {invariant or insensitive
eigenvalues} = o ((A + BK)[VO). Denote_by K" the class of

all feedback matrices K such that Ko € Km satisfies



(A + BK )V c Vv ’ that
o' o o
Now for C = [IKIOn_K]
O 3
o - {3 |
( "n=K

Then for such a class of

it can be

14

%
o

It

([KiEKO]}

where Ki is

K, is ak X (n-k)

and a

words for any arbitrary

shown that

a variable’

281

o
. m - f
is K = {K|(A + BK)V_C V _}.
- o o}
and V_ = Ker C ,
(o) N
\
>
: o 20 SR
where dim Uo = n-K. . e
A e \
'J ‘.{[“’ V“r

(A, B)-lnvarlant subspacb31~:1 e. {ywv
. '\.\\ \ N
KA

k columns of K) or equivalently in the first k columns of

A, the eigenvalues o(A +
insensitive. This point

ing example:

Example D.3

Consider the sys

~
0 1 0
A= |0 1 1 '
0 1 -1
Then Vo = Kernel C =7
]

3 4
S S
i= 1,2, 0000, .
k x k matrix (assume K = r)
matrix of constants. In other
variation in Ky (i.e. the first
BK|V®) remain invariant or
will be illustrated by the follow-
x
tem S(A,B,C) where
~
1 0
: 1 o0 of
B =10 1 X L =
|0 1 0
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The open-loop eigenvalues are 0, 1, and -1. If the
measurements of Xy and x, are unreliable or the para-

meters in the first and second columns of A are likely

-

to vary then we can design'a K such that (A ;/BK)Vou_ Vo’
[] R 4
with the resulting invariant eigenvalue of (-1) being

o

completely insensitive _to any arbitraruy variation in the

first twa columns of K or A. The remaining two

4

: ( : ,
eigenvalues of Cﬁ + BK) can be assigned arbitrarily.

Suppose then wll is chosen as |
1 \ 0 .
W"ll = .and le =. .
0 0] °

(for "invariance té first and second columns of A and K)

; -2 0
. and Al = \
0 ~3
Then -A3~‘Eurns out to.be o(P) = -1 and
\
w2l =.[2 0] and WQZ = [1].
1 0 0 - 0 0
?hus W =10 1 0 and J = 0 -3 0
2 0 1 0 0 -1
v —2 -1 0
/ . *‘& ‘
Then K =B (WJV-a) =
7 : 0 -4 -1

*
Where B is the pseudoinverse of B.

>
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—. /

This K satisfies (A + BK )VOCL VO. Let (Km be a class
dé all K such that (A + BK)Voti Vo then rewrite K ¢ K™
;] . [ e
as K [Ki Ko]“ where Ki is'2 x 2 matrix and Ko = [—l"
Then it tan be seen easily that for any afbitrary varia-

tions in Ki or Al, or A2 (first and second columns of

A) thHe eigenvalue, -1, remains unmoved. For example if

N . ’1 _ —LQ : 0
. |
K 0 -2 -1
’ -
corresponding to 50% error in the transducer gain for
o ,
xl and x2, then
-1 b 0
h A+BK = 0 -1 0
-1 Y =1

i.e. the eigenvalue (-1)<E%mains uhmOVed. Likewise if

!
i

. \ '
A, Dbecomes (1 11]T and A, becomes (1.2 1.6 1.4]T, then

1 1.2
A +BK= |1 1.§
/ w |1 1.4
0.2 0 -
. - ~2.4 0
. p s
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-2 0

and the resulting elgenvalues are: -1, 2.2 and -1.2,
where the invariant eigenvalue. is -1. Notice that the
variations in K and A arc of aignificant magnituwde and

3

usually cannot be handled by ‘conventional sensitivity

techniques.
\?nother result that fé}lows fasily from the above
ahalysig is that the initial condition response of the
above system for all x(o) SO is ;nvariant regardless
of any variatioﬁs in the first two columns of A or K.

This corresponds to trajcctory invgriancs of all x(t)

for all initial conditions x(o) which lie in v . (cf

Remark 6.3). . For examgle for the above i the response
of ’xl(t), x2kt),aﬁd'x3(t) is unchanﬁed HERS x(o)T =

[0 0 . a] v-a#O, i.e. x(o) € Ve Also for bj e v°
(bj‘is_t e jth nguﬁn 6f B) the class of K such that

results®in trajectory invariance. (This

-

result is really related to disturbance localisation.)

"D.4 Conélﬁding ﬁgmAfks

-~

& :
. In this Appendix the concepts of invariant zeros,

invar:

At subspaces and parametric insensitivity have
been'relaped. The three illustrative examples show the

use of the proposed‘&léorithm for calculation of invar-

-
'

iant zeros of a system. It is also ghown how the invar-

iant eigenvalues are the same as invVariant zeros of the



system, and hence are insensitive to Arbitrarily large
and unknown parameter variations in Specified columns of
the A or K matrices. For Sinqle'inﬁnt single~output
systems the relationship between invariant zeros and
parametric insensitivity can also be understood from a
[ 4

root-loci point of view - that is becduse of a pole-zero
cancellation (invariant eigenvalue - lpvariant zero can-

cellation) variation in certain elemeénts of K does not

move the invariant eigenvalue.
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