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Abstract

Budgeted Red-Blue Median is a generalization of classic k-Median in

that there are two sets of facilities, say R and B, that can be used to serve

clients located in some metric space. The goal is to open kr facilities in R and

kb facilities in B for some given bounds kr, kb and connect each client to their

nearest open facility in a way that minimizes the total connection cost.

We extended the work by Hajiaghayi, Khandekar, and Kortsarz [2012] and

show that a local search technique can be used to obtain a (5+ε)-approximation

for any ε > 0. This is an improvement over their analysis and beats the

previous best approximation guarantee of 8 by Swamy [2014].

We also present a matching lower bound showing that for every p ≥ 1,

there are instances of Budgeted Red-Blue Median with local optimum

solutions for the p-swap heuristic whose cost is 5 + Ω
(

1
p

)

times the optimum

solution cost. Thus, our analysis is essentially tight. In addition, the lower

bound result extends to allowing up to a constant t number of colors in facil-

ities. We show that the natural local search algorithm has a lower bound of

2t+ 1 + Ω
(

1
p

)

in this case.
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Chapter 1

Introduction

1.1 Problem Definition and Motivation

The problem of finding an efficient way of opening facilities to serve clients

has received a lot of attention in recent research projects. While there are

many similar versions of the problem, these problems typically involve opening

facilities in a metric setting, following a certain set of rules where the goal is

to minimize some specific cost function. Many of its variations are known

to be NP-hard. Thus, often a feasible solution that was produced within a

reasonable amount of time (relative to the input size) should be expected to

be sub-optimal. An approximation algorithm for an optimization problem will

produce a feasible solution within a reasonable time length (e.g. in polynomial

time), and guarantees the cost of the solution is within some factor of the best

possible value.

In a general setting of a facility location problem, one typical measure of

a solution’s quality is the distance between clients and the facility serving

it. Furthermore, if we open many facilities then we can be near every client,

so it is only natural to take into account of the number of facilities opened

to measure the quality of a solution. Instead of setting a limit on the total

number of facilities that could be opened, we sometimes associate with every

facility a cost of opening that facility. These two measures are often referred

to as service cost and facility cost. Combining various constraints on these

two costs naturally results in variants of the general facility location problem.

For example, in the classic k-Median problem, we are allowed to open a total
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of k facilities and the goal is to minimize the total distance between all clients

to their nearest facility.

Our model of facility location is called Budgeted Red-Blue Median

and is described as the following. We are given a metric space with a finite set

of locations V and distances d(u, v) between any u, v ∈ V . The distances are

symmetric, non-negative, and satisfy triangle inequality: d(u, v) + d(v, w) ≤
d(u, w) for any u, v, w ∈ V . In the set of locations, we distinguish three

types of location: the clients C, the Red Facilities R, and the Blue Facilities

B. We are also given budgets kr, kb ∈ Z for each type of facilities mean-

ing that the number of facilities opened for each type cannot exceed kr, kb

respectively. The goal is to open facilities to satisfy the budget constraint

while minimizing the total service cost. The main difference here compared to

the classic k-Median is that there are two types of facilities instead of one.

Budgeted Red-Blue Median is a generalization of the k-Median because

if we let all facilities have the same color it becomes same as the k-Median

problem.

Facility location problems have a wide variety of applications and it is no

exception for Budgeted Red-Blue Median. For example, a manufactur-

ing company provides a component gear that can be made in two types of

materials. Each material resource is only available at certain locations. The

component is some what crucial and needs to be shipped to the clients but the

company only has a limited budget for opening each type of facilities. Thus

finding the best way to utilize these facilities by setting up shops near some

of the material resources that can serve many clients while lower the cost of

sending the products to the clients could potentially be very beneficial. This

scenario corresponds to the problem we study in this thesis. Many similar

models are heavily studied in other related works such as k-Median.
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1.2 Notation and Preliminaries

In Budgeted Red-Blue Median, we define a feasible solution (R,B) such

that R ⊆ R and B ⊆ B with |R| = kr, |B| = kb. The goal is to minimize:

cost(R ∪B) :=
∑

j∈C
min
i∈R∪B

d(i, j).

A graph G is an ordered pair (V,E) where V is a finite set of vertices (nodes)

and E is a collection of unordered pairs of distinct vertices called edges. The

two vertices u, v in an edge e are called the endpoints of e. Typically, each

node v can be the endpoint of several edges, we call the number of such edges

the degree of v. If the degree of v is 0, v is called an isolated node. A weighted

graph is a graph G = (V,E,w) where w is a weight function w : E → R.

Given a subset U ⊆ V , the subgraph induced by U is the graph G′ = (U,E ′)

where E ′ = {(u, v) ∈ E : u, v ∈ U}. A walk in a graph is a sequence of vertices

v1, v2, v3, ..., vk ∈ V such that (vi, vi+1) ∈ E for all 0 < i < k. A path is a walk

where each vertex appear at most once in the walk. The length of a path is

the total weight of all the edges in the path and for the unweighted graph, the

length of a path is the total number of edges. We say a shortest path between

u and v is a path starting at u and ending at v of minimum length.

A partition P of a set S is a collection of subsets of S where each part

A ∈ P satisfies the following:

• A 6= ∅

• A ∩ B = ∅ for any B ∈ P − {A}

• S = ∪A′∈PA
′

A partition G on a graph G = (V,E) is a collection of induced subgraphs

G′ = (V ′, E ′) of G where the node sets {V ′ : G′ ⊆ G} form a partition of V .

Given any metric space on a finite set of locations V and with distances

d(u, v) between locations (u, v) ∈ V , we can construct a weighted graph

G = (V,E) where there is a one-to-one correspondence between vertices and

locations. An edge weight d(u, v) is also assigned to each pair of vertices
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u, v ∈ V . Similarly, given a graph G = (V,E) with non-negative edge weights,

the graph corresponds to a metric space where the distance d(u, v) between

the two location u, v is equal to the total edge weight of the shortest path

between the two nodes u, v ∈ V where the nodes corresponds to the locations.

An optimization problem is a problem in which each instance I has a set

of feasible solutions FI and objective function MI : FI → R where the goal

is to find some f ∈ FI that minimizes or maximizes MI(f). In this work,

we only consider minimization problems and thus we will assume the goal is

always to find a solution with the minimum cost. An NP−hard optimization

problem has its decision version being NP−hard. That is, given an instance

I and a value k, it is NP−hard to determine if there exists an f ∈ FI such

that MI(f) ≤ k.

An α−approximation algorithm with a value α ≥ 1 for an optimization

problem is a polynomial time algorithm that produces a feasible solution f for

any given instance I of the problem such that MI(f) ≤ αming∈FI
MI(g). We

say an algorithm is a constant factor approximation algorithm if α is constant.

A polynomial-time approximation scheme (PTAS) is a type of approxi-

mation algorithm for optimization problems. A PTAS is an algorithm which

takes an instance of an optimization problem and a parameter ε > 0 and, in

polynomial time, produces a solution that is within a factor 1 + ε of being

optimal. The running time of a PTAS is required to be polynomial in the

input size for every fixed ε but can be different for different ε. For example, an

(1 + ε)-approximation algorithm running in time O(n
1

ε ) counts as a PTAS.

In this thesis, we discuss local search algorithms. While there is not a

precise definition of local search algorithm, a typical local search algorithm

starts with a feasible solution and iteratively improves the solution by searching

through any solution lies within the range of the local space. We restrict the

searching operation to run within polynomial time. A p−swap heuristic is

referring to a specific tactical scheme that we use for the local search algorithm

in this thesis and many other local search algorithms on other similar problems.

With a given parameter p, a local search determines its searching range and

therefore affects its running time as well as the approximation guarantee. Such
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setting has the ability to affect quality of the result solution, for example, if p

is set to be large enough, the local search algorithm may guarantee to output

the optimum solution, but in the mean time it may become very slow such

that exceeds polynomial time.

Locality gap is used to describe the gap between costs of the solution found

and the absolute optimum solution. In other words, suppose S is a solution

found by a local search algorithm L and O is the optimum solution. We say

S has a locality gap of α if cost(S) ≥ αcost(O).

1.3 Previous Work

The study of Budgeted Red-Blue Median from the perspective of ap-

proximation algorithms was initiated by Hajiaghayi, Khandekar, and Kort-

sarz [17] in 2012, where they considered a naive local search algorithm that

takes in a feasible solution and iteratively improves the solution by swap-

ping one red and/or blue facility until no significant improvement can be

made. They were able to prove this is a constant factor approximation for

Budgeted Red-Blue Median but they did not specify the constant. After

showing a constant approximation for Budgeted Red-Blue Median, they

continues to show the local search technique can also be applied to Prize

Collecting k-Median and obtained a (3+ ε)-approximation [17]. In Prize

Collecting k-Median, we have the option to not connect a client by pay-

ing a penalty. It is worth noting that the local search analysis improves the

previously known bound of 4 by Charikar et al for the prize collecting version

[9].

As mentioned before, the most special case of our problem is the well-known

k-Median problem. Recall in k-Median, we are given n points in a metric

space. We select at most k of these to be cluster centers and then assign each

input point j to the selected center that is closest to it. If a point j is assigned

to a center i, we incur a cost proportional to the distance between i and j.

The goal is to select the k centers so as to minimize the total assignments cost.

The first constant factor approximation for the k-Median problem was given
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by Charikar et al [8]. They used linear programming relaxation to round their

solution and were able to obtain a 62
3
approximation.

Later this approximation guarantee was improved by Jain and Vazirani

[19], they established a connection between k-Median and the Uncapaci-

tated Facility Location Problem(UFL) such that k-Median is a La-

grangian relaxation of UFL. They were able to obtain a bi-point solution whose

cost is at most 3 times the cost of an actual optimum solution using liner

programming and rounding. A bi-point solution is a pair F1,F2 ∈ F such

that |F1| ≤ k ≤ |F2|, along with reals a, b ≥ 0 and a + b = 1 such that

a|F1| + b|F2| = k. They showed a way to round such bi-point solution into

an integral solution losing another factor of 2 so that in the end they get a

6 approximation [19]. Later, Jain, Mahdian and Saberi (JMS) improved the

approximation ratio of finding the bi-point solution to 2 and thus resulting a

4 approximation for k-Median [18].

Following that, Arya et al [2] further improved the approximation ratio of

k-Median to (3 + ε) using a local search based technique. To achieve this,

given an instance of k-Median I and a set of facilities F , let S ∈ F denote

any solution output by the local search algorithm and let O ∈ F denote an

optimum solution to I. Let i ∈ S, i∗ ∈ O, note that (S − i + i∗) is a feasible

solution because it opens the same amount of facilities as S. Examining the

cost change in solution (S − i + i∗) for all possible (i, i∗) pair, they were able

to show the cost of S is at most 5 times the cost of O. By permitting up to

a constant number p of facilities to be considered at the same time, they were

able to reduce the bound to 3 + 2
p
.

Later, Gupta et al [16] further simplifies the analysis of Arya et al [2] by

using an averaging argument to avoid some complex anaylisis in the proofs of

Arya et al. We use a randomized approach in our work that is fairly similar

to and inspired by the averaging argument.

Very recently, Li and Svensson made a breakthrough in rounding the bi-

point solution [22]. They first round a bi-point solution found by [18] into

an integral solution with k + O(1) open facilities while only losing a factor of

(1+
√
3

2
+ ε) in the process. Such integral solutions can then be converted into
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an actual solution with only k open facilities. Combined with the factor 2 loss

in finding the bi-points solution, they obtain a (1 +
√
3 + ε)-approximation.

Followed from there, Byrka et al [5] further improved rounding of a bi-point

solution with a factor loss of 1.3371 + ε which is better than the previous

(
1+
√

(3)

2
+ ε) ∼ 1.366 + ε. Thus obtaining a 2.675 + ε approximation for

k-Median.

It is also known that it is hard to approximate k-Median within a factor of

(1 + 2

e
1
c
) for any constant 0 < c < 1 unless P = NP [18].This is done through

constructing a reduction from Set Cover. In Set Cover, we are given a

set of items X and a set of sets S and the goal is to pick minimum number of

sets whose union includes all the items.

Another stream of related problem is the Matroid Median problem.

The Matroid Median problem is first introduced in [20] by Krishnaswamy

et al and is a generalization of Budgeted Red-Blue Median. In the Ma-

troid Median problem, we are given a set of facilities F and clients C
with the constraint that the opened facilities forms an independent set from a

matroid.

More generally, if we extend Budgeted Red-Blue Median to having t

colors of facilities, this can be described as a Matroid Median problem

instance with partition matroids with t parts which is known as the Content

Distribution Networks Problem ([4], [17]). Krishnaswamy et al [20]

obtained 16-approximation for Matroid Median and O(1) approximation

for the prize-collection variant of the problem.

A special case of Matroid Median is Data Placement. Instead of

facilities having different types, the clients now have different types of demand

and each facility can provides certain types of good. The goal is to minimize the

total cost of connecting clients to facilities that satisfy the demand constraints.

This problem was studied by many, and a 10-approximation was given by Baev

et al [3] using a linear program.

Later, Swamy improved the approximation ratio to 8 for Matroid Me-

dian problem and 24 for the prize-collecting version [26]. Swamy introduced

a simpler way to round a natural linear program relaxation and completely
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avoided the two phase rounding procedure in the previous work.

Local search is one of the most powerful tools we have to solving various

optimization problems. An early demonstration of local search technique in

operation research dates back as far as 1963 where Kuehn et al [21] introduced

first application of local search technique as a heuristics for solving UFL. In

practice, local search is a powerful tool to obtain a feasible solution and is fast

for many difficult problems such as Steiner Problems in graphs,Knapsack

Problem, etc ([27], [2]). However due its context reliant nature, it is often

challenging to analyze such algorithm.

One of the most well-known applications for local search is in the family

of facility location problems. As mentioned before, local search achieved a

(3+ε) approximation for k-Median by permitting simultaneously opening and

closing a constant number of facilities and iteratively improving the solution

cost. In other variations, Mahdian and Pál [23], and Svitkina and Tardos [25]

consider settings where the opening cost of a facility is a function of the set of

clients served by it. In [23], this cost is a nondecreasing function of the number

of clients, and in [25] this cost arises from a certain tree defined on the client

set. Devanur et al [11] and [16] consider k-Facility Location, which is

similar to k-Median except that facilities also have opening costs. Gørtz and

Nagarajan [15] considered a problem that they call the k-Median Forest,

which generalizes k-Median, and obtained a (3+ε)-approximation algorithm.

Friggstad et al [1] considered Mobile facility location problem where instead

of opening cost for facilities, we move the opening facilities with a movement

cost. They obtained a (3 + ε)-approximation.

Very recently, local search is discovered to yield a PTAS for k-Means and

k-Median in Euclidean space ([10], [12]). This is discovered independently

by Cohen-Addad et al [10] and Friggstad et al [12] at the same time. In

[12], they identified that local search yields a (1 + ε)approximation for k-

Means in doubling metric. That is, the doubling dimension of a metric is

defined to be the smallest d such that any ball of radius 2r can be covered

with 2d balls of radius r. If d is regarded to be a constant, the metric is

then called a doubling metric. For example: constant-dimensional Rd under
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normal Euclidean distances or under manhattan distances is a doubling metric.

Cohen and Addad also identifies that local search works also in “minor-closed”

metrics, such as the shortest path metric of a planar graph [10].

Another well-known application for local search is approximating maximum

independent set. Chan and Har-Peled presented an approximation for finding

maximum independent set of pseudo disks [6]. A collection of simple (i.e. no

holes) geometric objects are called pseudodisks if the boundaries of any two

objects intersect in at most two points [6]. The algorithm produces a PTAS

using local search for the unweighted version of the problem and a constant

factor approximation for the weighted version.

Mustafa and Ray [24] obtained a (1 + ε)approximation for Geometric

Hitting Set problem using local search. Note that this is discovered in-

dependent of Chan and Har-Peled. Later this is extended to Geometric

Coverage Problem and a PTAS is obtained by Chaplick et al [7]. Ter-

rain Guarding is also a problem where local search technique is successfully

applied and the first PTAS is obtained by Gibson et al [14].

1.4 Thesis Outline

In Chapter 2 we take a closer look at a very tightly related problem k-Median.

We give a brief discussion of the (3 + ε)-approximation using the local search

technique by Gupta et al [16] with a slight modification in the analysis to

prepare for our Budgeted Red-Blue Median analysis. We will introduce

the natural local search algorithm for k-Median. However the algorithm itself

does not guarantee termination in polynomial number of iterations. We will

present the standard workaround for this issue. We will also include some of

the standard techniques and ideas typically used in our work.

We begin chapter 3 by giving an overview of the problem and preliminaries

and notations. We then proceed to demonstrate how some of the techniques

can be applied by analyzing a simple case of Budgeted Red-Blue Median.

And then we dive into the full multi-swap analysis for the general case of

Budgeted Red-Blue Median which is the main contribution of this work.
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Next in Chapter 4, we examine the other end of the spectrum, showing the

lower bounds for local search algorithm on Budgeted Red-Blue Median.

Our approach also works for a more general setting where we allow a fixed

number of colors for facilities instead of just red and blue. We show that for

a fixed number t colors, the natural local search algorithm has a lower bound

of 2t+ 1.

Finally, Chapter 5 summarizes the work of this thesis and gives our con-

cluding remarks on the problems we explored. Open problems are presented

which can be used to direct future work in this area. All new results appearing

in this thesis were developed during the author’s graduate studies. The results

of Chapter 3 and Chapter 4 appeared in [13].
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Chapter 2

Local Search Analysis for

k-Median Problem

One problem that is closely related to Budgeted Red-Blue Median is

k-Median. Aryan et al [2] proved that a multiple-swap local search algo-

rithm is a (3 + ε)-approximation. Gupta and Tanwongsan [16] simplified this

analysis. We present a modification of Gupta and Tanwongsan’s analysis using

the probabilistic method. This provides a gentle introduction to the multiple-

swap analysis for Budgeted Red-Blue Median in Chapter 3.

2.1 Problem Definition and Preliminaries

Recall in k-Median, we are given a set of facilities F and a set of clients C.
The facilities and clients are scattered in a metric space with distances d(u, v)

between each u, v ∈ F ∪ C. We are given a bound k and the goal is to open

k facilities so that the sum of distances of every client to its nearest open

facility is minimized. Here we describe the natural local search algorithm for

k-Median, this was introduced by Arya et al:

Algorithm 1 The p-Swap local search algorithm for k-Median

Let S be an arbitrary feasible solution.
while there is some feasible solution S ′ with |S − S ′| ≤ p

and cost(S ′) < cost(S) do
S ← S ′

end while

return S
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A feasible solution is a set of facilities S ′ ⊆ F with |S ′| = k. Since there

is no reason to open less than k facilities, we can assume any feasible solution

opens exactly k facilities. Algorithm 1 describes a procedure that iteratively

improves a given feasible solution using a simple rule until no improvements

can be found. The goal is to argue that any solution S produced by Algorithm

1 has a cost that is bounded by the cost of an optimum solution by some

constant factor. In Chapter 3 we will introduce a similar local search algorithm

for Budgeted Red-Blue Median. For convenience, from now on we will

call any solution output by the local search algorithm the “locally optimum

solution” and denote it by S; we will call the optimum solution to the problem

the global optimum solution and denote it by O.

It is not clear that Algorithm 1 terminates in polynomial number of itera-

tion. The standard workaround is trading accuracy for running time. With a

slight modification, one can show that the number of iterations of the modified

algorithm is strictly polynomial in the input size and only losing a (1+ ε) mul-

tiplicative factor in the approximation guarantee. We will discuss the details

of such technique at the end of this chapter.

Now we present the work of Gupta et al [16] with our modification and

proving:

Theorem 2.1.1. For any local optimum solution S,

cost(S) ≤
(

3 +
2

p

)

cost(O)

where O is a global optimum solution.

Let S be a local optimum solution and O be a global optimum solution,

we can assume O and S are disjoint due to a simple duplicate argument,

details of such argument can be found in [2]. Define φ : O → S that maps

each facility i∗ ∈ O to its closest facility i ∈ S. Naturally φ−1(i) denotes

{i∗ ∈ O : φ(i∗) = i} and we let deg(i) = |φ−1(i)|. We also introduce notation to

describe various costs. We let oj denote the nearest facility in O and sj denote

the nearest facility in S for client j. We also let cj = d(j, sj), c
∗
j = d(j, oj).
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Note that cost(S) =
∑

j∈C cj, and cost(O) =
∑

j∈C c∗j . Furthermore, for i ∈ S

we let N(i) denote {j ∈ C : sj = i}, and for i∗ ∈ O, let N∗(i∗) denote

{j ∈ C : oj = i∗}. The goal is to show that:

cost(S) ≤
(

3 +
2

p

)

cost(O).

We now describe a way to partition both S andO. We will use this partition

to describe the test swaps later.

Algorithm 2 Test swaps construction

l = 0
while there exists r ∈ S such that deg(r) > 0 do

(1)Sl = {r} ∪ { any deg(r)− 1 facilities of S with degree 0}
(2)Ol = φ−1(r)
(3)S = S − Sl, O = O −Ol, l = l + 1

end while

return {Sl}Ll=1, {Ol}Ll=1

Algorithm 2 terminates with two sequences {Sl}Ll=1 and {Ol}Ll=1. For any

1 ≤ l ≤ L we have |Sl| = |Ol|. We need to argue that Algorithm 2 terminates

as expected and produces the desired sequences.The key idea is that there is

always enough facilities with degree 0 in S to execute step (1) in the while

loop and this can be shown by a simple counting argument. The following is

also helpful.

Lemma 2.1.2. If sj ∈ Sl and oj /∈ Ol, then φ(oj) /∈ Sl

Proof. Let j be a client and sj ∈ Sl and oj /∈ Ol for some index l. Suppose

φ(oj) ∈ Sl, this implies deg(φ(oj)) > 0. From the step (2) in Algorithm 2

it must be the case that Ol = φ−1(φ(oj)). This implies oj ∈ Ol which is a

contradiction thus proves the lemma.

The following lemma is helpful for analyzing distance:

Lemma 2.1.3. For any j ∈ C, d(j, φ(oj))− cj ≤ 2c∗j .
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Ol Om

SmSl

j1 j2 j3 j4

oj3

sj3

φ(oj3)

oj1

sj1

φ(oj1)

c∗j1

cj1

Figure 2.1: Example of a test swap. White square and circles represents a
part Sl, Ol that is being swapped and the grey squares and circle represents
another part Om, Sm that is not being swapped. clients j1, j2 ∈ N∗(Ol); client
j3 ∈ N(Sl)\N∗(Ol).

Proof. By the triangle inequality and the definition of φ, we have

d(j, φ(oj)) ≤ d(j, oj) + d(oj, φ(oj)) ≤ c∗j + d(oj, sj) ≤ 2c∗j + cj.

Now we describe a series of test swaps for each part Sl∪Ol of the partition:

Lemma 2.1.4. For parts Sl, Ol with |Sl| = |Ol| ≤ p:

0 ≤
∑

j∈N∗(Ol)

(c∗j − cj) +
∑

j∈N(Sl)

2cj.

Proof. For any locally optimum solution S, if we swap at most p facilities

with F\S, then the cost change is guaranteed to be non-negative. Because

|Sl| = |Ol| ≤ p, we get 0 ≤ cost(S − Sl +Ol)− cost(S).

We describe a way to reassign clients to upper bound the cost change. The

following client reassignment plan ensures every client is assigned to an open

facility:

1. For all clients j ∈ N∗(Ol), assign j to oj.
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2. For all clients j ∈ N(Sl)\N∗(Ol), assign j to φ(oj).

3. The remaining clients assign to sj.

This assignment is valid because we did not assign any clients to a closed

facility due to Lemma 2.1.2. Take an example of Figure 2.1. Ol and Sl is

being considered for a test swap, Om, Sm is not. This implies after the test

swap, white squares will be open, and the grey circle φ(oj3) will also be open

because Sm is not being swapped out. Clients j1, j2 belongs to the case 1;

client j3 belongs to case 2; and client j4 belongs to case 3. Figure 2.1 gives

an illustration of different types of clients whose cost contribution needs to be

carefully considered before and after a test swap. We now give the cost change

analysis for these clients.

It is obvious to see from 1, the cost change for clients j ∈ N∗(Ol) is

d(j, oj) − d(j, sj) = c∗j − cj. From 2, we get the cost change for clients

j ∈ N(Sl)\N∗(Ol) = d(j, φ(oj)) − d(j, sj). Apply Lemma 2.1.3 and we get

d(j, φ(oj))− d(j, sj) ≤ 2c∗j . From 3, the cost change for the rest of the clients

is 0. Because
∑

j∈N(Sl)\N∗(Ol)
2cj ≤

∑

j∈N(Sl)
2cj, and we described a valid

reassignment which may not be the best reassignment but it is sufficient for

proving the lemma.

The following proof is where we differ from the Gupta and Tanwongsan

analysis slightly. They perform many more swaps and average their resulting

inequalities. We perform fewer swaps, but they are randomly chosen. Essen-

tially we achieve the same inequality but we chose the probabilistic method in

our Budgeted Red-Blue Median analysis.

Lemma 2.1.5. For parts |Sl| = |Ol| = t > p :

0 ≤
∑

j∈N∗(Ol)

(c∗j − cj) +

(

1 +
1

p

)

∑

j∈N(Sl)

2c∗j .

Proof. This proof generally follows the proof of Lemma 2.1.4, however the size

of the partition we consider is k > p. So if we were to swap out Sl and swap Ol

entirely, we are not guaranteed the overall cost change is non-negative. Here

we construct a different set of test swaps for this partition.
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Let r ∈ Sl be the facility with deg(r) > 0. Let Ŝl := Sl − r. Since there is

exactly one facility r ∈ Sl with deg(r) > 0, we are guaranteed all i ∈ Ŝl have

deg(i) = 0. Now consider the following test swaps: For each facility i∗ ∈ Ol,

pick a random facility i ∈ Ŝl and swap the pair (i, i∗). Note that we swap only

one pair of facilities at a time therefore the cost does not decrease.

For each test swap (i, i∗), consider the following client reassignment plan:

1. For all clients j ∈ N∗(i∗), move j to i∗

2. For all clients j ∈ N(i)\N∗(i∗), move j to φ(oj)

3. The remaining clients j assign to sj.

All clients j ∈ N∗(i∗) have their cost change exactly c∗j − cj. From (2),

because deg(i) = 0 for any i ∈ Ŝl, we are guaranteed φ(oj) 6= i therefore φ(oj)

must be open. Now the cost change for these clients are again: d(j, φ(oj)) −
d(j, sj) ≤ 2c∗j by Lemma 2.1.3. Lastly from (3), the cost change for the rest of

the clients is 0.

Now we average these bounds over the random choices for the swaps. Con-

sider the randomly chosen i ∈ Ŝl for each test swap, the probability that a

specific i is chosen is 1

|Ŝl|
= 1

t−1
. So averaging over all possible test swaps for

a fixed i∗ and a randomly chosen i we get the expected cost change for each

test swap is:

0 ≤
∑

j∈N∗(i∗)

(c∗j − cj) +
1

t− 1

∑

j∈N(Ŝl)\N∗(Ol)

2cj.

Note that
∑

j∈N(Ŝl)\N∗(Ol)
2cj ≤

∑

j∈N(Sl)
2cj so we take it as an upper

bound, summing over all test swaps for all i∗ ∈ Ol, we get:

0 ≤
∑

j∈N∗(Ol)

(c∗j − cj) +
t

t− 1

∑

j∈N(Sl)

2cj.

Finally, note t
t−1
≤ 1 + 1

p
because t ≥ p+ 1. Lemma 2.1.5 follows.
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We conclude by combining Lemma 2.1.3 and 2.1.5, summing the inequali-

ties over all parts Sl∪Ol and recalling that the parts {Sl∪Ol} form a partition

of S ∪O, we see:

0 ≤
∑

j∈C
(c∗j − cj) + (1 +

1

p
)
∑

j∈C
2c∗j

This proves Theorem 2.1.1.

Polynomial-time Adaptation of Algorithm 1

As mentioned before, it is not clear Algorithm 1 runs in polynomial time.

Here we show a standard technique adaptation of Algorithm 1 to guarantee

the following:

Theorem 2.1.6. Algorithm 3 has an execution time that is polynomial in the

inputs size, and produces a

(

3+ 2

p

1−ε

)

-approximation to the k-Median problem for

some constant ε.

Algorithm 3 A polynomial time local search algorithm for k-Median

Let S be arbitrary feasible solution.
ε← constant
while there is some feasible solution S ′ with |S − S ′| ≤ p

and cost(S ′) < (1− ε
k
)cost(S) do

S ← S ′

end while

return S

Proof. We first show that Algorithm 3 runs in polynomial time.

At each iteration of the step 2 of Algorithm 3 there will be at most poly-

nomial number of feasible solution S ′ candidate to check before executing step

2. This is because we consider up to p number of facilities to close and open

each iteration so the number of candidate solution S ′ is upper bounded by
(

n

p

)2

≤ n2p for a constant p where |F| = n. In addition, evaluating cost(S ′)

is polynomial in |C| and upper bounded by p|C| since the cost of a solution is
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only dependant on the distance of clients to their closest open facility. There-

fore finding a feasible candidate S ′ for each iteration only takes polynomial

time of the input size.

On the other hand, note that each iteration we guarantee to improve the

solution by at least ( ε
k
)cost(S). If we let S0 denotes the initial input feasible

solution and let S∗ denotes the solution with minimum non-zero cost then

the number of iterations is at most log (cost(S0)/cost(S
∗)) / log

(

1
1− ε

k

)

+ 1.

Note that S∗ is either the global OPT or the global OPT has a 0 cost. Now

cost(S0) ≤ l|C| where l is the longest distance between a client and a facility

and cost(S∗) is at least the shortest non-zero distance between a client and

a facility. So the number of bits to represent log ((l|C|) /cost (S∗)) is poly-

nomially bounded by the input size. Thus the number of iterations is also

polynomial in input. Therefore Algorithm 3 terminates in polynomial time.

Let O be the global optimum solution and S ′ be the output of Algorithm 3.

Now recall the analysis from the previous section, following Lemma 2.1.3 and

Lemma 2.1.5, change the lower bound on the cost change for each inequality

from 0 to − ε
k
cost(S ′). The rest of the analysis follows for Algorithm 3. We

sum the cost change over all parts again, we get:

−
L
∑

l=1

ε

k

∑

j∈C
cj ≤

∑

j∈C
(c∗j − cj) + (1 +

1

p
)
∑

j∈C
2c∗j .

Clearly L ≤ k, we have:

(1− ε)
∑

j∈C
cj ≤ (3 +

2

p
)
∑

j∈C∗

j

which proves Theorem 2.1.6.
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Chapter 3

The Analysis of Budgeted

Red-Blue Median

3.1 Overview and the Challenges

We begin this chapter by recalling the precise definition of our problem. In

Budgeted Red-Blue Median, we are given a set of clients C and two sets

of facilities, namely red facilities R and blue facilities B. These locations

are within a metric space with metric distance d(i, j) ≥ 0 for any two i, j ∈
C ∪ R ∪ B. Additionally we are given two budgets kr, kb for the two types

of facilities. The goal is to select a subset of facilities R ⊆ R, B ⊆ B with

|R| = kr, |B| = kb while minimizing

cost(R ∪ B) =
∑

j∈C
min
i∈R∪B

d(i, j).

A feasible solution is a subset of facilities R ⊆ R, B ⊆ B with |R| =
kr, |B| = kb. A natural local search algorithm starts with an arbitrary feasible

solution and iteratively improves the solution by changing the selection of

facilities up to a constant number of facilities until no such improvement is

possible.

Algorithm 4 is a generalization of local search algorithm for k-Median from

Chapter 2. As with the k-Median local search algorithm in Chapter 2, it is

not necessarily true this algorithm runs in polynomial time. The standard

workaround will be presented later. The main idea is to only make the im-

provement in each iteration when the improvement is significant enough. This
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Algorithm 4 The p-Swap Heuristic for Budgeted Red Blue Median

Let (R,B) be arbitrary feasible solution and constant p.
while there is some feasible solution (R′, B′) with |R−R′| ≤ p

and |B − B′| ≤ p and cost(R′ ∪ B′) < cost(R ∪ B) do
(R,B)← (R′, B′)

end while

return (R,B)

simple detail is shown at the end of the Chapter. We show that Algorithm 4

achieves the following:

Theorem 3.1.1. A locally optimum solution S = R∪B returned by Algorithm

4 has cost(S) ≤
(

5 +O( 1√
p
)
)

cost(O) where O is a global optimum solution.

3.1.1 Overview of our technique

Before we actually prove Theorem 3.1.1, we briefly recall the techniques from

Chapter 2 and discuss how they will be adapted in the coming proof.

We first emphasize the separation of theoretical analysis and the actual

local search algorithm. The algorithm itself simply tries small local changes

to try and find improved solutions. The analysis itself involves more intricate

steps, namely analyzing test swaps, but the reader should remember this is

only to generate the required inequalities to prove Theorem 3.1.1; these steps

are not part of the actual algorithm.

Recall in the proof of Theorem 2.1.1 we used test swaps to generate some

inequalities that are used in the final bound. Intuitively, a test swap attempts

to make a change to a locally optimum solution. As long as the number of

facilities being swapped is bounded by the size of the swaps of the algorithm,

we know the cost of the resulting solution is no cheaper than the local opti-

mum solution cost. An explicit upper bound was made on the cost change by

describing how each client could be reassigned.

The test swaps in the proof of Theorem 2.1.1 were generated by focussing

on blocks. That is, the analysis first partitioned the facilities in the local and

global optimum solutions into blocks. In turn, the analysis focussed on each

block and generated a collection of test swaps for the block. Combining the

20



the corresponding inequalities over all swaps generated for all blocks revealed

enough information to bound the cost of the local optimum cost by a constant

factor of the global optimum cost.

The proof of Theorem 3.1.1 follows the same approach, but each step is

more involved. Not only do we require each block to be balanced between

the local and global optimum, each colour must also be balanced and some

additional properties listed later are required to complete our analysis. So our

block partitioning scheme is more delicate.

The test swaps are motivated the same way as in Theorem 2.1.1; we want

to ensure each facility in the global optimum is opened once to ensure we get

“negative dependence” on the local optimum cost for each client. This requires

a careful selection of which local optimum facilities to close in the swaps, and

the chief difficulty is in reassigning the clients served by these facilities in a

relatively cheap manner. To complicate things further, we are required to open

some global optimum facilities in more than one test swap to compensate for

some positive dependence on local optimum service cost for some clients.

Ultimately, we still generate a single inequality for each block that bounds

the local optimum service cost for some clients against a constant factor times

the global optimum service cost for some clients. Adding these inequalities for

all blocks will complete the proof Theorem 3.1.1.

Our final bound of 5 + ε is worse than the guarantee given in Theorem

2.1.1. In Chapter 4, we show this is unavoidable. Namely, that we cannot

guarantee better than a 5-approximation for any constant-size neighbourhood

to swap.

3.1.2 Preliminaries

We define some notation here to help us illustrate our techniques. Let S =

R ∪ B with R ∈ R and B ∈ B be a locally optimum solution obtained by

Algorithm 4. We also fix a global optimum solution O = R∗ ∪ B∗ where

R∗ ⊆ R and B∗ ⊆ B. Intuitively, we want to somehow assess the quality of

S. The way we achieve this is by constructing test swaps between S and O to

establish some relations between cost(S) and cost(O), much like the analysis
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of Algorithm 1 from Chapter 2. We can assume O ∩ S = ∅, otherwise we can

just duplicate a facility at the same location and add one copy to each of the

O and S. Such change ensures S still maintains a locally optimum solution.

This can be easily verified.

For any client j ∈ C we let sj ∈ S be the closest facility to j in the local

optimum and oj ∈ O be the closest facility to j in the global optimum. For

clarity, we let cj = d(j, sj) and c∗j = d(j, oj) denote the cost contribution re-

spectively. Thus cost(S) =
∑

j∈C cj and cost(O) =
∑

j∈O c∗j . For convenience,

we let N(i) = {j ∈ C : sj = i} for any i ∈ S and N∗(i∗) = {j ∈ C : oj = i∗}
for any i∗ ∈ O.

Let φ : O → S map each facility in O to its nearest facility in S, breaking

ties arbitrarily. For i ∈ S, let deg(i) = |φ−1(i)|. If deg(i) 6= 0, let cent(i) be

the facility in φ−1(i) that is closest to i, again breaking ties arbitrarily.

We borrow a definition from [17]:

Definition 3.1.2 (very good, good, bad facility). A facility i ∈ S is very

good if deg(i) = 0, good if no i∗ ∈ φ−1(i) has the same colour as i, and bad

otherwise.

This definition will help us to partition the set of facilities. Recall the

partitioning procedure introduced in Chapter 2, our work requires partitioning

the set of facilities into blocks with slight variation. The major differences here

are that we are additionally required to balance the two colours in each block

and the blocks are also allowed to have more than one facility i with deg(i) > 0.

We give the following lemma to describe blocks:

Lemma 3.1.3. We can partition S ∪O into blocks T satisfying the following

properties.

• |T ∩R| = |T ∩R∗| and |T ∩ B| = |T ∩ B∗|.

• For every i ∈ S ∩ T , we also have φ−1(i) ⊆ T . For every i∗ ∈ O ∩ T , we
have φ(i∗) ∈ T .
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• There is some facility î ∈ T ∩S with deg(̂i) > 0 designated as the leader

that has the following properties. Every other i ∈ T ∩ S − {̂i} is either

good or very good and all good i ∈ T ∩ S − {̂i} have the same colour.

The blocks are helpful structures we use in our analysis. Intuitively, each

block is constructed around each individual bad facility so that each block

contains exactly one bad facility until there is no more bad facilities left, then

blocks are formed with the leftover facilities. Figure 3.2 in Section 3.4 shows an

example of a block. The details of generating blocks are discussed in Section

3.3.

As before, we often consider operations that add or remove a single item

from a set. To keep the notation cleaner, we let S+ i and S− i refer to S∪{i}
and S−{i}, respectively, for sets S and items i. We also say swap in a facility

to mean opening a facility and swap out a facility as closing a facility.

In the next section, we give a detailed analysis of a simple example of

Budgeted Red-Blue Median. In Section 3.3 we give details about block

generations. Then finally, we dive into the full multi-swap analysis of the

Budgeted Red-Blue Median in the last section.

3.2 A brief warm up

Hajiaghayi et al [17] gives an introduction of the first constant approximation

for Budgeted Red-Blue Median. Though they did not specify the con-

stant. We note that Hajiaghayi et al [17] essentially analyzed Algorithm 4 with

the input parameter p = 1. In the discussion of lower bounds for Algorithm

4 in Chapter 4 we show that Algorithm 4 with parameter p = 1 has a lower

bound of 7 in that there are solutions that would not be improved by the local

search step with p = 1 yet are as bad as 7−ε times the optimum for arbitrarily

small ε.

Recall that cost(S) =
∑

j∈C cj and cost(O) =
∑

j∈C c∗j . The goal is

to show
∑

j∈C cj ≤ α
∑

j∈C c∗j for some constant α so then we have an α-

approximation for Budgeted Red-Blue Median. We will now illustrate

some challenges we face when migrating the standard analysis of local search
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on k-Median onto Budgeted Red-Blue Median using an simple instance

of the Budgeted Red-Blue Median.

In Figure 3.1 a simple instance ofBudgeted Red-Blue Median is given.

In this instance we consider a local search algorithm with single swap heuris-

tics, that is we are only permitted to construct test swaps involving at most

one pair of blue and/or red facilities. We set the size of the instance to be

|S| = |O| = h+ 1 with |B| = |B∗| = 1 and |R| = |R∗| = h for a large constant

h. Since we only have 1 blue facility i∗ ∈ O, then whenever a test swap swaps

in i∗ we are forced to swap out i ∈ B. However since deg(i) is large and each

test swap only permits swapping one pair of blue and/or red facilities, then all

clients j ∈ N∗(φ−1(i)) need to be reassigned to some open facility. We cannot

assign these clients to i∗ because d(i, i∗) is unbounded. To work around this

issue we introduce the following procedure, note that this is only one way of

constructing test swaps that suited particularly for this simple setting, we do

not guarantee these test swaps generalize in the general setting:

Step 1: Swap in: i∗ , cent(i) Swap out: i , ia for a random a ∈ {1, 2, 3, ..., h}

Step 2: For each k ∈ {1, 2, 3, ..., h} − cent(i): Swap in: ik
∗ Swap out: ia

for a random a ∈ {1, 2, 3, ..., h}

Step 3: Repeat Step 2 once.

Lemma 3.2.1. For any j ∈ C, d(j, φ(oj))− cj ≤ 2c∗j .

The proof for Lemma 2.1.4 works here as well therefore we omit the proof

here. Another useful lemma for analyzing the cost is following:

Lemma 3.2.2. For any j ∈ C, d(j, cent(φ(oj)))− cj ≤ 3c∗j + cj.

Proof. By the triangle inequality and Lemma 3.2.1, it suffices to prove

d(φ(oj), cent(φ(oj))) ≤ c∗j + cj.

By definition of cent() and φ,

d(φ(oj), cent(φ(oj))) ≤ d(φ(oj), oj) ≤ d(sj, oj) ≤ c∗j + cj.
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i

i∗cent(i) hh

O

S

Figure 3.1: Illustration of a simple instance of the problem. In this instance,
we let squares denotes O and circles denotes S. We also have black represents
B and white represents R. The solid lines depicts φ and the thick line connects
cent(i) to i.

Now we give the details on analyzing a simple Red Blue Median instance.

This provides a gentle introduction to our analysis for the general setting of

Budgeted Red-Blue Median in Section 3.4. To summerize:

Theorem 3.2.3. Figure 3.1 illustrates Budgeted Red-Blue Median with

a locally optimum solution S from single swap heuristic such that

cost(S) ≤
(

5 +
4

h− 1

)

cost(O)

when O is a global optimum solution.

Proof.

Step 1:

Consider the Step 1 of the candidate test swaps. We swap one pair of red

facilities (cent(i), ia) and one pair of blue facilities (i∗, i) at the same time.

We note that the cost change is non-negative because S is a local optimum

solution and the test swap only consider up to one pairs of facilities. For clients

j ∈ N∗(i∗)∪N∗(cent(i)), we just send them to oj and bound their cost change

by c∗j − cj. Next note that only i∗ and cent(i) are open after the swaps in step

1, so for all clients j either oj = i∗ or φ(oj) is closed. Now consider clients

j ∈ N(i)\(N∗(i∗)∪N∗(cent(i))), we assign these clients to cent(i). The cost of
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reassigning these clients are d(cent(i), j)−d(j, i) ≤ d(cent(i), i) by the triangle

inequality. Because d(cent(i), i) ≤ d(oj, i) by definition of cent(), we get the

cost change is d(oj, i) ≤ d(oj, j) + d(j, sj) = c∗j + cj.

Finally, for clients j ∈ N(ia)\(N∗(i∗) ∪N∗(cent(i))), because both oj and

φ(oj) are closed, we have to assign these clients to cent(i). Applying Lemma

3.2.2 we get the cost change is 3c∗j + cj. Now ia is randomly chosen, so the

probability of a client belong to N(ia) is
1
h
. Therefore the expected cost change

of a single swap here is 1
h

∑

j∈N(R)(3c
∗
j +cj). Summing over all clients we get:

0 ≤
∑

j∈N∗(i∗)∪N∗(cent(i))

(c∗j − cj)+
∑

j∈N(i)\(N∗(i∗)∪N∗(cent(i)))

(c∗j + cj)+
1

h

∑

j∈N(R)

(3c∗j + cj).

Note that we generated some positive cj terms for some clients. The Step 3

is to generate some extra negative cj terms to cancel out the positive cj terms

so that we have one copy of −cj terms of each client in the end.

Step 2:

Now we consider Step 2. For each of the (ik
∗, ia) swap, we assign j to oj

and get c∗j − cj for every clients j ∈ N∗(ik
∗). For clients j ∈ N(ia)\N∗(ik

∗),

since deg(ia) = 0 we can assign j to φ(oj) and get the cost change of 2c∗j

using Lemma 3.2.1. Then the expected cost change for each individual swap

is 1
h

∑

j∈C 2c∗j . Finally combining all h− 1 inequalities we get:

0 ≤
∑

j∈N∗(R∗)\N∗(cent(i))

(c∗j − cj) +
h− 1

h

∑

j∈N(R)

2c∗j .

Step 3:

Step 3 is similar to step 2, but we only reroute a client j to oj if j ∈
N(i)\(N∗(i∗) ∪ N∗(cent(i))). Thus we get another copy of c∗j − cj for these

clients. Also i is open so we assign every clients j ∈ N(ia) to i and thus
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causing a cost change of 2c∗j for them. Again, with probability of 1
h
, j belongs

to N(ia), we conclude the expected cost change is 1
h

∑

j∈R 2c∗j . Combining all

cost change from the h− 1 test swaps we have :

0 ≤
∑

j∈N(i)\(N∗(i∗)∪N∗(cent(i)))

(c∗j − cj) +
h− 1

h

∑

j∈N(R)

2c∗j .

Combining all three inequalities we get:

h− 1

h

∑

j∈C
cj ≤

∑

j∈N(i)∩(N∗(i∗)∪N∗(cent(i)))

c∗j +
∑

j∈N(i)\(N∗(i∗)∪N∗(cent(i)))

3c∗j +
5h− 1

h

∑

j∈N(R)

c∗j .

Now summarizing:

∑

j∈C
cj ≤

(

5 +
4

h− 1

)

∑

j∈C
c∗j

From Theorem 3.2.3 we noted that for a large h, we get (5+ε)approximation

for this simple instance of Budgeted Red-Blue Median.

3.3 Block Generation

In this section we give details about our procedure for generating blocks.

Recall Lemma 3.1.3 for the description of a block T :

• |T ∩R| = |T ∩R∗| and |T ∩ B| = |T ∩ B∗|.

• For every i ∈ S ∩ T , we also have φ−1(i) ⊆ T . For every i∗ ∈ O ∩ T , we

have φ(i∗) ∈ T .

• There is some facility î ∈ T ∩S with deg(̂i) > 0 designated as the leader

that has the following properties. Every other i ∈ T ∩ S − {̂i} is either
good or very good and all good i ∈ T ∩ S − {̂i} have the same colour.

For convenience, we briefly recall the classification of facilities i ∈ S from

Definition 3.1.2.
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• Very Good: φ−1(i) = ∅.

• Good: φ−1(i) 6= ∅ but no facility in φ−1(i) has the same colour as i.

• Bad: i is neither very good nor good. Some facility in φ−1(i) has the

same colour as i.

Before creating the blocks, we first describe how to partition S ∪ O into

groups. These groups will then be combined to form the final blocks. We say

that a group is a subset G of S ∪O where |G ∩ S| = |G ∩O|, there is exactly

one î ∈ G ∩ S with deg(̂i) > 0, and G ∩ O = φ−1(̂i). Call this facility î the

representative of the group.

We classify groups G in one of three ways.

• Balanced: |G ∩R| = |G ∩R∗| and |G ∩ B| = |G ∩ B∗|.

• Good: î is a good facility and all other i ∈ G ∩ S − î have a different

colour than î. Note this means |G ∩R| = |G ∩R∗| ± 1.

• Bad: G is neither balanced nor good.

Algorithm 5 describes a procedure for forming groups in a particular way

that will be helpful in creating the final blocks.

Algorithm 5 Procedure for partitioning into groups

S ′ ← S,O′ ← O
while ∃ some facility i in S ′ with deg(i) > 0 do

G← φ−1(i) + i
if G ∪X is a balanced group for some X ⊆ S ′ then

G′ ← G ∪X
else if G ∪X is a good group for some X ⊆ S ′ then

G′ ← G ∪X
else

Let X ⊆ {i′ ∈ S ′ : deg(i′) = 0} such that G ∪X is a bad group and
all facilities in S ′ −X have the same colour. . c.f. Lemma 3.3.1
G′ ← G ∪X.

end if

Output group G′ . i is the representative of G′

S ′ ← S ′ −G′, O′ ← O′ −G′

end while
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Lemma 3.3.1. Algorithm 5 partitions S ∪O into a set of groups.

Proof. We first show that there are always exactly

|O′| − |{i ∈ S ′ : deg(i) 6= 0}|

very good facilities in S ′. During the execution of Algorithm 5, let set Ŝ =

{i ∈ S ′ : deg(i) 6= 0}. The size of O′ is |O′| = ∑

i∈Ŝ |φ−1(i)| because every

facility i∗ ∈ O must belongs to φ−1(i) for some i ∈ Ŝ, and φ−1(i′)∩φ−1(i′′) = ∅
for any i′, i′′ ∈ Ŝ, i′ 6= i′′ by the definition of φ(). Every other facility in

i ∈ S\Ŝ has deg(i) = 0 so the number of facilities with degree 0 is exactly

|O′| − |Ŝ| = |O′| − |{i ∈ S ′ : deg(i) 6= 0}|.
Thus we can always find a subset of very good facilities X such that G∪X

is a group with |O ∩ {G ∪X}| = |S ∩ {G ∪X}|. We prove that if we can not

find a set G ∪X that is either a balanced group or good group, then we can

find X to ensure S ′ −X only contains facilities of one colour.

There are 2 cases. Suppose i is bad and, without loss of generality, that it is

also red. Because we cannot extend G to be a balanced group, either there are

less than |φ−1(i)∩B| very good blue facilities in S ′ or less than |φ−1(i)∩R|−1

very good red facilities in S ′. In either case, first add all very good facilities

from the “deficient” colour to X to use up that colour and then add enough

very good facilities to X of the other colour to ensure |X| = |φ−1(i)| − 1.

In the other case when i is good, we again assume without loss of generality

that it is red. Because we cannot form a good group, there are fewer than

|φ−1(i)| − 1 very good blue facilities in S ′. Use them up when forming X and

then add enough very good red facilities so that |X| = |φ−1(i)| − 1.

Let G be the collection of groups output by Algorithm 5. We now show

how to piece these groups together to form blocks.

It is easy to verify that any “block” that is output by this algorithm indeed

satisfies the properties listed in Lemma 3.1.3.

The following lemma explains why this procedure correctly executes and

why all groups are used up. That is, it finishes the partitioning of S ∪O into

blocks. For a union of groups G∗ = G1 ∪ . . .∪Gk, define the blue deficiency of

G∗ as |G∗ ∩ B∗| − |G∗ ∩ B|.
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Algorithm 6 Procedure for generating blocks

G ′ ← G
while there is some balanced group G in G ′ do

Output G as a block with its own representative being the leader.
G ′ ← G ′ −G.

end while

while there are good groups G,G′ ∈ G ′ with different coloured representa-
tives do

Output the block G ∪G′ and choose either representative as the leader.
G ′ ← G ′ − {G,G′}

end while

while there is some bad group G ∈ G ′ do . c.f. Lemma 3.3.2.
Let G0 ⊆ G ′−G consist only of good groups such that G+G0 is a block.
Output G+ G0 with the representative of G as the leader.
G ′ ← G ′ − (G+ G0).

end while

Lemma 3.3.2. If G is a bad group considered in some iteration of the last

loop, we can find the corresponding G0 so that G+G0 is a block. Furthermore,

after the last while loop terminates then G ′ = ∅.

Proof. Suppose, without loss of generality, that the blue very good facilities

were used up the first time a bad group was formed in Algorithm 5. Thus, for

every bad group G′ ∈ G we have |G ∩ B| < |G ∩B∗|.
Let G be a group considered in some iteration of the last loop in Algorithm

6. As observed above, the blue deficiency of G is strictly positive.

The blue deficiency of the union of all groups in G ′ is 0 because we have

only removed blocks from G ′ up to this point and, by definition, a block has

blue deficiency 0. Thus, there must be some other group G′ ∈ G ′ with strictly

negative blue deficiency. It cannot be that G′ is bad, otherwise it has nonneg-

ative blue deficiency. It also cannot be that G′ is balanced or that it is a good

group with a red representative, because such blocks also have nonnegative

blue deficiency.

Therefore, G′ must be good with a blue representative. Good blocks with

blue representatives have blue deficiency exactly -1. Add this G′ to G0. Iterat-
ing this argument with G′+G0, we add good groups with blue representatives

to G0 until G′ + G0 is a block. The layout in Figure 3.2 in Section 3.4 depicts
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a block constructed in this manner, the leftmost group in the figure is the bad

group G and the remaining groups form G0.
After the last loop there are no groups with bad representatives or balanced

groups. Furthermore, all good groups must have the same colour of represen-

tative by the second loop. If there were any good group, the blue deficiency of

the union of groups in G ′ would then be nonzero, so there cannot be any good

groups left. That is, at the end of the last loop there are no more groups in

G ′.

3.4 Multi-swap Analysis

In this section we analyze Algorithm 4. We take a closer look at the cost

change incurred by any valid test swap that swaps at most constant pairs of

facilities of each color in a similar fashion as the analysis in Section 3.2. Thus

we complete the proof for Theorem 3.1.1 in this section.

3.4.1 The Good, The Bad, The Randomized

Recall the example we gave previously in Figure 3.1. Client j with possibility

of having both sj, oj closed within any single test swap are forced to reroute

to cent(sj) and thus we have to use Lemma 3.2.2 to bound their cost. This in

turns requires another test swap to cancel out the positive cj terms. Intuitively

we identify these clients as bad and the rest of the clients are good. Bad clients

are more likely to incur additional test swaps and thus making bounding their

cost harder. The workaround, similar as before, we will use a randomized

argument to estimate the expected cost change for these clients. We will also

show with an averaging argument we can bound the cost of a locally optimum

solution nicely.

3.4.2 Four Cases

Recall that we are assuming S = R∪B is a locally optimum solution returned

by Algorithm 4 and O = R∗ ∪ B∗ is some globally optimum solution. We

assume p = t2 + 1 for some sufficiently large integer t.
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Focus on a single block T . For brevity, let T ∗
R = T ∩ R∗ and T ∗

B = T ∩ B∗

denote the red and blue facilities from the optimum solution in T . Similarly

let TR = T ∩ R and TB = T ∩ B denote the red and blue facilities from the

local optimum solution in T . The main goal of this section is to demonstrate

the following inequality for block T .

Theorem 3.4.1. For some absolute constant γ that is independent of t, we

have

0 ≤
∑

j∈N∗(T ∗

R
∪T ∗

B
)

[(

1 +
γ

t

)

c∗j − cj

]

+
∑

j∈N(TR∪TB)

[(

4 +
γ

t

)

· c∗j +
γ

t
· cj
]

.

To prove Theorem 3.1.1, we simply consider summing the inequalities for

all clients over all blocks. Because Theorem 3.4.1 applies to all blocks, We can

sum the inequality from Theorem 3.4.1 for every block T and get:

0 ≤
∑

j∈N∗(O)

[(

1 +
γ

t

)

c∗j − cj

]

+
∑

j∈N(S)

[(

4 +
γ

t

)

· c∗j +
γ

t
· cj
]

.

Now since each client j appears in both N(S) and N∗(O), then we can

combine the two sums and get:

0 ≤
∑

j∈C

(

5c∗j − cj +
γ

t
(2c∗j + cj)

)

where γ is some absolute constant. Moving the cj terms to the left and collect

the coefficient, we get:

∑

j∈C
cj ≤

∑

j∈C

(

5 + 2γ
t

1− γ

t

c∗j

)

.

Recall t ∼ √p and Theorem 3.1.1 follows.

The analysis breaks into a number of cases based on whether T ∗
R and/or T ∗

B

are large. In each of the cases, we use the following notation and assumptions.

Let î denote the leader in T . Without loss of generality, assume all other

i ∈ TB∪TR with deg(i) > 0 are blue facilities. Let B = {i ∈ TB−î : deg(i) > 0}
and then cent(B) denotes {i∗ ∈ T ∗

B ∪ T ∗
R : cent(i) = i∗, i ∈ B}. Figure 3.2

illustrates this notation.
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The swaps we consider in these cases are quite varied, but we always ensure

we swap in cent(i) whenever some i ∈ S ∩ T with deg(i) > 0 is swapped out.

This way, we can always bound the reassignment cost of each client j by using

either Lemma 3.2.1 or Lemma 3.2.2.

3.4.3 Case |T ∗R| ≤ t2, |T ∗B| ≤ t

In this case, we simply swap out all of TR ∪ TB and swap in all of T ∗
R ∪ T ∗

B.

Because R ∪ B is a locally optimum solution and because this swaps at most

t2 facilities of each colour, we have

0 ≤ cost(S ∪ (T ∗
R ∪ T ∗

B)− (TR ∪ TB))− cost(S).

Of course, after the swap each client will move to its nearest open facility.

Similar to what we did in the analysis for the simple example in Section 3.2, we

explicitly describe a (possibly suboptimal) reassignment of clients to facilities

to upper bound this cost change.

Each j ∈ N∗(T ∗
R ∪ T ∗

B) is moved from sj to oj which incurs an assignment

cost change of exactly c∗j − cj. Each j ∈ N(TR ∪ TB)−N∗(T ∗
R ∪ T ∗

B) is moved

to φ(oj). Note that φ(oj) 6∈ T because oj /∈ T ∗
R ∪ T ∗

B, so φ(oj) remains open

after the swap. By Lemma 3.2.1, the assignment cost change is bounded by

2c∗j . Every other client j that has not already been reassigned remains at sj

and incurs no assignment cost change. Thus,

0 ≤
∑

j∈N∗(T ∗

R
∪T ∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

2c∗j

which is even better than what we are required to show for Theorem 3.4.1.

We note that the analysis Section 3.4.6 could subsume this analysis (with

a worse constant), but we have included it here to serve as a simple warm up

to the full analysis.

3.4.4 Case |T ∗R| ≥ t2 + 1, |T ∗B| ≥ t+ 1

We start by briefly discussing some challenges in this case. In the worst case,

all of the ib ∈ TB have deg(i) being very large. The issue here is that we need
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î̂i

cent(̂i)cent(̂i)

i1i1 i2i2 i3i3 i4i4

cent(i1)cent(i1) cent(i2)cent(i2) cent(i3)cent(i3) cent(i4)cent(i4)

Figure 3.2: Illustration of a block T . The facilities on the top are in T ∩ O
and the facilities on the bottom are in T ∩ S. The directed edges depict
φ, and the thick edges connect cent(i) to i. The facilities coloured black lie
in B, the facilities coloured white lie in R, and the facilities coloured grey
could either lie in B or R. Note that B = {i1, i2, i3, i4} and cent(B) =
{cent(i1), cent(i2), cent(i3), cent(i4)}. The layout of the figure is suggestive
of how the block was constructed by adding “good” groups to the initial bad
group in the procedure of generating blocks.

to swap in each i∗b ∈ T ∗
B in order to generate terms of the form c∗j − cj for j

with oj = i∗b . But this requires us to swap out some ib. Since we do not have

enough swaps to simply swap in all of φ−1(ib), we simply swap in cent(ib).

Any client j with sj being closed and oj ∈ φ−1(ib) − cent(ib) cannot be

reassigned to φ(oj), so we send it to cent(φ(oj)) and use Lemma 3.2.2 to

bound the reassignment cost. This leaves a term of the form +cj, so we have

to consider additional swaps involving −cj to cancel this out. These additional
swaps cause us to lose a factor of roughly 5 instead of 3.

Another smaller challenge is that we do not want to swap out the leader

î ∈ T ∩ S for a variety of technical reasons. However, since |T ∗
R| and |T ∗

B|
are both big, this is not a problem. When we swap in some i∗ ∈ T ∩ O, we

will just swap out a randomly chosen facility in T ∩ S − î of the same colour.

The probability any particular facility is swapped in this way is very small.

Ultimately, each facility in T ∩ S will be swapped out 2 + O(1/t) times in

expectation.

To be precise, we partition the set of clients in N(TR∪TB) into two groups:

Cbad := N(B) ∩N∗(T ∗
R − cent(B)) and Cok := N(TR ∪ TB − î)− Cbad.

Note that N (̂i) is not included in Cok because we will never close î in this case.
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The first group is dubbed bad because there may be a swap where both

sj and φ(oj) are closed yet oj is not opened so we can only use Lemma 3.2.2

to bound their reassignment cost. In fact, some clients j ∈ Cok may also be

involved in such a swap, but we are able to use an averaging argument for these

clients to show that the resulting +cj term from using Lemma 3.2.2 appears

with negligible weight and does not need to be cancelled.

We consider the following two types of swaps to generate our initial in-

equality.

• For each i∗b ∈ T ∗
B, choose a random ib ∈ TB− î. If ib 6∈ B (i.e. deg(ib) = 0)

then simply swap out ib and swap in i∗b . If ib ∈ B then swap out ib and

a random ir ∈ TR − î and swap in i∗b and cent(ib).

• For each i∗r ∈ T ∗
R − cent(B), swap in i∗r and swap out a randomly chosen

ir ∈ TR − î.

By choosing facilities at “random”, we mean uniformly at random from the

given set and this should be done independently for each invokation of the

swap.

Lemma 3.4.2.

0 ≤
∑

j∈N∗(T ∗

B
∪T ∗

R
)

(

t+ 1

t
· c∗j − cj

)

+
∑

j∈Cok

[(

2 +
5

t

)

c∗j +
1

t
cj

]

+
t+ 1

t

∑

j∈Cbad

(3c∗j+cj).

Proof. For brevity, we will let βR = |TR|
|TR−î| and βB = |TB |

|TB−î| . Note that βR, βB ≤
t+1
t

and that either βR = 1 or βB = 1.

First consider a swap of the first type. This type of swap involves two

situation depending on if the randomly chosen ib ∈ TB − î has deg(ib) = 0 or

not. If deg(ib) > 0, we swap in {i∗b , cent(ib)} and swaps out {ib, ir}. Because

R ∪ B is a local optimum the cost of the solution does not decrease after

performing this swap. We provide an upper bound on the reassignment cost.

Each j ∈ N∗({i∗b , cent(ib)}) is reassigned from sj to oj and incurs an as-

signment cost change of c∗j − cj. Every client j ∈ N({ib, ir}) that has not yet
been reassigned is first moved to φ(oj). If this φ(oj) remains open, assign j
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to it. By Lemma 3.2.1, the assignment cost for j increases by at most 2c∗j . If

φ(oj) is not open then φ(oj) = ib (because deg(ir) = 0) so we instead move j

to cent(φ(oj)) = cent(ib). Lemma 3.2.2 shows the assignment cost increases

by at most 3c∗j + cj. This can only happen if sj ∈ {ir, ib} and φ(oj) = ib.

Combining these observations and using slight overestimates, we see

0 ≤
∑

j∈N∗({i∗
b
,cent(ib)})

(c∗j − cj) +
∑

j∈N({ib,ir})
φ(oj) 6=ib

2c∗j +
∑

j∈N({ib,ir})
φ(oj)=ib

(3c∗j + cj). (3.1)

Now, if the random choice for ib in the swap has deg(ib) = 0, then swapping

{ib} out and {i∗b} in generates an even simpler inequality:

0 ≤
∑

j∈N∗(i∗
b
)

(c∗j − cj) +
∑

j∈N(ib)

2c∗j . (3.2)

To see this, just reassign each j ∈ N∗(i∗b) from sj to oj and reassign the

remaining j ∈ N(ib) from sj to φ(oj) (which remains open because deg(ib) = 0)

and use Lemma 3.2.1.

Consider the expected inequality that is generated for this fixed i∗b . We

start with some useful facts that follow straight from the structure of the

block T and the swap we just performed.

• Any j ∈ N∗(cent(B)) has oj being opened with probability 1
|TB−î| .

• Any j ∈ Cbad has sj being closed with probability 1
|TB−î| .

• Any j ∈ Cok −N(TR) has sj being closed with probability 1
|TB−î| . When

this happens, if oj is not opened then φ(oj) must be open.

That is, sj ∈ Cok means oj ∈ T ∗
B ∪ cent(B). If oj ∈ T ∗

B then φ(oj) = î

(by the structure of block T ) which remains open. If oj ∈ cent(B) then

either φ(oj) was not closed, or else cent(φ(oj)) = oj was opened.

• Any j ∈ Cok ∩N(TR) has sj being closed with probability |B|
|TB−î| ·

1
|TR−î| .

If oj and φ(oj) are closed, then we move j to cent(φ(oj)). However, this

can only happen with probability 1
|TB−î| ·

1
|TR−î| since it must be that φ(oj)

is the blue facility that was randomly chosen to be closed.
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Averaging (3.1) over all random choices and using some slight overestimates

we see

0 ≤
∑

j∈N∗(i∗r)

(c∗j − cj) +
1

|TB − î|
·

∑

j∈N∗(cent(B))

(c∗j − cj)

+
1

|TB − î|





∑

j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j





+
1

|TB − î|
· 1

|TR − î|
∑

j∈Cok∩N(TR)

(|B|2c∗j + 3c∗j + cj).

Summing over all j ∈ N∗(T ∗
B) shows

0 ≤
∑

j∈N∗(T ∗

B
)

(c∗j − cj) + βB ·
∑

j∈N∗(cent(B))

(c∗j − cj) (3.3)

+βB ·





∑

j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j





+
βB

|TR − î|
·

∑

j∈Cok∩N(TR)

((2|B|+ 3)c∗j + cj).

Next, consider the second type of swap that swaps in some i∗r ∈ T ∗
R−cent(B)

and swaps out some randomly chosen ir ∈ TR − î. Over all such swaps,

the expected number of times each ir ∈ TR − î is swapped out is
|T ∗

R
|−|B|

|TR−î| =

βR− |B|
|TR−î| . In each such swap, we reassign j ∈ N∗(i∗r) from sj to oj and every

other j ∈ N(ir) from j to φ(oj) which is still open because deg(ir) = 0. Thus,

0 ≤
∑

j∈N∗(T ∗

R
−cent(B))

(c∗j − cj) +

(

βR −
|B|
|TR − î|

)

·
∑

j∈Cok∩N(TR)

2c∗j

Scaling this bound by βB, adding it to (3.3), and recalling |TR| ≥ t2 shows

0 ≤
∑

j∈N∗(T ∗

B
)

(c∗j − cj) + βB ·
∑

j∈N∗(T ∗

R
)

(c∗j − cj)

+βB ·





∑

j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j





+βB ·
∑

j∈Cok∩N(TR)

[(

2βR +
3

t2

)

· c∗j +
1

t2
· cj
]

.

Recall that βB, βR ≤ t+1
t

and also βB · βR ≤ t+1
t

to complete the proof of

Lemma 3.4.2.
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Our next step is to cancel terms of the form +cj in the bound from Lemma

3.4.2 for j ∈ Cbad. To do this, we again perform the second type of swap for

each i ∈ T ∗
R − cent(B) but reassign clients a bit differently in the analysis.

Lemma 3.4.3.

0 ≤
∑

j∈Cbad

(c∗j − cj) +
t+ 1

t
·

∑

j∈Cok∩N(TR)

2c∗j

Proof. For each i∗r ∈ T ∗
R − cent(B), swap i∗r in and swap out a randomly

chosen ir ∈ Tr − î. Rather than reassigning all j ∈ N∗(i∗r) to i∗r, we only

reassign those in Cbad ∩ N∗(i∗r). Since deg(ir) = 0 then any other j ∈ N(ir)

must have φ(oj) 6= ir and can be reassigned to φ(oj) and which increases the

cost by at most 2c∗j by applying Lemma 2.1.3.

Summing over all i∗r, observing that Cbad ⊆ T ∗
R−cent(B), and also observing

that each j ∈ Cok has sj closed at most βR ≤ t+1
t

times in expectation, we

derive the inequality stated in Lemma 3.4.3.

Adding the bounds stated in Lemmas 3.4.2 and 3.4.3 we get:

0 ≤
∑

j∈N∗(T ∗

B
∪T ∗

R
)

(

t+ 1

t
· c∗j − cj

)

+
∑

j∈Cok

[(

4 +
5

t

)

c∗j +
1

t
cj

]

+

∑

j∈Cbad

[(

4 +
3

t

)

c∗j +
1

t
cj

]

. (3.4)

Now note that Cok ∩ Cbad = ∅ and Cok, Cbad ⊆ N(TB ∪ TR) because of the

definitions of Cok and Cbad. So we can combine the two sums and take the

upper bound and get:

0 ≤
∑

j∈N∗(T ∗

B
∪T ∗

R
)

(

t+ 1

t
· c∗j − cj

)

+
∑

j∈N(TB∪TR)

[(

4 +
5

t

)

c∗j +
1

t
cj

]

.

Setting γ = 5 shows that Theorem 3.4.1 holds in this case.

3.4.5 Case |T ∗R| ≥ t2 + 1, |T ∗B| ≤ t

In this case, we start by swapping in all of T ∗
B and swapping out all of TB

(including, perhaps, î if it is blue). Let m = |cent(TB)| − 1 if î is blue and
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cent(̂i) is also blue, or m = |cent(TB)| otherwise. In the same swap, we also

swap in cent(TB) and swap out a random subset of size m of facilities in TR− î.
This is possible as |TR− î| ≥ t ≥ |cent(TB)| ≥ m. By random subset, we mean

among all subsets of Tr − î of size m, choose one uniformly at random.

As with Section 3.4.4, we begin with a definition of bad clients that is

specific to this case:

Cbad := N(TB) ∩N∗(T ∗
R − cent(TB)).

Clients j ∈ Cbad may be involved in swaps where both sj and φ(oj) are closed

yet oj is not opened and we cannot make this negligible with an averaging

argument.

Lemma 3.4.4.

0 ≤
∑

j∈N∗(T ∗

B
∪cent(TB))

(c∗j − cj) +
1

t

∑

j∈N(TR)

(3c∗j + cj) +
∑

j∈Cbad

(3c∗j + cj)

Proof. After the swap, reassign every j ∈ N∗(T ∗
B ∪ cent(TB)) from sj to oj,

for a cost change of c∗j − cj. Every other j that has sj being closed is first

reassigned to φ(oj). If this is not open, then further move j to cent(oj) which

must be open because the only facilities i ∈ TR∪TB with deg(i) > 0 that were

closed lie in TB and we opened cent(TB).

If j ∈ N(TB)−Cbad then oj ∈ T ∗
B ∪ cent(TB) and we have already assigned

j to oj. If j ∈ Cbad then we have moved j to cent(φ(oj)) and the cost change

is 3c∗j + cj by Lemma 3.2.2.

Finally, if j ∈ N(TR) then we either move j to φ(oj) or to cent(φ(oj)) if

φ(oj) is not open. The worst-case bound on the reassignment cost is 3c∗j+cj by

Lemmas 3.2.1 and 3.2.2. However, note that sj ∈ TR is closed with probability

only 1/t, since we close a random subset of Tr − î of size at most t and

|Tr − î| ≥ t2.

To generate the desired inequality for block T , we require some additional

swaps, described in the following: For each facility i∗r ∈ T ∗
R − cent(TB), swap
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in i∗r and swap out a randomly chosen ir ∈ TR− î. The analysis of these swaps

is essentially the nearly identical swaps in Section 3.4.4, so we omit it and

merely summarize what we get by combining the resulting inequalities with

the inequality from Lemma 3.4.4.

Lemma 3.4.5.

0 ≤
∑

j∈N∗(T ∗

R
∪T ∗

B
)

(c∗j−cj)+
∑

j∈N(TR)

(

t2 + 1

t2
· 2c∗j +

1

t
· (3c∗j + cj)

)

+
∑

j∈Cbad

(3c∗j+cj)

We cancel the +cj terms for j ∈ Cbad with one further collection of swaps.

For each i∗r ∈ T ∗
R− cent(TB) we swap in i∗r and a randomly chosen ir ∈ TR− î.

The following lemma summarizes a bound we can obtain from these swaps. It

is proven in essentially the same way as Lemma 3.4.3.

Lemma 3.4.6.

0 ≤
∑

j∈Cbad

(c∗j − cj) +
t2 + 1

t2
·
∑

j∈N(TR)

2c∗j .

Adding this to the bound from Lemma 3.4.5 shows

0 ≤
∑

j∈N∗(T ∗

R
∪T ∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

(

t2 + 3t+ 1

t2
· 4c∗j +

1

t
· cj
)

.

3.4.6 Case |T ∗R| ≤ t2, |T ∗B| ≥ t+ 1

Because φ−1(i) ⊆ T ∗
R and deg(i) > 0 for each i ∈ B, then |B| ≤ t2 as well. We

will swap all of T ∗
R for all of TR, but we will also swap some blue facilities at

the same time. Let B′ = B and let B
′
be an arbitrary subset of T ∗

B of size |B|.
If î 6∈ TR ∪ B′ then add î to B′. If cent(̂i) 6∈ T ∗

R ∪ B
′
then add cent(̂i) to

B
′
. At this point,

∣

∣

∣
|B′| − |B′|

∣

∣

∣
≤ 1 Add an arbitrary i∗b ∈ T ∗

B − B
′
to B

′
or

ib ∈ TB − B′ to B′ to ensure |B′| = |B′|.
We begin by swapping out TR ∪ B′ and swapping in T ∗

R ∪ B
′
. The follow-

ing list summarizes the important properties of this selection, the first point

emphasizes that this swap will not improve the objective function since S is a

locally optimum solution for the p-swap heuristic where p = t2 + 1.

• |B′| = |B′| ≤ t2 + 1 and |T ∗
R| ≤ t2.
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• T ∗
R was swapped in and TR was swapped out.

• For each i ∈ TR ∪ TB with deg(i) > 0, i was swapped out and cent(i)

was swapped in.

The following is precisely the clients j that will be moved to cent(φ(oj)) in

our analysis.

Cbad := [N(TR ∪ B′)−N∗(T ∗
R ∪B

′
)] ∩ {j : φ(oj) ∈ TR ∪B′}.

As before, define Cok = N(TR ∪ TB)− Cbad.

The following bound is generated from swapping out TR∪B′ and swapping

in T ∗
R∪B

′
and follows from the same arguments we have been using throughout

the paper.

Lemma 3.4.7.

0 ≤
∑

j∈N∗(T ∗

R
∪B′

)

(c∗j − cj) +
∑

j∈Cok∩N(TR∪B′)

2c∗j +
∑

j∈Cbad

(3c∗j + cj)

Next, let κB : (T ∗
B − B

′
) → (TB − B′) be an arbitrary bijection of the

remaining blue facilities that were not swapped. For every i∗b ∈ T ∗
B − B

′
,

consider the effect of swapping in i∗b and swapping out κB(i
∗
b). Note that every

facility ib swapped out in this way has deg(ib) = 0. So we can derive two

possible inequalities from such swaps.

0 ≤
∑

j∈N∗(i∗
b
)

(c∗j−cj)+
∑

j∈N(κB(i∗
b
))

2c∗j and 0 ≤
∑

j∈N∗(i∗
b
)∩Cbad

(c∗j−cj)+
∑

j∈N(κB(i∗
b
))

2c∗j .

(3.5)

The second inequality follows from only reassigning clients j ∈ N∗(i∗b) ∩ Cbad

from sj to oj.

Adding the bound in Lemma 3.4.7 to the sum of both inequalities over all

i∗b ∈ T ∗
B − B

′
and noting that κB(T

∗
B − B) ∩ (TR ∪ B′) = ∅, we see

0 ≤
∑

j∈N∗(T ∗

R
∪T ∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

4c∗j .

Now we see all four cases we were able to get an inequality we desire.

Theorem 3.4.1 simply follows by extending to a coarse upper bound on the

coefficients over all clients.

41



We remind the reader that we only used at most 2(kr + kb) swaps in the

analysis. This allows us to adapt the standard modification that appeared

in the proof of Lemma 2.1.6 to ensure Algorithm 4 runs in polynomial time

while only losing a (1 + ε) multiplicative factor to the approximation guaran-

tee. Intuitively, we consider to modify the natural local search algorithm for

Budgeted Red-Blue Median in the same fashion as shown by Algorithm

3 with the difference being we put
(

1− ε
2(kr+kb)

)

instead of
(

1− ε
k

)

. The rest

of the proof should follow the proof of Theorem 2.1.6 closely so we omit the

details of the proof here.
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Chapter 4

Tight Gap Example for Local

Search Algorithm

In this chapter we show that the analysis shown in Section 3.4 has a matching

lower bound. By the definition of an α-approximation, in order to show that

5 + ε is the best possible approximation guarantee using the local search al-

gorithm in Section 3.1 all that is required is to produce a worst case scenario

where the locality gap matches the approximation factor.

Theorem 4.0.1. For any integers p, ` with 1 ≤ p ≤ `/2, there is an instance

of Budgeted Red-Blue Median that has a locally-optimum solution for

the p-swap heuristic with cost at least
(

5 + 2
p
− 10p

`+1

)

·OPT .

Theorem 4.0.1 provides a matching lower bound for the natural local search

algorithm on Budgeted Red-Blue Median. Notably the theorem guaran-

tees a (7− ε) matching lower bound for a single swap analysis by letting p = 1.

In the following sections, we first present a simple set up of a bad gap

example to illustrate the analysis for a single swap case. From there we will

present a bad gap example for the general p-swap setting. And finally we

extend this approach to apply it to the multi-colour setting.

4.1 Simple Single Swap Bad Gap Example

We will first present a simple case where we are only allowed single swap

analysis, or more precisely, for each test swap we can swap up to one pair of

43



11 11 11

11 11 11

00 00 00 00 00

22 22 222k − 42k − 4 2k − 42k − 4

. . .. . .

. . .. . .

k − 1 timesk − 1 times

k timesk times

Figure 4.1: This is a illustration of an instance of Red Blue Median with a
bad locality gap with single swap heuristics local search. We are given |R| =
|R∗| = 2 and |B| = |B∗| = k with squares depicts O and circles are facilities in
S. We are also given the set of clients C drawn as smaller solid dots. The edges
in the graph shows the distance between any two locations and the metric is
shortest distance metric. Consider the three groups of facilities and clients in
the figure, judging from the clustering we name them left group, middle group
and the right group. We show in this instance the cost(S) ≥ (7− 10

k
)OPT

blue facilities and/or one pair of red facilities. We show in this example the

following:

Theorem 4.1.1. Figure 4.1 depicts an instance of Budgeted Red-Blue

Median such that cost(S) ≥ (7− 10
k
)cost(O) and S is locally optimum solution.

Consider the instance depicted in figure 4.1. We are given the locally

optimum solution S produced by the local search algorithm for the single swap

heuristics and a global optimum solution O. Both S and O are consisting of

k blue facilities and 2 red facilities. We divide the facilities into three groups

as depicted in the figure, for the left group, for each blue facility i in S there

exists a client such that d(i, j) = d(i′, j) where i′ is the single facility in the

OPT in the group. For the middle group we only have a single red facility

i ∈ S and two red facilities i′ ∈ O, and for each i′ in the middle group, we

have one client j with d(i, j) = 2k − 4 and letting j to be infinitely close to

i′ so that the distance d(j, i′) = 0. For the right group, we have k − 1 blue

facilities in O and a single red facility in S. There also exists one client for
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each blue facilities at infinitely close distance and a distance of 2 away from

the red facility as depicted in the figure.

Now we prove Theorem 4.1.1. And in order to do so, it is sufficient to show

the following:

• S is indeed a locally optimum solution, i.e. there is no single test swap

that finds a cheaper solution

• cost(S) ≥ (7− ε) · cost(O)

The second point is very easy to verify: Recall the cost of a solution is

the sum of distance of all clients to their closest open facility. Therefore in

S, each client j in the left group is assigned to the facility directly below it

for any other facility i′ the distance d(i′, j) ≥ 3 by the shortest path metric.

And since there is only one single open facility in S for both the middle and

right group, it’s trivial to see that all the clients are assigned to that facility.

Therefore summing up the distance and we get the cost of S:

cost(S) = k · 1 + 2 · (2k − 4) + 2 · (k − 1) = 7k − 10

For O, following the obvious clients assignment, note the cost increase for

assigning clients in the middle and right group is 0, we get the following:

cost(O) = k

And for a large k we see that the gap approaches 7 between S and O.

Now all that remains is to show that S is indeed a locally optimum solution.

Since we are only allowing a single pair of facility to be swapped, we can

verify the first point by verifying all possible test swaps yields a cost change

of non-negative value. Now we analyze all possible test swaps:

Only Swap A Single Pair Of Blue Facilities

Let i ∈ B and i ∈ B∗, we consider the swap solution (S − i+ i∗). Note i must

be from the left group. First suppose i∗ is from the left group. Since all clients

have a distance of 1 to any closest open facility, the cost of the left group is
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still k there is no cost change: cost(S − i+ i∗)− cost(S) = 0. The only other

option is to let i∗ be from the right group. When we open i∗, the client j′

that is nearest to i∗ in the right group gets to reassign to i∗ and for simplicity

reasons, from now we will call such clients are associated with the facility. So

the cost change of the client associated with i∗ is exactly 0− 2 = −2. And for

the client j associated with i from the left group, j must be reassign to another

open facility and since no facility in O in the left group is open, the cost change

for reassigning j is 3 − 1 = 2. Thus the cost change overall reassignments is

cost(S − i+ i∗)− cost(S) = 0.

Only Swap A Single Pair Of Red Facilities

We cannot close any red facility from the right group because we are restricted

not to open any blue facility in this case. Otherwise there won’t be any open

facility in the right group so the cost of assigning any client from the right

group would be unbounded. So the only possible test swap in this case is to

swap one pair of red facilities in the middle group. In this case, the cost change

is clearly (2k − 4)− (2k − 4) = 0.

Swap Both Blue And Red Facilities

It is obvious to see that if the pair of red facilities we chose are both from the

middle group, then we can simply combine the analysis for the previous two

cases and see that the cost change is 0. Therefore the only case we have not

considered is having r∗ ∈ R∗ from the middle group and r ∈ R from the right

group. Now since we closed r we must open another facility in the right group,

so let b∗ ∈ B∗ from the right group and this forces us to choose b ∈ B from

the left group. The test swap we consider is S − r − b + r∗ + b∗. For the left

group, we closed b so the client associated with b has to travel a distance of 3

and has a cost change of 3− 1 = 2. For the middle group, we opened r∗, the

cost change of the client associated with r∗ is 0 − (2k − 4) = −(2k − 4). For

the right group, we closed r so now all the clients has to be rerouted to the

only open facility b∗. The client associated with b∗ saves a cost of 0− 2 = −2

but every other client j now has to travel to b∗. Note that d(j, r) = 2 and
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Figure 4.2: Illustration of the bad locality gap. Blue facilities are depicted
with black and red facilities are depicted with white. The top facilities are
the global optimum and the bottom are the local optimum (all of R and B is
depicted in the picture). Each client is represented by a small black dot. The
metric is the shortest path metric of the presented graph, if two locations are
not connected in the picture then their distance is a very large value. Every
edge in the right-most group with p2(`+1) clients has length 1. Recall β = 2p
and α = (`− p)2p.

d(j, b∗) = d(j, r) + d(r, b∗) = 4 so the cost change for each client j is 4− 2 = 2

and there are k − 2 such clients. Therefore adding up all the numbers we get

the cost change for the right group is 2(k − 2)− 2. So combine all the groups

together we get cost(S−r−b+r∗+b∗)−cost(S) = 2−(2k−4)+2(k−2)−2 = 0.

Summary

Now we have shown that any test swap allowing up to a single swap yields

a non-negative cost change value so S is indeed a locally optimum solution.

Theorem 4.1.1 follows from there.

In the next section we will extends the analysis for the case of multi-swap

heuristics. The analysis again follows the same fashion of the single swapped

case however the added parameters increases the complexity of presenting our

results, but the idea generally follows through.

4.2 Multi-Swap Instance Description and Cost

Gap

Now we prove Theorem 4.0.1. Let p, ` be integers satisfying p ≥ 1 and ` ≥ 2p.

Consider the instance with kr = p + 1 and kb = p(` + 1) depicted in Figure

4.2. Here, β = 2p and α = β · (`− p).
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The cost of the local optimum solution is α·(p+1)+β ·p`+p2(`+1) and the

cost of the global optimum solution is simply p2(`+1). Through some careful

simplification, we see the local optimum solution has cost at least 5 + 2
p
− 10p

`+1

times the global optimum solution.

4.3 Locality Optimality

We verify that the solution depicted in Figure 4.2 is indeed a locally optimum

solution. Suppose 0 ≤ R ≤ p red facilities and 0 ≤ B ≤ p blue facilities are

swapped. We break the analysis into four simple cases.

In what follows, we refer to the leftmost collection of only red facilities in

Figure 4.2 as the left group, the rightmost collection of only blue facilities as

the right group, and the remaining facilities as the middle group. We also let

the term subgroup refer to one of the p smaller collections of facilities in the

middle group. In each case, let B′ ≤ B denote the number of global optimum

facilities from the middle group that are swapped in. Recall that î denotes the

local optimum facility in the left group.

Case R = 0

The only clients that can move to a closer facility are the B′ clients in the

middle group that have their associated optimum facilities swapped in. Also,

precisely B · (p − B + B′) clients in the right group are not adjacent to any

open facility so their assignment cost increases by 2.

Overall, the assignment cost change is exactly 2B · (p−B+B′)− βB′. As

β = 2p and B ≤ p, this quantity is minimized at B′ = B leaving us with a

cost change of 2Bp − βB = 0. So, if R = 0 then no choice of blue facilities

leads to an improving swap.

Case R ≥ 1 and î is not swapped out.

In the left group, precisely R clients move to their close facility and the total

savings is −αR. In the middle group, precisely B′ clients move to their close

facility and the total savings is −βB′.
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In fact, it is easy to see that the cheapest such swap occurs when the

B′ ≤ p ≤ ` facilities in the middle group that are swapped in are part of

subgroups where the local optimum facility is swapped out (which is why we

assume R ≥ 1). So, there are exactly R` − B′ other clients j where both oj

and sj are closed and each pays an additional ≥ β to be connected. Finally,

the right group pays an additional 2B(p− B +B′) to be connected.

Overall, the cost increases by 2B(p − B + B′) + β(R` − 2B′) − αR. As

2B − 2β = 2B − 4p ≤ −2p, this is minimized at B′ = B. The cost change is

then 2Bp + β(R` − 2B) − αR. Recall that α = (` − p)β < `β, so this is, in

turn, minimized when R = 1.

Reducing further, the cost change is 2Bp + β`− 2Bβ − α. Setting B = p

to maximize, the change is 2p2 + 2p`− 4p2 − (`− p)2p = 0. So, no swap that

swaps at least one red facility but not î can find a cheaper solution.

Case R = 1 and î is swapped out.

The cost change in the left group is (p− 1)α ≥ 0 since p clients must move an

additional α and only one client saves α. The cost change from the remaining

groups is the same as in the first case R = 0, so the overall assignment cost

does not decrease.

Case R ≥ 2 and î is swapped out.

The cost change in the first group is exactly (p + 1 − 2R)α. Similar to the

second case, the cost change in this case is minimized when each subgroup

that has its local optimum facility closed also has one of its global optimum

facility opened, and all B′ facilities opened in the middle group belong to a

subgroup having its local optimum closed.

The cost change is then 2B(p−B+B′)+β((R−1)`−2B′)+α(p+1−2R).

Again, this is minimized at B′ = B which yields a cost change of 2Bp+β((R−

1)` − 2B) + α(p + 1 − 2R). Now, β` ≤ 2α because ` ≥ 2p, so this is further

minimized at R = p and the cost increase is 2Bp+β((p−1)`−2B)−α(p−1).

Again, setting B = p to minimize the cost change we see it is 2p2 + β((p −

1)`− 2p)− α(p− 1).
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Expanding with β = 2p and α = 2p(`− p), the cost change finally seen to

be

−2p2 + 2p(p− 1)`− 2p(`− p)(p− 1) = 2p3 − 4p2.

The last expression is nonnegative for p ≥ 2.

4.3.1 Summarizing

No matter which ≤ p red and ≤ p blue facilities are swapped, the above

analysis shows the assignment cost does not decrease. The only potentially

concerning aspect is that the very last case derived an inequality that only

holds when p ≥ 2. Still, this analysis does apply to the single-swap case (i.e.

p = 1) since the last case with R ≥ 2 does not need to be considered when

p = 1.

4.4 Extending to t Colors

A natural extension is to apply this approach for a fixed constant types of

facilities, we name the following problem setting the t−Color Facility Me-

dian(TCFM). We are given a set of facilities F and a set of clients C. Given a

constant t of colors and a mapping color(i) : B∪R→ {1, 2, 3, ..., t} that maps

each facility to one color. We are given constraints to open exactly ki of each

1 ≤ i ≤ t colored facilities. In this setting, the goal is to minimize the total

service cost of all clients.

We consider the following natural local search algorithm for TCFM:

Algorithm 7 The p-Swap Heuristic for the TCFM

Let S be an arbitrary feasible solution and constant P .
while there is some feasible solution S ′ with the difference in the num-

ber of facilities at most P for each individual color and cost(S ′) <
cost(S) do

S ← S ′

end while

return S

Note that we simply extended Algorithm 4 by adapting the constraints to t

colors to obtain Algorithm 7. Algorithm 7 outputs a locally optimum solution
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for our problem setting and in this section we prove:

Theorem 4.4.1. For any t > 2, there exists an instance of TCFM for some

P, L such that

cost(S) ≥

(

2t+ 1 +
2

P
− ε(P, L)

)

cost(O)

where O is a global optimum solution and S is an locally optimum solution to

the p−swap heuristic and ε(P, L)→ 0 as L→∞ with P fixed.

Proof. Consider the instance of TCFM in Figure 4.3. Let O be the global

optimum solution depicted as squares in Figure 4.3 and S be the locally opti-

mum solution drawn as circles and we let S ∩O = ∅. Let Ui denote the set of

facilities of color i for 1 ≤ i ≤ t and let |O ∩ Ui| = |S ∩ Ui| = ki.

We partition the instance into groups G0, G1, G2, ..., Gt as depicted in Fig-

ure 4.3, a total of t + 1 groups. Now let Oi = O ∩ Gi and Si = S ∩ Gi for all

0 ≤ i ≤ t and we let the distance d(u, v) to be infinite for any two nodes u, v

that is not from the same group.

For group G0, we have O0 ∩ O ⊆ U1 and î ∈ U1. We have P + 1 facilities

in O0 and there is one client at same location for each facility in O0 and the

distance between each client and î is c0. For each group Gi from 1 ≤ i ≤ t−1,

consider a part containing L facilities in O of color i+1 and one facility from S

of color i. There are L clients in each part and located as shown in Figure 4.3

and there in total PLi−1 identical parts that forms group Gi. Finally we have

|Ot| = P and |St| = PLt−1 + P with Ot, St ⊆ Ut. For each pair of facilities

(u, v), u ∈ Ot, v ∈ St we have one client that is located exactly distance of 1

away from u, v.

Now we check the cost of S. For G0 we have cost(S0) = 2P (P+1)(L−P )t−1

and cost(O0) = 0. For each group Gi except G0, Gt, we have cost(Si) =

2P 2(L−P )t−i−1Li and cost(Oi) = 0. Lastly we have group Gt with cost(St) =

cost(Ot) = P 2Lt + P 2.And sum over all groups we have:

cost(S) =
t−1
∑

i=0

2P 2(L− P )t−i−1Li + P 2Lt−1 + P 2 + 2P (L− P )t−1

cost(O) = P 2Lt−1 + P 2

51



…

G0

P + 1

c0

0

î1
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Figure 4.3: A TCFM instance with locality gap of 2t+1. The squares represent
O and circles for S and we let S ∩ O = ∅. The instance is partitioned into
groups: G0, G1, G2, ..., Gt as depicted in the figure. For this instance we will
require 1 ≤ P ≤ L ≤ PLt−1 + P ≤ k where P, L, k are positive integers and
we also require L to be significantly greater than P .

It’s clear to see that when L is significantly larger than P we have cost(S) ∼

2tP 2Lt−1 + P 2Lt−1 + P 2 + 2PLt−1 and cost(O) = P 2Lt−1 + P 2. This shows:

cost(S)

cost(O)
= 2t+ 1 +

2

P
− ε(P, L)

Next we prove that S is indeed a locally optimum solution. To do this, we

need to show any valid test swaps have a non negative value in the cost change.

We first define some notation to describe test swaps. Consider a solution S ′

obtained by executing a valid test swap on S. Let vi = |S ′ ∩ Oi| for each

0 ≤ i ≤ t.

Now consider following lemmas:

Lemma 4.4.2. Consider solution S ′, we have cost(S ′) ≥ cost(S) if any of the

following holds:

1 v0 = 0 and î is closed

2 v0 > v1 + 1 and î is closed

3 v0 > v1 and î is not closed
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4 vi > vi+1 for 1 ≤ i ≤ t− 2

Proof. For item 1, since î /∈ S ′, then G0∩S ′ = ∅, all clients in G0 have infinite

service cost by the definition of the distance function.

For item 2, we have v0 ≥ v1+2. There is v1+1 facilities in S1 gets closed in

order to balance the color. However we only opened v1 facilities in O1 therefore

there must be at least one part of the group has no open facility. And by the

definition of the distance function, the clients in that part have infinite service

cost. The proof for item 3 follows similarly.

For item 4, we consider groups Gi for 1 ≤ i ≤ t− 2. We have vi ≥ vi+1+1.

In order to balance the color in the test swap, it must be that vi facilities

are closed and vi+1 opened in Gi+1. And since vi strictly greater than vi+1

then there must exists a part in Gi+1 contains no open facility which in turn

contributes infinitely to the overall service cost.

Lemma 4.4.3. Consider solution S ′, there exists a solution S ′′ having

cost(S ′′) ≤ cost(S ′)

if any of the following holds:

1 v0 = 1 and î is closed

2 vt > 0

Proof. For item 1, consider a solution S ′′ where we simply do not open or

close any facilities in G0 and S ′′ ∩ Gi = S ′ ∩ Gi for 1 ≤ i ≤ t which implies

cost contribution for clients that are not in G0 is the same for both solutions

S, S ′′. Now S ′ opened one facility in O0 and closed î, therefore all clients in

G0 has to be reassigned. We have a cost contribution of 2Pc0 for S ′′ and a

cost contribution of (P + 1)c0 for S. Now we know c0 > 0 and P ≥ 1 so we

conclude that cost(S ′′) ≤ cost(S ′).

Next for item 2, consider a solution S ′′ where we do not open any facilities

in Ot but instead open additional vt facilities in Ot−1. Again there is no

difference in groups G0, G1...Gt−2 compare to S so we focus on comparing the
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cost contribution in Gt−1 ∪ Gt. Consider the cost difference between the two

solution: In S ′′ we open additional vt facilities in Ot−1 thus saving a cost of

vtct−1; We opened 0 facilities in Ot so there is P (vt + vt−1) clients are distance

3 away from an open facility. However in S ′ there are (P −vt)(vt+vt−1) clients

needs to travel a distance of 3 to an open facility, comparing the cost of the

two solutions we have the following:

cost (S ′)− cost(S ′′) = vtct−1 − 2vt(vt + vt−1)

Now ct−1 = 2P and vt + vt−1 ≤ P because vt, vt−1 opens the same colored

facilities, we have cost(S ′)− cost(S ′′) ≥ 0.

Lemma 4.4.2 and Lemma 4.4.3 provides us a way to rule out some test

swaps that we don’t need to consider. And we conclude that we only need to

consider test swap T satisfying the following conditions:

• î is not closed: 0 ≤ v0 ≤ v1 ≤ ... ≤ vt−1 ≤ P and vt = 0.

• î is closed : 2 ≤ v0 ≤ v1 + 1 and 1 ≤ v1 ≤ ... ≤ vt−1 ≤ P and vt = 0.

So from now on we only consider solution S ′ that satisfy the above condi-

tions:

Case: î is not closed

Suppose a is the smallest index where va > 0 and 0 ≤ a ≤ t − 1, we open

va facilities in Oa so we get cost change −cava. Then for each subsequent

group Gi, we open vi facilities in Oi, thus each of vi−1L−vi clients needs to be

rerouted and pay an extra ci. The cost change is +ci(vi−1L−vi)−civi for each

group Gi. Finally we close exactly vt−1 facilities in St and get cost change

+2Pvt−1 as any clients that incidents to no open facilities have to travel a

extra distance of 2 to be assigned at an open facility. And to summarize:

cost(S ′)− cost(S) =
t−1
∑

i=a

(ci+1(viL− vi+1)− civi)− ct−1vt−1 + 2Pvt−1
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Now ci = 2P (L− P )t−i−1 we have:

t−1
∑

i=a

(

2P (L− P )t−i−2(viL− vi+1)− 2P (L− P )t−i−1vi
)

−

2P (L− P )0vt−1 + 2Pvt−1

=
t−1
∑

i=a

(

2P (L− P )t−i−2(viL− vi+1 − (L− P )vi)
)

− 2Pvt−1 + 2Pvt−1

=
t−1
∑

i=a

(

2P (L− P )t−i−2(Pvi − vi+1)
)

Because L ≥ P ≥ vi+1 ≥ vi ≥ va ≥ 1 , we have the above equation is always

non negative.

Case: î is closed

Since î is closed and Lemma 4.4.3, then we must have v0 ≥ 2 thus every group

must contributes to the cost change.

Note that now in G0, we have P + 1 − v0 clients needs to pay the extra

cost of c0 and we also close v0 − 1 facilities in S1. We have a cost change of

+c0(P + 1 − v0) − c0v0 + c1(L(v0 − 1) − v1) − c1v1 for G0 and G1. The cost

change of the remaining groups are same as the previous case so we omit the

details for the remaining groups. We summarize:

cost(S ′)− cost(S) = c0(P + 1− v0)− c1L+
t−1
∑

i=0

(ci+1(viL− vi+1)− civi)− ct−1vt−1 + 2Pvt−1. (4.1)

Now ci = 2P (L− P )t−i−1 we have:

2P (L−P )t−2 (L(P − v0) + P (v0 − P − 1))+
t−1
∑

i=0

(

2P (L− P )t−i−2(Pvi − vi+1)
)

Note that from previous calculation we saw the sum is non negative, and

because 2 ≤ v0 ≤ P we divide analysis into two cases. First suppose v0 < P ,
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we have L(P − v0) is at least L and P (v0 − P − 1) is at least P (1 − P ) ≥

−P 2. Since L can be arbitrarily large then we conclude that if L > P 2 then

cost(S) ≤ cost(S ′).

Second suppose v0 = P , rewrite above equation as following:

2P (L− P )t−2 (L(P − v0) + P (v0 − P − 1) + Pv0 − v1)+
t−1
∑

i=1

(

2P (L− P )t−i−2(Pvi − vi+1)
)

(4.2)

Now because 2 ≤ v0 ≤ P and v0 = P , we have 2 ≤ v0 = P and v1 ≤ P :

= 2P (L− P )t−2
(

P 2 − P − v1
)

+
t−1
∑

i=1

(

2P (L− P )t−i−2(Pvi − vi+1)
)

We see that this case the equation is also non negative thus cost(S) ≤

cost(S ′).

Summarizing

We showed that there the instance depicted in Figure 4.3 can not be improved

by any test swaps swapping up to P of each type of facilities. We conclude

that S is indeed a locally optimum solution and Theorem 4.4.1 follows.
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Chapter 5

Conclusion

5.1 Summary

The result of this thesis introduced a (5 + ε)-approximation algorithm for

Budgeted Red-Blue Median. This result is an improvement over the

previously known upper bound of 8 from Matroid Median which is a gen-

eralization of Budgeted Red-Blue Median [26]. We also discovered that

our analysis is tight for the local search algorithm. This shows the strength

as well as the limitation of local search technique on this problem. In addi-

tion we obtained some corollary results, specifically the lower bound results

on extensions of Budgeted Red-Blue Median.

Before digging into the main analysis of our (5 + ε)-approximation for

Budgeted Red-Blue Median, we first presented how local search approx-

imate k-Median. We followed the analysis of Gupta et al [16] fairly closely

until the final step we retold the story in the language of randomization to

suit our analysis more. We also explained how local search can be modified so

that in the end we indeed have a polynomial time algorithm at our hand. The

modification is fairly standard and easily applied to other natural local search

algorithm such as Algorithm 4.

We then showed a simple setting of Budgeted Red-Blue Median to

explain local search at a very zoomed-in level. With the simple setting we

were able to clearly see the cost change of each individual test swap that

occurs through out the analysis. This gives us an easy understanding of flow

of local search analysis before we dive in to the main analysis.
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We presented the part which is considered the main contribution of this

work in sections. We first described a procedure to construct structures called

blocks. Blocks form a partition of the facilities and helps describe the structure

of test swaps. Then we presented the analysis of the cost change of test swaps

in cases. The case is defined based on how large is the number of each coloured

facilities in a given block. In most cases, we utilized a randomized argument

to estimated the expected cost change for each test swap.

Finally, we presented our lower bound results. The lower bound describes

the worst case example where a solution that can not be improved by the given

local search algorithm may still have a high cost. Typically, the lower bound

grows as we increase the number of colors of facilities. For the two colored

cases, we see that the lower bound matches our approximation guarantee.

Which concludes that the approximation guarantee is tight.

5.2 Future Direction

The most natural open problem related to the results this thesis presents is

improving the approximation guarantee for Budgeted Red-Blue Median.

That is, we have a (5 + ε)-approximation guarantee and the hardness result

known for this problem is 1 + 2
e
− ε for any ε > 0 under the assumption

P 6= NP [18]. So it is still an open topic to close the gap by either improving

the approximation factor or increase the hardness lower bound.

However our result shows that the natural local search algorithm can not do

better than the (5+ε)-approximation so in order to improve the approximation

guarantee, so we are likely having to look into other methods. One promising

approach is to look into linear programming rounding technique as it is known

that such approach performs better than local search on k-Median([22], [5]).

58



Bibliography

[1] Sara Ahmadian, Zachary Friggstad, and Chaitanya Swamy. Local-search
based approximation algorithms for mobile facility location problems. In
Proc. of SODA, 2013.

[2] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh
Munagala, and Vinayaka Pandit. Local search heuristics for k-median
and facility location problems. SIAM J. Comput., 33(3):544–562, 2004.

[3] Ivan D. Baev, Rajmohan Rajaraman, and Chaitanya Swamy. Approx-
imation algorithms for data placement problems. SIAM J. Comput.,
38(4):1411–1429, 2008.

[4] MohammadHossein Bateni and MohammadTaghi Hajiaghayi. Assign-
ment problem in content distribution networks: Unsplittable hard-
capacitated facility location. ACM Trans. Algorithms, 8(3):20, 2012.

[5] Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan,
and Khoa Trinh. An improved approximation for k -median, and positive
correlation in budgeted optimization. In Proc. of SODA, pages 737–756,
2015.

[6] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for
maximum independent set of pseudo-disks. CoRR, abs/1103.1431, 2011.

[7] Steven Chaplick, Minati De, Alexander Ravsky, and Joachim Spoer-
hase. Approximation schemes for geometric coverage problems. CoRR,
abs/1607.06665, 2016.

[8] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A
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