
 

 

 

 

 

 

 

 

Generative Design with Quality Function Deployment for Architectural Layout Design 

Optimization 

 

by 

 

Soojung Yoon 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

 

in  

 

Construction Engineering and Management 

 

 

 

 

 

Department of Civil and Environmental Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

©  Soojung Yoon, 2024



 

 

ii 

 

Abstract 

Architectural design problems are inherently complex due to their non-linear nature and the 

interdependence of many variables. Traditional design methods struggle with the speed and 

breadth of exploration, often failing to adapt quickly to changing client needs and project timelines. 

This research addresses these challenges by developing a framework that integrates Quality 

Function Deployment with generative design to automate and optimize the architectural layout 

process.  

The methodology is segmented into three stages: pre-generative design, generative design, and 

post-generative design. In the pre-generative design stage, client needs are translated into specific 

design requirements using Quality Function Deployment. In the generative design stage, 

generation algorithms are developed, namely bottom-up and top-down method, that are applicable 

to different problem settings. The generated design solutions are evaluated and optimized through 

NSGA-II genetic algorithms. The final stage, post-generative design, focuses on refining the 

chosen designs and converting them into functional Building Information Modelling models.  

A case study of designing a single detached house with 3 bedrooms and 2.5 bathrooms is conducted 

following this methodology. The effectiveness of the integrated Quality Function Deployment and 

generative design approach is exemplified through the case study. The use of advanced 

computational tools enables the exploration of numerous design alternatives, efficiently narrowing 

down to the best solutions that meet predefined criteria.   
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1 Introduction 

1.1 Research background and motivation  

Architectural design problems are “wicked” problems. As defined by Rittel & Webber (1973), 

wicked problems have no stopping rules and are not binary — right or wrong — but are instead 

judged on a spectrum from good to bad, unlike mathematical problems or puzzles that have 

findable solutions. Every wicked problem is unique, each with its own set of specific 

circumstances and challenges. Additionally, design problems are complex with numerous 

interdependent factors with multiple possible solutions.  

The traditional way of designing has limitations in terms of the speed and breadth of exploration 

due to its time-consuming nature. Therefore, the process has restricted iteration and flexibility, 

which are crucial for quickly adapting to client needs and project schedule. Given the inherent 

complexities and uncertainties in architectural design, such as competing interests, economic 

factors, and site-specific challenges, leveraging advanced computational tools such as generative 

design becomes crucial. These technologies enable architects to explore a vast array of design 

options more efficiently and creatively. 

The evolution of architectural tools has transitioned from 2D Computer-Aided Design (CAD) to 

Building Information Modelling (BIM), and further to parametric design, and now, to the 

innovative generative design, each stage building upon the last to enhance design capabilities and 

complexity. Generative design represents a paradigm shift in architectural planning, harnessing 

algorithms to generate design alternatives based on predefined criteria. Its application has been 

explored in various studies, demonstrating its ability to produce optimized spatial configurations, 

sustainable designs, and cost-effective solutions, and so much more.  
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To ensure that the generative design engine is supplied with the correct constraints and objectives, 

it is crucial to define these major inputs accurately. Quality Function Deployment (QFD) plays a 

key role in this process by systematically translating client needs into detailed design specifications 

using a tool known as House of Quality (HoQ). HoQ is a comprehensive matrix that captures and 

visualizes the relationship between client needs and the technical means of achieving them, 

facilitating prioritization and decision-making. By integrating QFD within the architectural design 

process, the effectiveness of generative design techniques is significantly enhanced for that as 

mentioned earlier, setting the right input value is crucial in the process. Additionally, QFD 

improves communication of client expectations to all stakeholders involved, thereby enhancing 

collaboration, and increasing the efficiency of the design process. 

This research aims to develop a holistic framework that utilizes QFD and generative design as the 

dual pillars of an end-to-end automated layout design process. The goal of the framework is to 

seamlessly integrate these methodologies into architectural workflows, enhancing their 

applicability across various design challenges. The algorithm developed in this study provides a 

flexible framework that can be adapted to various layout design problems rather than being limited 

to specific problem scenarios. 

1.2 Research objectives  

This research aims to establish an end-to-end process for automated layout design using Quality 

Function Deployment (QFD) and generative design. To realize this goal, the approach is divided 

into three core stages, which are displayed in Figure 1-1. 
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Figure 1-1. Process of Generative Design (Adapted from Nagy & Villaggi, 2018) 

1) Pre-generative design 

The initial stage involves a detailed analysis of design requirements to ensure alignment with 

client needs. This process utilizes a QFD approach to translate complex client requirements 

into definitive, actionable design objectives. This stage serves as the foundation for the 

generative process, ensuring that all generated designs are rooted in a deep understanding of 

client expectations and practical constraints. For instance, the identified requirements, such as 

the access between spaces and specific dimensions of spaces, are quantified and become the 

fitness functions that guide the generative design process to find a set of design solutions that 

best meet the requirements.  

2) Generative design 

The generative design stage of this research focuses on the development and application of 

sophisticated algorithms using Dynamo, a visual programming tool for Revit. It involves 

scripting both generation and evaluation algorithms for the top-down method and bottom-up 

method each, which will be further discussed in detail in Section 2.2. The algorithms will be 

tailored for architectural layout planning according to the constraints and objectives. These 
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algorithms are fed to generative design process with genetic algorithms, specifically NSGA-II, 

for optimizing the design.  

3) Post-generative design  

The final stage refines the generated layouts to enhance their practical and aesthetic values. 

Then, they are converted into Building Information Modelling (BIM) elements. By doing so, 

the designs are not only optimized for performance but are also ready for immediate 

implementation in construction workflows, bridging the gap between conceptual development 

and practical application.  

 The integration of these stages exceeds traditional layout planning by providing a systematic, 

adaptable, and efficient approach to architectural design, ensuring that solutions are both 

innovative and aligned with specific client and project requirements.  

1.3 Structure of the thesis  

This thesis is composed of five chapters. Chapter 1 (Introduction) introduces the research 

background and motivation. Chapter 2 (Literature Review) presents a thorough literature review 

on architectural layout design, automated architectural layout design, and generative design in 

architecture. Chapter 3 (Methodology) details the methods employed in this research to address 

each stage of the generative design process: pre-generative design, generative design, and post-

generative design. Chapter 4 (Case Study) describes the application of these methods in designing 

a residential layout. Finally, Chapter 5 (Conclusion) summarizes the research findings and 

contributions, and discuss limitations and suggestions for future work. 
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2 Literature review 

2.1 Architectural layout design  

MacLeamy’s time-effort distribution curve, displayed in Figure 2-1, shows that the effort invested 

in the early stages of design has a greater impact on the overall cost and functional capabilities of 

a project than the same effort expended in later stages. This implies that making changes and 

adjustments early in the design process (e.g., during pre-design and schematic design phases) is 

less costly and more effective than making those changes during construction.  

 

Figure 2-1. The Macleamy Curve (Adapted from Ilozor & Kelly, 2012) 

During these initial phases, designers and clients should collaborate closely to identify needs, 

expectations, and any limitations of the project. By thoroughly addressing client requirements 

early in the process, the project is more likely to stay within budget, meet functional expectations, 

and minimize costly changes during construction. However, determining the requirements and 

constraints itself is complex, and finding their relationships and trade-offs is also challenging. 
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House of Quality is one of the tools that systematically organize the relationships between 

requirements and constraints, which will be introduced in Section 3.3.1. 

Despite the importance of early design, it is difficult to find the best design not only due to the 

nature of the design problem being “wicked” problems, but also limited resources such as time, 

cost, and labour. Moreover, conventional design method may not fully incorporate all relevant 

factors or adjust to changing requirements, consequently, resulting in a design that does not 

optimally satisfy the established design criteria (Ko et al., 2023). As artificial intelligence (AI) and 

machine learning (ML) continue to advance, various research have been conducted to overcome 

this limitation in architectural layout planning with iteratively generating many different 

alternatives to assist decision making (Ko et al., 2023).  

2.2 Automation of architectural layout design  

Weber et al. (2022) categorized computational approaches for automatic space layout generation 

into three, namely bottom-up methods, top-down methods, and referential methods. Bottom-up 

methods focus on generating layout designs by aggregating predefined modules or building blocks 

according to specific spatial, environmental, or structural criteria, which allows for the exploration 

of various designs. In contrast, top-down methods begin with a given building envelope or massing, 

and then subdivide and fit spaces within these constraints using geometric and functional 

considerations. Referential methods, draw upon existing architectural layouts and design 

precedents, frequently utilizing machine learning algorithms like generative adversarial networks 

(GANs) to create new designs that mimic learned patterns and styles. In this paper, the bottom-up 

and top-down methods will be discussed in more detail.  
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2.2.1 Bottom-up methods  

Architectural design problems often have specified constraints on the dimension of spaces or 

adjacency between them. These constraints can be either static or changing throughout the 

generating process to satisfy the pre-defined fitness of the design output. Weber et al. (2022) 

acknowledged the adaptability of the bottom-up methods for that they align with traditional design 

strategies such as mind mapping and bubble diagrams, but also argue that the bottom-up methods 

may not reach a solution due to their vast exploration area necessitating sophisticated heuristics to 

efficiently navigate and produce desirable outcomes. There have been different approaches 

developed by researchers using bottom-up methods for automating the generation of layouts.  

 
Figure 2-2. Schematic of bottom-up layout design methods (Adapted from Weber et al., 2022) 

Merrell et al. (2010) developed a method inspired by traditional architectural design processes. 

Building layouts were converted from an architectural program generated using Bayesian Network, 

which contains a list of rooms, their adjacencies, and desired sizes, and optimized with the 

procedure to minimize a cost function that evaluates the quality of the layout. Chatzikonstantinou 

(2014) developed a method for creating 3-dimensional architectural layout, which is an extended 

version of the existing Voronoi subdivision method, having area and weighted adjacency matrix 

as inputs. Hua (2016) integrated graphical inputs for automated layout generation when the 
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connectivity and size constraints are considered. Their research’s unique approach lies in the 

ability to generate layouts from patterns within images, accommodating complex shapes and non-

orthogonal geometries and allowing for a more intuitive design process. Guo & Li (2017) 

combined an agent-based system for defining room topologies with evolutionary optimization to 

refine 3D architectural layouts. Their approach addresses the complexities of multi-storey designs 

and varying room heights, moving beyond the limitations of traditional 2D planning methods. By 

ensuring correct topology from the start, the method efficiently narrows the optimization search 

space. Bahrehmand et al. (2017) introduced a genetic algorithm-based interactive tool for layout 

planning in computational design projects like games and virtual reality. This tool customizes 

space arrangements by integrating architectural principles and user preferences, initiated by the 

designer's primary requirements. Their approach generates personalized layouts with simplified 

planning process that resembles human-crafted designs.  

2.2.2 Top-down methods  

 
Figure 2-3. Schematic of top-down layout design methods. (Adapted from Weber et al., 2022) 
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Real-world architectural designs often face constraints on the envelope such as building mass and 

site boundaries. Top-down methods are suitable for this type of space planning design problems. 

Unlike the bottom-up method, the iterative optimizations are done under the boundary conditions, 

which means restricted search space, resulting in more reduced computational challenge than the 

bottom-up method (Weber et al., 2022). Many researchers developed these methods using 

subdividing, fitting, and shape packing. 

Marson & Musse (2010) used squarified treemaps algorithm, which is a method that organizes 

hierarchical data by subdividing space into rectangles with aspect ratios as close to 1 as possible 

to create a house floor plans with semantic details. Koenig & Knecht, (2014) compared two 

evolutionary algorithm-based methods, dense packing and subdivision algorithms based on 

generation speed, reliability in finding optimal solutions, and the diversity of solutions produced. 

Both methods were generally practical, while subdivision had better performance and dense 

packing was suited for user interaction (Koenig & Knecht, 2014). Nagy, Villaggi, et al. (2017) 

introduced a new model for tackling space planning challenges in architecture exemplified through 

designing an exhibit hall, focusing on optimal layout arrangements using genetic algorithm. The 

model provides guidelines and evaluation techniques to assess the model's suitability for 

metaheuristic optimization. Saha et al. (2020) introduced a reinforcement learning-based solution 

to space allocation problems in architecture and urban design. The solution aids in generating 

building layouts, site parcellation, and massing, allowing for easy analysis. 
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2.3 Generative design in architecture  

2.3.1 Advancements in design methodologies  

 
Figure 2-4. Evolution of Design Methodologies 

Parametric design  

As technology evolves, so does the field of design, incorporating new tools and methodologies 

that reshape how designers conceptualize and explore solutions. The evolution from singular 

design modelling systems to supportive environments and to advanced generative parametric tools 

marks a significant shift in design methodologies. Initially, Computer-Aided Design (CAD) was 

used mainly for 2D and 3D modelling, lacking support for iterative design changes. With the 

advent of parametric design systems, designers gained the ability to dynamically alter and refine 

designs, overcoming previous limitations and marking a shift towards more flexible and interactive 

design processes. (Oxman, 2017).  

Parametric design, often referred to as constraint modelling, involves setting up relationships or 

"constraints" between design elements so that changes to one element automatically update others 

(Woodbury, 2010). This modelling method goes beyond basic computer-aided drafting or 

modelling, by allowing complex modifications while maintaining relationships between design 
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elements. For example, in architectural design, changes to the parameters of a wall can 

automatically adjust related windows, roofs and other structural elements without manual 

modification. Eltaweel & SU (2017) described the ability for parametric design to automatically 

and immediately update the model as a “short cut” to the final model, while conventional design 

process requiring repetitive manual modification (Figure 2-5). 

 

 

Figure 2-5. Comparison diagram between parametric and conventional design process (Adapted 

from Eltaweel & SU, 2017) 

Building upon this foundation, parametric design allows for the efficient management and 

variation within architectural models by utilizing the concept of families of elements, where groups 

of elements differ only in the dimensions of their parts (Monedero, 2000). Furthermore, this 

technique enables designers to explore a wide range of solutions within a structured design space, 

moving beyond the traditional approach of crafting a few solutions based on expertise. By 
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embedding project constraints and objectives into the model, parametric design facilitates the 

automatic generation of diverse solutions. This shifts the designer's role towards shaping a multi-

dimensional design landscape driven by key model parameters, thus vastly expanding design 

possibilities (Nagy et al., 2017). Consequently, scripting has become an essential skill for designers, 

whose job is to create a comprehensive framework that encompasses an entire population of 

possible designs (Reas & Fry, 2007). Figure 2-6 shows one of the most famous parametric designs 

in architecture, Heydar Aliyev Center in Azerbaijan designed by Iraqi-British architect Zaha Hadid, 

where curvature of the building's surface was designed using parametric design process 

(Hufton+Crow, n.d.; Iwan Baan, n.d.).  

  

Figure 2-6. Heydar Aliyev Center by Zaha Hadid Architects (images from Hufton+Crow, n.d.) 

Generative design  

Generative design extends the capabilities of parametric design which is limited by the need for 

manual adjustments of parameters to explore different design outcomes. Generative design is 

defined as a design process utilizing algorithms and computational power to autonomously explore 

a large range of design solutions (McKnight, 2017). Through automatically navigating within the 

search space with various combinations of parameter values, the process reduces the reliance on 
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manual adjustments by designers which were needed in traditional and parametric design process. 

Parameters defining the design’s attributes are manipulated algorithmically, which allows 

generative design to dynamically generate and optimize geometries based on design goals. The 

design process involves four steps as follows (McKnight, 2017): 

Step 1: Establishing design parameters and goals 

Experienced designer/engineer set up a parametric model that serves as the foundational 

framework for the generative design process. Specific metrics, also called fitness functions, 

are also defined to objectively evaluate each design outcome, as computers do not have 

innate design intuition to discern good from bad designs (Nagy, Lau, et al., 2017).  

Step 2: Algorithmic generation and performance analysis to create numerous design options 

The model is linked to a search algorithm, such as genetic algorithms, and the first 

generation of design outcomes is identified.  

Step 3: Iterative refinement of parameters and goals based on results 

Designer/engineer study the first generation of results and modify parameters and goals to 

refine the algorithm and get the most high-scoring design outcomes.  

Step 4: Manufacturing the final design 

The chosen design is adapted for production 

As an example of the process, consider a scenario in architectural design where a facade needs to 

be covered with tiles. An experienced engineer sets up a parametric model incorporating a tiling 

algorithm that includes parameters like tile size, shape, and the layout area. Constraints such as 

alignment rules and material properties are defined to guide the tiling layout. Metrics for evaluating 

the designs are established in terms of aesthetics, functionality, and cost efficiency. These goals 

help objectively assess each design's viability since computers cannot intuitively determine good 
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or bad designs. The tiling algorithm uses these parameters to generate various tiling patterns, 

automatically adjusting the designs based on the set metrics to optimize aesthetics, function, and 

cost. Similarly, any generation algorithm, such as those for site layout, daylight optimization or 

space layout generation as developed in this research, can also serve as a parametric model within 

the generative design process. 

Generative design is particularly beneficial during the conceptual stages of a project, where the 

design is still being formulated. By enabling the exploration of various design options early on, it 

can lead to significantly better outcomes compared to making limited optimizations at the later 

stages of the design process (Krish, 2011). To effectively leverage generative design process, it 

must integrate precise metrics for assessing each design option, with clear guidelines provided by 

the designer. This allows the computer to accurately evaluate the efficacy of designs (Nagy, Lau, 

et al., 2017). Moreover, it's essential to couple the parametric model with a search algorithm, like 

multi-objective evolutionary algorithms, that manipulates input parameters based on metric 

feedback to optimize design outcomes and thoroughly explore the design space, progressively 

refining designs across generations (Murata & Ishibuchi, 1995).  

 
Figure 2-7. Generative Design Process (Adapted from Krish, 2011) 
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Krish (2011) highlights the interactive nature of the generative design process as the designer 

constantly guides and refines the process while the computer algorithm generates a range of 

potential solutions within the predefined design space (Figure 2-7). In other words, the process 

relies on a partnership between human creativity and computational power, with the designer 

ensuring that the solutions generated align with both the practical requirements and the creative 

vision of the project.  

2.3.2 Multi-objective optimization evolutionary algorithms (MOEAs)  

Multi-objective optimization (MOO) is a process of simultaneously optimizing two or more 

conflicting objectives. Unlike single-objective optimization, which searches for a single optimal 

solution, MOO aims to find a set of optimal solutions, known as Pareto optimal solutions. These 

solutions represent trade-offs in which improving one objective may lead to the deterioration of 

another. Most architectural design problems have multiple objectives and sometimes they conflict 

with each other, i.e., minimize cost, maximize functionality, etc.  

Several multi-objective optimization (MOO) methods are applied when an optimal decision needs 

to be made in the presence of trade-offs between conflicting objectives. One traditional method 

for solving MOO is the weighted sum method, which combines all objectives into a single function 

using the sum of weighted objectives, as shown in the following equations (Yang, 2014).  

𝐹(𝑥) = 𝑤1𝑓1(𝑥) +  𝑤2𝑓2(𝑥) + ⋯ +  𝑤𝑛𝑓𝑛(𝑥) 

where, 

∑ 𝑤𝑖
𝑛
𝑖=1 = 1,  𝑤𝑖  ∈ (0,1). 

This method is one of the simplest and most widely used approaches in MOO which is effective 

when dealing with convex Pareto fronts and can be readily implemented due to its uncomplicated 
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nature. However, the weighted sum method faces significant limitations, which include the 

arbitrary selection of weighting coefficients that are dependent on decision maker preferences. 

This dependency leads to potential biases and suboptimal solutions. The method also has 

difficulties with non-convex Pareto fronts and demands precise scaling or normalization of 

objectives to distribute weights correctly. Without such adjustments, it inadequately samples the 

Pareto front, skewing potential solutions. For more complex issues, more robust methods are 

preferable (Yang, 2014). 

 
Figure 2-8. General scheme of an evolutionary algorithm (Adapted from Eiben & Smith, 2015) 

Evolutionary Algorithms (EAs) are optimization algorithms inspired by natural evolutionary 

processes, like selection, mutation, and crossover. (Eiben & Smith, 2015). EAs are frequently used 

to solve MOO problems because they can handle a collection of potential solutions simultaneously, 

enabling the identification of multiple members of the Pareto optimal set in a single execution 

(Coello & Lamont, 2004). This is achieved by prioritizing nondominated solutions—those that are 

not outperformed in all objectives—over dominated ones, thereby focusing on high-quality 

solutions that represent optimal trade-offs among conflicting objectives. Additionally, EAs employ 
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strategies such as crowding distance, fitness sharing, and niche formation to maintain diversity 

within the population. This diversity preservation is crucial as it ensures a comprehensive 

exploration of the solution space, contrasting with traditional mathematical programming 

techniques that require multiple separate runs to obtain a comparable spectrum of optimal solutions 

(Coello & Lamont, 2004). 

Genetic Algorithm (GA) is a subset of EAs developed by Holland and his colleagues in their book 

Adaptation in Natural and Artificial Systems (Holland, 1975). Some of the algorithms that utilize 

genetic algorithm to solve MOO problem include Vector Evaluated Genetic Algorithm (VEGA), 

the first multi-objective GA proposed by Schaffer, Nondominated Sorting Genetic Algorithm 

(NSGA), and Strength Pareto Evolutionary Algorithm (SPEA). 

VEGA(Schaffer, 1985), the first multi-objective genetic algorithm, works by separately evaluating 

each objective of a multi-objective problem in different subpopulations, then combining these 

subpopulations to promote diversity in the solutions. Its implementation is straightforward, yet a 

significant disadvantage is its tendency to converge toward the extremes of each objective, 

potentially overlooking balanced solutions (Zitzler & Thiele, 1999a). 

NSGA (N. Srinivas & Deb, 1994) improves upon earlier methods by sorting solutions into 

different levels based on dominance. Each solution is compared with others to identify which are 

nondominated, grouping them into a hierarchy from best to worst based on these comparisons. 

This approach offers fast convergence, which is a significant advantage. However, a weakness of 

NSGA is its sensitivity to the sharing factor 𝜎𝑠ℎ𝑎𝑟𝑒, also known as the niche size, which refers to 

the conceptual area in the solution space where similar solutions are grouped (Coello Coello, 1999). 
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SPEA (Zitzler & Thiele, 1999b) uses an external archive to store nondominated solutions and 

assigns a "strength" value to each solution based on how many others it dominates. The method 

uses a density estimation technique as a method of diversity preservation by avoiding 

overcrowding, and also uses clustering to manage the external archive keeping only the most 

representative solutions when it exceeds its capacity. While SPEA is robust and capable of 

generating diverse, high-quality solutions, it can be computationally intensive and sensitive to 

parameter settings. 

2.3.3 NSGA-II  

The Fast Nondominated Sorting Genetic Algorithm (NSGA-II) is one of multi-objective GAs first 

introduced by Deb et al. (2002) that addresses the limitations of the original NSGA. The iterative 

loop of NSGA-II is described in Figure 2-9.  

 

Figure 2-9. NSGA-II procedure (Adapted from Deb et al., 2002) 

The initial process is to populate an offspring population Q0 of size N using the binary tournament 

selection, crossover, and mutation. After the first population Rt, which is Qt∪Pt with the 
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population size of 2N, is sorted into F1, F2, ..., Fi in order of best non-domination, solutions from 

the best set is chosen until the total population size becomes N. To choose exactly N population 

members, the last subsequent set Fi is sorted using the crowding distance sorting to fill all 

population slots. The new population Pt+1 is then used for selection, crossover, and mutation to 

create a new Q t+1. The loop is finished once the sorting procedure has found enough number of 

fronts to have N members in Pt+1.  

Non-dominated sorting is a classification method used in MOO that sorts potential solutions into 

different levels, or “fronts”, based on pareto dominance. Each solution is compared against others 

to identify whether it is dominated, meaning there is at least one other solution better in one 

objective without being worse in others. Solutions that are not dominated by any other form the 

first front F1, representing the Pareto-optimal set. Subsequent fronts F2 are determined by 

temporarily removing solutions of the previous front and repeating the process with the remaining 

solutions (Deb et al., 2002).  

 
Figure 2-10. Pareto fronts 
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One characteristic distinguishing NSGA-ii to other MOEAs is the fast nondominated sorting. The 

computational complexity O(MN) of a MOEA to categorize solutions into Pareto fronts is 

determined by the number of objectives and the population size, which is represented as M and N, 

respectively. The original NSGA has a computational complexity of O(MN3) in the worst case, 

when there exists only one solution in each front, on the other hand, NSGA-II has more efficient 

non-dominated sorting method with a complexity of O(MN2) (Deb et al., 2002). This improvement 

significantly reduces computational overhead, especially for large populations.  

In order to maintain diversity, crowding-distance sorting is used which does not require user-

specified parameters. Density estimation is used to assess solution proximity within the population, 

where the crowding distance of a solution is the average side length of a cuboid, represented in the 

Figure 2-11. 

 
Figure 2-11. Crowding distance of a solution 

Each solution has two attributes: nondomination rank(irank) and crowding distance(idistance). The 

crowded-comparison operator (≺n) is shown below, where the solution with a lower(better) non-
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domination rank or, in case of a tie in rank, a greater crowding distance is preferred for the next 

generation. This concept can be expressed as following with the solution i being preferred to the 

solution j.   

i ≺n j if (irank < jrank) or ((irank = jrank) and (idistance > jdistance)) 

The combined parent and offspring populations undergo non-dominated sorting into Pareto fronts. 

They are then subject to crowding distance sorting within each front in order to select a diverse set 

of elite solutions for the next generation. The algorithm ensures that the most elite solutions are 

preserved, directly encouraging the propagation of high-quality solutions to the next generation, 

and indirectly promoting genetic diversity.  
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3 Methodology  

3.1 Overview  

 
Figure 3-1. Overview of the methodology 

An overview of the methodology implemented in this research is presented in Figure 3-1, divided 

into three stages: pre-generative design, generative design, and post-generative design. Pre-

generative design mainly focuses on a detailed analysis of design constraints and objectives that 

are used in the generation and evaluation algorithms developed for the generative design process. 

After optimization of the design using genetic algorithm, specifically NSGA-II, the selected 

optimal design is converted into a Building Information Modelling (BIM) model and modified as 

needed in the post-generative design process. Modifications required by human intervention may 

be due to factors such as structural reinforcement, spatial layout reconfiguration, and aesthetic 
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enhancement.  A case study of designing a single detached house with 3 bedrooms and 2.5 

bathrooms is conducted using the methodology.  

3.2 Software – Revit/Dynamo/Generative Design  

The Autodesk product family Revit, Dynamo, and Generative Design are used in this research. 

Revit is a Building Information Modelling (BIM) software used to design, document, visualize, 

and deliver architecture, engineering, and construction (AEC) projects that holds the major market 

share in the industry worldwide. 

Dynamo for Revit, a visual programming application, extends Revit capabilities by enabling users 

to construct custom algorithms. These algorithms can be employed in various applications, ranging 

from data processing to geometry generation, all in real time without the need for extensive textual 

programming. Dynamo for Revit was developed to simplify AEC workflows by making Revit's 

data more accessible to all users, through a user-friendly graphical interface. Dynamo allows users 

to automate repetitive tasks and foster design exploration by combining its core nodes with custom 

Revit ones, thereby extending parametric workflows for various applications like documentation, 

analysis, and design generation. Dynamo was selected for this study due to its capability to 

generate geometric representations of spaces and seamlessly convert them into BIM elements, 

enabling an efficient end-to-end process.  

Generative Design is another add-on application of Revit for generative design workflows that 

allows users to generate, evaluate, and optimize designs created from Dynamo script. Generative 

Design has different types of “solvers”, namely ‘randomize’, ‘optimize’, ‘cross product’, and ‘like 

this’. ‘Randomize’ produces a predetermined number of design variations by randomly assigning 

values to each input parameter. ‘Optimize’ conducts an optimization analysis where Generative 
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Design iteratively refines the design based on the evaluations' outcomes and metrics. This 

optimization involves creating several 'generations' (or iterations) of a design, each iteration 

leveraging the input setup from the previous generation to enhance the new design options. For 

optimization, NSGA-II is used as multi-objective genetic algorithm. 'Cross product' enables the 

exploration of the full design space by combining every step of each parameter with all other 

available parameters. 'Like this' directs Generative Design to introduce minor adjustments to the 

current input configuration. This method allows for the exploration of different variants of a design 

that is already favourable.  

3.3 Design requirement analysis  

3.3.1 Quality Function Deployment (QFD) and House of Quality (HoQ)  

When capturing client requirements in design, clients may articulate their needs in broad or 

subjective terms, which can be open to interpretation and lack the specificity required for technical 

development. Without a systematic method to translate these requirements into measurable design 

specifications, there is a risk of misalignment between the client's vision and the final product. 

Quality Function Deployment (QFD) offers a structured solution to this limitation. QFD refers to 

an overall concept of converting customer requirements into technical characteristics 

systematically, ensuring that the development process aligns with the client's expectations. QFD 

is known to be originated from Japan in the late 1960s and early 1070s, when quality control and 

improvement were of high importance in the manufacturing industry. Then QFD was introduced 

to the U.S. approximately10 years later, and gained significant traction after the article titled "The 

house of quality" co-authored by Clausing and Hauser was published in the Harvard Business 

Review in 1988 (Hauser & Clausing, 1988). The initial U.S. case study employing QFD was 

conducted by Kelsey Hayes in 1986 for designing a coolant sensor (Chan & Wu, 2002).  
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House of Quality (HoQ) is a foundational tool in QFD that serves as a visual and inter-functional 

planning matrix, which translates customer needs (WHATs) into design specifications (HOWs). 

Figure 3-2 shows the template of HoQ and comprising rooms (Hauser & Clausing, 1988).  

 

Figure 3-2. House of Quality (Adapted from Delgado‐Hernandez et al., 2007) 

The following steps are used to build HoQ, with reference to Figure 3-2:  

Step 1: Identify the customer’s needs (WHATs) [A]. Customers include not only the end users but 

also all stakeholders of the design. The identification process can be done from interviews or other 

techniques. Since the needs can contradict each other and have trade-offs, relative importance 

weights should be set on each need. 

Step 2: The design team now determines how to satisfy the customer’s needs [B]. Technical 

characteristics (HOWs) that will affect the customer needs are listed in measurable terms and 

marked whether the objective is to reduce, increase, or meet the target.  
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Step 3: Figure the relationship between customer needs and technical characteristics and establish 

target values [C, D]. The characteristics can affect more than one needs in either positive or 

negative way and the relationships are marked in the relationships table with symbols.  

Step 4: Identify the relationships between HOWs [E]. The roof matrix aids in understanding how 

one design change can impact other characteristics, necessitating a balance of trade-offs. This 

process is crucial for creatively solving problems while balancing different objectives. 

HoQ first started in the manufacturing industry and has since been used in many other industries 

including construction in application of the management of design, safety, schedule, etc. Dikmen 

et al. (2005) conducted a case study that utilized QFD as a strategic tool for post-construction 

marketing decisions in housing projects. They formed a QFD team to gather customer expectations 

for a high-rise building in Ankara, Turkey. The findings highlighted that aspects like the housing 

complex's location, architectural layout, and security features were critical to project success and 

should be emphasized in marketing. Fargnoli et al. (2020) utilized QFD to assess and improve 

safety in construction by examining hazard types, hazardous events, and potential consequences. 

The methodology offered a detailed analysis of safety risks associated with specific tasks and 

concluded with the need to address minor injuries more effectively. Elhegazy et al. (2021) applied 

QFD in Egypt's construction industry, focusing on the structural system's optimization. The study 

highlighted QFD's role in enhancing decision-making for structural systems based on key 

performance indicators that were aimed at maximizing client satisfaction. Gunduz and Al-Naimi 

(2022) developed a framework combining the Balanced Scorecard (BSC) and QFD to effectively 

manage construction projects and reduce delays. By identifying and prioritizing factors from the 

financial perspective and delay mitigation enablers, the framework helps professionals focus on 

crucial elements, leading to more efficient resource use. 
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There is also a study that criticized low awareness of QFD among professionals in the construction 

field. John et al. (2014) investigated QFD's introduction in the Nigerian construction industry, 

primarily focusing on design and build projects. The study found inadequate training and 

management practices. However, those familiar with QFD recognized its benefits for enhancing 

client satisfaction by effectively capturing and prioritizing client needs. The research suggests that 

the wider adoption of QFD could significantly improve project outcomes, emphasizing the need 

for increased awareness and training within the industry.  

3.3.2 Geometric and topological constraints  

In layout design, or space allocation problem, geometric requirements such as physical dimensions 

and shapes of spaces, including area, volume, height, and the specific geometry of each space are 

to be established. Geometric requirements ensure that each space is adequately sized for its 

intended purpose.  

Topological requirements relate to the relationships and connections between different spaces, 

such as adjacency, connectivity, and circulation. Topological considerations help determine how 

spaces interact with each other, the flow between areas, and how they are accessed. Transforming 

these considerations into graph data is an intuitive method that helps visualize and analyze these 

spatial relationships. Such a graph is called justified plan graph (JPG), in which spaces are 

represented as nodes, and connectivity or adjacency is represented as edges (Figure 3-3). 

Generating the graph begins by creating the nodes and defining a core node. A core node functions 

as a core unit (Koning & Eizenberg, 1981) that serves as the foundational element around which 

the structure’s layout is designed. This core node influences the overall flow within the layout, 

forming a central hub from which other rooms and zones radiate. Then links are established from 

this core node to adjacent nodes until all links are added (Lee et al., 2015). JPGs are particularly 
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useful in architectural planning because they simplify complex spatial systems, allowing for easier 

layout modification. In regard to the generation algorithms developed in this research, the bottom-

up method uses JPG data to incrementally build layouts by focusing on the connectivity (access) 

between spaces, rather than starting from a predetermined boundary which is the case of the top-

down method, the other generation algorithm developed.  

 

Figure 3-3. An example of floor plan and its graph representation 

There have been numerous research studies that have used graph transformation to generate 

architectural layout designs. For instance, Wang et al. (2018)’s approach derived a dual graph from 

a floor plan then transformed it into a floor plan using the automatic generation method they 

developed that has additional transformation rules, such as the addition rule and subtraction rule, 

to have modified floor plans corresponding to specific requirements. Bisht et al. (2022) developed 

a software called G2PLAN that takes adjacency graph as input and transforms it into a 

dimensioned floor plan, utilizing graph theoretical concepts such as biconnected graphs and planar 

graphs.  
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3.4 Dynamo script for generation algorithm  

This chapter describes the flow of the developed Dynamo script for generating algorithms, namely 

top-down method and bottom-up method. Table 3-1 compares those two methods in terms of their 

design approach and computational efficiency.  

Table 3-1. Top-down method and bottom-down method 

 
Top-Down Method Bottom-Up Method 

Schematic 

Diagram 

  

Initial 

Approach 

Starts with a given boundary (e.g., 

building mass) 
Starts with individual spaces  

Design Logic 
Assigns spaces inside the 

boundary 
Aggregates spaces to form a layout 

Computational 

Demand 
Less, due to restricted search space More, due to large search space 

Flexibility 
Low, limited by a predefined 

boundary 

High, allows for various 

combinations 

Design Strategy Grid-based system Connectivity constraint 
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Table 3-2 shows the definitions of geometric elements and description for some of the nodes that 

are used in this research’s Dynamo script to create and modify geometries: 

Table 3-2. Dynamo nodes for generating geometries (Autodesk, n.d.) 

Geometry/Node Description 

Point A location in 3D space using X,Y, and Z coordinates 

Curve 
A continuous path defined by a sequence of points or a mathematical 

formula 

Rectangle 
A rectangle defined by its width, height, and orientation in the 

coordinate system 

CoordinateSystem 
A spatial reference frame, consisting of an origin point and direction 

vectors for axes 

 

Transform geometry by the given CoordinateSystem’s transform 

 

Offset a Curve by a specified amount 

 

Get a CoordinateSystem with origin at the point at the given 

parameter. 

 

A slider that produces numeric/integer values 
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3.4.1 Bottom-up method  

The bottom-up method is used when there is a strong constraint in connectivity between spaces. 

This method starts from an individual space and builds up to the complete structure. Custom 

residential homes, healthcare facilities, and retail complexes can be the types of projects that this 

method is suitable for.  

Table 3-3. Constraints, variables, and objectives of the bottom-up method 

Constraints 

• Number of spaces to be allocated 

• Dimension of spaces 

• Connectivity between spaces 

Variables • Coordinates of each space 

Objectives • Objectives determined by QFD 

 

Figure 3-4. Flowchart of the bottom-up method 
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As discussed in Section 2.2.1, the bottom-up method inherently allows for significant geometric 

freedom, which typically results in substantial computational cost to explore possible dimensions 

or coordinates. In this research, the introduction of connectivity requirements as a heuristic 

constraint from the start effectively limits the search space and reduces the computational cost. 

Figure 3-4 shows the flowchart of the algorithm.  

  

 
or 

 

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3-5. Sequence of the bottom-up method 

 

The first step of writing the script for the bottom-up method is to generate a graph from the 

topological requirement that is to be achieved, shown in Figure 3-5(a). A graph is a great visual 

representation of the connectivity constraint between spaces and is the foundation of the bottom-

up method. For the first rectangle to place, the largest or the one with most connections are 
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preferred as it serves as a core unit. The second rectangle is placed such that it is positioned at a 

point along the offset line, marked as red lines in Figure 3-5(b) of the first rectangle, with the offset 

amounting to half the width (w/2) of the second rectangle. The Dynamo node 

“Curve.CoordinateSystemAtParameter” selects a point on a curve at a specified parameter, ranging 

from 0 to 1. For example, setting the parameter to 0.5 returns the midpoint of the curve. 

Additionally, the script developed for the generation algorithm in this study is written to adjust the 

length of the offset lines so that the minimum length of the shared edge meets a user-defined 

dimension, referred to as the “door size”. The placement of the rest of the rectangles is determined 

by their specific connectivity constraints with adjacent rectangles. For instance, in Figure 3-5(c), 

rectangle 3 is connected to 1 and 2, positioning it at the intersection of their corners to satisfy these 

connections. Rectangle 4, having connections to Rectangles 1 and 3, is placed at the only possible 

location that maintains these connections, as shown in Figure 3-5(d). Similarly, rectangles 5 and 

6, each connected to 4 and 5 respectively, follow the red offset lines as potential paths for 

placement based on their single connection, as shown in Figure 3-5(e) and Figure 3-5(f).  

3.4.2 Top-down method  

The top-down method is used for layout generation when the boundary is a hard constraint. This 

method works well with buildings that require a uniform layout throughout such as high-rise 

residential developments due to the repetitive nature of the unit layouts within a fixed building 

footprint. Figure 3-6 shows the flowchart of the algorithm.   
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Table 3-4. Constraints, variables, and objectives of the top-down method 

Constraints 

• Site boundary 

• Number of spaces to be allocated 

• Dimension of spaces 

Variables • Coordinates of each space 

Objectives 

• Connectivity 

• Objectives determined by QFD 

 
Figure 3-6. Flowchart of the top-down method 

 

The first step of writing the script for the top-down method is to generate curves representing the 

boundary that each rectangle can be placed inside. Then, a grid system is created by generating 

points in two-dimensional directions (Figure 3-7(a)). The denser the points are, the larger the 
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search space is, giving more flexibility in design but at a higher computational cost. After that, 

selecting the first rectangle to place determines the available points where its center can be 

positioned, as shown in Figure 3-7(b). The Dynamo code is written in the way to only leave 

feasible points to keep the rectangle from getting out of the given boundary (Figure 3-7(c)). The 

points are the variables in this method, working as an input parameter in the generative design 

process. The engine will explore within the range of the points and choose one point by varying 

the number slider. The same process is performed until all rectangles are placed in the remaining 

bounded area, as seen in Figure 3-7 (d)-(f).  

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 3-7. Sequence of the top-down method 

3.5 Dynamo script for evaluation algorithm  

The objectives determined from the House of Quality (HoQ), along with the geometric and 

topological requirements, are foundational to the evaluation algorithm developed in this study. 

Each objective derived from the HoQ should be converted into a measurable metric that acts as a 

fitness function in a multi-objective optimization framework.  
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For instance, if one objective is to have a large south-facing window in the living room, the 

corresponding fitness function could be defined to maximize the length of the living room wall 

that is parallel to the x-axis, has a lower y-coordinate (indicating a south-facing wall, based on the 

orientation settings where higher x and y coordinates represent eastward and northward directions, 

respectively) and does not share any section with other rooms. In Figure 3-9, the red line indicates 

the south-facing wall of the living room uninterrupted by other rooms. The dynamo script is written 

so that if the south-facing wall (A) intersects with other walls (B) of other rooms, the returned 

value is the length of A minus length of B (Figure 3-8). The lengths of the red lines in Figure 3-9(a) 

and Figure 3-9(b) represent the lengths of certain walls, which are 8 and 16 units, respectively. 

Other objectives can also be converted into quantifiable metrics to be fed into generative design 

process. 

 

Figure 3-8. Dynamo script for calculating the fitness 

  
(a) (b) 

Figure 3-9. Numeric objective visualized as a geometry 
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3.6 Design optimization process  

The design optimization process utilizes generative design facilitated by Dynamo and Autodesk's 

Generative Design software. The optimization process using generative design requires input 

parameters which enable to randomly generate different design solutions and output parameters 

that guide the software to achieve better performance in terms of fitness to predefined objectives. 

The iterative process enables continuous refinement of designs. Adjustments are made based on 

the performance outcomes, gradually steering the solutions towards optimal design configurations. 

Numerical scores from each iteration help assess which designs best meet the fitness. To run the 

Autodesk Generative Design, setting input and output parameters in Dynamo is required as shown 

in Figure 3-10.  

 

 

Figure 3-10. Input/output setting in Dynamo 

Figure 3-11 displays a sample user interface when ‘optimize’ is chosen as the generative method. 

When running the software using the optimization solver, numbers for population, generation and 

seed must be set. ‘Population size’ refers to the initial number of solutions for the genetic algorithm 

to start with, and ‘Generations’ refers to the rounds of iteration. ‘Seed’ is a number that uses an 

internal random number generator to establish a starting point for generation of the initial 

population and other logic, including crossover, mutation, and selection. 
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Figure 3-11. Sample Generative Design user interface 

After running the software using the optimization solver, visual outputs and numerical scores from 

each output are generated, as seen in Figure 3-12. The parallel coordinates chart displays and 

analyzes multi-dimensional data sets, which are particularly useful for simultaneously exploring 

and comparing multiple design solutions. Each axis represents a different dimension, and each line 

represents a design, allowing users to quickly identify trends, patterns, and trade-offs between 

different parameters. Users can interact with the parallel coordinates chart to filter out designs 

based on specific criteria. By selecting ranges on different axes, users can focus on designs that 

meet certain thresholds or performance metrics, effectively narrowing down the choice set to the 

most viable options. 
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(a) Thumbnails of the outcomes (b) Filtered outcomes 

 
(c) Outcomes exported as csv file 

Figure 3-12. Visual outputs and numerical scores of Generative Design 

 

3.7 Conversion from geometries to BIM elements  

Previous sections of this paper have thoroughly explained the methodology for generating, 

evaluating, and optimizing design solutions using geometries. These processes involved creating 

a variety of design alternatives and evaluating them based on predefined criteria to select the 

optimal solution. Once the preferred design is selected, it must be converted into BIM elements. 

Human intervention is crucial in refining the design outcomes during the conversion process. This 

refinement is necessary because the generative design process, while optimized according to 

predefined fitness functions, may not fully capture all dimensions of optimal designs, including 

aspects like functional or aesthetic requirements. Parameter adjustments and material assignments 

are also essential processes during the conversion. Parameters within Revit are carefully added or 
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adjusted to reflect essential construction-related attributes that were perhaps overlooked during the 

generative phase. Additionally, materials are selected to meet specific construction standards and 

practical needs, ensuring that the final BIM models are not only accurate in their geometric 

representation but are also fully compliant with regulatory requirements and optimized for real-

world application. This transformation allows the geometries generated in Dynamo to evolve into 

detailed and information-rich BIM models. These models facilitate further architectural processes, 

such as structural analysis, quantity takeoff, and construction planning, ensuring that the design is 

not only optimized but also ready for practical applications. 

The following are some of the Dynamo nodes that bring geometries into Revit environments. 

Table 3-5. Dynamo nodes for converting geometries into BIM elements (Autodesk, n.d.) 

Node Description 

 

Create a Revit Wall from a guiding Curve, start Level, end Level, 

and WallType 

 

All wall types available in the document 

 

Place a Revit FamilyInstance given the FamilyType (also known as 

the FamilySymbol in the Revit API) and its coordinates in world 

space 

 

Create a Revit Room Element 
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Figure 3-13 and Figure 3-14 show the sample Dynamo script, and the result of converting 

geometries in a Dynamo environment into BIM elements in a Revit environment. 

 

Figure 3-13. A sample Dynamo script for converting curves into walls 

 

Figure 3-14. Converted Walls and corresponding properties  
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4 Case study 

In this chapter, a case study of designing a single detached house with 3 bedrooms and 2.5 

bathrooms is performed using the top-down method and bottom-up method. 

4.1 Pre-GD: Constraints and objectives  

4.1.1 Building House of Quality  

Step 1: Identify customer’s requirements (WHATs) 

The initial step in the design process involves gathering information about the requirements of 

internal and external customers. Those requirements may include legal regulations such as building 

codes and safety standards, functional requirements suggested by engineers, or personal 

preferences of the client. In this study, these needs are assumed based on general assumptions 

rather than direct client input. Future studies could enhance the validity of these assumptions by 

conducting detailed interviews with clients to directly assess their preferences. Once the 

requirements are gathered, customers are also asked to assign each requirement with the relative 

importance ranging from 1 to 5, 5 being the highest importance.  
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Table 4-1. Customer's requirements and their relative importances 

Space Requirements CRi RI 

Entrance Two entrances CR1 5 

Kitchen 

Ample countertop space for food preparation CR2 3 

Efficient workflow between stove, sink, and refrigerator CR3 4 

Walk-in pantry CR4 5 

Natural light CR5 2 

Open concept kitchen CR6 5 

Living 

Room 

Space for full-size dining table CR7 3 

Natural light & view CR8 5 

Comfortable seating arrangements CR9 2 

Fireplace CR10 1 

Powder Ventilation CR11 1 

Bathroom 
Ventilation CR12 3 

Storage   CR13 2 

Master Bed Walk-in closet CR14 4 

Ensuite 4piece (sink, toilet, shower, tub) CR15 3 

 

Step 2: Develop technical characteristics (HOWs) 

The next step in this process is to find the technical characteristics for each customer’s requirement. 

Each technical characteristic has a target whether it is aimed to be increased, decreased, or attained. 

Each is also categorized depending on the design phase that it should be considered. For a kitchen, 

“adding a walk-in pantry” should be considered in the schematic design phase as it requires an 

addition of a space, where “ergonomic work triangle layout” can be considered in the design 

development phase.  
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Table 4-2. Technical characteristics and their target and design phase  

CRi TCi Technical Characteristics Target 
Design 

Phase 

CR1 TC1 One separate entrance to backyard ▬ SD 

CR2 TC2 Total base cabinet length: minimum 120 inch ▲ DD 

CR3 TC3 ergonomic work triangle layout ▬ DD 

CR4 TC4 Add walk-in pantry ▬ SD 

CR5 TC5 Install a window facing south ▬ SD 

CR6 TC6 
Open layout with integrated living, dining, and kitchen 

areas 
▬ SD 

CR7 TC7 Enough space for a full-size dining table near kitchen ▲ SD 

CR8 TC8 Install a window facing south ▬ SD 

CR9 TC9 Dimension of one side: minimum 2.5m ▲ SD 

CR10 TC10 Install a fireplace ▬ DD 

CR11 TC11 Install a fan or a small window ▬ SD 

CR12 TC12 Install a fan or a small window ▬ SD 

CR13 TC13 Total base cabinet length: minimum 48 inch ▲ DD 

CR14 TC14 Add walk-in closet ▬ SD 

CR15 TC15 minimum size: 80 sqft ▲ SD 

▲: Value to be increased ▼: Value to be decreased ▬: Value to be attained 

SD: Schematic Design DD: Design Development 

 

Step 3: Build the roof of the HoQ (Correlation matrix) 

The roof of HoQ is to evaluate the correlations between technical characteristics. The roof enables 

the design team to recognize how technical characteristics are interdependent in the early design 

phase. For instance, installing a fireplace (TC10) and installing a fan or a small window (TC11) 

can create conflicting demands on the design and functionality, in relation to heating efficiency 

and air quality. The open window can lead to increased heat loss, when the fireplace is supposed 

to bring heat into living areas. Also, if the airflow from the powder room’s ventilation window 
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creates a draft in the direction of the fireplace, this can disrupt the proper flow of air into and out 

of the fireplace. These two technical characteristics are marked as having strong negative 

correlation. 

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                                             

                      
□ 

                      

                                            

     ●     ●     ●                           

                      
○ 

                      

                                            

     ●           ●           ■  ●            

                                             

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

TCi 

● Strong positive 

correlation 

○ Weak positive 

correlation 

■ Strong negative 

correlation 

□ Weak negative 

correlation 

Figure 4-1. Correlation matrix (roof of the HoQ) 

 

Step 4: Determine the relationship between WHATs and HOWs 

Each technical characteristic can have impacts on more than one customer’s requirements. These 

relationships are scored by the strength of the impact, strong, medium, and weak relationships are 

assigned with 3, 2, and 1 point, respectively. 
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Table 4-3. Relationship matrix between customer's requirements and technical characteristics 

CRi RI 
TCi 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

CR1 5 ◈               

CR2 3  ◈ ♦ ◊  ◊          

CR3 4   ◈ ◊  ◊          

CR4 5   ◊ ◈            

CR5 2     ◈ ♦          

CR6 5      ◈          

CR7 3       ◈  ♦       

CR8 5        ◈ ◈       

CR9 2         ◈ ♦      

CR10 1          ◈      

CR11 1          ♦ ◈     

CR12 3            ◈    

CR13 2             ◈   

CR14 4              ◈  

CR15 3               ◈ 

◈ Strong relationship: 3 points ♦ Medium relationship: 2 points ◊ Low relationship: 1 point 

 

Step 5: Calculate importance weight and relative weight of requirements 

The importance weight for each technical characteristic is calculated as follows: 

IWt = ∑  𝑅𝐼𝑖
𝑁
𝑖=1 ∗ 𝑆𝑅𝑖𝑡 

Where,  

IWt: The importance weight of the technical characteristic t (TCt) 

RIi: The relative importance of the customer’s requirements 
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SRit: The strength of relationship between the customer’s requirement i and the technical 

characteristic t 

N: The number of technical characteristics 

The calculated importance weight and relative weight are used to rank the technical characteristics. 

All or some of these are to be considered as objectives for the optimization.  

Table 4-4. Importance weights and ranks of each technical characteristic 

 Technical Characteristics (TCi) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

IW 15 9 23 22 6 26 9 15 29 7 3 9 6 12 9 

RW 8% 5% 12% 11% 3% 13% 5% 8% 15% 4% 2% 5% 3% 6% 5% 

Rank 5 8 3 4 13 2 8 5 1 12 15 8 13 7 8 

 

Figure 4-2 shows the completed HoQ. In this case study, six technical characteristics were ranked 

the highest five to be achieved. Among these six technical characteristics, five are selected to be 

achieved and become fitness functions in the generative design process which covers schematic 

design phase. These five characteristics are: 

TC1: One separate entrance to backyard 

TC4: Add walk-in pantry 

TC6: Open layout with integrated living, dining, and kitchen areas 

TC8: Install a window facing south 

TC9: Dimension of one side: minimum 2.5m 
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Figure 4-2. House of Quality for the case study 

 

● Strong positive correlation

○ Weak positive correlation

■ Strong negative correlation

□ Weak negative correlation

▲ Value to be increased
▼ Value to be decreased
▬ Value to be attained

◈ Strong relationship: 3 points

♦ Medium relationship: 2 points

◊ Low relationship: 1 point

Design Phase

Client Needs \ Design Qualities RI

Entrance Two entrance 5 ◈

Ample countertop space for food preparation 3 ◈ ♦ ◊ ◊

Efficient workflow between stove, sink, and refrigerator 4 ◈ ◊ ◊

Walk-in pantry 5 ◊ ◈

Natural light 2 ◈ ♦

Open concept kitchen 5 ◈

Space for full-size dining table 3 ◈ ♦

Natural light & view 5 ◈ ◈

Comfortable seating arrangements 2 ◈ ♦

Fireplace 1 ♦ ◈

Powder Ventilation 1 ◈

Ventilation 3 ◈

Storage 2 ◈

Master Bed Walk-in closet 4 ◈

Ensuite 4piece (sink, toilet, shower, tub) 3 ◈

IW 200

RW (%)

Rank 12 15 8 13 7 85 8 3 4 13 2 8 5 1
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4.1.2 Geometric and topological requirements  

When designing a single detached house, various geometric constraints must be considered, 

including the dimensions of the lot and each room. In this case study, the lot dimension is set as 

one of the constraints within the generative design process. This constraint is handled differently 

depending on the method: in the bottom-up approach, penalties are applied when this constraint is 

violated; in the top-down approach, it is set as an input boundary. The dimensions of the rooms 

are defined as input parameters that can meet requirements through fixed dimensions, fixed 

dimensions with a 90-degree rotation, or variable dimensions adjusted using an integer slider 

within a specified range (Figure 4-3). TC9, living room having any dimensions longer than 2.5m, 

is achieved by setting the minimum value of the integer slider as 2,500. 

  

(a) (b) 

 

(c) 

Figure 4-3. Dynamo Script for Room Dimension Configurations: (a) fixed dimension,  

(b) fixed dimension with 90-degree rotation, (c) variable dimensions adjusted using slider 
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Connectivity is the main topological constraint in this case study and is approached differently in 

the bottom-up and top-down methods. The connections between rooms are the input constraint in 

the bottom-up method while in the top-down method, they are evaluation parameters with penalties 

applied for non-compliance. Figure 4-4 shows the graph of this case study layout. TC4, adding a 

walk-in-pantry, is achieved in this stage by making a connection between the kitchen and the walk-

in-pantry. 

 

 

L+D Living + Dining 

B1 Bedroom 1 

B2 Bedroom 2 

W Washroom 

M Master Bedroom 

E Ensuite 

Pw Powder Room 

K Kitchen 

P Walk-In-Pantry 
 

 

Figure 4-4. Justified Plan Graph (JPG) and the room data of the case study 

 

4.2 GD: Bottom-up method  

4.2.1 Dynamo script  

 

Figure 4-5. Overview of the Dynamo script for the bottom-up method 1) Space generation 

section, 2) Space aggregation section, 3) Fitness calculation section 
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Figure 4-5 shows the entire Dynamo script for generating and evaluating the layout using the 

bottom-up method. The process starts with creating all spaces as rectangles with dimension 

constraints Figure 4-5(1). The main generation sequence, depicted in Figure 4-5(2), illustrates the 

aggregation of each space, and the fitnesses of the generated design are calculated in the third 

section Figure 4-5(3). 

(1) Space generation 

As previously described in section 494.1.2, all spaces are generated as rectangles with either fixed 

dimensions, fixed dimensions with possible rotation, or variable dimensions.  

(2) Space aggregation 

Starting from L+D, which has the most connections to other rooms, the sequence of space 

aggregation follows with B1, W, B2, M, E, Pw, K, and finally P. The aggregation using the bottom-

up method described in Section 3.4.1 utilizes a variety of Dynamo nodes. Thus, organizing these 

into custom nodes for packaging significantly helps tidy the Dynamo workspace, and more 

importantly facilitates reuse across projects. 

(3) Fitness calculation 

In addition to TC4 and TC9 which were already achieved in the process of space generation and 

aggregation, five more objectives are translated into fitness functions. These functions are used to 

score or penalize outcomes, guiding the optimization process. For critical requirements, if a design 

outcome fails to meet a specified threshold, it receives a severe penalty of -10,000 to ensure it is 

readily excluded (Figure 4-6(a)). For less critical requirements with thresholds, the scoring is 

adjusted linearly: outcomes meeting or exceeding the threshold receive positive scores or a fixed 

value of 0, while those that fall short receive progressively decreasing negative scores (Figure 
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4-6(b)-(c)). For example, if the minimum required length is 10, a length of 15 scores 15, whereas 

a length of 8 scores -2. The detail of this process is described in the next section, 4.2.2 Details on 

Fitness Calculation.  

   
(a) (b) (c) 

Figure 4-6. Fitness functions for different objectives 

The threshold value for each fitness function can be decided by the given conditions of the design 

problem or by decision makers. The strength of score or penalty can be adjusted according to the 

particular design problem and its objectives. 

4.2.2 Details on fitness calculation  

Objective 1: Compactness 1 

The first objective is to ensure the compactness of the layout to conform to the lot dimensions of 

13,500 mm X 18,000 mm. In the fitness function, this is quantified by evaluating the width and 

length of the bounding box —a rectangular border enclosing the entire layout—to ascertain how 

well the layout fits within the specified lot size.  

Fitness Function (FF) = min (A, B)  

where, 

A = {
−1 × 𝑚𝑎𝑥(𝑏𝑤 − 13500, 𝑏𝑙 − 13500) 

0
        

𝑖𝑓 𝑏𝑤 > 13500 ∧  𝑏𝑙 > 13500
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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B = {
−1 × 𝑚𝑎𝑥(𝑏𝑤 − 18000, 𝑏𝑙 − 18000) 

0
        

𝑖𝑓 𝑏𝑤 > 18000 ∨  𝑏𝑙 > 18000
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑏𝑤 = width of the bounding box 

𝑏𝑙 = length of the bounding box 

Objective 2: Compactness 2 

This is an additional objective to achieve compactness of the structured layout that complements 

objective 1. The corresponding fitness function aims to achieve the total number of outer perimeter 

curves being less than or equal to 30, resulting in rooms being positioned closer to the centroid 

rather than being sparsely placed.  

Fitness Function (FF) = {
0

30 − 𝑛
      𝑛 ≤ 30
      𝑛 > 30

 

n = number of outer perimeter curves 

Objective 3: One separate entrance to backyard (TC1) 

To quantify the objective of having one separate entrance to backyard, the length of the wall on 

the north side of the living room or kitchen — whichever is closer to the north assuming the 

backyard is on the north — must be calculated to be at least 1,000 mm, which is the door size. In 

this context, the north direction is defined as having a higher y-coordinate.  

Fitness Function (FF) = {
0

−10000
          

𝑖𝑓 𝑤 ≥ 1000
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

where, 

w ={
𝑤𝑙

𝑤𝑘
          

𝑖𝑓 𝑦𝑙 > 𝑦𝑘

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑦𝑙 = y-coordinate of the center of the living room 

𝑦𝑘 = y-coordinate of the center of the kitchen 

𝑤𝑙 = length of the north-facing wall of the living room uninterrupted by other rooms 

𝑤𝑘 = length of the north-facing wall of the kitchen uninterrupted by other rooms 
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Objective 4: Open layout with integrated living, dining, and kitchen areas (TC6) 

An open layout floorplan requires multiple considerations such as area continuity, visibility, 

accessibility, and spatial configurations. This study, which focuses on the schematic design phase, 

assesses the spatial configuration of the living room and kitchen, where fewer surrounding walls 

indicate an open layout. The fitness function calculates the score based on the length of the shared 

edge between the living room and kitchen, proportionally adjusting the score based on whether 

this length meets or falls short of a 2,000 mm threshold. 

Fitness Function (FF) = {
𝑙

𝑙 − 2000
         

𝑙 ≥ 2000
𝑙 < 2000

 

𝑙 = length of the shared edge between the living room and the kitchen 

Objective 5: Install a window facing south (TC8) 

The south-facing wall of the living room is determined by identifying walls that run along the x-

axis with a lower y-coordinate. The maximum length of the south-facing wall uninterrupted by 

other rooms is calculated by deducting the widths of any blocking rooms from the total width of 

the living room, as previously described in Section 3.5. If this length is less than the threshold of 

1,200 mm, the function returns a negative score. 

Fitness Function (FF) = {
𝑤𝑙𝑠

𝑤𝑙𝑠 − 1200         
𝑙 ≥ 1200
𝑙 < 1200

 

𝑤𝑙𝑠 = length of the south-facing wall of the living room uninterrupted by other rooms 

4.2.3 Generative design results  

The generative design process was executed, using NSGA-II for multi-objective optimization, with 

a population size of 200 and 20 generations, targeting the maximization of all fitness functions 

(goals).  
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Figure 4-7. Generative design results 

15 design solutions were generated as shown in Figure 4-7, and the corresponding scores are as 

Table 4-5.  
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Table 4-5. Scores on each objective of each design outcome 

No. Compactness 1 Compactness 2 TC1 TC6 TC8 

1 0 0 0 4000 7545 

2 0 -2 0 4180 8000 

3 0 0 0 7000 2170 

4 0 -2 0 4180 8000 

5 0 0 -10000 3360 8000 

6 0 -2 0 7000 5000 

7 0 0 0 7000 2170 

8 0 -2 0 4180 8000 

9 0 0 0 2370 9000 

10 0 0 0 6000 7000 

11 0 -2 -10000 3380 9000 

12 0 0 0 6000 7000 

13 0 0 0 6580 2800 

14 0 -2 -10000 4385 8000 

15 0 0 0 6000 7000 

Min 0 -2 -10000 2370 2170 

Max 0 0 0 7000 9000 

 

One method for users to evaluate outcomes is based on scores from individual objectives, tailored 

to their priorities. Multi-objective optimization provides a decision-maker with a range of optimal 

solutions, allowing for flexible selection based on specific preferences or additional analysis. 

Objectives 1, 2, and 3 (Compactness 1, Compactness 2, and TC1) act as necessary filters to exclude 

unviable conditions, ensuring only feasible design solutions are considered for evaluation. 

Objectives 4 and 5 (TC6, TC8) are measured by length metrics without weights, allowing these 

metrics to be optimized independently. This approach prevents the optimization engine from 

favoring solutions that might score higher on these specific metrics but are less effective overall. 
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Another method to evaluate the outcomes is by calculating overall scores through normalization, 

adjusting the scores of various objectives to a common scale and aggregating them into a single 

comprehensive score. This normalized scoring allows for a balanced comparison across diverse 

design solutions, highlighting the most effective designs by considering all objectives equally. 

Among the 15 outcomes, No. 1, 12 are selected for comparison using normalization (Figure 4-8).  

  
(a) No. 1 (b) No. 12 

Figure 4-8. Top 2 solutions selected for comparison using normalization 

Table 4-6 shows the normalized scores for each objective of solution No. 1 and No. 12. Assuming 

equal weighting for all objectives, the overall score for each solution is calculated by averaging 

the normalized scores. Solution No. 12, having a higher overall score than No. 1, is advanced to 

the next phase of the process, which is its conversion into BIM elements. 

Table 4-6. Normalized scores for each objective of solution No. 1 and No. 12 

No. Compactness 1 Compactness 2 TC1 TC6 TC8 Overall 

1 - 1 1 0.352 0.787 0.785 

12 - 1 1 0.784 0.707 0.873 
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4.3 GD: Top-down method 

4.3.1 Dynamo script  

 

Figure 4-9. Overview of the Dynamo script for the top-down method  

1) Grid system generation section, 2) Space allocation section, 3) Fitness calculation section 

The Dynamo script for generating a layout using the top-down method is presented in Figure 4-9. 

The first section is for generating a grid system within the designated house boundary for both the 

first and second floors (Figure 4-9(1)). Each space is then allocated within the boundary according 

to the designated floor (Figure 4-9(2)), and the resulting design is evaluated using the defined 

fitness functions from the requirement (Figure 4-9(3)). 

(1) Grid system generation 

Within the defined house boundary dimensions of 15,000 X 6,000 mm, a grid with 200 mm spacing 

is created. These points on the grid serve as coordinates for positioning rectangular spaces that 

represent different rooms of the house. The dimensions of the rooms are multiples of 400 mm to 

ensure that they can neatly align with the grid’s structure without partial overlaps or misalignments. 

In this generation process, users have the flexibility to adjust the density of the grid system 

according to their specific design needs and preferences. A denser grid offers finer control over 

the placement of spaces, allowing for a greater variety of spatial configurations. However, 
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increasing the density of the grid also leads to a higher computational cost due to the increase of 

potential placement points, which expands the search space.  

(2) Space allocation 

The next process is to allocate space within the predefined boundary. On the second floor, 

bedroom1, bedroom2, washroom, master bedroom, and ensuite (B1, B2, W, M, and E) are placed, 

and the rest of the area serves as corridor or resting area. Powder room and walk-in-pantry (P and 

WIP) are placed on the first floor, the remaining area being an integrated space that combines 

kitchen and living + dining (K and L+D). 

(3) Fitness calculation 

In the top-down method, unlike the bottom-up method, the input constraints are the geometric 

boundaries of the layout rather than topological requirements. Thus, it’s necessary to integrate 

additional fitness functions to guide the optimization process using the genetic algorithm to 

achieve topological requirements of the layout. Details are described in the next section, 4.3.2 

Details on Fitness Calculation. 

4.3.2 Details on fitness calculation  

Objective 1: Second floor corridor connectivity 

The objective “corridor connectivity” ensures that the rest of the area after placing all rooms, which 

becomes the corridor or resting area, are continuous without any room obstructing accessibility. 

The fitness function applies a significant penalty in different scenarios of generating designs that 

block these pathways. The first scenario is when there is more than one enclosed space after all 

allocations are complete. The second scenario is when not all spaces can be placed due to the 

configuration of previously placed spaces creating infeasible dimensions for subsequent 



 

 

60 

 

placements. Additionally, a situation may occur where all other conditions are met but the corridor 

does not share any edge with other rooms meaning no access to them.  

Fitness Function (FF) ={
−10000

0
       

𝑠 ≥ 2  𝑜𝑟  𝑛 ≠ 𝑟  𝑜𝑟  𝑒 = 𝑓𝑎𝑙𝑠𝑒
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

𝑠 = number of remaining areas after allocation is finished 

𝑛 = number of spaces to be allocated  

𝑟 = number of spaces after allocation is finished 

e = Boolean whether the corridor share any edge with all rooms  

Objective 2: Master bedroom-ensuite connectivity 

Another topological requirement, the connectivity between master bedroom and ensuite, is 

determined by examining if master bedroom and ensuite share an edge. If they do, the length of 

the shared edge must be sufficient to accommodate a door. 

Fitness Function (FF) = {
0

−10000
      𝑙 ≥ 900
      𝑙 < 900

 

𝑙 = length of the shared edge between M and E 

Objective 3: First floor connectivity 

Similar to the corridor connectivity objective, the remaining area of the first floor, after placing 

powder room and walk-in-pantry, must be continuous. If more than one enclosed area remains 

after allocation or if the narrowest pathway is less than 800 mm in width, the design is penalized.  

Fitness Function (FF) = {
−10000
−10000

0
      

𝑠 ≥ 2
𝑤 < 800

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑠 = number of remaining areas after allocation is finished 

w = minimum width of the pathway 
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Objective 4: Plumbing adjacency 

Another topological requirement added is the adjacency of water-using rooms, washroom, ensuite, 

and powder room. This ensures that these rooms are positioned close to each other, optimizing 

plumbing layouts and reducing the distance that water and waste pipes need to travel. The lengths 

between the three rooms are summed and evaluated. 

Fitness Function (FF) = Sum (𝑑𝑊𝐸 , 𝑑𝐸𝑃, 𝑑𝑃𝑊) 

𝑑𝑊𝐸 = Distance between washroom and ensuite 

𝑑𝑊𝐸 = Distance between ensuite and powder room 

𝑑𝑊𝐸 = Distance between powder room and washroom 

Objective 5: One separate entrance to backyard (TC1) 

The technical characteristic of placing one separate entrance to backyard is determined by 

calculating the length of the north-facing boundary wall unobstructed by other rooms. If this length 

exceeds 1,000 mm, it is deemed to satisfy the condition for having a separate entrance. 

Fitness Function (FF) = {
0

−10000
          

𝑖𝑓 𝑤 ≥ 1000
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑤 = length of the north-facing wall of the boundary wall uninterrupted by other rooms 

Objective 6: Open layout with integrated living, dining, and kitchen areas (TC6) 

Designing an open layout floorplan focuses on the spatial relationship between the living room 

and kitchen, with fewer walls indicating a more open layout. The fitness function evaluates the 

length of the narrowest width of the remaining area at the approximate demarcation between these 

two spaces. 

Fitness Function (FF) = {
𝑙

𝑙 − 2000
         

𝑙 ≥ 2000
𝑙 < 2000

 

𝑙 = length of the narrowest width of the remaining area  
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Objective 7: Install a window facing south (TC8) 

Design with longer south-facing boundary exposed to the outside unobstructed by other scores 

higher than others. 

Fitness Function (FF) = {
𝑤𝑙𝑠

𝑤𝑙𝑠 − 1000         
𝑙 ≥ 1000
𝑙 < 1000

 

𝑤𝑙𝑠 = length of the south-facing boundary wall uninterrupted by other rooms 

4.3.3 Generative design results 

Figure 4-10 shows high-scoring design results and corresponding scores on each objective.   

 

Objective 1 0 

Objective 2 0 

Objective 3 0 

Objective 4 50 

Objective 5 0 

Objective 6 4400 

Objective 7 6400 
 

  

 

Objective 1 0 

Objective 2 0 

Objective 3 0 

Objective 4 78 

Objective 5 0 

Objective 6 2400 

Objective 7 6400 
 

Figure 4-10. High-scoring design results from the top-down method 

 

4.4 Post-GD: Conversion of geometries into BIM elements  

The final phase involves converting the geometries generated in Dynamo into Building 

Information Modelling (BIM) elements within Revit. In this case study, transforming lines into 

walls was performed using the Dynamo Node “Wall.ByCurveandLevels” which takes lines, start 

level, end level, and wall type as inputs.  
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(a) Floor plan as geometric representation (b) Floor plan after conversion 

 
 

(c) 3D views of the floor plan 

Figure 4-11. Conversion of selected design into BIM model 

Figure 4-11(b) illustrates the transformed floor plan with placement of doors, windows, and 

furniture to visually aid client. Some non-optimal aspects were observed, such as the master 

bedroom being too far from bedroom 1, creating dead space between them, and a similar issue 

with the powder room. This highlights that direct transformation without human intervention may 

not always yield the optimal solution. The designer’s expertise and experience are essential for 

refining the outcome. 
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Figure 4-12(b) shows the floor plan after modification. The dimensions and configuration of 

Master bedroom, ensuite, and powder room have been adjusted to remove unnecessary gaps 

between spaces and enhance compactness. 

  

(a) Floor plan without modification (b) Floor plan after modification 

 

(c) 3D view of the modified floor plan 

Figure 4-12. Floor plan and 3D view after modification 
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Same procedures, converting and refining, are processed for the selected design outcomes from 

the top-down method (Figure 4-13). 

 

 

 
 

   

 

 

 
 

Figure 4-13. Floor plan and 3D view after conversion and modification 

 

4.5 Discussion 

4.5.1 Sensitivity analysis: variant parameter setting of genetic algorithm 

Population size and generation number are important parameters in evolutionary algorithms. 

Population size refers to the number of individual solutions and it functions as a key parameter 

that influences competition and diversity within the algorithm, ensuring that only the fittest 

solutions persist over generations, and generation represents a single cycle of selection, crossover, 

and mutation within the population (Eiben & Smith, 2015). The impact of those parameters on the 

performance of evolutionary algorithms has been studied by researchers. Diaz-Gomez & Hougen 

(2007) explored the significance of selecting an initial population and found that the diversity of 
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the population impacts the quality of the solutions and computational efficiency. Several factors 

are considered when generating an initial population such as search space, fitness function, and 

problem difficulty. Tsoy (2003) found that larger population size with few generations generally 

perform better than smaller populations. The study revealed that while larger populations can 

enhance the search process, overly large groups might complicate computation. The research noted 

that beyond a certain number of generations, improvements become low, suggesting that 

increasing population size could be more effective than extending generations. In addition to 

attempts to systematically tune the parameters for the best ones, still many researchers select 

heuristic approaches to find them as they are problem specific. 

When running the Generative Design with optimization solver, population size and generation 

number is set by the user while crossover and mutation is set by default as 0.8 and 0.4 respectively. 

To understand the impact of varying generation and population size numbers on the outcomes of 

the generative design process, a sensitivity analysis was conducted out of the case study using the 

bottom-up method. This involved changing these parameters to observe the resulting variations in 

design solutions. By analyzing how different settings influence the quality and diversity of 

generated designs, this analysis is intended to identify optimal parameter configurations.  

A total of 22 generative processes were conducted, with generation numbers set at 10 and 20, and 

population sizes ranging from 100 to 300 in increments of 20. The scores for each objective were 

normalized using the global maximum and minimum score across all sets, and then averaged 

within each set for comparative analysis of the 22 sets.  

The normalization process involves the following steps: 
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Step 1: Identify the global minimum and maximum values for each objective across all sets. Taking 

the values from the entire dataset across all sets and outcomes rather than within individual 

outcomes or runs ensures that the normalization scale is consistent across all data points, which is 

crucial for fair comparison between different runs with potentially different ranges of scores.  

Step 2: Apply the normalization formula to each score in every set. This transforms each score to 

a range between 0 (corresponding to the global minimum) and 1 (corresponding to the global 

maximum). 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑐𝑜𝑟𝑒 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑐𝑜𝑟𝑒 − 𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑖𝑛

𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑎𝑥 − 𝐺𝑙𝑜𝑏𝑎𝑙 𝑀𝑖𝑛
 

Step 3: Calculate the average normalized score for each outcome within a set. This is done by 

averaging the normalized scores of all objectives for each individual outcome. 

Step 4: Determine the overall average score for each set by averaging the average normalized 

scores of all outcomes within that set.  

Figure 4-14 and Figure 4-15 display performance scores derived from the normalized data with 

varying population sizes and generation numbers. Contrary to expectations, increasing the 

population size did not enhance outcome quality. Linear trendline analysis yielded R-squared 

values of 0.0007 and 0.0044 for generation numbers 10 and 20, respectively, indicating no 

significant linear relationship. Similar results were observed with various trendline options. 

Likewise, increasing the generation number did not improve performance. Figure 4-16 compares 

the scores for each population size at generation numbers 10 and 20. 
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Population 

Size 

Performance 

Score 

G10P100 0.751409 

G10P120 0.435709 

G10P140 0.756421 

G10P160 0.376427 

G10P180 0.81466 

G10P200 0.451212 

G10P220 0.758152 

G10P240 0.392438 

G10P260 0.714115 

G10P280 0.43681 

G10P300 0.749385 
 

 

Figure 4-14. Performance scores for each population size with generation number 10 

Population 

Size 

Performance 

Score 

G20P100 0.501022 

G20P120 0.897396 

G20P140 0.305216 

G20P160 0.830474 

G20P180 0.371314 

G20P200 0.784159 

G20P220 0.394266 

G20P240 0.83085 

G20P260 0.832938 

G20P280 0.757212 

G20P300 0.39396 
 

 

Figure 4-15. Performance scores for each population size with generation number 20 

 
Figure 4-16. Performance scores by generation numbers 
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There can be multiple reasons for the unexpected results. One possible reason is that the population 

size is not large enough. If the population size is too small, there may be lack of diversity resulting 

in premature convergence (Zhang et al., 2009). This can lead to poor quality of final outcomes 

because it causes the algorithm to settle on suboptimal solutions early on, without sufficiently 

exploring the solution space for potentially better solutions. Finding the optimal solution is 

guaranteed if the computer explores and evaluates all possible solutions. This problem-solving 

technique, which validates every potential candidate, is known as brute-force search or exhaustive 

search in computer science. However, this case study involves an extraordinarily high number of 

possible solutions, totaling 144,355,958,537,895,143,424. These are derived from 23 input 

variables representing the dimensions and locations of each room, each having multiple steps (2^6 

x 4 x 6^3 x 7 x 11^5 x 21^6 x 27). If we assume that the computer can process one solution in one 

second, more than 4 trillion years will take to explore all possible solutions, making this option 

meaningless. Thus, it is very important to find the optimal value for the population size, not too 

small to not reach the optimal solution and not too large to cost too much computational time and 

cost.  

Another possible reason for the result can be the other parameters in genetic algorithm, crossover 

rate and mutation rate. Crossover is a process where segments of chromosome from two parent 

solutions are exchanged to produce new offspring to allow ‘good’ solutions to potentially develop 

and mutation is a process making random changes to the chromosome of a solution to maintain 

diversity within a population of solutions and prevent premature convergence (M. Srinivas & 

Patnaik, 1994). The crossover rate and mutation rate are set as default as 0.8 and 0.4 respectively 

in the Autodesk Generative Design as of version 23.2.19.0. As the combination of these parameters 
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along with population size and generation affects the performance of the genetic algorithm, more 

sophisticated approaches to find the best combination are required.  

The combination of population size of 120 and generation number 20 generated the highest 

performance scores among all sets. Figure 4-17 displays a few of generative design outcomes from 

this set. The figure includes both floor plans and 3D views following the conversion and 

adjustment. 

 
 

 

 
 

 

   

Figure 4-17. High-scoring designs and their floor plan and 3D view 
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4.5.2 Sensitivity analysis: reduced connectivity constraints 

In this section, the implications of relaxed connectivity constraints within the bottom-up approach 

are explored. The sensitivity analysis conducted aims to assess how these modifications influence 

the spatial configuration and overall design outcomes. Figure 4-18 shows the justified plan graph 

(JPG), which has fewer connectivity constraints compared to those presented in the case study of 

Section 4.1.2. Connections between B1 and W as well as B2 and W were removed.  

 

L+D Living + Dining 

B1 Bedroom 1 

B2 Bedroom 2 

W Washroom 

M Master Bedroom 

E Ensuite 

Pw Powder Room 

K Kitchen 

P Walk-In-Pantry 
 

Figure 4-18. Justified Plan Graph (JPG) with reduced connectivity constraints 

The generative design process generated 15 design outcomes with the population size and 

generation of 120 and 20, respectively. The scores for each objective across all design outcomes 

are shown in Table 4-7. Design outcomes were compared using normalized scores, as detailed in 

Section 4.2.3. Figure 4-19 and Table 4-8 illustrate the geometric layouts and corresponding scores 

of the best and worst-performing design outcomes.   
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Table 4-7. Scores for each objective across all design outcomes 

No. Compactness 1 Compactness 2 TC1 TC6 TC8 

1 0 -6 0 8000 5000 

2 0 -6 0 7000 6000 

3 0 -6 0 7000 6000 

4 0 0 0 6000 6000 

5 0 -2 0 3570 7000 

6 0 -6 -10000 4000 6815 

7 0 -6 0 7000 6000 

8 0 -6 0 7000 6000 

9 0 -2 0 3570 7000 

10 0 0 0 6000 6000 

11 0 -6 0 7000 6000 

12 0 -6 0 9000 -15 

13 0 -6 0 7000 6000 

14 0 -6 0 8000 5000 

15 0 -6 0 8000 5000 

Min 0 -6 -10000 3570 -15 

Max 0 0 0 9000 7000 

 

Table 4-8. Best and worst scored design outcomes 

No. Compactness 1 Compactness 2 TC1 TC6 TC8 Overall 

4 - 1 1 0.448 0.857 0.861 

6 - 0 0 0.079 0.974 0.411 
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(a) No. 4 (b) No. 6 

Figure 4-19. Best and worst scored design outcomes 

Even though the parameter settings of population size of 120 and generation number of 20 has 

yielded the most optimal outcome in the previous case study, applying the same NSGA-II settings 

does not guarantee the best results in new scenarios, as the fundamental characteristics of the 

design problem have changed. Therefore, it is challenging to definitively assess how the relaxed 

constraints have impacted overall scores and whether their effects are positive or negative. This 

uncertainty is partly due to the randomness inherent in the genetic algorithm process. However, 

one clear impact was that many design outcomes negatively scored in compactness 2, which counts 

the outer perimeter curves, with frequent scores of -6 — a score not observed in the prior case 

study with stricter connectivity constraints. This suggests that the relaxed constraints increased the 

overall sparsity of the design, resulting in fewer shared edges between rooms. This effect is evident 

through both the scored data and visual layouts. Among the five objectives, only compactness was 

significantly affected by these reduced connectivity constraints, while other objectives, such as 

optimizing for a south-facing living room or open space, were unaffected.  
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5 Conclusion  

5.1 Summary  

Architectural design challenges are complex, without straightforward solutions, making traditional 

methods slow and inflexible. The adoption of generative design represents a significant shift in 

architecture, using advanced computational tools to dynamically explore multiple design options, 

improving both efficiency and effectiveness. In this respect, this research aimed to develop an end-

to-end layout generation process using generative design with 3 stages: pre-generative design, 

generative design, and post generative design stage.  

In the pre-generative design stage of the process, a detailed analysis of client requirements was 

conducted using the Quality Function Deployment (QFD) methodology and the tool House of 

Quality (HoQ). This stage focused on translating qualitative client needs into definitive, actionable 

design objectives. This comprehensive preparation was crucial for establishing fitness functions 

that would later guide the optimization algorithms in the generative design stage. 

For the generative design stage, two distinct algorithms were developed using the visual 

programming tool Dynamo to initiate the layout generation process: the bottom-up method and 

top-down method. The top-down method was for generating layouts with predefined boundaries, 

while the bottom-up method was tailored for scenarios where connectivity between spaces was a 

critical factor. The layout generated was fed into an evaluation stage where designs were assessed 

based on fitness functions derived from the initial QFD analysis. This was followed by the iterative 

generative design phase, utilizing the NSGA-II genetic algorithm to evolve the initial design 

populations towards the most suitable solutions by optimizing for multiple objectives 

simultaneously. 
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The final stage of this study’s methodology involved refining the optimized layouts and converting 

them into Building Information Modelling (BIM) elements. This process facilitated the 

transformation of generative design outputs, depicted as geometries, into BIM models that are 

ready for further design development. These BIM models not only support the subsequent design 

and construction phases but also serve as visual representations for client discussions, enhancing 

communication and providing a clearer understanding of the proposed designs. 

The methodology was applied in the case study of designing a 3bed 2.5bath house. The case study 

focused on the detailed generation of layouts considering various client-specific requirements such 

as entrance locations, daylight intake, and spatial relationships. Each generating method 

approached the layout generation differently, with the top-down method organizing spaces within 

predefined boundaries and the bottom-up method assembling spaces based on connectivity needs. 

The generative design process was run multiple times with varying population size and generation 

numbers to find the effect of them in genetic algorithm.  

This research has demonstrated the effectiveness of integrating generative design with QFD to 

enhance the early stages of architectural design, ensuring designs meet client expectations right 

from the start. QFD facilitates a deep understanding of client needs, translating these into clear, 

actionable project objectives. This alignment reduces design revisions and increases efficiency. 

Generative design harnesses advanced algorithms to explore numerous design possibilities faster 

than human, in this case study specifically, produced more than 300 outcomes in 2 days over 

multiple runs. Together, these methodologies significantly refine the conceptual design phase, 

fostering innovation while closely adhering to client specifications.  
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5.2 Contributions  

• This study established a holistic framework that integrates Quality Function Deployment 

(QFD) and its tool House of Quality (HoQ) with generative design to enhance automation 

in user-centric architectural layout design. 

• Two layout generating algorithms were developed, bottom-up method and top-down 

method, which are adaptable to different initial settings. The bottom-up method is useful 

when connectivity between spaces is a priority, making it ideal for complex, non-uniform 

spaces. On the other hand, the top-down method efficiently manages space allocation 

within a given boundary, suitable for more uniform layouts such as high-rise buildings, 

where repeated layouts are common.  

• The script was developed to be versatile and functional for various design problems, rather 

than being limited to a specific problem. Its adaptability allows designers to tackle a wide 

range of layout challenges. 

• The implementation of the NSGA-II genetic algorithm significantly enhanced the 

architectural design process. By incorporating this multi objectives optimization technique, 

the research demonstrated the capability to balance and optimize multiple user 

requirements discovered from the HoQ.  

5.3 Limitations and future work  

• While genetic algorithms can automate and optimize design processes efficiently, they 

typically focus on predefined, quantifiable objectives and may overlook aspects of human 

experience or creativity. This necessitated manual modifications to achieve more suitable 

outcomes. In future work, machine learning techniques can be integrated to incorporate 
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user feedback, allowing the system to learn from design preferences and produce more 

contextually appropriate choices. 

• The methodology developed in this research is only applicable with rectangular spaces. 

Future research can expand the algorithm to accommodate more various spatial 

configurations, enhancing its applicability in diverse architectural scenarios. 

• The parameter setting for genetic algorithms, population size and generation, were selected 

arbitrarily for this study. As these parameters critically influence genetic algorithms’ 

performance, future studies can consider employing a systematic method to establish these 

settings.  
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