

National Library of Canada Bibliothèque nationale du Canada

Services des thèses canadiennes

Canadian Theses Service

Ottawa, Canada____ K1A 0N4

CANADIAN THESES

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Previously copyrighted materials (journal articles, published, tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

THÈSES CANADIENNES

AVIS 1

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La quálité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaïssance des formules d'autorisation qui accompagnent cette thèse.

> LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS REÇUE

	National Library of Canada	Bibliothèque national du Canada	е.		
N.	Canadian Theses Division	Division des thèses ca	anadiennes		· . 1
V.	· · · · · ·	Division des meses ca	macherines		
	Óttawa, Canada K1A 0N4	_		· · · · · · · · · · · · · · · · · · ·	
	• • • • • • • •		-		
	PERMISSION TO MIC	ROFILM - AUTO	RISATION DE MI	CROFILMER	· · · ·
	•			•	•
• Pleas	se print or type — Écrire en lettre	s moulées ou dactylograp	hier	•	
Full Na	me of Author — Nom complet de	l'auteur		•	<u> </u>
	SANDRA LO			•	
	SANDRA LO	LISE STURIO			
Date of	Birth — Date de naissance		Country of Birth Lie	u de naissance	
	DECEMBER 5, 19	25 7 [,]	CANADA		
Permar	nent Address — Résidence fixe				
	142. MARTIN ST			•	•
	MONT. ST. HILA		`\ .	•	
	QUEBEC	J3H 3J5		•	
Title of	Thesis — Titre de la thèse		r s	~	
	Musspears	ESAR CONTR		EMICAL	J.
		SSOR CONTR		EMICAL	ڼ
				EMICAL	J.
		SSOR CONTR TION TO FO		EMICAL	.
				EMICAL	
•				EMICAL	•
Univers	APPLICA	TION TO FO		EMICAL	ę
Univers	APPLICA	TION TO FO		EMICAL	ę
•	APPLICA	TION TO FO F ALBERTA	BRAGES	EMICAL	•
•	APPLICA sity-Université UNIVERSITY O	TION TO FO F ALBERTA	ORAGES		•
Degree	APPLICA sity—Université UNIVERSITY O for which thesis was presented	TION TO FO F ALBERTA - Grade pour lequel cette	ORAGES	Nom du directeur de	۹ thèse
Degree	APPLICA sity—Université UNIVERSITY for which thesis was presented M.Sc.	TION TO FO F ALBERTA - Grade pour lequel cette	ORAGES		thèse
Degree	APPLICA sity — Université UNIVERSITY for which thesis was presented M.Sc. his degree conferred — Année d'o	TION TO FO F ALBERTA - Grade pour lequel cette	ORAGES	Nom du directeur de	۲ thèse
Degree Year th	APPLICA sity — Université UNIVERSITY for which thesis was presented M.Sc. his degree conferred — Année d'o 1983	TION TO FO F ALBERTA - Grade pour lequel cette obtention de ce grade	DR AGES thèse fut présentée Name of Supervisor – DR , H, P.	Nom du directeur de HARRISON	
Degree Year th Permis CANAD	APPLICA Sity—Université UNIVERSITY for which thesis was presented M.Sc. is degree conferred — Année d'o 1983 sion is hereby granted to the N A to microfilm this thesis and to	TION TO FO F ALBERTA - Grade pour lequel cette obtention de ce grade	DR AGES thèse fut présentée Name of Supervisor – DR , H, P, L'autorisation est, p QUE NATIONALE DU	Nom du directeur de HARRISON par la présente, accord J CANADA de microfilr	lée à la BIBLIO ner cette thèse
Degree Year th Permis CANAD the film	APPLICA sity—Université UNIVERSITY for which thesis was presented M.Sc. is degree conferred — Année d'c 1983 sion is hereby granted to the N A to microfilm this thesis and to n.	TION TO FA	E AGES Thèse fut présentée Name of Supervisor – DR, H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil	lée à la BIBLIO ner cette thèse lm.
Degree Year th Permis CANAD the film The au	APPLICA sity—Université UNIVERSITY for which thesis was presented M.Sc. is degree conferred — Année d'o 1983 sion is hereby granted to the N A to microfilm this thesis and to h.	TION TO FA F ALBERTA - Grade pour lequel cetter obtention de ce grade ATIONAL LIBRARY OF o lend or sell copies of rights, and neither the	CRAGES Thèse fut présentée Name of Supervisor – DR, H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre L'auteur se réserve ni de longs extraits	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil les autres droits de pu s de celle-ci ne doive	dée à la BIBLIO ner cette thèse lm. blication; ni la t nt être, imprimé
Degree Year th Permis CANAD the film The au thesis	APPLICA sity—Université UNIVERSITY for which thesis was presented M.Sc. is degree conferred — Année d'c 1983 sion is hereby granted to the N A to microfilm this thesis and to n.	TION TO FO F ALBERTA - Grade pour lequel cetter obtention de ce grade ATIONAL LIBRARY OF o lend or sell copies of rights, and neither the ay be printed or other-	CRAGES Thèse fut présentée Name of Supervisor – DR, H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre L'auteur se réserve ni de longs extraits	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil les autres droits de pu	dée à la BIBLIO ner cette thèse lm. blication; ni la t nt être, imprimé
Degree Year th Permis CANAD the film The au thesis	APPLICA sity—Université UNIVERSITY for which thesis was presented M.Sc. is degree conferred — Année d'o 1983 sion is hereby granted to the N A to microfilm this thesis and to h. thor reserves other publication nor extensive extracts from it microfilm	TION TO FO F ALBERTA - Grade pour lequel cetter obtention de ce grade ATIONAL LIBRARY OF o lend or sell copies of rights, and neither the ay be printed or other-	CRAGES Thèse fut présentée Name of Supervisor – DR, H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre L'auteur se réserve ni de longs extraits	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil les autres droits de pu s de celle-ci ne doive	dée à la BIBLIO ner cette thèse lm. blication; ni la t nt être, imprimé
Degree Year th Permis CANAD the film The au thesis wise re	APPLICA sity—Université UNIVERSITY for which thesis was presented M.Sc. is degree conferred — Année d'o 1983 sion is hereby granted to the N A to microfilm this thesis and to h. thor reserves other publication nor extensive extracts from it microfilm	TION TO FO F ALBERTA - Grade pour lequel cetter obtention de ce grade ATIONAL LIBRARY OF o lend or sell copies of rights, and neither the ay be printed or other-	DR AGES thèse fut présentée Name of Supervisor – DR H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre L'auteur se réserve ni de longs extraits autrement reproduit	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil les autres droits de pu s de celle-ci ne doive	dée à la BIBLIO ner cette thèse lm. blication; ni la t nt être, imprimé
Degree Year th Permis CANAD the film The au thesis wise re	APPLICA inty-Université UNIVERSITY O for which thesis was presented M.Sc. is degree conferred — Année d'o 1983 sion is hereby granted to the N A to microfilm this thesis and to hor reserves other publication nor extensive extracts from it mic produced without the author's w	TION TO FO F ALBERTA - Grade pour lequel cetter obtention de ce grade ATIONAL LIBRARY OF o lend or sell copies of rights, and neither the ay be printed or other-	DR, H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre L'auteur se réserve ni de longs extraits autrement reproduit	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil les autres droits de pu s de celle-ci ne doive s sans l'autorisation ée	dée à la BIBLIO mer cette thèse lm. Iblication; ni la f nt être imprimé crite de l'auteur
Degree Year th Permis CANAD the film The au thesis wise re	APPLICA sity—Université UNIVERSITY for which thesis was presented M.Sc. is degree conferred — Année d'o 1983 sion is hereby granted to the N A to microfilm this thesis and to h. thor reserves other publication nor extensive extracts from it microfilm	TION TO FO F ALBERTA - Grade pour lequel cetter obtention de ce grade ATIONAL LIBRARY OF o lend or sell copies of rights, and neither the ay be printed or other-	DR, H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre L'auteur se réserve ni de longs extraits autrement reproduit	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil les autres droits de pu s de celle-ci ne doive	dée à la BIBLIO mer cette thèse lm. Iblication; ni la f nt être imprimé crite de l'auteur
Degree Year th Permis CANAD the film The au thesis wise re	APPLICA inty-Université UNIVERSITY O for which thesis was presented M.Sc. is degree conferred — Année d'o 1983 sion is hereby granted to the N A to microfilm this thesis and to hor reserves other publication nor extensive extracts from it mic produced without the author's w	TION TO FO F ALBERTA - Grade pour lequel cetter obtention de ce grade ATIONAL LIBRARY OF o lend or sell copies of rights, and neither the ay be printed or other-	DR, H, P. L'autorisation est, p QUE NATIONALE DU prêter ou de vendre L'auteur se réserve ni de longs extraits autrement reproduit	Nom du directeur de HARRISON Dar la présente, accord J CANADA de microfilr des exemplaires du fil les autres droits de pu s de celle-ci ne doive s sans l'autorisation ée	dée à la BIBLIO mer cette thèse lm. Iblication; ni la f nt être imprimé crite de l'auteur

FALL 1983

EDMONTON, ALBERTA

DEPARTMENT OF AGRICULTURAL ENGINEERING

OF MASTER OF SCIENCE

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

A THESIS

) SANDRA LOUISE STURTON

MICROPROCESSOR CONTROL OF CHEMICAL APPLICATION TO FORAGES

by

THE UNIVERSITY OF ALBERTA

THE UNIVERSITY OF ALBERTA

11

RELEASE FORM

NAME OF AUTHOR TITLE OF THESIS

SANDRA LOUISE STURTON S MICROPROCESSOR CONTROL OF CHEMICAL APPLICATION TO FORAGES

DEGREE FOR WHICH THESIS WAS PRESENTED MASTER OF SCIENCE YEAR THIS DEGREE GRANTED FALL 1983

Permission is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

Sandia Sturton (SIGNED)

PERMANENT ADDRESS: 142 Marta St Mont St Helawe Quebec J.3H. 3J.5

DATED October 14 ... 1983

THE UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research, for acceptance, a thesis entitled MICROPROCESSOR CONTROL OF CHEMICAL APPLICATION TO FORAGES submitted by SANDRA LOUISE STURTON in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE.

Supervisor

Date. October 14, 1983....

ABSTRACT

The objective of this study was to design a microprocessor-controlled system for applying a liquid chemical to forage during harvest. A preliminary study was performed to obtain information on the operation and calibration of such a system. A control and a monitor system were designed based on this information.

A sensor to measure the feed rate of forage through a forage harvester, based on the displacement and rotational velocity of the feedroll, was designed and tested. A microcomputer system using a Motorola 6802 microprocessor was designed to control the chemical application, and is feasible. A monitoring system using a ZT-4 driving computer was designed, and is capable of monitoring the system variables.

ACKNOWLEDGEMENTS

I wish to acknowledge the financial support for this project of the province of Alberta, through the Farming for the Future program. The cooperation of Ron Bienert, Ron Stelter, and Ed Nickel in allowing us to harvest forage on their farms is also acknowledged.

The guidance and helpful suggestions provided by Dr. H.P. Harrison are appreciated, and the contributions of Ray Holowach and Richard Kolacz are gratefully acknowledged. The advice and assistance obtained from Darcy Kusler, Jeremy Leonard and Peter Clark were also helpful and appreciated. Finally, I wish to thank my parents for their support and encouragement.

	Ċhapte	Table of Contents Page
	1. I	NTRODUCTION
	2. I	LITERATURE REVIEW
-	2	2.1 CHEMICAL TREATMENT OF FORAGES AND HAY
· · ·	2	2.2 CHEMICAL APPLICATION SYSTEM4
	2	2.3 FORAGE FEED RATE MEASUREMENT
	2	2.4 MICROPROCESSORS - MONITORS AND CONTROLLERS13
•	3. F	PRELIMINARY STUDY
· · · · · ·	3	8.1 PROCEDURE
	•	3.1.1 OBJECTIVE
		3.1.2 EQUIPMENT AND INSTRUMENTATION17
		3.1.3 MINICOMPUTER PROGRAM26
	. 3	8.2 RESULTS
•		3.2.1 SYSTEM ANALYSIS - APPLICATION RATE AND LINE PRESSURE
		3.2.2 CALIBRATION - FEED RATE AND FEEDROLL DISPLACEMENT
	4. E	DESIGN AND TESTING
	4	.1 OBJECTIVE
• . • • • •	4	.2 MONITOR
	4	.3 FEED RATE SENSOR
•	¥ 4	.4 CHEMICAL FLOW SENSOR
	4	.5 APPLICATOR NOZZLES
. •	4	.6 MICROPROCESSOR CONTROLLER
	5. I	ESIGN RESULTS AND DISCUSSION
•		.1 MONITOR
	. 5	5.2 FEED RATE SENSOR61
	5	3.3 CHEMICAL FLOW SENSOR64

5.4 MICROPROCESSOR CONTROL SYSTEM
6. CONCLUSIONS
7. RECOMMENDATIONS
8. REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F
APPENDIX G148
APPENDIX H
APPENDIX I

,

v - 1

vii

List of Tables Page Table ·ý. Harvest variables and the chemical application rates for the system runs (preliminary study)..... 3.1 .30

viii

		List of Figures	
Fi	igure		Page
3.		Forage harvesting for data collection and chemical application control during the preliminary study	19
3.		LVDT and chemical applicator nozzles during the preliminary study	20
· 3.	.3	Diagram of the forage harvester	22
3.	.4	Diagram of the flow system	23
3.	. 5	Schematic of the wiring in the preliminary study.	
3.	.6	System run #6, pressure in the chemical line versus time.	33
3.		Calibration run #9 with barley; mass of forage in the forage wagon and feedroll displacement versus time	35
3.		Calibration run #9 with alfalfa; mass of forage in the forage wagon and feedroll displacement versus time	36
3.	:	The relationship between the forage feed rate and the product of the feedroll displacement and theoretical length of cut - barley	38
3.	: (The relationship between the forage feed rate and the product of the feedroll displacement and theoretical length of cut - alfalfa	39
4.	.1 (Circuit diagram for the magnetic detector	
4.	.2 (Ci.cuit diagram for the reflective object detector	
4.	3 (Circuit diagram for the infrared light emitter and detector	48
4.		Disk patterns tested with the infrared light emitter and detector	52
4.	5 0	Circuit diagram of the microcomputer control system	58

∢

				•				۰. ۲
•	Figur						Page	
•	51	Feed_rat light em 11-slot	e sensor ut itter and d disk	ilizing letector,	the infr and the	ared	62	
	5.2	Block di micropro chemical	agram of th cessor-cont applicatiç	ne crolled a on system	ind monit	ored 	65	
•				•	•			
•		<u>,</u>		• •				•
		J		·. · · ·	•	•		• •
·					а. А	· .	· · · · · · · · · · · · · · · · · · ·	С. Р.
	•••				· · · · · · · · · · · · · · · · · · ·	•	ан 1. 	. •
			سری ب	•				•
•			· · · · · · · · · · · · · · · · · · ·					· · · · ·
			- -	•	•		*	•
		•			· •			•
•		•						
		• .		x	· • •	, Č		• •

1. INTRODUCTION

Chemical preservatives are applied to forages and hay to inhibit the growth of moulds, decrease losses in nutritional value and dry matter, and decrease the risk of serious heating (Holden & Sneath 1979). The chemical may be applied to the crop at any of many stages of harvest, from prior to cutting until in storage (Benham & Redman 1980). Present chemical application systems do not apply the chemical in proportion to the crop mass; therefore, the required chemical application rate is rarely maintained. Furthermore, the harvest stage at which the chemical is applied and the method of chemical application can greatly influence the chemical losses and chemical distribution through the crop. A chemical application control system which could maintain a constant specified chemical application rate (chemical mass / forage mass) during the harvest could result in chemical and crop savings. The introduction of the chemical to the forage as it is chopped or baled may provide the most effective application control: To maintain a constant application rate, the control system must have a means of measuring the forage feed rate and controlling the chemical flow rate. Mains (1983) found that the feedroll displacement on a forage harvester is a good indicator of the forage feed rate. Therefore, the feed, rate could be obtained by measuring the feedroll displacement. A bank of applicator nozzles on the forage harvester could be switched on and off to simply and

effectively provide the required flow rate of liquid chemical to the forage. A microprocessor is well-suited to control applications such as this, and could be an inexpensive and simple controller.

The objectives of this study were (i) to design and test a forage feed rate sensor based on Mains'(1983) conclusion that the feedroll displacement is a good indicator of the feed rate, and (ii) to design a microprocessor-controlled system to control a liquid chemical application to forage during chopping. The chemical application system should maintain a constant chemical flow rate relative to the forage feed rate. The system should also display, to the operator, the values of forage feed rate, chemical flow rate, application rate, cumulative forage mass, and cumulative chemical.

2. LITERATURE REVIEW

2.1 CHEMICAL TREATMENT OF FORAGES AND HAY

In northern climates, nearly half of the annual forage <u>crop must be preserved as hay or silage. Climatic conditions</u> during harvest often result in hay losses (Harrison 1983). Hay which is baled at moisture contents above 20% may undergo heating, moulding, and deterioration, and is possibly responsible for some health problems in cattle and farmers (Charlick et al. 1980, Benham & Redman 1980). There can also be substantial losses in silage due to moulds. A 15 to 90 cm (6 to 36 in) layer of spoiled silage is common on the top of poorly sealed horizontal silos (Anon. 1979). Losses in tower silos are not as significant because of the reduced area of exposed silage; however, the capital cost of tower silos is considerable. The less costly horizontal silos are more common in western Canada.

Chemical preservatives can inhibit the growth of moulds, decrease losses in feeding value and dry matter, and decrease the risk of serious heating in damp hay and forages (Holden & Sneath 1979). This can be accomplished by the reduction of available water, reduction of oxygen concentration, alteration of pH, or destruction or inhibition of fungi, moulds, and bacteria (Benham & Redman 1980). Several chemicals are being used or investigated as preservatives for forages or hay. These include anhydrous ammonia (Kuntzel et al. 1979), proprionic acid (Nehrir et al. 1978, Knapp et al. 1976), ammonium bis-propoanate (Holden & Sneath 1979), and sulphur dioxide (Mathison et al. 1979, 1981). Sever 1 chemicals are effective as preservatives, and the use of hay preservatives can be cost effective (Klinner & Holden 1978).

2.2 CHEMICAL APPLICATION SYSTEM

Chemical preservatives may be applied to the standing crop, during mowing, raking, baling or chopping, or in storage (Benham & Redman 1980). Application of the chemical to the forage as it passes through the harvester or hay baler may permit the most effective application control (Klinner & Holden 1978). The limit on the power available to the harvester (and to a lesser extent, the baler) ensures a relatively even forage feed rate past the applicator. Furthermore, the physical sensing of some component of the harvester or baler which changes with the feed rate could provide for the measurement of the forage and subsequent adjustment to the chemical flow rate. Applying the chemical. at the forage harvester also permits better mixing of the chemical into the forage than if the chemical were applied in storage. In addition, it minimizes any chemical losses due to exposure which would occur if the chemical were applied prior to pickup. In-field chemical application has a disadvantage over in-store application in that it requires that the chemical be transported in the field. Alternatively, chemical application done in-store is

difficult, time consuming, and in general, impractical. The application of preservatives during baling or chopping involves the least change to the harvesting system (Benham & Redman 1980), and for this and other reasons already noted, the study shall focus on the application of a chemical to forage as it is chopped.

Present chemical (preservative, fertilizer, herbicide) application systems depend upon the operator to make any adjustments in the chemical flow rate with respect to the feed rate (eg. anhydrous ammonia application to corn silage), or maintain a constant chemical flow rate with respect to time or vehicle ground speed (eg. herbicide, fertilizer application) (Bournas 1969, PAMI 1980, 1982). Any of these systems, if used for applying a chemical to forage during chopping, could result in an uneven and inefficient chemical distribution throughout the forage.

The requirements of an idealized chemical application system for a forage harvester are that :

the chemical be applied evenly throughout the mass,
 the chemical loss be minimized,

3. large variations in feed rate be recognized and the chemical flow rate adjusted accordingly,

4. the system be simple, economical, and easily installed on the harvester,

5. and finally, the safety of the operator not be compromised, an important consideration if the chemical is toxic (Benham & Redman 1980).

With information provided by a feed rate sensor on a harvester, a microprocessor could determine the optimal chemical flow.rate at any time and activate the solenoids for the corresponding applicator nozzles. With such a system the chemical would be distributed through the forage based upon the input from the feed rate sensor. The accuracy of the system would be limited only by the accuracy of the sensor, and by the available applicator nozzles.

A microprocessor-controlled system with a range of applicator nozzle sizes and an adequate feed rate sensor should be capable of handling large feed rate fluctuations, and adjusting the chemical flow rate to maintain a constant application rate. Microprocessors have been used in numerous control applications similar to this one (Kruse et al. 1983, McLendon et al. 1983), and are practical and relatively inexpensive. A microprocessor-controlled system has a much faster response time than any manual system. In addition, the microprocessor, with a simple and relatively standard support system, can accurately and rapidly make decisions based upon numerous variables (Page et al. 1977). The designed microprocessor control system might also be adapted to control the application of chemicals to hay as it is baled, or possibly to grain as it is combined or elevated for storage.

2.3 FORAGE FEED RATE MEASUREMENT

A chemical application control system requires a sensor which is capable of rapidly and accurately measuring the forage feed grate through a forage harvester. There are three methods of measuring forage feed rate when picking up a windrow (Mains 1983). The first is to continually weigh the forage wagon into which the forage is being collected. The second method is to measure some component of the forage harvester which varies with the forage feed rate. The third possible alternative is to measure the swath height, which according to Mains (1983), has been found to be related to the throughput of hay in a baler.

Research has been done on the second method by measuring the displacement of the rear upper feedroll of a forage harvester as the feed rate varies (Mains 1983). The feedroll displacement was found to be a good indicator of the mass flow rate of crops through a forage harvester. High coefficients of determination were found for the regression equations predicting feedroll displacement as a function of feed rate and dry matter content. The form of these equations is:

 $f = a + b \cdot y + c \cdot m (corn) \dots 2.1$ $f = a + b \cdot y + c \cdot m + d \cdot y \cdot m (alfalfa) \dots 2.2$ where f = forage feed rate (kg/min)

y = feedroll displacement (mm)
m = percentage of crop dry matter
a,b,c,d = constants for each particular crop.

Mains (1983) found a poor correlation between the summation of the feedroll displacement and the cumulative amount of crop harvested over a short time interval (one second). He noted that the poor correlation was probably caused by short-term variation of the feedroll displacement, and suggested that a better correlation could probably be obtained if the time period were longer (ten seconds). However, a ten second interval represented up to 23 m (77 ft) of windrow in Mains' (1983) research. Any feed rate variation within this length of windrow would not be detected if the measurements were integrated over ten seconds. Mains (1983) correlated the average feedroll displacement during a given time interval to the forage throughput during the same time interval. However, there is a time lag between the forage displacing the feedroll and exiting the harvester to be weighed. This time lag will comprise a larger proportion of a one second measuring interval than a ten second interval; hence, the error will be less; and the correlation will be greater during the longer time interval. In addition, Mains calculated the data for the ten second intervals by averaging the data from ten consecutive one second intervals. Therefore, the ten second intervels would result in fewer data points with less? variation, and hence, a better correlation.

¢,

The constants for these equations vary with each crop. In addition, each particular forage harvester, and the feedroll spring tension on the harvester, would necessitate a unique set of constants. To use these equations, it would probably be necessary to calibrate each harvester being used with each crop being harvested.

A microprocessor-controlled chemical application system, which is based on Mains' (1983) conclusion that the feedroll displacement is a good indicator of the forage feed rate, would require a device capable of measuring the feedroll displacement and communicating this value to a microprocessor. Transducers or sensors change physical quantities such as motion into electrical signals which can be transmitted to a computer or a recording system. Common transducers measure displacement, force, pressure, temperature, light, and magnetic fields (Henry 1975, Barden 1982, Spitzer 1972, Malmstadt 1981).

Many transducers are available for measuring displacement. The LVDT (linear variable displacement transformer) is an analog device for sensing displacement, and is commonly used in experimental and developmental work (Henry 1975). The versatility of the LVDT makes it well-suited to research; however, it is relatively expensive and requires analog to digital signal modifications if it is to be connected to a microprocessor (Henry 1975). Optical and magnetic sensors have a digital output, and are more popular in monitoring and control applications (Morris 1980, Anon. 1980). They can be relatively inexpensive, and their digital output signal is more readily compatible with a microprocessor system than the analog output from some of the other types of transducer. In addition, the absence of moving parts in these sensors allows them a long life, not limited by wear or fatigue.

Optoelectronic light sources (usually light emitting diodes) and detectors (usually photo-transistors) are widely used as displacement or velocity sensors. Honeywell (1976) and Anon. (1980) discuss the two types of optoelectronic sensor. In the first type, reflective object sensors, the light emitter and detector are located side by side. When a reflective surface is placed in front of them, the light beam from the emitter reflects onto the detector, sinducing an output voltage from the detector. When the reflective surface is moved or blocked, the voltage drops. The second type of optoelectronic sensor is more common than the reflective object sensors. With this sensor, the emitter and detector are located opposite one another with colinear axes, so that an output voltage is induced from the detector when a trànsparent medium is between them. When an opaque object blocks the path between the emitter and detector, the detector's output voltage drops.

Malmstadt et al. (1973) and Morris (1980) describe several applications, including displacement measurements, in which an encoded disk or plate containing opaque and transparent sections rotates between an emitter and detector. These encoding devices can make either "absolute" or "incremental" measurements. Absolute encoders use disks with opaque/transparent patterns which can simultaneously

actuate several detectors; together, these detectors output a digital word representing the absolute position of the encoding device. Each transparent section on the disk allows passage of a light beam from an emitter to the corresponding detector, which then outputs a "high" voltage. An opaque section blocks the light beam, and the detector output is "low". Several coding techniques are used, including a "straight binary code", "Gray code", and "sine-cosine code" (Malmstadt 1973). Incremental encoders contain a uniform pattern of equally spaced radial lines (opaque lines on a transparent surface, or vice versa), which results in detector output voltage pulses as the disk rotates.

Optoelectronic devices can be impractical in dirty and dusty environments. In these situations, a magnetic (variable reluctance) pickup sensor (Anon. 1980, Honeywell 1976) is often used for measuring motion. The simplest magnetic pickup consists of a wire coil around a permanent magnet. A ferrous metal object (a magnet is often used) approaching or moving awdy from the sensor changes the permeance of the magnetic field. Since the sensor output voltage is proportional to the rate-of-change flux through the coil, magnetic pickups detect moving targets only. As the object's velocity approaches zero, the voltage change for the output pulse becomes too small to be measured. Magnetic sensors require no external power source, and have successfully measured speeds up to 600,000 rpm. They have the advantages over other sensors of being capable of operation in temperature ranges beyond those allowed by solid state devices, due to the absense of electronic elements, and being impervious to shock.

Magnetic sensors are commonly used as displacement and velocity sensors in agricultural machinery. A magnet is mounted on the driveshaft or a wheel, and is detected on every rotation by a nearby detector which outputs voltage pulses with a frequency proportional to the vehicle velocity, or a count proportional to the distance travelled. These sensors are used in sprayer control systems (J&H 1982) and many other machinery monitor and control applications where information on the vehicle speed or area covered (as calculated from the displacement and a specified width of the machine) is required. In addition, they are used for monitoring rotating grain or fertilizer shafts during seeding (Senstex 1983):

A second type of magnetic sensor, the Hall-effect sensor, is described by Honeywell (1976). In a Hall-effect sensor, a constant control current is passed through a thin strip of semiconductor material (Hall generator). The contacts are placed across the narrow dimension of the strip, and a small voltage appears across them as a magnet's field is directed at right angles to the face of the semiconductor. The Hall voltage reduces to zero again as the magnet is removed. If the current flow through the element is held constant, the Hall voltage is proportional to the magnetic field. Since the Hall effect senses a magnetic

field, the magnet doesn't have to be moving in order for the device to operate. Hall-effect proximity sensors are used as position indicators and limit switches for the stacking tables on Sperry New Holland's microprocessor-controlled hay bale stacker (Honeywell 1979).

2.4 MICROPROCESSORS - MONITORS AND CONTROLLERS

A computer consists of an arithmetic logic unit (ALU) which performs arithmetic and logic operations, input/output circuits, gates and registers to control and coordinate the operations of these circuits, and memory for storage of programs and values (Greenfield & Wray 1981, Hinkle 1982). A minicomputer is of a smaller size and has more limited capabilities than a full-size computer; however, it performs the same functions. Smaller than a minicomputer, the microcomputer can also provide all of the functions of a larger computer, but it is usually dedicated to one use or control function. The microprocessor is one component of a microcomputer, and was produced when the above-mentioned integrated circuits (ie. gates, registers, and ALUs) were combined into a single component or chip. This chip includes most of the functions of a computer; however, it cannot function by itself (Greenfield & Wray 1981).

Microcomputers can be used as monitors (indicators) or as controllers (Hinkle 1982). In either case, the microprocessor reads the input and calculates an output based on these inputs. In a monitoring situation, the microprocessor would read the signal from a transducer, convert the value into a more useful number, and display this number. In a controlling capacity, the microprocessor would read the input signal(s), make a decision regarding the output (ie. switch "on" or "off") based on calculations or logic, and send a control word capable of implementing this decision to the proper output device. It could also display an appropriate value.

Microcomputers are useful in applications which require rapid and precise control or data acquisition (Walker 1981). A microcomputer has numerous advantages over a mechanical or manual data collection or control system. These advantages include fast data collection during complex tests or experiments, exact timing and triggering of simultaneous or ·sequential events, automatic control of numerous devices or operations, versatility of operation through program control, and ease of interfacing to printers and recording systems (Walker 1981). In control applications, a microcomputer system is superior to mechanical or hard-wired logic systems because of its versatility and adaptability. A microcomputer system can be simply and quickly modified, by reprogramming, to function in a new or different situation. A mechanical or hard-wired logic system could also be adapted; however, it would be more time-consuming and costly to rebuild or structurally modify the system.

Microprocessons are becoming more and more common in everyday applications, and are improving the efficiency and

economic operation of many systems. They are being used in many monitoring and control systems in agriculture (Isaacs 1982). Sprayer Control System (Raven Industries 1983) uses a microprocessor to monitor the vehicle speed of an agricultural sprayer, and control the flow rate of a chemical with a regulating valve to maintain a specified application rate per unit area. A microprocessor is also available for installation on combines to monitor grain loss and ground speed (J&H 1982), and a microprocessor is being used to control a hay bale stacker (Honeywell 1979).

Microcomputers are becoming increasingly popular as, monitors in automobiles also. A driving computer with a clock, magnetic detector and magnets on the driveshaft, and a flowmeter in the fuel line can measure the time and distance driven and the fuel used on a trip. It can calculate the fuel remaining in the tank, the current or average fuel consumption rate, the fuel needed on a trip, and the distance which can be travelled on the remaining fuel (Zemco 1983).

Agricultural machinery research has included the investigation of such diverse microprocessor control applications as the use of a groundspeed controller for a combine (Kruse et al. 1983), an apple-harvester microprocessor-based steering control system (McMahon et al. 1982), and the microprocessor control of alcohol fuel fumigation (Walker 1981).

3. PRELIMINARY STUDY

3.1 PROCEDURE

c

3.1.1 OBJECTIVE Prior to the design of a chemical application system controlled by a microprocessor, information and data on the variables influencing such a system are necessary. The preliminary study consisted of "system trials" and "calibration trials". The system trials were done on private farms, and examined the operation of a controlled chemical application system. The calibration trials, done at the University of Alberta's Ellerslie Research Station, calibrated the feedroll displacement to the forage feed rate. The calibration trials were done with barley and alfalfa at a range of moisture contents and theoretical lengths of cut (Kepner et al. 1972).

For this preliminary study, a chemical application system ("direct system") for sulphur dioxide (Harrison 1983) was modified for control by a minicomputer. Mains (1983) had found that the feedroll displacement on a forage harvester was a good indicator of forage feed rate. Therefore, the modified application system was designed to maintain a constant chemical application rate with respect to the forage feed rate as measured by the feedroll displacement. The pressure in the modified system was monitored; and the cumulative amount of chemical applied was calculated.

3.1.2 EQUIPMENT AND INSTRUMENTATION .

The "direct system" developed by Harrison (1983) for applying sulphur dioxide is readily adaptable to allow control of the flow rate. The direct system was modified for use in this preliminary study by replacing the single solenoid valve and nozzle by a bank of solenoid valves and corresponding nozzles. The solenoid valves, and consequently, the chemical flowrate from the nozzles, were controlled by a minicomputer. The number of nozzles used, and their capacities, were chosen to allow a flexible and wide range of chemical flowrates. This flow range would accomodate a reasonable spread of forage feed rates at a chemical application rate of 0.35% (wet weight basis) (Mathison et al. 1979). An application rate of less than 0.35% would not adequately protect the forage, and an overapplication of chemical would have no benefit and would be wasteful. This modified system was installed on a forage harvester (Hesston 7150) and used to control the application of sulphur dioxide to forage during chopping.

During both the system trials and the calibration trials, the minicomputer and a paper tape punch collected data on the feedroll displacement, cumulative mass of forage harvested, chemical line pressure, and chemical applicator nozzles in use. The minicomputer controlled the applicator nozzles, and therefore, the chemical application rate, based upon the forage feed rate as indicated by the feedroll displacement. The minicomputer used was a MINC PDP-11/23 with full analog and digital interfacing capabilities. This general purpose minicomputer was used for these preliminary study trials since a minicomputer is more versatile, and easier to reprogram, than a dedicated microprocessor.

The control system used in this preliminary study, and subsequently used in the designed application system, was a single-variable feed-forward open-loop control arrangement (Appendix I).

A tractor (Massey Ferguson 2805) towed the forage harvester, the nurse wagon with the chemical tanks, and an instrumentation van. The forage wagon collecting the harvested forage was towed alongside the harvester by a second tractor (Figure 3.1). This forage wagon was supported by four load cells to allow continuous monitoring of the mass of forage in the wagon (Harrison 1983).

The displacement of the upper front feedroll on the forage harvester was measured with an LVDT. An LVDT was used for this measurement since it was readily available and could be simply and quickly installed in the system. Since the maximum displacement of the feedroll (17 to 18 cm) exceeded the maximum possible displacement of the LVDT (6.4 cm), a cantilever beam arrangement was used to get a LVDT displacement smaller than, but proportional to, the feedroll displacement. One end of a 38.1 cm (15 in) cantilever rested on, and displaced with, the upper front feedroll. The other end was hinged to a stationary lid on the forage harvester (Figure 3.2). The LVDT measured the

Figure 3.1 Forage harvesting for data collection and and chemical application control during the preliminary study.

Figure 3.2 LVDT (feedroll displacement measurement) and chemical applicator nozzles during the preliminary study.

displacement of the cantilever at one third of the cantilever length from the hinged end.

Four spray nozzles for applying the chemical were located between the table auger and the front feedrolls of the forage harvester (Figures 3.2, 3.3). The feed rate sensor (LVDT) was located on the front upper feedroll, thus the chemical applicator nozzles were as close as possible to the sensor influencing their operation. The nozzles were rated at 0.38, 0.57, 0.76, and 1.14 L/min (0.10, 0.15, 0.20, and 0.30 USGPM) at a pressure of 415 kPa (60 psi). At these ratings, the four nozzles would provide the proper chemical flowrate for feed rates from 9 to 27 t/h when used individually, and for feed rates up to 68 t/h when all the nozzles were simultaneously active. In addition, the gradation of nozzle capacities allows a maximum possible deviation of 25% from the required flowrate at any instant (assuming that the feed rate is not less than 7 t/h), and the average deviation over a length of time should be less than this. The calibrated capacities (Appendix A) differed slightly from the rated capacity values, and the maximum possible deviation is lower with the calibrated values. As in the direct system (Figure 3.4), the solenoid valves were located immediately behind the nozzles, since the sulphur dioxide freezes the line between the nozzle and the solenoid valve upon shut-off. A pump was located between the chemical tank and the solenoid valves, and a back pressure regulating valve maintained the pressure at approximately 550 kPa (80

Figure 3.3 Diagram of the forage harvester.

Figure 3.4 Diagram of the chemical flow system.

psi) (Harrison 1983). A pressure transducer was located between the pump and the solenoids to monitor the line pressure for fluctuations which could affect the chemical flowrate. The calibrations for the LVDT, forage wagon load cells, applicator nozzles, and pressure transducer are recorded in Appendix A. The nozzle calibrations were done with water, and consequently, provided approximate or preliminary flow values. Since the sulphur dioxide "flashes" (partially goes from a liquid to a gas state) as it passes through the nozzle, the calibrations should re done with sulphur dioxide to obtain accurate values.

A schematic of the wiring can be seen in Figure 3.5. The minicomputer, the paper tape punch, and a signal conditioner were located in the instrumentation van. The signals from all of the transducers (LVDT, 'load cells, pressure transducer) were wired into the signal conditioner. The signal conditioner provided the excitation voltages for the transducers, as well as amplifying the output signals. The solenoid-control output lines from the minicomputer were connected to the signal conditioner, as well as to the solenoid valves. From the signal conditioner, the LVDT, 'load cells, and pressure transducer signals were sent to the MINC minicomputer. The paper tape punch also recorded these transducer signals, and the solenoid-control line voltages, which indicated the active nozzle(s). The signals going to the paper tape punch were directed from the signal, conditioner into an integrator to average the signals over

Figure 3.5 Schematic of the wiring in the preliminary study.

each sampling period, then into a multiplexer which coordinated their transfer to the paper tape punch.

All signals to the minicomputer and paper tape punch were analog or were treated as analog signals. The solenoid-control outputs from the minicomputer were digital signals. Since the voltage and current output from the MINC minicomputer was not large enough to activate a solenoid valve, the output signals were routed through a power amplifier (Appendix B), and then to the solenoid valves.

A grounding problem was encountered with the instrumentation such that the minicomputer and the signal conditioner were at different grounds. This resulted in all of the signals which were sent to the minicomputer being offset from the output signal of the signal conditioner by a constant voltage. Since it was not possible to obtain a common ground for the signal conditioner and the minicomputer, an additional wire was run from the signal conditioner to the minicomputer, allowing the minicomputer to read the voltage difference between grounds, and correct for it.

3.1.3 MINICOMPUTER PROGRAM

A listing of the FORTRAN program used by the MINC minicomputer for this research is in Appendix C. Both the FORTRAN and BASIC languages are available on the MINC. The FORTRAN language was chosen for use since a FORTRAN program operates faster than a BASIC program, and can operate without accessing the disk drives on this system. The disk drives were used only to initially load the program, since the disks or disk heads can be damaged if the unit is operated while in motion.

The minicomputer program read all of the input lines and set the output lines once every 13 to 14 seconds. The readings of the LVDT and forage wagon load cell signals were used to determine which nozzles were to be turned on. The pressure transducer readings were used in to monitor the system performance.

After initialization of the variables, the program entered a continuous loop which was only halted by an interrupt, manually set at the signal conditioner. The program loop began by sampling the signal from the LVDT one hundred times, and averaging the readings. These one hundred readings were spaced over a 5 second interval. The LVDT sampling interval had to be long enough to be representative of the entire time period of the program loop and to yield a good correlation between the feedroll displacement and the forage feed rate. The interval had also to be short enough that an excessive amount of forage had not been harvested before the sampling was completed. The program loop required approximately 9 seconds to execute the other functions, and 5 seconds of sampling the LVDT was chosen as a reasonable compromise between the above specifications. With one hundred readings, a value was obtained for every 0.05 seconds during the 5 seconds. Based upon the graphs of

feedroll displacement versus time (Mains 1983), these one hundred readings should have detected any fluctuations in the feedroll displacement, and in addition, would have averaged and eliminated errors due to minor fluctuations in the signal voltage from the signal conditioner.

Each of the remaining transducer input lines was then sampled twenty times, and the readings averaged to eliminate minor signal voltage fluctuation errors. The differential ground voltage was subtracted from all of the readings. The required chemical flow rate was calculated, based upon the LVDT displacement and a calibration value (feed rate per LVDT displacement) which was calculated in the previous loop, and the corresponding optimal arrangement of nozzles was chosen. The digital word which would activate the proper solenoids was then sent on the output lines, and an updated calibration value for the next loop was calculated based on the equation:

where a = calibration value (t/(h•mv))

 $a = w / (v \cdot t) \dots$

t = time since the start of the run (h). Several additional variables (ie. actual chemical application rate, forage mass harvested during the previous loop) were also calculated (Appendix C). The transducer readings and calculated variables were then copied to a

3.1a

printer, and program execution returned to the beginning of the loop.

The program could also run when the load cells from the forage wagon were not connected into the system, or were not being used to calculate the calibration value. In these cases, a calibration value from a previous run was entered via the minicomputer keyboard and used for the entire run. This feature allowed a second non-instrumented forage wagon to be used during harvest, while retaining the minicomputer operation for chemical application control.

3.2 RESULTS

3.2.1 SYSTEM ANALYSIS - APPLICATION RATE AND LINE PRESSURE

The harvest runs on the private farms (system runs) were to examine the operation of the modified application system, and ranged from 96 to 586 seconds in length, the time required to fill a forage wagon. The data (Appendix D) were collected on the minicomputer printer only, at 13 to 14 second intervals. The crops harvested were barley and a barley-oats mixture. The range of moisture contents (as measured with a CENCO moisture balance) was quite narrow (52% to 66%, wet basis), and one length of cut was used for the majority of the runs.

The application rates of sulphur dioxide to forage for each of these runs are recorded in Table 3.1. The chemical application control for each run was based on one of two

Harvest variables and the chemical application rates for the system runs (preliminary study). Table 3.1 . •

Ĭ,

. . .

Run crop #		length of cut (mm)	"A1" value (t/hr/mv) calc. used	applic. rate (%)
1 *1 2 2 4 5 *2 6 7 *3 8 9 10 *4	448 504 112 504 574 602 532 574 574 574 518	6 6 6 6 6 6 6 6 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.40 0.33 0.28 0.44 0.44 0.47 0.34 0.39 0.46 0.30
*2 = *	Farm #1, day Farm #2, day	2, 48% d. 3, 40% d.	m. content bar m. content bar m. content bar m. content bar	ley. ley/oats.

possible calibration values. The first run with each crop had to calculate the calibration value for that particular crop; therefore, these runs used a calibration value which was being continuously updated (Table 3.1, "A1 calc."). Later runs with a similar crop could use the calibration value which had been calculated in a previous run ("A1 used"). The specified chemical application rate was 0.35% (wet weight basis), and the rate actually applied during the runs using continuously updated calibration values ranged from 0.27% to 0.44% (mean=0.35%). The runs using a constant previously-calculated calibration value had application rates ranging from 0.39% to 0.47% (mean=0.44%), with an average deviation of 25% from the specified rate.

The equation used by the minicomputer program for calculating the feed rate during the trials was:

Đ.

Q).

- $b = calibration value (t/(h \cdot cm))$
- y = feedroll displacement (cm).

The value of b was calculated during each run, and was not necessarily constant over several runs having similar crops at the same moisture content and length of cut. This equation is not the one which would be used in a microprocessor-controlled chemical application system, and subsequently, the application control was not as accurate as it would be with the microprocessor-controlled system. The equation which would be used in a microprocessor-controlled

system could not be calculated until the calibration of the forage feed rate to the feedroll displacement had been completed, and these system-trials-were-done-prior_to_the calibration trials.

Additional inaccuracy was introduced into the application control system since the minicomputer only sampled the LVDT reading during a 5 second interval during each program cycle. An improvement in the accuracy of the application rate should be evident in a system which uses the calibration, and which measures the feedroll displacement continuously.

The variation of the pressure in the chemical lines during a typical system run can be seen in Figure 3.6. The pressure fluctuated between 360 and 640 kPa, with an average pressure of approximately 550 kPa, during run #6. The fluctuations in line pressure appear to be related to the chemical flowrate. A large drop in pressure corresponded to one of the larger nozzles being switched on. A pump was located between the chemical tanks and the solenoids, and a back pressure regulating valve regulated the pressure. However, the valve would not be able to instantaneously respond to a drop in line pressure when a larger nozzle switched on, or to an increase in line pressure when a smaller nozzle was activated. The fluctuations in line pressure probably were due to the response time of the valve, which appears to be several seconds. These fluctuations in pressure, which were a result of a changing

Figure 3.6 System run #6, pressure in the chemical line versus time.

chemical flowrate, and which in turn affected the flowrate, were taken into account in the design of the microprocessor-controlled chemical application system.

3.2.2 CALIBRATION - FEED RATE AND FEEDROLL DISPLACEMENT

The harvest runs done at the Ellerslie Research Station were to calibrate the feedroll displacement. The length of the trials ranged from 55 to 286 seconds, with the data being collected on paper tape at half second intervals. A range of crop moisture contents, lengths of cut, and forage feed rates were used in these trials. The crop moisture content was varied by allowing the crop to dry for different lengths of time between cutting and chopping. The length of cut was varied by a simple gear adjustment on the harvester, and a range of feed rates was obtained by varying the tractor speed and by raking crop rows together.

The average forage feed rate and the average feedroll displacement were determined for each calibration run. The average forage feed rate was found by fitting a graight line through the data on a graph with forage mass in the wagon as a function of time. The slope of this line is the feed rate. Figures 3.7 and 3.8 are representative of the data collected (Appendix E). It can be seen that the feed rates remained constant during each run. The feedroll displacement measurements taken during each run were averaged to give the average feedroll displacement over the entire run.

Figure 3.7 Calibration run #9 with barley; mass of forage in the forage wagon and feedroll displacement versus time.

Figure 3.8 Calibration run #9 with alfalfa; mass of forage in the forage wagon and feedroll displacement versus time.

The relationship between two variables can usually be expressed by a polynomial, exponential, or logarithmic equation (Harrison 1973, Steel & Torrie 1960). Using a multiple linear regression program, the data collected at Ellerslie was fitted to these equations, and was found to best fit the logarithmic equation:

- $f = a + b \cdot \log(y \cdot 1) \dots 3.2$
- where f = forage feed rate (t/h)
 - y = feedroll displacement.(cm)
 - 1 = theoretical length of cut (mm)
 - a,b = constants for each crop.

The fifteen data points for Barley fit this equation with a R-squared value (coefficient of multiple determination) of 0.7773 and constants of:

- a = 3.89
- b = 5.85.

The coefficient of multiple determination is the proportion of variance in the dependent variable (in this case, f) accounted for by the relationship of it with the independent variables (Steel & Torrie 1960). Values of R-squared range from 0 to 1, with a perfect fit of data to an equation resulting in an R-squared value of 1. The R-squared value for the nine alfalfa data points was 0.4895, with constants of: a = 8.73

b = 3.69.

Graphs of the data points, and the best-fit equation can be seen in Figures 3.9 and 3.10.

Figure 3.9 The relationship between the forage feed rate and the product of the feedroll displacement and the theoretical length of cut - barley.

39

Figure 3.10 The relationship between the forage feed rate and the product of the feedroll displacement and the theoretical length of cut - alfalfa. R-squared values of 0.5407 for the barley data and 0.3998 for the alfalfa data were obtained when the data was fitted to the linear (polynomial) equation:

 $f = a \cdot y \cdot 1$ where f = forage feed rate (t/h)

- y = feedroll displacement (cm)
- 1 = theoretical length of cut (mm)
- a = constant for each crop.

It was noted that by deleting the data point for alfalfa at the 19 mm length of cut, the R-squared values increased to 0.7732 for equation 3.2 and to 0.5786 for equation 3.3. There is no justification for claiming this point to be "bad data" and deleting it. However, equations 3.2 and 3.3 are to approximate, not describe, the physical relationships between feed rate, feedroll displacement, and length of cut. Therefore, an extreme length of cut could yield a data point which is radically different from the data points at the less extreme length of cuts, and 19 mm is the longest (most extreme) length of cut available on the forage harvester used. Since it is unlikely that the 19 mm length of cut will be commonly used, the 19 mm data point could be deleted to allow the fitted equations to better approximate the feed rate at the lesser lengths of cut. The constants for the alfalfa data fitted to equation 3.2 when deleting this point are:

a = 8.38

b = 5.01.

The data point for barley at the 190mm length of cut is not as different from the other data points as the alfalfa 19 mm data point is, possibly because of the different characteristics of the two crops.

Mains (1983) did not include the length of cut as a variable in his research; however, it has been included in equations 3.2 and 3.3. The length of cut on a forage harvester is varied by changing the ratio of the gear drive of the feedrolls, which changes the feedroll speed. The relationship between the feedroll displacement, feedroll speed, and theoretical length of cut can be expressed as :

(displacement) (1/speed)
and (speed) (length)

thus (displacement) (1/length).

Since the length of cut inversely influences the displacement, it was inserted into the equations as a multiplier of the displacement. Although the relationship between length of cut (feedroll speed) and displacement may not be an exact linear inversely proportional one, the results obtained with equation 3.2 are deemed adequate for this application.

The variable of dry matter content, which was included in the equations found by Mains (1983), was not included in equation 3.2 since it is unlikely that it would be known. Equation 3.2 should be reasonably accurate over the range of crop dry matter contents normally encountered during

4.'1 OBJECTIVE

The purpose of this study was to design an efficient and economical control system for applying a liquid chemical to forages, including such chemicals that are only in a liquid state at ambient temperatures if their pressure is greater than atmospheric. The system must be capable of measuring the forage feed rate through a harvester, and of controlling the chemical flowrate to give a specified chemical application rate with respect to forage mass. In addition to the control system, a monitoring system would be advantageous. The monitoring system would provide information, such as the forage feed rate and the total chemical used, to the operator. Either system could be used independently with a forage harvester, or both systems could be used together. With some modifications, either system might also be used with a baler.

4.2 MONITOR

The monitor from the ZT-4 driving computer package (ZEMCO, San Ramon, California) was used for the monitoring system to provide information to the operator. When used with an automobile, the vehicle distance travelled and the fuel usage are monitored. The monitor has an internal clock to give a readout of time and allow calculations of the vehicle speed and the fuel flowrate, and it is designed to operate from an automobile battery (Zemco 1983)

The ZT-4 monitor was chosen for this application since its automobile measurements and calculations parallel those

which are necessary in the monitor for this chemical application system. In addition, the ZT-4 computer package includes a flowmeter which could be modified for use with this system, and a magnetic detector which had the potential for use in a magnetic feed rate sensor.

The specifications and circuit diagram for the ZT-4 monitor were not available. The flowmeter was designed for use with this monitor; therefore, no intermediary circuit was necessary between the monitor and flowmeter. The circuitry necessary to allow connection.of a feed rate sensor to the monitor is discussed in section 4.3.

4.3 FEED RATE SENSOR

During the calibration trials in the preliminary study, the forage feed rate was calibrated to an exponential function (equation 3.2) and a linear function (equation 3.3) of the product of the feedroll displacement and theoretical length of cut (or rotational velocity). A sensor capable of measuring this product, to be used in these equations, was required. The feedroll displacement was effectively measured with an LVDT during the preliminary study, and the rotational velocity could be easily measured with a dc tachometer. However, both of these transducers are analog O devices, and are therefore not directly compatible with a microprocessor, which accepts only digital information. With some signal conversion, the LVDT and tachometer could be used in a microprocessor system (Mitchell 1981); however, less expensive sensors with a digital output are available and more feasible.

The feed rate is calculated with the value of feedroll displacement times rotational velocity. The independent values of feedroll displacement and rotational velocity are not required; therefore, a single sensor could be used to measure their product. Three sensors were considered for use in measuring this product. Each of the feed rate sensors consisted of a patterned disk, and a corresponding detector located nearby. The disk was to be connected to an upper feedroll on the harvester, and rotate and displace with it.

The detectors examined for the feed rate sensor were a magnetic detector, a reflective object detector, and an infrared light emitter and detector. The disk used in each system would have a pattern of objects or holes to which the particular detector was sensitive. The location of the detector and the pattern would be such that the number of objects or holes detected, and therefore, the number of detector output signal pulses, is proportional to the displacement times velocity. Unlike the "encoded disks" discussed in the literature review, which sense rotational displacement or rotational velocity, these "patterned disks" would be used to sense the product of rotational velocity and linear displacement.

The circuit diagram for a sensor using magnetic detection of magnets on a disk, is shown in Figure 4.1. The magnetic detector can be wired directly into the monitor. The additional circuitry in this diagram is required for amplifying and conditioning the detector signal to make it compatible with the microprocessor control system. The magnets on the disk could be either long and narrow, aligned along the radii of the disk, or they could be smaller and located such that the number of magnets detected at any radius on the disk would be proportional to that radial distance.

The circuit for a sensor using a reflective object detector, is diagrammed in Figure 4.2. As with the magnets, reflective strips on the disk would be patterned such that the number of strips detected would be proportional to the radial distance. The reflective object detector would be aligned with the vertical axis of the disk.

Figure 4.3 shows the circuit diagram for the third sensor, with an infrared light emitter and an infrared light detector located on opposite sides of a disk. The disk could have slots, following a pattern similar to the one for the reflective strips and the long magnets, or an arrangement of holes in a pattern similar to the small round magnets. Each time a slot or hole passed between the emitter and the detec the detector would sense the infrared light and

 $p_{U=\Xi}$ "high" voltage on the output line. The emitter and detector would have to be offset from the disk center to

Figure 4.1 Circuit diagram for the magnetic detector.

Figure 4.2 Circuit diagram for the reflective object detector.

> T

Figure 4.3 Circuit diagram for the infrared light emitter and detector.

.

allow for the shaft which fastens the disk to the feedroll.

Since the monitor was designed to interface with a magnetic detector on the input signal line being used by the feed rate sensor. The signal generated by the magnetic detector was therefore examined, and the feed rate sensor circuits were designed to output a signal compatible with the monitor. There are two signal lines from the magnetic detector to the monitor. The signal on one of these lines is a voltage pulse which goes from a "high" positive voltage to a "low" negative voltage. The second line is connected to ground. The monitor detects the pulse on the first line when the voltage drops below the voltage on the second line (ie. when the voltage drops below 0). Therefore, the feed rate sensors had to output a signal which went from a positive to a negative voltage, relative to the monitor. The single cell battery in the circuits in Figures 4.2 and 4.3 was used to drop the output of 0 to 5 volts down to an output of -1.5 to 3.5 volts. Prior to installing the battery attempts were made to input a small positive voltage on the second line to be used as the threshold voltage at which the pulse was detected; however, the second line is grounded inside the monitor, and consequently, this alternative did not work.

Ħ.

The magnetic and reflective object feed rate sensors were briefly examined. The magnetic feed rate sensor was not built since the fewer number of problems associated with the infrared light emitter and detector made that sensor more feasible. The circuit for the magnetic sensor is more complex than the emitter and detector circuit, and the distinction between an "on" and an "off" voltage from the magnetic detector is questionable. The magnetic detector signal is analog, with the magnitude being dependent on the magnetic field induced. This magnetic field varies with the strength of the magnets, the distance between the magnet and the detector, and the velocity of the magnet; therefore, the choice of a cutoff voltage to distinguish between a digital signal "on" and "off" is arbitrary and the sensor would have to be calibrated for each disk and each feedroll speed or length of cut.

The feed rate sensor utilizing a reflective object detector was built and found not to be feasible. Strips of reflective tape, such as that used on bicycles and automobiles, were placed on a disk. To respond to the reflective strips, the detector had to be parallel to the axis of disk rotation; however, the axis of the feedroll can tilt. In addition, the reflective strips were not detected at a distance of more than 1 cm from this detector, and with some forage harvesters, a clearance of at least 1 cm would be necessary to allow for the tilt on the feedroll axis. The reflective object detector was also very sensitive to ambient light and would require a shield to block out most of the direct and diffuse ambient light. A feed rate sensor using a reflective object detector might be feasible with a more powerful detector, more reflective and multi-directional strips, and a shield.

The feed rate sensor using the infrared light emitter and detector was more thoroughly tested. Tests were done with the light emitter and detector and several disk patterns (Figure 4.4). Since the maximum feedroll displacement measured with the Hesston 7150 forage harvester during the preliminary study was approximately 10 cm, a radius of 12.7 cm (5 in) was used for the disks. During the preliminary study, it was also found that the choice of the optimal nozzle to be turned on could be dependent on a feedroll displacement as little as 1 cm. Therefore, the disks designed required a sensitivity of at least 1 cm of displacement.

Perforated round-hole screen disks were tested, as well as a disk with a unique pattern of holes, and disks with slots. The disks made with the perforated round-hole screens (Figures 4.4a, b, c) had hole diameters of 0.79, 1.27, and 2.54 cm (0.3125, 0.5, and 1.0 in). The spacing between any two adjacent holes on one of these disks was the radius of a hole.

The unique hole disk (Figure 4.4d) had 2.2 cm (0.875 in) diameter holes; which were located at 1 cm radius increments. This allowed a slight overlap between the holes in adjacent 2 cm width rings. For any integer "X" between 0 and 12, the number of holes detected at any radial displacement between "X-0.5" and "X+0.5" cm was "X". This pattern provided a displacement sensitivity of 1 cm. The two slotted disks examined had displacement sensitivites of 1 cm

Figure 4.4 Disk patterns tested with the infrared light emitter and detector : (a) small, (b) medium, and (c) large round-hole screen; (d) unique hole; (e) 11-slot; and (f) 21-slot.

Ð

and 0.5 cm. These patterns (and the corresponding sensor) were offset from the disk center by 1 cm to allow space for the shaft of the disk. The locations of the holes or slots on the disks gave a maximum spacing between holes or slots at the same radial distance. This spacing resulted in a sensor output signal frequency which is as uniform as possible, reducing the incidence of high frequencies which might exceed the limits of the control or monitor System, and allowing the controlling microprocessor program to run more efficiently. In addition, this even spacing allowed accurate displacement readings when the feedroll had a varying displacement.

The disks were mounted on a drill press for test purposes, and the disk was rotated at 120 rpm, a typical feedroll speed. The detector output signal line was connected to the monitor and to a pulse counter. Output signal counts were then taken with the emitter/detector located at several distances from the disk center. These runs tested for "dead spots" in the disk, poor hole patterns, and holes which were too close together to be read individually. In addition, the runs checked that the monitor could successfully read the signal being generated with the designed circuitry.

4.4 CHEMICAL FLOW SENSOR

The flowmeter used was supplied with the monitor and is designed for measuring the fuel consumption in a vehicle. This flowmeter uses an optoelectronic sensor to measure the flowrate. A light emitter and a detector are located on opposite sides of a raceway channel in the flowmeter. As liquid flows through the raceway, a small ball in the channel isplaced and travels around the raceway, interval the light beam between the emitter and the frequency of these interruptions, and of the subsequent detector output signal, is proportional to the liquid flow fate.

The flowmeter was modified by replacing the rubber. seals and components, which were susceptible to attack by sulphur dioxide, with teflon parts. The modified flowmeter was calibrated with water in the range of flowrates which would be used in a field application with the chemical, sulphur dioxide. This range was from 0.28 to 1.84 L/min, based upon a chemical application rate of 0.35% (wet weight) and a forage feed rate ranging, from 9 to 45 t/h. The output signal from the flowmeter was connected to the monitor and to a pulse counter, and a measured amount of water was passed through the flowmeter. The pulse counter and monitor readings were compared to determine whether any signals might have been missed by the_monitor due to flowrate limitations or other problems in the monitor.

4.5 APPLICATOR NOZZLES

The solenoid values for the nozzles were controlled by the microprocessor. Since the microcomputer was incapable of outputting sufficient current to energize the solenoid, an intermediary circuit was required to boost the control signal. The intermediary circuit used was the same as the circuit located between the minicomputer and the solenoids in the preliminary study (Appendix B). It was anticipated that the system would use four applicator mozzles of the same capacities as used in the preliminary study, for the same reasons; however, more or fewer nozzles, or nozzles of different capacities, could be accomodated.

4.6 MICROPROCESSOR CONTROLLER

A microcomputer system which could respond to the signals from the feed rate pensor and the flowmeter, and produce the optimal chemical flowrate, was required. In addition, the microcomputer system had to be easy to calibrate since the system must be calibrated to the type of drop being harvested and the required chemical application rate. The microcomputer should be designed to run from the 12 volt tractor power supply, and the microcomputer components should be readily available, inexpensive, and rugged.

The Motorola 6802 microprocessor was chosen. The 6802 incorporates the 6800 microprocessor with an on-chip clock oscillator and 128 bytes of RAM (random access memory). This

eliminates the need for these two additional chips in the microcomputer system. The 6800 is an 8-bit microprocessor, and is capable of addressing 64K bytes of memory. The 8-bit data bus is multidirectional. These features allow the 6802 microprocessor the capabilities required in this application, yet the 6802 is still simple and small enough to be practical. Similar microprocessors are available from other companies, such as the Zilog Z-80 and the Intel 8080 series. These microprocessors have the same capabilities as the M6800, but the M6800 was chosen because of its availability and greater popularity (Motorola 1981, Page et al. 1977, Craig 1982, Hinkle 1982). The 6820 PIA (peripheral interface adapter) for I/O (input/output) operations, and the MCM2716 EPROM (erasable programmable read only memory) for program storage were selected. The MCM2716 memory is permanent in the event of power failures or shutdowns; however, the program and permanent data can be stored (written) into memory by an individual system designer and need not be mass produced at the factory. This feature makes the MC2716 EPROM economical and feasible for non-mass production systems, and permits the designer to erase and rewrite into the memory, thereby making future modifications to programs possible. A voltage regulator allows the microcomputer to run from the tractor battery, and a crystal p circuit provides the input to the on-chip clock. All of these components met the requirement of being inexpensive, rugged, and readily available. (Craig 1982, Greenfield 1981,

Motorola 1981, Hinkle 1982, Page 1977).

 \mathbf{O}

The circuit diagram for such a microcomputer system can be seen in Figure 4.5 (Craig 1982). The operator calibrates the system by setting a series of eight "on/off" switches. Four of these switches indicate the required chemical application rate. The remaining four switches are set according to the type of crop being harvested and harvester being used. The microprocessor has several sets of feedroll equation constants in its memory, and it would retrieve the most appropriate set of constants for the type of harvest run specified by these four switches. These switches are connected to eight of the sixtgen I/O lines of the PIA. The feed rate sensor is connected to one of four "interrupt" Tines on the PIA. On a voltage pulse from the feed rate sensor, a count of these pulses would be incremented. The flowmeter is similarly connected to another of the "interrupt" lines. Four of the remaining eight PIA I/O lines are used to output the signal from the microcomputer to the power amplifier which switches the solenoids. The four remaining PIA I/O lines remain unused in this system, but could be connected to additional solenoid valves, indicator lights (ie. extreme feed rate conditions), or additional monitoring transducers.

When the microcomputer system is powered on, the microprocessor would begin execution of the program to control the application of a chemical to a forage. A listing of this program is recorded in Appendix F. Upon start-up,

Figure 4.5 Circuit diagram of the microcomputer control system (Craig 1982).

85. · ·

٥

 \Box

the program samples the switches set by the operator and stores the resulting value. The program then enters a O continuous loop which is interrupted only by the feed rate sensor or flowmeter signals. Each time there is an "interrupt", the microprocessor jumps to a subroutine which determines which sensor has sent the pulse and then increments the pulse count for that sensor. Every second, the microprocessor reads the feed rate sensor count and

59

calculates the forage feed rate over the previous second and the required chemical flow rate for this feed rate, based upon equation 3.2 and the value initially entered on the switches by the operator. The microprocessor then chooses the nozzle or nozzle combinations which will give a flow rate nearest to the required flow rate, and instructs the PIA to activate the corresponding solenoids. The

microprocessor then calculates the chemical flow rate from the flowmater count over the previous second. If the flow rate measured differs significantly from the expected

capacity of the active nozzle(s), then the nozzle capacity value is updated to the measured flow rate value, for use during the remainder of the run.

• • •

5. DESIGN RESULTS AND DISCUSSION

5.1 MONITOR

In the chemical application system designed, ZT-4 driving compute was used as the monitor which provided a readout of the forage harvested, based upon a signal input from an optoelectronic sensor, and the chemical used, based upon a signal input from a flowmeter. The monitor also calculated and provided a readout of the forage feed rate chemical usage rate, and the forage weight harvested per chemical weight applied.

The monitor calculates the forage weight based upon equation 3.3, the linear relationship between the feed fate and the feedroll displacement times rotational velocit). As can be seen from the R-squared values in section 3.2.2, the linear equation does not yield as accurate estimates of the dependent variable as the bogarithmic equation. The monitor (ZT-4 driving computer) is permanently programmed with a linear relationship for its original intended use of measuring the distance travelled by a vehicle, and the convenience and low cost of the driving computer package justify the use of ZT-4 monitor, despite the less accurate estimates.

The monitor was used in tests with both the feed rate sensor and the modified flowmeter. Reliable readouts (as verified with a pulse counter) were obtained with the unique hole and slotted disks in the feed rate sensing system and
with the flowmeter. The tests were done with the range of feed rate sensor signals and flowmeter signals which would be encountered normally.

5.2 FEED RATE SENSOR

The feed rate sensor with the best potential was judged to be the one with the infrared light emitter and detector. A schematic of the light emitter and detector and the disk can be seen in Figure 5.1. The emitter and detector could be placed up to 5 cm apart. The circuit did not detect ambient light except when the detector was placed in direct sunlight on a bright day, and the design (Figure 5.1) blocked enough sunlight to prevent this. The signal from the circuit can be read by the monitor, and should be compatible with the microcomputer controller as well.

Of the six disks tested with the infrared light emitter and detector system, the slotted disks were the most effective for measuring the product of feedroll displacement and rotational velocity (Appendix G). With the disks made from perforated round-hole screen, a limitation was encountered with the monitor with regard to the frequency or pulse width of the signal. The monitor was unable to respon accurately to the signal at the larger radial distances on the small and medium round-hole screens of 0.79 and 1.27 cm hole diameter. It responded to the signals at any radius on the large (2.54 cm diameter) round-hole screen only. Furthermore, the round-hole screen disks did not have a

Figure 5.1 Feed rate sensor utilizing the infrared light emitter and detector, and the 11-slot disk.

satisfactory pattern of holes. The number of holes was not proportional to the radial distance, particularly for the large round-hole screen.

The unique hole disk effectively indicated the displacement with a sensitivity of 1 cm; however, it would not be reasonable to make a similar disk with a greater sensitivity. The manufacture of such a disk would be time-consuming and impractical due to the large number of holes required, and the complexity of the hole pattern. Such a disk would also have smaller holes, and it is probable that the monitor limitation on signal frequency or pulse width, encountered with the round-hole screen disks, would also be encountered with this disk.

The two slotted disks with the emitter and detector system proved to be an effective indicator of feedroll displacement times velocity. The output signal at any radial distance on the disks was compatible with the monitor, and the signal output was proportional to the radial distance. The highest signal frequency measured by the monitor in the drill tests, with the 21-slot disk (Figure 4.4f) at a radial distance of 11 cm (20 slots detected), was 40 Hz. The upper feedrolls on forage harvesters have rotational velocities between 60 and 200 rpm; however, the feedroll displacement would be lower at the higher velocities. Therefore, a signal frequency greater than 40 Hz should not be normally encountered.

5.3 CHEMICAL FLOW SENSOR

The pulse counter and monitor readout values for the calibration done on the flowmeter are recorded in Appendix

H. The flowrates used in this application are higher than the fuel flowrates ordinarily measured by the monitor; however, the flowmeter and monitor functioned efficiently at these higher flowrates and the flowmeter could be

successfully calibrated.

5.4 MICROPROCESSOR CONTROL SYSTEM

The complete microprocessor-controlled and monitored, chemical application system is diagrammed in Figure 5.2. The flowmeter and reed rate sensor are inputs to the microcomputer system which controls the solenoids of the applicator nozzles. The solenoids are activated based on a calibration value set by the operator, as well as the forage feed rate and the flow rate. The feed rate sensor and flowmeter are also connected to a monitor (the ZT-4 driving computer) which independently provides information on the system to the operator.

The accuracy of the control system is limited by the accuracy of equation 3.2, relating the product of feedroll displacement and velocity to the feed rate, and the available flow rate settings of the nozzles. The number of nozzles, and their capacities, could be changed with little change to the microprocessor program. Four nozzles with flow rates of 0.38, 0.57, 0.76 and 1.14 L/min provide an adequate

Figure 5.2 Block diagram of the microprocessor-controlled and monitored chemical application system.

range for treating forage with sulphur dioxide at the application rate of 0.35% of the wet matter (1% of the dry matter).

66

The controller and the monitor will have to be calibrated for each forage harvester. Furthermore, the springs on the feedrolls may be adjusted, so that the calibration for a forage harvester may be rendered useless by an adjustment to the spring tension. Calibrations would required for each crop to be harvested (ie. barley, alfalfa). In the present system, several sets of calibration constants are stored in the microcomputer memory and the operator specifies the set of constants to be used by setting four switches. This control syste could be modified to allow the operator to calibrate his particular forage harvester and crop, rather than choosing the set of constants for the harvest conditions which most closely resemble his own.

The control system could function with a pressure transducer in the chemical line, rather than exflowmeter. This would involve a modification to the microprocessor program in which the flowrate for a nozzle would be calculated from the measured pressure, rather than being measured directly. Since a pressure transducer has an analog output and the control system uses digital signals only, it would be necessary to add an analog to digital converter to the microcomputer system. With such a control system, the accuracy would be further limited by the equation relating the nozzle flowrate to the line pressure, and the inability of the system to know whether a nozzle was partially or wholly blocked. Furthermore, the monitoring system would not function with the pressure transducer unless the control system calculated the flow rate and sent the appropriate signal to the monitor. With a pressure transducer rather than a flowmeter, the monitoring system could no longer be independent of the control system.

Since the system monitor and the controller are two separate entities, it is possible to use one or the other or both. The microprocessor controller could calculate and output the system information on a display. The addition of a monitor into the control system would be simple in the microprocessor program. However, this would eliminate the option of using the monitor only, and sufficient I/O lines to accomodate such a display are not available in the present microcomputer system. An additional PIA would have to be added, along with a display. In addition, a flowmeter as suitable as the one provided with the ZT-4 driving computer would have to be found and purchased. The ZT-4 monitor was therefore considered to be the most versatile and feasible monitoring option.

O

6. CONCLUSIONS

A sensor to measure the forage feed rate through a forage harvester with reasonable precision is feasible. The feed rate sensor developed measured the product of the feedroll displacement and rotational velocity to obtain a measure of the feed rate, independent of the length of cut.

An infrared light emitter and detector, and a slotted disk connected to the feedroll, were used to obtain the product of displacement and velocity. The optoelectronic sensor was judged to be more suitable than the magnetic sensor for this application.

A monitoring system, which used the developed feed rate and modified flow rate sensors, was careful of indicating the forage feed rate, cumulative weight of forage cut, chemical flow rate, cumulative weight of chemical used, and the application rate. The precision of such a system is limited by the inaccuracies of the feed rate and flow sensors; however, it is much more precise than visual estimates of the forage feed rate and of the flow rate of a chemical at varying pressures.

The microprocessor control of a liquid chemical application system, which is capable of controlling the application rate of the chemical to the forage using the developed feed rate and modified flow sensors, is also feasible. As with the monitor, the precision of the system is limited by the inaccuracies of the two sensors, and also by the capacities of the applicator nozzles being used; however, this system would be far more precise than any manual control method.

£

¢69

. RECOMMENDATIONS

Calibration values, to be employed by the control system, must be obtained for the crops and forage harvesters used. As an alternative to storing a set of calibration values for each unique harvest condition in the microcomputer memory, the operator could calibrate the system for his particular cro, and forage harvester. This would require modifications to the control program and the installation of additional switches for input.

The microcomputer of the control system should be built and the control program should be run to test for program errors and interfacing problems between the microcomputer components.

The cost effectiveness of the control system could be determined by using a computer simulation program to model the operation of the microprocessor-controlled chemical application system and a manually controlled application. system, and comparing the chemical used with the two systems.

The feed rate sensor might be adapted to measure the feed rate of hay during baling or grain during combining. A different sensor would be required for measurement of grain in an auger. The microprocessor-controlled chemical application and monitoring systems could then be used for hay as it is balled, or for grain as it is combined or elevated for storage:

8. REFERENCES

Anon. 1979. Forage Harvesting Methods. Sask. Dept. Agric., Regina, Sask. S4P 3V7.

Anon. 1980. Transducers. Machine Design, 1980 Electrical and Electronics Reference Issue. 197-300.

Barden, W. 1982. Inexpensive transducers for the TRS-80, part 2: another look at monitoring real-world quantities. BYTE 7(11):416-444.

Benham, C.L. and P.L. Redman. 1980. Preservation of moist hay - a review. ADAS Quarterly Review 39:212-225.

Bournas, L. 1969. Experiences with liquid mineral fertilizers. Dokumentation 8, VII Kongress. Commission Internationale du Genie Rural. Baden-Baden.

Charlick, R.H., M.R. Holden, W.E. Klinner and G. Shepperson. 1980 The use of preservatives in haymaking. J.Agric.Engng.Res. 25:87-97.

Craig, D.L. 1982. A versatile low-cost microprocessor controller module. BYTE 7(12):486-498.

Greenfield, J.D. and W.C. Wray. 1981. Using Microprocessors and Microcomputers, The 6800 Family. John Wiley & Sons Inc., New York.

Harrison, H.P. 1973. Dimensional analysis for vibratory tillage 'tools. Can.Agr.Eng. 15(2):75-78.

Harrison, H.P. 1983. Treatment of forage with sulphur dioxide in a forage harvester. University of Alberta, pending publication.

Henry, Z.A. (Editor). 1975. Instrumentation and Measurement for Environmental Sciences. A.S.A.E., St. Joseph, MI 49085.

Hinkle, C.H. 1982. Designing with microprocessors: educating the beginner. Agr. Eng. 63(12):11-12.

Holden, M.R. and R.W. Sneath. 1979. Application of Preservatives to Hay. Report No. 30., N.I.A.E., Silsoe, Bedford MK45 4HS.

Holden, M.R. and R.W. Sneath. 1979. Application of preservative chemicals to hay at balling. Forage Conservation in the 80's. British Grassland Society Honeywell. 1976. Handbook for Applying Solid State Hall Effect Sensors. Micro Switch (Honeywell), Freeport, IL 61032.

Honeywell. 1979. Hall Effect Sensors. Micro Switch (Honeywell), Freeport, JL 61032.

Isaacš, G.W. 1982. The electronic age in agriculture Agr.Eng. 63(12):8.

J&H Manufacturing Inc. 1982. Watchdog Grain Loss Monitor Product Brochure. Watchdog (J&H Manufacturing Inc.), Marysville, WA 98270.

Kepner, R.A., R. Bainer, and E.L. Barger: 1972. Principles of Farm Machinery. The AVI Publishing Co. Inc., Westport, CONN.

Klinner, W.E. and M.R. Holden. 1978. Advances with Chemical Preservatives for Hay. A.S.A.E., St. Joseph, MI 49085.

Knapp, W.R., D.A. Holt and V.L. Lechtenberg. 1976. Proprionic acid as a hay preservative. Agron.J. 68(1):120-123.

. . .

д

Kruse, J., G.W. Krutz, and L.F. Huggins, 1983. Computer controls for the combine. Agr. Eng. (2):7-9.

Kuntzel, U., Y. Leshem, and G. Pahlow. 79. Anhydrous. ammonia as a moist hay preservative. Forage Conservation in the 80's: British Grassland Society.

Mains, W.H.M. 1983, Measurement of the Mass Flow of Crops . through a Forage Harvester. M.Sc. Thesis, University of . Alberta, Edmonton, Alta.

Malmstadt, H.V., C.G. Enke, and S.R. Crouch. 1973. Digital and Analog Data Conversions, Module 3, Instrumentation for Scientists Series. W.A. Benjamin Inc., Menlo Park, Calif.

Malmstadt, H.V., C.G. Enke, and S.R. Crouch. 1981. Electronics and Instrumentation for Scientists. The Benjamin/Cummings Pub. Co., Menlo Park, Calif. 94025.

Mathison, G.W., J. Wohllebe, L.P. Milligan, and R.M. Elofson, 1979, Sulfur dioxide as a preservative for legume grass Silage. Can.J.Anim.Sc. 59:727-735.

Mathison, G.W., L.P. Milligan, J. Wohllebe, and R.M. Elofson. 1981. Preservation of silage with sulfur dioxide. Feeder's Day Report, Agriculture and Forestry Bulletin, University of Alberta. June 12, 1981. pp.47-50. McLendon, B.D., S.J. Thomson, J.L. Chesness. 19 Irrigation scheduling - a valid option with J.L. Chesness, 1983. microprocessor-based controls. Agr.Eng. 64(9):12-14

McMahen, C.B., T.H. Burkhardt, and B.R. Tennes. 1982. pevelopment of an apple-harvester microprocessor-based ering control system: A.S.A.E. Paper No. 82-3038, St. Msseph, MI 49085.

Mitchell, B.W. 1981. Signal conditioning for analog inputs to microcomputers, A.S.A.E. Paper No. 81-1611, St. Joseph, MI 49085.

Morris, H.M. 1980. The many roads to measuring speed are increasingly gigital. Control Engineering 27(3):57-61.

Motorola Technical Information Center. 1981. Motorola Microprocessors Data Manual. Motorola Inc . Austin, TX.

Nehrir, H., W.L. Kjelgaard, P.M. Anderson, T.A. Long; E.D. Hoffman, J.B. Washko, L.L. Wilson, and J.P. Mueller. 1978. Chemical additives and hay attributes. Trans.A.S.A.E. 21 29:217-226.

Page, E.W., G.E. Miles, and J.R. Lamber 6. 1977. Selecting a microprocessor for Postrumentation, A.S.A.E. Paper No. 77-5035, St. Jeseph, MI 49085.

PAMI - 1980. Evaluation Report #177, Gandy 44 NDK 59 Fertilizer Attachment, Prairie Agricultural Machinery Institute (PAMI), Lephbridge, Alberta.

C. LAS PAMI, 1982. Evaluation Report #276, SED Automatic Sprayer Control System. PAMT, Lethbridge, Alberta.

PAMI. 1982. Evaluation Report #274, Raven Model SCS 400. Automatic Sprayer Control System. PAMI, Lethbridge, Alberta.

Raven Industries Inc. 1983. SCS 400 (Sprayer Control System) Product Brochure. Raven Industries Ind., Electronic Systems Division, Sioux Falls, SD 57117.

Senstex. 1983. Roto-Sens Shaft Monitor System Product Brochure. Senstex, Saskatoon, Sask. S7K 3L3.

Spitzer, F. and B. Howarth, 1972, Principles of Modern, Instrumentation. Holt, Rinehart and Winston Inc., New York.

Steel, R.G.D. and J.H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Co., New York.

Walker, J.T. 1981. Microprocessor control system for alcohol fuel fumigation. A.S.A.E. Paper No. 81-1610, St. Joseph, MI 49085. , MI 49085. . • · · ·

14

.

ст. 1917 г. 100 Zemco. 1983. ZT Driving Computers Product Brochure. Zemco, Inc., San Ramon, CALIF 94583. , Ì.,

· • • •

¢.

513

198 ·

a

Calibration of the LVDT

The signal conditioner provided the excitation voltage and conditioned the output signal from the LVDT. The signal conditioner output was recorded for measured displacements over the entire range of the LVDT. The feedroll displacement is three times as large as the LVDT displacement because of the cantilever arrangement.

		1 A 1
LVDT displacement (cm(in))	a staugt co	nditioner t (mv)
0.00 0.85 (0.33) 1.65 (0.65) 2.33 (0.92) 3.47 (1.37) 4.66 (1.83) 5.25 (2.07) 5.80 (2.284) 6.39 (2.52) - m	naximum	0 116 239 352 539 716 816 904 990

 $y_1 = 0.0064640z$

۶.

 $y_2 = 0.1939 \cdot z$

where y₁ = LVDT displacement (cm). y₂ = feedroll displacement (cm) z = signal conditioner output (mv)

.

Calibration of the Forage Wagon Load Cells

The four load cells were each wired into a signal conditioner channel. Each channel provided the excitation voltage and output signal conditioning for its load cell. The signal conditioner outputs were recorded for a known load on the front load cells and on the rear load cells The load cells were calibrated in pairs since the weighting of only one corner resulted in reaction forces at all four load cells, whereas the weighting of one end of the wagon primarily influenced only the two load cells at that end.

Q

1.

		•	· · ·	•	2 g allow				· . * '	n	\$
	mass	(kg) c	n load	cell	#	<u>, o</u>	utput	(mv)	on c	hannel	#-
	1	2	ds 3	4	···· •	•	1 '	· 2,	. 3		51
.	<u> </u>	<u> </u>				;	•				<u> </u>
Ŧ,	. n '	` `	С. С	ب ر ال	· - · · · · · ·	40	121.2	: 10	. 3. 7	-13	
	3 0	0	Ŏ	Õ	•		6	~ 8	- ⁻ - O	-7	
÷	ч	Þ.	S. Or	ал Г.	aver	age	;2	. 9	4	- 10	1. 1.
•	100	100	0	Ô		+ : ر و	69	96	6	-24	
	100	10.0	0	÷0 •		_ <u>\$ _</u> '	80	-83 90	- -	-14	•
0			100	100	aver	age	-1	. 5	د 64		
- 1		0	100	100		5	3	5	64		
		- 1996		ALL S	aver	age	۰ í	5	64	66	J.
•						-	. .				

....

Load Cells 1 & 2 : (100 + 100) kg = ((71-2) + (90-9)) mv 200 kg = 150 mv

$$dy = 1.33 \cdot dx$$

where dy = change in mass.on the load cell (kg) dx = change in reading (mv).

Load Cells 3 & 4 : (100 + 100) kg = ((64-4) + (66+10)) mv 200 kg = 136 mv

$$dy = 1.47 \cdot dx$$

Calibration	of	the.	Applicator	Nozzles

The weight of water which passed through each nozzle over a given time period, and at a controlled water pressure, was measured and the flow rates were calculated.

2.

9 a. 97.					•
and rating	1	415 kPa (ight of 60 psi)	water (g) 552 kPa (80	psi)
		\$2			
80010	30	247		292.2	· ·
10 00 - 1	1	250		292.6 285.8	
(0.38 L/min)		240		288.3	
(0.10,USGPM) at 4.15,kPa)	4 S 🖓	, 248		290.0	
	av	erage 249		289.8	
80015	. 30 -	348		2 96.2	
				398.3	3
(0.57 L/min		3'48		401.0	
(0,15 USGPM)) (⁴	-3.46		396.0	
		350		398.3 398.0	2
80020	av Abo	erage 348 469		543.7	Ċ,
	, 3 0, 7	465 · 35		542.7	¢ *
		475		550.6	
(0: 20 USGPM))	461		549.0	3
		,466	1	552.8	*
	av av	erage 467		547.8	
80030	20	449		523.2	
0 · · · · · · · · · · · · · · · · · · ·	A. 3.	444	2	520.6	
	a	454		524.0 519.0	- Q
0.30 USGPM))	•••	460 454		520.2	4
		434		526.3	
	NR:	451		524.8	
	W3 *	446		516.3	
	av	erage 450		521.8	•

--• *

•	*		79 🖡
	and the second s		
nozzle #	flowrate (L/m 415 kPa	iin and (USGPM)) 552 kPa	
 80015	0.50'(0.13) -0.70'(0.18)	$\begin{array}{c} 0.58 & (0.15) \\ \hline 0.80 & (0.21) \\ \hline 1.10 & (0.20) \end{array}$	
 80020 80030	1.35 (0.25)	1.10 (0.29) 1.57 (0.41)	.
	~		

Calibration of the Pressure Transducer

The signal conditioner provided the excitation voltage and the output signal conditioning for the pressure transducer. The output voltage from the signal conditioner was recorded at atmospheric pressure and at 552 kPa (80 psi) of pressure.

atmospheric pressure (101.3 kPa (14.7 psi)) :

readings = -36.43, -33.53, -34.10, -31.31, -35.70 mv average = -34.21 mv

552 kPa (80 psi) pressure :

readings = -12.05, -11.26, -16.32, -10.94, -17.80 my average = -13.67 mv

 $y = 851.15 + (21.93 \cdot x)$

where y = pressure (kPa) x = reading (mv) 80.

•

87 Chemical application control program for the MINC minicomputer during the preliminary study. C-C NINC MINICOMPUTER PROGRAM FOR DATA COLLECTION ON THE С DIBPLACEMENT OF A FORABE HARVESTER FEEDROLL, FORADE С FEED RATE, CHEMICAL APPLICATION RATE AND CHEMICAL APPLICATION PRESSURE, AND FOR THE MINICOMPUTER CONTROL OF THE CHEMICAL APPLICATION RATE (CHEMICAL WEIGHT / FORAGE C C C WEIGHT). С С DEPARTMENT OF AGRICULTURAL ENGINEERING JULY 1902 С UNIVERSITY OF ALBERTA С С C SANDRA STURTON C C C C INITIALIZATION C-------2 OPEN(UNIT=2,NAHE= 'LP:') DIMENSION INFD(40) INTEGER+4 ITIME, IHRS, IMIN, ISEC, ITCK INTEGER I1. JAS, JAG, JCAL, I3 REAL LOAD1,LOAD2,LOAD3,LOAD4,LO1,LÓ2,LO3,LO4,FORATE,T4,FLO REAL INFOHA, LAFOHA, CUFOHA, T2, T3, FL1, PR1, TB, LAFLO REAL TERRUP. PRESS, OFF1, OFFSET, A5, IN1, T5, T6, T7, T9, CA REAL INIWAG, LVDTSU, A1, A2, TO, TI, DCAL, LVDTOT, WAFLOW, CUFLO, CB REAL INFOLV, CUFDLV, LVDT, LVDTO, LVDTF, LVDTC, CUAPR2 С С IDATA IS THE VALUE OF THE OUTPUT WORD WHICH CONTROLS THE NOZZLEG. **1** IOUT IS THE OUTPUT WORD WHICH CONTROLS THE NOZZLES. C FLO IS THE CURRENT CHEMICAL FLOW THROUGH THE NOZZLES (FROM С CALIBRATIONS AT 550 KPA OF PRESSURE). C C WAFLD IS THE CALCULATED CHEMICAL FLOW REQUIRED. C C 4 THE NOZZLES ARE INITIALLY TURNED "OFF" - NO CHEMICAL FLOW. С IDATA=0111 IOUT=DOUT(,,IERR,IDATA) FLD=0.0 HAFLOH=0.0 C BTIM AND CVTTIM ARE MINC SUBROUTINES TO READ THE CURRENT TIME. C C TIME "ZERO" IS WHEN THE MINC IS POWERED ON. с с T9 IS THE STARTUP TIME OF THIS PROGRAM IN SECONDS. C ÷ CALL GTIM(ITIME) CALL CVTTIM(ITIME, IHRS, IMIN, ISEC, ITCK) T9=(IHRS+3600)+(IMIN+60)+ISEC+(ITCK/60)

10 FORMAT(' ENTER LVDT READINGS AT ND, FULL, CALIB DEFLECTION') READ(5,11)LVDTO READ(5,11)LVDTF READ(5,11)LVDTC 11 FORMAT(F8.2) WRITE(2,12) WRITE(2,39)LVDTO,LVDTF,LVDTC LVDTC() 12 FORMAT(LVDTO _____ LVDTF WRITE(8,13) 13 FORMAT(' FORAGE WAGON HOOKED IN? YES--1, NO--O') READ(5, J4) JA5 14 FORMAT(J'1) IP (JA5.E0.0) GO TO 230 IF (JA5.NE.1) GO TO 190 à. 200 HRITE(2,13) 15 FORMAT(' THE FORAGE HADON IS HOOKED IN') С IF THE FORAGE WAGON IS HOOKED IN, THE PROGRAM CAN RUN С USING PREVIOUSLY CALCULATED CALIBRATION VALUES OR CALCULATING CALIBRATION VALUES AS IT PROGRESSES. С С C Ĉ JCAL IS A CALIBRATION RUN IDENTIFIER. С .220 WRITE(6,16) 16 FORMAT(' CALIBRATION RUN--1; NOT--0') READ(5,14) JCAL 4 IF (JCAL.EG.0) GD TD 240 IF (JCAL.NE.;) GO TO 220 HRITE(2,17) ÷. 17 FORMAT(' CALIBRATION RUN') GO TO 250 C IF THE FORAGE WAGON IS NOT HODKED IN, THE PROGRAM MUST С USE PREVIOUSLY CALCULATED CALIBRATION VALUES. С С 230 WRITE(2,18) 18 FORMAT(" THE FORAGE WAGON IS NOT HOOKED IN") 240 HRITE(2,19) WRITE(6,20) 19 FORMAT(' NON-CALIBRATION RUN') 20 FORMAT(' ENTER CALIBRATION CONSTANTS, CA AND CB') С CA AND CE ARE THE CALIBRATION CONSTANTS OF FORAGE C HARVEST HEIGHT PER LVDT MILLIVOLT READING, AND ARE ENTERED ON THE KEYBOARD BY THE OPERATOR. C C С READ (5+21)CA READ(5,21)CB 21 FORMAT(F8.5)

WRITE(2,22) WRITE(2,23)CA,CB 22 FORMAT(' CALIBRATION CONSTANTS, CA AND CB ARE : ') 23 FORMAT(F8.5,1X,F8.5) 250 CLOSE(UNIT=2) C READ 100 LVDT VALUES (VOLTS) AT 0.05 SECOND INTERVALS, AND CONVERT С THE AVERAGE TO HILLIVOLTS. С C LYDISU IS THE SUM OF THE 100 LYDI READINGS DURING THIS LOOP (VOLIS). С LVDT IS AN INDIVIDUAL LVDT READING DURING THIS LOOP (VOLTS), AND IS С THE AVERAGE OF THE 100 LVDT READINGS OUTSIDE OF THE LOOP (MV). С OFF1 IS THE SUM OF THE 100 GROUND DIFFERENTIAL READINGS DURING С THIS LOOP (VOLTS). С OFFSET IS AN INDIVIDUAL GROUND DIFFERENTIAL READING DURING THIS LOOF С (VOLTS), AND IS THE AVERAGE OF THE 100 GROUND DIFFERENTIAL C OUTSIDE OF THE LOOP (VOLTS): -С TI IS THE TIME AT WHICH A PROGRAM CYCLE BEGINS (SECONDS). C C Ĉ 261 CALL GTIN(ITIME) CALL CVTTIM(ITIME, IHRS, IMIN, ISEC, ITCK) T1=(IHRS=3600)+(IMIN=60)+ISEC+(ITCK/60) 280 OPEN(ÜNIT=Z,NAME='LP:') DFF1=0LVDTSU=0.000 a DD 300 I1=1,100 AZ=I1+0.05 320 CALL GTIM(ITIME) CALL CVTTIM(ITIME, IHRS, IMIN, ISEC, ITCK) T3=(IHRS+3600)+(IMIN+80)+ISEC+(ITCK/80) TZ=T3-T1 IF (T2.LT.A2) GD TD 320 LVDT=CADZFP(IADINP(0,6)) LVDTSU=LVDTBU+LVDT DFFSET=CADZFP(IADINP(0,11)) OFF1=OFF1+OFFSET 300 CONTINUE OFFSET=OFF1/100 LVDT=(LVDTC/LVDTF) +(LVDTSU-OFF1)+10-LVDTO С С CALCULATE FORAGE FEED RATE AND THE REQUIRED CHEMICAL C FI OWRATE. С _____ FORATE IS THE CALCULATED FORAGE FEED RATE (TONNES/HOUR) OVER C THE PREVIOUS FIVE SECONDS, BASED UPON THE CALCULATED (A1) OR С С KEYBOARD-ENTRY (CA, CB) CALIBRATION VALUES. WAFLOW IS THE REQUIRED CHEMICAL FLOWRATE (LITERS/MIN) C C BASED UPON THE CURRENT FORAGE FEED RATE, A CHEMICAL

* 90

ġ

APPLICATION RATE OF 3.5 KG SULPHUR DIOXIDE / TONNE FORAGE, C С AND A SULPHUR DIDXIDE DENSITY OF 1.39 KB / LITER. C IF(JCAL.FR.0) 60 TO 302 + FORATE=LVDT+A1 00 TO 304 302 FORATE=CA+(LVDT+CB) (*.) 304 WAFLOW=FORATE+0.04197 C READ FRESSURE TRANSDUCER, С С FORAGE HAGON LOAD CELLS 20 TIMES С AND AVERAGE EACH OF THEM. C PRI IS THE SUM OF THE 20 PRESSURE TRANSDUCER READINGS DURING THIS С LOOP (VOLTS). С C PRESS IS AN INDIVIDUAL PRESSURE TRANSDUCER READING DURING THIS С LOOP, (VOLTS). LOIT LO2, LO3 AND LO4 ARE EACH THE SUM OF ONE OF THE 4 FORAGE С WAGON LOAD CELLS DURING THIS LOOP (VOLTS). - LOADI, LOADZ, LOAD3 AND LOAD4 ARE EACH AN INDIVIDUAL FORAGE C C C NAGON LOAD CELL READING DURING THIS LOOP (VOLTS). С THE SIGNAL FROM LOAD CELL 1 WAS INPUT ON CHANNEL 1. The signal from the sum of Load Cells 1 and 2 was input on С C .7 С CHANNEL Z. С THE SIGNAL FROM LOAD CELL 3 WAS INPUT ON CHANNEL 3. C THE SIGNAL FROM THE SUM OF LOAD CELLS 3 AND 4 WAS INPUT ON CHANNEL 4. C, C PR1=0.0 ن نابولرا L01=0.0 L02=0.0 L03=0.0 L04=0.0 DO 72 K3=1,20 PRESS=CAD2FP(IADINP(0,7)) PR1=PR1+PRESS LUAD1=CADZFP(IADINP(0,1)) LOAD2=CAD2FP(IADINP(0,2))-LOAD1 LOAD3=CAD2FP(IADINP(0,3)) LOAD4=DAD2FP(IADINP(0,4))-LOAD3 L01=L01+L0AD1---L02=L02+L0AD2 L03=L03+L0AD3 L04=L04+L0AD4 ÷., 72 CONTINUE C-CONVERT LINE PRESSURE AND FORAGE SWITCH READINGS TO С С MILLIVOLTS. 2 49 4 Y 8 --1 ġ. . .

•		· •										
. •		<i>*</i>		~				•			,	
• .		· · · ·			• .	•						•
	· .				<i></i>	•			1	West?	di se	
					· ·							
, ·	· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·					
• .		•		•			• •		•			
,	· .											•
C ·	CONVERT	FORAGE H	AGON LOAD) CELL	READING 			(Hrib ,				
C	INIWAG I	S THE SUI	M OF THE	INITIA	L FORAG	Ë WAG	ON LOP	D CELI	_S (KG).		
C .	1 0001.1	DAD7, LD/	ADJ AND L	.DAD4 A	RE EACH	ITHE	AVERAL	3E METI	.iH I 👘 👘			
C .	MEASL	RED BY OF	NE OF THE	E FORAG	E WAGON	LUAD	CELLS F POFG	SURE	•	÷	-	
с ́.		DUCER" (M			HOUNED	50						
Č ·		,	•			•						
C.		ERENTIAL		READING	HAS BE	EN SU	BTRACI	TED FRI	אכ			, b
C .	ALL C	DF THE REA	ADINGS,		÷	• . •		•	•			•
C	L0AD1=(L01/	20-DEESE	т) #1330				•	• •				
	LOADZ = (LOZ/						•	5	. '			•
	LOAD3= (LO3/			-				•				
	(DAD4=(L04/					•	•				• •	• •
	IF(L1.GT.0) INIWAG=LOAD			204				• ,				
	L1=1	/ITCORD21	LUHDO · LUF	, "								•
340	PRESS= (PR1/	20-OFFSE	T) #1000		¢ .							•
• . • .	IF (1.2.GT.C),GOTD 4	80		4							
	L2=1	·	1. S.		·	•	•	A - 1				• •
с с		AND ACTI	VATE NOZZ	 ZLE(5)								
C C C	SEI.ECT	AND ACTI	VATE NOZZ	ZLE(5)				~				· .
C C C 480	SELECT	AND ACTI	VATE NOZZ	ZLE(S)				<u> </u>			*	•
C C C 480	5ELECT IDATA=0110 FL0=0.580											•
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(HAFLDH.(IF(HAFLDH.(GT.0.70) GT.0.70)	IDATA=110 FL0=.798	ot '				•				•
C C C 480	5ELECT IDATA=0110 FL0=0.580	GT.0.70) GT.0.70)	IDATA=110 FL0=.798	ot '		, 						
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C	GT.0.70) GT.0.70) GT.0.95) GT.0.95) GT.0.95)	IDATA=110 FLD=.798 IDATA=00 FLD=1.090	 01 ' 10 5		· · · · · · · · · · · · · · · · · · ·					~~	
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C	GT.0.70) GT.0.70) GT.0.95) GT.0.95) GT.0.95) GT.1.35)	IDATA=110 FLD=.798 IDATA=00 FLD=1.090 IDATA=111	01 10 5								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C	GT.0.70) GT.0.70) GT.0.95) GT.0.95) GT.1.35) GT.1.35)	IDATA=110 FLO=.798 IDATA=00 FLO=1.090 IDATA=11 FLO=1.58	Di ' 10 5 11		· · · · · · · · · · · · · · · · · · ·						•
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(GT.0.70) GT.0.70) GT.0.95) GT.0.95) GT.1.35) GT.1.35) GT.1.65)	IDATA=110 FL0=.798 IDATA=00 FL0=1.098 IDATA=111 FL0=1.58 IDATA=110	01 10 5 11 7								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0	GT.0.70) GT.0.95) GT.0.95) GT.1.35) GT.1.35) GT.1.65) GT.1.65) GT.1.80)	IDATA=110 FL0=.796 IDATA=00 FL0=1.096 IDATA=111 FL0=1.56 IDATA=110 FL0=1.57 IDATA=10	01 10 5 11 7 7 00 5 01								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0	GT.0.70) GT.0.95) GT.0.95) GT.1.35) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.60)	IDATA=110 FL0=.798 IDATA=00 IDATA=00 IDATA=110 FL0=1.58 IDATA=110 FL0=1.67 IDATA=100 FL0=1.89	Di 10 5 11 7 5 00 5 01								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C)	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.60) GT.2.15)	IDATA=110 FL0=.798 IDATA=00 FL0=1.090 IDATA=111 FL0=1.58 IDATA=110 FL0=1.67 IDATA=10 FL0=1.88 IDATA=010	01 10 5 11 7 7 01 1 01								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0	GT.0.70) GT.0.95) GT.1.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.80) GT.2.15) GT.2.15) GT.2.15)	IDATA=110 FLD=.798 IDATA=00 FLD=1.090 IDATA=110 FLD=1.58 IDATA=110 FLD=1.67 IDATA=100 FLD=1.88 IDATA=010 FLD=2.36	01 10 5 11 7 00 5 01 1 01 1								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0 IF(WAFLOW.0	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.80) GT.2.15) GT.2.15) GT.2.55) GT.2.55)	IDATA=110 FL0=.798 IDATA=00 FL0=1.099 IDATA=111 FL0=1.58 IDATA=110 FL0=1.89 IDATA=10 FL0=2.36 IDATA=10 FL0=2.36	2) 10 5 11 7 00 5 01 1 1 11 1								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.())))))))))))))))))))))))))))))))))))	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.80) GT.2.15) GT.2.15) GT.2.55) GT.2.55) GT.2.85)	IDATA=110 FL0=.798 IDATA=00 FL0=1.098 IDATA=110 FL0=1.58 IDATA=100 FL0=1.89 IDATA=100 FL0=2.38 IDATA=10 FL0=2.36 IDATA=10	Di 10 5 11 7 00 5 01 1 1 1 1 1 1 1 1 00								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.())))))))))))))))))))))))))))))))))))	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.35) GT.1.65) GT.1.65) GT.1.65) GT.1.60) GT.1.60) GT.2.15) GT.2.15) GT.2.55) GT.2.85) GT.2.85)	IDATA=110 FL0=.798 IDATA=00 FL0=1.096 IDATA=110 FL0=1.58 IDATA=100 FL0=1.88 IDATA=100 FL0=2.38 IDATA=100 FL0=2.56 IDATA=010 FL0=2.94	Di 10 5 11 7 00 5 01 1 1 1 1 1 1 1 1 00								
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.(IF(HAFLOH.())))))))))))))))))))))))))))))))))))	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.35) GT.1.65) GT.1.65) GT.1.65) GT.1.60) GT.1.60) GT.2.15) GT.2.15) GT.2.55) GT.2.85) GT.2.85)	IDATA=110 FL0=.798 IDATA=00 FL0=1.096 IDATA=110 FL0=1.58 IDATA=100 FL0=1.88 IDATA=100 FL0=2.38 IDATA=100 FL0=2.56 IDATA=010 FL0=2.94	Di 10 5 11 7 00 5 01 1 1 1 1 1 1 1 1 00								
С С 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C IF(WAFLOW.C) IF(WAFLOW.C) IF(WAFLOW.C) IF(WAFLOW.C) IF(WAFLOW.C) IF(WAFLOW.C) IF(WAFLOW.C) IF(WAFLOW.C)	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.2.15) GT.2.15) GT.2.55) GT.2.85) GT.2.85) GT.2.85) GT.2.85) GT.2.85)	IDATA=110 FL0=.798 IDATA=00 FL0=1.090 IDATA=11 FL0=1.58 IDATA=110 FL0=1.87 IDATA=100 FL0=2.38 IDATA=010 FL0=2.56 IDATA=010 FL0=2.94 ATA)	01 10 5 11 7 00 1 1 1 1 1 1 1 1 1 1 1 1 1)Z ZL F.		JRNED				
C C C 480	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.C) IF(WAFLOW.C IF(WAFLOW.C)	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.2.15) GT.2.15) GT.2.15) GT.2.55) GT.2.85] GT.2.8	IDATA=110 FL0=.798 IDATA=00 FL0=1.098 IDATA=110 FL0=1.58 IDATA=110 FL0=1.58 IDATA=100 FL0=1.89 IDATA=010 FL0=2.36 IDATA=010 FL0=2.56 IDATA=010 FL0=2.94 ATA) WHICH TI	D1 10 5 11 7 00 1 1 11 11 10 1 1 1 1 1 1 1 1 1	IOUS NO							
C C 480 C C C C C C	SELECT IDATA=0110 FLO=0.580 IF (WAFLOW.0 IF (WAFLOW.0	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.80) GT.2.15) GT.2.15) GT.2.53) GT.2.85] GT.2.85] GT.2.8	IDATA=110 FL0=.798 IDATA=000 FL0=1.090 IDATA=110 FL0=1.580 IDATA=110 FL0=1.580 IDATA=100 FL0=1.890 IDATA=010 FL0=2.360 IDATA=010 FL0=2.560 IDATA=010 FL0=2.94 ATA) WHICH TI OF TIME I	D1 10 5 11 7 00 1 1 11 11 10 00 1 HE PREV	LOUS NO	NOZZL						
C C 480 480 C C C C C C	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0	GT.0.70) GT.0.70) GT.0.95) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.60) GT.2.15) GT.2.15) GT.2.15) GT.2.55) GT.2.55) GT.2.85] GT.2.8	IDATA=110 FL0=.798 IDATA=00 FL0=1.099 IDATA=110 FL0=1.58 IDATA=100 FL0=1.89 IDATA=100 FL0=2.36 IDATA=10 FL0=2.36 IDATA=10 FL0=2.56 IDATA=010 FL0=2.94 ATA) WHICH TI OF TIME IN N "INTER	D1 10 5 11 7 00 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1	LOUS NO CH THE SECONDE	NOZZL	ES WEI	RE ALL				
C C 480 C C C C C C	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0	GT.0.70) GT.0.70) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.80) GT.2.15) GT.2.15) GT.2.53) GT.2.85] GT.2.85] GT.2.8	IDATA=110 FL0=.798 IDATA=00 FL0=1.099 IDATA=110 FL0=1.58 IDATA=100 FL0=1.89 IDATA=100 FL0=2.36 IDATA=10 FL0=2.36 IDATA=10 FL0=2.56 IDATA=010 FL0=2.94 ATA) WHICH TI OF TIME IN N "INTER	D1 10 5 11 7 00 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1	LOUS NO CH THE SECONDE	NOZZL	ES WEI	RE ALL				
C C 480 480 C C C C C C	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0	GT.0.70) GT.0.70) GT.0.95) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.60) GT.2.15) GT.2.15) GT.2.15) GT.2.55) GT.2.55) GT.2.85] GT.2.8	IDATA=110 FL0=.798 IDATA=00 FL0=1.099 IDATA=110 FL0=1.58 IDATA=100 FL0=1.89 IDATA=100 FL0=2.36 IDATA=10 FL0=2.36 IDATA=10 FL0=2.56 IDATA=010 FL0=2.94 ATA) WHICH TI OF TIME IN N "INTER	D1 10 5 11 7 00 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1	LOUS NO CH THE SECONDE	NOZZL	ES WEI	RE ALL				
C C 480 480 C C C C C C	SELECT IDATA=0110 FLO=0.580 IF(WAFLOW.0	GT.0.70) GT.0.70) GT.0.95) GT.0.95) GT.1.35) GT.1.65) GT.1.65) GT.1.60) GT.1.60) GT.2.15) GT.2.15) GT.2.15) GT.2.55) GT.2.55) GT.2.85] GT.2.8	IDATA=110 FL0=.798 IDATA=00 FL0=1.099 IDATA=110 FL0=1.58 IDATA=100 FL0=1.89 IDATA=100 FL0=2.36 IDATA=10 FL0=2.36 IDATA=10 FL0=2.56 IDATA=010 FL0=2.94 ATA) WHICH TI OF TIME IN N "INTER	D1 10 5 11 7 00 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1	LOUS NO CH THE SECONDE	NOZZL	ES WEI	RE ALL				

1 OPERATING (LENGTH OF PROGRAM CYCLE) (SECONDS). С THE IS THE PRESENT TIME - THE TIME AT WHICH THE PRESENT С C NOZZLE WAS TURNED. ON (SECONDS). С Ť5=T8 CALL GTIM(ITIME) CALL CUTTIM(ITIME, IHRS, IMIN, ISEC, ITCK) TB=(IHRS+3600)+(IMIN+60)+ISEC+(ITCK/80) T4=T8-T5-T9 T9=0.0 C -----С CALCULATE SYSTEM PARAMETERS С INFOLV IS THE FORAGE WEIGHT HARVESTED (KG) DURING THE PREVIOUS PROGRAM CYCLE, BASED UPON THE LYDT READING. С С LVDTTOT IS THE SUM OF THE LVDT READINGS (MV) OVER THE ENTIRE RUN. C C CUFLO IS THE CUMULATIVE WEIGHT OF, CHEMICAL USED (KG), BASED UPON THE CALIBRATED FLOWRATES OF THE NOZZLES. C٠ CUFOLV IS THE CUMULATIVE WEIGHT OF FORAGE HARVESTED (KG), BASED UFON THE LVDT READING. C С CUFOWA IS THE CUMULATIVE CHANGE IN FORAGE WAGON WEIGHT (KG), BASED C UPON THE FORAGE HAGON LOAD CELL READINGS. С INFOWA IS THE CHANGE IN FORAGE WAGON WEIGHT (KG) DURING THE PREVIOUS PROGRAM CYCLE, BASED UPON THE FORAGE WAGON LOAD CELL READINGS. C C CUAPR2 IS THE APPLICATION RATE (KG / KG) SINCE THE START OF THE RUN. C BASED UFON THE FORAGE WAGON LOAD CELL READINGS AND THE C CALIBRATED FLOWRATES OF THE NOZZLES. C LAFOWA IS THE CUFOWA DURING THE PREVIOUS PROGRAM CYCLE (KG). C LAFIO IS THE FLO DURING THE PREVIOUS PROGRAM CYCLE (L/MIN). C INFOLV=FORATE+T4/3.6 LVDTOT=LVDTOT+LVDT CUFLD=CUFLD+(LAFLD+T4+0.02317) CUFOLV=CUFOLV+INFOLV CUFDHA=LOAD1+LOAD2+LOAD3+LOAD4-,INIHAG INFOWA=CUFOWA-LAFOWA IF (JCAL.NE.0) GD TO 5000 420 CUAPR2=100+CUFLD/(CUFDWA-(CUFLD/2)) С C UPDATE THE "PREVIOUS CYCLE" VALUES. С 460 LAFONA=CUFONA LAFL0×FL0 C С PRINT TRANSDUCER INPUTS AND SYSTEM PARAMETERS C-WRITE(2,38) T1, T4, A5, A3 WRITE(2,41)PRESS,LVDT WRITE(2,37)LOAD1,LOAD2,LOAD3,LOAD4 .

7 WRITE(2,37)CUFOWA, CUFOLV, INFOWA, INFOLV WRITE(2,41)CUFLD,CUAPR2 WRITE(2,40)FORATE,WAFLOW,FLD,IDATA 37 EDRMAT(4(F8.2,1X)) 38 FORMAT(2(F8.2;1X),2(F8.5,1X)) 39 FORMAT(3(F8.2,1X)) 40 FORMAT(3(F8.2,1X),18) 41 FORMAT(2(F8.2.1X)) CLOSE(UNIT=2) C. С LOOP UNTIL TIME TO START ANOTHER INTEGRATION C ·~`~~~~~~~~~~~~~~~~~~~~~~~~~~~ С TT IS THE TIME IN SECONDS SINCE THE LVDT READINGS HERE С BEGUN FOR THIS CYCLE. C Ĉ . . NOTE THAT TT IS NEVER LESS THAN 5.0, AND THE PROGRAM PROCEEDS IMMEDIATELY WITHOUT LOOPING BACK TO 700. THIS LOOP WAS INCLUDED TO ALLOW MODIFICATION OF THE C C CYCLE TIME OF THIS PROGRAM. С С 700 CALL GTIM(ITIME) CALL CVTTIM(ITIME, IHRS, IMIN, ISEC, ITCK) T6=(IHR5*3600)+(IMIN*60)+ISEC+(ITCK/60) T7=T6-T1 IF(T7.LT.5.0) GOTO 700 C-С CHECK FOR AN INTERRUPT C-750 TERRUP=1.0*CAD2FP(IADINP(0,10)) TERRUP=TERRUP-OFFSET IF(TERRUP.GT.0.3) GDT0 7000 GO TO 261 C С CALIBRATION SUPROUTINE C٠ ------AS IS THE CALCULATED CALIBRATION VALUE (FORAGE HARVEST RATE / LVDT С С READING - TONNE / (HOUR + MY)) BASED UPON THE CHANGE IN FORAGE C WAGON WEIGHT AND THE LVDT READING DURING THE PREVIOUS PROGRAM С CYCLE. С A) IS THE CALCULATED CALIBRATION VALUE (TONNE / (HOUR + MV)) BASED С UPON THE CUMULATIVE CHANGE IN FORAGE WAGON WEIGHT AND THE SUM C OF THE LUDT READINGS. t 5000 A5=(INFOWA*3.6)/(LVDT+T4) A1=(CUFONA*3,6)/(LVDTOT+T4) **GOTO 420** C----------С INTERRUPT SUBROUTINE C ____ $\sum_{i=1}^{n}$

ON AN INTERRUPT, ALL OF THE NOZZLES ARE SHUT OFF C THE OPERATOR HAS A CHOICE OF RE-INITIALIZING THE RUN. OR С OF TEMPORARILY HALTING THE RUN. می تنه С С IOLD IS THE NOZZLE CONTROL WORD PREVIOUS TO THE INTERRUPT. С 7000 DPEN(UNJT=2+NAME= 'LP: ') 3T 7010 IOLD=IDATA IDATA=0111 IOUT=DOUT(,,IERR,IDATA)~ WRITE(8,44) 44 FORMAT(' INTERRUPT.. RE-INIT-- 1', ĤAITo 4 READ (5+14) JAG IF(JAG.EG.IT GOTO 180 IF(JAG.NE.0) GDTD 7010 7600 WRITE(2,57) . 57 FORMAT(' STOP, WAIT, CONTINUE') С IF THE OPERATOR HAS TEMPORARILY HALTED THE RUN, HE MAY CONTINUE WHEN READY OR STOP THE RUN ENTIRELY. C C C IF HE CONTINUES, THE TIME DURING WHICH THE RUN WAS С HALTED IS CALCULATED, THEN THE NOZZLES ARE RETURNED C TO THE STATE IN WHICH THEY WERE OPERATING BEFORE С С THE INTERRUPT. С WRITE(6,58) 58 FORMAT(' ENTER NUMBER TO CONTINUE (O TO STOP) ') READ(5,14)13 IF(I3.EQ.0) GOTO 9000 CALL GTIM(ITIME) CALL CVTTIM(ITIME, IHRS, IMIN, ISEC, ITCK) T9=(IHRS+3600)+(IMIN+60)+ISEC+(I,TCK/60) T9=T9-TG l IDATA=IOLD IOUT=DOUT(,,IERR,IDATA) GO TO 250 C IF THE OPERATOR STOPS THE RUN, THEN ALL OF THE NOZZLES ARE TURNED "OFF". C C C 9000 IDATA=0111 IOUT=DOUT(,,IERR,IDATA) GRITE(2,59) 58 FORMAT(' STOPFING PROGRAM EXECUTION') CLOSE(UNIT=2) GO TO 2 STOP END

....

 $\overline{\alpha}$

APPENDIX D
.

Table D1

.

System run #1; Farm #1 (Ron Bienert) with 40% dry-matter content barley at 19 mm length of cut.

.

	time (s)	forage mass (kg)	feedroll ·(cm)	disp.	chemical flow (L/min)
	0	0.04	0.0		0.58
	14	-25.3	D.0		0.58
	28 42	43.8 109.9	1.7		0.58
	42 56	116.1	0.1	•	0.58
	70	101.5	0.0		0,58 0,58
	84	107.0	2.5		• 1.57
	98	130.9	0.6		0.58
	· 112	- 206.6	0.9	. •	0.58
	126	309.3	.0.3	•	0.58
	140	345.7	0.0	•	0.58
	154	402.5	. 1.1	•	0.58
	168	465.5	0.3		0.58
	182	491.2	. 1.4		0.80
	196	633.3	1.0		0.58
	2.1/0 - 2		1.4		0.80
	224	750.7	1.2		0.80
	238	819.9	1.4	· .	0.80
	252 266	961.6 1014.1	0.7	. ·	0.58
•	280	1145.1	0.4		0.58
	294	1236.2	2.0	•	0.80 1.57
	308	1278.9	1.3	1	1.10
	322	1332.1	0.3		0.58
•	336	1373.1	0.0	N.	0.58
·	350	1380.7	0.8	· · ·	0.58
	364	1495.1	1.1		0.80
	378	1554.7	0.7	•	0.58
	392	1645.8	0.2		0.58
٠.	406	1725.3	1.1		0.80
· •	420	1808.5	0.7	-	0.58
	-434	1769.4	0.2	• •	0.58

Table D2 System run #2; Farm #1 (Ron Bienert) with 40% dry matter content barley at 6 mm length of cut. •

.

	·		• ,•	p .	······		
` 	time (s)	forage ma (kg)	iss	feedroll (cm)	disp.	chemical (L/min	flow)
- 5,,	0 13 26 40 54 68 82 96 110 124	0.0 45.0 173.6 245.0 327.6 370.7 433.2 504.5 571.7 658.8		2.8 1.5 2.2 1.3 1.3 1.4 1.7 2.2 2.1 1.2		0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	
· · ·	138 152 166 180 194 208 222 236 250 264 278 292 306 320	800.9 857.9 920.0 1004.2 1040.2 1088.8 1158.2 1248.3 1341.6 1392.6 1437.2 1581.8 1641.2 1700.6		1.3 1.2 0.9 0.6 0.1 0.1 1.2 2.5 1.3 1.0 0.9 1.3 0.9 1.1		0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58	
	320 334 348 362 376 390 404 418 432 446 460 474 488	1700.6 1741.5 1848.6 1880.6 2014.1 2146.7 2213.2 2254.4 2337.1 2441.6 2500.7 2652.1 2760.3		2.6 2.2 1.4 2.7 2:4 3.3 2.4 2.2 0.7 2.5 2.4 1.8		0.58 1.57 1.10 0.80 1.57 1.10 1.67 1.10 1.10 0.58 1.10 1.10 0.58 1.10 0.80	
•			+				

• .

•

98

99 t

· • . Table D3 System run #3; Farm #1 (Ron Bienert) with 40% dry matter content barley at 6 mm length of cut.

•

· ·

time (s)	forage mass (kg)	feedroll (cm)	disp.	chemical flow (L/min)
ب	0.0	2.3		0.58
13	102.9	1.8	•	0.58
27	247.8	2.2		0.58
\40	. 310.9	1.8		0.80
\54	368.0	3.0	•	1.10
68_	477.6	2.1		0.80
82	527.1	0.4	•	0.58
96	566.1	.0.0		0.58

•

	time (s)	forage mass (kg)	feedroll disp. (cm)	chemical flow (L/min)
	0 14	0.0	1.3 2.7	0.58
•			2.6 1.6	<u>1.10</u> 0.80
	56	265.8	2.3	1.10
	70 84	290.9 363 . 8	3.5	1.67
	98	508.2	1.8 2.2	0.80
	112	, 524.8	2.6	· 1.10
	126	644.2	2.6	1.10
	140	679.3	2.7	1.57
	154 168	775.8 937.6	2.1 1.0	1.10
	182	991.0	2.4	0.58 1.10
	196	1048.0	2.0	1.10
	210	1131.7	2.1	1.10
	224	1273.4	2.9	1.57
	238 252	1340.8 1418.4	2.6 2.3	1.10
	266	1460.2	1.6	0.80
	280	1566.2	1.9	1.10
	294	1562.6	0.2	0.58
	308	1683.0	2.3	1.10
	322 336	1780.0	2.5 1.2	1.10 0.58
	350	1950.3	3.0	1.57
	364	1958.8	2.2	1.10
	378	2028.4	2.3	1.10
	392 406	2127.1	2.3	1.10
	420	2238.0 2334.6	2.1 2.1	1.10 1.10
	434	2449.7	2.1 2.2 1.5 2.4 0.7	1.10
	448	2472.5	1.5	0.80
	462	2538.8	2.4	[·] 1.10
·	476 490	2652.7 2752.6	0.7/0.4	0.58 0.58

Table D4 System run #4; Farm #1 (Ron Bienert) with 40% dry

.

~

•

•

`

	time (s)	forage mass (kg)	feedroll disp. (cm)	chemical flow (L/min)
	· 0 14	0.0 35.0	0.0	0.58 0.58
	23	481	12	0-,-58
	42	150.3	1.4	0.58 0.58
	56 70	189.8 197.1	0.0 0.8	0.58
	84	289.5	1.6	0.80
	98	390.6	2.8	1.57
	112 126	437.8 492.6	1.4 1.1	0.58
	140	614.5	0.6	0.58
	154	596.8	0.1	0.58
	168 182	598.2 594.6	0.0	0.58 0.58
	196	668. <i>j</i>	0.5	0.58
	210	681/0	0.1	0.58
	224 238	733.2 728.8	1.0	0.58 0.58
	252	778.2	2.9	1.67
	266	832.4	0.0 2.9 2.4 2.5	1.10
	280 294	959.7 1007.9	2.5 0.9	1.10 0.58
	308	1075.4	1.8	0.80
	322	1165.5	1.6	0.80
	336 350	1231.6 1303.7	2.2 1.9	1.10 0.80
,	364	1381.9	2.0	0.80
	378	1409.7	1.9	0.80
	392 406	1480.8 1599.5∾	2.0	0.80 1.10
	4.20	1659.9	2.6	1.10
	434	1711.2	1.9	0.80
	448 462	1801.4 1867.8	2.0 1.8	0.80 0.80
	476	1903.4	1.0	0.58
	490	2017.7	1.7	0.80 0.58
	504 518	2014.5 2080.2	1.4 1.4	0.58
	532	2197.1	1.8	0.80
	546	2244.9	0.7 0.0	0.58
	560	2240.5	0.0	0.00

· . · ·

J

Table D6 System run #6; Farm #1 (Ron Bienert) with 48% dry matter content barley at 6 mm length of cut.

• ,

è

time forage mass feedroll disp. chemical (s) (kg) (cm) (L/min 0 0.0 0.0 0.0 0.58 13 -16.1 0.0 0.58	· · · · · · · · · · · · · · · · · · ·
13 -16.1 0.0 0.58	flow n)
27 31.4 0.0 0.58 41 37.8 1.3 0.58 55 93.3 1.8 0.80 69 147.1 1.5 0.58 82 203.0 1.2 0.58 96 296.1 2.6 1.10 110 235.7 2.3 1.10 124 325.4 0.0 0.58 138 283.0 0.0 0.58 151 284.7 1.0 0.58 165 323.3 2.0 0.80 179 376.7 1.4 0.58 207 460.4 1.6 0.80 221 532.4 1.3 0.58 235 563.5 1.6 0.80 249 687.4 0.8 0.58 263 709.9 1.9 0.80 277 760.7 1.7 0.80 291 869.0 2.3 1.10 305 932.6 1.4 0.58 319 1007.3 3.9 1.67 333 1026.8 1.2 0.58 347 1157.2 1.7 0.80 361 1122.5 2.4 1.10 375 1168.1 1.4 0.58 445 1474.1 1.1 0.58 473 1574.0 2.2 1.10 515 1810.3 2.9 1.10 515 1810.3 2.9 1.10 529 1930.9 1.4 0.58 <	n \\

102

8

·	time (s)	forage mass (kg)	feedroll (cm)	disp.	chemical f (L/min)	
	0 14	0.0 64.4	1.6 0.9	i	0.58 0.58	
	28	103.8	1-4-		0-58	
	42	163.8	1.6		0.58	· ·
	56	250.2	2.3	·	0.80	
	70	312.0	a 2.0	·	0.58	
	- 84	€ 369.4	0.7		0.58	
	98 112	442.8 534.8	0.6		0.58 0.80	
	126	564.3	2.7		1.10	
	140	668.1	1.5		0.58	<i>,</i>
	154	781.1	1.8		0.80	
	168	830.5	3.0		1.10	
	182	923.7	1.6		0.58	
×	196	968.0	2.1		0.80	
	210	1054.2	1.2		0.58	
	224 238	1128.5 1206.8	1.9		0.58 0.80	
	252	1355.1	2.0	•	0.80	
	266	1362.4	1.0	6	0.58	
	280	1461.5	2.2		1.10	•
•	294	1568.1	1.4	·	0.58	
	308	. 1612.0	0.4		0.58	
	322	1655.3	0.3	•	0.58	
	336	1710.4	1.5	•	0.80	
	350		1.8		0.80 0.58	10
· • •	364 378	1778.3 1862.8	1.0		0.58	· ·
	392	1894.2	1.2		0.58	
	406	2017.9	0.9		0.58	•••
	420	2009.0	0.3	· · · ·	0.58	•
•	434	2088.4	0.5	•	0.58	
	· 448	2131.8	0.5		0.58	•
	462	2126.3	0.5		0.58	
	476	2208.9	0.6	•	0.58	
•	490 504	2274.1 2337.8	0.4		0.58	•
÷	504	2391.6	0.4		0.58	en e
	5.0		V.• X		0.00	•

Table D7 System run #7; Farm #2 (Ron Stelter) with 40% dry matter content barley/oats at 6 mm length of cut.

а¥

.

103

.

.

.

.

Table D8 System run #8; Farm #2 (Ron Stelter) with 40% dry matter content barley/oats at 6 mm length of cut.

·	time	forage mass		feedroll	disp	chemical flo	w
1.	(s)	(kg)		(cm)	arsp.	(L/min)	n
·		• • • • • • • • • • • • • • • • • • • •		· ·			
	0 14	0.0 90.8	•	1.1 1.3		0.58 0.58	
	28 42	118.1 176.4		2.0 1.9		1.10	
•	56	245.4		0.9		0.58	
ъ., -	70	233.5	÷.	1.4		0.80	
	84	330.1	.1	1.5		0.80	•
1	98 112	422.1 476.9	•	1.5 2.0	•	0.80 1.10	• •
	126	593.2		1.2	· · ·	0.58	
	140	622.9		0.7	i.	0.58	· .
	154	646.5		1.0		0.58	
~	168 182	772.7		0.9		0.58 0.80	
	196	940.2		1.5	,	0.80	
	210	922.4	· · ·	1.7		0.80	•
	224	1038.4	٠	1.6	· · · · ·	0.80	•
	238 252	1042.2		1.6	• •	0.80	
	266	1164. 8) 1171.4		2.5		1.10 0.58	•
	280	1293.3		0.8		0.58	
•	294	1321.9		0.8		0.58	
	, 308	1476.8		1.1		0.58	
-	322 336	1468.8		1.3		0.58	
	349	1577.0 1688.3		0.7	eta de productiones.	0.58 0.58	
	363	1654.6	•	1.2		0.58	
	377	1729.8		1.4		0.80	
	391	1780.5	· · ·	1.5		0.80	
	405 419	1840.0 1854.0	1. A.	1.0 0.5	•	0.58 0.58	
	433	1917.1	•	1.0		0.58	f
· ·	447	1961.3		0.7		0.58	
	461	1988.8	•••	0.7 0.3 0.2		0.58	
	475	2040.2		0.2		0.58	
	489	2067.7		0.3	•	0.58	
	503	2083.1 2157.7	•	0.3 0.0 0.2		0.58 0.58	
	531	2145/1	••	0.5	•	0.58	•
•	545	2252.9		1.4		0.80	
	559	2292.5		0.0		0.58	
						· · · · · · · · · · · · · · · · · · ·	

104

.

	•	matter conter	it barley/oats at 6	mm length of cut.
			f	4
·	time ,, (s)	forage mass (kg)	feedroll disp.	chemical flow (L/min)
• <u></u>	0 '	Q.0	2.3	1.10
	13		3• 4	1_67
•	27 41	7111 183.8	1.1 1.0	0.58
	55	183.8	1.5	0.58 0.80
	69	308.2	1.4	0.80
*	83	418.4	1.3	0.58
4	97 ` 110	471.1 633.6	1.8	0.80
	124	637.0	4 1.6 * 7.8	0.80 2.94
	138	639.5	3.3	1.67
•	152	747.5	0.8	0.58
	166 180	869.3	1.2	0.58
•	194	890.8 1044.9	1.0	0.58 0.80
	208	1058.8	1.1	0.58
· .	222	1105.3	2.5	1.10
	236	1096.5	2.7	1.57
	250 264	1330.1 1405.5	3.0 2.0	1.57 1.10
	277	1390.3	1.8	0.80
e e e e	291	1521.0	2.9	1.57
•	305	1642.9	1.5	0.80
	319 333	1671.1 1699.0	1.6	0.80
:	347	1739.0	1.3 1.6	0.58 0.80
· . •	361	1821.2	0.9	0.58
	375	1918.2	1.1	0.58
• •	389	1944.1	3.6	1.89
	403 417	2026.4 2178.0	3.2 2.2	1.57 1.10
	431	2037.6	0.8	0.58
	445	2213.6	0.3	0.58
	459	2376.6	2.5	1.10
	473 487	2409.5 2460.0	1.6	9.80
	501	2538.7	1.0 1.2	0.58 0.58
•	515	2519.0	1.8	0.80
,	529	2585.5	1.7	0.80
•	543	2704.8	0.2 0.2	0.58
	557	2656.2	0.2	0.58

System run #9; Farm #2 (Ron Stelter) with 40% dry matter content barley/oats at 6 mm length of cut. Table D9 _____

.....

Ý

105

, į

ä

Table D10 System run #10; Farm #3 (Ed Nickel) with 34% dry matter content barley at 6 mm length of cut.

•

t1 (s	me ;)	forage mass (kg)	f€	eedroll (cm)	disp.	1 •	chemical (L/min	
	0 · '	0.0	•	2.4		•	0.58	1
	-1-4	44.8	·	0.7			0.58	· · · · · · · · · · · · · · · · · · ·
	28	94.6	1	1.6.	•		0.58	
	42	147.2	•	2.8		• • •	0.58	
	56 70	243.1 348.7		. 1.6	· · ·		0.58	
•	84	406.7		2.4 3.2	· · · ·		0.58	
	98	531.4	•	2.4		1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	1.10 0.80	
	12	621.4		2.3			0.80	en de la composition de la composition Composition de la composition de la comp
	26	699.6		2.0	4 A A		0.80	
	40	772.9		1.2	e di se a		0.58	
1	5.4	861.0		1.2		1. 	0.58	
	68	950.5		1.6			. 0.58	÷
	82	1033.1		0.7		•	0.58	•
	96	1066.0	•	1.6			0.58	
	10	1128.6		1.3			0.58	
	24	1258.1		1.7		· . · · .	0.80	
	38 52	1349.4 1432.4		2.1	c,	- 1	0.80	
	52 66	1530.7		2.2 1.9			1.10 0.80	
	80	1656.0		1.7	÷		0.80	
	94	1756.7		2.1			1.10	
	08	1806.8	4	1.9			0.80	
	22	1886.5		1.4	°ъ		0.58	
	36	1971.6		1.5			0.80	ι. K
	50	2007.5		1.7.			0.80	
	64	2110.1	n en	1.0			0.58	
	78	2201.1		2.6			1.10	
	92	2222.6	N.	1.1			0.58	
	D6 20	2332.1 2388.9	<u>.</u>	2.0			0.80	
4		2530.3		1.9			0.80 0.58	
44		2566.0		2.0			1.10	
46		2606.0		2.3	· · · ·		1.10	
47		2743.8		2.0		5. 12. av	0.80	
49	90 1	2814.1		1.3			0.58	
50)4	2874.1		1.8			0.80	

106

· · · ·

્રંજી

	·	108	3

. .

dž.

Table E1 Barley calibration runs done at Ellerslie • (preliminary study).

.

· ·

•	· ·					
	Run	time	crop d.m.	length of cut	feed rate	feedroll disp.
	#	(s)	(-%)	(mm)	(t/h)	(cm)
-	1	206	52	6	23.8	3.2
	2	302	52	6	19.2	1.9
۰.	.3	104.5	52	6	14.2	1.1
	4	202.5	52	6	19.9	3.6
	5	81	39	6	17.1	1.2
	6	171	39	6	18.7	2.0 🕅
••	• 7	298	46	6	15.9	1.3
	8	58	4 1	6	15.0	1.0
	9	102.5	41	4	20.4	3.4 .
	10	112.5	41	16	20.8	1.1
	. 11	94	41	19	11.7	0.3
·	12	121.5	41	11	16.6	1.5
	13	107	41	8	20.1	1.1
	14	125	41	6	7.2	, 0.3
•	- 15	173.5	41	6	14.6	1.6
•						•

				109
				• •
Table E2	Alfalfa calibration r (preliminary study).	Ellerslie	· · ·	
			*	,

• <u>••</u> •••	Run #	time (s)	crop d.m. (%)	length of cut (mm)	feed _rate (t/h)	feedroll disp. (cm)
						Y
	1	60	23 ·	6	10.1	0.3
	2	65.5 J	23	4	15.0	1.4
	3	92	23	19	ُ9 . 8	0.3
	4	65	23	16	16.0	0.3
	5	68.5	23	11	9.6	0.2
	6	90.5	23	8	10.1	0.1
	7,.	86.5	26	6	5.3	0.1
1. 	8	110	32	6	13.5	0.6
	9	100	34	6	19.8	1.3
					<u>,</u>	

Figure E1 Calibration run #1 with barley : mass of forage in the forage wagon and feedroll displacement versus time. . . .

Figure E2 Calibration run #2 with barley : mass of forage in the forage wagon and feedroll displacement versus time. . .

Calibration run #6 with barley : mass of forage in the forage wagon and feedroll displacement versus time. Figure E6

Figure E7 Calibration run #7 with barley : mass of forage in the forage wagon and feedroll displacement versus time.

gure E8 Calibration run #8 with barley : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E9 Calibration run #9 with barley : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E10 Calibration run #10 with barley : mass of forage in the forage wagon and feedroll displacement versus time.

. .**.**

Figure E12 Calibration run #12 with barley : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E14 Calibration run #14 with barley : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E15 Calibration run #15 with barley : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E16 Calibration run #1 with alfalfa : mass of forace in the forage wagon and feedroll displacement versus time.

Figure E17

0

Calibration run #2 with adfalfa : mass of forage in the forage wagon and feedroll displacement versus time.

. . .

Figure E18 Calibration run #3 with alfalfa : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E20 Calibration run #5 with alfalfa : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E22 Calibration run #7 with alfalfa : mass of forage in the forage wagon and feedroll displacement versus time.

Figure E23 Calibration run #8 with alfalfa : mass of forage in the forage wagon and feedroll displacement versus time.

MICROPROCESSOR PROGRAM FOR CHEMICAL APPLICATION CONTROL

140

The eight switches to be set by the operator are connected to PIA lines A0 to A7. The value entered on four of the switches represents the application rate, the value 'entered on the other four switches represents the type

of harvest run (ie. crop and harvester). The output to the power amplifier and then to the solenoids is on PIA lines B0 to B3.

The clock is connected to PIA interrupt line CA1.

The clock is 60 Hz; therefore, one second is 60 pulses. The flowmeter is connected to PIA interrupt line CB1. The feed rate sensor is connected to PIA interrupt line CB2.

Memory addresses \$0000 to \$007F are RAM. Memory addresses \$0800 to \$0FFF are EPROM.

PIA data/direction	A address	(DDA) =	\$0400
PIA control/status	A address	(CSA) =	\$0401
PIA data/direction	B address	(DDB) =	\$0402
PIA control/status	B address	(CSB) =	\$0403

This program has been written for four nozzles, with increasing capacities from nozzle #1 through nozzle #4. The output values which will activate the singular nozzle or nozzle combinations provided for in this program are: nozzle 1 : 0001 (binary) = 1 (decimal)

1	102216 1	• • • • •	0001		
r	nozzle 2	:	0010		= 2
°г	nozzle 3	:	0100		= 4
r	nozzle 4	:	1000		= 8
	nozzles 1				= 5
ŗ	nozzles 2	+3 :	0110	•	= 6

Note: this program has not been calibrated to a specific set of nozzles, flow rate sensor, or feed rate sensor. The values corresponding to a particular nozzle size, flow rate sensor, or feed rate sensor, and the equation constants for different harvest conditions have been replaced by dashes (--) in this program.

_					
P	rogram	Listing :			
۵	DDRESS	OPCODES	NAME	MNEMONICS	COMMENTS
*		0100220			
*	INITIA	LIZE SECTI	ON		
7 🗶	·			+	ý.
		program at			for_data_and_buffers
*		mory_rocat	10115_ 3 0	<u>1000 LO \$007F</u> 1	LOI data and builters.
	0050		CLOCK	RMB 1	Clk pulse count.
•	0051	•	FLOW	RMB 1	Flowmeter count.
\$	0052		FEED	RMB 1	Feed rate sensor
					pulse count.
\$	0053		CROP	RMB 1	Type # of harvest
	0054	7	APPL	RMB 1	 run (switches). Applic rate #
•	0034		лгеш		(switches).
\$	0055	•	CHOIC	RMB 1	Nozzle # chosen.
	0056		LACHO	RMB 2	Nozzle # used in
		and an and a second sec			previous second.
\$	0058		LAFLO	RMB 1	"FLOW" count in
	0050	ener i de la composición de		DMD 1	² the previous sec.
	0059 005A	Ţ	NOZZ1 NOZZ2	RMB 1 RMB 1	Capacity nozz 1. Capacity nozz 2.
	005B	• 	NOZZ3	RMB 1	Capacity nozz 3.
	005C.		NOZZ4	RMB 1	Capacity nozz 4.
	005D			RMB 1	Capac. nozzs 1+3.
	005E		NOZZ6	RMB 1	Capac. nozzs 2+3.
	005F	· · · · · ·	FIRST	RMB 1	Flag for 1st sec.
	0060	· · · · · ·	CONA LOG	RMB 1 RMB 1	Temporary storage of values
	0062		MULT1	RMB 1	calculated.
	0063		MULT2	RMB 1	culculutet.
	0064		MULT3	RMB 1	
\$	0065		FRAT	RMB 1	
(4) *	2				
*		e initial	values.		
· · · · · · · · · · · · · · · · · · ·	0850	7F 0050		CLR CLOCK	Zero clock count.
•,	0853	7F 0051		CLR FLOW	Zero flow count.
\$	0856	7F 0052		CLR FEED	Zero feed count.
	0859	7F 005F	er er	CLR FIRST	Zero flag.
	085C	01	•	NOP	
	085D 085E	01 01		NOP J	
•	085E	86		LDA A #\$	Store capacity
	0861	B7 0059	•	STA A NOZZ1	of nozzle 1.
	0864	86		LDA A #\$	
\$(0866	B7 005A	•	STA A NOZZ2	
	0869	86		LDA A #\$	
		B7 005B	•	STA A NOZZ3	
	086E	86 B7 005C		LDA A $\#$	
	0870 0873	B7 005C 86	•	STA A NOZZ4 LDA A #\$	

			•			یر ہ			•		
	\$0875	в7	005D	•	ርጥአ	Δ.	NOZZŚ				
	\$0878						#\$				
	\$087A		005E	+ 			NOZZ6				,
	\$087D	01		ຸ ຄ	NOP		NOLLO		S.		
	\$087E	01			NOP		· ·				
K.	\$087F	01		•	NOP					•	
	*						•				•
	-* Read-t	he-	eight-s	witche	s-and	_st	ore th	ie_va	lue.		··········
•	*				•						
	\$0880		0401		CLR				Specify PIA line	S	
	\$0883		0400		CLR				A0 to A7 as		
	\$0886		04				#\$04		input.		
	\$0888 \$088B		0401 0F				CSA #CSA		Pood switches		
	\$088B	86 84	0400				#\$0F DDA		Read switches, store type # of	•	
			0400				CROP		harvest run.		
	\$0893		F0				#\$F0		Read switches,	1.5	
	\$0895		0400				DDA		store application	n '	
	\$0898		0054				APPL		rate #.		
	*		• • • •		•	. ·					
2	* Define	PI	A lines	BO to	B3 a:	s∵ c	utput.				
· • · ^	* Define	th	e feed :	rate a	nd flo	WC	rate i	nter	rupts.	· · · ·	
· · · · · · ·	*			n an							
	\$089B		0403		CLR			· · · .	Define PIA lines		U.
	\$089E		OF	mi ya s			#\$0F		BO to B3 as	1. J	i, i
	\$0900		0402				DDB ##1F	and a second	output.	· · · ·	
•	\$0903 \$0905		1F 0403				#\$1F CSB	. :	Define CB1 and CB2 interrupts.		. - ·
	\$0908		00			5 a	# \$ 00		Set solenoids		
	\$090A		0402				DDB		initially "off".		
	\$090D	01			NOP						. ÷
	\$090E	01			NOP	3					· •
	\$090F	01			NOP						
	*		u l			÷.,					
	* Define							24 - P			
	* Enable	all	linter	rupts.							-
	÷.		•					u u			:
	\$0910				LDA				Define CA1		
	\$0912 \$0915				STA	А	CSA		interrupt.		
	\$0915 *	υĽ.			CLI				Enable all	•	
	* MAIN S	ECTU	ON	140 - 140 -							
	* MAIN 3					1.		e ster i Luter			
	* Enter a	a ti	mina la	op of	one	sec	ond.				
	*		······ ··· ··· ··· ··· ··· ··· ··· ···						•		
	\$0916	B6	0050	LOOP	LDA	Α	CLOCK	$\frac{M^2}{2}$	Loop until the		۰.
	\$0919	81	3C .,		CMP	A '	#\$3C		clock count = 60,		· :
	\$091B		03		BGE	CA	LC.		ie.for 1 second.		
	\$091D	7E	0916	÷	JMP	LO	OP	· ·			
	*	Ŷ	_	•							
. *		ensc	ors, jun	np to :	subrou	ıti	nes, r	eturr	n to timing loop.		
	*		0.50			`	0.97				
	\$0920		0051	CALC	CLR		OCK FLOW		Zero the clock. Read and store		-
	\$0923								LAND NO CLARA		

		1.4.3
\$0926 B7 005	58 STA A LAFLC	flow count, then
\$0929 7F 005		zero it.
\$092C B6 005		Read feed count,
\$092F CE 0D(get the log of
\$0932 08		this value from
\$0933 80 01		the table.
\$0935 24 FC	BCC MORE	
\$0937E6_00_	LDA_B_0,X	
\$0939 7F 005		Zero feed count.
\$093C F7 006		Store the log.
\$093F BD 095		Jump to NOZZ.
\$0942 BD 0A1		Jump to FLOW.
\$0945 7E 091		Go loop again.
\$0948 01 \$0949 01	NOP NOP	
\$0949 01 \$094A 01	NOP NOP	
\$094B 01	NOP	
\$094C 01	NOP	
\$0,94D 01	NOP	
\$094E 01	NOP	
\$094F 01	NOP	
*		
	DETERMINE FORAGE FEED	RATE AND THE
* REQUIRED NOZZ	LES.	
*		
	forage feed rate.	
*		
#0050 DC 005		T an 1 1
\$0950 B6 005		For this type #
\$0953 CE 0D5	0 LDX #\$0D50.	of harvest run,
\$0953 CE 0D5 \$0956 08	0 LDX #\$0D50. MOR2 INX	of harvest run, get value of
\$0953 CE 0D5 \$0956 08 \$0957 80 01	0 LDX #\$0D50. MOR2 INX SUB A #\$01	of harvest run, get value of eq'n constant "a"
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC	0 LDX #\$0D50. MOR2 INX SUB A #\$01 BCC MOR2	of harvest run, get value of
\$0953 CE 0D5 \$0956 08 \$0957 80 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X	of harvest run, get value of eq'n constant "a" from the table.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$0958 E6 00	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA	of harvest run, get value of eq'n constant "a"
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP	of harvest run, get value of eq'n constant "a" from the table. Store "a".
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b".
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 LDA A LOG	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X LDA A LOG 0 JSR MULT	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b".
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 LDA A LOG 0 JSR MULT 0 LDA B CONA	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X LDA A LOG 0 JSR MULT	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 LDA A LOG 0 JSR MULT 0 LDA B CONA ABA	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 DDA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096B E6 00 \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 3 LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 LDA A LOG 0 JSR MULT 0 LDA B CONA ABA	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096B E6 00 \$096B E6 00 \$096B E6 00 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0977 B7 006 \$097A 01 \$097B 01 \$097C 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA LDA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X LDA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0977 B7 006 \$097A 01 \$097B 01 \$097C 01 \$097D 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 1DA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X LDA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP NOP NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0976 1B \$0977 B7 006 \$097A 01 \$097B 01 \$097D 01 \$097D 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 1 DA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 DA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP NOP NOP NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0977 B7 006 \$097A 01 \$097B 01 \$097B 01 \$097F 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 1DA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X LDA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP NOP NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0977 B7 006 \$0977 01 \$0978 01 \$0978 01 \$0977 01 \$0977 01 \$0977 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 1 DA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 DA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP NOP NOP NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value. Store value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0977 B7 006 \$0977 01 \$0978 01 \$0978 01 \$0977 01 \$0977 01 \$0977 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 1 DA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 DA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP NOP NOP NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value. Store value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0977 B7 006 \$0977 01 \$0978 01 \$0978 01 \$0977 01 \$0977 01 \$0977 01 \$0977 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 1 DA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 DA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP NOP NOP NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value. Store value.
\$0953 CE 0D5 \$0956 08 \$0957 80 01 \$0959 24 FC \$095B E6 00 \$095D F7 006 \$0960 B6 005 \$0963 CE 0D7 \$0966 08 \$0967 80 01 \$0969 24 FC \$096B E6 00 \$096D B6 006 \$0970 BD 0A7 \$0973 F6 006 \$0976 1B \$0977 B7 006 \$0977 01 \$0978 01 \$0978 01 \$0977 01 \$0977 01 \$0977 01 \$0977 01	0 LDX #\$0D50 MOR2 INX SUB A #\$01 BCC MOR2 LDA B 0,X 0 STA B CONA 1 DA A CROP 0 LDX #\$0D70 MOR3 INX SUB A #\$01 BCC MOR3 LDA B 0,X 1 DA A LOG 0 JSR MULT 0 LDA B CONA ABA 5 STA A FRAT NOP NOP NOP NOP	of harvest run, get value of eq'n constant "a" from the table. Store "a". Get value of eq'n constant "b". Multiply log and constant "b". Add "a" to the result to get feed rate value. Store value.

•			•					• • • •	
			1999 1999			·	an than the second	144	
•	•					$(k_{i}) \in \mathbb{R}^{n}$			
ч.			•		•				
\$09	80 F6	0054		LDA	B APPL		For this		
\$09		0090			#\$0D90		applicati		
\$09	86 08		NOR4	INX	- "+04	1. A.	#, get th		
\$09		01	•		A #\$01 MOR4		of applic rate.	ation	
\$09 \$09		FC 00			B 0,X		late.		
\$09	· · · · · · · · · · · · · · · · · · ·	0065			BFRAT		Multiply	feed	
\$09		0A70			MULT		rate and	applic	
			•		· · · ·		rate valu		an tha an
	1997 - 19			. **			get req'd	ITOM.	
*	otormine	which no:	77]05	miat	t bé cho	osen.			
*	etermine	which no.	22163	mi ĝi			an a		
\$09	93 B1	0059		CMP	A NOZZ1		If flow i		
							than nozz		
\$.09		08			NEXT1		capacity, nozzle 1.		
\$09 \$09		0000			#\$0000 A #\$00	•	1102210 1.		
\$09		00A0		JMP			Turn on n	ozzle	
\$09			NEXT1		A NOZZ2		If flow i		•
\$09		08			NEXT2		between c		
\$09		0001			#\$0001 A #\$01	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	of nozz 1 qo choose		
\$09 \$09		01 09F0			CHOOS-	din di si	2.		
		•	VEXT2		A NOZZ3				
\$09	BO 2E				NEXT3	the second			
\$09		0002			#\$0002				
\$09 \$09		02, 09F0			A #\$02 CHOOS				
\$09			VEXT3		A NOZZ4				
\$09	BD 2E	08		BGT	NEXT4			84	
\$09	BF CE	0003		LDX	#\$0003	•	θ		
\$09		03		LDA	A #\$03 CHOOS				
\$09 \$09		09F0 005D 1	VEXT4	CMP	A NOZZ5	e fan en de service. Ne de service de servic		•	
\$09	· · · · · · · · · · · · · · · · · · ·	08		BGT	NEXT5	· · ·			
\$09		0004		LDX	#\$0004				
. \$09		04,	- F		A #\$04				
\$09	· · · · · · · · · · · · · · · · · · ·	09F0 005E 1	JE YTS		CHOOS C A NOZZ6				
\$09 \$09		005E 1 08	ADVIO		NEXT6	· .			•
\$09		0005		LDX	#\$0005				
\$09	DC 86	05			A #\$05	•			
	L	09F0			CHOOS #\$0006				
\$09 \$09		0006 1 06			#\$0008 A #\$06				
\$05		0A00	an fan fir Alle Henre fin ger	JMP				6	
\$05	E9 0-1			NOP					
\$09				NOP				6	
- \$09				NOP NOP					
\$09 \$09	EC 01			NOP					
\$05				NOP			<u>.</u>	-	
	- T							4	
	ана А <mark>н</mark> ана ал		~	n n 1990 - A					

					an a	145
						145
	•	• 01		NOP		
	1	the best n	ozzle	or n	ozzle combina	tion.
	* \$09F0	C6 02	CHOOS		B #\$02	Double the value
	\$09F2 \$09F5	BD 0A70 E6 58		LDA	MULT B \$58,X	of req'd flow. If diff between
	\$09F7 \$09F9	E0 57		CBA		LE this value,
	\$09FA \$09FB	2F 08	HIGH	BLE	LOW	choose smaller nozzle.
	\$09FC \$09FD	4C 01	LOW	INC NOP		
	\$09FE \$09FF	01 01		NOP NOP		6
	* * Turn o	n the chose	n nozz.			
	* \$0A00	FF 0055	SET	STX	CHOIC	Store # of the
	\$0A03	CE ODBO		LDX	#\$0DB0	nozzle chosen. ' Get nozzle
	\$0A06	08.	MOR5	INX		control word
	\$0A07 \$0A09	80 01 24 FC			A #\$01 MOR5	from table.
	\$0A0B	E6 00		LDA	в 0,Х	
	\$OAOD	F7 0402		STA	B DDB	Send word to output on PIA.
	\$0A10	39		RTS		Return tó main.
	\$0A11 \$0A12	01 01		NOP NOP		
	\$0A13	01		NOP	0	
	\$0A14 \$0A15	01		NOP		
	* •		1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	NOP		
					WRATE TO THE 1 IF NECESSARY.	NOZZLE ÇAPACITY,
		7D 005F	FLOW		FIRST	Skip this check
	\$0A19 \$0A1B	86 01			MOR6 A #\$01	during the 1st second.
	\$0A1D	B7 005F		STA	A FIRST	
	\$0A20	7E 0A42 FE 0056	MOR6		RETUR LACHO	Compare capac
	\$0A26	A6 58		LDA	A \$58,X	of nozzle in
	\$0A28 \$0A2A D	F6 0058	MOR6	LDA_ SBA	_B LAFLO	previous sec to the msd flow in
	\$0A2C	4A		DEC	Α	previous sec.
	\$0A2D	4D		TST	Α	If the diff
	\$0A2E \$0A30	2E UD B6 0058		LDA	REPLA A LAFLO	is more than one, go update
	\$0A33	E6 58		LDA	B \$58,X	the nozzle capac
	\$0A35 \$0A36	10 4A		SBA DEC		value to the flow which was
•	\$0A37	4D		TST		msd.
					e e e e e e e e e e e e e e e e e e e	

\$0A38 2E 03 BGT REPLA F0A3A 7F 0A42 IMP RETUR

JMP RETUR \$0A3A 7E 0A42 B6 0058 REPLA LDA A LAFLO \$0A3D A7 58 STA A \$58,X \$0A40 \$0A42 RETUR LDX CHOIC FE 0055 Update value of STX LACHO prev nozzle # \$0A45 FF 0056 \$0A48 39 RTS and return. NOP \$0A49 0.1 NOP \$0A4A 01 NOP \$0A4B 01 NOP \$0A4C 01 \$0A4D 01 NOP \$0A4E 01 NOP \$0A4F 01 NOP *** INTERRUPT SUBROUTINE** POLL1 LDA A CSA \$0A50 B6 0401 If the clock caused the \$0A53 2A 07 BPL POLL2 \$0A55 7C 0050 INC CLOCK interrupt, then increment clk, \$0A58 B6 0400 LDA A DDA clear inter. If not, check sensors. \$0A5B 3B . RTI \$0A5C B6 0403 POLL2 LDA A CSB If flow caused \$0A5F 2A 03 1. 1. **1**. 1. 1. 1. BPL POLL3 it, increment INC FLOW 7C 0051 flow. \$0A61 POLL3 ANDA #\$40 If feed caused \$0A64 84 40 BEQ CLRB INC FEED 27 03 it, increment. \$0A66 7C 0052 feed. \$0A68 Clear interrupt. \$0A6B B6 CLRB LDA A DDB RTI \$0A6C 3B 01 NOP \$0A6D NOP 01 \$0A6E NOP \$0A6F 0.1 * MULTIPLY SUBROUTINE * When this subroutine is called, the multiplier must be in accumulator A, and the multiplicand in accumulator B. * The result is put into accumulator A and is one byte only. If the result is greater than 255, then the value of 255 will be the result. B7 0062 MULT STA A MULT1 \$0A70 86 08 LDA A #\$08 \$0A73 STA A MULT2 B7 0063 \$0A75 CLR A \$0A78 4F

STA A MULT3 \$0A79 B7 0064 LSR MULT1 \$0A7C 74 0062 MX 1 24 01 BCC MX2 \$0A7F ABA \$0A81 1B -46 ROR A \$0A82 MX2

·147 \$0A83 76 0064 ROR MULT3 7A 0063 \$0A86 DEC MULT2 \$0A89 26 F2 BNE MX1 Is the result \$0A8B 4D TST A BGT MX3 more than 255? 2E 04 \$0A8C LDA A MULT3 No-lower byte is \$0A8E B6 0064 result. RTS \$0A91 39 MX 3 LDA A #\$FF Yes- result is A \$0A92 86 FF 255. \$0A94 39 RTS END • * TABLE OF THE LOG VALUES \$0D00 -to \$0D38 -- * * TABLE OF THE "A" EQUATION CONSTANT VALUES * \$0D50 -to \$0D5F ---* * TABLE OF THE "B" EQUATION CONSTANT VALUES the end of the second secon * \$0D70 -to \$0D7F --* * TABLE OF THE APPLICATION RATE VALUES * \$0D90 --to \$0D9F --* * TABLE OF THE NOZZLE CONTROL WORDS * Nozz 1 active. \$0DB0 01 Nozz 2 active. \$0DB1 02 \$0DB2 04 Nozz 3 active. \$0DB3 08 Nozz 4 active. \$0DB4 06 Nozzs 2,3 active. Nozzs 1,3 active. \$0DB5 05 * ***** INTERRUPT ADDRESSES * \$0FF8 0A50 Inter request (clk or sensor). Software inter. \$OFFA 0850 \$OFFC 0850 Non-maskable int. Reset interrupt. \$OFFE 0850

Readouts on the monitor and the pulse counter for the drill test on the 0.79 cm diameter round-hole screen disk. Table G1 **ب**ال .

.9

149

lisplaceme (cm)	nt readout monitor pulse counter		pulse count /(cm·min)
1.9	0.0 11791		1241
2.5	11.8 11804	999	944
4.7 6.6	0.0 15132		644
6.6 7.2	0.0 23977 1.0 24700	24455	727 686
lote: 1.	the displacement is offset	from the c	enter
2.	by 1 cm. the readout ratio should b unless the monitor is not holes/slots.		
3.	the pulse counts/(cm·min) if the pattern is to give the displacement.		

Table G2 Readouts of the monitor and the pulse counter for the drill test on the 1.27 cm diameter round-hole screen disk.

	lacement cm)	reado monitor pu	ut lse counter	readout ratio	<pre>pulse counts /(cm·min)</pre>
	<u></u>		·····		
2	.0	20.9	5234	251	523
		21.0	5241	249	524
. 4	.7	26.2	5898	225	251
is set \overline{a}		26.3	5900	224	251
. 6	. 1	43.1	2435	56	,80
1	· · · ·	40.7	2439	60 ,	80
7.	.6	20.8	16373	.787	431
		14.1	16376	1161	431
8	.8 *	13.0	19015	1464	432
		7.7	19010	2469	432

Table G3 Readouts on the monitor and the pulse counter for the drill test on the 2.54 cm diameter round-hole screen disk.

displacement (cm)	reado monitor pu	ut lse counter	readout ratio	pulse count /(cm·min)
	15 7	3925	250	. 314
2.5	15.7 15.7	3927	250	314
6.2	31 4	7856	250	253
0.2	31.4	7856	250	253
7.56	5.7	3925	250	103
	5.7	3925	250	103
9.2	2	11123	236	242
	7.2	11136	236	242
11.23	. 36 . 8	8508	231	151
	39.0	8517 -	218	151
11.2	31.4	• 7859	250	° 140
	31.4	7862	250	140

\$

Table G4 Readouts on the monitor and the pulse counter for the drill test on the unique hole disk.

disp. actual	(cm) approx		lout pulse counter	readout ratio	pulse counts /(cm·min)
2.8	3 %	• 7.9	1967	249	131
2.0	.	7.9	1964	249	131
4.0	4	10.5	2619	249	131
±.	-	10.5	2619	249	َــــــــــــــــــــــــــــــــــــ
4.6	5	13.1	3273	250	131
±. 0	J	13.1	3274	250	131
5.7	6	15.7	3928	250	131
U .,	Ŭ,	15.7	4204	268 .	140
5.8	6	15.7	3930	250	1,31
0.0	Ŭ	15.7	3928	250	131
6.7	7	18.3	4580	250	13-1
0.7		18.3	45.78	250	131
8.4	8	34.2	7867	230	197 *
U.	Ŭ	34.0	7852	230	196 *
9.6	10	31.4	6902	220	138
10.1	10	26.2	6547	250	131
		26.2	6549	250	131
11.5	11	28.8	6545	227	119 **
		28.8	6546	22	119 **
			, C	la de la come	

** 10 holes were being detected here, rather than the expected_11.

Note: 4. The displacement to the nearest unit of sensitivity was used in the calculation of the count/(cm·min). 5. A small change is necessary in the amount of

A small change is necessary in the amount of overlap necessary to have the correct number of holes read at any displacement. The holes must be placed and drilled with precision.

152

. .

.

disp.			dout	readout	pulse coun
actual	approx	monitor	pùlse counter	ratio	/(cm•min)
2.7	3	7.9	1965	249	131
		7.9	2020	256	135
		7.9	1965	249	131
3.6	4	10.5	2620	250	131.
		10.5	2620	250	131
6.3	6	15.7	3925	250	, 131
	n an	15.7	3929	250	131
		15.7	3926	250	131
		15.7	3927	250	131
10.7	11 -	26.2	6549	250	119 *
	λ_{i}	26.2	6596	252	120 *
	•	.26.2	6542	250	119 *:
		26.2	6550	250	119 *:
		26.2	6548	250	119 *
		26.2	6542	250	.119 *
en en el	a de la com	26.2	6551	250	119 *

Table G5, Readouts on the monitor and the pulse counter for the drill test on the 11-slot disk.

153

expected 11. ð

Table	G6 *	Readouts the dril	on the m L test on	onitor the 2	and th 1-slot	ne pulse disk.	counter	for
								· · ·

•

•

Ċ,

disp. actual	approx	reado monitor f	pulse counter	readout ratio	pulse counts ./(cm·in)
2.7	2.5	13.1	3303	252	·. 264 262
		13.1 13.1	3271 3274	250 250	262
3.5	3.5	18.4	4370	238	- \$\$50
_		18.3	4013)219	230
3.6	3.5	18.3 18.3	4200 3900	230 213	240 223
		18.3	4585	250	262
6.2	6.	31.5	7882	250	263
		31.5	7860	250 250	262 262
10.0	10.	31.4 52.4	7853 13104	250	262
10.0		52.4	13099	250	262
			<u> </u>		

154

156

Readouts on the monitor and the pulse counter for the flowmeter calibration. Table H1

ą.

а.

ø

. .

•

•	mass		time	read	lout	flow rate (L/min)	req'd monitor calib. value
•	water	(g)	(min)	monitor	counter	<u>(1) (11) (1</u>	
· •	·		•				· · · · · · · · · · · · · · · · · · ·
	5074		9.19	2.43	3223	0.55	79.03
	5109		13.60	2.72	3606	0.38	71.09
., ·	5202		11.17	2.51	3323	0.30	78.44
	5212		10.76	2.51	3317	0.48	78.61
	5371		4 7.42 Jun		3248	0.72	82.64
	5099		1 6.88	- 2.21	2920	0.74	87.35
	5476		2.15	2.55	3372	0.77	81.28
•	5087	1	/ 82	2.40	3366	0.87	80.23
1997 - 19	540		6.14	2.50	3305	0.88	81.77
	5630		5.69	2.60	3444	0.99	81.96
	÷		4.83	2.00	r	1.02	88.77
	32511E		4.96	2.17		1.03	89.13
الميكي وجا	5290		4.90	2.50	3323	1.08	80.09
	526		4.80	2.41	3186	1.10	82.69
2 4	5139		4.38		2878	1.17	89.46
4	5005		4.11	2.20	2918	1.22	86.11
فتما	5302		3.34	2.37		1.59	84.68
	5178		3.14	2.14	2830	1.65	91.55
	5357	Y ' .	2.99	2.24	2965	1.79	90.52
	v ⁹ 5459		3.04	2.36	31,28	1.80	87.55
-, .	5435		2.82	2.30	2810	1.84	82,22
	5177	•	2.02	2.12	2010	1.0-	
					•		
	Note:	1 +	he monit	or reado	its were	taken at'a	monitor
	NOLE.		alibrati				
		2 ÷	he 'ea'	d monito	r calib.	value" is	the [*]
¥7			alihrati	on value	require	d to give a	readout of
			itres.				• • •
······		· · ·	TCTCD.				****
1997 - 19	•			e.			
4	avera	e flo	wrate =	1.05 T/m	in 🐨	ă A	
	flowrs	to ra	nge = 0.	38 to 1	R4 T./min	الأربيكي فيجاد	
	L TOWIC	, LC TQ					
			'd calib	value	- 484 06	an an gra 💥 an	
	averd	je reg	a carry	- 71 NO		(84 06-15%	to 84.06+10%)
	carro.	vai	e rande	- /1.03	<i></i>		
		•					「「「」「「」」「「」」「「」」「「」」」「「」」」

SIMULATION MODELLING OF THE FEEDROLL DISPLACEMENT

To obtain an indication of the movement of a feedroll on a forage harvester, and the feedroll displacement

relative to a forage input to the harvester, a simple feedroll model was examined. The displacement of the upper feedroll on a forage harvester was simulated utilizing the computer program, CSMP (Continuous Simulation Modelling Program). The forage harvester was treated as a

spring-mass-damper system, with the spring and damper representing the tires on the harvester. The feedroll was treated as a spring-mass system, with a spring representing the tension springs between the feedroll and the harvester and a spring (in compression) representing the crop.

Simulations were done of a forage harvester travelling over a bumpy field. One simulation was done with no forage input to the harvester, and a second simulation had a swath of forage being input into the feedrolls.

When compared with the bumps on the field, the displacement of the harvester relative to flat ground was small, probably due to the large mass of the harvester. The harvester displacement had a cycle, frequency of

approximately one half the frequency of the bumps on the ground.

The feedroll displacement (relative to the harvester, or to flat ground) was greater than the harvester displacement, but had the same cycle frequency. The feedroll displacement patterns for the two simulation runs were similar. The frequency and shape of the displacement peaks in the run involving forage input were almost identical to the frequency and curve shape during the no-forage run. The amplitude of the feedroll displacement fluctuation during the no-forage run was significant; however, the displacement amplitude with a forage input was greater. Since there was significant feedroll displacement during the no-forage run, the displacement of the feedroll during the no-forage run, the displacement of the feedroll during the run with forage cannot be attributed only to the forage passing through the harvester.

159

Further analysis and simulations would be required to derive the true mathematical relationship between the feedroll displacement and the forage feed rate through¹ a harvester.

P.