Not having the information you need when you need it leaveswamting. Not knowing where to
look for that information leaves you powerless. In a socrtere information is king, none of us
can afford that.

— Lois Horowitz.

University of Alberta

Data Mining Flow Graphs in a Dynamic Compiler

by

Adam Paul Jocksch

A thesis submitted to the Faculty of Graduate Studies anédrelk
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

(©Adam Paul Jocksch
Fall 2009
Edmonton, Alberta

Permission is hereby granted to the University of Albertaaites to reproduce single copies of this thesis and to lend o
sell such copies for private, scholarly or scientific reskgurposes only. Where the thesis is converted to, or oteerwi
made available in digital form, the University of Alberta wallivise potential users of the thesis of these terms.

The author reserves all other publication and other rightssociation with the copyright in the thesis and, excepeasin
before provided, neither the thesis nor any substantiagigrothereof may be printed or otherwise reproduced in any
material form whatsoever without the author’s prior writggrmission.

Examining Committee
Jo Nelson Amaral, Computing Science
Vincent Gaudet, Electrical and Computer Engineering

Joerg Sander, Computing Science

Abstract

This thesis introduces FlowGSP, a general-purpose sequmiring algorithm for flow graphs.
FlowGSP ranks sequences according to the frequency witthwhey occur and according to their
relative cost. This thesis also presents two parallel impletations of FlowGSP. The first imple-
mentation uses JaVithreads and is designed for use on workstations equippédnidti-core
CPUs. The second implementation is distributed in natudersiended for use on clusters.

The thesis also presents results from an application of GBR to mine program profiles in
the context of the development of a dynamic optimizing cdempinterpreting patterns within raw
profiling data is extremely difficult and heavily reliant oarhan intuition.

FlowGSP has been tested on performance-counter profilestsa from the IBMP WebSpher@
Application Server. This investigation identifies a numbEsequences which are known to be typi-
cal of WebSpher@ Application Server behavior, as well as some sequenceswigce previously

unknown.

Acknowledgements

| would like to thank my supervisor Nelson, first and foremdast his endless support, encourage-
ment, and especially for his patience.

| would like to thank Osmar Zae for his advice in the planning stages of my research. His
advice on existing data mining algorithms was invaluable.

I would also like to thank the IBM Testarossa JIT developnteam, specifically Marcel Mitran,
Joran Siu, and Nikola Grcevski. They have provided me witatlamdance of technical information
and guidance throughout my research.

The research leading up to this thesis was made possiblenoynfy from the IBM Center for

Advanced Studies (CAS) and by grants from the Natural Seiand Engineering Research Council.

Contents

1 Introduction 3
2 Background Information 7
2.1 MachineLearning e 7
211 DataMining 8
2.1.2 Frequent-Sequence Mining 9
2.1.3 GSP . . . 9
2.2 Compiler Technology 10
2.2.1 Control Flow Graphs (CFGS) it 10
2.2.2 Edge Profiling vs. Path Profiling 11
2.2.3 Dynamic Optimization 12
2.3 Performance Counters 14
2.4 zI10Architecture. 15
2.4.1 Address Generation Interlock 15
242 Page Sizes 15
2.4.3 Performance Countersonz10 16
2.5 WebSphere Application Server 16
25.1 ProfilingWAS 17
2.6 Parallel Performance 17
2.6.1 LinearSpeedup 71
2.6.2 Memory Organization 18
3 FlowGSP 21
3.1 Edge and Vertex Weighted Attributed Flow Graphs 22
3.1.1 Formal Definition 22
3.2 Calculating Path Support e 24
3.2.1 Frequency SUpport 24
3.2.2 WeightSupport 52
3.3 Sequences of Attributes 25
3.3.1 Matching SequencestoPaths. 26
3.3.2 SupportofaSequence 27
3.4 FlowGSP e 30
3.4.1 Creation of Initial Generation 32
3.4.2 Matching Path Discovery 33
3.4.3 Candidate Generation. 37
4 Implementation 39
4.1 DataCollection 40
42 DataStorage. i e 41
4.3 Construction of Execution Flow Graphs from Profiling®at 42
4.3.1 Attributes 24
4.3.2 Consequencesof Edge Profiling 44
4.4 Architecture Specific Considerations oL 44

4.5 GraphDivision 45

4.6 Sequential Performance e 45
Parallel Performance 47
5.1 Parallel Decomposition e e 48
5.2 Threaded Implementation 49
521 WOrkDivision 49
5.2.2 Performance Analysis 49
5.3 Distributed Implementation 53
5.3.1 WorkDivision 54
5.3.2 Performance Analysis e 54
Mining WebSphere Application Server Profiles with FlowGSP g
6.1 Discovery of Previously Known Patterns 57
6.2 Discovery of New Characteristics uu.e.... 58
Related Work 61
7.1 Machine Learning and Compilers e 61
7.1.1 SupervisedLearning e 62
7.1.2 UnsupervisedLearning e 62
72 DataMining 63
7.3 Performance Counters 65

7.4 Enterprise Application Performance 65

List of Tables

2.1
2.2
2.3
2.4

51
5.2
5.3
54
55

Example of path profiling information.
Example of edge profiling information.
Possible path profiling constructed from edge profilafgrimation.
Upper path-profiling bounds based on edge profiling mégon.

Total running time for FlowGSP, in seconds. e
Running times for FlowGSP by generation, in secondstdJInreads
Breakdown of execution time with 8 worker threads. .
Influence of changing gap and window sizes on overallr]alrug)erformance

Execution time for the distributed implementation ad#GSP with/N workers. . .

List of Figures

2.1

3.1

3.2
3.3

3.4

3.5

4.1

51
5.2

Example of a portion of a program CFG. 1

An example of a vertex-weighted, attributed flow grapligé weights are given
along each edge and vertex weights are given next to eaaxvéathe letters in bold

next to a vertex are attributes of thatvertex. 23
The same graph as in figure 3.1 after edge weight and vesstnormalization . . 23
Pathg, = {v1,vs,v7} andpy = {va, v4,v6} CONtaining instances of the sequence
((A), (B),(E)) « o o o e e e e e e 28
Pathgs = {vs,vs} andp, = {v7,vs} containing instances of the candidate se-
quence((E), (C)). . .« o v v o 29
Small example of an Execution Flow Graph (EFG) 35
Example of CFG annotated with edge profiling information. 44
Total speedup as a function of the number of thrééds 51
Speedup for the first through seventh generations ascéidorof the number of
threadsiV. e 52

List Of Acronyms

AGI

AOT

API

BTB

CFG

CPMF

EFG

FDO

JDBC

JEE

JVM

GSP

ISA

JIT

MPI

PDF

SVM

SPEC

TLB

Address—Generation INterloCK 15
ANEad-Of-TIME . . .o e e e 13
Abstract Programming Interface. ... e 18
Branch Transition BUffer e 65
Control FIow Graph e 10
Central Processor Measurement Facility, 16
Execution FIow Graph. 22
Feedback—Directed Optimizationot ooor e 10
Java Database COoNNEeCHiVILYt e e 40
Java Enterprise Edition e 16
Java Virtual Machine 53
Generalized Sequential Pattern 9
Instruction Set ArchiteCture 15
JUSE-IN-TIMIE . L e 10
Message Passing INterface e 18
Profile—Directed Feedback i 13
Support Vector Machine 62
Standard Performance Evaluation Corporationo, 62
Translation Lookaside Buffer 14

Chapter 1

Introduction

Modern optimizing compilers are powerful tools in the putrsd improved program performance.
Ultimately the ability of optimizing compilers to achievead program performance is reliant on
the quality of the optimizations performed. These optirtiares are the result of many person-hours
of hand tuning and investigation [6].

The development of these optimizations is a long processliieependant on the intuition and
skill of the compiler developer. Typically the investigatiof new optimization opportunities starts
with the examination of current program performance. Ont®gportunity has been identified,
the developer can then design and test an optimization. Mt g@rocess from investigation to
implementation can be extremely lengthy.

Typically, performance defects that merit the attentiom @bmpiler designer come in two dis-
tinct forms. The first consists of events that occur infreglyebut incur a large cost. The second
type of defect is that which incurs a modest cost, but occarg frequently. Identification of the
first type of defect is important to program performance drnsl ielatively simple to address. The
second type of performance issue is also important althaugth more difficult to discover.

Hardware performance counters are a common method foratiraduthe performance of ap-
plications. Low-level information such as instruction lsaanisses, Translation Lookaside Buffer
(TLB) misses, and data cache misses can illuminate mangtsspieprogram behavior that may be
potential targets for new optimizations. However, raw kg profiles can be extremely verbose
making the identification of performance defects difficiany optimization opportunities may go
unnoticed simply due to the volume of information that muselamined. If performance defects

in hardware profiles could be identified more rapidly, thew optimizations could be developed at

a much faster pace.

Large enterprise applications, in particular, are an ésaebxample of how difficult it may be
to extract meaningful performance information from hardwaerformance profiles. For example,
the IBM® WebSpher@ Application Server is a Java Enterprise Edition (JEE) quiee server
written in Javd™. A typical Application Server profile consists of thousaofisdividual methods,
no one of which comes remotely close to dominating the totatetion time. Such profiles are
often referred to as “flat” profiles as the histogram of exiecutime per region of code shows few
discernible peaks. Performance improvements are noyltkebe achieved by considering individ-
ual methods; the entirety of the Application Server musten into account when designing code
transformations: a daunting task.

The field of data mining is devoted to the identification oftpats in data sets. An automated
analysis of the hardware profile data may be able to idenéffjopmance issues. In order to accom-

plish this, two goals must be accomplished:

1. Adata structure must be designed to represent the dataiwed in the hardware profile. This

data structure must allow both the frequency and cost ofctefe be identified.

2. An algorithm must be developed to search the data steiéburpatterns that correspond to
performance defects in the profiling data. This algorithredssto rank patterns in accordance

with both their frequency and cost.

Generally, the hardware profiles of enterprise applicatgrch as the WebSph@eApplication
Server are very flat. A profile is referred to as flat if no singlethod accounts for a significant
proportion of the total execution time. In other words, thigtdgram of execution time spent on
each region of code shows no discernible peaks. This clegistat of enterprise application profiles
makes identification of worthwhile performance defectaavmere problematic.

The thesis presented in this document is:

A suitable data mining algorithm should be able able to discpatterns in a flat profile.
Some of these patterns should enable compiler designersdtecnew code transfor-

mations to improve the runtime performance of applications

This thesis presents FlowGSP, a modification of the Gere@bequential Pattern (GSP) algo-
rithm [32], and uses it to perform data mining on an Execuktow Graph (EFG) constructed from

performance-counter data and Control Flow Graph (CFGYinédion extracted from the compiler.

The goal of this system is to aid in the identification of patsein WebSphere-Application profiles
which may be indicative of new opportunities for code transfation.

The main contributions of this thesis are:

e The development of an EFG to model the information containeldardware-profile data.
EFGs contain information that allows for the identificatiohpatterns based on their fre-

quency and on their relative weight.

e The development of FlowGSP, a data-mining algorithm desigin mine EFGs for patterns

corresponding to frequent and/or costly performance defacdardware profiles.

e The development of two parallel implementations of FlowG&Bava: one based on Java
threads for use on multi-core workstations and one baseadkets for use on distributed
systems. These implementations reduce the total exedirienof FlowGSP on WebSphere
Application Server profiles to the point where it is pradtitause FlowGSP in a compiler

development environment.

e A report of the use of FlowGSP to identify performance defésthardware profiles of the

WebSphere Application Server running on the IBM System'24#xchitecture.

Chapter 2 provides background information on the technetogn which FlowGSP is based.
Chapter 3 details the FlowGSP algorithm and Chapter 4 @glits implementation. A parallel im-
plementation and its performance is given in Chapter 5. @&hajlists patterns discovered through
the use of FlowGSP and the performance opportunities erpldy their discovery. Works related

to this thesis are discussed in Chapter 7.

Chapter 2

Background Information

Mining interesting sequences from hardware profiles reguinowledge from multiple disciplines
in computing science. Knowledge of machine learning (dfmadly unsupervised learning and data
mining), compiler architecture, parallel algorithm constion, and low-level system architecture is
required in order to properly address the mining problerris $action briefly outlines background
information that may be needed to understand FlowGSP, jteimentation, and its application to
mining hardware profiles.

Section 2.1 provides a high-level overview of machine lesyriechniques, with emphasis on
data mining. Section 2.2 discusses the difference betwage jgrofiling and path profiling. Hard-
ware performance counters are discussed in Section 2.%5extibn 2.4 discusses specifics of the
IBM System z10 architecture on which the profiles were ctdleéc The WebSphere Application
Server, which is the application studied in this work, iscdssed in Section 2.5. Section 2.6 dis-

cusses measuring the performance of parallel algorithms.

2.1 Machine Learning

Machine learning, or statistical learning, can be definethasise of statistical techniques to auto-
matically extract meaningful information from data. Mawhiearning is divided into two categories:
supervised learning and unsupervised learning. The goalsrethodology of these two types of
machine learning can greatly differ and as such it is impartia differentiate between them.
Unsupervisednachine learning techniques attempt to automaticallyadabels to an unlabeled
data set, for example by finding patterns or identifying @sof similar items [35]. Unsupervised

learning algorithms are not search algorithms. Searchg@mublook for an entry or entries in a data

set that have certain characteristics. Unsupervisedifepisifocused on the discovery of previously
unknown relationships between data points.

Supervisednachine learning attempts to predict labels on unlabeléal d2onstruction of the
predictor requires a labelled “training set” represeméatf the input data. A model is then con-
structed from the training data, and this model is used tdipréhe appropriate label for novel,

unlabeled data [35].

2.1.1 Data Mining

When unsupervised learning is applied to large databasesasfation, the process commonly is
referred to aslata mining

Typically, the type of database on which data mining is penfed has the following characteris-
tics. The database consists of a series of records, eaafghaviumber of attributes. Attributes are
not constrained to any specific type; there can be booleamenia, or string-valued attributes. Itis
not required that each record have values for all possibibates.

A subset of data mining relevant to this workfisquent itemset miningAn itemset, denoted
(v, 9, ...,), CONSists of a set of itemsa; € o, a5 # «j,7 # j, wherea is the set of all
possible items antly] > n. We say that an itemset matches a record in the databaseyfieve
in the itemset is also in the record. In frequent-itemsetimgithe level of interest osupportof an
itemset is proportional to the frequency with which it apisda the database. The goal of frequent-
itemset mining is to discover all itemsets whose supportédatabase is greater than a minimum
threshold.

An extension of frequent itemset mining is associatiom-miining. Association-rule mining
attempts to discover rules of the forth— ~ whereg = (31, ...,5;), 8 € a,1 < i < j and
v =(7,-7) v € o, 1 < i < k. These rules are treated as implications in the databas.iSTh
to say if 3 are present for a record in the database, then the itemaiia also present with a certain
probability. Theconfidenceof an association rule is the percentage of time that theezprent is
also present out of all the times that the antecedent is pre$his can be denoted mathematically
as: freq(Bv)/freq(B). The goal of association-rule mining is to discover all agstion rules with
support greater than a given threshold and confidence gteatea given threshold.

For both frequent-itemset mining and association rule mginthe size of a rule or itemset is
defined to be the number of items contained within it.

The Apriori algorithm developed by Srikaet al. [30] is a frequent association rule mining

algorithm. The Apriori algorithm is so named because it sdabon what the authors call the apriori
principle: in order for a pattern to be frequent, all of itbguatterns must be frequent as well [30].
Apriori searches for all rules up to a given size with a minimsupport and confidence.

Apriori is an iterative generate-and-test algorithm. Thstfiteration is given an initial set of
candidate itemsets consisting of all possible sequencsig®fl. The database is scanned, and the
support and confidence of each itemset is calculated. Angidates that do not meet the minimum
support and confidence thresholds are removed. The caedtdatsets for the next iteration are
generated by joining the surviving items of the previousegation of candidates. This process
continues until either a set number of iterations has beemptaied or no candidates survive the

pruning process.

2.1.2 Frequent-Sequence Mining

An extension of frequent itemset mining fiequent sequence data minjngr frequent sequence
mining. Sequences in frequent sequence mining, dendted,, ..., I,), consist of a series of item-
sets/ as previously defined. Databases mined for frequent seqeersually contain a number of
data sequences, each of which is a totally ordered sequéneeonds. Any itemset discoverable

through frequent itemset mining corresponds to the segu@navhich can be discovered through
frequent-sequence mining. Thus frequent-itemset mirgragsubset of frequent-sequence mining.

A sequenc€ly, I, ...,, I,,) matches a series of recorffs, Ro, ..., R,, if and only if:

e Vael,,ae R;,1<i<n.

e For eachR;,i < n, R; immediately precedeB; .
Many algorithms allow for an additional paramegexhich specifies the maximum distance between
R;, R;11 in a sequence.

The support of a sequence is typically defined to be the nummbdata sequences in which
the sequence appears. Most frequent sequence miningthigerilo not count support for multiple

instances of a sequence in the same data sequences. Coafgleotincluded as a metric of support

unless the algorithm is also mining for association rules.

213 GSP

Our algorithm is based on a frequent-sequence algorithlaccdie Generalized Sequential Pattern

(GSP) algorithm [32]. GSP is an iterative generate-antaigerithm.

INote that this has no connection witpriori or a posteriorireasoning.

GSP does allow for flexibility in how to determine if a sequematches a series of records
by introducing two additional parameters: maximum gap si@aéd maximum window size. The
maximum gap size determines how many vertices may occurdeetit; andR; ;. The maximum
window size determines how many records to consider in anigloen matching each itemset in
a sequence. Formally, a window sizewfmeans that a itemsédtwill match a series of records

Ri,Rit1,...,; RiywifVael,a € RiUR; 11U ...UR;jy.

2.2 Compiler Technology

Hardware profiles are not the only source of information réigg characteristics of a given pro-
gram. Compilers contain detailed representations of thgram being compiled. This information
is used to perform a myriad of code transformations aimeshptaving program performance. Un-
derstanding both the design process for new code transfimmsaand the internal data structures of
the compiler is important if we are to search for patterns &ne of use to compiler developers.

Compilers can be divided into two distinct categories:istampilers and Just-In-Time (JIT), or
dynamic, compilers. Static compilers are the most commamyerting source into native executable
code prior to program execution. JIT compilers run in taneeéth an interpreter or virtual machine,
dynamically compiling sections of the interpreted progtamative code during runtime.

The most relevant aspects of compiler technology for thesithare the representation of pro-
gram flow, the collection of information about the relativecuency of execution of different por-
tions of the program through profiling, and the use of thisiinfation, in a process called Feedback—
Directed Optimization (FDO), to improve the performanceagbrogram. The remainder of this

section discusses these aspects.

2.2.1 Control Flow Graphs (CFGs)

Graphs are ubiquitously used as a way to represent the flowealu6on in a program. Nearly all
optimizing compilers use a graph called CFG to representrthgram being compiled. As the name
suggests, a CFG represents possible flow of control in thgrano.

Formally, a CFG is a grapty = {V, E, F. } defined as follows:
e V/is a set of vertices.
e Eis a set of directed edgés,, v,) wherev,,v, € V.

e F,is afunction mapping edges it to integer values.

10

Vertices inV represent units of execution in the program, usually basicks. Edges indicate
program flow between vertices. The functibnmaps each edgec F to an integer value indicating
the frequency of execution ef A CFG is a flow graph. Therefore the sum of the frequenéies
on the edges leading into any given vertex must be equal teuimeof the frequencies on the edges
leading out of the vertex.

The scope of a CFG is the same as the compilation unit of theibenmhat created it. static
compilers typically analyze a single source file at a timeaAssult, the CFGs constructed by static
compilers consist of multiple single-entry single-exigians corresponding to different procedures
in the source file. JIT compilers typically analyze indivédlumethods in isolation, constructing a

single CFG for each method.

2.2.2 Edge Profiling vs. Path Profiling

Itis important to distinguish edge profiling from path priofg. Edge profiling records only the num-
ber of times that each edge is the CFG was traversed durirggioe. Path profiling records how
many times an entirpathwas executed. The difference between the two forms is Hastrated

with an example.

Figure 2.1: Example of a portion of a program CFG.

Consider the graph presented in Figure 2.1 to be an excermptdmprogram CFG. Consider as an
example that the region of code represented by the CFG ind-R)d is executed five times, taking

the following paths on each execution:
1. A—-B—-D—-F—G
2 A—-C—-D—F—G
3 A—-C—-D—-F—G
4 A—-B—D—F—-G

50 A—-C—D—FEF—G

11

Table 2.1 shows how the above information would be encodedmgh profile. Contrast this

profile with table 2.2 which shows the same information eecbas an edge profile.

Path Freq.
A—-B—-D—-F—(G 2
A—-C—-D—-FE—G 2
A—-C—D—F -G 1
Table 2.1: Example of path profiling information.

Edge | Freq.
A— B 2
A—C
B—D
C—D
D—F
D—F
E—-G
F—-G
Table 2.2: Example of edge profiling information.

WNWNWNW

The edge profiling information shown in Table 2.2 can be caegbdrom the path profiling of
Table 2.1. However, the path profiling information cannodeeived from the edge profiling. For
instance, the path profiling shown in Table 2.3 could resatnfthe same edge profiling information

in Table 2.2.

Path Freq.
A—-B—-D—-FE—G 2
A—-C—D—F—-G 3
Table 2.3: Possible path profiling constructed from edgélprg information.

FlowGSP mines edge profile data for sequences of attribdiess FlowGSP mines an upper
bound for the possible execution of the sequences in thegmg-or example, the upper bound on
path frequencies for the edge profiling of Table 2.2 is givefdble 2.4.

Path profiling is a much more precise representation of pragexecution. Path profiling is
often referred to asacing. However, for large programs, or long periods of executpath profiling
becomes increasingly impractical due to the amount of gespace required. Edge profiling, while

less exact, is much more practical in these circumstances.

2.2.3 Dynamic Optimization

The heuristics that guide most standard compiler codefvanations are based tatic program
information that is to say information that can be obtained by analy#iegprogram source code

or CFG. Unfortunately, static information is insufficieotfully predict a program’s behavior at run

12

Path Freq.
A—-B—-D—FE—G 2
A—-B—D—F—G 2
A—-C—D—FE—-G 2
A—-C—D—F -G 3
Table 2.4: Upper path-profiling bounds based on edge progfitiformation.

time. For this reason it is difficult, if not impossible, toréeve optimal program performance using
code transformations that are based on static informatmrea In order to more accurately model
program behavior, statistics obtained during program @i@e can be used in addition to static in-
formation. Such additional information is calldgnamic informationWhen code transformations
use this information the process is calliyhamic optimizatiod

In addition, dynamic optimization also allows the collectiof edge-frequency information to
add to the CFG of the program being compiled. This collecisanform of edge profiling.

The rest of this section outlines the most common ways thaemmooptimizing compilers collect

runtime data.

Feedback-Directed Optimization

FDO, sometimes referred to as Profile—Directed Feedback)RBfers to the process where col-
lected runtime information from the previous execution @ragram is used to make optimization
decisions about subsequent executions. The dynamic iaf@mrequired to make these optimiza-
tions is usually obtaineda instrumentation hooks (in the case of Ahead-Of-Time (AQImpilers)

or via online instrumentation (in the case of JIT compilers).

For AOT compilers, the data collected by the instrumentatiooks is written to disk after
execution has finished. This data is then fed back into thepdenvia a command line parameter
on subsequent compilations and used to supplement the gtagiram information. This process
is known asStatic Feedback Directed Optimizatias compilation occurs off-lind,e. while the
program is not executing.

JIT compilation runtime data can be utilized while the peogris still being executed. Programs
run under a JIT compiler can be recompiled multiple timesndua single execution run with each
compilation ideally resulting in improved performance ol previous version. As such, programs
run under JIT compilers usually have to execute for a perfdithe before they reach a steady state.
This process is known d3ynamic Feedback Directed Optimizatitmecause compilation occurs

while the program is executing.

2Even though the compiler literature often talks about statit dynamic “optimizations”, in most compiler development
environments the designers implement heuristic-based cadsformations. Often, the “optimal” case is not even defined.

13

Iterative Compilation

If the process of iterative search is applied to the optitidraspace of a program under an AOT
compiler, then the process is known as Iterative Compitai@]. The idea behind iterative com-
pilation is that with each execution and recompilation parfance is improved, even if slightly,
over the previous version. While iterative compilation doesult in very fast code, it does so at the
cost of many recompilations and executions of the targegnara. While this large cost does make
Iterative Compilation unfit for general purpose computitigg technique can still be used for spe-
cialized cases where performance is crucial and it is diffmumpossible to update the application
once it has been deployed. Embedded systems and librangization are fields in which iterative
compilation can provide substantial benefits [18, 6].

JIT compilation does bear some similarities with iteratieenpilation. However, iterative com-
pilation is separate from JIT compilation because iteeattempilation is done offline. Domains
that make frequent use of iterative compilation, such asesgltied systems, are unlikely to use JIT
compilers. In addition, JIT compilers include compilatiime in the program runtime. Iterative

compilation is therefore unattrative from the perspeatiza JIT compiler.

2.3 Performance Counters

Performance counters, or hardware profiling, allow progpariormance at the hardware level to
be recorded. Events such as instruction cache missesjngisélls, and Translation Lookaside
Buffer (TLB) misses to name a few are recorded by specialis¥dware and then made available
to the user. Typically this information is obtained by saimgplthe machine state periodically after
a certain number of CPU cycles. This sampling period vanesaan often be adjusted to suit the
application being profiled.

Typically performance counter data is gathered after ei@tinas finished, however it is also
possible to gather this information while execution is adog through the use of specialized li-
braries [27]. Schneidest. al. develop a custom run-time library to collect hardware ceuitfor-
mation about instruction-cache misses. The work done byp&dhret al. in this area only involves
a small number of performance counters [27]. It is uncleaetvdr the performance overhead of
such libraries would become unmanageable on architectitbsa large number of performance
counters. Determining this overhead, however, is out$idestope of this thesis.

Performance counters are platform-specific entities;jthes of events that are recorded and the

14

manner in which this recording is done varies from architexto architecture.

2.4 z10 Architecture

The z10 is an in-order super-scalar CISC mainframe ardhitedrom IBM [37]. “In-order” refers
to the fact that no hardware reordering of instructions c&cluring execution. The z10 is an it-
erative advancement over the existing ¥@rchitecture [29], which is in turn an evolution of the
s390"M [26].

In modern architectures it takes multiple CPU cycles to dec@repare, and execute even a
single assembly instruction. The z10 is a pipelined machihere, at any given moment, mul-
tiple instructions are at different stages of decoding @cexion in order to increase instruction
throughput. Each core in the z10 has its own associatedipgpelhe z10 pipeline is optimized
so that register-register, register-storage, and stesagage instructions share the same pipeline

latency [37].

2.4.1 Address Generation Interlock

The z10 employs an Address—Generation Interlock (AGI) lpipe AGI pipelines are designed to
avoid hazards introduced by load-use dependencies in strei@tion pipeline [12]. However, this
form of pipeline design introduces another type of hazar@l #talls occur when a memory address
that is required by an instruction has not yet been computezhwhe instruction reaches a certain
stage in the pipeline. The missing address causes exedotistall until the address generation
completes. The hardware cannot let other instructionsga@@head of the blocked instruction
because the z10 is an in-order machine.

There are two common ways to avoid AGI stalls. The first is suea that an address calculation
and corresponding use are spread far enough apart. Thedsisctselect instructions from the
System z10 Instruction Set Architecture (ISA) that areglesil to minimize AGI penalties [37]. In
either case, the onus falls on the compiler to produce caateatioids AGI stalls. Failure to do so

can result in a significant decrease in program performance.

2.4.2 Page Sizes

Most computer architectures transfer data between lomg-¢¢orage, such as hard disks and main

memory, in fixed-length contiguous blocks called pages. gepaormally contains 4 KB of data.

15

IBM System z10 allows for large pages that contain 1 MB of da6}. Large pages are turned off

or onvia a command-line parameter given to the compiler.

2.4.3 Performance Counters on z10

The z10 Central Processor Measurement Facility (CPMF)ded numerous hardware performance
counters. There are two types of counters: sampled coumtergvent-based counters [17]. Sam-
pled counters are, as the name suggests, periodically esdmplhery set number of clock cycles
the architecture is queried, and it's state recorded. Ih&vef interest are in the process of oc-
curring, then the corresponding counters are incremeriigdnt-based counters are automatically
incremented each time the event occurs. Sampled countensire measure of how much time was
spent handling various events, and event-based countexsunechow often these events occurred.
Instructions on the z-series are typically grouped in pairkis often results in performance-
counter information for one of the instructions being agsed with the other and vice versa. While
this clustering of instructions does introduce imprecidito the data, this imprecision is extremely
localized and when taken over a large enough profile shouldigoificantly affect overall trends in

the data.

2.5 WebSphere Application Server

The WebSphere Application Server is a full-featured Javafpnise Edition (JEE) server developed
by IBM and written in Java [1]. A key characteristic of the V¥gihere Application Server that makes
it interesting for study is that execution time is spreadtieély evenly over hundreds of methods.
This even and thin distribution of execution time is a typataaracteristic of enterprise applications
and other middleware. In addition, there are generally ¥@nyloops that are executed during the
processing of a query. Nagpurkeiral. stated that while each method occupies no more than 2% of
total execution time instruction-cache misses make up 122#ial execution time [22]. In addition,

if we want to capture 75% of all instruction-cache misses wstraggregate roughly 750 methods.
Therefore, optimizing any one method is not likely to makégai§icant impact on overall program
performance. Characteristics such as this require progedravior to be examined beyond the scope
of a single method in order to accomplish efficient optimaaof WebSphere Application Server.
At the same time it is impractical to thoroughly optimize tetirety of WebSphere Application
Server due to its size and number of methods. Thus, decisiade about how and what to optimize

must yield as much global benefit as possible whilst keepamgpilation overhead to a minimum.

16

2.5.1 Profiling WAS

WebSphere Application Server is typically run using the IBbbtaross® JIT compiler. For this
reason, and the reasons discussed in Section 2.2.3, it artiamp that when attempting to profile
the Application Server that the proper amount of burn-iretine allowed to pass to ensure that the
majority of the code being executed has been compiled teeeatide. For the purposes of this work,
whenever profiling data is being discussed it is assumedltistata has been collected after the
burn-in period and consists almost entirely of code produmethe JIT compiler. Specific details

about data collection are addressed in Chapter 4.

2.6 Parallel Performance

The typical metric for program performance is raw executiore. However, this measure of per-
formance is insufficient for programs which execute in gatalSpeed is still ultimately the goal;
however the number of parallel components being executedst® be considered as well.

The metric by which the performance of parallel programséssured is how quickly program
execution time decreases as the amount of parallelismisdsed. This is referred to apeedup
a number representing the program’s execution time reldtivthe sequential case. Speedus
calculated as follows:

tparallel
s — paralle

tsequentml
wheretsequential IS the execution time of the sequential version of the atgoriandt,,,q.: is the
execution time of the parallel version of the same algoritivalue ofs > 1 indicates a perfor-

mance improvement over the sequential case, whereas aofalue 1 indicates worse performance.

2.6.1 Linear Speedup

Ideally, if a task is split inta: equal subsections we would expect the work to take the amount of
time,i.e. achieve a speedup of This is referred to anear speedupas the curvepeedup = f(n)
is exactly equal to the ling¢(x) = x.

However, linear speedup is not always obtained in practamaibse some problems cannot be
completely decomposed into parallel portions. Say thatuhaing time of an algorithm takes time
t = p + q, wherep is the amount of time taken to execute the potentially palralbrtion(s) of the
algorithm andy is the amount of time taken to execute the portion(s) of therghm that cannot

be parallelized. The maximum amount of possible speedlgpés even if we have infinite parallel

17

resources to makeinsignificant the algorithm will still take time to execute.

When considering sublinear, linear, or superlinear spegdujs important to consider the fac-
tors that limit performance. In the early days of parallelgramming most applications were bound
by the capacity of the processor to execute instructiongrdfbre, adding a second processor was
expected to reduce the execution time at most by half. That imear speedup was the best that
one could hope for. Sub-linear speedups were explained by Ipad-balancing, communication
and sequencing overhead, contention for common resowetiesSuper-linear speedups typically
indicated an error in the measurement of performance.

However, in contemporary computers, the capacity of thegssor to execute instructions is no
longer the limiting factor for performance. In many applioas the processor is idle for most of the
time. The memory hierarchy and contentions in the netwoeknaore likely to limit performance.
The relationship between the number of processing nodepearfidrmance is no longer linear. In
these architectures, non-linear relations, both sub- apdrdinear, between performance and the

number of processing nodes should be expetted.

2.6.2 Memory Organization

An important factor to consider when discussing parallstesys is the type of memory organization
in use. Typically organization falls into three categarislsared memory, distributed memory, and
distributed-shared memory.

In shared memory, each worker has access to a single, shawedfpmemory. Communication
between workers is usually implicit; one worker will writ@&n area of memory and another worker
will read the same area. Shared memory is typical of threagsgms such gst hr eads or Java
threads.

In distributed memory systems, such as clusters, each werezutes within its own address
space and communication between workers must occur etpli@ihis communication is usually
performed through some external Abstract Programmingfhite (API) such as UNIX or Windows
sockets or Message Passing Interface (MPI). Distributeshong systems are commonly found in
single-processor clusters.

Distributed-shared memory is a hybrid organization whemigs of processors communicate

via messages with processors in other groups. Each group oégmois has access to a common

3An example of a super-linear speedup would be a case wherékepraoes not fit entirely into cache when operating
on a single CPU. Adding a second CPU doubles the amount ofhlaitache so that the problem now fits entirely inside
the combined CPU caches. Alba investigates superlineadapsén the domain of Parallel Evolutionary Algorithms; many
of his conclusions are also relevant to general parallel coimg(3].

18

area of shared memory. Distributed-shared memory is tiypfadusters with multi-core nodes.

19

20

Chapter 3

FlowGSP

The theoretical basis for an algorithm is as important agadtential application. FlowGSP is based
on GSP [32], which is a well-established algorithm for migniinequent sequences in a database.
However, a sequence of records is a poor choice to represagriam control flow. Therefore, in
order to effectively mine program data a new data structurstiine defined to accurately represent
program behavior. Graphs are commonly used to represersttheture of a program in most
compilers, and therefore it makes sense to develop a grapédhdata structure on which mining
can be performed. Such a data structure is introduced incBe:tl.

Once this new data model has been defined it is then necessdefihe how to measure the
support of frequent sequences in this data structure. Theajd-lowGSP is to discover frequent
and/or costly sequences of attributes in an execution flaptyr In the original GSP algorithm,
the support of a sequence was defined as the number of datansegun which the candidate
sequence occurred [32]. Given the motivation behind theldgment of FlowGSP this definition is
insufficient. The traditional definition ignores sequeniteg occur multiple times in the same data
set. In the scope of the execution of a program a sequencedbats multiple times in the same
method is of interest to compiler developers. In additioth®frequency of a sequence, FlowGSP
is also interested in the cost of these sequences. For thasens the definition of support for
a subpath must differ from the classical definition of suppmed by GSP. Section 3.2 defines

support over our new data structure.

21

3.1 Edge and Vertex Weighted Attributed Flow Graphs

While our work was focused on mining hardware profiling dater¢ are many other applications
where mining weighted and attributed flow graphs may be lisghis section formally describes

such a data structure as well as how support values are agddudbr subpaths within it.

3.1.1 Formal Definition

LetG ={V, E, A, F,W} be an Execution Flow Graph (EFG) such that:
e V is a set of vertices.
e Fis asetof edge&,,vp), wherev,, v, € V.

e A(v) — {ay,...,a;} is a function mapping verticasc V to a subset of attributes

{a1,...,ar},a; € a,1 < i < k wherea is the set of all possible attributes

e F(e) — [0,1] is a function assigning a normalized frequency to each edge E. i.e.

ZF(@):L

eckE

e W(v) — [0,1] is a function assigning a normalized weight to each vertex V. i.e.

Z W(v) = 1.

veV
The constraint below holds because G is a flow graph.
Y. Flww)= Y F(v,y)
(z,w0)EE (vo,y)EE

F and W are completely independent quantities. In fact, it is tihidependence on which
FlowGSP is based. Rather than define the importance of a seguaerely by its frequency

FlowGSP also considers the weight of the sequence in questio

Example

Figure 3.1 gives an example of a vertex-weighted attribfited graph witha = {A, B,C, D, E}.
The same graph with edge weights and vertex costs normadizgebn in Figure 3.2. Itis the graph

in Figure 3.2 that will be used as input to the mining algamth

22

Figure 3.1: An example of a vertex-weighted, attributed ftpaph. Edge weights are given along
each edge and vertex weights are given next to each vertexlettrs in bold next to a vertex are
attributes of that vertex.

Figure 3.2: The same graph as in figure 3.1 after edge weightemex cost normalization

23

3.2 Calculating Path Support

A sequence of attributes in an EFG has a direct correspordeitic a subpath in the same graph.
Support metrics are defined in terms of subpaths in the graphuse subpaths are more specific
than sequences. This definition is then generalized to segsef attributes.

In our program representation, sequences correspondjiaeingé or costly subpaths in the graph.
A subpathp;, € G of lengthl is an ordered set dfvertices. The notatiopy[i] refers to the®” vertex
of pi. By definition in order forp;, to be a subpath(p[i], pr[i + 1]) € Eforall 0 < i < g — 2.
The notatiorpy[i : j] refers to the subpath gf, which consists of thé'” to j vertices inclusive,
i<j.

The support of a path, both in terms of its cost of executiahitmfrequency of execution, can

now be defined.

3.2.1 Frequency Support

In GSP, the support of a sequence was defined as the numbetacfatpuences in which the se-
guence appeared. This definition was sufficient becauseg/pleeof database being mined by GSP
typically consisted of a large number of short data sequendewever, multiple occurrences of a
sequence in an EFG should all contribute towards the supgoatsequence. The rationale for this
decision is based on the motivating application of FlowGSprofile is an aggregation over multi-
ple executions of the same region of code. Therefore, to @fdy a single instance of a sequence
per EFG could potentially discard many other executione®bme region. This is not dissimilar to
the methodologies employed in some algorithms that seardhefquent subgraphs [16, 39, 14, 23].

In addition, the data sequences mined by GSP are all totatiogs; they do not have the edge-
weighted topological structure present in EFGs. In GSPh eacurrence of a candidate sequence
is weighted equally. However it does not make sense to agsjgivalent importance to two oc-
currences of a sequence in an EFG with different edge weaghtxdge weights are a measure of
frequency. Therefore the edge weights must also be takeragdount when determining the fre-
guency support of a candidate sequence. Based on the twansediscussed here, the method for
calculating the frequency support for a candidate sequernust be redefined.

The definition of the frequency support of a pathis based on the frequenciésof the edges
that comprisey,,. It can only be assumed that was at most executed the same number of times as
the least-frequent edge in the path.

In order to account for the degenerate case where a pathst®psbnly a single vertex and no

24

edges, the frequency suppéft of a single vertex is defined as follows:

Siw)= Y F((va,v))

(va,V)EE

In general, the frequency support of a paths:
S¢(pi) = min{ F(pi[0]. (1), ... F(pilg — 2], pelg — 1)}

3.2.2 Weight Support

In order to contrast the frequency and weight of a sequenae iE-G an additional metric of support
must be defined to represent the weight of a subpath in the ER&weight of a subpath is based
on the weights of its vertices. The weight support of a pattalsulated as follows:

Sw(pr) = OSI}lSigil{W(pk[j])}

Similarly to the frequency support of a subpath, the maxinwight support of a subpath is

limited by the vertex in the path with the smallest weight.

3.3 Sequences of Attributes

Attributes are the method by which information about eactexeis encoded. Each vertex may
have as many attributes as is needed. The attributes adsmerach vertex will be the items in the
frequent sequences mined by FlowGSP.

Attributes in our representation are binary, taking a valtieither true or false. If a given
attribute «; is true for a vertexy, thenv, has the attributey;. Conversely ifa; is false forv,
thenwv, does not havey;. By convention, attributes whose value is false are simphjtted. This
interpretation leads to an efficient representation in Wwitoly true attributes need to be recorded
for each vertex. This is especially important to reduce tbeage space required to process large
EFGs.

Unfortunately, not all attributes associated with a vedex binary values. Some attributes are
measures of some quantity associated with the vertex, dasomay indicate which of a number
of classes the vertex may belong to.

Attributes that take a numerical value (integer or othegyvase converted to a binary represen-

25

tation by comparison with a set threshold. Multiple thrddeanay also be used in order to separate
the attribute’s values into ranges.

Enumerated attributes that can take one- qgfossible values are representedbynutually-
exclusive binary attributes, wherds a known positive integer.

A sequences = (s, s1, ..., sSk—1) Of lengthk is a sequence df sets of attributes, denoted by
si,0 < i < k. For convenience, theubsequencés;, ..., s;) of S is denoted as$'[i, j],7 < j. If

i = j this subsequence is denoted¥§.

3.3.1 Matching Sequences to Paths

Section 3.3 established how the frequency and weight stgb@r subpatlp;, in an EFGG are
calculated. All that remains in order to calculate the sufspaf a sequencg is to formally establish
how .S maps tg.. Once this has been done, the supports are aggregatedi®ertal;, to determine
the supports of.

A subpath isninimalwith respect to a candidate sequescié both p;[0] andpy.[¢ — 1] contain
part of the candidate sequence, that is to say the first ahddegces in the subpath are not skipped.
Henceforth all subpaths are assumed to be minimal with otgpehe candidate sequence being
examined.

A subpathp,, contains a sequenceif Vs; € S, s; C A(pi[i]). This is a very rigid definition
where each set of attributas € S must occur on thé!” vertex of p,. This definition can be
modified to allow for a more flexible matching. Indeed, thimsamanner of flexible matching was
implemented in GSP by Srikast al. [31]; this flexibility has been extended to fit the context of a
EFG.

It is not required that the entirety of each set of attribitea sequence be contained within
the attributes of a single vertex in the graph. One of therpatars of the mining algorithm is
the maximum windows sizey,, ... Attributes that are observed on any vertices withip,, are
considered to belong to the same set within a sequence. Maxiwindow size can be formally

expressed as follows:

S; € U A(pk[l : l+ w]),O S w S Wmax
vEpy [l:l+w)

The shorthand notatiost € A(px[l : I + w]) will henceforth also refer to the above constraint.

Themaximum gap size,,.. is the maximum allowable distance between two vertices,, €

26

pr Where the following holds:
e v, is the last in a series of vertices that contains a set obat#ss; .
e v, is the first in a series of vertices that contains a set ofaitiess,
e s; andss are consecutive sets of attributesdn

It is implicit in this definition that all of the vertices in ¢hpath between, andv, do not contribute
any attributes ta'.
Formally, we say that a subpath contains a sequencgif and only if the following criteria

hold:
o Vs; €5, € A(pr[l : 1 + w]) where0 < w < Wy
e Vs;,s; € S, wheres;, € A(pi[l : I + w]) ands; € A(pi[m : m + w'])

= pill s L+ w] Nprm:m+w'] =0

—Ifj=i+1thenm =14+ w+ 1+ gwhereg < gmaz

In all cases, the support of a path must take into account every vertex gf regardless of
whether it contributes attributes to the sequence in questihus, for instance, if has the lowest
weight inpy, W (v) still determines the weight support for any sequefia®ntained irp;, even if

v contributes no attributes 8.

3.3.2 Support of a Sequence

Ultimately, it is the support of a sequence over the enticdtyhe EFG being mined that is of
concern. The support & in the entire graph can be calculated by aggregating theostgppver
every subpath that contairts Calculating support in this manner ensures that the highgsport
values are assigned to those sequences that match manytsuloptoe graph and these subpaths
are frequent and/or have high weight.

Given a Sequencs, its frequency and weight supports are calculated by aggiregthe fre-

guency and weight supports of every subpathvhich containss:

51(5) =" 5s(w)
Su(8) =" Sulpr)

27

The mining algorithm is searching for paths in the graph tleatespond to sequences of events
with high frequency and/or large weight. It may also be oéiast to know which sequences have
disproportionate levels of frequency support comparedeilt support or vice-versa. In order to
concisely capture the goals of the mining algorithm two #ddal measures of support are intro-
duced.

Themaximalsupport of a sequencegis:

Sa(S) = max{Sf(S), Sw(5)}

Thedifferentialsupport is:

Sp(5) = 157(5) = Sw(S)|

The rationale behind these definitions is as follows. If onbath of Sy or S, is high, then
it is likely that the sequence will be of interest either hesmit is frequent or because it is costly.
In addition, if there is a large difference betwegpand.S,, then this means that the sequence in

question is either frequent but not costly, or costly butegfient.

Example (continued)

Figure 3.3: Pathg; = {vi,vs3,v7} andpy = {vq,v4, v} coOnNtaining instances of the sequence

((4),(B), (E))

Consider the candidate sequertte= ((A), (B), (E)). Figure 3.3 identifies two pathg; =
{v1,v3,v7},p2 = {va,v4,v6}, cONtaining instances of the sequerfsein the normalized graph

from Figure 3.2. The support of sequertteis calculated as follows:

28

Sf (pl)

St(p2)

Sw (pl)
Sw(p2)

Sw

min{0.21,0.05,0.05} = 0.05
min{0.16,0.06,0.06} = 0.06
0.11

min{0.14,0.06,0.06} = 0.06
min{0.14,0.01,0.14} = 0.01

0.07

Therefore, the total support for the sequefsgas:

Sy = 0.11,Sp = 0.04

Figure 3.4: Pathg; = {vs,vs} andp, = {v7,vs} containing instances of the candidate sequence

((B), (C)).

Now consider the candidate sequerfe = ((£), (C)). Figure 3.4 gives two pathg; =

{vg, vs }, p4 = {v7,vs}, containing instances &,. Note thatp; andp, share a common vertex in

this case. The supports for sequesgeare:

Sf (P1)

St(p2)

min{0.06 + 0.10,0.16} = 0.16

min{0.05,0.05} = 0.05

29

Sy = =021

Su(p1) = min{0.13,0.18} =0.13
Sw(pz) = min{0.25,0.18} = 0.18
S, = 031

Therefore, the total support for the sequefgés:

Sv =0.31,5p =0.10

3.4 FlowGSP

This section presents FlowGSP, an algorithm for mining eaqgas of attributes with either high
frequency or high cost. Pseudo-code for FlowGSP is predemtgorithm 1.

The parameters to FlowGSP are an EFG G, as defined in Seclipthd8. maximum gap size
Gmaz, the maximum window size,, ..., the number of generations to iteratg.,,, the threshold for
maximal supporsSainresh, and the threshold for differential supp®&ib p-csh -

The graphG need not be the entire EFG that is being mined. The actuahdoape mined may
be subdivided into independent single-entry single-eagfians and FlowGSP may be applied to
each region individually. Support for each candidate i thggregated over all regions. Currently,
inter-region sequences are not considered because a Jidileosompiles individual methods in
isolation.

EFGs may contain cycles. In order to prevent traversing thptginfinitely around a cycle, a
list of previously visited vertices is maintained. Childréhat appear on this list are not added to
the queue of vertices. This restriction does not preventibeovery of sequences that occur across
loops in the graph; the list only ensures that FlowGSP stadking for a matching path exactly
once at each vertex.

FlowGSP uses a hash tréé in order to reduce the number of candidate sequences that be
examined at each vertex. The creation of the hash ifeend the process of fetching candidate
sequences from it is derived from the process describedkar8et.al.[32]. Candidates are added
to the hash tree by hashing on each attribute in the sequiencgler. The retrieval of candidates

from a node in the hash tree depends on the position of theindbe tree:

e root node: Move to the next node in the tree by hashing on each attriduteaad any vertex

30

Algorithm 1: FlowGSP

FlOWGSPG1 Imazr Wmazx, Ngens SMthresh SDthresh)
1: Gy < Create_First_Generation(a)
2:n«+—1
3: while G, # 0 An < nge, do

4. H « Create_Hash Tree(G,)
5. wvg < First vertex inG
6: Q.push(vg)
7: alreadySeen — ()
8: while Q # () do
o v Q.pop()
10: alreadySeen <« alreadySeen U v
11 C «— H.get_candidates(v)
12: for S € C'do
13: supports — Find_Paths(S,v, 0, true, gmaz, Wmax)
14: for (Sw, Sy) € supports do
15: Sw(S) — Sw(S) + Sy
16: S¢(S) «— Sf(S) + min{Sy, S¢(v)}
17: end for
18: end for
19: for v’ € children(v) do
20: if v/ ¢ alreadySeen then
21 Q.push(v’)
22: end if
23 end for

24: end while
25. for Sed, do

26: if Sar(S) < sarthresh A Sp(S) < Spihresn then
27: Gp,—Gp\ S

28: end if

29: end for

300 if n < nge, — 1then

31 Gny1 — Make_Next_Gen(G,)

322 endif

33 n«+—n+1

34: end while

31

within w,,,., from v. Pass along the set of attributes that we have not yet hashed o

e interior node: Move to the next node in the tree by hashing on each of the renggattributes
passed in. If none remain, add the attributes of the nexéxrtices to the set of attributes

and continue.

¢ leaf node: Return all candidates present on the leaf node.

Rather than hashing on the attributes of all data items witima stamp in the given window,
FlowGSP hashes on the attributes of the current vertex aall it descendants that fit within the
specified window size. For instance, foy,,.. = 0, H.get_candidates(v) in Line 11 of Algorithm 1
would return all sequences that start with an attribute@ated with vertex.

The rest of this section outlines the FlowGSP algorithm imeratetail.

3.4.1 Creation of Initial Generation

Create_First_Generation takes the set of all possible attributes and returns a sedrafidates,
where each candidate contains one of the possible attsilaunté there exists a candidate for every

attribute. Formally, this can be expressed as:

G1 = Create_First_Generation(«)

where the following two constraints hold:

Gi = {{())]ei € a}

VO(Z‘ € o, <(al)> c Gl

For example, suppose= {4, B,C, D, E}. Theresult of callin@’reate_First_Generation(c)

would be:

G = {((4)), ((B)), (O, (D)), {(E))}

Both the weight support and frequency support of each segueme initialized to zero. For instance,

in this example:

3.4.2 Matching Path Discovery

To discover all subpaths that contain a candidate sequeft@vGSP employs the following strat-
egy. Each vertex in the graph is considered as a potential starting point feulgpathp, that
contains a candidate sequenge The search for the subpath is conducted through a depth-firs
search starting at.

subpaths are found in a greedy fashion. That is, FlowGSRIsesifor the shortest subpath
pr that matches the given sequertestarting at the current vertey. FlowGSP does not include
support from a subpath,, if there exists a subpath,, such that:p,, C p,, p. andp, both
containS, andp,, andp,, share the same initial vertex. Consider again the exampleepted in
Section 3.3.1. The sequen¢ed), (D)) is contained in two minimal subpathg;,, = {v., v}
andp,, = {va, v, v.} With v, not contributing any attributes. In this case FlowGSP waurity
return the subpath,, because it is the shortest. The rationale behind this decisithat any longer
subpath which also contairfshas at most the same support as the shorter subpathargument
for including the supports gf,, while calculating supports fa$ is thatp,, is capturing the event
where attributed is observed, then attribute is observed twice in succession. However this event
will be captured by the sequen¢ed), (B), (B)) that will be mined in a later iteration. Therefore,
given a starting vertex, FlIowGSP finds only the shortest path(s) that contains thegticandidate
that start av.

Algorithms 2 and 3 outlind"ind_Paths and Find_Set, respectively, which conduct the depth-
first search for a subpath that matches a candidate sequétiod.Set searches for the next set
of attributes in the candidate sequence given the curremiow Sizew,, ... Find_Paths then
searches for the starting point of the next set of attributéise sequence within the given maximum
gap Sizey,,q.. Both Find_Paths and Find_Set return a set of support tuples. Each tuple in this
set is formed by a weight suppdt, and a frequency suppast;.

Find_Paths and Find_Set are mutually recursive. AfteF'ind_Set finds a set of attributes,
it calls Find_Paths to find the rest of the sequencéind_Paths in turn calls Find_Set to find
the next set of attributes in the sequence. After the ini@dllto F'ind_Paths returns, the.S,,, Sy)
values are added to the frequency and weight suppat @he recursion betweehind_Path and
Find_Set is guaranteed to terminate. The search for a subpath thahewa sequencewill stop
when either the sequence has been found, or when the maximprargl maximum window size

has been exhausted and no matching subpath has been fowgrdfora the search is guaranteed to

1This invariant holds because the frequency and weight stgpee based on the edge with the lowest frequency or the
vertex with the lowest weight respectively.

33

terminate in a finite amount of time becausg .., gm..,» and the size of are all constant.

Find_Paths takes a parametet.......», indicating the remaining size of gap that may occur in
the current sequence. Hind_Set returns) andg,emain = 0, thenFind_Paths returns an empty
set. Similarly,Find_Set has a parameten,.....;, that determines how many edges the algorithm
should traverse from the current vertex to find all the aftés that belong to the current set of
attributes. Ifw,cmain = 0, thenFind_Set will return () instead of investigating further vertices.

Find_Paths also takes a boolean paramefeérstSet which is set to true if and only ifind_Paths
is searching for the start of the sequence. This parameitsaolely for the purpose of passing this
information toFind_Set.

The initial call to Find_Paths in algorithm 1 is given zero as the remaining gap regardless
of the value ofg,,,..., to ensure that the first set of attributes in the sequences sta that vertex.
Therefore the subpath found is minintal.

Find_Set returns aSy value of infinity if there are no more itemsets left to findSn This
value of Sy is assigned on Line 5 of Algorithm 3. Infinite support indesthatFind_Set has not
traversed any edges in order to find the current set of atésburherefore, there is no meaningful
value to return fotSy. The Sy of the entire path is calculated by taking the minimum betwibe
new value and a previously computed value. Therefore, misgjga value of infinity ensures that
this new value will not alter the previously calculated \eabf Sy.

Find_Set takes two parameters that together represent the set ifutgts the algorithm is
searching fors,. s, contains the attributes that we have yet to find, apgl,,.q contains the attributes
that were previously located. On the initial call ¥ond_Set from Find_Path, s;.f; contains the
entire set of attributes and,ynqa = 0.

Find_Set also takes two boolean parametefs;stSet and startO f FirstSet. firstSet is
set to true if and only ifFind_Set is looking for the first set of attributes in the sequence, and
startO f FirstSet is true if and only if Find_Set is searching for the start of the first set of at-
tributes. The rationale behind these parameters is asv®llo

firstSetisusedon line 21 to ensure that we find the shortest sequénedioes which matches
the current sequence. If the current vertex contains al@fttributes previously found on the first
set of a sequence then the subpath being explored is not alinithereforefirstSet returns the
empty set. The shorter subpath will be discovered on a futali¢o F'ind_Paths.

startO f FirstSet is required on line 18 to ensure that we do not allow a verteixlvdoes not

2No steps need to be taken to ensure fhdyy — 1] (i.e. the last vertex on the path) contributes to the sequencaibeca
the search for a matching path terminates at this point

34

contribute to the first item set to occur at the start of thepsitin

Algorithm 2 : Algorithm to find all paths that contain a sequeritstarting at a vertex.

Find—PathS(S, U, gremain fZ"I’StSet, Imax, wmu,ac)

1:
. if supports # () then

e
QO kR whRO

© XN RN

supports «— Find_Set(S]0],0,5,v, Wnaz, firstSet, firstSet, gmaz, Wmaz)

returnsupports

- end if

if 9remain < 0 then
return()
end if

. for v € children(v) do

supports’ — Find_Paths(S,v', gremain — 1, false, Gmaz, Wmaz)
for (Sy,Sf) € supports’ do
Sy — min{S,,, W(v)}
Sy — min{Sy, P((v,0"))}
supports «— supports U {(Sw, S¢)}
end for
returnsupports

: end for

Example

Figure 3.5 gives a small example of an EFG to illustrate thebior of Find_Path and Find_Set.

For this EFGa = {A, B}, Imax = 0, andwmax =0.

0.125

Figure 3.5: Small example of an EFG

Consider thatFlowGSP has reached the vertax. Hashing on the attributes contained in

A(vy), the candidates that could potentially start@nin generationGs are S; = ((4), (A)),

Sy = ((4),(B)), andSs = ((4, B)). FlowGS P then makes the following calls tBind_Paths:

e Find_Paths(S1,vs,0,true,0,0). Find_Paths immediately calls:

35

Algorithm 3: Algorithm to find the next set of attributes in the sequence.

Find_Set(sicft, Sfound, S5V, Wremain, firstSet, startO f FirstSet, gmaz, Wmaz)
1: supports «— ()
2. k— |S]
3: if s1e50 € A(v) then
4: if k=1then

5: supports = {(W(v),c0)}
6: returnsupports
7. endif
8. for v’ € children(v) do
9 supports’ — Find_Paths(S[1,k — 1],vV', gmaz, false, gmazs Wmaz)
10: for (Sw,Sf) € supports’ do
11 Sy — min{S,, W(v)}
12: St «— min{Sy, F((v,v"))}
13: supports = supports U {(Sw, Sf)}
14 end for
15: end for
16: returnsupports
17: else
18: if startOfFirstSet A A(v) N siepe = 0 then
19: return()
20: end if
21: if firstSet A sjouna C A(v) then
22: return(
23: endif
24: if Wremain < 0then
25: return()
26: endif

27: Sleft < Sleft \ A(’U)
28: Sfound “ Sfound U (A(U) N Sleft)
29: for v’ € children(v) do

30: supports’ «— Find_Set(sieft, S founds S, V' Wremain — 1, firstSet, false, gmaz: Wmaz)
31: for (Sw,Sy) € supports’ do

32: Sy — min{S,, W(v)}

33 Sy« min{Sy, F((v,v"))}

34: supports « supports U {(Sw,Sf)}

35: end for

36: end for

37: returnsupports

38: end if

36

— Find_Set({A},0, 51, v2,0, true, true, 0,0). S1[0] = A and therefore5;[0] C A(vs).
Find_Paths is called to search fos [1] starting with the children ofs.
* Find_Paths(S1[1],v1,0, false,0,0). Find_Paths immediately calls:
- Find_Set({A}, 0, S1[1],v1,0, false, false,0,0). Si[1] = A and therefore
Si[1] € A(v1). Find_Set returns the tuplé0.4, co) becausés; [1]| = 1 and
therefore we have found the entire sequence.

Find_Set returned a non-empty set, therefdrénd_Paths returns the same set.
Find_Set setsS,, = min{0.4,0.4} = 0.4 andS; = min{o0,0.125} = 0.125.
(0.4,0.125) is added to the set of support tuples.

Find_Set now callsFind_Paths to search the next child af,.
x Find_Paths(S1[1],v3,0, false,0,0). Find_Paths immediately calls:
- Find_Set({A}, 0, S1[1],vs,0, false, false,0,0). A(vs) = B, and therefore
S1[1] € A(vs). Find_Set. Find_Set returns)) becausev, ¢iain = 0.

Find_Paths also returng) becausd-ind_Set returned) andg,cmain = 0.

Find_Set returns the supports accumulated thus far because all afhitgren of vy

have been explored.

Find_Paths returns the set of supports returned Bynd_Set. These supports are added to

the support values df; .

FlowGS P then repeats the above procedure, callitigd_Paths for S; andSs.
In this example, the role af'ind_Paths is diminished becausg,,.. = 0. If g4 > 0 then
Find_Paths would explore children of the current vertex in the event fiand_Set returns). This

exploration continues until the maximum gap size has beachesl.

3.4.3 Candidate Generation

The creation of new candidates prior to the start of the nesdtion byM ake_Next_Gen is handled
exactly as in Srikangt al. [32]. A brief description is included here.

New candidates are created by joining compatible candidatthe current generation. Candi-
dates are defined as compatible if thdfixof the first candidate is equal to tpeefix of the second.
The suffix of a sequence is created by removing the éitstbute from the sequence. Note that
this is very different from removing the first set of attribatfrom the sequence. For example, the

suffix of the sequencg A, B), (C)) is ((B)(C)). The prefix of a sequence is likewise formed by

37

removing the last attribute of the sequence. The prefi df B), (C)) is ((4, B)). A prefix and
suffix are defined to be equal if and only if they are identi€alr instance, the suffid B), (C)) and
the prefix((B, C')) are not equal as they are similar, but not identical.

By this rule, the sequenceésA, B), (C)) and((B), (C), (D)) are compatible to be joined be-
causeuffix(((4, B), (C))) = ((B), (C)) = prefix({(B), (C), (D))). The sequences A, B), (C))
and((A4, B), (D)) are not compatible as the suffix of the first sequericB), (C)), is not equal to
the prefix of the second sequen¢ed, B)).

To join candidates, the attribute removed to create thexpoéthe second sequence is appended
to the first sequence. JoinigA, B), (C)) and((B), (C), (D)) yields the sequendgA, B), (C), (D)).
Similarly, joining ((A, B), (C)) with ((B), (C, D)) yields((A, B), (C, D)).

The lone exception to this rule is when two sequences witl oné attribute are being joined
because both the suffix and the prefix are empty. In this chegetmoved attribute must be added
both as part of the last set of attributes and as part of a newfstributes. Joining(A)) with
((B)), for example, yields the sequencdgsl, B)) and((A), (B)).

The rationale behind this method of candidate generatitmasly generate candidates that have
the potential to meet the minimum support requirements. querce cannot have higher support
than any individual subsequence [32]. Candidate sequemeagenerated in this manner in order to

avoid the creation of sequences that cannot have suppattegtban the given threshold.

Final Comments

This Chapter defined an execution flow graph: a data struthatemodels topologically-ordered,
attributed data with weights for both frequency and costthiithis data structure, the support
of subpaths was defined both in terms of their frequency aeid tiost. Using this data structure,
maximal and differential support were defined. This enahketb construct a data mining algorithm
that can search for frequent and/or costly sequences in @ EF

FlowGSP was also formally defined to search for all sequetttsoccur with maximal or
differential support greater than a given threshold. Dés@mn can now turn to the application of

FlowGSP to the problem of mining frequent sequences frordvarre profiles.

38

Chapter 4

Implementation

Now that FlowGSP has been established its application toSplkére Application Server profiles
can be discussed.

Section 2.2.1 discussed CFGs and how they are used to maxfglpr behavior. However,
CFGs usually only encode information such as edge or blagkuncy. Frequency information is
usually sufficient for making code transformation decisiodowever, there is a wealth of informa-
tion about the behavior of a program that is not captured b@<F

Hardware profiles are rich with low-level details about whedurred during program execution.
However, profile information is typically unstructured acdntains no control-flow information.
Each method in the profile merely contains a list of instiutdi, the sampling ticks incurred on each
instruction, and any associated hardware-counter infdomaCombining this detailed, low level,
information with the high-level control flow information ihe CFG creates a reasonably accurate
model of program execution that can then be mined.

The general philosophy behind the implementation of FlowGsSthat the algorithm must be
correct first, and then efficient. While a number of optimiaas were required in order to ensure
that FlowGSP was able to operate entirely in main memorygXample, there was not an extensive
amount of time spent optimizing small details of the alduorit

The platform for this research is a cluster of 16 nodes, eadk being equipped with dual quad-
core AMD 2350 CPUs with 8GB of RAM. The database containirgggfofiling data is hosted on a
separate machine running a dual-core AMD CPU with 2GB of RANE database server is running
the express edition of IBM’s DB® database server.

All profiles were collected using WebSphere Applicationvger6.1, 64-bit edition running on

39

the IBM System z1®Marchitecture running Linux for Systent .

FlowGSP is implemented in Java due to its portability, robseading capabilities (discussed
in chapter 5), and mature database interaction capabithi®ugh the Java Database Connectivity
(JDBC) libraries.

Sections 4.1 and 4.2 discuss the collection and storagefafmation required to construct
the EFG. Section 4.3 discusses the actual constructioneoEHG. Section 4.3.1 discusses the
specific attributes used in mining z10 profiles. Considerstispecific to this experimental setup are

discussed in Section 4.4. Section 4.5 discusses divisitimedEFG for mining purposes.

4.1 Data Collection

This experimental evaluation of FlowGSP uses a WebSphepdidgtion Server profile collected
over five minutes. This profile is collected after the Applica Server reaches a steady state because
it is the code which has already been natively compiled byltfievhich is of interest. WebSphere
Application Server is deemed to be in a steady state whenghput shows little to no discernible
change for a period of two minutes. An average hardware prpfdduces 450 MB of uncompressed
data, and the compiler log produces roughly 6 GB of data.cAltfin many compiler attributes could
be derived from the log, the focus is on CFG information.

Five minutes was the longest profile that could be collecflde amount of hard disk space
required to collect the profiling data is much larger than46@ MB required to store the resulting
profile. Also significant is the amount of hard drive spaceinegl to output the compiler logGiven
the amount of available disk space on the z10 machine usélddee experiments, five minutes was
the longest profile that could be collected. Given additiatisk space, there is no reason that a
longer profile could not be collected.

Many profiles were collected while developing and testing\kbSP. Profiles were collected to
test different compiler configurations and hardware pruajifieatures.

Only slight modifications to the IBM Testarossa JIT compilere required for our experiments.
An annotation was added to each instruction in the compatgtd allow the instruction to be mapped

back to its basic block.

1At the time of writing, the IBM Testarossa JIT compiler was noleato output logs in compressed format.

40

4.2 Data Storage

The profile data and CFG data to be mined is stored in a reldtitaiabase. Population of hardware-
profile information in the database was done using an indntad provided by IBM. CFG informa-
tion is read from the compiler logs and added to the databasining the profiling information.
A relational database allows easier access to arbitratjossf the graph at the cost of some in-
creased post-processing. Therefore, in order to allow #isg subdivision of work, a database is
more desirable than alternative formats such as a flat text fil

The information in the database is organized into the fdlowables:

Symbol: The symbol table contains a record for each method (or synibtie profile.

Disassm: The disassm table contains the raw assembly code from eatttodigymbol. This
table includes information such as the instruction opcogerands, and the offset in bytes of the
instruction from the beginning of the method.

IA: The Instruction Address (IA) table contains the actual prafinformation collected during
execution.

Listing: The listing table contains information gleaned from thduded compiler logs. This
information includes which bytecode and basic block asdediwith each instruction.

CFGNode: The CFGNode table contains information pertaining to bakicks extracted from
the compiler logs. The number, associated symbol, and émexyuof each block is recorded.

CFGEdge: The CFGEdge table records all information about intersbkick edges. The type
(in, out, exception-in, or exception-out), source bloastihation block, and frequency of each edge
is recorded.

In order to reduce storage requirements only edges betwascrblocks are stored. Intra-basic
block edges are inferred based on instruction offset. Asdtearlier, many Application Server pro-
files were collected. The most up to date profile contains88®individual assembly instructions,
30,430 basic blocks, and 44,178 inter-basic block edges.

Most database servers enforce strict levels of isolatioenture that queries remain indepen-
dent? This isolation results in slower database performancesgdquired to ensure absolute cor-
rectness in the presence of multiple connections. Howewest levels of query isolation assume
that data is both being written and read to the database.ipduttoncurrent queries cannot affect
each other’s results because FlowGSP only reads informiibmn the database. Therefore, the level

of query isolation can be reduced to the lowest possiblengdti order to improve performance.

2The level of query isolation in a database management serfezs te how each query obtains locks on portions of the
database to ensure the atomicity and reproducibility of ¢éctsaction.

41

4.3 Construction of Execution Flow Graphs from Profiling Data

This section explains how an EFG is constructed from theimétion contained in the compiler log
and the hardware profile.

The assembly instruction is the unit of execution used irgtlagh. Therefore a vertex is created
for each assembly instruction in the profile. Instructiorithim the same basic block are connected
into a path according to their offsets and the frequency ohestlge is set to the frequency of the
basic block. The vertices at the end of each basic block aneemed to the first vertices of all
subsequent basic blocks as determined by edges in the CrGrefuency of these edges is set to
the frequency of the corresponding edges in the control fiaply

The weight of each vertex is equal to the number of samploigiincurred on the corresponding
assembly instruction. The attributes of a vertex are theébates associated with the assembly
instruction the vertex represents. In the most recent profie maximum number of attributes
observed on any given vertex was 70, with an average of Tiugts per vertex. A detailed list of
possible attributes is given in Section 4.3.1.

Raw edge frequencies and vertex weights may be of differagnitudes. Thus, in order to di-
rectly compare frequency and weight, both quantities armatized. Edge frequencies are normal-
ized with respect to the sum of all edge frequencies in thptgrand vertex weights are normalized
with respect to the sum of all vertex weights.

During execution, data for each method is fetched indepghdand used to build a single-entry
single-exit EFG. This method-based construction allowegtaph to be easily partitioned as may be
required for a parallel implementation. Construction @& graph in this format is efficient because

profile data in the database is indexed by unique method id.

4.3.1 Attributes

The majority of hardware counters were directly convertad attributes. This conversion was
done by thresholding against the value zero because cswareinteger-valued. In other words, an
attribute representing a counter is present on a vertey ifieks were recorded for the corresponding
instruction.

A main goal in the development of FlowGSP is the discoveryatfgins that lead to the develop-
ment of new code transformations. In light of this goal, acmimformation as possible is included
in the EFG. An abundance of information may lead to the disgpef false positives,e. patterns

that are identified as being of interest but from which no nededransformations can be developed.

42

The occasional discovery of false positives is preferabfaiting to discover a sequence of genuine
interest. If some hardware counters proved to be of littke afer further study they are removed.

As an example, there are many counters representing chisituations that are not deemed to be
of interest. These counters were initially included astaites, however early experiments revealed
that they provided little new information about the progrdrherefore, they were dropped from the

list of attributes. Other attributes were removed aftey theved to be too ubiquitous to be useful;

an attribute that appears on nearly every vertex is of liske when attempting to identify interesting

patterns in the data because it tends to occur in nearly sespyence.

Attributes are encoded as integer values on each node amdtektable is used to look up the
actual names of the attributes if required. Integer consparis significantly cheaper than string
comparison. Moreover, storing attributes as strings wtadd to both an increase in required mem-
ory as well as an increase in computation time because the BEBg mined consist of thousands
of nodes.

Not all attributes are based purely on counter informatsmme are calculated based on other
attributes of the instruction. The prologue of a method itul sutomatically inserted by the com-
piler prior to the actual method code. The prologue is resimba for setting up the environment
in which the method operates. For example, to manipulatestdiek pointer appropriately. If the
offset is below a given threshold, the instruction is detasd to be part of the method prologue
and assigned ther ol ogue attribute. Whether or not an instruction is in the prologuefimterest
because the prologue of a method is more likely to incur caalsses if the call to the method was
not predicted correctly.

Similarly theJI Tt ar get attribute is assigned to an instruction if it is the entrymaf the
method when it is called from JITted code. This entry poifiteds from the entry point executed
when the method is called from interpreted code. This aitteilis of interest because it can help
to determine performance differences when methods aredcitbm native code versus interpreted
code.

Some attributes are not integer-valued; rather they takenenof a finite number of discrete
values. For instance, thgcode attribute is the opcode of the current instruction (Storead,
Branch, etc.). Such attributes are of interest becausdiththe hardware events with the instruction
being executed at the time. Thel i neLvl attribute is the inlining level of the current instruction.
An instruction from an inlined method will have an inliningviel of 1, an instruction from a method
inlined within an inlined method will have an inlining levef 2, and so on. If the instruction was

not inlined from any other method then this attribute is mespnt. This attribute is relevant because

43

excessive inlining may cause performance degradation.

4.3.2 Consequences of Edge Profiling

The CFG used to create the EFG only contains frequenciesdoridnal edges. As such the CFG,
and consequently the resulting EFG, is a form of edge prdfilitherefore, onlypossiblesequences

of attributes can be discovered.

Figure 4.1: Example of CFG annotated with edge profilingrimfation.

Consider again the example presented in Section 2.2.Hustrated in Figure 4.1. According
to the edge profiling information it could be inferred thae tpathA — B — D — EF — G
was executed twice because every edge on the path was ekéeotémes. However, if the path
profiling information is examined it is discovered that tlalpA — B — D — E — G was never
actually executed. Unfortunately without path-profilimjarmation it is impossible to determine
whether or not a path in the graph was executed with absodutaiaty.

Therefore, within the limitations of edge profiling the b#sit can be expected is the identifi-
cation ofpossiblesequences of attributes in the EFG. The potential sevefrityi®issue is directly
related to the number of junctions crossed by the sequereeeistion. Therefore shorter sequences,
which should statistically cross fewer junctions, willdll not be as significantly effected. By keep-
ing the number of generations reasonable, and therefoderlyth of sequences, error due to edge

profile inaccuracy can be controlled.

4.4 Architecture Specific Considerations

As mentioned in Section 2.4, instructions on the System z&Qyeouped in pairs, introducing a

small amount of noise into the profiling data. To compensatéhiis, most runs of FlowGSP are run

44

with w,,.. = 1. The idea behind this decision is that the vertices reptagpmstructions in the
same pair are grouped into the same series of vertices. dssilge that this strategy could backfire,
i.e. instructions not in the same grouping could end up in the ssenies of vertices. However,
statistically speaking the odds of this occurring are thmesas instructions from the same grouping

being associated. Therefore the amount of additional inigien introduced is likely to be minimal.

4.5 Graph Division

As JIT compilers make most of their optimization decisioamintra-method scope, it makes sense
that the patterns most interesting to JIT compiler deve®p®uld be those that occur wholly within
methods. For this reason, FlowGSP mines each method as epeindent graph. As discussed in

Section 5.1, this is also a natural way of decomposing thbleno into sub-problems.

4.6 Sequential Performance

As will be outlined in Chapter 5, while sequential perforroamf FlowGSP is not excruciatingly

slow, in order for FlowGSP to be a useful tool in a compilerelepment shop the execution time

must be reduced well beyond its current time of almost sixfitmmine a five-minute profile.
Given the previously discussed independent nature of tl@ fBduced by WebSphere Appli-

cation Server profiles, a parallel implementation may bexaeleent way of increasing throughput.

Final Remarks

Chapter 3 introduced EFGs and showed that they are a usefeiiste for data mining. This chapter
described how to practically construct an EFG using hardweofiling data and information from
the CFG from compiler logs. This chapter also defined a settobates suitable for representing

the types of events found in System z10 hardware profiles.

45

46

Chapter 5

Parallel Performance

Data mining is a computationally intensive problem. It caketmany hours of CPU time to mine
for all frequent or heavily weighted sequences in an EFGe@afly if the number of attributes is
large. Given that FlowGSP is intended as an aid to compilegldpers, decreasing the turnaround
time between runs would greatly increase the algorithmilityuis a tool. Given the inherently
parallel nature of the EFGs created from WebSphere Apicaferver profile data, a parallel
implementation of FlowGSP may very well accomplish thislgoa

When deciding to parallelize an algorithm, it is importantemember that the amount of poten-
tial parallelism is limited by the portion of the algorithmhigh must be executed sequentially. For
example, if 10% of the running time of an algorithm is spertdde that cannot be parallelized, then
the maximum possible speedup given infinite resources isfaliGpeedup. For FlowGSP, there is
no single portion of the algorithm whighustbe executed sequentially. There are, however, regions
for which the overhead caused by work division and resouocgention out-weighs the benefits
of parallelization. Fortunately these regions occupy allspwation of the total execution time and
therefore the potential for parallelism is great.

Both a multi-threaded shared memory implementation andliigtedprocessor distributed mem-
ory system are presented. These two implementations amdiad to leverage the common parallel
architectures in use today. The distributed implemematcaimed at high-performance comput-
ing clusters that operate on a distributed memory model. threaded implementation is aimed
at workstations with multiple-core CPUs operating undehaed memory model. While clusters
are the dominant platform for high-performance computimgrkstations with 8 or more cores are

becoming increasingly common. The opportunities presdyenulti-core architectures should not

47

be overlooked.
Section 5.1 discusses the decomposition of FlowGSP intallphsubproblems. Section 5.2

discusses the threaded implementation and Section 5.3sdiss the distributed implementation.

5.1 Parallel Decomposition

Prior to discussion of the two implementations, it is impottto analyze how FlowGSP can be
effectively partitioned into parallel subproblems. A peoparallel implementation of an algorithm
is of little use if the underlying data can not be properlyididd into parallelizable units of work.

Each iteration of FlowGSP can be broken down into the foltmpsteps:

1. Find all instances of candidate sequences in the graplealodlate the support of each in-

stance.
2. Prune all candidate sequences that hayeand.Sp below the minimum support threshold.

3. Create the next generation of candidate sequences.

Step 1 is the most likely candidate for parallelization. dt@unts for the majority of execution
time and is easily decomposed. In fact, it is possible to ogmse step 1 in a number of ways
depending on the graph being mined. On one hand, work coudd/ltked by assigning each worker
a subset of the single-entry single-exit regions in the lyraach corresponding to a method in the
profile. Work could also be divided by assigning each workeulaset of the current generation of
candidate sequences.

Steps 2 and 3 could also be potentially parallelized. Howeagindicated later in this chapter,
these steps occupy a small portion of total execution tinmerdfore the benefit to optimizing these
steps is unclear.

Step 3 was not parallelized for either of the implementatiolhe decision not to parallelize
candidate generation was made primarily due to the amouctminunication that would be re-
quired to distribute the work and collect the results. Aé tandidates would need to be distributed
to all of the worker threads because all possible pairs oflicate sequences must be checked for
join compatibility. In addition, for later generations ethumber of candidates generated could be
potentially large. Aggregating the resulting lists of nemndidates from all of the worker threads
is also likely to be expensive. Furthermore, candidate igaioe occupies a small portion of exe-
cution time. For these reasons, the overhead of work digioib and result collection would likely

outweigh the benefits of parallelization.

48

5.2 Threaded Implementation

This section presents a multi-threaded implementationaf&SP. This implementation is designed
to leverage the popular trend towards increased use of-carii CPUs in workstations and personal
computers.

For the threaded implementation, work is divided by assig®iach thread a subset of the meth-
ods to mine. Each thread searches for instances of all ofutrerd candidate sequences within
the methods assigned to it. To ensure that only one threadp#ate the support of a sequence at
a time, the updating of support values for the candidateanslled via the Javaynchr oni zed
primitive.

Work is assigned to the worker threads by a single masteadhtet is also in charge of pruning
candidates with inadequate support and of calculating ke generation of candidates. For the
threaded implementation neither of these operations a@l@lized. Pruning is not parallelized
due to the simplicity of the operation and to the extremely percentage of total execution time it
occupies.

All workers share a common database connection becaudertfzaled version of the algorithm

is run in a shared memory environment.

5.2.1 Work Division

As discussed, WebSphere Application Server is comprised wéry large number of small to
medium-sized methods. Hence, a simple round-robin scheadopted to assign methods to worker
threads. While this method is certainly not ideal in termsabfieving optimal load balancing among
the threads, from our experiments it appears that thisegtyds adequate. The vast majority of the
methods are comprised of 50-250 instructions, with theetrmethod containing 725 instructions.
Therefore, mining each method independently naturallyltesn the over-decomposition of the

problem necessary for adequate load balancing.

5.2.2 Performance Analysis

The performance of the threaded implementation is evalubyemining a WAS profile with the

following parameters:
1 Imaz = 0
2. Wipaz =0

49

3. Ngen = 10

4. Sthresh — 0.01

The number of threads is varied from 1 (single-threaded) teeBause the test machine is equipped
with 2 quad-core CPUs. Testing with more than 8 threads idikelly to yield further speedup
because there would be more threads than the number oflzleadares. FlowGSP was run in
each configuration ten times in order to obtain statistcaignificant results in the presence of
system noise. The data from our experiments is given in $dhteand 5.2. Each value reported is
the mean of ten runs with a 95% confidence interval accordirtge Student’s t-distribution. All
values rounded to the nearest second. In all cases exetetinimated after seven iterations as no

candidates met the minimum support threshold.

Threads | Execution Time

1 30,71#-271

2 16,965:50

3 12,703t105

4 10,631-255

5 8,800+82

6 16,982+162

7 16,373t89

8 6,726+-23

Table 5.1: Total running time for FlowGSP, in seconds.
7

Execution time (s)
N | Gen. 1l Gen. 2 Gen. 3 Gen. 4 Gen. 5 Gen. 6 Gen. 7
1| 1,743:7 | 10,829:150 | 6,319+71 | 6,712:80 | 3,546+25 | 1,192£6 | 373+2
2 | 926+3 5,942+-29 3,539+16 | 3,748+17 1,974+5 626+2 208+2
3| 6793 4,428+44 2,649+-28 | 2,80A-28 1,51#5 451+3 168+2
4 | 580+23 | 3,654+103 | 2,210+62 | 2,340t57 | 1,295+326 | 391+44 | 15545
5| 478t5 3,01A4-43 1,826+18 | 1,946+27 1,069+8 31142 148+1
6 | 460+32 | 2,982t198 | 2,895+198 | 4,925+342 | 4,079+29 | 2,038:21 | 105+0
7 | 412432 2,546+12 2,544+13 | 4,313+25 | 3,913+19 | 1,965t8 | 106+1
8 | 357+2 2,320+13 1,416+6 1,494+5 811+4 227+2 148+2

Table 5.2: Running times for FlowGSP by generation, in sdspfor NV threads.

Figure 5.1 gives the speedup of the threaded implementagoa function of the number of
threads. The error bars indicate a 95% confidence interviileodata. FlowGSP achieves excellent
speedup when the number of threads is low, as indicated lyd-t1. However, the rate of speedup
decreases as the number of threads increases.

Figure 5.2 breaks down the speedup by generation in ordelettify the cause of the perfor-

mance degradation. Again, the error bars indicate a 95%dmnde interval. Figure 5.2 shows that

50

Speedup

I I I I I I
0 1 2 3 4 5 6 7 8
Number of Threads, N

Figure 5.1: Total speedup as a function of the number of taéa
we obtained similar speedups on all iterations of the allgori Therefore we cannot isolate any
particular iteration or iterations as a cause of the pooedpg in later generations.

Figure 5.2 also shows that when the algorithm is run with 6 thr&ads the speedup obtained is
extremely poor. The machine used for these performanceisumpart of a cluster of machines; it
is possible that other nodes on the cluster experiencedased use during this period. Other nodes
being used would effect the results of this experiment asedlork traffic from each node is routed
through a single master node. Itis also possible that iseaetwork congestion at the time of the
experiment could infuence the execution time of the alparibecause the database server is hosted
on a seperate machine. However, a repeated run of the &lgoniith 7 threads again produced data
consistent with the observations in Table 5.1. Thereforg iinclear exactly what is causing this

particular performance anomaly.

Time (in seconds)
Generation | Mining | Fetching | Pruning/Joining
1 338 19 0
2 2302 18 0.2
3 1394 20 0.1
4 1476 18 0.1
5 793 18 0
6 209 18 0
7 130 18 0

Table 5.3: Breakdown of execution time with 8 worker threads

Table 5.3 breaks down the time spent mining each generattortliree sections: time spent
mining, time spent fetching data from the database, and s$ipemt pruning and creating the next
generation for 8 threads. The amount of time spent fetchatg tom the database is uniform

accross all iterations of the algorithm. There is also acifdlg increase in the amount of time spent

51

5 5 T T T T T T T
4+ 4t g
R }
3F 3l I
2+ 2L)
1k 1+ *
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0 ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
. Number of Threads, N . Number of Threads, N .
(a) First Generation (b) Second Generation
5 T T T T T T T 5 T T T T T T T
alb — 4l 4
= A
o [7 . 2T ¥]
2r { 4 2F 4
S
1 « A 1r - A
0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
‘Number of Threads, N . Number of Threads, N .
(c) Third Generation (d) Fourth Generation
5 5
4+ A 4+ -
3+ | A 3+ A
- A 1
ot i 2| .)
N . | N . [
Spmmmmmnmeees + /
Y 4
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
) Number of Threads, N)) Number of Threads, N .
(e) Fifth Generation (f) Sixth Generation
5 T T T T T T T
ot)
sl)
g o
& P
2|))
1+ ¥ 4
0 1 2 3 4 5 6 7 8

Number of Threads, N

(g) Seventh Generation

Figure 5.2: Speedup for the first through seventh generatera function of the number of threads
N.

52

Gap Size | Window Size | Execution Time (s)
0 0 6,726
0 1 14,068
1 0 12,748
1 1 22,314

Table 5.4: Influence of changing gap and window sizes on dy@@gram performance.
pruning and joining the next generation of candidates, tistaccounts for a small portion of total
execution time.

The amount of time spent fetching data from the database ésuned by starting and stopping
a timer around each JDBC call, summing the time for all sutls &@m the same thread, and then
averaging the totals over all worker threads. The amouritb@d spent pruning/joining is measured
by a similar timer in the master thread. The time spent pig/joiming also includes the time spent
fetching results from the worker threads. The time repoatedhining time is the difference between
the time for the mining task and the sum of the fetching anaipg/joining time.

The runs which produced the data in Tables 5.1 and 5.2 wesgnglot with a gap size of zero
and a window size of zero. In many datasets a larger gap oowirsize may be required in order to
discover interesting sequences. Table 5.4 shows the minie of FlowGSP on a Websphere Ap-
plication Server profile when the gap and window sizes aneeased. For this experiment FlowGSP
was again run with 8 threads for ten iterations with a supimweshold of 1%.

Increasing either the gap or the window size results in aifségnt increase in execution time.
This increase can be explained by a general increase inpipegwalues of candidate sequences and
consequently more candidates meeting the support thiksikiare candidates meeting the support
threshold results in more candidates being generated latteaation. Based on this data, it may be
prudent to increase the support threshold when running G®® with non-zero gap and window
sizes in order to control the execution time. However, whilreasing the support threshold is a
good idea for Application Server profiles, this decisionltsnately dependant on the characteristics

of the data being mined.

5.3 Distributed Implementation

This section describes a socket-based version of the #Higofor use in distributed memory ma-
chines. The scalability of the threaded implementatiomigt¢d by the number of cores on a single
machiné. In order for the distributed implementation to be of useist scale beyond the capabil-

ities of the threaded implementation. The distributed enptntation described in this section does

IMost standard Java Virtual Machines (JVMs) do not allow Far distribution of threads between multiple machines.

53

not scale, therefore there is little reason to deploy thjgémentation of FlowGSP on a large cluster

as opposed to single multi-core workstations.

5.3.1 Work Division

Similar to the threaded implementation, work is divided bgirgle master. Each worker is as-
signed an equal-sized subset of the candidate sequenéesaartent generation. Each worker then
searches for instances of its subset of candidates ovef #leanethods in the profile. The deci-
sion to divide work in this manner was made after an initig¢raipt that divided work in the same
manner as the threaded version. Information that needs tmbsmitted from the master to the
workers incurs a communication overhead because each mimakdts own private address space.
The amount of overhead for early generations is small bectnese are few candidates, but in later
generations copying all candidates to each client is pitively expensive. Collecting results from
workers is even more expensive: not only do the candidated teebe copied from each worker
but the supports found by each worker need to be merged. fbineyéhe method of work division
was changed to reduce both the communication between veoakel the computation needed to
combine results from clients.

The only other difference between the socketed and threaggdmentations is that the work-
ers in the socketed implementation prune candidates wditheiquate support prior to communicat-
ing the results of the mining to the master worker. This o#ation was not implemented in the
threaded version because all workers search for instarfiedscandidate sequences, therefore any
pruning must wait until all workers have finished. This liatibn is not present given this work dis-
tribution scheme and therefore it was convenient to implerties advanced pruning. It is unlikely,

however, that this optimization resulted in any signifiga@tformance improvement.

5.3.2 Performance Analysis

The socketed implementation demonstrates extremely paxdorpnance. In fact, runs with more
than 2 workers usually resulted in a significant slowdown jgarad to the sequential case (in this
instance, a run of the socketed implementation with onlyweokker apart from the master).

Table 5.5 gives the execution times for the distributed en@ntation for 1,2,4,8, and 16 work-
ers. The data in Table 5.5 is from a single run of the disteédumplementation and therefore may
contain a significant amount of error. However, given that distributed implementation fails to

even achieve a speedup of two with sixteen workers, no furthes were performed and a 95%

54

Execution Time (in seconds)

Gen.1| Gen.2| Gen.3| Gen,4 | Gen. 5| Total
697 1,434 | 2,240 | 6,666 | 10,437 | 21,478
455 975 1,673 | 4,565 | 7,345 | 15,018
370 625 1,313 | 4,986 | 9,088 | 16,388
506 556 1,016 | 5,199 | 10,696 | 17,978

16| 684 647 816 3,974 | 11,178 | 17,304

Table 5.5: Execution time for the distributed implememtatof FlowGSP withV workers.

0o ANRZ

confidence interval was not calculated. It is unlikely thnet &mount of error represents more than a
small portion of total execution time.

In order to understand the behavior of the distributed iTmgletation, the amount of time spent
fetching data from the database was recorded. The time fgiehing data was recorded in the same
manner as the threaded implementation. The data showddha® workers, 1,688 seconds were
spent fetching data from the database. It is unlikely thafétching of data from the database is the
bottleneck for the distributed implementation becauseatiheunt of time spent fetching accounts
for only 9.7% of total execution time.

The amount of time spent retrieving results from workersnprg candidates with insufficient
support, and creating the next generation of candidateslasecorded. The amount of time spent
on these activities accounts for twelve seconds. Twelverstis a relatively insignificant portion
of the total execution time listed in Table 5.5.

It seems likely that poor granularity is the reason the itisted implementation experiences
poor performance. The current method of work division wapl@mented only after the work-
division scheme used in the threaded implementation wad ussuccessfully. Neither of these
methods of work division result in good parallel performand herefore further work is required
to determine an appropriate method of dividing the miningofgm among the workers. Given the
relatively good performance of the threaded implementatice discovery of such a method is left

to future work.

Final Remarks

A threaded and distributedsi@c sockets) implementation of FlowGSP has been discussed. The
threaded version achieved a 78% decrease in total exedirien The threaded implementation
of FlowGSP reduces execution time to the point where meltiphs can be easily performed in a
day, a critical feature if FlowGSP is to be used in a productiompiler environment. It may be pos-

sible with further investigation to further increase thefpemance of the threaded implementation.

55

The distributed version, unfortunately, achieves litlend speedup because the database server
is unable to cope with the volume or frequency of requests pldssible that with more resources the
performance of both implementations of FlowGSP could sgefstant improvement. The socketed

implementation is of no use because it is outperformed byhfemded implementation.

56

Chapter 6

Mining WebSphere Application

Server Profiles with FlowGSP

The experimental results presented in this Chapter demadeshat FlowGSP works in the context of
mining WebSphere Application Server profiles, a large gmise application. The execution paths
in this server consist of millions of assembly instructipes transaction and a plethora of hardware
events per instruction. These results establish FlowGSPpaactical and effective solution for the

mining of large flow graphs.

6.1 Discovery of Previously Known Patterns

Before the development of FlowGSP, compiler developers\vieeced with the difficult challenge
of identifying patterns in the execution paths of large grise applications using nothing but in-
tuition and observation. This approach to discovery is mby tedious and time consuming, but is
also fraught with limitations of capturing the scope andessive support for improvement oppor-
tunities. The intuitive approach may lead to large investisién compiler development effort that
may not necessarily pay off. Countless person-hours oftdfeve been invested in such discovery
processes.

With the implementation of FlowGSP, an interesting acitd oéthe automatic approach is to dis-
cover patterns that had already been identified manuallyobypder developers. FlowGSP passed
this acid test because it was able to identify all the pastérat were known to the developers. Some

of these patterns include:

57

e ((Icachemiss, TLBmiss)), Sy = 0.529 indicates a high correlation between instruction-

cache misses and TLB misses on the host architecture.

e ((Prologue, Icachemiss)), Sy = 0.1175 indicates a high occurrence of instruction-cache
misses in the prologues of methods. This is significant clemiig that the sequence

((Prologue)) hasSy, = 0.120.

o ((JITtarget,Icachemiss)), Sy = 0.0935 corresponds to a significant number of instruction-
cache misses on the JIT target instructions. The JIT tamgé#tiction is the first assembly in-
struction to be called when the method is called from natigempiled code. In general, a dif-
ferent first instruction is executed when the method is ddtem interpreted code. The level
of support for this attribute pair is even more significartduese the sequenc¢e/ITtarget))
hasSy, = 0.0935.

6.2 Discovery of New Characteristics

In addition to re-discovering known patterns, FlowGSP wiéectve in identifying an opportunity
to improve WebSphere Application Server performance bykmalarge pages. By discovering a
high incidence and correlation of instruction cache and ThiBses, FlowGSP helped identify the
use of large pages as a performance opportunity. As suchliegdarge pages resulted in a 3-4%
decrease in instruction-cache misses and an overall thppgmprovement of 2%.

FlowGSP was also successful at discovering many expecteshma For instance, it is known
that the instruction-cache-miss counter exhibits a lofidpeause the counter continues to register
for multiple instructions following the instruction thatdurred the actual delinquent cache fetch.
FlowGSP identified good support for the sequetideachemiss), (Icachemiss)), SM = 0.112.

A result that confirms this priori knowledge. FlowGSP also identified a high occurance of se-
guences which contained data cache misses and TLB missesulathat is both typical and ex-
pected.

The sequencé(Icachemiss, Branchmispredict)), Sy = 0.240 shows that there is a corre-
lation between branch mispredictions and instructioriieanisses. This observation suggests that
it may be possible to improve the hardware’s branch predictamprove WebSphere Application

Server performance.

58

Final Remarks

This chapter demonstrated that FlowGSP is able to identify patterns in an EFG constructed
from a WebSphere Application Server profile. These pattemre identified with a level of support
proportional to their known significance. This chapter abowed that FlowGSP is capable of
identifying previously unknown sequences in an EFG, and tivese sequences can be used to

achieve performance improvements in the target applicatio

59

60

Chapter 7

Related Work

There has been a significant body of work recently investigahe possible applications of machine
learning techniques to compiler research. The applicatfomachine learning could potentially
relieve many person-hours of intensive, skilled labor bseacompilers rely heavily on hand-tuned
heuristics. Section 7.1 discusses such applications.

Data mining techniques have been extended to mine data igeariety of formats. While, to
the best of our knowledge, no algorithm exists that can mF@& there are a number of algorithms
that mine similar types of data. These algorithms are dgaaigh Section 7.2.

There have also been a number of efforts to improve compédgfiopmance through traditional
means based on hardware profiling information. Section i8&idses some of these approaches.

Enterprise applications, such as the WebSphere Applit&erver, usually carry a very large
load in terms of responsibility for many businesses. Theesfinterest in improving their per-
formance is common. Other approaches that attempt to irepiftoe performance of large Java
applications are covered in Section 7.4.

While all of these approaches have some elements in commbarHeivGSP, none of them are
uniquely equipped to handle the challenges faced when mivinfrequent sequences in hardware

profile data.

7.1 Machine Learning and Compilers

A common problem with trying to achieve optimal performamégh modern optimizing compilers
is that it is extremely difficult to predict the ideal optimation parameters for any given program.

Moreover, the number of possible parameter values for mpsinizing compilers is extremely

61

large. Manually searching through them ale. through iterative optimization, is prohibitively
expensive. Compiler researchers have begun to turn to tHefimmachine learning in order to more

efficiently find good optimization configurations.

7.1.1 Supervised Learning

There have been a number of efforts into using predictiveetsotb improve the performance of
optimizing compilers.

Cavazoset. al. present a method for automatically selecting good compiiimizations via
a model constructed using performance-counter data [6¢y Elvaluate a variety of optimization
configurations on a training set of programs and use thetiegidpeedups relative to a baseline
optimization level to construct a predictive model. Givenavel program, they compile it once
using the baseline compiler options. The performanceteoudata from this run is fed back into
the model to produce a set of “best” optimizations. They tiesir system using cross-validation
on the PathScale EKOPath compiler and the Standard Penfiemtavaluation Corporation (SPEC)
1995 benchmark suite. N-fold Cross-validation involvelittiapg the data set into N sections, then
training on N-1 sections and testing on the remaining sect@tavazo®t. al. are able to achieve a
17% performance increase over the fastest built-in opttion setting { Of ast). While they do
produce excellent results, they are only exploring the spdall pre-existing optimization settings.
FlowGSP allows the discovery of new opportunities for cadasformations that may not be within
the scope of existing compiler flags. It would not be possibietheir system to discover any of
these opportunities.

Stephensoet al. use supervised learning technigues to determine the idelunrolling factor
for a program [33]. They use both nearest-neighbor and Stipotor Machine (SVM) classifiers
[9] in their research. Using these methods they are able poave loop unrolling performance by
5% on the SPEC 2000 benchmark suite [8]. While an adaptedovedditheir tool could be used
to discover good parameter values for existing optimizgtiheir method is unable to discover
opportunities for new code transformations, or even if therent set of parameters to existing

options is wanting.

7.1.2 Unsupervised Learning

Stephensomt al. (2003) use Genetic Programming to determine ideal parastiehyperblock

formation, data prefetching, and register allocation [38gnetic Programming uses the principles

62

of genetics to “evolve” more suitable candidates over rpldtgenerations. However there is some
doubt as to the usefulness of genetic algorithms in casésasithese, especially when their perfor-

mance is compared to that of pure random search [4].

7.2 Data Mining

Mining for frequent sequences in structured data has itsio@lgorithms such as GSP [2], PrefixS-
pan [13], and WINEPI/MINEPI [20]. These algorithms all sdafar sequences or partial sequences
within a totally ordered dataset. While this assumption adtaltordering is sufficient for some ap-
plications, such as market-basket analysis, there are meayples of real-world data, such as
hardware profiles, that cannot be expressed using a totatiogd

One of the most commonly used data structures in both congpatience and mathematics is a
graph. It should come as no surprise that there has beenificgighamount of work devoted toward
developing mining algorithms that operate on topologjcalidered data structures such as graphs.
AGM [16], gSpan [39], Origami [14], and Gaston [23] are alj@alithms that search for frequent
substructures in graph-based data.

While mining for common substructures is a very similar godahtat accomplished by FlowGSP,
there are some crucial differences. First, FlowGSP is@sted in discovering frequent sequences
of attributes on the vertices of a flow graph. The mining penied by FlowGSP is more than just
frequent substructure discovery because a frequent ctatheabstructure need not be a sequence
of vertices. Also, none of the cited works handle multipledis or attributes on vertices.

A traversal of a graph is an ordered sequence of connectédesein a graph. There are a num-
ber of real-world situations for which finding frequent segoes in a collection of graph traversals
may prove useful, such as analyzing the behavior of visttesweb site.

Lee et aldevelop an algorithm for discovering frequent patternsraversals of a weighted,
directed graph [19]. A traversal of a graph is an ordered secg of connected vertices in the
underlying graph. They evaluate their algorithm on a nunabeandomly generated graphs.

Genget al. propose another algorithm for mining frequent patternsamdrsals of graphs with
weighted edges and vertices [11]. They used a generat¢éeahdpproach based on the Apriori
algorithm [30] to grow their candidate patterns.

The key difference between these traversal-mining algmstand FlowGSP is the form of the
data being mined. Both Lest al. and Genget al. mine a collection of traversals over a graph. This

difference is illustrated by Figure 7.1. Subfigure (a) is saneple of a directed graph G; subfigure

63

(b) gives a list of weighted traversals. Each traversal istsisf a sequence of nodes from G (under
the traversal column) and a series of weights assigned toeziye of the traversal (under the weight
column). This figure is adapted from Figure 1 in [19]. Trae¢sssuch as these are not the same as

the EFGs mined by FlowGSP: FlowGSP mines for frequent plessitbpaths in a graph.

ID Traversal Weight
1 <A B,C> <2220 >
G c 2 | <B,D,E,C,A> | <30,43,35,31>
3 <C,A,B,D > <2.9,2.0,4.0 >
(@ G 4 <D,C,A> < 4.0,3.0 >
5 <B,C,A> <2229 >
6 <A B,E,C> <1.4,3.9,4.4,3.2 >

(b) Traversals on G

Figure 7.1: Example of a directed graph and a weighted tsaler

Hwanget al. perform data mining on program call graphs in order to idgntcurring pat-
terns in method call sequences [15]. They successfullytiigemvo commonly occurring “control
patterns” that occur frequently together in a collectionlafa programs. Hwanet al. only pro-
vide the mechanism for identifying these control pattemmd do not provide insights into how this
information may be used to increase program performancsa, Aheir work relies on obtaining pro-
gram traces rather than profiles. The cost of obtaining arfadie for an application as large as the
WebSphere Application Server would be prohibitively exgie@. Their method also only uses the
sequence of method calls and does not incorporate low-tey@trformance-counter information.

Pawlak develops a method for mining association rules frabelled, weighted, flow graphs
[24]. They derive these rules by “fusing” the graph being exirand combining the normalized
edge weights. Through fusing they are able to obtain agsociaules between the graph’s sources
and sinks by fusing out all the intermediary nodes. Such gncagh does not map well to mining
control-flow-graph data because each method has only eessiogirce and single sink node. Also,
patterns that occur within the internal structure of a floagdr are of higher interest.

Moseleyet al. develop Optiscope, a tool for comparing multiple hardwaniles [21]. Their
goal is to allow easy comparison of multiple executions efgame program under various compiler
configurations. Loops in each profile are matched, and tlierdifces in the profiling information
examined via a web interface. The profiling data from eaclp loo method is aggregated and
compared. The local focus of Optiscope is in sharp contoagid goal of finding global patterns

that may yield performance opportunities. Optiscope it Bupund basic slicing operations. That is

64

to say that optiscope only performs basic aggregationsearch for frequent patterns or sequences

is performed.

7.3 Performance Counters

Choi et al. use performance counter data to enhance the performanhe &itel compiler on the
Itanium 2 platform [7]. They use performance counter datsujgplement the information usually
obtained during static FDO. However, as is usual for FDOir theocess is restricted to improv-
ing the performance of existing code transformations amshafaid in the discovery of new code
transformations.

There have been a growing body of research directed towdodgireg JIT compilers access to
hardware profiling data at run-time. Schnei@é¢ml. collects information about instruction cache
misses on the Intel Pentium 4 platform in order to increas®paance via object co-allocation [27].
Cuthbertsoret al. also use I-cache information from hardware event counterthe Intel Itanium
platform to improve co-allocation, as well as to influencebgll scheduling [10]. Shyet al. collect
branching information from the Itanium Branch Transitioufi@r (BTB) and use this information to
build partial path profiles of the executing program [28]] éfithese works only operate on a very
small number of performance counters. While a small numbeouahters is enough data for the
code transformations they investigate, by discarding spenrmance counters, information about
the program is lost. It may not be possible to simply increaseamount of counter information
passed into the JVM, because it is not clear how well theegjias presented will scale as the number
of counters retrieved increases.

Buytaertet al. use hardware-performance counters (in particular sagpiaks) to increase
the accuracy and decrease the cost of the instrumentatemh tosdetect hot methods in a Java
JIT compiler [5]. No new code transformations are introdlbecause their work is focused on

improving the performance of current techniques.

7.4 Enterprise Application Performance

Xu et al. investigate object copying as a symptom of bloat in largea Jgpplications [38]. By
profiling object copy behavior they are able to hand-tuné tplications and significantly increase
performance. They are able to decrease the execution timeddaCapo benchmarks by 65% and

9.3% respectively. While Xet al. also investigate large scale Java application performtraie

65

approach is focused on hard tuning the resulting applicatistead of searching for opportunities for
new compiler code optimizations. While application tuniegmportant for overall performance, the
role of the compiler is equally important. FlowGSP addreske needs of the compiler developer

when it comes to improving the performance of enterprisdicgions.

66

Conclusion

This thesis presented the EFG, a data structure that reysabe information contained in hardware
profiles. This data structure was designed by supplemetitengrofile data with the CFG taken from

the compiler logs. This thesis defined the notions of frequeamd weight support of a subpath in
an EFG. It also presented FlowGSP, an algorithm to mine fpueseces in an EFG. FlowGSP ranks
sequences by both their frequency in the graph and by thettdws subpaths in which they appear.

EFGs were constructed using profiling information obtaifnech WebSphere Application Server
runs on the IBM z10 architecture. A list of attributes wasateel to represent the characterstics of
z10 profiling data. This thesis presented an implementatiéfiowGSP in Java to mine these EFGs.

Two parallel implementations of FlowGSP were also intralcThe first implementation uses
Java threads and is targeted at the rapidly growing domaimudtf-core workstations. The threaded
implementation of FlowGSP reduces the time required to raipeofile of the WebSphere Appli-
cation Server by roughly 75%. This improved performanceval FlowGSP to mine such a profile
many times in a day, a necessary requirement for deploymeatproduction compiler develop-
ment environment. This thesis also presented a distridotpbmentation of FlowGSP targeted at
cluster-based computing. However, the distributed imgletation failed to show the performance
necessary to merit deployment. Future work may yield a bettek-division strategy for this im-
plementation.

FlowGSP was evaluated on WebSphere Application Servemizaedprofiles. This thesis pre-
sented a number of sequences discovered by FlowGSP whidctdigze known Application Server
behavior. The discovery of previously unknown sequencesalg discussed. These new sequences
may yield new performance opportunities upon further study

There are a number of areas for future development basee avottk in this thesis. The parallel
implementations of FlowGSP discussed in Chapter 5 can [algieproved. The threaded imple-
mentation suffers from a database bottleneck. Adding md@it database servers or implementing

some caching protocol may alleviate this bottleneck. Tkeibuted implementation exhibits poor

67

granularity and does not scale to a large number of nodesd@Veopment of an alternate method
of work division which does not exhibit this poor granulgrivould increase the viability of this
implementation.

There are a number of newer data mining algorithms, Prefix$&] for example, that have
improved performance compared to GSP. GSP was chosen asglseftr FlowGSP due to its
simplicity and the fact that it is well studied. Other sequeemining algorithms could be extended to
achieve the same goals as FlIowGSP, perhaps with greatémdfic It may also be possible to extend
a graph mining algorithm such as Gaston [23] or gSpan [39#wch for frequent sequences in an
EFG. These algorithms have differing characteristics aigiossible that using an algorithm other
than GSP as the base to mine EFGs for data may result in coaisidgerformance improvements.

FlowGSP has been extensively tested on WebSphere Applicaerver profiles. However, the
WebSphere Application Server is hardly representativdlqiragrams. Other application profiles
could yield patterns of interest to compiler developersWitowGSP’s help.

EFGs are not limited to hardware profiles. There are many atbimains that could be charac-
terized in a manner similar to performance-counter datab Wfic pattern analysis, urban traffic
planning, and purchasing pattern analysis are examplegas éhat could benefit from the applica-

tion of FlowGSP.

68

Bibliography

[1]

(2]

3]

[4]

[5]

[6]

[7]

[8]

(9]

WebSphere Application Server. http://www-01.ibm.dsoftware/websphere/, March 2009.

Rakesh Agrawal and Ramakrishnan Srikant. Mining setjgkpatterns. Ininternational

Conference on Data Engineering (ICDpages 3—14. IEEE Computer Society, March 1995.

Enrique Alba. Parallel evolutionary algorithms can i@ele super-linear performancenf.

Process. Lett.82(1):7-13, 2002.

Jo< Nelson Amaral, Adalberto Tiexeira Castelo Neto, and Adedso Valerio Dias. Genetic
algorithms in optimization: Better than random search2987 International Conference on

Engineering and Informaticpages 320-326, April 1997.

Dries Buytaert, Andy Georges, Michael Hind, Matthew Alah, Lieven Eeckhout, and Koen
De Bosschere. Using HPM-sampling to drive dynamic comipitat volume 42, pages 553—

568. ACM, 2007.

John Cavazos, Grigori Fursin, Felix Agakov, Edwin BémiMichael F. P. O’'Boyle, and Olivier
Temam. Rapidly selecting good compiler optimizations ggiarformance counters. Dode
Generation and Optimization (CGQpages 185-197, Washington, DC, USA, 2007. IEEE

Computer Society.

Y. Choi, A. Knies, G. Vedaraman, and J. Williamson. Desand experience using the Intel
Itanium 2 processor performance monitoring unit to implabfieedback optimization&PIC2

Workshop2002.

Standard Performance Evaluation Corporation. SPECHmeark. http://www.spec.org.

Koby Crammer and Yoram Singer. On the algorithmic impéer@ation of multiclass kernel-

based vector machined. Mach. Learn. Res2:265-292, 2002.

69

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

John Cuthbertson, Sandhya Viswanathan, Konstantbr@®sky, Alexander Astapchuk, and
Eric Kaczmarek. Uma Srinivasan. A practical approach tallware performance monitoring
based dynamic optimizations in a production JVM. Gonde Generation and Optimization

(CGO), pages 190-199, Seattle, WA, USA, 2009. IEEE Computer 8ocie

Runian Geng, Xiangjun Dong, Xingye Zhang, and Wenbo Kfficiently mining closed fre-
guent patterns with weight constraint from directed grajpldrsals using weighted FP-tree
approach. Innternational Colloquium on Computing, Communicationn@ol, and Manage-

ment pages 399—-403, Guangzhou City, China, August 2008.

M. Golden and T. Mudge. Comparison of two common pipelstructures.Computers and

Digital Techniques, IEE Proceedings43(3):161-167, May 1996.

J. Han, J. Pei, and Y. Yin.Sequential Pattern Mining by Pattern-Growth: Principlesda
Extensionsvolume 180 ofStudies in Fuzziness and Soft Computjpages 183-220. Springer,
2005.

Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, Jereesg@, and Mohammed J. Zaki.
Origami: Mining representative orthogonal graph patterits International Conference on

Data Mining (ICDM), pages 153-162, Omaha, NE, USA, 2007. IEEE Computer Society

Chung-Chien Hwang, Shih-Kun Huang, Deng-Jyi Chen, BrilK. Chen. Object-oriented
program behavior analysis based on control patternsAsla-Pacific Conference on Quality

Software (APCQS)pages 81-87, Hong Kong, China, December 2001.

Akihiro Inokuchi, Takashi Washio, and Hiroshi Motodan apriori-based algorithm for min-
ing frequent substructures from graph dataPKDD '00: Proceedings of the 4th European
Conference on Principles of Data Mining and Knowledge Disrg pages 13-23, London,

UK, 2000. Springer-Verlag.

K.M. Jackson, M.A. Wisniewski, D. Schmidt, U. Hild, Seksig, P. C. Yeh, and W. Gellerich.
IBM system z10 performance improvements with software ardware synergyBM J. Res.

Dev, 53(1-16), May 2009.

T. Kisuki, P.M.W. knijnenburg, Michael F. P. O’'Boyler&ncois Bodin, and E. Rouhu. Iterative
compilation in a non-linear optimization space. Parallel Architectures and Compilation

Techniques (PACTaris, France, October 1998.

70

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

Seong Dae Lee and Hyu Chan Park. Mining frequent pattéom weighted traversals on
graph using confidence interval and pattern priofityernational Journal of Computer Science

and Network Security (IJCSN$Y5A):136-141, May 2006.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discoverifgequent Episodes in Sequences.
In U. M. Fayyad and R. Uthurusamy, editoksjowledge Discovery and Data Mining (KDD)
Montreal, Canada, 1995. AAAI Press.

Tipp Moseley, Dirk Grunwald, and Ramesh V. Peri. Optjze: Performance accountability
for optimizing compilers. InCode Generation and Optimization (CGCheattle, WA, USA,
2009. IEEE Computer Society.

Priya Nagpurkar, Harold W. Cain, Mauricio Serrano,g«deok Choi, and Ra Krintz. A study
of instruction cache performance and the potential foruresion prefetching in J2EE server
applications. InWorkshop of Computer Architecture Evaluation using ConeiaEYVorkloads

(CAECW) Phoenix, AZ, USA, 2007.

Siegfried Nijssen and Joost N. Kok. A quickstart in fuegt structure mining can make a
difference. InKnowledge Discovery and Data Mining (KDJjages 647—652, New York, NY,
USA, 2004. ACM.

Zdzislaw Pawlak. Flow graphs and data mining. Thansactions on Rough Sets, Mlolume

3400/2005 ot_ecture Notes in Computing Scienpages 1-36. Springer, 2005.

J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.yBla and M.C. Hsu. PrefixSpan
mining sequential patterns efficiently by prefix projectatt@rn growth. Irinternational Con-

ference on Data Engineering (ICDR)ages 215-226, Heidelburg, Germany, 2001.

K.E. Plambeck, W. Eckert, R. R. Rogers, and C. F. Webbyelpment and attributes of
z/architecturelBM J. R. Dev, 46(4-5):367, 2002.

Florian T. Schneider, Mathias Payer, and Thomas R. £&r@nline optimizations driven by
hardware performance monitoring. RFrogramming language design and implementation

(PLDI), pages 373-382, New York, NY, USA, 2007. ACM.

Alex Shye, Matthew lyer, Tipp Moseley, David HodgdoraDFay, Vijay Janapa Reddi, and
Daniel A. Connors. Analyis of path profiling information geated with performance moni-
toring hardware. I'wWorkshop on Interaction between Compilers and Computehnifectures

(INTERACT) pages 34-43, Rome, Italy, 2005. IEEE Computer Society.

71

[29] T. J. Siegel, E. Pfeffer, and J. A. Magee. The IBM eSer830 microprocessotBM J. Res.
Dev, 48(3-4):295-309, 2004.

[30] Ramakrishnan Srikant and Rakesh Agrawal. Mining qit@inte association rules in large
relational tables. I'8IGMOD International Conference on Management of Dptges 1-12,

New York, NY, USA, 1996. ACM.

[31] Ramakrishnan Srikant and Rakesh Agrawdining Sequential Patterns: Generalizations and

Performance Improvementsages 3—17. Advances in Database Technology. Springas, 19

[32] Ramakrishnan Srikant and Rakesh Agrawal. Mining satjakpatterns: Generatlizations and
performance improvements. Technical report, IBM Rese@efision, Almaden Research

Center, San Jose, CA, USA, 1996.

[33] Mark Stephenson and Saman Amarasinghe. Predicting/ldactors using supervised classi-
fication. InCode Generation and Optimization (CG@pges 123-134, San Jose, CA, USA,
2005. IEEE Computer Society.

[34] Mark Stephenson, Saman Amarasinghe, Martin Martinl, dna-May O’Reilly. Meta opti-
mization: improving compiler heuristics with machine leiag. In Programming language

design and implementation (PLDPages 77-90, New York, NY, USA, 2003. ACM.

[35] Robert Tibshirani and Jerome Friedman Trevor Haskiee Elements of Statistical Learning:

Data Mining, Inference, and Predictiorspringer, New York, 2001.

[36] E. Tzortzatos, J. Bartik, and P. Sutton. IBM system zdfport for large pagedBM J. Res.
Dev, 53(1-17), May 2009.

[37] C. F. Webb. IBM z10: The next generation microprocesHeEE Micro, 28(2):19-29, March
2008.

[38] Guoging Xu, Matthew Arnold, Nick Mitchell, Atanas Rotav, and Gary Sevitsky. Go with
the flow: profiling copies to find runtime bloat. PLDI '09: Proceedings of the 2009 ACM
SIGPLAN conference on Programming language design anceimgtationpages 419-430,
Dublin, Ireland, 2009. ACM.

[39] Xifeng Yan and Jiawei Han. gSpan: Graph-based sulistreipattern mining. linternational
Conference on Data Mining (ICDMpage 721, Maebashi City, Japan, 2002. IEEE Computer

Society.

72

