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Abstract 15 

Fermentation is one of the oldest methods of food processing and accounts for a substantial 16 

proportion of human foods, including not only staple foods such as bread, cereal porridges or 17 

fermented legumes but also fermented vegetables, meats, fish and dairy, alcoholic beverages as 18 

well as coffee, cocoa and condiments such as vinegar, soy sauce and fish sauces. Adding the 19 

regional varieties to these diverse product categories makes for an almost immeasurable diversity 20 

of fermented foods. The periodic table of fermented foods aims to map this diversity on the 118 21 

entries of the periodic table of chemical elements. While the table fails to represent the diversity 22 

of fermented foods, it represents major fermentation substrates, product categories, fermentation 23 

processes and fermentation organisms. This communication addresses limitations of the graphical 24 

display on a “periodic table of fermented foods”, but also identifies opportunities that relate to 25 

questions that are facilitated by this graphical presentation: on the origin and purpose of food 26 

fermentation, which fermented foods represent “indigenous” foods, differences and similarities in 27 

the assembly of microbial communities in different fermentations, differences in the global 28 

preferences for food fermentation, the link between microbial diversity, fermentation time and 29 

product properties, and opportunities of using traditional food fermentations as template for 30 

development of new products. 31 

Keywords. Fermented foods, Lactobacillus, Saccharomyces cerevisiae, indigenous fermented 32 

foods. 33 

34 
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Key points. 35 

 Fermented foods are produced in an almost immeasurable diversity 36 

 Fermented foods were mapped on a periodic table of fermented foods 37 

 This table facilitates identification of communalities and differences of products 38 

39 
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Introduction 40 

Fermented foods have been defined as “foods made through desired microbial growth and 41 

enzymatic conversions of food components” (Marco et al. 2021), which emphasizes microbial 42 

conversions as the defining characteristic of fermented foods. Fermented foods account for a 43 

considerable portion of foods eaten by humans, including not only staple foods such as bread, 44 

cereal porridges or beverages and fermented legumes or legume proteins but also fermented meats, 45 

fish and dairy, fermented vegetables and alcoholic beverages as well as specialty products and 46 

condiments such as vinegar, coffee, cocoa, soy sauce and fish sauces (Steinkraus 1997; Hutkins 47 

2019). Fermentation is one of the oldest methods of food processing and has been used since the 48 

Neolithic revolution, the transition from hunter-gatherer societies to agricultural societies about 49 

14,000 years ago (Hayden et al. 2013; Arranz-Otaegui et al. 2018). Among the fermented foods, 50 

the cereal products bread and beer are the oldest fermented food products for which archeological 51 

evidence is available (Hayden et al. 2013; Arranz-Otaegui et al. 2018). Just about any agricultural 52 

crop or animal product including fruits, cereals, vegetables, milk, fish and meats is fermented at 53 

some place in the world, with insect protein as one of few commodities for which traditional 54 

fermentation processes have not been described.  55 

The microbiology of food fermentation, which initiated the transition from traditional, indigenous 56 

knowledge systems to scientific knowledge systems for production of fermented foods, was first 57 

described in 1857, when Louis Pasteur attributed alcoholic fermentation to Saccharomyces 58 

cerevisiae (Pasteur, 1857 as reproduced by (Brock 1992). The industrial production of baker’s 59 

yeast for bread leavening started in Vienna only 10 years later (Gélinas 2010). Lactic acid bacteria 60 

were first isolated by Joseph Lister in the 1870ties (Lister 1877); a comprehensive description of 61 

lactic acid bacteria in food fermentations, which remained relevant for much of the 20th century, 62 
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was published in 1919 (Orla-Jensen 1919). Undefined bacterial starter cultures for baking and 63 

dairy fermentations have been available since the late 19th or early 20th century (Brandt 2007); 64 

followed by defined strain cultures for dairy, meat, wine, and vegetable fermentations. Food 65 

cultures are not only of economic importance but have also been recognized in relation to their 66 

beneficial effect on human health (Marco et al. 2017; Wastyk et al. 2021), as microbial cell 67 

factories (Sun et al. 2015) and as model systems to study ecology, physiology, and evolution, and 68 

domestication of microbes (Wolfe and Dutton 2015; Gallone et al. 2016; Duar et al. 2017b). 69 

Evidence for domestication of eukaryotic food fermenting microbes has been provided by large 70 

scale comparative genomic analyses of several fermentation organisms including Saccharomyces 71 

cerevisiae, Aspergillus oryzae and Penicillium roqueforti. In eukaryotes, domestication resulted in 72 

distinct phylogenetic clades that are composed exclusively of isolates from food fermentations 73 

with a long history of back-slopping. These isolates also exhibit physiological and genetic traits 74 

that differentiate the strains from their “wild” ancestors (Gibbons et al. 2012; Gallone et al. 2016; 75 

Dumas et al. 2020). Evidence for domestication of prokaryotes, however, remains much less 76 

convincing (van de Guchte et al. 2006; Zheng et al. 2015; Kelleher et al. 2017). 77 

Despite the economic impact, cultural significance and scientific relevance of fermented foods, 78 

only few dedicated textbooks provide an overview on the diversity of fermented foods (Gänzle 79 

2019; Hutkins 2019). Since 2014, I have started to map the diversity of fermented foods on the 80 

template of the periodic table of chemical elements, a process that was initiated over a Friday 81 

afternoon discussion with colleagues that explored whether a “Periodic Table of Fermented Foods” 82 

may be a useful tool for teaching of the science of food fermentations at the University of Alberta. 83 

An initial version of the periodic table of fermented foods was published in 2015 (Gänzle 2015) 84 

but the table continues to be modified with input from collaborators, colleagues and students in 85 
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the Nutrition and Food Science undergraduate program of the University of Alberta. This 86 

communication will briefly present the Periodic Table of Fermented Foods and its outline its 87 

limitations. It also aims to outline whether graphical presentation of the diversity of fermented 88 

foods to match the periodic table of chemical elements gives rise to relevant scientific questions 89 

and hypotheses.  90 

Limitations of the Periodic Table of Fermented Foods.  91 

The periodic table of chemical elements represents a natural law of the periodicity of the properties 92 

of the chemical elements (Balarew 2019). In contrast, a natural law of the periodicity of fermented 93 

foods does not exist. Moreover, despite all efforts to reduce the author’s ignorance on the diversity 94 

of fermented foods, to prioritize those fermented foods for which data is available in the scientific 95 

literature, and to avoid cultural or geographic bias in the selection of foods that are represented on 96 

the periodic table, the presentation remains incomplete and the selection remains to some extend 97 

arbitrary. A table with 118 entries cannot represent the diversity of fermented foods. To provide 98 

three examples; the periodic table lists 21 cheeses; however, France alone is thought to produce 99 

more than 1000 distinct cheese varieties and a comparable number of varieties is produced other 100 

countries with a tradition of cheese making (e.g. http://www.formaggio.it/). Africa is represented 101 

on the table with only 10 entries, however, a continent on which 2000 different languages are 102 

spoken can be expected to have as many, or more, different fermented foods. Vegetables that are 103 

fermented in a brine with about 2% NaCl are represented by a single entry, sauerkraut, but many 104 

different products that employ a comparable fermentation process but use different ingredients, 105 

spices or condiments and have different designations are widely consumed in Europe, South Asia 106 

and East Asia (Table 1).  107 
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Opportunities of organizing the diversity in a Periodic Table of Fermented Foods.  108 

What is the merit, then, of omission of a majority of fermented foods for display of 118 entries in 109 

a “periodic table”? First, the process of omission forces to emphasize similarities of different 110 

products over differences. For example, fermented vegetables are produced by cutting, brining in 111 

salt solutions, followed by fermentation in a closed container at ambient temperature (Ashaolu and 112 

Reale 2020). The best known products are sauerkraut, which represents this product category in 113 

Figure 1, and kimchi, but numerous other products are produced with similar methods and with 114 

comparable fermentation organisms in Europe and Asia (Table 1). Likewise, mahewu is produced 115 

in Zimbabwe by inoculating a slurry prepared from cooked corn flour with millet malt as a source 116 

of amylolytic and proteolytic enzymes, and of fermentation microbiota (Pswarayi and Gänzle 117 

2019). Comparable processes and principles are used to prepare cereal beverages in other African 118 

countries (Table 2)(Nout 2009; Franz et al. 2014). From a culinary and cultural perspective, these 119 

products are very different; from the perspective of the fermentation process or the principles of 120 

the assembly of microbial communities, these products share enough similarities to warrant only 121 

a single entry that represents all comparable products.  122 

A graphical display with 118 entries also allows a quick overview on fermentation substrates, 123 

products and fermentation organisms that cannot be provided in a larger figure with several 124 

thousand entries to fully map the diversity of fermented foods. Some of these questions – which 125 

fermentations include acetic acid bacteria? Which type of products are produced from fish? How 126 

is red wine produced from colorless cereal flours? - are readily answered by consulting Figure 1. 127 

Other questions that arise from a representative overview rather than a comprehensive display are 128 

discussed in more detail below.  129 
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Origin and purpose of food fermentation 130 

Publications on fermented foods emphasize the aspect of food preservation and food safety as a 131 

motivation for fermenting foods (Nout and Motarjemi 1997; Steinkraus 1997). Preservation is 132 

indeed a major aspect in the fermentation of vegetables, dairy products, fish, and fermented meats 133 

(groups 12 to 18 in Figure 1). Food fermentations preserve vegetables as a source of vitamins in 134 

winter, when fresh vegetables are not available in temperate climates. Fermentation also converts 135 

the perishable animal products milk, meat and fish to commodities that can stored and traded over 136 

long distances (Kindstedt 2012). Animal agriculture emerged, however, several thousand years 137 

after the cultivation and fermentation of the cereal crops (Rowley-Conwy 2011; Arranz-Otaegui 138 

et al. 2018) and preservation is thus an unlikely driver for the first food fermentations during the 139 

Neolithic revolution. 140 

A second major reason for fermentation of fruits, tubers and cereals is the human desire for 141 

intoxication, which motivates production of alcoholic beverages in virtually all cultures and on all 142 

continents (groups 1 through 4, marihuana edibles and spirits in Figure 1) and has been proposed 143 

to be one of the drivers for the first food fermentations in the Natufian (Hayden et al. 2013). 144 

Because beer is also a source of energy and nearly isotonic, hydration with low-alcohol beer may 145 

be advantageous over water. The notion that medieval city dwellers consumed beer with low 146 

ethanol content to avoid contaminated drinking water, however, was identified as a myth 147 

(Mortimer 2009; Fusco et al. 2019). 148 

A third motivation for food fermentations is the facilitation of milling of cereals and removal of 149 

anti-nutritive compounds including phenolic compounds, enzyme inhibitors and phytate, and an 150 

improved digestibility of plant crops (Gänzle 2020). Replacing a diverse hunter-gatherer diet with 151 

cereal grains, legume seeds, and tubers is a poor proposition unless the palatability and digestibility 152 
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of these crops and the availability of micro-nutrients is improved by milling, fermentation and 153 

heating (Kayodé et al. 2013; Montemurro et al. 2019). In some cases, fermentation is a necessity 154 

to remove toxic plant secondary metabolites, e.g. cyanogenic β-glucosides in cassava (group 5), 155 

which cause debilitating disease unless they are removed by fermentation or other suitable 156 

processes (Kobawila et al. 2005; Nzwalo and Cliff 2011). Steeping of grains also reduces the effort 157 

that is needed for wet milling of the grains (Gänzle and Salovaara 2019); an advantage that remains 158 

relevant in areas where cereals are processed at the household level. Examples include mawé and 159 

ogi produced in Benin (Houghouigan et al. 1993; Greppi et al. 2013) and koko and kenkey 160 

produced in Ghana (Halm et al. 1993; Lei and Jakobsen 2004). Extended steeping of cereal grains 161 

not only facilitates wet milling but also initiates fermentation, which continues after the milled 162 

grains are further processed to porridges or beverages. 163 

Last but not least, fermented foods such as miso, soy sauce, vinegar, coffee or vanilla are produced 164 

with the purpose to please the palate. While some of the products, e.g. soy sauce analogues or 165 

coffee, can be produced with alternative enzymatic or chemical processes that do not involve 166 

microbial conversions (Suzuki et al. 2017), fermented products avoid the use of ingredients or 167 

additives, and often have superior sensory properties.  168 

Few, if any, of the fermented foods are “ethnic” but almost all represent “indigenous” foods 169 

Figure 1 represents the geographic origin of each product in the upper right of each box, which is 170 

colored green if lactic acid bacteria are major members of fermentation microbiota. In recognition 171 

to the link of food fermentations to geographic locations and cultures, numerous publications refer 172 

to fermented foods outside of Europe and North America as “ethnic fermented foods” (Kwon 173 

2015) or “indigenous fermented foods”. The term “ethnic foods” was defined as “an ethnic group’s 174 

or a country’s cuisine” (Kwon 2015) or, in a narrower ethnographic meaning, as “food prepared 175 
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or consumed by members of an ethnic group as a manifestation of its ethnicity” (Anonymous) and 176 

thus includes ancestry in the definition of ethnicity. The term “indigenous”, defined by the 177 

Merriam-Webster online Dictionary as “produced (…) in a particular region or environment”, is 178 

not specific to nations, countries or ethnicity but accommodates fermented foods that are produced 179 

by specific to a particular town or other narrowly defined geographic locations that may or may 180 

not relate to ethnicity or nationality.  181 

A vast majority of fermented foods are specific to, or originate from, specific cultures or regions 182 

(Figure 1) and are in some cases a matter of fierce national pride (Jang et al. 2015). This strong 183 

link to geography is determined by climate and geography, which determine the availability of 184 

fermentation substrates; by the economic constitution of societies, which determines whether 185 

fermented foods are produced at the household level, by trades, or in large industrial operations; 186 

and by local cultural or religious traditions that define the indigenous knowledge systems on which 187 

the fermentation processes are based and the cultural or social context in which fermented foods 188 

are consumed (Ströbele 2010). Most fermented foods were produced before scientific knowledge 189 

systems were applied for food production. With few exceptions that are discussed below, 190 

fermented foods can thus generally be designated as “indigenous foods”.  191 

Community assembly in food fermentations: Differences and similarities between different 192 

fermentations. 193 

Color coding of the fermented foods informs on the main groups of fermentation organisms; 194 

representative microbial species are also indicated. The diversity of fermented foods is matched 195 

by the diversity of fermentation organisms. In 2022, an inventory of food cultures with beneficial 196 

technological use that has been compiled by the International Dairy Federation included more than 197 

226 bacterial and 95 fungal species (Bourdichon et al. 2012; Bourdichon et al. 2022). The 198 
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characterization of fermentation microbiota by full shotgun metagenomic sequencing (Cao et al. 199 

2017) and the description of more than 100 new species of food-fermenting organisms 200 

(www.lactobacillus.ualberta.ca/)(Zheng et al. 2020) continues to increase the known diversity of 201 

food cultures.  202 

Despite this large diversity of fermentation organisms, common patterns for community assembly 203 

can be derived from the periodic table of fermented foods. The assembly of communities of 204 

organisms is determined by dispersal, selection, speciation and drift (Vellend 2010). Of these four, 205 

drift, designating random events, can be ignored if the totality of fermentations rather than an 206 

individual fermentation batch is considered. The relevance of dispersal depends on whether the 207 

fermentations is controlled by back-slopping (thick box outline and underlined product name in 208 

Figure 1)(Li and Gänzle 2020) or relies on the microorganisms that are associated with the raw 209 

materials or the processing environment (Miller et al. 2019; Pswarayi and Gänzle 2019). Back-210 

slopping eliminates dispersal limitation and allows recruitment of highly specialized and niche-211 

adapted fermentation organisms (Gänzle and Zheng 2019; Marco et al. 2021). Examples include 212 

the host adapted Streptococcus thermophilus, Lactobacillus helveticus and L. delbrueckii in dairy 213 

fermentations (Li and Gänzle 2020); the co-existence of Lactobacillus and Limosilactobacillus 214 

species, which is characteristic for the intestinal microbiota of many animals but also observed in 215 

back-slopped cereal fermentations (Walter 2008; Duar et al. 2017a; Gänzle and Zheng 2019); and 216 

the presence of Fructilactobacillus sanfranciscensis, an organism that is likely adapted to insect 217 

hosts, in sourdoughs (Gänzle and Zheng 2019). The selective pressure that is exerted by 218 

fermentation conditions and raw materials is independent of the geographic location. Each of the 219 

three examples indicate above is documented by multiple products from multiple countries 220 

representing at least three continents (Figure 1). 221 

http://www.lactobacillus.ualberta.ca/
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Spontaneous fermentations that are not controlled by back-slopping or starter cultures also exhibit 222 

reliable and globally uniform communities of fermentation microbes that have a stable association 223 

with the raw material. This is best exemplified with spontaneous plant fermentations, which are 224 

characterized by a consistent succession of fermentation microbiota. Spontaneous plant 225 

fermentations are initiated by plant associated Enterobacteriaceae including Cronobacter, 226 

Kosakonia, Klebsiella and Citrobacter, which are among the most abundant representatives of 227 

commensal plant microbiota (Schmid et al. 2009; Allahverdi et al. 2016; Pavlova et al. 2017; Taulé 228 

et al. 2019). Enterobacteriaceae are followed by the more acid tolerant enterococci, lactococci, 229 

Leuconostoc and Weissella species. Eventually the acid tolerant Lp. plantarum or pediococci in 230 

association with Lm. fermentum or Lv. brevis prevail (Jung et al. 2012; Wuyts et al. 2018; Pswarayi 231 

and Gänzle 2019). This succession of microorganisms is comparable at the family level 232 

(Enterobacteriaceae) or at the genus level (lactic acid bacteria) for most spontaneous plant 233 

fermentations including cereal products or tubers in groups 5 to 7, vegetable fermentations (group 234 

12), and coffee and cocoa (Figure 1). Community assembly can be manipulated by addition of salt 235 

(e.g. Fu-Tsaii, # 112)(Chao et al. 2009) or by addition of acids to inhibit the initial growth of 236 

Enterobacteriaceae. Convergence of fermentation communities is also observed for alcoholic 237 

fermentations, which all include Saccharomyces cerevisiae as a major fermentation organism. All 238 

fermentations that include addition of more than 10% NaCl include, irrespective of the substrate, 239 

include Tetragenococcus halophilus (Figure 1). 240 

Speciation or domestication of bacterial species in food fermentation organisms has not been 241 

convincingly demonstrated. Although the molecular clock of bacterial evolution is poorly 242 

calibrated (Duchêne et al. 2016), the domestication of bacterial organisms with genetic and 243 

physiological traits that differentiate fermentation organisms from their “wild” ancestors likely 244 
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requires more time than elapsed since the onset of back-slopped food fermentations (Duar et al. 245 

2017b). Eukaryotes evolve with different mechanisms and at a different pace, though, and 246 

domestication of food fermenting yeasts and fungi was demonstrated for Aspergillus oryzae from 247 

koji fermentation, S. cerevisiae from beer and sourdough, and for Penicillium roqueforti (Gibbons 248 

et al. 2012; Gallone et al. 2016; Dumas et al. 2020; Bigey et al. 2021).  249 

In short, the comparison of fermentation microbiota in different fermented foods worldwide 250 

demonstrates that, while the fermented products have a strong link to specific regions or countries, 251 

the composition of fermentation organisms is globally uniform if comparable substrates and 252 

fermentation processes are employed.  253 

North and South, East and West  254 

The periodic table of fermented foods highlights preferences for fermentation substrates and 255 

fermentation processes at a global scale (Fig. 1 and Fig. 2). Bread has traditionally been produced 256 

in all temperate climates that support cultivation of wheat or rye (Gänzle and Zheng 2019; Arora 257 

et al. 2021). In East Asia, steamed bread is preferred (Yan et al. 2019); South Asia, the Middle 258 

East and North Africa traditionally produce flat breads; in Europe, bread is baked in loaves. 259 

Conversely, fermented cereal foods in Sub-Saharan Africa are consumed predominantly as 260 

porridges or non-alcoholic beverages, which are not as common in other parts of the world (Fig. 261 

2) (Nout 2009; Franz et al. 2014). The color coding in Figure 2 accounts for the documentation 262 

that fermentation cultures that are used in the Americas and Oceania are “immigrants” that were 263 

brought by the European that settled on these continents (Salama et al. 1991; Gallone et al. 2016). 264 

In Europe and Africa, starch saccharification to produce alcoholic beverages, non-alcoholic 265 

beverages or vinegar is achieved by the use of malt; barley malt in Europe or millet and sorghum 266 

malts in Africa. In East Asia, starch saccharification is achieved by microbial saccharification 267 
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cultures. Koji, a back-slopped and domesticated cultures of Aspergillus soyae or Aspergillus 268 

oryzae, is used in Japan (Gibbons et al. 2012). Daqu, a spontaneous fermentation that recruits 269 

bacilli, plant-associated Enterobacteriaceae and lactic acid bacteria as well as yeasts and moulds 270 

to produce amylases and proteases that hydrolyse starch and proteins in a subsequent mash 271 

fermentation, is used in China (Fig. 2)(Zheng et al. 2012; Mu et al. 2014). In addition, the 272 

traditional use of Monascus purpureus to produce red- or yellow-coloured cereal foods is unique 273 

to South-East Asia (Lin et al. 2008). Efforts to use the organisms in fermentations in Europe and 274 

North America have stalled as the production of red or yellow pigments is invariably associated 275 

with the production of the mycotoxin citrinin (Patakova 2013).  276 

Milk has traditionally been used for cheese production in Europe, the Mediterranean, the Middle 277 

East and the Eurasian Steppes. Communities in Africa and South Asia ferment milk predominantly 278 

to yoghurt and comparable set but not strained dairy products (Jans et al. 2017). Conversely, 279 

fermentation of legume (soy) protein to diverse products including tempe, natto, sufu or stinky tofu 280 

is common on East Asia but not in other regions of the world (Fig. 2)(Han et al. 2004; Nout and 281 

Kiers 2005; Inatsu et al. 2006). The use of precipitated soy proteins as fermentation substrate also 282 

recruits fermentation organisms that are not observed in other parts of the world, e.g. Rhizopus 283 

stolonifer for production of tempe (Nout and Kiers 2005) and Bacillus subtilis, which is used for 284 

fermentation of natto (Tsuji et al. 2015).  285 

Fish fermentations have traditionally been used in Scandinavian countries and in South East Asia. 286 

Examples for Scandinavian fermentations include harkarl, fermented shark produced in Iceland, 287 

and surströmming in Sweden (Skåra et al. 2015). East Asia produces fermented fish sauces, where 288 

the composition of fermentation microbiota is controlled by addition of more than 10% NaCl, and 289 

fermented sour fish were the composition of fermentation microbiota is controlled by addition of 290 
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carbohydrates including starch (rice) or sugars and / or addition of salt (Paludan-Müller et al. 291 

2002). The author is unaware of comparable fermented products in other regions of the world 292 

where seafood is available. The production of garum, however, a fish sauce that was produced in 293 

ancient Rome but came out of fashion after the fall of the Roman Empire (Corcoran 1963), 294 

indicates that this is a question of preference.  295 

Microbial diversity and product properties 296 

The arrangement of selected fermented foods in the periodic table of fermented foods roughly 297 

matches the flavor intensity within each groups, with the blandest examples at the left and top and 298 

the product with the most intense flavor at the right and bottom (Figure 1). This arrangement 299 

indicates that long fermentation times and / or a diverse fermentation microbiota results in a more 300 

intense flavor. The case can be convincingly made with two somewhat exotic examples, 301 

surströmming, a fermented fish product from Sweden, and kopi luwak (civet coffee). The 302 

fermented fish product surströmming is produced with diverse fermentation organisms that 303 

represent several bacterial phyla including Firmicutes, Bacteriodetes, gamma-Proteobacteria and 304 

Actinobacteria. The resulting product smells somewhat intense (Belleggia et al. 2020). Kopi 305 

Luwak is produced by feeding civet cats with coffee fruits and collecting the excreted beans after 306 

fermentation by the intestinal microbiota of civet cats. Intestinal microbiota of the civet cat are 307 

dominated by acetic acid bacteria, lactic acid bacteria and Enterobacteriaceae (Watanabe et al. 308 

2020), which overlaps with those organisms dominating wet fermentation process of coffee beans 309 

(de Melo Pereira et al. 2017) but includes additional organisms as well as digestive enzymes of 310 

the civet cat.  311 

The case can also be made with the more commonly consumed fermented products bread and 312 

cheese. Long-term cheese ripening recruits non-starter lactic acid bacteria that contribute to flavor 313 
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formation in addition to the starter cultures (Lo et al. 2018). During cheese ripening, casein is 314 

hydrolysed to taste-active peptides and amino acids, in particular glutamate, which can accumulate 315 

to levels exceeding the taste threshold more than 500-fold (Toelstede and Hofmann 2008; 316 

Hillmann et al. 2016). Straight-dough bread is fermented only with baker’s yeast while sourdough 317 

baking includes a contribution of lactic acid bacteria and sourdough yeast, predominantly 318 

Kazachstania humilis, to biochemical conversions during bread-making, and generally involves 319 

extended fermentation times (Gänzle 2014; Gänzle and Zheng 2019; Arora et al. 2021). In 320 

comparison to straight dough bread, sourdough bread is characterized by a greater diversity and 321 

higher concentration of taste-active compounds and odour volatiles (Hansen and Schieberle 2005; 322 

Zhao et al. 2015). A last example relates to the comparison of two distilled grain liquors, whisky 323 

and baijou. Whisky is fermented with S. cerevisiae with a variable contribution of lactobacilli (van 324 

Beek and Priest 2000); odorants are additionally derived from the malt, the peat smoke used for 325 

drying of the malt and the casks used for maturation (Jeleń et al. 2019). The fermentation process 326 

for grain liquors in China includes contributions from diverse microbes including yeasts, fungi, 327 

bacilli, gamma-Proteobacteria and beta-Proteobacteria, and Firmicutes which include but are not 328 

limited to Lactobacillales (lactic acid bacteria)(Zheng and Han 2016). Again, the higher diversity 329 

of microbes that is recruited for baijou fermentation results in a higher diversity and intensity of 330 

flavor volatiles (Jeleń et al. 2019; Chen et al. 2021).  331 

Tradition and innovation 332 

The industrialization of food production also resulted in the industrialization of the production of 333 

fermented foods. This process generally involved scaling of traditional fermentation processes and 334 

transition from traditional, indigenous knowledge systems to scientific knowledge systems; in 335 

short, moving from “art to science”. Currently, food fermentations extend to products for which 336 



17 

 

no traditional template exists. In these cases, the periodic table of fermented foods can guide the 337 

development of fermentation processes in the absence of a traditional template. Examples include 338 

the fermentation of insects (Kewuyemi et al. 2020) or the production of plant cheeses (Jeewanthi 339 

and Paik 2018), where information on fermentation of other protein foods (soy, groups 10 and 11, 340 

dairy, groups 13 – 16 and fish and meat, groups 17 and 18) may provide useful information on the 341 

use of fermentation organisms and enzymes to improve product quality. Moreover, fermentation 342 

of vegetables has re-emerged as a method to provide high-quality food not only at the household 343 

level but also by chefs and small start-up companies. The corresponding products are not limited 344 

to those for which traditional templates exist (Redzepi and Zilber 2018). 345 

Current commercial relevance for novel, non-traditional fermented foods relate for example to 346 

alcohol-free fermented cereal beverages and gluten free bread. Fermentation of malt with lactic 347 

acid bacteria or acetic acid bacteria allows adjusting the level of sweetness, acidity and carbonation 348 

or “fizz” to levels that meets consumer’s expectations (Bronnmann and Hoffmann 2017). Non-349 

alcoholic fermented cereal beverages are widely consumed in Africa and, to a lesser extend, in 350 

East Europe but not in Central or Western Europe (Taylor 2016). Element # 102, Bionade, provides 351 

an example of a non-tradtional fermented “designer” food. Likewise, the development of gluten-352 

free bread in the last two decades necessitated building on information related to traditional 353 

fermentation of sorghum, millet or corn fermentations to develop a fermented food for which no 354 

traditional template is available (Gallagher et al. 2004).  355 

Concluding remarks. 356 

Mapping the diversity of fermented foods on a simple graphical display is impossible in a world 357 

that is inhabited by 8 billion humans where many products are fermented at the household or 358 

regional level. The effort to produce such a simple graphical display nevertheless has merit as it 359 
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necessitates acknowledgement of the – largely unknown - diversity but also allows to derive 360 

common patterns in the fermentation of products that, at first sight, appear to be very different. 361 

Many of the fermented foods contain live fermentation microbes at the time of consumption 362 

(groups 6, 7, 12 to 18, and several elements in the group “tea, coffee, chocolate, and various 363 

beverages). Live microbes that are present in fermented foods are increasingly recognized as 364 

contributors to human health even if no strain specific health claims were established (Marco et 365 

al. 2021; Wastyk et al. 2021). The periodic table of fermented foods also provides an indication of 366 

the many fermented foods that are likely to please one’s palate but remain to be sampled. Last but 367 

not least, many fermented foods negate conventional wisdom and are tasty and healthy. 368 
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Figure legends 733 

Figure 1. Periodic element of the fermented foods. The figure aims to provide an overview of the 734 

diversity of fermented foods that are produced globally. Indicated are the origin of the food, main 735 

ingredients and typical fermentation organisms, pH, water activity and fermentation / ripening 736 

time, and major microbial metabolites that relate to product quality. The contribution of major 737 

groups of fermentation organisms is color coded as indicated in the legend; back-slopped 738 

fermentations are indicated by a thick outline and by an underlined product name. The figure is 739 

not provided in this pre-print; the reader is referred to the updated, high resolution file for printing 740 

in A0 format that is available on the author’s personal website and on:  741 

https://drive.google.com/open?id=10cH7XaNqGQAKdL3VHhd1tzWXlGaTdfkV&authuser=mg742 

aenzle%40ualberta.ca&usp=drive_fs  743 

Figure 2. Global preferences for traditional consumption of different types of fermented foods. 744 

Preferences are color coded based national borders, ignoring regional preferences. Panel A. Use 745 

of malt (red) or microbial enzymes (blue, koji, daqu) for production of alcoholic beverages or 746 

vinegar from grains. Panel B. Consumption of bread as steamed bread (yellow), flat bread 747 

(orange), in loaves (red) or consumption of cereal porridges or beverages (blue). Countries are 748 

hatched if they are at the intersection of two cultures (e.g. Turkey) or if the preferences of 749 

indigenous and immigrant (fermentation) cultures differ (e.g. Brazil, North America). Panel C. 750 

Production of isolated, fermented products from soy (blue) or of cheese (red). Countries that 751 

produce little, if any, cheese (most African countries), or produce acid-coagulated cheese without 752 

fermentation (South Asia) are coloured in orange. Countries are hatched if preferences of 753 

indigenous and immigrant (fermentation) cultures differ. Gray, not relevant or insufficient 754 

information. Maps were drawn with a template file from www.freeworldmaps.net. 755 

https://drive.google.com/open?id=10cH7XaNqGQAKdL3VHhd1tzWXlGaTdfkV&authuser=mgaenzle%40ualberta.ca&usp=drive_fs
https://drive.google.com/open?id=10cH7XaNqGQAKdL3VHhd1tzWXlGaTdfkV&authuser=mgaenzle%40ualberta.ca&usp=drive_fs
http://www.freeworldmaps.net/
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Table 1. Examples for vegetables that are produced by cutting, brining, and fermentation for 

2 – 4 weeks at ambient temperature, matching element #30, sauerkraut. 

 

Name Origin Main ingredients References 

Sauerkraut / 

Choucrute 

Germany, France, 

U.K., U.S.A and 

Canada 

cabbage (juniper berries) (Hutkins 2019) 

Tursu Turkey cabbage, cucumber, carrot, beet, (Çetin 2013) 

Gundruk India 
Cabbage, mustard leaves, raddish 

and / or cauliflower 

(Tamang and 

Tamang 2010) 

Sinki 

(raddish) 
India, Nepal radish 

(Tamang et al. 

2005) 

Pao Cai China 
cabbage (red pepper , scallion , 

ginger, garlic, anchovy) 
(Liu et al. 2019b) 

Suan-Tsai, 

Suan Cai 
China, Taiwan 

Napa cabbage (North China) or 

green mustard (South and West 

China, Taiwan) 

(Chao et al. 2009; 

Liu et al. 2019a) 

Jianshui China Cabbage or celery (Jun et al. 2018) 

Kimchi Korea 
cabbage (red and black pepper, 

onions, mustard) 
(Patra et al. 2016) 

Dua muoi or 

dha muoi 
Vietnam Mustard or beet 

(Nguyen et al. 

2013) 

Ca muoi Vietnam Eggplant 
(Nguyen et al. 

2013) 
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Table 2. Examples for non-alcoholic fermented cereal beverages that are produced by 

fermentation of a cooked cereal slurry with addition of adjuncts as source of enzymes and 

fermentation microbiota, matching element # 42, mahewu. 

Name Origin Main ingredients References 

Mahewu, Amahewu, 

Emahewu, or Mageu 

Zimbabwe South 

Africa, Swaziland 

cooked maize with 

millet or sorghum malt 

(Pswarayi and 

Gänzle 2019) 

Togba Zimbabwe cooked maize (Gadaga et al. 1999) 

Tobwa Tanzania 
cooked maize with 

millet or sorghum malt 
(Mugula et al. 2003) 

Munkoyo 

(Chimbwantu) 

Zambia, Democratic 

Republic of Congo 

cooked maize with 

millet malt, Rynchosia 

root, cowpea root or 

sweet potato peels 

(Phiri et al. 2019) 

Ekitiribita Uganda 
cooked millet with 

sorghum malt 

(Mukisa et al. 2010; 

Mukisa et al. 2012) 
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