i*. Namnslubra:y

Bibhothéque ratonale
du Canada

uistions and Dwrection des acquisitions et
0 raﬂic&ewicﬁsaramh des services biblographiques

mum oriaeo K1A ON4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the

Some pages may have indistinct
print especially if the original
pages were typed with a poor

typewriter ribbon or i the
unmuyuntusanlnhﬂor

Reproduc f,lnlunarlnp-rtd
RS.C. 1m c. c-ao and
subsequent amendments.

Ving My Volie (Eieee #
(A8 by Moiie iPNTRCE

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de Ia thése soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'll manque des pages, veuillez
communiquer avec I'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser &
désirer, surlom sl les pages
’Iphlbn A laide d'un
ruban usé ou si l'université nous

a fait parvenir une photocopie de
qualité inférieure.

d’auteur, SRC 1970, c. C-30, et

UNIVERSITY OF ALBERTA

TIGUKAT: A Uniform Behavioral Objecthase Management System

BY

Randal J. Peters

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Doctor of Philosophy.

DEPARTMENT OF COMPUTING SCIENCE

Edmonton, Alberta
Spring 1994

|"."l h&monlebnuy Bibl nationale
duC
Acquisitions and Direchion des acquisitions et
Bibliographic Services Branch des services bibliographques
395 Welngton Street 395, rue Wi
Onawa, Ontano Ottaw"aﬁomano)
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
aliowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

AR RTLL R Y

i\ e RArE iy @

L'auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliothéque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de queique maniére et sous
queique forme que ce soit pour
mettre des exemplaires de cette
thése a la disposition des

L'auteur conserve la propriété du
droit d'auteur qui protége sa
thése. Ni ia thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autromnt roprodults sans son

ISBN 0-612-11334-5

UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Randal J. Peters
TITLE OF THESIS: TIGUKAT: A Uniform Behavioral Objectbase Management System

DEGREE: Doctor of Philosophy
YEAR THIS DEGREE GRANTED: 1994

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as hereinbefore provided neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Department of Computing Science
University of Alberta

Edmonton, Alberta

Canada T6G 2H1

Date: AP(‘\‘ ls’j (“\'Hl-(

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Gradu
ate Studies and Research for acceptance, a thesis entitled TIGUKAT: A Uniform Be-
havioral Objectbase Management System submitted by Randal J. Peters in partial
fulfillment of the requirements for the degree of Doctor of Philosophy.

—

Dr. Duane Szafron

LI I R Y B L ERE T} LI L

Dr. Paul G, Sorenspn

Dr. Barrie Nault

Dr. W. Dobosiewicz (Chair)

To my parents.

Abstract

base systems. Despite many advances, object-oriented computing is still in its infancy and
a universally accepted definition of an object-oriented model is virtually nonexistent. In
this thesis, the object model, meta-model, query model, dynamic schema evolution policies,
and version control of the TIGUKAT objectbase management system are presented. An
identifying characteristic of this system is that all components are uniformly modeled as
database technology because it unifies the components of a database within a single. clean.
underlying semantics that can be easily extended to support other database services, The
TIGUKAT object model is purely behavioral, supports full encapsulation of objects, defines
a clear separation between primitive components, and incorporates a uniform semantics
over objects. A behavioral model definition specifies the semantics of objects and this i
integrated with a structural model to form a complete model definition. The meta-maodel
is uniformly represented within the object model, giving rise to reflective capabilitics, The
query model is uniformly defined as type and behavior extensions to the hase model, thus
incorporating queries and query processing as extensible parts of the model. The complete
query model includes a formal object calculus, formal object algebra, a definition of safety
based on the evaluable class of queries (arguably the largest class of “reasonable” queries),
proofs of completeness, and an effective algorithmic translation from the calculus to algebra.

mation and for restructuring the schema of an objectbase. Since everything is uniform, the
schema evolution policies are simply behavior extensions to the base model. Temporality
is incorporated to support versioning of objects and of schema. It is also used to maintain
the semantic consistency of evolving behaviors.

This research leads toward the development of an extensible query optimizer, view man-
ager, and transaction manager as uniformly integrated components of the system. This ful-
fills the typical gamut of database services. Temporal extensions and a seamlessly integrated
database programming language are other components that this research supports.

Acknowledgements

I would like to express my sincere thanks to Dr. Tamer Ozsu, my supervisor, for his encour-
agement and support during my research. He created a balanced environment that allowed
me the necessary freedom to pursue my ideas, while at the same time offering the right
amount of guidance to keep me focused.

Armstrong, Dr. Paul Sorenson, Dr. Alberto Mendelzon, and Dr. Barrie Nault for their many
insights and comments. [especially thank Duane Szafron for all his help on the obje. - model
and query model.

Thanks to the database research group at the University of Alberta for the many inter-
esting discussions. | am especially grateful to those members who read earlier drafts of this
work and for the useful comments they provided.

Thanks go to Dr. Ozsu, the Natural Science and Engineering Research Council of
Canada, the University of Alberta, and the Department of Computing Science for the
funding they provided throughout this degree.

I express my sincere gratitude to my wife, Sherry, for her patience, encouragement, and
love that gave me strength to carry this dream to reality.

Finally, I thank my parents, David and Tina Peters, for their love and complete support
during my studies and throughout my life. This thesis is for them.

Contents

1 Introduction
L1 Overview
1.2 Scope and Contributions
1.2.1 Object Model Issues
1.22 Query Model Issues
1.2.3 Schema Evolution and Version Control Isswes
1.3 Organization

2 The Object Model
21 RelatedWork,
2.2 Object Model Overview
23 Example Objectbase
24 TheBehavioral Model
2.4.1 Atomic Types, Classes and Objects
2.4.2 The Behavior and Function Primitives
2.4.3 The Object Primitive
244 The Type Primitive
2.4.5 The Collection and Class Primitives
24.6 Higher LevelComstructs
24.7 The Null Primitive
2.4.8 Definition of an Objectbase
25 TheStructural Model
25.1 Objectsand Values.
252 AbstractObjects
253 ObjectGraph
254 Structural Example
255 SchemaObjects

3 The Object Query Model
31 RelatedWork
3.1.1 QueryModel Frameworks
3.1.2 Complete Object Query Models
3.1.3 Complex Object Algebras
32 QueryModel Overview
33 QueriesasObjects00cuuu.i...
34 TheObjectCalenlusvvvvn..
341 FormalObjectCaleulus

$2

40
4H
45
46
46

£,4! Exprf-ﬁslvp anwﬁf(alrulus Qu?ﬂes
3.4.4 Safety of Objert Calculus Expressions
35 TheObject Algebra
3.5.1 ‘rﬂnanhrsﬂnypPlanrPnrmg

3.6 E-X-’l“lplFQ“PﬂFﬁ
3.7 (mnplﬂpnassnf(akulusandAlgebra,”.“i,i”.i..é““.
371 Theoremsand Proofs

5.] lhsuﬁufﬁrhﬂnal';vr.-lutmn e ke e et e e e e e
52 Issuesof Version Control0c..0o...
53 Related Work i i e,
5.4 Overview of Schema E\mlutmn and Versmnmg. e e e e e e e
5.5 Temporality of the Object Model
5.6 'iiim;ntmnfSrhém;Evolntmn...._“.“””.”.,

o
-y
o
2
-}
@
8,
%
g
-~
o |
2 g
o

58 (hangerp:gnm
5.9 Temp;ralﬂehavmmlpuch e e e e e e e e
592 DlspatthSEELntic:.”.g,.........“,......._.,

Conclusions
6.1 SummaryandConmtributions

Bibliography
A Primitive Type System
B Behavior Definitions

102
102
103
104
107

111
11
113
114
118
119
122
122
124
125
133
133
134
135
137
137
138
141

144
144
148

163
167

C.1 (anﬁrmanréta!\,land?sms T I
C.1.1 Mandatory requirements 195
C.1.2 Optional Features 107
C.1.3 Undetermined Mandatory or Optional 197
C14 OpenChoices 198

C.2 Conformance to OODB Task (-ruup “Pfﬂ!llllli“ﬂd;ﬂln!lh 1

List of Tables

2,
2.

3

o
x

am
:

> > >

l
2

Behavior signatures pertaining to example specific types of Figure 2.2. . . . 2|
Object equalities of Figure 2.3. 30
Behavior signatures for type T_query. Upper half are inherited from T function.

Lower half are nativetothistype. 6l
Classification of schema changes. 124
Valid implementation changes of a behaviorinatype. 131

Hehavior signatures of the non-atomic types of the primitive type system. . 164
Behavior signatures of the container types of the primitive type system. . . 165
Hehavior signatures of the atomic types of the primitive type system.. . . . 166

List of Figures

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
33
3.4
3.5
3.6

3.7

4.1
4.2

5.1
5.2
5.3
54
5.5

5.6
5.7

58

Primitive typesystem 7.
Type lattice for a simple gﬂrgraphir mfurmalmn system. L. L L. L
An object reference example. L. L.
Example of subtype and specialize relationships.
Super-latticeof type Tmap.
An example type schema.
Three tiered instance structure of Tl(-l'hAT nh_prt management.
Portion of primitive type lattice responsible fnr meta-system, L L
Subclass and instance structure of m' and m? objects. C
Graphical representations of nodes in an object graph.
Objects of Sherwood County.
Object graph of SCounty, Notingham and FmestS nh Jects in hgun .£ H

Object graph of partial schema for typeTzone.

Query typé éiténsiﬁn to pﬁmitiw tpr sysmn e e e e e

Translatmn stéps fmm nbpﬂ cakulu-a to ﬂh_jﬂ't algphr-; e e
Extended rules of gen and con that produce “generators™.
Prnhlbltwe parent/fhlld rmnbmatmm in ENF fﬂﬂl“lli.‘i aml rewrite ruli o

nndh:shlghesypnﬂmy..i”...i.........“,__..””.
Transformations from object calculus to object algebra.
A nafmnl“ class and instance structure for C-pemng e e
An m? class and instance structure forC_person.
The abstract time types.
Effects of dropping a direct supertype link from tprTtn typw- | JE
Effects of droppingatype T.
History of the interfaceof type T.

Implementation histories of behaviors b; and b; ﬁ:pr typd- T ;ml ub ject n-prr
BEBLALIONS e e e e
Dispatch process for applymg a behlvmr b to an obhj ;H!. oat mma l
Example showing effects on implementation histories of first adding and thrn
droppingabehavior.
Twuenmpleobpﬂsnftype?‘...i...“,“.”-,..!..,.,;

)
Pl
KA
K1
A7
11
1
12
449
i
A
hit

)
i
V2
K9
91

9%
100

1%
105

19
12%
129
133

135
K]

142
142

Chapter 1

Introduction

1.1 Overview

Object-oriented computing is influencing many areas of computing science, including data-
base management. The appeal of object-orientation, from the perspective of database ap-
plications, is attributed to its higher levels of abstraction for modeling real world concepts,
its support for extensibility through user-defined types, and its potential for managing in-
teroperability.

Objectbase management systems (OBMSs)! are emerging as the most likely candidate
to meet the complex data and information management requirements of new applications
such as geographic information systems, computer aided design (CAD), computer aided
manufacturing (CAM), multimedia systems, knowledge base applications, and office infor-
mation systems. The general acceptance of this technology is dependent on the increased
functionality it can provide. In this respect, OBMSs subsume the modeling power and
expressibility of the first-generation (i.e., hierarchical and network) and second-generation
(i.e., relational) systems. Unlike these earlier systems, OBMSs are well suited for handling
complex information with complex relationships. Furthermore, an OBMS is better suited
to integrate the components of traditional database systems such as a query model, query
optimizer, schema evolution, version control, view management, transaction management,
rule systems, and so on into a single, uniform system.

Despite many advances over the last decade, objectbase management technology is still
in its infancy. The field is generally suffering from the absence of a universally accepted
object model, along the lines of the relational model [Cod70], whose features are formally
and unambiguously defined. This void makes it difficult to reason about the internal consis-
tency of these models, investigate database features such as query models, schema evolution,
views, transaction management, etc., and to generalize the results of various studies. Some
standardization efforts are being pursued [ABD*+89, SRL+90, FKMT91], and general de-
scriptions of model characteristics are emerging (ZM90, Ken90a]. These have resulted in
the definition of a relatively small set of core concepts that most object models share.

'In this thesis, the terms “objectbase” and “objectbase management system” are preferred over the more
popular terms “object-oriented database” and “object-oriented database management system”, since mot
oaly data in the traditional sense is managed, but also objects in general, which includes things such as code
sad complex information in addition to data.

1.2 Scope and Contributions

This thesis describes the development of the TIGUKAT? extensible objecthase management
system (OBMS). A uniform, behavioral object model with extensible properties is devel-
oped, and this model is used to develop the foundations of the extensible OBMS, including
a ﬁlll féfatured c)bject querv mmlel a unifﬂrm meta- umdvl uilh l'PﬂF(‘“\F rapahllllwa d\
the mmribuunns in each of these areas,

Although the work in this thesis is within the context of TIGUKAT. the findings extend
to any system lmsed on a unifmm hahavinral ﬂhjﬂ‘l umdel whprp Imha\,'inrs define the

The related areas of rezearrh luurhed upon in lhls thesns. hut nulsi(]s‘ its scope, in-
clude the implementation of the object model [Ira93], the definition and implementation
of a user query language [Lip93], the definition and implementation of a query optimizer
and execution plan generator [Muii94], the incorporation of temporality into the model
[6093] the definition and implementation of a general objecthase programming language.
and distributed aspects of OBMSs.

1.2.1 Object Model Issues

The TIGUKAT object model is characterized by a purely behavioral semantics, a uniform
approach to object modeling, and extensibility. The behavioral paradigm provides a con-
sistent underlying operational semantics and uniformity provides a fundamental conceptual
model where every concept, including types, classes, collections, behaviors, functions and
meta-information, is modeled as a first-class object with well-defined behavior. The features
of uniformity and the behavioral paradigm form the foundation for the extensibility of the
model.

In TIGUKAT, traditional structural notions such as instance variables, method im-
plémmtit'k ns, iﬁd sehem’; deﬁnition are cast intn llu- unifnrm m-mantirs :nf hﬁhavinrn on

perfarmed on an nbject are glven entlrely by lhl‘ b('hi\ﬂﬂf! defined on the lype nl‘ thnt
object. Uniformity is important in unifying the components of an OBMS into a seamless
integrated system with a single underlying (behavioral) semantics.

A fundamental characteristic of object models, which differentiate them from other mod-
els, is their richer semantics. On the one hand, this enables closer modeling of complex real
world applications such as geo-information and CAD/CAM systems, which makes ohject
models more powerful. On the other hand, the richer semantics makes it more difficult to
specify a clean, well-defined, universally accepted model. The power and expressibility of
a general object model may prove too difficult to formalize because many important prop-
erties become intractable as the model becomes more general [MaiR9). However, certain
precautions have been identified to avoid pitfalls while developing a complete object model
[KW89, Bee90]. The resulting model definition may be more restrictive than a “general”
model, but power and expressibility (which may not be needed anyway) must sometimes
be traded for tractability.

ATIGUKAT (tee-goo-kat) is & term i the language of the Canadian Inuit people mesning “objects.” The
Cuﬂnhﬂu.minﬂykmn&m have an ancestry originating in the Arclic regions of the

The first result of this research is the development of an advanced object model through
the identification and forinalization of object-oriented characteristics with sufficient power
and flexibility for supporting the advanced functionality demanded by OBMSs and their
client applications. The TIGUKAT object model includes many of the core concepts intro-
duced by former models, along with additional features that extend its modeling power and
expressibility beyond others.

The power of the model is demonstrated in this thesis by using it to develop, in an
extensible way, a uniform meta-system that is seamlessly integrated with the base model
and provides reflection [PO93], an object query model with powerful querying facilities
[PL()S%b, PL6$93&], plus dynamic schema evolution strategies and version control that
use time to manage versions of objects and maintain semantic consistency of behaviors.

A mode] for objects involves the specification of two components. One part consists of
the behavioral aspects, which define a universal conceptual abstraction of objects, includ-
ing the relationships between objects. The other part is the structural definition, which
specifies the internal organization of objects and how their relationships are organized.
Subtleties, such as the difference between objects and values (hidden by the abstraction
of the behavioral model) are exposed at the structural level. King [Kin89] points to the
similarity between a structural object model and the semantic data modeling approach
[HMR], HKR7, PMRS] in the sense that both are concerned with the representation of data
and knowledge. A behavioral model goes further by addressing access and manipulation of
objects from general purpose programming and query languages.

Behavioral and structural issues have traditionally been treated separately in the data-
base community, with object models emphasizing one or the other. A notable exception
is [Bee90], which attempts to establish a link between the two, although the behavioral
and structural definitions of that model are not fully developed. Behavioral and structural
aspects are both important in the development of an object model, but the two are indepen-
dent, which accounts for the orthogonal directions taken by recent studies. Reconciling these
approaches assists in understanding the model and forms a basis for an implementation of
the model.

It has been noted that the behavioral aspects are fundamental in developing a theory
of objects [Ken90a). In this thesis, a behavioral model is coupled with a formal structural
counterpart to unify the model semantics and form a complete definition. Beeri’s formal
structural model [Bee90] is chosen as a basis for the structural model. Several modifica-
tions are incorporated into Beeri’s model in order to extend its capabilities to match the
uniformity and enhanced functionality provided by the behavioral model. The integration
of these two definitions results in a complete, uniform object model specification, which is
a favorable platform for the implementation of TIGUKAT.

The fundamental contributions of the TIGUKAT object mode! are as follows:

1. A precise specification and integration of both the behavioral and structural aspects
of a uniform object model with the necessary power for handling advanced database
functionality such as a powerful query model and language, schema evolution, version
control, updatable views, traasaction management, temporal rules, and 30 oa.

2. A clean separation and precise definition of maay object model features that are
usually bundled and only intuitively defined in other studies.

3. A waiform approach to objects that models all information as first-class objects with
well-defined behavior.

4. Reflective capabilities through the uniform modeling of meta-information as objects
with well-defined behavior.

1.2.2 Query Model Issues

Two important measures of an OBMS lie in the power of its query model and the languages
used to query the objectbase. User requirements of these systems demand a declarative
facility to formulate queries by focusing on “what™ information is needed and leaving it
up to the system to determine “how™ to efficiently retrieve the information. Therefore, a
formal query model for these systems defines an object calculus as a theoretical framework
for supporting declarative queries and a procadural (or functional) algebra to execute them
efficiently. In order to support this framework, it is desirable that the calculus and algebra
be equivalent in expressive power and that there be an efficient translation from calculus to
algebra. Both of these properties are fulfilled by the query model presented in this thesis,
The TIGUKAT query model is defined as a uniform extension to the base obj ject model,
The formal languages include a declarative object calculus and a behavioral /functional
object algebra. The query model is an extension to the object model in that querics are
defined as type and behavior extensions to the base model, meaning they inherit all the
characteristics of objects. One advantage of this approach is that the components of an
integrated query model can be queried just like other objects. For example, one may query
a collection of queries to gather statistical information about their performance, or a query
on the types and behaviors of the query model may be run to analyze their definition.
Another :dv;nuge is th;t the typﬁ and behavmrg uf I.hp query ilmd?l can br ex'mdml

in an extenmbk query model ﬂnt a.llows idvun:ed mﬁmn;tmn pmrmmg ﬁ‘lhil‘ﬁi ln lur
added as they are discovered using the operations provided by the base model.

Safety is an important consideration of a query model. Essentially, a query is safe if it
mﬂmx a ﬁmte mult ina ﬁnite amount of time [QWRQ] Devﬂopmg e‘iﬁﬂmt mpthﬂds fnr
research issue. The TIGUKAT . query ‘model bases ufety on one of the lirgut known class
of decidable queries.

The result of a yuery depends on the domains referenced within that query. Domain
independence is a property of queries that states the result of a query is not affected by
changes to domains not referenced within the query. The domain independent class of
queries [M;kgl] has long been recognized as the largest class of “reasonable” queries. How-
ever, it is well-known that domain independence is an undecidable problem. Many decidable
subclasses of the domain independent class have been proposed. The “evaluable” class of
queries [GT91] is touted as the largest decidable subclass of the domain independent class.
The class of safe queries in TIGUKAT is based on the evaluuble class. However, the se-
maatic characteristics of object generation introduced by the query mrdel are exploited
to extend this class and provide a broader class of safe queries. In [EMHJ93a), a similar
approach is presented that extends the evaluable class with scalar functions, although that
work is within the context of the relational model.

The identifying characteristics of the TIGUKAT query model that differentiates it from
other object query models are the following:

1. It incorporates a formal and powerful object calculus and object algebra with a proven

cqnivﬂem in expressive power and an effective (i.e., algorithmic) transiation from
calculus to algebra.

2. Its safety criterion is based on the evaluable class of queries, which is arguably the
largest decidable subclass of the (undecidable) domain independen® class.

3. It exploits object-oriented features to extend the evaluable class by introducing no-
tions of object generation on equality and membership atoms, which relaxes range
specification requirements. The result is that the broadest class of safe queries known
to date is recognized by the approach.

4. It uniformly models queries as first-class objects by directly defining them as type
and behavior extensions to the TIGUKAT object model. This results in an extensible
query model with a consistent, uniform, underlying semantics commensurate with the
object mode] and its behavioral semantics.

5. The extensible algebra specification forms a uniform basis for processing queries that
is exploited by the extensible algebraic query optimizer and execution plan generator
[Mnii94).

6. It is the most advanced object query model to be uniformly integrated with a base
object model in an extensible way, thereby unifying the components of an object
calculus, an object algebra, proofs of completeness between the languages, and an
effective translation from calculus to algebra within a common framework.

1.2.3 Schema Evolution and Version Control Issues

Dynamic schema evolution is the ability for a system to make changes to the database
schema while applications are running. The kinds of changes allowed, and the semantics of
these changes, vary in models proposed in the past. However, there is a fundamental set of
changes that is common to all models.

Schema evolution is necessary in complex applications in order to handle post-design
modifications that are typical in these systems. Some examples include changes in the the
way the application domain is structured, changes in the functionality of a particular appli-
cation, and changes needed in order to meet performance requirements. If properly defined,
schema evolution can also be used to support experimentation, or “what if” scenarios, with
existing applications.

In this thesis, the full schema evolution policies in the TIGUKAT object model are
presented. Everything is uniformly an object in TIGUKAT, but the schema evolution
component characterizes some objects as being part of the “schema” in order to define
evolutionary operations on them. Objects of other types, such as application specific types,
are not considered to be part of the schema and, therefore, schema evolution policies are
not defined for them.

Temporality has been introduced as a uniform extension to the TIGUKAT model [GO93]
and is based on behaviors. A behavior is either temporal or non-temporal. By defining
temporal behaviors on types, the types become temporal, and all instances of a temporal
type are temporal. Actually, only the temporal behaviors defined by a type are temporal in
the objects. Thus, an object may consist of both temporal and non-temporal components.

The temporal aspects are used to implicitly manage histories of behaviors. Behavior
histories, in turn, are used to manage the properties of objects over time. By maintaining
histories for appropriate behaviors of types, a model for versioning types is developed.
This model is extended to include behavior objects and object representations as well.

Since versioning occurs implicitly through the management of behavior histories, objects
are instances of a type and not instances of a version of a type. This means that ohjects
support the full semantics of a type instead of just a portion (version) of the type. This is
an identifying characteristic of the approach and has the benefit of maintaining semantic
consistency between old and new versions of types and the applications that operate on
their instances.

By using time to implicitly model versions of types and objects, the schema and itx
instances can be reconstructed at any time of interest. Each chosen time of interest is con-
sidered to be a version. Thus, the granularity of versions is based on the chosen granularity
of the time scale, rather than being restricted to version numbers. Note that the granularity
of the time scale could be version numbers if so desired. Using a given time reference (ver-
sion number, etc.), the type lattice, type interfaces, behavior implementations, and ohject
representations can be reconstructed as they existed at that particular time of interest. A
contribution of this approach is that historical queries can be run on the objectbase quite
easily.

Another identifying characteristic of version model is that object coercion occurs on a
“behavior-at-a-time” basis instead of on the entire object. This means that objects can
update certain behaviors to use an implementation defined by a newer version of a type,
while allowing other behaviors to continue using older versions. This means that a history
of the object’s semantics is maintained, which helps in maintaining semantic consistency
between old and new versions of types and the programs that operate on them.

The remainder of this thesis is organized into five chapters defining the components of the
TIGUKAT objectbase management system considered in this work, plus a summary chapter
with concluding remarks and future directions.

that form the base object model and include the primitive type lattice structure. The base
model is extended through uniformity to develop other components of TIGUKAT. Second,
the behavioral model is linked with a structural example model for completeness. The struc-
tural model specifies an organizational, yet implementation independent, representation of
conceptual objects of the behavioral model. A simplified Geographic Information System
(GIS) is defined as a client OBMS application and is used as a running example to illustrate
results throughout this thesis.

In Chapter 3, the TIGUKAT query model is defined as a uniform extension to the
object model and the concept of queries as objects is introduced. A formal object calculus
is defined by building on the bebaviors of the extended object model. A class of safe
calculus expressions is defined as the set of “reasonable” queries considered for translation
to the algebra. The operators of the formal object algebra are presented, along with a
description of the type creation and inferencing mechanisms used by the algebra to derive
typing information for the results of queries. Finally, the theorems and proofs of equivalence
between the calculus and algebra are preseated. An effective algorithm for translating safe
object calculus expressions into equivalent object algebra expressions is also given.

In Chapter 4, the features of the meta-model introduced in Chapter 2 are presented.
These include the ability to extend the meta-model through regular subtyping, defining

behaviors for operating on classes of objects, and the ability to provide reflection, which is
the focus of the chapter.

In Chapter 5, the dynamic schema evolution policies and version control are defined.
A number of invariants are defined that must be maintained over schema changes. The
schema changes allowed by the model are given and their full semantics, including how
lln-y mamtam '.IIF mvanants are prﬁstiméd The tempnrahty x:f the object model [(1093]

rbangﬁ to the mstam‘es is alsu consndered wh;ch resu]ts in versmned nbgerts A mmplete
description of how behaviors are dispatched to versioned objects is presented to illustrate
how the time model assists in maintaining behavior consistency between different versions
of types.

Conclusions and contributions of this work are presented in Chapter 6. The results are
summarized and a number of future research directions that the work suggests are discussed.

Since Chapters 2 through 5 are fairly diverse in subject area, each respective chapter
includes a survey of related work for the topic and an overview of the chapter’s contents.

Three appendices are included at the end of the thesis. Appendix A and Appendix B
specify the semantics of the types and behaviors of the TIGUKAT primitive type system,
respectively. These were prepared as part of the implementation of the object model.
Appendix C analyzes and compares the characteristics of the TIGUKAT object model
with the object-oriented manifestos [ABD*89, SRL*90] and the NIST standards report
[FKMT91] as an exercise to illustrate the compliance of TIGUKAT with emerging dc facto

standardization efforts.

Chapter 2

The Object Model

Recent work on OBMSs has resulted in a number of object model proposals (see [Dayx9,
MZOR9, Ken90b, Sny90, Bee90] among many). Several properties of these models have
emerged from the development of various prototype systems, including [GRN5, ("MK,
BMO*89, CDV88, WLH90, Deu90, KGBW90]. (‘onsequently, object models have some
variance in the features they support. However, most of them incorporate a set of common
core concepts, but the semantics of these concepts lack precise definitions and are, in gen-
eral, difficult to port from one system to another. The diversity of object model definitions
and the lack of a formal object model motivated the need to re-examine the qualities that
object-oriented systems provide and to develop a new object model that incorporates these
qualities and introduces new ones to extend the power of object models. Uniformity is an
example of one quality that has not been pursued in other models, but is fully integrated
into the object model defined here.

In this chapter', the TIGUKAT object model is defined. The model includes some
common features of earlier proposals, along with distinctive qualities that extend its power
and expressibility beyond others. The TIGUKAT object model is purely bchavioral in
nature, supports full encapsulation of objects, defines a clear separation between primitive
components such as types, classes, collections, behaviors and functions, and incorporates a
uniform semantics over objects, which makes it a favorable basis for an extensible objectbase
management system. Every concept that can be modeled in TIGUKAT has the uniform
semantics of a first-class object with well-defined behavior.

The literature recognizes two perspectives of an object model: the structural view and
the bebavioral view. Most object-oriented formalisms have concentrated on one or the
other of these two approaches. The TIGUKAT object model includes a behavioral model
definition and this is integrated with an example structural model to form a complete model
definition.

2.1 Related Work

Codd’s landmark paper in 1970 [Cod70] defined the relational model which provided a
simple, but powerful, method of organizing data. The main advantages of this approach
are that it offers a high degree of dats indcpendence, data consistency and language facili-
ties based on the first-order predicate calculus. The success of the relational model can be

'mdﬁmmp-m in the 1993 Preceedings of the Centre for Advonced Studies ('on-
Jerence (CASCON’83) [OP1*93).

partially attributed to its precise formal specification which facilitates a systematic investi-
gation of database management system (DBMS) functions such as query processing, views
and transaction management. However, it is well recognized that the flat record based
representation of the relational model results in a semantic mismatch between the entities
being modeled and the underlying DBMS [Ken79).

Several approaches have been followed to incorporate more meaning into a data model.
One approach proposes modifications to the relational model in order to supply it with
more power [(Cod79]. Others have extended the relational model with data abstraction by
including semantics for specifying user defined types [OHBG, Sto8S, WSSH88]. Some pro-
totype systems employing this approach include STARBURST [Haa90] and POSTGRES
[SRR6, RSR7, SRH90, SK91]. Another approach allows for non-first normal form relations
which facilitates the modeling of nested relations [OY87, RK87, $586, DKA+86). This
extension takes the language features outside the domain of first-order predicate calculus,
thus higher-order languages for these nested relational models have also been developed
[ABR4, JSR2, SchR5]. Some more recent relational model extensions have carefully in-
corporated properties of the object-oriented paradigm (discussed below) designating them
relational object models [RK89, $590).

An orthogonal approach to refational model extensions has been to develop a.completely
new data model with advanced modehng pmr and exprgmb:llty C)ne clan af mch mudels

of classification, aggregation and j:m:mlm!um [SSTT] These features allow for mmplex
information to be categorized and accessed in meaningful ways. The pioneering models that
fall into this category are the Entity-Relationship (ER) model [Che76] and SDM [HM78,
HMS81). An overvnew of tlle eutu'! ﬁeld can be hund in [HKBT PMSS]

the following:
. The funmoual dau model ud the data l;nguigﬂ DAPLEX [Shi81) which deﬁne:

entities and the relationships mg them are modelad as functions. Ths phus the
computational power of functional languages on properties and their relationships in
a uniform manner, which facilitates a better semantic expression of them. TIGUKAT
adopts this uniform functional approach and builds on it with the introduction of
behaviors as semantic definitions and the use of fanctions as the implementations of
behaviors.

o SIM [JGF*88] is a commercially available DBMS based on the semantic data model
SDM. Entities are defined in terms of simple data-valued attributes and more complex
entity-valued attributes, which represeat a binary relationship between two classes of
entities. Entities are organised into mea ul collections called classes, each of which
hdthahx*n(admﬂ:dhhndﬁtbdﬂhdm)cinﬁn(n
class defined in terms of other classes). This gives an inheritance hierarchy for entity
classes. TlGUl(ATnpmt-thmhnnﬂmnddmndmbtkhﬂc

o'l‘belPOdm-odd[AlIu]ﬁl:ﬁnnh;; teristics of semaatic data models
MwWhmn:Whﬂnﬁmhtkhﬂhﬁnﬂm
level data modeling. The TIGUKAT object model proposes a similar foundation for
the investigation of object-oriented modeling.

Object-oriented models were developed to further enhance the expressiveness and ab-
straction that semantic data models provide. Despite the number of object-oriented models
proposed, no universally accepted model exists. One reason for the absence of such a model
is that object-oriented development has followed the same informal route as semantic mod-
els.

Typically, DBMS development has followed two streams in the past. The first is to
extend object-oriented programming languages (OOPLs) with DBMS features such as per-
sistence and a query facility. The resulting systems are typically a merger between object-
oriented and relational systems. Out of this approach has appeared extensions to ('++ (e.g..
ObjectStore [LLOWS1] and EXODUS [CDVA8]) and Smallitalk (e.g., GemStone [BMO*89)),
among others. The second approach is to develop a language-independent object model and
consistently extend it with DBMS features. TIGUKAT follows the second approach as do
ORION [BCG*87], O, [BBB*88], and IRIS [FBC*+87), among others.

There are currently several efforts to standardize the features of object-orientation. For
example, two recent manifestos have appeared [ABD*89, SRL*90] that propose various fea-
tures inherent in object-oriented database management systems (OODBMSs). A side-effect
of these manifestos is to outline some object-oriented concepts that have sifted through the
various model proposals over the years. In addition to these, Zdonik and Maier [ZM90] de-
fine a reference model that specifies the common features that should exist in an OODBMS,
Wegner [Weg90] examines the goals, concepts and paradigms of object-oriented technology
in the forum of object-oriented programming. Bancilhon and Kim [BK90, Kim90b, Kim90a)
discuss the issues that will be driving object-oriented research in the next few years. Kent
[Ken90a) defines a framework that emphasizes behaviors and their invocations as a means
of comparing the “objectness” of different models. The X3/SPARC/DBSSG:/OODBTC re-
port [FKMT91] defines an open object model architecture and recommends some standards
for object management (ODM). Furthermore, several other classifications of object-oriented
concepts have appeared [CW8S5, SB85, AC86, KCR6, UlLIR7, WegR7, KinR9, MaiR9, Niex9,
Str90]. These papers serve as useful guidelines to measure the “objectness™ of varionus
models. The formal model developed in this thesis draws from all these reports and incor-
porates several of their core concepts. A comparison of the TIGUKAT object model with
these guidelines is given in Appendix C. Other models that have influenced the design of
TIGUKAT are discussed below.

Kent [Ken90b] defines a model that specifies a rigorous semaatics for the existence of
objects through unique object identities and has separated this from the semantics for
accessing objects, which is achieved through non-unique object references. The TIGUKAT
ob ject model incorporates a semaatics for object identity and object reference that is similar
to the concepts presented by Kent.

Snyder [Sny90] defines a generalized abstract object model that includes a set of core
concepts and terminology meant to represent the essence of object models. These concepts
intead to be abstract emough 50 that any specific object model may be built from them by
reflaing aad populating the general model. The TIGUKAT model is open and exteasible
because of the uniform treatment of objects. Extensions are easily made through subtyping
and refinement of behaviors, which are operations provided by the primitive model.

Beeri’s model proposal [Bee0] is an analysis and classification of the formal aspects
aad common features found in most curreat OODBMSs. The framework of this model
includes both structural and behavioral componeats. The structural model deals with
the represeatation of complex structured objects vs. atomic data values, notions of object
identity, organisation of inberitance graphs, and semaatics of declarative languages. The

behavioral component explores higher-order concepts of object-orientation such as model
uniformity, the semantics of methods, the application of methods to objects, and the se-
mantics of inheritance. The model is mostly a sketch of ideas and is meant as a motivation
for object-oriented researchers to refine the formal aspects of object models. Emphasis on
logic-oriented modeling is evident throughout the paper. The structural model presented
in Section 2.5 of this thesis has evolved directly from the concepts presented by Beeri.

Maier, Zhu and Ohkawa [MZORS9)] outline the structural object model TEDM, which
encompasses prominent features of the object-oriented and logic programming worlds. From
the object-oriented side, TEDM includes support for object identities, complex objects,
type structures, and property inheritance. Types in TEDM have both an intensional and
ertensional aspect. The intensionel view consists of the structural organization of the
type in how it defines the representation of its instances. The eztensional view denotes
the collection of objects adhering to the intensional structure of the type. Thus, TEDM
separates the notion of a type from its extent. However, the entire extent of a type is not
automatically maintained by the model (i.e., there is no notion of a class) and in this respect
resembles the structural model of Beeri [Beed0).

The TIGUKAT object model supports the separation of type and extent, but automati-
cally maintains the extent of a type through a class. Collections are introduced to allow for
general, heterogeneous user-defined groupings of objects. In this way, classes are maintained
by the system to generate the entire extent of types, and there is the added flexibility of
user-defined collections for customized, application-specific groupings of objects. From the
separation of types and extents, the notions of specialization vs. subtyping evolved and are
defined in TEDM. These notions are included in the design of TIGUKAT because of their
application in type inferencing.

The PROBE Data Model (PDM) [MD86] is based on the functional data model DAPLEX
[Shi81). PDM defines entitics that demote individual elements such as PERSONs or MATE-
RIALs, and functions to represent properties of entities and the relationships among them.
PDM generalizes the functional language of DAPLEX by defining a function as a relation-
ship between collections of entities and scalar values. This generalization allows functions
with zero or more inputs and one or more outputs. Furthermore, function arguments can
serve as both inputs and outputs in PDM. DAPLEX functions on the other hand allow
zero or more inputs and oaly ome output, and each argument must be either an input or
the single output. PDM allows functions that store values explicitly (stored functions) or
that compute values through a piece of code (computed functions). However, syntactically
all functions resemble computed functions. Functions in TIGUKAT are multiple input, but
only single output because the result of a function must uniformly be an object. Multiple
outputs can be handled by returning a single product object that is a conglomeration of
other objects. The universal treatment of stored and computed functions is incorporated
into TIGUKAT.

OODAPLEX [Day89) extends DAPLEX iato an object-oriented model by directly build-
ing on the PROBE model. The extessions to DAPLEX include abstraction, encapsulation
of behavior, closure, and enhancement of the declarative language features by allowing for
recursive queries and additionally describiag a compaaion algebra.

Iris [FBC*87, FAC*89, WLH90] is a commercial OODBMS founded on the fanctional
data model of DAPLEX [Shi81). The Iris model defines primitives for objects, types, and
Junctions. Objects are classified into the categories of litera! (atomic) and nen-literal (com-
plex) objects. Literals denote the directly system represeatable atomic building blocks of
won-literal objects. lris fully encapsulates object properties into behaviors (i.e., functions

or operations), which represent the only interface to objects. Thus, a high-level of data
abstraction and data independence is supported by the model. Operations take objects
as arguments and produce objects as results. All objects are classified irto types, which
define the operations applicable to obje-ts in the extent of that type. Types may be struc-
tured into subtype/supertype relationships and multiple subtyping is supported. (lasses
of objects may overlap, meaning an object may belong to several heterogeneous types si-
multaneously unless there is an explicit declaration restricting classes to be disjoint (classes
in subtype/supertype relationships must overlap). There is no support for separate user-
defined collections in Iris. TIGUKAT adopts complete encapsulation of behaviors that
uniformly accept objects as inputs and produce objects as results. The structural model
refines this perspective by distinguishing between atomic, abstract and complex structured
values. The TIGUKAT model supports heterogeneity through collections, and classes are
restricted collections of objects that must be in a subset relationships with one another.

0 is a commercially available OODBMS [Deu90, Deud1, BDK92). It consists of a formal
model definition based on the framework of a set-and-tuple data model [LRVRR, BRE*Rx)
and includes set, tuple, and list constructors for modeling complex nested objects [LRN9a).
The O; model supports subtyping based on the set inclusion semantics developed in [Carnd]
and this is used to establish classes of objects. Explicit user-defined collections are not
supported. The language features of O; include an object-oriented database programming
language called CO; [LR89b] with C++ like features and an SQL-like ad-hoc query language
called RELOOP [BCD89, CDLR90]. The query language is tightly integrated with (‘0,
and thus does not suffer from the “impedance mismatch” problem. Unlike TIGUKAT,
the O; languages are not based on a complete formal query model that includes an object
calculus and an equivalent algebra. The emergence of O, as a commercial OODBMS makes
it valuable as a benchmark system for ranking other systems on their performance and
industrial viability.

Smalltalk [GR85] was one of the first commercially available object-oriented languages.
However, Smalltalk on its own lacks the functionality of database systems. GemStone
[CM84, BMO*89] is a commercial system that extended Smalltalk with database fratures
to form one of the first OODBMSs.

Several other systems have provided insights into the development of object-oriented
features and have influenced the design of TIGUKAT. These contributions come from
Encore (ZW86], Orion [BCG*87, KBC+89, KGBW90), Exodus [CDF*+88, CDVSR], FAD
[BBKVS7], LOGRES/ALGRES [CCCR*90}, CACTIS [Hud86), CLASSIC [BBMRR9], and
EMERALD [BHJ*+87).

One unconventional approach that has generated some ideas about object existence
and refereaces to objects is the formal model proposal by Wand [WanR9). The philosophy
of ontology (Bun?7, Bun?9] is applied to define the notion of an object. The technique
iatroduces an intriguing philosophical perspective in defining the foundations of a formal
object model. An ontological approach has applications in the design of objact models
because these models are expected to have high levels of abstraction, and the more abstrart
models become, the more likely it is that philosophical isswes come isto play.

2.2 Object Model Overview

The object model proposed here is founded on a high-level behavioral specification with
object uniformity being an integral part of the definitions. The semantics of the TIGUKAT

object model is given by a complete set of definitions and is integrated with an example
structural model to clarify its functionality. The model is defined behaviorally with a uni-

and manipulation of objects occurs through the application of behaviors (operations) to ob-
jects, and the model is uniform in that every concept modelled has the status of a first-claas

are two major features of the TIGUKAT object model that distinguish it from other models.

The integration of the behavioral model with a structural counterpart illustrates how
the behavioral concepts can be organized at a structural level. This defines a complete
mode] that forms a basis for a clean interface to an object storage manager subsystem.
The behavioral model of TIGUKAT is integrated with a structural counterpart to form a
complete model definition. This is in contrast to other models that concentrate on one or
the other. One exception is the model by Beeri [Bee90], which emphasizes the structural
model and the integration with a behavioral model is incomplete. It is important to stress
that the choice of a structural counterpart is orthogonal to the behavioral specification
of TIGUKAT. The only requirement is that the structural component support the full
functionality outlined by the behavioral model.

Uniformity in TIGUKAT is more complete than in other models. This is demonstrated
in this thesis by uniformly defining a meta-model, a query model, schema evolution policies,
and version control as extensions to the base model. Other uniform extensions include a
query optimizer [Muii94], the introduction of temporality [G(093), and a transaction man-
ager.

The behavioral model evolves from the definition of several primitives. The primitives
form a foundation that supplies the necessary tools from which other constructs such as user-
defined and system objects may be created and extended. The primitives follow the same

model. That is, the primitive object system evolves within the same forum as other “real-
world” objects through the application of behaviors. The primitive objects of the model
include: atomic entities (i.e, reals, integers, naturals, characters, strings and booleans);
types for defining common features of objects; behaviors for specifying the semantics of
operations that may be performed on objects; functions for specifying implementations
of behaviors over various types?; classes for automatic classification of objects based on
their type®; and collections, bags, partislly ordcred sets and lists for supporting general,
heterogeneous, user-defined groupings of objects.

The primitive type lattice of TIGUKAT is shown in Figure 2.1 with type T_object as the
root aad type T_null as the base. The type Tnull binds the type lattice from the bottom
(i.e., most defined type), while T.object binds it from the top (i.e., least defined type).
T.null is a primitive type defined to be a subtype of all other types. T.null is introduced to
provide, among other things, error handling and null semantics for the model. For example,
there is an object aull that is an instance of T_null and can be returned by behaviors that
have 2o other result. This is the case because T.null (and therefore null) supports the
behaviors of all other types and can be substituted as the result of any bebavior. In a
similar way, instances undefined, dontknow and other error objects of type T.aull can be
defined

Figure 2.1 illustrates the subtyping relationships of the primitive type system. Each
?Behaviors and fanctions form the support mechaniom for sverieading and lote binding of behaviors.

T_classclass

Treal) Timeger l){inman)

_Supertype , .) B - Subtype

G — — = — ——

Figure 2.1: Primitive type system 7.

oval in the figure represents a primitive type and the edges between the ovals denote the
well-known notion of sublyping (i.e., the type T_type is a subtype of type T_object and so
on). Types are identified by an appropriate reference given within each oval. The semantics
of the types in Figure 2.1 are formally addressed in the following sections. A brief overview
is given here,

Uniformity dictates that everything in the model be an object; types, classes, collections,
bebaviors, functions, and 50 on, are all defined and managed as objects. The introduction of
uniformity eliminates the need for externally maintained meta-information since all informa-
tion, including the meta-data, is self-contained within the model as objects. An additional
benefit is that the limitless hierarchy of meta, meta-meta, etc. information is eliminated by
incorporating these levels into a single self-contained structure,

The type structure of Figure 2.1 is referred to as the primitive type system T. Each type
in 7 is associated with a unique corresponding primitive class object. Each primitive class
contains instances of other primitive objects (e.g., primitive behaviors, functions, collections,
strings, etc.). Types define primitive behaviors and these behaviors are associated with
primitive fanctions that implement the semantics of the behaviors. The union of the types
in 7 with the set of all primitive classes, behaviors, functions and other instance objects is
defined as the primitive object system O of TIGUKAT.

From the type structure of Figure 2.1, it is clear to see the uniformity of TIGUKAT and
the relevance of the statement “cverything is an object”. The TIGUKAT model restricts
dynamic type creation in that all types must be in a subtype relationship with T.object.
Therefore, due to the semantics of subtyping, all behaviors defined on the type Tobject
are applicable to all objects in the system, including T.. .ject itself. This structured type
lattice is important in maintalning the uniformity of the TIGUKAT object model,

An object is an abstraction for encapsulating information into a single entity that may be
operated os by behaviors. An object is only accessible through the set of behaviors defined

14

by the type of that object, which constitutes the interface of the object; this is known
as the encapsulation property. Furthermore, TIGUKAT supports strong object identity
[KCR6], meaning every object has a unique, immutable identifier associated with it, which
distinguishes the object from all others.

Object accessibility in TIGUKAT is achieved through the notion of an object reference,
which is the only way to denote an object. A reference serves as a handle or locator for
an ohject. References are associated with a particular scope and their meaning may vary
depending on the scope in which they appear. Unlike object identities, references need
not be unique. That is, there may be many references to a particular object. The exact
specification of scope and reference is outside the domain of TIGUKAT. These are left to be
precisely defined by application domains based on the model. For example, different ohject
prugramming Ianguagws may have varying levels of scoping that may differ from scoping in

Thrﬂughaut lhm t,hes:s, a funrtmnal pmgramming environment is assumed as a global
scope. The following prefix notations and font variations are adopted in this scope to denote
ohject references of the various primitive kinds.

T-name is a type ohject reference,

C_name is a class object reference,

L_name is a collection object reference,

B_name is a bebavior object reference,

F_name is a function object reference, and

name is some other application specific reference,

In this notation, the prefixes T_, C_, L_, B., and F. distinguish between the various
primitive object types where the “name” part is an object specific reference name. The
last notation, which does not include any specific prefix, refers to other system and user
defined objects that are not of a previously mentioned primitive kind. They may include any
sequence of characters, but should not normally begin with one of the established prefixes.
For example, T_person is a type object reference, C_person a class reference, L_seniors
a collection reference, B.age a behavior object reference, F.age a function object reference,
and '; rrf(-rfnfé such as Slmry witlmut nny :peciﬁ: pmﬁx reprﬂenu some mher lpphr;hon

nmg named refefenres is dwny; gwen asa iupplement m thg ;ymbn!;c nnt;tmnn
Th means I'i-r deﬁling th rharutéﬁ;tiﬂ af ﬁbjﬁ‘ti (l 2., typz) is np;nted fmm the

l]!ﬁ‘lfy ti(- ltrnctire lmi behvmr of nb jecu Tle type serves as an mformntiun repnntory
(template) of characteristics common among all objects that conform to that particular
type. As shown in Figure 2.1, types are organized into a lattice structure using the notion
of subtyping, which promotes software reuse and incremental type development.

A class ties together the notions of type and object instance. A class is a supplemental,
but distinct, construct from a type that is respoasible for mnngug the instances of a
particular type. The entire collection of ob;ed.: of a particular type is known as the estent
of the type. This is separated into the notion of decp estent that refers to all objects of a

15

given type, or one of its subtypes, and the notion of shallow cxrtent that refers only to those
objects of a given type without considering its subtypes,

Objects of a particular type cannot exist without an associated class and every class
is uniquely associated with a single type. Thus, a fundamental notion of TIGUKAT is
that objects imply classes which imply typcs. Another unique feature of classes is that
object creation occurs only through a class using its associated type as a template for the
creation. Defining object, type and class in this manner introduces a clear separation of
these concepts. This separation is important during type inferencing in the algebra which
manipulates type objects into new subtype relationships and need not be concerned with
the overhead of classes. Furthermore, many object-oriented systems include abstract types
whose sole purpose is to serve as place-holders for common behaviors of subtypes and are
never intended to have any instance objects. In this case, there may be no reason to manage
classes for abstract types, because there are no instances of these types. The separation is
also important to uniformly define the model within itself, which builds the foundation for
features such as reflective capabilities.

In addition to classes, collections (essentially sets) are defined as a more general. user-
defined, grouping construct. A collection is similar to a claxs in that it groups ohjects,
but it differs in the following respects. First, object creation cannot occur through a col-
lection; object creation occurs only through classes. This means that collections only form
user-defined groupings of existing objects. Second, an ohject may exist in any number of
collections, but it is a member of the shallow extent of only a single class. Third, the man-
agement of classes is implicit in that the system automatically maintains classes hased on
the type lattice whereas the management of collections is ezplicit, meaning that the user
is responsible for their extents. Finally, a class groups the entire extension of a single type
(shallow extent) along with the extensions of its subtypes (deep extent). Therefore, the
elements of a class are homogeneous up to inclusion polymorphism. On the other hand,
a collection may be heterogeneous in the sense that it can contain objects that may be of
different types that are not in a subtype relationship with one another. A collection of
objects is denoted using the standard set notation as {0,0;,...,0,,} where each of the o,
is an object reference.

Basic collections are supplemented with definitions for bags (type T.bag), which are
collections that allow duplication of elements, partially ordered scts (type T_poset), which
are collections with an ordering relation defined between pairs of elements, and lists (type
T4st), which are collections that combine the properties of bags and posets by allowing
both duplication and ordering of its elements.

These aggregate types may be specialized by subtyping the general types. One form
of specialization is to define a subtype that restricts the elements of its instances to be
of a particular type. Parameterization is used to denote this form of refinement. The
syntax is given as T.collection(TX), T.bag(TX), T-poset(TX) and T1ist(TX) where TX
represents some other type specification. This restricts the members of the aggregate type
to be compatible with the type TX¢. For example, T.collection(T.person) represents a
collection whose members are objects that are compatible with the type T.person. The
notion of type compatibility is formally defined in Section 2.4.4.

In TIGUKAT, type T_class is a specialization (subtype) of T_collection, which in-
troduces a clean semantics between the two and allows the model to utilize both grouping

“The notations T.cellection, T.bag, T-peset and T_1ist are abbreviations for the parameterized nota-
tions T.collection(T.abject), T.hag(T.object), T.peset(T.object) and T.1ist(T.object) respectively.

constructs in an uniform manner. For example, the targets and results of queries are typed
collections of objects and since classes are a specialized collection, they may be used in
queries as well. This approach provides great flexibility and expressiveness in formulat-
ing queries and gives closure to the query model, which is often regarded as an important
feature [Bla91, YO91).

The remaining subtypes of T_class make up the meta type system. These include the
types T_class-class, T_type-class and T.collection-class. Their placement within
the type system directly supports the uniformity definition of the model. Section 2.4.6
describes the semantics of the behaviors defined on these types and the architecture of
the corresponding class and instance structure of the types. This meta-model (within the
model) is the foundation of reflective capabilities which is addressed in Chapter 4.

Two other fundamental concepts in TIGUKAT are behaviors and the functions (known
as mcthods in other models) that implement them. Behaviors and functions have clearly
separate roles in TIGUKAT. The benefit of this approach is that common behaviors over
different types can have a different implementation for each of the types. This is in direct
support for behavior overloading and late binding of implementations to behaviors. These
are recognized as major advantages of object-oriented computing.

The semantics of every operation on an object is specified by a behavior deﬁned on
its type. A function implements the semantics of a behavior. The implementation of a
particular behavior may vary over the types that support it. However, the semantics of a
behavior remains consistent over all types supporting that behavior. There are two kinds
of implementations for behaviors: computed functions and stored functions. A computed
Junction consists of runtime calls to executable code and a stored function is a reference to
an existing object in the objectbase. The uniformity of TIGUKAT considers each behavior
application as the invocation of a function, regardless of whether the function is stored or
computed.

A semantic description of a behavior may be quite complex. One approach is to define
the functionality of behaviors using a denotational semantics [Sto77, All86, Sch8s, CP89).
A simpler technique, common in many other models, is a signature expression. A signature
defines u name (reference) used to invoke the behavior, the types of the arguments to
the behavior, and the type of behavior’s result. Signatures are useful and necessary for
describing the semantics of behaviors, but they are inadequate for characterizing the full
semantics. Describing the full semantics of behaviors is a difficult problem. In this thesis,
it is assumed that a proper semantic specification mechanism exists. Only signatures are
defined for behaviors to give some indication of their semantics. A more complete semantic
specification is part of the future research. It should be noted that the extenmsibility of
TIGUKAT allows the complete specification to be easily added when it is finally defined.

Functions are objects that include source and implementation components. The source
component is a human readable definition of the function’s operation (behavior) usually
written in some object-oriented programming language, but can additionally include En-
glish commentary and further semaatic descriptions. The implementation component of a
function comsists of executable code if the function is computed, or is simply a reference
to a particular result object if the function is stored. The functional approach adopted by
TIGUKAT benefits from the significant amount of research that has been done in the areas
of fenctional programming languages and functional theory such as the lambda calculus
{Bar81, Rev89] and category theory [Pie88, LS86).

As a supplement to the behavioral model, & rtructural model maps behavior definitions
into a representation that is consistent with a storage manager level interface. The structural

17

level makes a cleaner distinction between atomic entities of the system and the structured
objects (abstract data types (ADTs)) that are constructed from them. At this level. the
domains of the atomic types are mapped into the semantics of ralues, which serve as the
identity and state of atomic objects and gives them the properties of immutability.

From the user’s perspective, the domains of atomic types can be assumed to exist and
can be manipulated using the behaviors defined by the atomic types. In other words.
they are seen as constants in the model. Exactly how this abstraction is maintained is
implementation dependent. Languages for the model must provide a syntax to specify
references to the constants of the atomic types. The act of specifying a constant (in a
query language for example) from an atomic domain is interpreted as a request to return an
object representing that constant. An implementation can either scan the objecthase and
return the corresponding object constant if it exists, or create a new one if it does not. For
efficiency reasons, an implementation should physically allow many duplicate instances of
atomic objects, but maintain the abstraction of uniqueness and immutability. This approach
is followed by the implementation of TIG'KAT (Ira93].

Abstract objects include the user-definable objects of the system (e.g., application specific
objects, executable functions, etc.), along with the primitive non-atomic system objects
(e.g., primitive types, classes, behaviors, etc.). An abstract object, as a whole, PNCOmMpasses
the properties of immutability (and in this sense is atomic), but it incorporates a separate
state that may change over time. There are two main reasons for considering abstract
objects to be atomic. The first is related to the notion of strong object identity. Changing
the state of an abstract object does not transform the object into some other object (i.e.,
the identity of the object does not change). Rather, it is still the same object it was before,
only now it carries different information. In other words, abstract objects are atomic in the
sense of their existence (or identity). The second reason deals with the representation of
(possibly complex) objects in mathematical logic. In this case, it is beneficial to consider
abstract objects as atomic because this perspective relates them to the first-order semantics
of logic, which is well-defined [Bee90].

The structural aspects of the model are clarified by the introduction of an object graph
representation defined in Section 2.5. An object graph is used to illustrate the structure
and contents of an objectbase with application specific and primitive system ohjects stored
uniformly. The nodes of an object graph correspond to the atomic values and abstract
objects in an objectbase, while the edges represent relationships (defined as behaviors)
between the various nodes (i.e., objects).

Each concept introduced in this section, although related, has a separate role in the
model and each has a distinct semantics. In the sections that follow, these concepts are
discussed in more detail and their semantics are formalized. First, a simplified geographic
information system (GIS) is defined as a running example used throughout the thesis to
demonstrate results.

2.3 Example Objectbase

Object-orientation is intended to serve many application areas requiring advanced data
representation and manipulation. A geographic information system (GIS) [Aro89, Tom90)
is selected as an example to illustrate the practicality of the concepts introduced and to
assist in clarifying their semantics. A GIS was chosen because it is among the application
domains which can potentially benefit from the advanced features offered by object-oriented

technology. Specifically, a GIS requires the following capabilities:
1. management of persistent and transient data,
2. management of large quantities of diverse data types and dynamic evolution of types,

3. a seamless integration of complex graphic images with complex structured attribute
data,

4. handling of large volumes of data and performing extensive numerical tabulations on
data,

5. management of differing views of data, and
6. the ability to efficiently answer a variety of ad hoc queries.

A GIS can be defined as an apolication “designed for the collection, storage and anal-
ysis of objects and phenomena where geographic location is an important characteristic or
critical for analysis. ..In each case, what it is and where it is must be taken into account.”
[AroR9). Some examples of this include displaying the effective range of a police force, illus-
trating how logging activities affect wildlife populations, and depicting the severity of soil
erosion.

GIS technology is being applied to many areas. Some common ones include agriculture
and land use planning, forestry and wildlife management, geology, archaeclogy, municipal
facilities management, and more global scale applications such as ecology. Each of these
areas rely on statistical data, historical information, aerial photographs, and satellite images
for analyzing and presenting empirical data, for drawing conclusions about certain phenom-
ena, or for predicting future events through sophisticated computer simulations using the
information at hand. GISs require advanced information management and analysis features
in order to be effective. Objectbase management systems have the potential to provide this
advanced functionality.

A type lattice for a simplified GIS is given in Figure 2.2. The example is sufficiently
complex to illustrate the functionality of the model presented in this thesis, yet simple
enough to be understandable without an elaborate discussion. The example includes the
root types of the various sub-lattices of the primitive type system 7 to illustrate their
relative position in an extended application lattice. The additional types defined by the
GIS example include:

1. Abstract types for representing information on people and their dwellings. These
include the types T_person, T.date, T_dwelling and T_.house. Note that T_date is a
new atomic type introduced by the application which is used to represent dates in a
form acceptable to the application.

2. Geographic types to store information about the locations of dwellings and their
surrounding areas. These include the type T_location, the type T_sone along with
its subtypes which categorize the various zomes of a geographic area, and the type
Tmap which defines a collection of sones suitable for displaying in a window.

3. Displayable types for presenting information on a graphical device. These include
the types T.displayObject and T.window which are application independent and the
type T.nap which is the oaly GIS application specific object that can be displayed.

N\

T_null

Figure 2.2: Type lattice for a simple geographic information system.

4. A type T,gmﬂri&lp- which defines the geometric shape of the regions represent-
ing the various zones. For the purposes of this thesis, only the general type is used,
but in more practical applications this type would be further specialized into subtypes
representing polygons, polygons with holes, rectangles, squares, splines, and so on.

Table 2.1 defines the signatures of the GIS specific types in the lattice of Figure 2.2.
The semantics of these behaviors will be clarified throughout the remainder of this the-
sis. Furthermore, the signatures for the types of the primitive type system 7 will also he

2.4 The Behavioral Model

In this section, the behavioral aspects of the TIGUKAT object model are emphasized. The
high-level abstract functionality of the model is described and the presentation follows a
formal approach. At times structural aspects are addressed to clarify certain points raised,
but these digressions are kept to a minimum. A full integration of the behavioral model
with an example structural counterpart is delayed until Section 2.5.

3.4.1 Atomic Types, Classes and Objects

Most data models include a set of basic primitive types referred to as atomic types. The
common types T.boolean, T_character, T_string, T.real, T_.integer and T.natural are
included as part of the primitive model definitions. The collection of atomic types are
r&hfdmnthmmpd ()tbertypﬂm;ybreuily added !u!hhﬂibﬂim

‘s;iqﬁubmggﬂpdﬁ&eﬁniu

Signatures

B_lon lude Treal .
B Bj,iiplv: T.displayObject]
esize: T _window -

[TdisplayObject
T.window

B_resize:

B.drag:

T-vindow

T.geometricShape - -
Tsone B.title: T_string]
B.origin: Tlocation
B.region: T.geometricShape
B.area: T.xreal
- B_proximity: T._zome — T.xeal
T map ‘B_resolution: T.real
B_orientation: T.xeal
, - B_sones: T.collection(T.zone)
(Tland " B.value: Txeal ' B
T_water _ B.volume: Txeal -

T _transport

“B_efliciency:

Treal

Taltitude

“BJow:
B_high:

T-iateger
T-iateger

" T_person B.name: T.string -
B_birthDate: T.date
B.age: T.matural
B.residence: T.dwelling
B.spouse: T.persca
- B_children: T_persom — T.collection(T person)
Tdvelling B_address: T.striag]
o B.inZone: TJlasd

B_inZoge:

T.developed®

Bamﬁge _Txeal _ _

"~ *Behavior was refined from supertype T.dvelling,

Table 2.1: Behavior signutures pertaining to example specific types of Figure 2.2.

Section 2.3 extends the atomic types with the type T_date.

Atomic types define the behaviors applicable to atomic objects of that type. Atomic
objects are equated to the notion of literals defined in [FKMT91]. They are never explicitly
created by the user. Instead, they can be assumed to exist and users can manipulate system
maintained references to these objects, or create and use their own references derived from
the primitive ones. For each atomic type, there exists a corresponding atomic class that
groups the instances of that atomic type. Thus, an atomic class for each one of the atomic
types is included.

Atomic types and classes are objects that are related to other types and classes in the
model. For example, the atomic types are all objects of the primitive type T.type and
are managed as instances of the primitive class C.type. The atomic classes are of type
T.class and belong to class C._class. This structure follows from the uniformity aspects of
the model.

TIGUKAT defines the usual behaviors for atomic types (i.e., behaviors that are com-

since these types are universally known abstractions. The full behavioral specification of
these types and their objects is defined in the implementation of the model [Ira®; 3).

Objects of the type T_real are represented as floating point numbers (e.g.. -23.456 or
3.9E-3) with behaviors for the usual arithmetic operations such as addition, subtraction.
multiplication and division, along with relational operators (<,>.<,>). Equality is ex-
cluded from this list because it is defined as a behavior of the more general object type.
Integer objects have the usual syntactic denotation as a string of digits (e.g., 12345) with an
optional sign while naturals represent the subset of positive integers only. Boolrans include
the two instance objects true and false which have the usual logical operations. (‘haracters
are inclosed in single quotes (e.g., ‘x’) and correspond to a particular collating sequence.
Characters support comparison operators through their ordinal values. Strings are rep-
resented by a sequence of characters in double quotes (e.g., “A string”). Strings support
comparison operators by examining the ordinal values of thﬂr component characters and
also include a variety of string manipulation behaviors.

The atomic types T_.real, T_integer, T.natural, and T.string represent an infinite
domain of atomic objects. A finite objectbase is assumed and therefore all classes within
the model must be finite. To deal with this, there are two kinds of classes provided by the
médd The one kind is tiﬂed an :rplicit chn b!‘(lll!l' it explmtly mngﬂ its nhalkpw

The second kind is called an nnpha! class because the shallow extent is not exphﬂl.ly ;mﬁ-d,
but rather is implied from the contents of the objectbase. In other words, the shallow extent
of an implicit class is the (finite) collection of objects in the objectbase that belong to the
cim Tlle ;hlkw extent of an impin‘it clm can h mmputed hy iranm lhe obp-rtba:e

Ma:t tl;ne; are eprm dm Hmver, the rlaus for thr ;tumir typﬂ Lrul.
T-integer, T_.natural and T_string are implicit. Moreover, they are special in the sense
that there is a built-in mechanism for creating the constants of the these classes. The act of
writing down a constant of one of these classes (in a query for example) can be thmnght nf
as a request to return an object representing the constant, creating a new one if nece
For example, the class C_intager is initialized with the object zero and by using the Binrf
and B_pred behaviors on this object, any integer object can be theoretically created and
returned. The act of writing down the integer constant 2, can be thought as a request to
apply B_succ to the object zero and then to apply B.succ to the result. This cither returns
the existing object representing the integer 2, or creates a new one. This is an assurance
that there is only one integer 2 in the objectbase. Any intermediate objects created along
the way that are not stored in the objectbase are deleted. The reals and ntnr;k lmni a
similar semantics. The B.succ and B_pred bebaviors os reals are limited to the prec
of reals on a particular system. The class C_string is initialized with the empty itnng nd
string l!pmﬂminn of all the chﬂr.ten d‘ whch tbere are a ilne “mbsr With lbau-

ofwﬂthgdﬂ:thenrhg“jne“mbethlghtﬂu;rqmth;pglyB@nﬂbtk
string objects “j” and “o” and then to apply B.coacat to the result and the string ohject
“e”. Of course, in the implementation of TIGUKAT [ira83] it is not actually done in this
way. Instead the “native” domains of the implementation language are used. The above is
Just a formal model that is consistent with the uniformity aspects of the object model.
The instances of the atomic types serve as both state and identity. For example, the
atomic type T_integer draws from an infinite domain of objects whose elements serve as
the identity and state of their existence. An integer reference 5 refers to an integer object

whose identity and state is the universally known abstraction of the integer 5. There is
only one 5, there always has been and there always will be. Note that this does not restrict
users from establishing additional references to the integer 5 such as five or V. The same
argument holds for all types in the atomic type pool.

An explicit tuple type is not included in the model. The notion of tuple can be cast
into ordinary object definitions. Tuples are entities with attributes that define the value of
the tuple. Objects are entities with behaviors that define the state of the object. Thus, a
tuple can be mapped directly into the representation proposed for an object by mapping
attributes to behaviors and values to state. Whenever a tuple definition is required, one
may create a type where the attributes of the tuple are defined as the behaviors of the type.
The values of the tuple attributes are accessed and manipulated by applying the behaviors
to objects that are compa.tlble wnth the glm type Tnples and objects h;vr an mlierent

semantics.

2.4.2 The Behavior and Function Primitives

Two fundamental concepts of TIGUKAT are behaviors and the functions (known as methods
in other models) that implement them.

A behavior is an object that performs an operation on other objects and produces an
object as a result. Behaviors are defined on types and are applicable to the object instances
that are compatible with that type. Types wanting to provide a particular behavior must
define tlut behavior obj)ect as part of their interflte or have tile beha\rmr mhentgd thmugh

of this approach is that common behvm over dﬂferg-lt typs can have a dlfgrent imple-
mentation in each of the types. This is referred tu as overloading the behavior, meaning
that the implementation of the behavior may vary depending on the type of the object to
which it is applied. This gives the model the ability to dynamicslly bind implementations to
behaviors at run time (known as late-binding). Overloading and late-binding are recognized
as major advantages of object-oriented computing.

The semantics of every operation on an object is specified by a bebavior defined on its
type. A function implements the semantics of a behavior. In other words, a function pro-
vides the opcrational semantics of the behavior it implements. Due to overloading, the im-
plementation of a particular behavior may vary over the types that support it. Nonetheless,
the semantics of the behavior remains consistent over all types supporting that behavior.
There are two kinds of implementations for behaviors. A computed function comsists of
runtime calls to executable code and a siored function is a reference to an existing object
in the objectbase. Stored functions eliminate the need for instance variables, which Limit
reuse (WBW89b]. The waiformity of TIGUKAT comceptually sforms each behavioral
application into the invocation of a function, regardless of whether the function is stored
attributes [WBW80a).

Behaviors are instances of the type T.behavior and functions are instances of the type
Ttunction. The standard arrow (—) notation is used as a syntactic representation for
functions and curry multiple argument fanction specifications. hthﬁw.lwﬂ:miuy
of other representations are supportable. A general function specification is of the form

A — R where A represents the argument type expression of the function and R represents
the result type. In general, the argument and result type expressions may consist of any
other type specifications (including function specifications).

Functions as implementations of behaviors are unary (i.e.. curried) in the sense that
they have an argument expression A consisting of a single type that is compatible with the
type the function is expected to be applied to (i.e., the type defining the behavior that is
using the function as an implementation). The result expression R of a function denotes
the result type of the object returned from the execution of that function.

Types have an eztent of objects that are grouped by a corresponding class. Types define
a set of behaviors that are applicable to the objects in its extent (i.e.. its class)®. Behaviors
represent the only means of accessing and manipulating objects in a class, and functions
are the objects that implement these behaviors.

The semantic definition of a behavior can be specified in many ways. Some examples
include using the code that implements the function as a specification, or using an informal
English description, or possibly a more formal denotational specification [Sto77, AlNG,
Schi8, CP89]. A simple method, common among other models, is the use of a signatun
expression for representing the meaning of a behavior. A signature defines for a behavior a
name (reference) used for behavior application, the types of its arguments, and the type of its
result. Signatures are useful and necessary for describing behaviors, but they are inadequate
for characterizing the full semantics of behaviors. In this thesis, it is assumed that a
proper semantic specification mechanism for bebaviors exists and that equality testing on
behavioral semaatics operates reliably. There is a behavior B_semantics (denoted []) defined
on the type T_behavior that returns the complete semantic specification of a behavior. For
example, applying B.semantics to a behavior, say b (denoted [b]), returns the semantic
specification of b. Currently, only signatures are defined for behaviors to give some indication
of their semantics. As part of the future research, a more complete specification of behavior
semantics is being developed.

A signature specification consists of several elements. It has a name used to invoke the
behavior, it has argument types, and it has a result type. The name for invoking a behavior
is given by a standard string, and the argument types and result type are one of the types
available to the user. Since behaviors are always defined on a particular type, and types
can be function specifications, a behavioral specification may be thought of as a function
with a single argument (an object of the type it is defined on) and a single result (am object
of the type specified as the result, which may be a function). Formally, the represeatation
of a signature is as follows:

Definition 2.1 Signeture (b: R): A signature is a partial specification of behavior. It is
denoted as b : R and cousists of a neme (b) that is used to apply the behavior to an object
and a result type (R) that specifies the type of the object resulting from the application of
the bebavior. The argument types of b may be embedded as a curried function expression
im RO

Several primitive behaviors are defined on the type T_behavior for the purpose of ar-
cessing and manipulating behavior objects. The behaviors relating to signature expressions
include the following:

B_same : T_string to access the name of a bebavior,
7%“ dasi aships between type, class and estent ent are formally defined in Sections 2.4.4 and 2.4.8.

B_argTypes : T.type — T.1ist(T_type) to return the list of argument types of a behavior
for a particular type, and

B_resultType : T_type — T_type to return the result type of a behavior for a particular
type.

The name of a behavior must be unique over types that define the behavior and are
in a subtype relationship with one another. However, the result type and argument types
of a behavior may vary as long as they are compatible with the types of the behavior in
all supertypes that define that behavior. Type compatibility and subtyping is discussed in
Section 2.4.4.

Behaviors are applied to objects. The object receiving the behavior is explicitly specified.
This is similar to the classical or message-based object model outlined in [FKMT91]. The
dot notation r.iay,...,a,) is used to denote the application of behavior b to the receiver
object r using objects @) through e, as arguments. If no arguments are required, then
the application simplifies to r.b. The result of this behavior application is a reference to
an object in the extent of the result type specified by the signature of b. Since the result
is a reference to an object, it may have other behaviors applied to it. Thus, the behavior
application itself may be thought of as an object reference.

For example, consider the following signature defined on the type T.person in Table 2.1:

B_residence : T_dwelling

Applying B_residence to an object of type T_person results in the execution of the
function object associated as the implementation of this behavior, which returns an object
that is compatible with the type T.dwelling. If an expanded signature specification as in
[SO90a] were used, the signature would be written as follows:

B_residence : T_person — T_dwelling

In TIGUKAT, a behavior mn!bedeﬁneﬂmntmhehelmng used and a behavior
mbdehedﬁ:mnytypa Therefore, the “T_person —” part of the signature is
omitted and is derived from the type of the receiver object instead. Consider an object
Sherry as an instance of type T_person. The application of B_residence to Sherry is de-
imnl as Sh.ry E_uﬂdﬂe! Thl mvohg the fuictm associated as the :_planelmm

T.ﬁ-llh; Anhmﬂfmndnfmhmﬂe m;yi;v:idli!ﬂlt
implementation of B_residence, but the bebavior is semantically equivalent in both types.
The signature partially supports this semantic equivalence.

An optional representation for behavior application is function invocation demoted as
Kr,ay,.. +18y) where one of the arguments (e.g., the first one) is special in the sense that it
hﬂathemﬁmdjnﬁ This repr tion is equivaleat to the dot notation. Referring
m:pnmmph‘mthhhﬁlgﬂna!mﬁeﬂkﬁhqlﬁg
fenction invocation is specified as B.residence(Sherry). Function invocation represents an
optional represeatation for bebavior application and has a direct translation to the dot
mlhhnﬁvhgtbm&mﬂtﬂtbmthmthmhﬁeth

'hhﬁi!aﬂ ;M(M)hmmmmu-qp retaras the collection
dhhﬂlﬁﬁhdnlbﬂlyp

In order to associate a function with a behavior for a particular type, the type T_behavior
defines the following behavior:

B_associate : T_type — (T_function — T behavior)

This behavior accepts a type and a function as arguments. For example, the behavior
application b.B_associate(T, f) will associate function f with behavior b in type T. Now,
whenever b is applied to an object of type T, the function f will be invoked. Other behaviors
defined on T behavior include B.implementation for accessing the function (implementa-
tion) associated with a behavior for a particular type, B_defines to get a collection of types
that the behavior is defined on, and B_apply to apply a behavior to an object with a list of

Functions have behaviors such as B_source and B_executable for accessing the source
code and executable load module of a function. The source component is a human readable
deﬁnitiﬂn uf the fnnrtiun'l opentm malt likely ITI‘I“Ei in some ob jrﬂ-nﬂentd pmgram

The lmpiementatmn mmpaﬁent of a fnnﬂmn n:mmts uf PKH‘BIHHF code, in the case nf
a computed function, or is simply a reference to a particular result object, in the case
nf a ltﬂl!d functinn Tbe flllll:tiﬂli] ;ppm:li idopted by TIGUKAT heneﬁt: fmm tln-

lmgugs ud fun:tm;.l tbeury ﬁcll as th llmlnil uk-nlu: [B;rﬂl RFVRQ] nd r;tegnr\r
theory [PEBB Lsss]. Cllgbry tllmry is a pure tbeury of fnﬂms mnmtllg nl' (-bpﬂn
and morphisms

gory thenry the TICUKAT abject model is hmd on ﬂbprtg ud brhvm.. whn'h art as a
mapping from one object to another. The identity, composition, and associative properties
of morphisms in category theory with appropriate modifications also hold for behaviors in
TIGUKAT. The lambda calculus is a functional language with a simple syntax for spec-
ifying parameterized functions and function application. Lambda expressions are used in
devehpmg the predn:ns of the TIGUKAT algebraic operators to define the application of
behaviors within queries.

The type T_function defines the following additional behaviors to deal with function
properties and function application: B.argTypes for accessing the list of argument types
of the function, B_resultType for accessing the result type of the function, B_compile for
compiling the source code, and B_execute for executing the function.

In Section 2.4.4, subtyping (also referred to as behaviorsl inhcritance) is defined as a
reuse mechanism for the behaviors of types. A behavior is inkerited in a subtype T_7 if it is
defined in a supertype of T_r. Otherwise the behavior is native. Behavioral inheritance has
no implication on the reuse of implementations. That is, inherited behaviors do ot neces-
sarily borrow any implementation from their supertypes (although this may be the default).
For this reason, a separate reuse mechanism for implementations called implementation in-
Aeritance is defined. A behavior implementation (i.e., function) is inkerited in a type if the
behavior that it implements is inherited, and if the implementation is the same function
as the implementation of that behavior in the supertype. Otherwise the implementation is

The TIGUKAT object model supports multiple inkeritance (i.e., multiple sublyping).
Multiple subtyping means that a type can be a direct subtype of several other types. This
requires a conflict resolution policy to choose an implementation when inheriting semanti-
cally equivalent bebaviors with different implementations from several types. TIGUKAT

it is an error far a type to mhem two diﬁ’erent 1mplementitmni (1 e, functn:m s) far the
same behavior. The error can be avoided by explicitly redefining the implementatinn for
that behavior. One of the two conflicting functions can be chosen as the redefined imple-
mentation. In TIGUKAT, a separate mechanism to resolve inheritance conflicts between
instance variables is not required because there is no concept of instance variables. They
are handled as behaviors with stored functions as the implementation and stored function
conflicts are resolved in the same manner as computed function conflicts.

Conflict resolution is unnecessary for behavioral inheritance because this deals with
semantics of behaviors, which are preserved over type boundaries, while the implementation
of these semantics may differ over conflicting types. The inheritance mechanism, as well as
the conflict resolution policy, is implementation dependent and not part of the base model
definition.

2.4.3 The Object Primitive

An object is a fundamental primitive in TIGUKAT because the conceptual level of the model
deals uniformly with objects. In Section 2.2, the concept of an object as an abstraction for
encapsulating information and behavior into a single entity is described. The encapsulated
portion of an object is referred to as its state, which is accessible only through a set of
hehnvinn deﬁned on the type ﬁ:r that ﬁbj!t! The st;te :ams the infnrm;tm cnntem

immutable ly:tﬁn mnnged ldenmy Im the nb_pect thmghmlt lts existence. Tlms the
mode| considers an object as a pair consisting of an identity and a state.

Definition 2.2 Object: An object is defined as the pair (identity, state) where identity is
the unique, immutable identity of the object and where state is the information carried by
the object. O

An unique object identifier (or oid) is associated with an object upon its creation and
persists with that object throughout its lifetime. An oid serves as the identity of an object.
In TIGUKAT, objects are composed of other objects because the result of behaviors applied
to objects are objects themselves. Conceptually, every object in TIGUKAT is a composite
object. By this, it is meant that every object has references/relationships (not necessarily
implemented as pointers) to other objects. For example, even integers have behaviors that
return objects, but they are not implemented as pointers.

lfmm;iﬂiﬁthedmainufﬂﬂbﬁnluthmﬂenm of pairs consisting of all

possible combinations of identity and state, then an unwanted inconsistency arises. This
dﬁnnil will contain objects with the same identity, each associated with different states.
This is obviously inconsistent because there is a single identity attempting to identify several
semaatically distinct states.

To eliminate this inconsistency, the following definition of a consistent set of objects
is formed, which gives a basis for objectbase construction. The definition assumes the
existence of an operation oid{o) that takes an object o as input and returns the internal
identity (cd)aftbe object as its result. Note that this operation could be defined as a
behavior that uniquely maps all objects (past and preseat) to the integers.

ob;ﬁ:! set (mmc!) if and cmhr if Yo, n; € 0, md(n,) = md(q,) = o, = 0,, where =
denotes logical implication. O

The definition of a consistent object set adheres to the notion of strong object identity
[KCBE] That is, every object in a conact has an internal identifier that is distinct from
all others in the conset. This feature gives each object a unique existence within a conset
and provides an unambiguous association with the state of that object. Note that with this
definition two separate objects may share the same state information. This is reasonable
since there are many examples of real-world objects (printed maps of a city to name one)
that have identical properties, yet are distinguishable objects in their own right.

The primitive object system € is a consct of objects as laid out by the following axiom.
The remainder of the model development is within the bounds of a conset.

Axiom 2.1 The primitive object system () is a consct. O

Some argue [SRL*90, Bee90] that object identities should have the option of being either
system or user assigned. In the TIGUKAT model, all object identities are maintained au-
tomatically by the system without any user involvement. This is in keeping with the notion
of strong object identity and has additional benefits when it comes to reconciling the com-
ponents of distributed object bases and the variable interpretations that may exist among
them. Nevertheless, user defined identities can be supported in the presence of strong ohject
identity. They are possible through application specific interpretations. For example, a user
may choose to recognize one of the behaviors of an object (e.g., B_social_insurance_number)
as an identifier for that object and all other objects like it. The TIGUKAT model places
no restrictions on this kind of customized interpretation.

Object existence, access, and manipulation in TIGUKAT is based on the notions of
reference, scope and lifetime. This is similar to other model proposals [Sny90, Ken90h,
FKMT?91] in that the only user expressible form of an object is a reference within a particular
scopc. A scope defines the visibility, access paths and lifetime of object references. A
reference may be thought of (and actually implemented) as a pointer (or handk) o an
abject whmh in turn legdl to the abjzet (] ldmhty md s!glr Tln- notation E 135 dﬂlﬂlfﬂi

lmmlternl Thé R, mmpnnent isa mfefmn- name u]lwnng to th- pn-ﬁx nmatn:m mtbmﬁd
in Section 2.2. The lifetime of an object is independent of the lifetime of a reference to
that object in a particular scope. That is, when a reference disappears, the object being
referenced does not necessarily disappear, but may persist past the lifetime of the reference,
However, if an object no longer has any references (system or user) maintaining its existence,
then the object should be selected as a candidate for storage reclamation. From the database
perspective, there is also the issue of explicit deletions. Deleting an object within a particular
scope should guarantee that the object is no longer visible in that scope, but how this affects
its visibility within other scopes concurrently referencing the object is part of a concurrency
control mechanism and is not addressed in the primitive model. The semantics of object
deletion in light of schema evolution is addressed in Chapter 5. The semantics of storage
reclamation is outside the scope of this thesis. Figure 2.3is an example of an object reference
model and illustrates the relationships among scope, reference, identity and state.

In Figure 2.3 there are the two scopes S, and S;. The scope S, could be an application
programming environment while S; may be an interactive query processor. The exart

TIGUKAT.

Object
_ _ 1 _ o
Reference I ,]
o oid State
R, oL ——
,] — statey
Scope 8, | R, — / -
— Atate;
3 R I !
Scope 5, ; b — °3 states
g ~ — ——

Figure 2.3: An object reference example.

may Vary over apphratmns Wlthm scope '5’1 then! are th@ thﬁe Db)ﬁ't refere,nres R;, R;
and R3. References R, and R; refer to the same object identified by /;, and R refers to
the object identified by /3. Within scope §; there are two object references, Ry and R,.
In this scope, R3 refers to the same object as Ry and R; do in scope Sy, and R, refers to
the object identified by /3 which is unrelated to scope §;. This example shows the various
mappings from references over scopes) and S; to their associated objects. The heavy
dark line around the objects indicates the boundary of the TIGUKAT object model. If, for
example, one considers everything within the boundary as being persistent (i.e., assuming
a persistent object store), then if a reference or an entire scope disappears, the objects will
persist (provided they have other references to them and won't be garbage collected). When
referring, to objects, the terms “object” and “object reference” are used interchangeably.

Operations on objects are performed through behaviors. Since object access is specified
through references, behaviors are applied to object references within a particular scope
which in turn applies the behavior to the actual objects and returns a reference to the
resulting object. There are several primitive behaviors defined on type T_object that are
inherited by all other types because the lattice is rooted at T_.object. These behaviors
represent the fnﬁd;mentd operations on objects.

A basic requirement in the model is a mechanism to determine if two object references
are actually referring to the same object or different objects. Therefore, the following
cquality behavior is defined on T.object, which makes it applicable to all objects.

Behavior 2.1 Object Equality, (B.equal : T_object — T.boolean) (=): For any two
object references R, and R; in their respective scopes S; and S;, the result of applying
Ri05;.B.equal(R;0S5;) is true if and only if R;05; and R;05; map to the same object
identity in the domain of object identities (i.e., md(ﬂ.ﬂs‘) 0id(R;0S5;)). Since the
model development is within the bounds of a conset, the states of the objects must also be
equal. The infix binary relation operator “=" is used as a shorthand for B_equal, and the
above behavioral application of B_equal can be expressed as R;0S; = R;QS;. Similarly,
the inverse relation # is defined to test for inequality. The result of equality is an object
reference to an atomic boolean object true or false. Object equality/inequality is reflexive,
symmetric and transitive. O

‘Scope §, 'anper.fig Scopes S‘, and S;
Ry =R, | Ry = Ry | RyaS, = Ryas;
R:=R; | Re =R, R\QS, # R85,
Ry= Ry | R3 # Ry | R,05, = RyaS;
Ri=R; R;@S8, # R,05,
Ry # Ry R30S, # RyaS,;
Ry # Ry - R3S, # RS, |

Table 2.2: Object equahues of Figure 2.3.

Table 2.2 lists the equalities/inequalities that result in true among the references of
Figure 2.3 over the two scopes. The first column shows the equalities in scope §,, the
second in scope S; and the third lists the equalities over both scopes.

This is the only kind of equality the primitive model defines. It is quite strong in that
the only way two object references are considered equal is if they actually refer to the same
object identity. This notion of object equality is the same as “identity equal” defined in
[KCR6] or “0-equality” defined in [LRVSR]. At this level, there are no notions of shallow or
decp equality found in other models [KC86, LRVRR, Osh8R] or extended versions of these
that determine equality at various levels [SZ90]. These notions can be defined as identity
equivalence relationships on the behavioral characteristics of objects and therefore should
be left to customized interpretations at the behavioral level rather than heing part of the
primitive model definition. For example, the model may provide the classical shallow and
deep equivalence through behaviors that evaluate and determine the equivalence of ohjects
based on the identity equivalence of their component behaviors. This is strictly a design
decision that should be left for the implementation phase of a particular system. Dayal
[Day89] also makes this argument by stating that there are many notions of equality and
those other than “identity equality”™ are best left for the “customizers” of the model to define
the ones that are of most utility to them. For example, equality for behaviors is specialized
to mean semantic equality, and equality for atomic objects is specialized to mean value
equivalence.

Note that equality testing at the object identity level is transparent to the reference
model and is an operation provided by the system through the internal oid() function.
This is necessary since the identities serve as part of the representation of objects and
are not objects themselves. Including identities as objects, in one sense, cleans up the
semantics of certain definitions, but poses problems in other aspects. The deciding argument
that suggests identities should not be treated as objects has to do with the circularity of
definitions that arise if identities are objects. If an identity is an object, then by definition
it must consist of an identity (and a state), but this new identity must be an object,
which must consist of an identity (and a state). A fix-point for this recursive definition is
not obvious and has led to the development of a consistent approach that does not treat
identities as objects.

Objects in TIGUKAT are strongly-typed. This means that each object is uniquely
associated with a particular type, which defines the object’s full semantics. Thus, object
implies a type (object ==¢ type). A type defines the behaviors applicable to the objects of
that type. It is important in type-checking and query processing to know the type of an
ob ject (smoh] (or a conformance of types for an object). Therefore, a behavior on ohjects
is defined that returns the type of the object. We say that every object maps (o a particular

type. The B_mapsto behavior is defined on the type T_object making it applicable to all
objects.

Behavior 2.2 Mapa to (B_mapsto : T_type) (—): For an object reference o, the behavior
application o.B_mapsto is defined to be the singleton type object reference T_r that repre-
sents the type of object 0. The notation o — T.7 denotes that object o maps to type T.r
(i.e. (0 T_r) => (0.B_mapsto = T.7)). O

For example, if the object Sherry is an instance of the type T_person, then the following
behavior application returns the type of Sherry, which is T_person:

Sherry.B_mapsto

Using the symbolic notation, the behavior application is specified as follows:

Sherry — T_person

Extending this uniformly to types, the behavior application T_person.B_mapsto returns
the type object T_.type and T_type.B_mapsto returns T_type as well. Thus, T_type is a
fix-point for the B_mapsto behavior. Symbolically, this is specified as follows:

Sherry — T_person
Tperson ~ T_type
Ttype — T.type

The support of objects that have behaviors from multiple types is handled by the single
type approach. For example, given types T_student and T.artist, and an object Sherry
that is both a student and an artist, a new type, say T_student-artist, is created® with
all the behaviors of T_student and T.artist. The object Sherry can then map to this type,
thereby acquiring all the behaviors of students and artists. In Section 3.5.1, an automated
type inferencing mechanism is defined for generating types during query processing so that
result collections which containing objects of different types have a single type describing
the common behaviors of all objects in the result. The single type approach is advocated by
several type theories including Martin-L5f type theory [ML82, BCMS89) and those based
on the typed lambda calculus [Car86].

A model must supply a mechanism for removing objects from the system. The TIGUKAT
model allows many references to an object. Therefore, the removal of an object (within a
particular scope) consists of severing the link between the reference and the object. This
process does not necessarily destroy the object because other references may still be valid
and in use (i.e., reference lifetime is independent of scope lifetime). When there are no
references to an object, the object is dangling. A garbage collection policy could be em-
ployed to reclaim the storage occupied by dangling objects. Since this is an implementation
issue, it is not part of the formal model definition. Concerning the primitive objects, these
are system defined objects and the system always maintains a reference to them. There-
fore, these objects are not endangered of becoming dangling objects and being removed by
storage reclamation.

*This type creation can be done through sublyping as described ia Section 2.4.4.

are mtmduced after then' fnnndatmnx are ﬁtahhshed,

2.4.4 The Type Primitive

A type defines behaviors and encapsulates hidden behavior implementations and state struc-
ture for objects created using the type as a template. The behaviors defined by a type
desfﬁbe the inkrfm tﬂ the ahjﬁts of tbal typs Types are urglnized inln a lnuiﬂ- iihn
de\relopment TIGUKAT :upports mulnple mhtypmg. s0 the type struﬂurr is a d![’l'ﬂﬂl
acyclic graph (DAG). However, this DAG has the root T_object, which is a supertype of
all types, and the base T.null, which is a subtype of all types.

The uniformity aspects of TIGUKAT imply that types are also objects with their own
state and identity along with their own type. The state of a type object consists of a struc-
tural specification of its instances (a template), references to the encapsulated behaviors it
defines, references to its subtypes and supertypes, and a reference to its associated class (if
it exists).

The type that describes all other type objects is the primitive type T_type, which is also
a type (i.e., T_type ~— T_type). The type T_type is a fix-point for the B_mapsto type refer-
em'ing behviﬂr T_typ- i; lﬁ‘ﬂﬁb‘l‘ in thv same manner as any nthef (:h jﬂ". Thus lypﬁi
serves as the dueﬂptm of all nthgr typ!!, lln: is k,nawn as t,he typgdype pmprﬂy, le
issue of type:type is controversial, particularly in the area of programming languages. For-
tunately, some functional language specifications where the type:type property holds have
emerged [CHEG] The:e are hkély clndld;tu to mm in the dewbpmrnl nl' * prngrmmmng

Recnlj from Settm 2.4.2 that behaviors are qtbe,r exphmly deﬁnﬁl by a pnrtiruh,r
type or are inherited from a supertype. Behaviors that are explicitly defined by a type and
are not defined in any of its supertypes are called natine behaviors. Other behaviors of
the type that are defined by its supertypes are called inhcrited behaviors, T_type defines
behaviors B_native for accessing the native behaviors of a type and B_inherited for accessing
the inherited behaviors. The entire public interface of a type is the union of the native: and
inherited behaviors. The behavior B_interface is defined to return this union. Additional
operations are defined on the interfaces to provide facilities for adding, deleting and updating
the behaviors of a type. These operations address issues of update semantics and schemea
evolution which are covered in Chapter 5.

Tw nhtm-h[ﬁ among types have been identified [DSPN] One is the concept of a

e specializing another type in 3 manner similar to what is described in [MZOR9]. The
other is ﬂie more popular, and stronger, notion of explicitly creating a type as a subtype
of another type [CarB4). Specialize is a binary relation defined on types that determines
whether one type specializes another. A specialization is determined from the semantic
characteristics of behaviors.

" "The term “lattice” is woed loosely and is common in describiag the type stracture of object-oriented
systems. Formally, the type siructure of TIGUKAT in a complete partial order with & Jeast defined clement
T.object and & most defined cloment Tamll.

Behavior 2.3 Specialize (B_specialize : T.type — T boolean) (C): A specialize re-
lation C between pairs of types T_.r,T.o is a reflexive and transitive relation such that
T.r.B.specialize(T_o) (denoted T_r C T_7) is true if and only if the interface of T_a is a sub-
set of the interface of T.7 (i.e., T.o.B interface C T_r.B_interface). This can be interpreted
as, type T_7 specializes type TJI if and only if the behavioral interface of T.7 subsumes the
behavioral interface of T.o. If T.r C T.o and T_o C T_7, then either the interfaces of T.r
and T_o are identical or T.r and T.# refer to the same type object (i.e., T.r = T0). O

A type may have an associated class of objects that have been created using that type
as a template. This is known as the extent of the type and is important in the context
of subtyping. Subtyping, like specializing, is defined as a binary relation on types, but
is stronger in the sense that it defines a partial ordering of the type lattice and a subset
inclusion relationship on extents.

Behavior 2.4 Subtypc (B_subtype : T_type — T boolean) (X): A subtype relation <
between pairs of types T.7,T.o is a reflexive, transitive and antisymmetric relation such
that the behavior application T_r.B_subtype(T_o) (denoted T.r < T_o) is true if and only if
type T_7 has been cieated as a subtype of type T_o. The notation T.r < T.o is interpreted
as T.7 is a subtype of T.o and implies that:

1.TrC T,
2. ther behaviors of T_o are inherited by T.r (i.e., T_r.B_inherited = T.o.B_interface),
and
3. the extent of T_r is a subset of the extent of T_o.
It can equally be said that T.o is the supertype of T_7. O

Consider the simple example in Figure 2.4. The types T_person and T.house have no
explicit relationship with one another, however, they do have a derived specialize relation-
ship as indicated by the dashed arrow. On the other hand, the type T_studeat is explicitly
denoted as a subtype of T_person as indicated by the solid arrow. According to the behav-
iors defined on these types (as shown in the boxes), T_person specializes T_house because
T.person defines all the behaviors of T.house and more. From the definition of subtype,
T.student specializes T_person (and transitively T_house), which conforms to the behav-
ioral inclusion notion of specialize (i.e., T_student defines all the behaviors of T.person (and
‘r.llﬂn). plus more). Conversely, T_house does not specialize T_person nor Tstudent. It
is interesting to note that if T_person did not define the B.name behavior, then T_.house
would specialize T_person as well.

In addition to the behavioral information, the type extents are given in Figure 2.4 with
ownership indicated by the double solid line. The subtype relationship between T_student
and T_person insists that the extent of T_student is a subset of the extent of T_person (i.e.,
every student is a person). Tlhnhzt relationship is shown be the dotted line. On the
other hand, the specialize relationshis dnﬂ:ﬂdnudniﬁthdtﬂm of type extents.
This is reasonable since a person is not a house, Specialize is important when inferring
types for the results of queries. For example, if a query returns all the persons or houses
thnmzsmdqe,ltmhnaddmdﬁcﬁhﬂembmdthmmﬂt
By using the specialise relationshi between T_person and T.house, & common type can
be derived nanﬁypdfmnndfmﬂghdﬂs the behaviors B.age and

T _student

B_degree -
B_GPA ‘__: -

Extent of T.student

Figure 2.4: Example of subtype and specialize relationships.

B_height. These behaviors are applicable to all members of the query result, regardless of
whether the member is a person or a house. A complete discussion of type inferencing is
given in Section 3.5.1. In summary, specialize is important from the behavioral perspective,
while subtype is important from the behavioral and extent inclusion perspectives.

A type is either a direct subtype of another type or is a subtype through transitive
closure. The model defines two primitive behaviors on type T.type for managing subtypes.
Behavior B_subtypes returns a collection containing all the direct subtypes of a given type
and bebavior B_supertypes returns a collection of all the direct supertypes. The type
T.object bas no supertypes.

Subtyping is a stronger relationship than specialize in several respects. First, the subtype
relation (<) defines a partial order on types while specialize (C) does not, because specialize
is not antisymmetric. That is:

T.r<To and To<Tor = T.r =T, but
TrCTeo and TOoCTr = Tr=To

Second, all behaviors of a supertype are automatically inherited by a subtype, which implies
that these behaviors cannot be native. Note that this only refers to the behavioral inkeri-
tence which is different from implementation inkeritance; the implementation of inherited
behaviors may change in the subtype as long as they provide the semantics specified by
the behavior. For types in a specialize relationship only, common bebaviors may be rede-
fined as native behaviors in each of the types. Lastly, subtyping defines a subset inclusion
relationship on type extents while no such property is enforced for specialize. Specialize
can be used to test whether two types have compatible interfaces. On the the other hand,
subtyping guarantees that the interface of a type is compatible with (or conforms to) the
intesface of all its supertypes.

A type may be declared uanbtypedmﬂﬂknyps. meaning that a type can
have many supertypes and also many subtypes. This is usually referred to as multiple
inheritance [CarB4), but the term multiple subtypingis used in this thesis. It follows from this
property that a type can also specialise maay types and be specialized by many other types.
Multiple subtyping requires a coaflict molitim ieb!ﬁe to nled a pmper implennmin-

T.object

7

T.displayObject
T.zone

T.window

T.map
Figure 2.5: Super-lattice of type T_map.

different types. The definition of this protocol is considered to be an implementation issue
and therefore is not include as part of the primitive model definition. A simple approach is to
force the user to resolve the conflict by either choosing one of the possible implementations
or redefining the implementation altogether. Note that conflict resolution is only a problem
in implementation inheritance and is not required for behavioral inheritance due to the
assumption that semantic definitions of behaviors are powerful enough to express uniqueness
that persists across type boundaries.

The definition of subtyping leads to the axiom of root type which imposes a lattice struc-
ture on the schema of types and is important for the maintaining the model’s uniformity.

Axiom 2.2 Root Type: for all types T_r, T.r < T_object. O

The axiom of root type states that all type objects are subtypes of the type object
Tobject, which forms the root of the type lattice. This axiom is important in that it
forces all types in the system to support the behaviors defined on type T_object. Since
types model entities in the system, the axiom ensures that everything is an object.

Every type, together with its supertypes, forms a structure called a complete lattice.
This structure is introduced and its role in the model is established through the definition
of a supertype lattice behavior on the type T_type. The following definitions reference a
type system denoted 7" that is defined to include the primitive type system 7 together
with all application specific types supplementing 7.

Bebavior 2.5 Super-lattice (B_super-lattice : T_poset(T_type)) (O): For a given type
T_r, T.r.B_super — lattice (denoted Ot_,) returns a collection of types, partially ordered
by < (i.e., a poset), such that for all types T.o € Or_,,T.7 < T.o and there does not exist
atypeTPpET such that T.r <Tpoand Tp ¢ Or,. 0O

From Axiom 2.2, all types are a subtype of the type T.object. Therefore, T.object
must be in Or_, for all types T.7 and Oy _, forms a complete lattice of types with T.r being
the most defined element in Oy, and the type T.object being the least defined one. For
example, applying the super-lattice behavior to the map type T.nap of Figure 2.2 (denoted
as T.nap. B_super-lattice) results in a collection of types including T_map, T_sone, T.window,
TdisplayObject and T_object that is partially ordered by the < relation. This complete
lattice is represented graphically in Figure 2.5.

In addition to super-lattice, the model defines a complement behavior B_sub-lattice that
returas the sub-lattice of a type. The sub-lattice is also a complete lattice with the receiver

type as the root and type T.null as the base. Note that B_super-lattice and B_sub-lattice
include the receiver type in their result while B_subtypes and B_supertypes do not. The
reason is that every type is a subtype of itself, but is not considered to be a direct subtype
of itself.

By definition, any object of type T_r must support the behaviors of all types in the super-
lattice T_r. In other words, any behaviors that operate on objects of a type T.o € Op,
must operate on objects of type T.r. Some have called this substitutability [SZR9] because
an object of type T_r can be used (substituted) in any context specifying a supertype of
T_r. The definition of conformance is refined from [Str91a] to describe this property, but
first a ¢ ns to relation on the type T_object is defined as follows:

Behavior 2.8 Conforms-to (B_conformsTo : T_type — T.boolean) (~+): Given an vbject
o and a type T.r, the behavior application o.B_confortuisTo(T.r) (denoted o ~+ T.7) is true
if and only if 0.B_mapsto C T_r. The term o ~+ T_r reads object o conforms to type T_r. O

The truth of the statement o ~» T_r implies that all behaviors defined on type T_r are
applicable to the object 0. Given an object o that maps to type T.7, 0 must conform to all
types that T.r specializes. Let S denote the collection containing these types. E»ch set in
the powerset of S forms what is called a conformance for the object 0. A conformance is
formally defined as follows:

Definition 2.4 Conformance (x): A conformance for an object o is a collection of types
0 = {T.1, T2,..., T_n} such that for all types T.i € 8,0~ T_{. The notation 0 = O is
used to indicate that object o has conformance 6. O

A conformance for a particular object gives a typed perspective of that object. The
types in a conformance define behaviors that are applicable to the given object. It is

possible that not all behaviors applicable to the object are represented by the types in the
conformance. An object has (possibly) many conformances, which translates directly into
the statement that a type can specialize (possibly) many other types. However, for every
object there exists a conformance such that adding a type to the conformance does not add
any additional type information for the object, and deleting a type from the conformance
would lose typing information. This conformance is called the most specific conformance
for the object.

Definition 2.8 Most Specific Conformance (MSC()): A conformance © for an object o
is a most specific conf>rmance if and only if there does not exist a type T.r € 77 such that
o~ T.r and T.r C T.o for some T.o € O, where T.o # T.r. A most specific conformance
for an object o is denoted by MSC (o). O

The most specific conformence for a particular object o is the one and only collection
of types M SC(o) that most specifically define the bebaviors of 0. Every object has one
aand only one most specific conformance. In general, for a given object o, the most specific
conformance is a collection consisting of the single type that the object o maps to. In
previous work [SO90a), we found that when an object o is a collection (i.e., set), there is
another form of MSC to consider that is important for typing the results of queries, which
are collections. This second form of MSC is wseful for determining the collection of types
that most specifically define the common bebhaviors of the element objects in the collection
rather than the conformance of the collection object itself.

T3 | [T4
B3 B4
T.1 T2
_1 B2
o) 0,

subtype -_ supertype
Figure 2.6: An example type schema.

Definition 2.8 Moat Specific Set Conformance (M SC,et()): The most specific set con-
formance for a collection of objects O (denoted M SC,.(0)) is the one and only collection
of types O such that:

(1)Vo€ O, 0= 0, and
(2) ATr€T'|Vo€ C, 0~ T.rand T.7r C T for some T.0 € © where T.o # T.r

o

The first statement indicates that © is a conformance for every object in O. The second
states that there is no type in the type lattice that more specifically defines the behavior of
all objects in O other than the types given in ©. For example, consider the type structure
of Figure 2.6, and assume the existence of two objects 0; and o; such that o, is in the
extent of T.1 and o, is in the extent of T.2. Because of subtyping, 0, and o, are also in
the extents of T.3 and T.4. The MSC(oy) is {T-1} and the MSC(0;) is {T2}. Usin
this schema, a query could generate and return the generic collection object {0y,0;). Tie
MSC({01,01}) could be given as the generic collection type {T.collection)} because of
the lack of additional type information. In contrast, the M SC,.«({01,03}) is the collection
of types that most specifically define the behaviors of the elements in {0y, 03} (i.e., objects
0; and o, respectively). The result of this conformance is the collection {T_3,T.4} because
both o) and o; inherit the bebaviors of T_3 and T_4 and there is no other type that more
specifically defines both objects. The result could not have been {T.1} because 0; does not
mfarm to T.1 and nmkl mh;veha {'i'.'i} ha:luea. dosmmifmmtu'rs it:ha

nndy behaviors B¢ or B.3 mpsﬂvﬂy

MSCpuf) is used in the query model to perform type checking and type inferencing
ﬂthmﬂuﬂquﬁs. The result of a query is a collection that may contain objects of
progeneous types. M SCou() can be used on query results to determine the most typing
hﬁrnnhn(i.e behaviors) for these results. The general usefulness of MSC o) and an
algorithm for determining the most specific set conformance for a set of objects is presented
in [Str9la).

A final behavior required on types is for determini
given type. hgﬂutnmdjamd;mhhtm,thegmhuhmdgd
with the type to manage the instances of that type. However, types do not require an
associated class if there are no instances of that type. For example, maay object-oriented
systems include ebetract types whose sole purpose is 0 serve as placeholders for common

t 1

behaviors of subtypes and are never intended to have any instance objects. In this case,

there may be no reason to manage classes for abstract types, because there are no instances
of these types. However, a class may be formed if there is a need to categorize the objects of
the subtypes by a common class. Thus, the model enforces the one way implication: claxs

= type. The behavior B.classof is introduced to manage the class of a type:

Behavior 2.7 Class of (B.classof : Tclass) (C): Given a type T_r, the behavior ap-
plication T_r.B_classof (denoted as Cr_,) returns the unique class object (if it exists) C.r
associated with T_r that manages the extent of type T_r. O

For example, if one assumes that a class C_map has been created and associated with
type T.map, then the application T.map.B.classof returns the class object C_map. The
notation Cr_sap represents an object reference that is equivalent to the references C_map
and T_map.B_classof (i.e., Cr nap = C.map = Tmap.B_classof).

2.4.5 The Collection and Class Primitives

The support of efficient query processing and storage management requires mechanisms to
group related objects so that they may be managed, referenced and processed collectively.
The collection and class objects serve this purpose in TIGUKAT. The relative advantages
and disadvantages of providing a system-managed class as the only grouping mechanism
for the extent of a type versus supporting user defined and managed collections as clusters
of instances has been debated [YO91, OSP94). Beeri [Bee90] shows, at a structural level,
that both can be supported. The TIGUKAT model defines both classes and collections for
grouping objects

called the extent. The tenn “collection” and exl;-nt are equ;ud mea,mng a ﬂ"ﬁ‘;ﬁ‘nn! to
a collection is a reference to its extent,,

There are two ways that objects can be included in a collection. One is that ohjects
can be explicitly added to the collection. The other is that a predicate can be defined on a
collection that automatically includes objects.

The objects in a collection support a set of common behaviors; they must minimally
support the behaviors of T.object. These common behaviors are defined by a type (called
the member type) in the type lattice that is associated with the collection when it is created
and can evolve as the extent changes. Every collection knows its member type.

The semantics of collection objects are given by the behaviors defined on the primitive
type T.collection. The H}nwmg behavmr is deﬁned on ‘l'.;alhctian nd rﬂurnn lin-

may automatically derive thn typ

Behavior 3.8 Mcmber Type (B.memberType : T_type) (A): Given a collection L._r,
the behavior application L_r.B_typeof (denoted Ay _,) returns the singleton type object
that represents tbemembertypedmﬂettbi L.r. The member type has the property
Vo€ L.r,o~ A ,.

Collections may be heterogeneous in the sense that the extent may contain objects that
map to different types which are not in a subtype relationship with one another. The
type inferencing mechanism in Section 3.5.1 guarantees that in such cases a unique type is
chosen (or created) as the member type of the collection, and that this type represents the

most defined combination of the heterogeneous types. This approach allows Behavior 2.8
to always hold.

Heterogeneous collections are essential for proper handling of queries that may return
objects of various types [$090a). A collection always has an associated type that specifies

in the algebra for example) in order to provide as much type information as possible for
the objects in the collection. Type inferencing is used by the object query model defined in
Chapter 3.

inclusion of extents, B.insert and B.delete to add/remove objects to/from collections, and
a host of other behaviors representing the algebraic operators that are introduced by the
query model.

The specialized, better known, form of a collection is that of a class. The type T.class
is defined as a subtype of the type T_collection. Therefore, classes must support all
behaviors defined for collections, but these behaviors are refined (i.e., specialized) for classes.
Every class is uniquely associated with a single type. This association occurs at class
creation time and persists with the class throughout its lifetime. The B_memberType
behavior for classes is defined to return this type. B.memberType on classes is the inverse
behavior of B_classof on types.

The extent of a class is separated into two forms. The first form is called the shallow
cztent and is similar to the extent of a collection in that a class represents its shallow extent.
The second form is called the decp extent and is built from the shallow extents of classes.
Shallow and deep extents are well know concepts that have been discussed in other models
[KCR6, BCG*+87, S090a). They are formally defined as follows.

Definition 2.7 Shallow Eztent (*): The shallow eztent of a class C.r (written C.7*) is
the collection consisting of all objects o such that 0 — Ac_,. The class itself represents its
shallow extent. O

Definition 2.8 Deep Ertent (*): The deep extent of a class C.r (written C.7°) is the
collection consisting of all objects o such that 0.B_mapsto < Ac_,. There is a behavior
B.deepExtent defined on T_class that returns the deep extent of a class. O

In a context where neither the shallow (+) nor deep (+) extent qualification is given,
the deep extent is assumed.

The shallow extent of a class includes all objects created using the class member type
as a template. The deep extent of a class includes the objects of the shallow extent union
the shallow extents of the associated classes of all subtypes of the class member type.
Cd, CJ, the collection Ci* N Cj* is empty when Ci ¥ C.j. The definition of deep
exteat imposes a subset inclusion relationship on the extents of classes. This is referred
to as subclansing, which has a direct relationship to subtyping and is in keeping with the

Definition 2.9 Subclass: A class C.1 is a subelass of a class C_o, meaning C_r* C C_o*,
ifiiﬂﬂlyifAc_f;iﬂcij.ﬁéﬂiﬁiﬂjiﬁ?tmﬁ;bikmﬂciﬂﬂ

In TIGUKAT, a type is separated from the declaration of its class and subsequent
collections. This design issue is a controversial one. Many former model proposals bundled
these two concepts calling them either a “type” or a “class™ [GRRS, LRVRR, BRH* 58S, $tro0).
In the TIGUKAT model, special care is taken to separate the two notions and attach
individual semantics to each one. We believe that a type is simply a specification mechanism
that is used to describe the structure and behavior of objects. This should be separated from
the grouping of objects in order to provide flexibility in defining exact grouping semantics.
In the TIGUKAT model, classes group the shallow and deep extents of types, which has its
basis on subtyping. In other models, this definition varies. The introduction of collections
supplements classes by providing a very general grouping mechanism that has a consistent
semantics with the concept of a class. The inclusion and separation of these notions provide
greater modeling flexibility and expressibility than if they were bundled into a single concept.
For example, in Chapter 3 queries are defined to operate on collections and return collections
as results. Since classes specialize collections, queries can also operate on classes. The type
checking of queries and the type inferencing of query results is a separate issue. Both classes
and collections should be type checked. Since types are separate from classes, this is possible
in TIGUKAT through the member type. Furthermore, a member type may be created for
a collection without ever creating any objects of that type (i.e., abstract types). This new
type may define the common behaviors of heterogeneous members of a collection consisting
of existing objects in the objectbase that do not map to the new type. Separation of type
and class allows this notion to be easily modelled as well.

A final behavior defined on the type T_class is that of object creation. All ohjects are
created through a particular class using that class member type as a template. This has
the side effect of automatically placing the object in the shallow extent of the class, which
implies that it is in the deep extent as well. In the following signature, the notation A,
denotes the type resulting from applying the B_memberType behavior on a recciner class
object c.

Behavior 2.9 New (B.new : A.): Given a class C_r, the application of the behavior
C_r.B_new has the result of creating a new object o such that o is consistent, 0 — Ac.,
and 0 € C_r* (which implies 0 € C_r°). The application C_r.B_new denotes an ohject
reference to the newly created object o whose type is Ac_, that is derived from the receiver
class object C_r. O

The result type of B_new is refined for each class to reflect the member type of that
class. This ensures that objects created with B_new have the proper type. For example, the
bebavior application C_person.B_sew creates a new object of type Ac _person = T-person
and places it in the extent of class C_person. The returned result of the application is an
object reference to the newly created T_person object. Similarly, the behavior application
C_map.B_sew creates a new object of type Ac _map = T.map and places it in the extent
of class C_map. The B_sew behavior on classes gives the TIGUKAT model the neceRsary
ability to create new objects and to have them automatically placed into their respective
class extents.

3.4.6 Higher Level Constructs

Several of the primitives introduced in the previous sections are referred to as mets-
information because they are objects which provide support for other objects. For ex-
ample, the type T_type provides support for types by defining the structure and behaviors

40

system. In a uniform model, tbese met;—tbb jects are nb;ettz themnlves and are umfarmly
managed within the model as first-class objects. The support for this semantics lies in the
introduction of higher level constructs called meta-meta-objects or m?-objects.

The meta-system of TIGUKAT is a three tiered structure for managing objects. This
structure is depicted in Figure 2.7. Each box in the figure represents a class and the text
within the box is the common reference name of that class. The dashed arrows represent
shallow extent instance relationships between these objects with the head of the arrow being
the instance and the tail being the class to which that instance belongs.

The lowest level of the structure consists of the “normal” objects that depict real world
entities such as integers, persons, maps, behaviors and so on, plus most of the primitive
object system is integrated at this level. These include types, collections, behaviors and
functions that are represented as objects, which illustrates the uniformity in TIGUKAT.
This level is designated m® and its objects are m%-objects.

The second level defines the class objects that manage the objects in the level below and
maintain schema information for these objects. These include C_type, C_collection and
l“ other classes in the lyltem, except i'nr tbe cllnﬂ in the level ﬂkﬂ! Tlie md level

higher level is that classes mn-wa ob;!tt; nl‘ thg :y:tem, every class is mtd lnt,ls a
type, and types define the semantics of objects through behaviors which defines the schema
of the objects. Thus, classes together with their associated types are the meta-information
of the system.

The upper-most level consists of the meta-meta-information (labeled m?) which defines
the functionality of the m!-objects (meta-information). The structure is closed off at this
level because the m2-object C_clase-clase is an instance of itself as illustrated by the looped
instance edge. The introduction of the m?-objects adds a level of abstraction to the type
Iattice and instance structures. The need for this three-tiered structure comes from the fact
that every object belongs to a class and every class is associated with a type that defines
the semantics of the instance objects in the class. Regular objects (level m?) belong to some

41

class (level m'). Since classes are objects, the class objects (level m') belong to some class
(level m?). The m? class objects belong to the m?.class C_class-class which closes the
lattice. The types associated with these classes are all managed as regular objects at level
m®. The outcome of this approach is that the entire model is consistently and uniformly
defined within itself. In the following discussion. the interactions among the various levels
of the structure and how they contribute to the uniformity of TIGUKAT are described.
This forms the foundation of reflective capabilities.

A portion of the primitive type lattice (Figure 2.1) responsible for the meta-system is
shown in Figure 2.8. Furthermore, a companion subclass lattice for this portion is shown
in Figure 2.9 where C_r in Figure 2.9 is the associated class of type T_r in Figure 2.8,

(T) ((Totass

T_type-class)

T_collection-class)

_Supentype Subtype

.
< >

Figure 2.8: Portion of primitive type lattice responsible for meta-system.

Figure 2.9 illustrates the subset inclusion relationship and instance structure for some
of the m% m' and m?-objects. Starting from the left-side of the lattice structure, the
relationships between these classes and their instances are described.

... o Instance edges to
' type objects
Ctype [8---ccecece-meeoicecn-.
Iastance edges o [C_typeclass |
Cobject [o----eeo..._ .. other clasg obie H
C_collection |—{C_class C_clasclass [*-,
P % v) s
"r S hd cop o’ i
Instance edges to . YC_collection-class]
collection objects
:S penet 0 Tl Sulmzt4
Clasg--------. .-‘-'-'--llnme

Figure 2.9: Subclass and instance structure of m' and m? objects.

The class C_object is an m'-object that maintains all the objects in the objectbase (i.c.,
every object is in the deep extent of class C_object). Two other m'-objects in the figure are
subclasses of C_object, namely, C_type and C_collection. These two classes maintain
the instances of types and collections, respectively. Class C_collection is further subclassed
by the m?-object C_class because every object that is a class is also a collection of objects,
For example, the class C_person is an instance of the class C_elass and C_person is a
collection of person objects as well. The class C_class manages the instances of all classes

42

in the system like C_object, C_person and so on. Finally, C_class is subclassed by m?3-
objects C_type-class, C_class-class and C_collection-class. Intuitively, C_type-class
is a class whose instances are classes that manage type objects. Similarly, C_class-class is
a class whose instances are classes that manage class objects and C.collection-class is a
class whose instances are classes that manage collection objects.

In understanding the meta-system, it is important to remember that the following gen-
eral concept holds throughout the model including the meta-system.

Tenet of Uniformity: Behaviors defined on a type are applicable to the objects in the
cxtent of the class associated with that type.

For the following discussion, the reader is referred to Appendix A, which lists the sig-
natures of the behaviors defined on the primitive types, including the meta-types. In the
following, “0 — r.B" denotes assignment of the result of behavior application r.B to an
ohject reference o.

The model must have a way of consistently creating new types. Applying the generic
B_new behavior (i.e., the one in T_class) on the class C_type is inadequate for this pur-
pose because it simply creates new empty objects and a type must always be created as
a subtype of some other type(s); minimally a subtype of T_object. B.new cannot handle
these semantics because it is a generic behavior for creating any kind of object and only new
type objects need supertype information; it would be inappropriate to place these semantics
on B.new. Therefore, the B_.new behavior must be specialized for types to allow for the
addition of arguments that specify the supertype(s) of the new type, along with other ar-
guments such as its native behaviors. To accomplish this, the type T_class is subtyped by
type T_type-class (see Figure 2.8) and the behavior B_new is refined on this type. Now,
in the primitive system, the type T_type-class is associated with the class C_type-class
and the class C_type is created as an instance of C_type-class as shown in Figure 2.9.
New types are created by applying the refined B_new behavior to C_type. This follows
the tenet of uniformity: the behaviors defined on type T_type-class are applicable to the
object C_type because it is in the extent of class C_type-class and C_type-class is as-
sociated with type T.type-class. In the following signature definitions, the notation A,
again denotes the member type of a receiver class c.

Behavior 2.10 New Type (B.new : T_collection(T type) — T_collection(T.behavior)
— Ac): Given the class C_type, a set of types T, and a set of behaviors B, the behavior
application C_type.B.new(T, B) creates a new type as an instance of C_type such that it
is a subtype of the types in T and it defines the behaviors in B as native behaviors unless
they are inherited from a typein T. O

For example, in order to create a new type for modeling mobile homes (as a subtype of
T.dwelling) that adds a behavior “B_numberOfMoves:T_natural” (assumed to be defined),
one applies the B_new behavior to C.type and passes the appropriate arguments. The
result is assigned to a standard type reference T.mobileliome as follows:

Taobileliome — C_type.B.new({T.dwelling}, { B_aumberOfMoves})

A class must be associated with a type (its member type) in order to be able to create
objects of that type. Furthermore, classes must be uniquely associated with a single type
and o class may exist without an associated type. In order to consistently support these

43

semantics. the type T_class is subtyped by the type T_class-class (see Figure 2.8) and
behavior B_new is refined for creating and associating new classes with a type.

In the primitive system, the class C_class-class is associated with T.class-class and
maintains all the m2-classes. Its instances include itself, C_type-class, C_collection-class
and C_class. Each of these classes maintain instances of other classes. Various kinds of
class structures are created by applying B_new to one of these classes. For the model, this
means that we additional classes can be created for managing types (additional instances of
C_type-class), for managing collections (additional instances of C_collection-type), for
managing classes (additional instances of C_class), and for managing classes that manage
classes (additional instances of C_class-class).

Behavior 2.11 New Class (Bnew : T_type — A.): Given an instance of C_class-class
(e.g., C_class) and a type T_o, the behavior application C_class.B_new(T.a) has the result
of creating a new class object C_o such that C_a is in the shallow extent of C_class and
C_o is associated with type T_a. If type T_.o does not exist, or is already associated with
some other class, an error condition is raised because a type may be associated with at most
one class. O

For example, the following behavior application creates a new class C.mobileHome as
an instance of C_class and associates this class with type T_mobileHome created above,

C.mobileHome — C_class.B_new(T.mobilelone)

The previous two examples illustrate how the use of specialization and overriding of
implementations (basic modeling concepts) are used to develop the components of the meta-
system. H_new has the same semantics of creating a new object as an instance of a particular
receiver class, but the implementation of this behavior depends on the receiver class to
which it is applied. The final specialization is with C_collection, which completes the
meta-system.

In the same way as types are associated with classes, types are also associated with
collections; but a type may be the member type of any number of collections. The type
T.collection-class is defined as a subtype of T_class and behavior H_new is refined for
creating new collections similar to what was done for classes. The class C_collection-class
is associated with T_collection-class and class C_collection is created as an instance
of C_collection-class (see Figure 2.9). New collections are created by applying B.new to
C_collection, passing in an appropriate member type.

Bebhavior 2.12 New Collection (B_new : T_type — A.): Given class C_collection and
type T_o, the behavior application C_collection.B_new(T.0) creates a new collection object
L.o such that Lo is in the shallow extent of C_collection and L_o defines T_o as its
member type. The type T.o may be omitted in which case the member type of the collection
is maintained by the system and derived according to the members in the extent of the
collection. If type T.o is given and does not exist, an error condition is raised. Types may
be associated with any number of collections. O

For example, to create a new collection of map objects for mapping moblile home parks,
one applies B_new to C_collection as follows:

L_moblleHomeParks — C_collection.B._new(Tnap)

44

The introduction of the m3-ohjects complicates the type lattice and instance structures.
However, the benefit of this approach is that the entire model is now consistently and uni-
formly defined within itself. This defines a powerful model for managing all objects, includ-
ing meta-information, in a uniform way. There are several uses for this modeling capability
including the ability to perform reflection. These features are presented in Chapter 4.

2.4.7 The Null Primitive

Nulls are introduced to provide a simple null semantics. The model defines a primitive type
T-null along with its corresponding class C_null. This class is defined to have as primitive
instance ohjects null, void, undefined, and dontknow. Others, such as error conditions, can
be added as required.

The type T_null is defined to be the subtype of all other types, which is automatically
maintained by the system. This gives T_null the opposite semantics of the type T_object,
which is defined to be the supertype of all types. The type T.null lifts the domain of types
and creates a lattice that is bounded (or pointed) at both ends. A companion axiom for the
axiom of root type (Axiom 2.2) is defined to describe the type constraint of the null type.

Axiom 2.3 Null Type: for all types T_r, Taull < T.r. O

As a subtype of all other types, T.nul) refines the implementations of all application
specific behaviors (i.e., all behaviors except those of the primitive type system) in such a
way that applying a given behavior to one of its instances, always returns back one of its
instances. In this way, nulls represent a fix-point for non-primitive behavior application
over the domain of objects. It is always safe to allow a function to return an instance of
Tnull because these instances will conform to all non-null types in the lattice. Nulls can
be used as the result of functions when a more meaningful result is not known.

For example, T.null is a subtype of the type T_person in the GIS example type lattice
of Figure 2.2. Therefore, T_.null can refine the behaviors of T_person to return an instance
of T_null (e.g., null, undefined, etc.). Now, if for a specific instance of T_person, say Sherry,
the result of a certain behavior, say B_age, is not known, it can be assigned an instance
of Tnull (e.g., null). Then, the application Sherry.B_age returns the object null, and all
subsequent behavior applications (except for those of the primitive type system) also return
some instance of Taull.

2.4.8 Definition of an Objectbase
With the modeling primitives established, the meaning of an objectbase is now defined.

Definition 2.10 Objectbase (OB): An objectbase OB is a consistent set of objects (con-
act) such that:

1. 0C OB.

The elements of the primitive object system O (which is a conset, Sec-
tion 2.4.3) are part of OB.

2. for all objects o € OB, for all behaviors B.i € OB, o.B.i € OB.
For all general objects and behavior objects in OB, applying a behavior
from OB to an object in OB results in an object that is also in OB.

45

An objectbase defines a restricted enclosure of objects that facilitates a consistent, SV8-
tematic investigation of other objectbase features such as query processing. query optimiza-
tion, reflection, dynamic schema evolution, view management, transaction management,
and distributed object management. An objectbase does not define the relationghips of its
consistent object set with external objects outside the domain of the objecthase. For now,

these relationships should be considered ill-defined and inconsistent, although they may
prove useful in the context of distributed environments.

2.5 The Structural Model

Beeri's work on formal structural object models [Bee90] has been chosen as a foundation for
an example TIGUKAT structural model definition. In this chapter, Beeri's framework is
followed to define a structural model that complies with the behavioral model of TIGUKAT
and the integration of the two are shown.

2.5.1 Objects and Values

The TIGUKAT model considers an objectbase to he a collection of abjects. Each object, in
order to exist, must be associated with at least one reference that gives access to the object
in the objectbase. Thus, every object has the universal perception of a reference and the
model has a single uniform representation for objects. In this way, the model resembles the
general naming facility of O; [LRR9b] or the “Name” operation of [Osb8&8] that allow namex
(references) to be attached to individual objects, but the TIGUKAT model applies a more
uniform semantics to these features by servicing all access to objects through references.

Beeri makes a strong case in distinguishing between the notions of “object” and “value”
at the structural level. However, he does point out that in the general intuitive sense,
objects and values should have the universal perception of objects. The latter perspective
is defined by the behavioral model presented in Section 2.4. The structural model presented
here introduces a separation of these two notions because there is an inherently different
representation and semantics for values at this lower level. These differences need to be
resolved eventually, and the structural model seems to be the appropriate place for this.

Beeri outlines several arguments that support the distinction of “values” from “objects.”
The reasons that most influence this separation are:

1. tlle pertzptm tht vﬂm repraent umvrrnlly hmwn ;bstrartmns (such as the in-

b
E
=
¥
28
&
$
£
' §
i
£&
=1
3
21
7 s
E
8
[-%
I
E
8
2
3
:
!
=
¥
&
T

) ngd to be deﬁnd and mtmduced into the iy:lem

3. the information carried by a value is itself and is immutable, while an object consists
of a separate mutable state that represents the information carried by the object,

Uﬁng thua dinin:ﬁﬁn. tie fnlbwing d’eﬁmm nf a vﬂl! is formed Tiiele are qnhﬁrd
Atomic vahn are eitifdy udcr the mnmt of the :ylt,em,
Definition 2.11 Atomic Value: An etomic value is any object from the domains of the

atomic types. Atomic values are predefined by the atomic types and are managed by the
system. Atomic values are immutable.

46

Each atomir type has a standard representation for references to the atomic values of
their respective domains. The act of specifying one of these references is treated as a request
to return the appropriate atomic object. The system may chose to return and existing
atomic object from the objectbase or may create a new one on the fly. The form of these
standard references is purely syntactic and one interpretation is discussed in Section 2.4.1.
Since these references are system maintained, they will never be released and will persist
throughout the lifetime of the objectbase, thereby making them immutable.

Recall the definition of an object as an (identity, state) pair (Section 2.4.3). For atomic
values, the value itself serves as identity and state all at once. This property is what makes
values immutable to change. The distinguishing factor between objects and values seems
to be that objects have an immutable identity separate from a mutable state, while values
ﬁpl‘“ﬁ'ﬂl idrmity ;nd state ;ll at once, lmth nf whirh are immnt;hlé Been mnsz thp
desrribad me a mathemlhr;l perlpeﬂwe one mly mnnder v;lues tn be elements of lhe
built-in domains, while objects are elements of the uninterpreted domains.

2.5.2 Abstract Objects

An abstract object is defined as an object that has the semantics of an immutable identity
separate from a mutable state. Application specific objects and the primitive non-atomic
objects all fit into this category.

For a given abstract object, the values of its behaviors are given as signature specifi-
cations with the result type of each signature replaced by the actual resulting object for
that signature. For example, one could specify the name behavior for an object o of type
T_person as B.name: “joe”, or if the object context was not explicit, this could be qualified
as o.B_name: “joe”.

Beeri uses the semantics of atomic values in the treatment of abstract objects, meaning
that an abstract object is also immutable in a sense. It is true that abstract objects
incorporate a state that may change over time. However, modifying the state does not
chng- tln- nbjﬂt as flr as its gmmg in relation to ntimr ob_pet:t: is cnm:erned For
tllm twg nhpcn is modlﬁed, the nbgﬂ q ml] never be !dent!ty equ.l to the ab;ect ip;,
They are two unique objects within the system and will remain that way throughout their
lifetime. In this respect, abstract objects are also atomic in the structural model. From a
mathematical perspective, attributing abstract object with atomic properties is very useful
since it allows first order semantics to be applied to them. This will be useful when defining
a query language for the model.

In the TIGUKAT model, there is a commonality between values and objects that cap-
tures their atomicity. When referring to atomic values and abstract objects, essentially
the identities of these objects are being referred. This is separate from the the state of
objects. The difference between values and abstract objects is tlm the state of the former
is immutable while the latter has a state that may change over time.

The behavioral model defines collection, bag, poset and list types for developing struc-
tured aggregation objects. The instances of these aggregate types are called container
abstract objects (containers for short) in the structural model. Containers are similar to
the set structured values defined by Beeri. However, containers in TIGUKAT are uniformly
managed as abstract objects and may be subtyped to customise their semantics. One ex-

”

a particular type.

Beeri also defines tuple structured values, but TIGUKAT does not. The notion of tuple
is cast into the uniform concept of behaviors on types. A tuple in TIGUKAT is just a type
definition with the behaviors representing the named slots (or attributes) of the tuple.

2.5.3 Object Graph

An objectbase can be structurally represented as a directed graph. The nodes of the graph
represent the atomic forms of objects: atomic values, contairers and abstract objects. 1K
rected edges between nodes illustrate relationships (defined as behaviors) from one object
to another.

A graph representation is important in several respects. First, it allows for a pictorial
representation of the attributes and relationships of objects. This can assist in clarifying the
contents and structure of an objectbase. Second, a graph representation has the advantage
that graph theoretic algorithms and proofs may be applied to extract and derive propertios
of the graph. There are many examples of graph related applications that can assist in
solving query processing [Yan90] and object management problems such as type inferencing,
optimization strategies for object distribution and dynamic schema evolution.

The graph representation presented in this section defines several kinds of nodes that
may be used in an object graph. Figure 2.10 illustrates the graphical representation of these
nodes and the semantics of each is defined as follows:

2.10 (a) Atomic value nodes consist of a label that represents a standard reference defining
their value. Atomic values are terminal nodes of the graph that cannot have any
outgoing edges.

2.10 (b) Abstract objects consist of a box labeled with an explicit reference for identifying
the object. This label can be thought of as a structural model reference and has
no implications of the other scope specific object references that may exist. Abstract
objects have an outgoing edge for each behavior applicable to the abject that is labeled
with the name of the behavior and leads to a node resulting from the application of
the behavior to the given abstract object.

2.10 (c) Container abstract objects consist of an oval labeled with an explicit reference
or the symbols { } if a descriptive reference is immaterial. A container has outgoing
edges labeled with “€” to each member object. These represent the extent of the
container. Containers, like all abstract objects, have other edges to represent the
behaviors specific to them.

As with Beeri’s model, each object occurs only once in the graph, meaning each node
represents a unique immutable object in terms of its existence. The nodes of the graph can
be thought of as the object identities of the objectbase and the edges leading to them can
be thought of as object references. Objects and values (nodes) can be shared by having
multiple edges leading to them.

32.85.4 Structural Example

Consider the object definitions of Figure 2.11. Each box represents a separate abstract
object where the header specifies a reference for the object along with the meps to type

48

R, L7 LN\

(a) Atomic value. (b) Abstract object. (c) Container abstract object.

Figure 2.10: Graphical representations of nodes in an object graph.

for that object. Following this, the behaviors for each object is listed and their associated
values are given.

Figure 2.12 illustrates an object graph for the geographic objects SCounty, Notingham
and Forest3 of Figure 2.11. The map object SCounty is an abstract object with several
outgoing behavioral edges as shown. All nodes in the graph have a B_self edge that points
back to the node. B_self is only shown for SCounty. The B_proximity behavior is not defined
for the object and therefore points to the abstract object null. The behaviors B_resolution,
B_orientation and B._title point to the atomic valued objects 0.5, 0 and “Sherwood County”
respectively. The B_region behavior points to a T_geometricShape object that defines the
grometric structure of the SCounty object. The B_origin behavior points to the T_location
object locg which has Batitude and B_longitude behaviors to the appropriate atomic valued
objects 44.9 and 37.1 respectively. Finally the B_rones behavior points to a container
comprising of the two T_zone element abstract objects Notingham and Forest3.

There are a few anomalies to note for the zone objects Notingham and Forest3. First,
the B_origin behavior for Forest3 and SCounty share the same T_1location object locy which
is indicated by its two incoming edges. Second, the B_proximity behaviors for the two
zone objects are defined and point to function abstract objects that, when given another
zone object as an argument, produce the desired distance measurement representing the
proximity of the argument zone to the zone on which the function is defined. For example,
B_proximity applied to Forest3 results in the function abstract object B_proximity(Forest3).
This abstraction can be maintained by returning the implementation function object asso-
ciated with B_proximity with the first argument fixed to Forest3. This is sometimes referred
to as a context. Context’s are used in query optimization as well. The graph further indi-
cates that an invocation of this context, when passed the argument zone Notingham, will
produce the atomic valued object 25.34. This context execution is represented by the dotted
line attached to Notingham in Figure 2.12. A similar application is shown on Forest3 for
the B_proximity behavior of Notingham which shares the same result cbject as the previous
execution.

The dotted lines do not represent bebavior applications on the type T_sone in the normal
sense, although they could. Instead, they represent the result of executing a function that
has some arguments fixed (i.e., a context) and are included in this example to illustrate the
power and flexibility that the functional approach provides.

3.5.5 Schema Objects

The structural model of TIGUKAT differs from Beeri’s model [Bee90] in that Beeri makes
a clear separation between the data of an objectbase and its schema, whereas TIGUKAT
carries the uniformity aspects of the behavioral model into the structural model. This means

49

“Persond — 1.person

null

B_birthDate:
B.age:
B_residence: SForemt

Bchildren(ParsonT): _{PersonS)

Person’ — 1 person

B_birthDate:

“Maid Marson®

erson

Permn
“Bname ﬁ
B.hﬂh[hlr
B.age:
B_residence:

Bapouse: mll

of Notingham™

~ NCastle — Thouse

B.inZone: Notinghsm

_B.mortgage: 0.00

“#1 Man Notingham Hosd™ |

—__Foresty ~ Tdorest

Btitk: "‘ﬁ'ber-md | Forest™

B_origin:

B_region:
Em E;pnxmﬂ;(Forest3)

Figure 2.11: Objects of Sherwood County.

B_self

B_proximity B_title

~ll | SCounty ——————p “Sherwood County”
_region
B_resolution
y !
B.orientati Busomes B_.origin 44.9

“City of Notingham"

B [} » . B . lly
foc B_proximity (Notingham) " B_proximity (Forest3)
Batitude / \B.k-aunk o
45 37 B_proximity (Ferest3) - B_proximity(Notingham)
vy
25.34

Figure 2.12: Object graph of SCounty, Notingham and Forest3 objects in Figure 2.11.

81

that schema objects in TIGUKAT are represented using the same graphical structurex as
other objects and may be integrated into a single object graph representing all information.
In this way, the schema objects become part of the objectbase, which allows all database
operations to be performed on them in a consistent manner.

The uniformity of the schema is illustrated in the structural model by means of object
graph links (relations) between objects. From the definition of type T_object. all objects
inherit a B_mapsto outgoing edge to the type object that represents the declared type of
the object. Furthermore, all objects support the equality behavior between all other ob jects
although this behavior is specialized for some of the subtypes. Finally, all objects have a
B_conformsTo edge to a context that, when executed with a type object argument, results
in a true or faise object depending on whether or not the object conforms to the type
argument.

Objects of type T_type have B_native, B_inherited and B_interface behavior edges point-
ing to containers of behaviors representing the various interface components of a type. There
are B_supertypes and B_subtypes edges to containers holding the direct supertypes and di-
rect subtypes of a type, respectively. There are B_super-lattice and B_sub-lattice edges
to partially ordered containers holding the supertype lattice and subtype lattice of a type,
respectively. A type has a B_classof edge that points to the class object that maintains the
instances of the type. Finally, there are B_subtype and B_specialize edges to contexts that,
when executed with another type object argument, result in a true or false object depending
on whether or not the original type is in the given relationship with the second argnment
type.

A class object has the same outgoing edges as containers do, plus an extra edge for its
deep extent behavior (B.deepExtent) to a container node that has an € edge to each object
in the deep extent of the class. Finally, there is an edge for the B_new behavior to the
last newly created object of the appropriate type. The side effect of applying B.new is to
update itself to create a new object and add the object to the receiver class.

Putting all these components together results in a fairly complex directed graph with
cycles. The advantage of this approach is that the schema has become part of the object
graph. This means that a query model based on the graph can query the schema objects
in a uniform manner. Furthermore, any graph-theoretic proofs or algorithms applicable to
the object graph in general may be consistently applied to the schema objects as well,

For example, consider the partial schema representation of the type T_zone as an ohject
graph shown in Figure 2.13. The T.zone object indicates a B_mapsto behavior to the
type object T_type of which it is also an instance. There is a B_classof edge to the class
C.sone. The B_conformsTo, B_subtype and B_specialize behaviors result in contexts that
can be applied to other T_type objects and determine the truth or falsity of the relationship.
There is a B_supertypes edge to a container holding the direct supertype T_object of type
Tzone. There is a B_super-lattice edge to a container that has element edges to the two
supertypes of T_zone (one of which is itself). Finally, the B_native container of behaviors for
T.zone is shown holding four behaviors that are defined locally by T.zone. The containers
for B.inherited and B.iaterface are not shown. The container for B.inherited would have
behaviors B_mapsto, B_equality, B.self and B.conformsTo that are inherited from T.object
and B.iaterface would simply be the union of these two containers.

Due to the complexity of these graphs, many of the relationships are not shown. How-
ever, the previous examples give a flavor of how these links are managed and the inherent
uniformity in their representation.

. inleiét

T-type

— . B.native

{)

Chapter 3

The Object Query Model

The design of a complete and uniform behavioral object model forms a basis for an extensible
object query model. Following the uniform semantics of the object model, gueries are
modeled as type and behavior extensions to the base object model. This incorporates queries
as an extensible part of the model itself. The object query model definition presented in
this chapter' includes the type and behavior extensions to the base model, a formal ohject
calculus with a logical foundation that is closed and incorporates the behavioral paradigm
of the object model, a closed behavioral/functional object algebra with a comprehensive
set of object-preserving and object-creating operators, a rigorous definition of safety hased
on the evaluable class of queries which is arguably the largest decidable subclass of the
domain independent class, and a notion of completeness that includes reductions between
the algebra and calculus that proves their equivalence. In addition to the formal aspects, a
complete algorithmic translation from calculus to algebra is given.

An SQL-like user language, definition language and control language have been devel-
oped for the model and are reported elsewhere [PLOS93a, PLOS93b, Lip93). Furthermore,
the uniformity of the object model has been used to define an extensible query optimizer
and execution plan generator. However, these components are outside the scope of this
thesis,

3.1 Related Work

One reason for the broad acceptance of relational DBMSs is their implementation of a
high level, declarative query facility, which provides an elegant and simple interface to
the underlying model. One of the most popular query languages in those systems is SQL,
which has become an international standard for the definition and management of relational
structured data [ISO92).

In order to consistently extend the functionality of relational systems, next generation
DBMSs must extend the power of the relational query model and SQL. Therefore, one of the
problems facing ob ject-oriented system designers is the definition of an object query model
and its languages. The languages addressed in this thesis include a declarative calculus and
a functional algebra.

"Portions of this chapter are pablished in the 1993 Proceodin s of the Second Intrrnational Conference
o | votion end Knowledge Monagement (CIKM'33) [P@?ﬂﬁdn:hﬂé&ﬂﬂﬂ Emerging

The power and expressiveness of a query model is characterized by its calculus, its
algebra, its notion of safety, and its completeness. In this chapter, some of the recent
literature on these topics is examined. These include:

o framework papers that discuss the qualities of query models and serve as guidelines
for query model development,

e complex object query models that define an object algebra, an object calculus, and
link the two with a proof of equivalence, and

e specific complex algebras that introduce object-oriented operators and semantics,
which are exploited and expanded on by the algebra.

3.1.1 Query Model Frameworks

Although there is not one single universally accepted object model, a core set of features
has been identified and presented in a number of manifestos [ABD*+89, SRL*90]. Similar
guidelines for the design of an object query model have recently appeared as well. They are
summarized below.

Yu and Osborn [YO91] define a framework for evaluating the power and expressibility
of object algebras. A set of categories is proposed for measuring the object-orientedness,
expressiveness, formalness, database support, and performance of an object algebra. The
framework is not meant to be all inclusive. In fact, some of the recommendations are con-
tradictory requiring compromise in a design. To illustrate the practicality of the framework,
four object algebras are compared within its dimensions. The framework serves as a useful
guideline for developing object algebras.

The object query module specification [Bla91] of the DARPA Open OODB project
[WBT92] offers a structured discussion of language features that an object query language
should provide. Some of the more general properties that distinguish object query models
from others are classified into “essential” and “non-essential” categories. This is supple-
mented by a more detailed discussion of specific features that are organized into a framework
repmting an overall da@ space ﬁwr pb_pﬂ q‘ery languages. Thi: frunmi i; intended

and filiﬁ objart qlery model lp«tilmim; The reference model is similar to that of Yu
and Osborn (YO91) and assists in understanding the dimensions of object query model de-
sign by providing a common foundation for comparing and reasoning about existing object
query language definitions. This in turn helps to identify common areas of agreement which
may lead to an eventual standardization of object query model features.

In [OSPH], several issues relating to design alternatives for an object query model within
the context of knowledge base systems are examined. This work focused on presenting a
general discussion of the key issues concerning query model design, how a particular set of
choices are carried through to an object query model definition, and the ramifications of
the choices made. Several of the alternatives outlined in that report were addressed during
the development of the query model described in this thesis.

3.1.2 Complete Object Query Models

Several object query models have been proposed. Many focus on a particular language
aspect such as a caleulus, an algebra or a wser language. Others define a complete model,

but in order to deal with safety they restrict their languages in certain ways. Many query
models are built on the nested set-and-tuple style structural model. The TIGUKAT query
model differs in that it is a purely behavior-theoretic approach that defines the query model
as an extensible part of the base object model. Some complete query models influencing
the design of the TIGUKAT query model are examined below.

The emphasis of Straube and Ozsu's [S090a. Str91a) work was to illustrate the viability
of developing a query processor for an object-oriented database system with comparable
power and expressibility available in relational systems. A formal methodology for object-
oriented query processing was developed in line with the relational paradigm. That is,
a high-level declarative calculus is specified, optimization techniques on the calculus are
developed, an object-oriented algebra is defined, translation of conjunctive calculus formulas
with limited negation into the algebra is defined, algebraic type-checking and optimization
strategies based on traditional and object-oriented transformation rules are developed, and
an execution plan generation mechanism is designed that translates optimized algebraic
expressions into an execution plan consisting of a series of packaged object manager calls.
This approach increases efficiency of query processing by reducing the number of times the
query processor must cross over to the object manager.

One contribution of their work is the definition of an object algebra, an ob ject caleulus,
and the linking of the two with translations between them. The algebra-to-calculus trans:
lation is complete while the calculus-to-algebra transformation is not. The algebra defines
a comprehensive set of object-preserving operators, but lacks object-creating operators such
as project, product and join2. Furthermore, the classification of “safe” queries is limited to
conjunctive queries without universal quantification and without negated existential quan-
tifiers. In effect, this means that there is no allowance for universal quantification in the
translation.

Abiteboul and Beeri [AB93] define a query model for complex objects that is based
on a set-and-tuple data model. Their model includes set and tuple type constructors that
relax the common restriction of alternating set and tuple structuring. This allows for
arbitrary structures with the only restriction being that the last constructor used is a set
constructor. Their calculus and algebra have complete definitions that include extended set
operations such set-collapse for collapsing sets of sets, poweraet for forming the powerset
of a given set, and a higher-order restructuring operator called replace that generalizes
relational projection and provides set-and-tuple restructuring capabilities. Safety in their
model is defined constructively similar to the (range) restricted formulas in [UNSR). They
assume that a partial order on the variables has been defined and based on this ordering,
they form range terms for variables. The range terms restrict the domains of the variables.
Constructions are defined that build safe formulas from range terms using conjunction,
disjunction, quantification, and negation. With this approach, safety is dependent on how
the formula is constructed from the ground up and does not take advantage of the structure
of the formula to recognize a broader class of queries. The class of safe queries recognizahble
bytllhappmdaisastrktnbntoftleculubkdmofqnﬂes, which is the basis of
safety in the TIGUKAT query model. Although the formal work of [AB93] is sound, an
algorithmic definition of safety and a calculus-to-algebra translation algorithm are not given.
Furthermore, an effective solution for their transformation is not apparent since it requires
the formation of large DOM sets for each variable appearing in the formula. A DOM set

3 Objoct-preserving operators are limited to returning existing objects from an objectbase while object.
cresting operators may create new objects during their execution [S590).

consists of all possible values from the database (and the constants in the query) that the
variable can possibly take on. With complex valued variables allowed in their calculus, these
DOM sets can become quite large and impractical to manage in an algorithmic solution.

3.1.3 Complex Object Algebras

An algebra is usually one of the first components developed for a query model. It defines
a set of procedural operators for accessing the database, The design of these operators
influences the number of opportunities for optimizing database access, which determines
the efficiency that data can be retrieved. Several complex object algebras have appeared in
recent yFa.rs Thr-sci haw- FVDIVH‘] fmm the nesu'd relational mﬂdels ;nd funrtmna] ianguage

bﬂlnw

The PROBE Data Model (PDM) [MDS6] builds on the functional model and language
of DAPLEX [ShiRl]. PDM defines an algebra-based query model that is an extension of
the relational algebra. It has a functional algebra that defines the traditional relational
operators, plus an “apply-and-append” operator that provides a functional notion of the
join operator. Apply-and-append accepts as arguments a relation (essentially a function)
and an operator function over this relation. It returns a relation containing the columns of
the original relation, plus an additional column holding the result of applying the operator
function to each tuple of the original relation. Thus, the relation acts as the first operand of
a join and the function defines the second operand, plus the join term. A similar approach
is described by the OOAlgebra of OODAPLEX [DayR9]. A variant of these approaches is
defined by the TIGUKAT algebra because the uniform functional approach fits in naturally
with the behavioral nature of the query model.

The object algebra of Shaw and Zdonik [SZR9, SZ90] is based on a set-and-tuple model
and consistently extends the relational algebra with both object-preserving and object-
creating operators. Their algebraic operators work on collections of objects that have pa-
riméterized set lypes The algebra deﬁnﬂ tr;dltmnd set nper;tinns, llnng wnh a ﬂatt«:n

nh prt of a mll:ﬂm ud rﬂurnl the remlti as lnntber mllectm, a pm_pect apeutar as an
extension of image that returns a newly constructed tuple object for each obj ject of a queried
collection, and an ojoin operator to serve as a Cartesian product between two collections
of objects. The result of an ojoin is a set of object pairs with the elements of each pair
containing objects from the original collections that satisfy the join condition.

Osborn [Osb8R] defines an algebra for an object-oriented model based on atomic ob-
jects, strongly typed aggregates (tuples) and both homogeneous and heterogeneous sets. A
fairly comprehensive set of algebraic operators is defined. The algebra is multi-sorted since
the operators are defined over multiple types (sorts) of objects and as a consequence are
undefined for certain combinations of these types. Operators include traditional set opera-
tions, a combine operator that is equivalent to Cartesian product for sets and has a similar
semantics for aggregates, a partition operator for carving up aggregate objects only, and a
choose operator which is a generalization of the relational select. The objects tmted by
pertition, and the types to which they belong, are all grouped under a “Created. t
class. There is no relationship between Created Aggregates and the classes from which the
new objects are derived. Furthermore, the integration of the results of combine with the

87

existing lattice is not specified.

Kim [KimR9] defines the query model for Orion. The simple form of a query in this
model is restricted to a single target class. Queries always return a new class with new
object instances created from the objects in the target class. Thus, the algebra is strictly
object-creating. The integration of new classes into the existing lattice is achieved by
hanging them off the root. Reasoning about the type of the result class to better integrate
it with the existing lattice is not defined. Single operand queries are too restrictive becanse
they do not allow explicit joins. Therefore, the model extends queries over multiple target
classes. However, there is a restriction on the domains of the “join attributes” of a query
in that they must be identical or in a sub/supertype relation with one another. The result
of a multiple-operand query, as with single-operand ones, is a new class with new ohject
instances that hang off the root of the lattice.

Davis [Dav90] defines a formal object algebra that includes both object-preserving and
object-creating operators. The traditional object-preserving set operators, along with an
object-preserving select operator are defined and these are closed on sets (i.e., classes). The
operands of a query based on these operators are classes and the result can be a new or
existing class. The relative position in the class lattice of a new class created by a query
is derived from the membership properties of the operand classes. A membe rahip normal
Jorm (MNF) is defined for classes that describes the properties of a class's member ohjects.
By combining the MNF formulas of the operand classes, a new MNF formula is created
that describes the new class, along with its relative position in the lattice. A property
restriction operator, similar to select, is used to extract objects with particular properties
and form a class of these objects that is a subclass of the operand class. The algebra also
defines object-creating project and cross product operators for “taking apart” and “putting
together” objects, respectively. However, the objects and corresponding classes created by
these operators are not integrated with the classes from which they were formed. Thus, the
results of these operators are not classified as they are with the object-preserving operators.
The TIGUKAT algebra includes a product operator and a form of behavioral projection
that integrates results into the existing lattice. Moreover, every operator of the algebra
does type inferencing on the result and integrates results with the existing lattice.

3.2 Query Model Overview

An identifying characteristic of the TIGUKAT query model is that it is defined as type
and behavior extensions to the base object model. The uniform behavioral paradigm of the
object model is carried through to the query model. Queries are defined as a specialization
of functions and the algebraic operators are defined as behaviors on the type T.collection.
Thus, the query model is a collection of objects (types, behaviors, functions, etc.) uniformly
integrated with the base model. This approach has several advantages. For example, the
query model is itself queryable, meaning a query may be posed on a collection of query
objects or on the types and behaviors making up the query model definition (i.e. s schema).
Another advantage is that there is a single underlying semantics for both the Db;nﬂ and
query models resulting in a clean integration of the two. The mechanics of this integration
is explained in Section 3.3.

A distinction is commonly made [SS90) between object preserving and object cresting
operations in object query models. An object preserving operator is one whose result con-
tains only existing objects. That is, it does not create or modify objects in any way, either

58

explicitly or by side effects. The query formalism of Straube and Ozsu [SO90a] considered
only operations of the object preserving kind. On the other hand, object creating operators
allow for the “taking apart” and “putting together” of objects into various new structures,
with new identity, that are distinct from any existing objects in the objectbase. The objects
created (especially persistent objects) must be integrated into the underlying type system,
including any derived types or classes necessary for the consistent existence of these new
objects.

on hoth sides. On the one hand, object preserving operators are important because a query
language must support these kinds of queries independent of its support for nbject creating
operators. On the other hand, object creating operators allow otherwise unrelated objects
to be combined in new ways, which is important for composing new relationships among
objects and reorganizing information; this is applicable, for example, in knowledge base
systems where knowledge is acquired by forming new relationships from the existing facts.
Object creating operators introduce several problems that need to be resolved. First, new
objects require a type that may not exist and must be integrated with the existing type
lattice. Questions on how this type fits into the existing lattice and the behaviors it supports
must be addressed. Second, the issue of query safety becomes more complex due to the
introduction of new objects during query processing. For example, consider a query that
creates new objects in one of its argument collections with every iteration of its evaluation.
If the semantics were such that the query would continue to process these new objects, then
more objects would be created and the query could go on indefinitely.

The terms object-preserving and object-creating require further clarification in the con-

TIGUKAT (at minimum) always create and return a new collection object that represents
the objects in the result of the query. Furthermore, a query may also create a new type
object to go along with the collection if a proper type does not already exist. Thus, in
TIGUKAT all queries are object-creating in one sense. If the result collection of a query
contains objects created during the execution of the query, it is called a target-creating
query; otherwise it is called a target-preserving query.

The user query language (TQL) has a syntax based on the SQL select-from-where struc-
ture, and formal semantics defined by the object calculus. Thus, it «xtends the relational
query languages with object-oriented features. The definition language (TDL) provides
functionality to create new types, classes, collections and behaviors; to define new functions
in the query language or an external language; to add and remove behavior definitions to
and from types; and to associate functions with behaviors on types. The control language
(TCL) consists of a few simple commands for controlling a session with the queiv processor.

The object calculus has a logical foundation and its expressive power is outlined by the
following characteristics. It defines predicates on collections (essentially sets) of objects and
returns a collection of objects as a result. This property makes the language closed which is
important for uniformity. It ‘ncorporates the behavioral paradigm of the object model and
allows the retrieval of objects using nested behavioral applications, sometimes referred to as
path czpressions or implicit joins. It supports both ezistentisl and universal quantification
over collections. It has a rigorous definition of safety based on the evaluable class of queries
that is compile time checkable. Finally, it supports controlled creation and integration of
new collections, types and objects into the existing schema.

The algebra has a behavioral (or functional) basis as opposed to the logical foundation
of the calculus. Like the calculus, the algebra is closed on collections. The algebraic

operators are modeled as behaviors on the primitive type T_collection. Thus, any subtype
of T_collection (such as classes) may be used as an operand of an algebra operator,

A des:rable prapeﬂy af an nbrﬂ querv m(xdel ls that thp algébra and ralrulus be
be expmsad in thF mhﬂ‘ The theﬁféms and prm:fs thal shn\s thn thll\ali‘nﬁ‘ of a]gt-lpm
and calculus are given in Section 3.7. Safety of the languages is addressed in Section 3.4.4.

\“\

3 Queries as Dbjects

'Lqu:ry is deﬁned as a snbtype of 'L:Eunctinn in the prumtlw type s_yslem as ll]imr.ﬂnl
in Figure 3.1. This means that queries have the status of first class objects and that they
inherit all the behaviors and semantics of objects. Moreaver, queries are a specialized
kind of function object. This means they can be used as implementations of behaviors,
they can be mmpik‘d they can he EXI‘(‘\HH] and s0 on. The spﬂ-mhzatmn nf ﬁmrtmn

general mmput;tmn;l]y mmplete pmgrams and quem-s have a strict safc-t,_v rundntmn (m
Section 3.4.4) that functions, in general, do not satisfy. Thus, functions are a more general
form of extracting and manipulating information in an objectbase.

Figure 3.1: Query type extension to primitive type system.

Table 3.1 lists the signatures of behaviors defined on type T_query. The upper half of
the table are the behaviors inherited from T.function and the lower half are the native
behaviors defined by this type.

For example, functions have source code associated with them and the source code for
a query is a query language statement such as TQL [PLOS93a, PLOS93b, Lip93). The
behavior B_source retrieves this language statement from the query object. Functions have
a bebavior B.compile that compiles the code. For a query, this involves translating the
query statement into an algebra expression, optimizing it and generating an execution plan.
Functions have a behavior B_execute that executes the compiled code. In general, for a
query this means submitting the execution plan to the object manager for processing. Fur-
thermore, queries have specialized behaviors such as B_result, which is a reference to the
materialized query result (i.e., the actual result collection itself). If this result is made
persistent, then the query is said to be stored and does not need to be re-evaluated the next
time it is called upon to B.execute itself. Other behaviors relate to the extensible query
optimizer [Mui94] and include B.initislOAPT and B_optimisedOAPT for accessing the
initial and optimized Object Algebra Processing Trees (OAPTs); B.optimize for initiating
the optimization of a query using a particular search strategy; B_searchStratagy for access.
ing the search strategy used during optimization; B_costModelType for determining the
cost madel nled fgr uphmigtkm B.lmsfnrm;tmx far af.mng tlie Im ﬁf trnll’armnm

If!llﬂ!ll collections as ﬁppﬁsd to B.;r;‘l‘yps which are the !ypa nf !ln collection nbjeﬂ;

B.argTypes: T.list(T.type)
B.resultType: T_type
B_description: T_string
Bsource: T._string
B_compile: T_object
B.primitiveExecute: T_object — T_object
B_executable: T_object
B.basicExecute: T_list(T object) — T_object
B.execute: T.list — Tobject B
" B_basicExecSave: T_1list(Tobject) — Tooject -
B_basicExecDontSave: T_1ist(Tobject) — T object
B.initialOAPT: T_algOp
B.optimizedOAPT: T_collection(T.algOp)
B_searchStrategy: T_searchStrategy
B_transformations: T.1ist(T.algEqRule)
B_costModelType: T_integer
B.argMbrTypes: T.list(T_type)
B.resultMbrType: T_type
B.optimize: T.searchStrategy — T.algOp — T.collection(T.algOp)
B_genExecPlan: T.algOp — T_function
B_execPlanFamily: T.collection(T_function)
B.budgetOpt: T_integer
B_lastOpt: T.date
B_lastExec: T.date
B_result: T_object -) -

Table 3.1: Behavior signatures for type T.query. Upper half are inherited from T_function.
Lower half are native to this type.

themselves; B_result MbrType for accessing the membership type of the result collection as
opposed to B_resultType, which is the type of the collection; and several other behaviors,
including ones for keeping various statistics about queries. As mentioned earlier, these
bebaviors relate to the extensible query optimizer which is reported elsewhere [Muii94).

Incorporating queries as a specialization of functions is a very natural and uniform way
of extending the object model to include declarative query capabilities. The major benefits
of this approach are as follows:

1. Queries are firat class objects, meaning they support the uniform semantics of objects
and are maintained within the objectbase as just another kind of object.

2. Since queries are objects, they can be queried and can be operated upon by other
behaviors. This is useful for retrieving information about queries, generating statistics
about the performance of queries and in defining extensible optimization techniques
on query objects.

3. Queries are uniformly integrated with the operational semantics of the model so that

queries can be used as implementations of behaviors (i.e., the result of applying a
behavior to an object can trigger the execution of a query).

4. The type T_query can be further specialized by subtyping. This can be useful in
extending the general class of queries into additional subclasses, each with its own
unique characteristics, and to incrementally develop the characteristics of new kinds
of queries as they are discovered. For example, in the design of the query optimizer
[Muii94], T_query is subtyped by T.adhocQuery and T_productionQuery, and each
defines a specialized evaluation strategy for queries. That is, ad hoe queries are
interpreted without incurring high compile-time optimization strategies while, on the
other hand, production queries are compiled once and then executed many times.
Thus, more time is spent on optimizing production queries over ad hoc queries.

3.4 The Object Calculus

It is well recognized that a declarative query facility is an essential component of any
database management system; object-oriented systems are no exception. In this chapter, a
high-level behavioral object calculus with first-order semantics is presented.

In order to maintain the uniformity of the behavioral object model within the query
model, the behavioral abstraction paradigm is carried through into the calculus. The logical
foundation of the calculus includes a function symbol to incorporate the behavioral nature
of the object model. This allows the use of general path expressions in the calculus. The
expressive power of the calculus is equivalent to the first-order calculus, but some queries
within this domain may not be safe. The safety of the calculus is hased on the rvaluable
class of queries [GT91), which is arguably the largest decidable subcluss of the domain
independent class [MakR1]. The evaluable class is extendad in this thesis by making use
of object generators for equality and membership atoms, wiich relaxes the requirement of
specifying explicit range expressions for each variable.

3.4.1 Formal Object Calculus

The first-order theory of the object calculus is presented, which establishes the well-formed
Jormulae of the language. Following this, the augmentations to the theory that form object
calculus ezpressions (OCEs) are described. These represent the class of declarative queries
that can be posed on an objectbase.
The alphabet of the object calculus consists of the following symbols:
Object constants: a,b,c,d
Object variables: o,p,¢,4,v,2,y,2
Predicate symbols
monadic: C,P,Q,R,S,T
dyadic: =,#,€,¢
n-ary: Eval
Function symbols: g
Logical connectives: 3,V,A,v,~
Delimiters: (),
Note that the object constants, object variables, monadic predicates and function sym-
bols may be subscripted (e.g., 83, 0;,C,, §;,etc.). In addition, a vector notation 7is adopted
to denote a countably infinite list of symbols sy, s;,...,s, where n > 0.

From object constants and object variables the syntax and semantics of the function
symbol /3 called a behavioral specification (Bspec) is developed. A term is an object constant,
an ohject variable or a Bspec. A Bspec is an n+2-ary function 3(s,b,1) where s and each
t, denote terms and where b is an object constant. For n = 0, (s, b) is used without loss
of generality.

The ordered list of terms s,b, is considered to be behaviorally consistent if and only if
the following properties hold:

bﬁh;vmrﬁ (funrtmn:) whufh ensures a ﬁrst c;rdrr se,mantnrs whi!n mmrpﬁrated mm a
language with quantification;

2. the type of the object denoted by s defines behavior b as part of its interface, meaning
b is applicable to s because it is defined on the type of s;

3. fis compatible with the arity of the argument list for behavior b, meaning the number
of arguments expected by b is equivalent to the number of terms in #; and

4. the types of the objects denoted by f are compatible with the argument types of
behavior b, meaning the types of the terms are compatible with the argument types
of b.
A Bspec j(s,b,1) is consistent if and only if s, b, T are behaviorally consistent. In TIGUKAT,
every object knows its type and therefore, the consistency of a Bspec can be determined at
compile time.

The “evaluation™ of a consistent Bspec involves applying the behavior b to the object
denoted by term s using objects denoted by terms as arguments. The “result” of Bspec
evaluation denotes an object in the objectbase. Since Bspecs denote objects, they have a
type (and a class) that are in the objectbase as well.

The “evaluation” of Bspecs has the following logical formation. The n+3-ary predicate
Eval(R,s,b,1) is introduced as an axiom in the language such that Eval(R, s,b,1) is true if
and only if H denotes the “result” of applying behavior b to the object denoted by term »
using terms 7 as arguments. The function symbol (s, b, {) is a logical representation of R.
The Eval predicate also serves as an enforcement of the consistency property of Bspecs. In
the remainder of this thesis, only consistent Bspecs are considered.

Bspecs may be composed. This provides the capability of building path ezpressions in
queries. For example, given the object constants emp, B.department, and B_budget with
the obvious semantics, the Bspec §(S(emp, B.department), B_budget) can be composed,
which denotes the object representing the annual budget of the department that employee
emp works in. Also note that the example Bspec has the properties of a ground term (see
Definition 3.1 below). 7

For brevity, the syatax of Bspecs is recast into the dot notation as s.b(f), which is se-
mtkﬂly eqlivﬂnt En lie eriﬁnd tpuﬂmim If hehvinr) doel not require any argu-

tham m;y be n;-d to clug! the order of prendﬂee Some other equivﬂﬁt lyntg, nich
as function spplication §(s,?), which is popular in other languages, could have been chosen
instead.

As shown by the above example, many path expression formations often include a series
of behaviors with the semaatics that the result of the first behavior be used as the input to

the second and so on. Such a sequence of multiple operations is called a mop [$(090a) and

denote a multi-operation resulting in the application of behavior object constants b,.b,. . b,

using objects denoted by terms & as arguments. Furthermore, <#>.b is used as a shorihand

to denote a multi-operation where the number and ordering of the behaviors are immaterizi.
To illustrate the processing of a mop, consider the following multi-operation:

{Slg 821 s lgn}!b‘ gbgg . !—bni

Let k, denote the number of parameters® defined by behavior b,, let r, designate the
intermediate object denoted by the Bspec formation of behavior b, and let r denote the
final result of the mop. Procedurely, a mop is processed as follows where “—" denotes
assignment:

ro— spby(sy .. 8 40)

ry ~— fjibg(sg—,*g,“i,;!(h*k;,.i“)

P - ﬁ!j.bg(s(zi-z E;)*Z" . .,s‘z;i! k)41

3§

The above sequence of behavioral application making up the mop is illustrated in Figure .2

8 Sk 42 AT)42 LT k)4
Sky 41 Sy k3 41) I(E;_l k)41 A

it by 1, by F2 Tl b, AR b L

Bspecs and mops are equivalent forms of representation. One form can be freely trans-
formed into the other and results established using one form also hold for the other. This
result is important since one can transform between the formal calculus and “simpler”
language notations. The equivalence is formalized by the following lemma.

Lemma 3.1 Bspecs and mops are equivalent representations.

ing equivalence mappings between Bspecs and mops where s and { represent terms and b
B(s,6,0) & <s,i>.b | (3.1)
<> B «iS4 (3.2)

3Here the poremeters refer (o the objects supplied to the behavior, ot including the initial object to

The first mapping shows that every Bspec can be replaced by an equivalent mop over a single
behavior and vice versa. The second mapping shows the unnesting of mops over multiple
behaviors into an equivalent series of single behavior mops, which can be transformed by
the first mapping. O

The notions of constants and variables are generalized to include Bspecs by defining
ground terms and variable terms as follows:

Definition 3.1 Ground Term: A ground term is recursively defined as follows:
1. every object constant is a ground term;

2. if f(s,b,1) is a consistent Bspec and all of s,7 are ground terms (note that b must be
a ground term by the definition of Bspec), then (s, b,?) is a ground term;

3. nothing else is a ground term.

From this point on, symbols defined as denoting an object constant, including symbols
a,b,c,d, are extended to include ground terms as well. Any term that is not a ground term
is called a variable term since it must contain at least one object variable. If &are the object
variables appearing in some term r, then r is called a variable term over 5. The variables
can be thought of as the parameters of the term. If r is the object variable o, then r is
a variable term over o. If r is a term defined by Bspec s.5(f) and & represents the object
variables appearing in the Bspec, then r is a variable term over 5. The notation r{5} is
used to denote that r is a variable term over 4. This notation is generalized to 3{5} when
the form of the term is immaterial. If & is empty, then 5{} denotes a generic ground term.

The atomic formulas or atoms are the building blocks of calculus expressions. Every
atom has an equivalent Bspec (and hence mop) representation. Atoms are identified be-
cause they represent the fundamental predicates of the calculus and are used in translating
a query to the algebra, which can then be optimized and executed. The atoms of the
TIGUKAT calculus consist of the following:

Range Atom: (’(o) is called a range atom for o where C corresponds to a unary predicate
representing a collection and o denotes an object variable. C is called the range of
o. A range atom is true if and only if o denotes an object in collection C. The
semantics of this atom in a query is to have variable o bind to (or range over) the
objects in the collection denoted by C. When C is defined for a class, it denotes the
deep extent of the class and the notation is extended to include C'*(0), which is true
if and only if o denotes an object in the shallow estent of the class. One may think of
C* as a separate monadic predicate for specifying the shallow range of 0. The Bspec
representation for the range atom is §(C, B_slementOf, 0) where B_elementOf is the
collection membership behavior as defined in Appendix B. Range atom specifications
of the form ('(a) where s is a term denoting an abject constant or Bspec (i.e., not an
object variable) are handled by membership atoms defined below.

Equality Atom: s = t is a built-in predicate called an equality stom where s and ¢ are
terms. The predicate is true if and only if the object denoted by term s is object
identity equal to the object denoted by term ¢. The semantics of this atom in a query
is to test the object identity equality of s and ¢ and return true if they are equal or false
otherwise. This atom is type consistent for all objects since all objects must support

an object identity equality behavior. Note, as a syntactic convenience, an equality
atom where both terms are boolean and where one of the terms is the object constant
true, say s = true where s is boolean, is simplified to a. If one of the terms is the object
constant false, the atom specification is simplified to ~s. The Bspec representation
for the equality atom is (s, B_equal,?) where B_equal is the object equality behavior
defined in Section 2.4.3. The built-in predicate s # 1 is the complement of equality.

Membership Atom: s € t is a built-in predicate called a membership atom where s and
t are terms and ¢ is a term denoting a collection. The predicate is true if and only
if the object denoted by s is an element of the collection denoted by t. The Bspec
representation for the membership atom is 3(t, B.elementOf,s). The semantics of
this atom in a query is to test if s is an element of t and return true if it is or false
otherwise. Note that a range specification of the form ('(s) where s is an object
constant or Bspec (i.e., not an object variable) is represented as a membership atom
8 € C’ where C' is a constant denoting the collection represented by predicate (°. The
built-in predicate s ¢ t is the complement of membership.

Generating Atom: An equality atom of the form o = t or a membership atom o € {, where
ois an object variable, t is an appropriate term for the atom, and o does not appear in
t, are called generating atoms for 0. They are so named because the object denotations
for o can be generated from t. o is called the generated variable and t is called the
generator. The Bspec representations for generating atoms are (o, B_equal,?) and
A(t, B.elementOf ,0). The semantics of the o = t gencrating atom in a query is to
bind o to the object denoted by t. The semantics of the o € t generating atom is to
have o bind to (or range over) the objects in the collection denoted by t. Any atom
that is not a generating atom is called a restriction atom and any variable that is
not generated is called a restriction variable because they are used to restrict objects
returned by a query.

A ground atom is an atom that contains only ground terms. A literal is either an atom
or a negated atom. A ground literal is a literal whose atom is a ground atom.

The choice of atoms may seem restrictive when compared to other calculi such as the
tuple relational calculus that defines a greater variety of comparison predicates including
=,<,%,>, and 2. An identifying characteristic of the TIGUKAT calculus is that it js
strictly behavioral and does not define explicit value-based comparisons of objects or their
subcomponents. Thus, operations such as <, >, >, < must be defined as behaviors on the
respective types of objects that are to be compared. The only comparison predicates defined
are object identity equality and membership. However, type implementors can specialize the
behaviors for these comparison predicates in their own types (e.g., value based comparisons)
that are of most utility to them. For example, a form of “structural equality” on Cartesian
product types that compares two product objects based on the pairwise equality of their
respective component objects can be defined.

From atoms, the definition of a first-order well-formed-formuls or simply formula (ab-
breviated WFF) of the object calculus are built. WFFs are defined in terms of free and
bound object variables. An object variable is bound in a formula if it has been previously
introduced by the quantifier 3 or V. If the variable has not been introduced with a quantifier
it is free in the formula. WFF's are defined recursively as follows:

1. Every atom is a formula. All object variables in the atom are free in the formula.

2. f ¥ is a formula, then -y is a formula. Object variables are free or bound in -t as
they are free or bound in v.

3. If vy and v, are formulas, then ¥y A v; and v V ¢, are formulas. Object variables
are {ree or bound in ¥ A ¥ and ¥ V y; as they are free or bound in v or v';.

4. If v is a formula, then 3o(v’) is a formula. Free occurrences of o in v are bound to 3o
in 3o(y).

5. f ¢ is a formula, then Vo(y) is a formula. Free occurrences of o in ¢' are bound to Yo
in Vo(v).

6. Nothing else is a formula.

In the remainder of this thesis, A, B, F,(; and v,w are used to denote formulas and
subformulas. The relation “A <’ F* means symbol A “is defined by” the expression F.
This is used to associate formula symbols with formulas. Furthermore, A(z) denotes that
variable z is free in formula A. Formulas may be enclosed in parenthesis to indicate order
of precedence. In the absence of parenthesis, the following precedence hierarchy is adopted
with the highest precedence at the top:

3.4.2 Calculus Queries

Several classifications of object-oriented queries have been made. One class of queries deals
only with behaviors that are side-cffect free. A behavior is said to be side-effect free if
it does not modify the state of any object or create new objects during its execution.
This property is too restrictive in the context of the TIGUKAT model since all operations
(including the algebraic operators) are uniformly managed as behaviors. At minimum, a
query always returns a new collection as a result and in certain cases generates a new
type for the collection as well. Thus, there is a small set of predefined behaviors that
manage the controlled creation of collections (and possibly types) as their side effects. These
behaviors include the algebraic operators and the primitive behaviors for collection creation
and construction. The notation newcoll(o,, ..., 0,) is used as a shorthand to represent the
creation of a collection containing objects oy,...,0,. The primitive sequence of behavioral
applications corresponding to this notation is as follows:

C_collection.B_new.B.insert(0,) . .. B_insert(o,)

That is, a new empty collection is created and then each object o, is added to the mﬂeq:tinn
in turn. The result is a collection containing objects oy,...,0,. A compiler could optimize
this series of n41 behavioral applications iato a single internal primitive collection :mtiﬂn
operation since collections are part of the primitive model.

All user-defined behaviors appearing in calculus expressions are assumed to be side-effect
free. In other words, all user-defined behaviors appearing in calculus expressions must be
retrieval oriented.

A target-preserving query is an object calculus ezpression (OCE) of the form {t | y)
where ¢ is a target term comsisting of a single variable, say o, possibly indexed by a set of

67

behaviors, v’ is a WFF with o as the only free variable, and all behaviors in the expression
are side-effect free (or retrieval oriented). The semantics of a target-preserving query is to
return a collection of existing objects that satisfy the formula v

Indexed variables are of the form o[B] where B represents a subset of behaviors defined
on the type of variable o, union the behaviors defined on type T_object. The union with
T_object is necessary since every object must support the behaviors of T.object. The
semantics of indexed terms is to project over the behaviors in B for variable o creating a
new type for the result. Following a projection, the membership type of the result collection
will be a type that only defines the behaviors in B. This restricts the behaviors that can.
in general, be applied to the members of the result collection.

Target-preserving queries may seem to be somewhat simplistic and too restrictive, but
this form supports a wide variety of useful queries. For example, assume finite classes
C.dept and C_emp where C_emp objects have behaviors B.dept and B.age defined on
them. The following target-preserving query returns a collection of department objects that
have senior citizens working for them:

{o | C.dept(o) A Ip(C.emp(p)
A o= p.B.dept A <p,65>.B_age.B greaterThan) }

All queries that are not target-preserving are target-creating. The notation of OCExs
is extended for target-creating queries to include the form {¢,.....4 | v’} where the set
of variables appearing in (possibly indexed) target terms t,,....1, is precisely the set of
free variables, say 4, in the WFF . This form is a generalization of the target-preserving
kind by allowing k > 2 target terms over G distinct object variables. The semantics of
a target-creating query is to return a collection of product objects created by joining all
permutations of t; through ¢, that satisfy y.

Assume in the previous example that (department, employee) pairs should be returned
instead of just departments. Further assume that the employee objects are projected over
the behavior B_age. The target-creating query that produces this result is as follows:

{ o,p[Bage] | C.dept(o) A C_emp(p)
A o=p.B.dept A <p,65>.B.age.B greaterThan)

Additional examples of both target-preserving and target-creating queries are given in Ser-
tion 3.6.

3.4.3 Expressive Power of Calculus Queries
The general expressive power of the TIGUKAT calculus is defined by the following theorem:

Theorem 3.1 Every query expressible in the first-order calculus is expressible in the
TIGUKAT calculus.

Proofs An object calculus expression (OCE) of the TIGUKAT calculus consists of two
components: a list of (possibly indexed) target terms and a first-order well formed formula.
The second component allows an OCE to express any first-order calculus expression. Thus,
the general expressive power of the TIGUKAT object calculus is equivalent to the first-order
calculus. Any first-order calculus formula can be translated to an OCE by simply adding
target terms for every free variable in the formula. Conversely, an OCE is translated to
a first-order calculus formula by dropping the target terms. There may be an additional

translation between the predicate and atom representations of the first-order calculus for-
mula and the first-order formula of an OCE, but this can be represented with a trivial

naming mapping. O

The restriction that OCEs must include only side-effect free behaviors does not pose
problems since this is a universal assumption that cannot, in general, be tested and must
be accepted axiomatically.

Some statements that can be expressed in a first-order language may not have any rea-
sonable interpretation and, therefore, cannot be effectively executed by the query processor.
The unreasonable statements should be identified and rejected with an indication that they
cannot be processed. This raises the issue of safety, which involves defining a subset of the
first-order statements that can be identified and processed in polynomial time. Safety and
the definition of a safe subset of the TIGUKAT calculus are topics of Section 3.4.4.

3.4.4 Safety of Object Calculus Expressions

A traditional notion in relational database systems is that “reasonable” queries are ones
whose correct answers contain values that are limited to the constants that appear in the
query or the database relations that appear in the query. A corresponding notion in an
object model is that reasonable queries produce correct answers that contain objects which
are limited to the objects appearing the query or in the collections that appear in the
query. Unary predicates C(o) are defined for the finite collections and classes appearing in
the objectbase. These are used to range over the elements of a collection. The collection
represented by the complement of a predicate is assumed to be infinite (i.e., ~C(0) is infinite
for all predicates ().

The object calculus is very expressive and allows for the formation of queries that have
no “reasonable” interpretation. For example, the complement of a predicate ~C(o) holds
for arbitrary objects o that are not in the collection C. Another problematic query is the
one that adds objects to collections over which it is ranging. This has the effect of updating
the predicate on each iteration. These kinds of queries are considered “unreasonable” and
an implementation should strictly avoid processing such constructs. Therefore, a criterion
of safcty is defined that consists of tests based on the structure of the formula (i.e., its
syntax) to check if a formula is reasonable. Only safe queries are processed and all others
are rejected. The general notion of safety is defined as follows:

Definition 3.2 Safety: An expression is considered safe if it can be evaluated in finite
time and produces finite output [OW89).

The above definition is a semantic one that raises the problem of finding an efficient
solution for determining whether an arbitrary expression is safe or not. In other words,
there is a need for a syntactic check that can be performed on any arbitrary formula and can
determine, in polynomial time, whether the given formula is safe or not. The safe formulas
are the ones translated to an algebra, optimized and executed. Since the implementations
of behaviors can be arbitrary code, safety can oaly be guaraateed up to Bspec evaluation.
That is, there are no mechanisms to guarantee the termination of a function that may be
called as part of a behavior being applied to an object.

The first safety check is on the calculus formula and determines the domein indepen-
dence of the formula. The second check is based on the operators of an equivalent algebra
expression for the formula and determines the operand finiteness of a query, meaning it

checks that objects aren’t being added to operand collections or classes of the operator,
If the query fails either test, it is rejected. The domain independence form of “safety” i
discussed first, followed by a discussicn of operand finiteness in queries,

The class of domnin independen: formulas [Mak81, FagR2] is recognized as being the
largest class of “reasonable” queries. However, the undecidability of this class is well known:
Nicolas and Demolombe [ND82] have shown domain independence to bhe equivalent to the
class of definite formulas defined by Kuhns [Kuh67], which has been shown to be not
recursive by DiPaola [DiP69).

Many decidable subclasses of the domain independent class have been proposed. The
class of conjunctive queries are those that include only 3 and A connectives and represents
one of the simplest “reasonable™ subclasses shown to be decidable [UIR2]. Larger decidable
subclasses augment conjunctive queries with negation and disjunction. Several ob ject caleuli
proposals have defined safety in the context of conjunctive queries with disjunction and
restricted forms of negation [SO90a, Cha92]. These proposals define a broader range of
safe queries, however, more general classes have been identified. The class of ¢valuable
queries as first proposed by Demolombe [Dem&1) and later examined by van Gelder and
Topor [GTR7, GT91] is argued to be the largest decidable subclass of domain independent
queries. In the TIGUKAT query niodel, the evaluable class is used as the base set of safe
queries that can be translated into the object algebra. The class of range restricted queries
[Dem82] has been shown to be equivalent to the evaluable class [(T91). A strict subclass
of the range restricted class (hence the evaluable class) is essentially the basis of safety in
the structural query model of Abiteboul and Beeri [AB93). Furthermore, their definition
assumes the existence of a partial order on the variables in a calculus formula such that all
variables are restricted. Aw indication of how to construct a proper partial ordering from a
given formula is not presented. The safety model of TIGUKAT also defines a partial order
and the first part of the traaslation from calculus to algebra (see Section 3.7.2) constructs
this ordering,.

The class of evaluable queries can be defined in terms of the two relations gen and con
(see Figure 3.3) between variables and (sub)formulas. These relations were introduced by
Gelder and Topor [GT87, GT91] in the form of logical rules.

Intuitively, gen(z, A) means that formula A can generate all the needed values of variable
z that contribute to making A true and that there are only a finite number of these values.
In other words, if gen(z, A(z,#)) holds and A(e,d) is true for some variable assignment
z = c and § = d, then one can conclude that c is an element of a finite collection of obhjects
derivable from the formula A itself. If con(z, A(z, §)) holds, then the variable z is said to
be constrained in A, meaning that z is generated in every disjunct of A in which z appears,
The con rules subsume the gen rules. Thus, it is clear that gen(z, A) implies con(z, A), but
con(z, A) does not imply gen(z, A).

These rules are extended by adding a gdb relation that makes use of generating atoms
in formulas. The gdb relation relies on a globally accessed partial order denoted <p. This
partial order consists of pairs (2, N) where z is a variable and N is a positive integer or
the symbol co. The symbol <y is used in the gdb rules as an infix dyadic predicate on the
variables appearing in the partial order <r. This predicate is defined as follows:

Definition 3.3 Ordering Predicate (<r): For any two elements (z, N,) and (v, Ny) ap-
pearing in the partial order <, the predicate z <y y is defined by the following table

where 1 and m denote positive integers and m is greater than zero:

_ N, Aiv _ I ‘:F v
x x false
o n false
n -2 true
/] n+m true
n+m n false
n " false

Figure 3.3 shows the rules for the gdb relation and the extended gen and con relations.
The partial order used by the gdb relation is built from the atoms in a calculus formula F
during the first step in the translation from the calculus to the algebra. The partial order
is constructed to produce a representation of the generating atom dependencies between
variables in a formula F. If predicate # <r y holds for the partial order <g, this means
that variable 7 is not dependent on variable y and that r potentially generates values for y
in formula F. For example, the partial order for the formula:

F 37(C_emp(z) Ay = z.B_name)

is <pif {(+,0),(y,1)} since z is generated independently of y from C_emp and y is gen-
erated using 7 in y = z.H_name. The reason z “potentially” generates y is clear from the
following example. Consider the formula:

a0 3r3w(C.emp(z) Ay = z.B_name A C_emp(w) A z = w.H_age)
The partial order for this formula is < 5% {(z,0), (w,0),(y.1),(z,1)}. Now, z <+ z holds
and 7z is not dependent on z, but z does not generate objects for z in F'. Thus, z is only a
potential generator for z.
The additional predicates and functions that appear within the rules of Figure 3.3 are
defined as ‘sllows:
o Predicate ¢db(A) holds if one of the following conditions is met:
1. formula A is a range atom of the form ('(z) where predicate symbol (' represents
a finite collection;
2. formula A is an equality atom of the form z = ¢ where ¢ is a ground term; or
3. formula A is a membership atom of the form z € ¢ where ¢ is a ground term
representing a finite collection.
¢ Predicate free(z, A) holds if variable z appears as a free variable in formula A.
o Predicate notfree(z, A) holds if variable z is bound in formula A or if z does not
appear in A,

o Predicate distinct(z, y) bolds if z and y are different variables.

71

gdb(r, y) if y<pr
gdb(r.r = {7} if J<por
gdb(z.z € y) if y<pr
gdb(z.x € H{7}) o §F<pr

by Ry
I

gen(z, A) if edb(A) and frec(r, A)
gen(z, A) if gdb(zr.A)

gen(z,~A) if gen(r, pushnot(=4))
gen(z,3yA) if distinet(r,y) and gen(r, A)
gen(z,VyA) if distinct(r,y) and gen(r, A)
gen(z, AV B) if gen(z,A)and gen(z, B)
gen(z, AN B) if gen(r, A)

gen(z, AA B) if gen(r. R)

con(z,A) if cd(A)and free(s, A)
con(z,A) if gdb(r, A)
con(z,A) if notfree(z, A)

con(z,-A) if con(z, pushnot(=A))
con(z,3yA) if distinct(z,y) and con(r, A)
con(z,VyA) if diatinet(z, y) and con(r, A)
con(z,AV B) if con(z,A) and con(r, B)
con(z,AA B) if gen(r,A)

con(z,AA B) if gen(z,B)

con(z,AA B) if con(z,A)and con(z, H)

Figure 3.3: Logical rules that define the gen and con relations.

e Function pushnot(~A) represents a formula B (provided ¢db(A) does not hold) that
is evaluated as follows:

=A B B

(A, A A;) (=A1) A (-A)

"(A! VvV A;) (~Ay) V(-Ay)
‘!324“] VSHA]
!‘Vi'fh 32!@;4,]

!i!iA‘ A‘

~(a=1t) s#t
~(s#1) a=1
~(a€t) agt
~(sgt) s€El

If edb(A) holds, then pushnot(~A) represents a formula, say L, that causes the cor-
responding gen or con predicate to fail.

From the relations of gen and con, the class of eveluable [GT91) formulas is defined

72

below. The class of formulas satisfying this definition (or which can be rewritten to <atisfy
the definition) is exactly the class of “safe” formulas of the calculus.

fullnwmg mndltmns are mFt
1. For every variable z that is free in F, gen(z, F) holds.
2. For every subformula 3z A of F, con(z, A) holds.
3. For every subformula ¥z A of F, con(z,-A) holds.

This definition provides an efficient, syntactic approach for determining whether a given
formula is evaluable or not: simply apply the appropriate gen and con rules to the formula
and subformulas. This definition is extended to object calculus expressions (OCEs) by
stating that an OCE {f'| '} where i contains at least one target term, is evaluable if the
formula v is evaluable in the sense of Definition 3.4. This establishes the decision mechanism
for accepting or rejecting any arbitrary query posed as an OCE. For example, assuming all
range predicates represent finite collections, the following OCE is evaluable:

{o] C(o) A 3p(P(p) v ~Q(0))}

while:
{o| C'(0) A 3p(~P(p) A p.B_something = o.B_something)}

is not because con(p, - P(p) A p.B_something = o.B_something) does not hold. Note that
the evaluable OCE above as given is an example of a formula that is safe in the evaluable
class, but is unsafe in the (range) restricted class as defined by [AB93).

Without a partia! r;:rde,r defined (iie.‘ we é:,fmat mi,ke use Gf the gdb prediente), formulas

and rma(z :r!g) Whl‘ﬂ‘ 8 is one of =, € never hﬁld The smct -sense Ev;!n;bk! quene; are the
class considered in [GT91]. However, they realized that many formulas are evaluable despite
this conservative approach. They presented transformations that remove some instances of
equality (=) and yield an “equality reduced” form. However, a more general solution was
needed for the TIGUKAT query mode] to deal with Bspecs and generating atoms that were
not part of their work. The introduction of the gdb predicate and the formation of the par-
tial order <f consistently extends the class of evaluable queries to a larger class recognized
in (G191]. Formulas that fail strict-sense evaluability, but can be made evaluable through
transformations or rule extensions are known as wide-sense evaluable.

Tlﬁ: n:ncludeu the deﬁnition of the synm:uc bned rher.k far remgmzmg the domain

OCE s evﬂnhh- there are a finite number of itepl (delmbed in Section 3.7 by the ulculu;
to algebra reduction Theorem 3.3) that transiates any evaluable OCE into an equivalent
object algebra expression (OAE).

The second test for “safety” determines whether a query adds objects to the collections
and classes that it is ranging over and to reject it if it does. This form of safety is called the
check for operand finiteness. An example calculus expression that exhibits this problematic
operation is as follows:

{o | 3p(C_collection(p) A 0 = neweoll(p)))

73

This query ranges over the entire class of collections (i.e., all collections) and for each
collection p it creates a new collection containing the collection p. The problem is that the
new collections are created as instances of C_collection, thereby i increasing the cardinality
of C_collection for every object in C_collection. Since the semantics of the query is to
range over all members of C_collection, the newly created collections should be included
in the range of p. This results in the creation of more collections that should be included in
the range and so on. The check for operand finiteness is deferred until after the generation
of an equivalent algebraic expression and the check is performed on algebraic operators (see
Section 3.5.3). This is done because an algebraic expression defines the procedural structure
of a query and a recursive process is defined that goes through and tests each operator in
turn.

3.5 The Object Algebra

An algebrair expréssi(m prl‘PﬁFﬂls a typﬂl rnl]eﬂmn uf uh _]erls ThP u]wrands amd re-
f@mbmmg mllertmns wnh rertun algﬁbra nperatnrs (e- £, prmlnrt union, mh rsi:ﬂmn) a
collection with a different type from those of the operand collections (or any type in the
lattice) may be created. Thus, in order to integrate these new types into the existing lattice
a type inferencing mechanism is introduced and used by the algebra.

There are two types to consider here: the type of the container (i.e., the type of the
toﬂectlon nb;ect) and thr type of thp ﬁb;ﬁ‘ts in thp mntmm-r (| e, lhp Ilil'lllhl‘rlihlll lylw

types ﬂf mllécticm

3.5.1 Semantics of Type Inferencing
A query returns a collection as a result and every collection must have a single member type
(Section 2.4.5). Thus, the algebraic operators may have to create a new type when forming a
query result that contains objects of heterogeneous types or contains newly created ohjects,
Therefore, type creation and type inferencing semantics are developed for the TIGUKAT
model. Type creation and type inferencing are topics also related to schema evolution.
Only the generic type creation and inferencing mechanisms are presented in this section.
The complete discussion of schema evolution is presented in Chapter 5.

Let T; (1 < i < n) denote types. Then, the behavioral application 7;.B_interface denotes
the cnllactm nf hﬂl;vinrs lpplicgbk to nhjeﬂs nf lype T. Thr type inﬁ-n-nrmg mﬂ-hnmsm

type T_t;]u They are deﬁned as follows:

Ty, NT, (B-tmeet) produces the meet type of the argument types. The result type, say 7',
defines the behaviors that are common to types T; and T;. The interface sot of T ix
defined as Ty.B_interface N T,.B.interface. If T, is a subtype of T}, then T\NT; is T;.
The converse is true if T} is a subtype of T;. The B.tmeet behavior produces a result
type that is integrated into the type lattice as a direct supertype of the argument
types and a direct subtype of types forming the most specific set conformanee of the
argument types (i.e., all the common direct supertypes of the argument types before
the integration is done).

L)

Ty UT; (B.tjoin) produces the join type of the argument types. The result type, say T,
defines all the behaviors of T; together with all the behaviors of T;. The interface
set of T is defined as Ty.B.interface U T;.B_interface. If T, is a subtype of T), then
TyuT; is Ta. The converse is true if T; is a subtype of T;. The B_tjoin behavior
produces a result type that is integrated as a direct subtype of the argument types
and a direct supertype of all the common direct subtypes of the argument types before
the integration is done.

Ty » T; (B.tproduct) produces the product type of the two argument types. The result
type, say T deﬁnes prﬁduct behaviors (see below) ind il integrnted asa lubtype gf

lnd result lype of pmduct behaviors determmes ;uht,ypmg on pmdurt types, Db)ect,s
of type T are pairs with the first component being an object of type T) and the
second component an object of type T;. The B.tproduct behavior produces a product
of types that does not have a sub/supertype relationship with the argument types, but
is integrated with other product types. Instances of a product type are called product
objects. They are created from objects in the extents of the types that contributed to
the product type. The components of a product object are the original objects from
which it was created.

The binary N, U, behaviors can be naturally extended by defining them over multiple
types in the following way (where n > 2):

n,T; = T,NTN...NT,
UnmTi = HuThu---uT,
WIH-ITI g ToTh®w---®T,

Parentheses may be used with the above operators. Each parenthesized subexpression
represents the creation of a new type. With respect to the behaviors defined on the final type
created, operators M and U are commutative and associative while ® is neither. Parentheses
affect the semantics of the product operator in the following way. Product types define inject
behaviors (p;) that return the i** component of a product object. With this in mind, the
following product types are all different types that define different inject behaviors with
different result types:

(oT)eTs

Ho(ToTy)

TioT:oTs
The first type defines two inject behaviors; py that returns a product object of type T} » T;
lmi ;M tlm I'E“ll'll an ob jert of type ‘T; 'I'he lemnd one deﬁns twa inject hehvian that

obptt of type T; ea T; The third type defines three inject behgvm, p! that returns an
object of type Ty, p; that returns an object of type T, and ps that returns an object of type
T;.

The definition and integration of product types into the existing lattice and the creation
of product objects is designed to be an automated process. A request is made through
the application of a behavior to create a product object from a given list of objects. This
may spawn the creation of a mew product type and a class for the object if they don't
already exist. In order to support these semantics, the following extensions are made to the

primitive type system:

£

¢ T.product is defined as a subtype of T.type. T.product defines the following native
behavior:
B.compTypes : T1ist(T_typs)

This behavior returns the list of component types that make up a product type.
Intuitively, T_product is the type that describes the semantics of product types. The
class C_product for this type is created as an instance of T_type-class so that the
primitive type creation behavior (defined as new on this type) can be applied and
passed a list of component types. The semantics of applying this creation behavior to
C_product with a list of argument types is to create a product type (if one doesn't
already exist) whose component types are the argument types passed, and to integrate
the new type with existing product types. The behavior B_tproduct () applies the
type creation behavior to C_product passing along its arguments types. This defines
the creation of new product types as instances of C_product.

o T_product-class is defined as a subtype of T_class. A product object creation
behavior
B.new : T1ist(T.object) — T_object

is defined on T_product-class. Intuitively, this type defines the semantics for the
classes of product types. The class C_product-type is created as an instance of
C_class-class. The type T.class-class defines a ciass creation behavior (new) that
accepts a type (the type to associate a class to) as an argument. By applying this
behavior to C_product-class and passing a product type, a class for the product type
is created (if one does not already exist). Now, product objects can be created through
the resulting class by applying the B_new behavior defined on T_product-class to
the class and passing a list of objects.

For example, the following series of behavioral applications create a new product type
called T_person-dwelling, a product class called C_person-dwelling and a product object
0 as an instance of this class. The first component of o is the person object joe and second
component is the dwelling object apt204. The “—~" symbol denotes assignment and < >
denotes a list of objects.

T.perscn-dwelling — C_product.B.new(<T_person,T.dwelling>)
C.person-dwelling ~ C_product-class.B.new(T person-dvelling)
o «~ C_person-dwelling.H_new(<joe, 2pt204>)

Finally, a behavior B_newprod is defined on T_object that accepts as arguments a list
of objects and a list of corresponding behavioral projection sets. The result of applying this
behavior with these arguments is as follows:

1. A product type is created (if one does not already exist) using the type of the receiver
object and the types of the objects in the first argument list. The types are projected
over the behavioral projections in the second argument list before the product type
is formed.

2. A class for the product type is created (if one does not already exist).

3. A product object formed from the receiver and the objects in the first argument list
is created as an instance of the (pousibly new) product type and a reference to this
object is returned.

For a given list of objects 0y, 0,, . .., 0, and list of behavioral projection sets By, B,....,B,.
the notation newprod(o)[By),. ,!,a,‘[En]) is used to denote a Bspec that represents the ap-
plication of the product creating behavior with the given argument lists as:

0y.B.newprod(<oe,,...,0,>,<B),...,B,>)

ThF mult i; a pmdurl nbject (ai, ,n.,) whase i"‘ r.umpﬁnent in the nrigma] nb_pﬂ o

ln order to extract and npente on the angm;l campm\ent Qb)eﬂl nf a pr,odurt object,
every product type defines an inject behavior for each of its component types. Product
types are integrated into the type lattice according to the names and return types of these
behaviors (more generally, their semantics). The behaviors defined on product types are
the following;:

Inject: For every product type Ty 6 -+ - &0 T,,, there are n inject behaviors defined p;, 1 <
i < n such that for a given object of this type, say o, the behavioral application o.p;
returns the object of type T; that represents the i** component of o.

A product type Ty 09+ - -0 T,, is integrated as a subtype of a product type T{%---0 T,

if m < nand T; is a subtype of T/ for 1 < i < m. It is integrated as a supertype of
TV 0T ifn<kandT;is ;lupertypeofT"fcr 1 < i < n. If the product type
cannot be langl'llPd as a subtype of some other type, it is defined as a subtype of
T-object.

Equality: The object equality behavior for T_product is refined to be based on pairwise
identity equnht_y of the fnrnpunent objects. That is, for two product objects 0 and o
of types Ty 00 0 Ty, and T{ 0 - - %0 T4, 0 = o is true if and only if 0.p; = o.p; for
1<i<n

3.5.2 Algebra Expressions

The underlying framework of the object algebra and calculus are essentially the same. How-
ever, an important difference is that the algebra can be viewed as having a functional basis as
opposed to the logical foundation of the calculus. This perspective was described by Backus
[Bac78] and has been exploited by several complex object models (MD86, Day89, AB93).
In the algebra, names are used as placeholders for collections with the appropnate types.
The predicates =, #, €, ¢ and connectives A, V, ~ are handled as boolean-valued functions.
The object creating behaviors newcoll() and newprod() are variadic functions. There is a
small set of well-defined algebraic operators (viewed as functions) that provide meaningful
iterations over collections and can be composed to form more complicated queries (exis-
tential and universal quantification are bandled by composing these operators). Thus, an
algebraic query is a functional expression to be evaluated and the algebra is a functional
language.

The basic algebra expression consists of a single collection specification. In the al-
gebra, a base algebra expression is either a collection name or the function application
wewcoll(cy,...,cq) Where each ¢; denotes a constant (i.e., a ground term). The latter is
called a collection constant. Other algebra expressions can be constructed from the base
expressions using the algebraic operators.

”

The basic constructs of the calculus (object constants, object variables, and Hspecx)
have a functional interpretation that abstracts over the free variables in the constructs.
The interpretation of these constructs is called a functional cxpression.

Definition 3.5 Functional Ezpression: A functional expression is a functional abstraction
of an object constant, an object variable or a Bspec defined as follows:

1. For every constant ¢, there is a unary functional expression Ar.c that returns the
constant c.

2. For every variable z, there is a unary functional expression Ar.r that is the identity
function.

3. For every Bpsec 3{f}, there is a functional expression AF.;3{F} that represents a
functional abstraction of the Bspec. If the Bspec is a ground term (i.e., is not free
over any variables), then its functional expression is Az./3{} with the same semantics
as for constants.

The variables appearing after the A symbol and before the first dot are called the parameters
of the functional expression.

Since Bspecs can be abstracted into functional expressions, all behaviors have this ab-
straction. This means that predicates =, #, €, ¢ and connectives A,V, - are hoolean-valued
functional expressions. The object creating behaviors newcoll() and newprod() are vari-
adic functional expressions that produce the appropriate collection or product object. The
algebraic operators (defined below) are functional expressions that operate on collections
and produce collections as results.

In general, mop is used to denote a functional expression and is called a mop function.
Given a mop function (mop) with parameters Z and given objects 3 that are type compatible
with £, mop(J) is used to denote the application of the mop function to the objects. That
is, each o; is substituted for an z; to form a context, the context is evaluated and the result
object is produced.

Operands and results of the object algebra operators are typed collections of ohjects.
Thus, the algebra is closed since the result of any operator may be used as the operand of
another. l..et 'l' repruent an nperatur in the a]gebra Tlie notation I‘ (Qh .Q..) is

reprﬂent l.henrgumentstni Whenn* l Pinluﬂd, lnd wln-n n*ﬂf‘fm used
without loss of generality. The collections represented by P and Q; may be names for base
collections, a collection constant creation request or the result of an algebraic subexpression.
Since the model supports substitutability, any specialization of collection, including classes,
may be used as the operand. Similar to the range predicates of the calculus, F'* is defined
to denote the shallow extent when P is the name for a class.

Certain algebraic operators require a functional expression (mop function) as an ar-
gument. The operator applies the mop function to permutations of elements from its
operand collections and takes appropriate action on the result. Some operators require
a boolean-valued functional expression (a predicate) denoted F. Evaluating F for particu-
lar permutation of arguments produces a boolean result upon which the operator takes an
appropriate action. The membership types of the operand collections must be consistent
with the types expected by the mop function. Mop function qualified operators are writ-
ten as P @y (Q1)...,Qu) where mop is a mop function (or predicate) with parameters,

82Y P, g1, - . .1 qn, that range over the elements of collections P,Q,,...,Qy, respectively. To
make the identification of arguments with parameters simpler and more explicit in algebraic
operators, the A7 specification is dropped from mop functions and replaced by subscripting
operand collections with the parameters of the mop function as P,. This explicitly indicates
that the range of variable p (in the mop function) are the elements of the operand collection
P. For example, I ®pmop(p,q) Q is used instead of the abstract notation P @4 mop(p.q) -
For operands consisting of product objects with components #, the operands are subscripted
with all the components as Pp. This means that some combination of inject behaviors on
the elements of P will retrieve the original z; components. This is only a notational conve-
nience to identify the ranges of variables and the components of product objects in algebra

For a collection P, the notation Ap denotes the membership type of the objects in P.
Furthermore, the behavioral application Ap.B_interface denotes the behaviors applicable to
objects of this type. This notation and the results of Section 3.5.1 are used to infer a new
membership type for the result collection produced by the operators.

The object algebra defines both target-prescrving and target-creating operators. The
target-preserving operators are as follows:

Difference (denoted P - Q): Difference is a binary operator that produces a collection
containing objects that are in P and not in Q. The membership type of the result
collection is exactly the type of P (i.e. Ap).

Union (denoted P U Q): Union is a binary operator that produces a collection containing
objects that are in P, in Q or in both. The membership type of the result collection
is Ap N Ag. This type defines behaviors common to both Ap and Aq.

Intersection (denoted PNQ): Intersection is a binary operator that produces a collection
containing objects that are both in P and in Q. The membership type of the result
collection is Ap U Aq. This type defines all behaviors of both Ap and Ag. Note that
PN Q is derivable from difference as P~ (P - Q) or Q - (Q - P). Even though these
turee operations produce result collections with identical extents, the membership
type of each result may differ. The intersection operator is preferred over difference
because it has the potential to produce more type information.

Collapse (denoted P §): Collapse is a unary operator accepting a collection of collections
Py= (J{zlzeP)
The membership type of the result collection is the extended meet over the member-
ship types of the collections in P.
N{A; | z € P}

Select (denoted P oF (Q1,...,Qu)): where F is a predicate over the elements of collec-
tions P,Q;,.,.,Q.—.,nuihgngggugnmup,ﬁ,....ﬁudt,bntkymtype
consistent with the membership types of the collections. Select is a higher order opera-
tion accepting & mop function, the predicate F, and the n+1 collections P,Q,,...,Q,
as arguments. The select operation produces a collection contalning objects from P
corresponding to the p component of each permutation <p,g1,...,¢u> that satisfies

F(p.q1.....q,). The membership type of the result collection is exactly the type of
P (ie. Ap).

Example 3.1 Return the persons that are senior citizens:
Ggpemnr O, B_age>es

Example 3.2 Return the maps that contain water zones:

C.map, 0., B sones C-water,

Project (denoted P Tg): where B is a behavioral projection set with the restriction that

it be a subset of the behaviors defined by the membership type of P. (i.e., a subset
of Ap.B_interface). The B collection is automatically unioned with the hi’h-‘“‘hlrh of
type T.object before the project is performed in order to ensure consistency with the
object model (i.e., everything is an object and therefore must support the hehaviors
of T.object). Project produces a collection containing the objects of P, but with a
membership type coinciding with the behaviors in B.
The new type is integrated into the sublattice rooted at Tobject and with the hase
Ap. An abstract type definition is created that has all the behaviors defined by
B. The implementations of these behaviors are undefined, but this doesn't cause
problemns hecause no class is created and therefore no objects of this type exist. This
new type has no special properties, meaning it can be subtyped, implementations for
its behaviors can be defined, a class can be associated with it and objects of this type
can be created,

The B projection set has no impact on which objects appear in the result collection
of the query. It is only important during the final type assignment that occurs at
type inferencing time after the extent of the query has been produced. This form of
project differs from the traditional one in that it does not project over the structure

of objects, but rather over their behavioral specification. The project operator is a
behavioral-theoretic notion of projection that has no structural implications.

Example 3.3 Project over behaviors B_name and B_age for class C_person:
C.person Mg _name,B_age

The full object algebra includes target-creating operators in order to provide necessary
object formation and restructuring operators. The result of these operations is always a
collection of new objects that are object identity distinguishable from the ohjects in the
argument collections. The primary target-creating operator is product:

Product (denoted Q) x ::- x Q,): where n > 2. Product produces a collertion con-
taining product ah_pect: of the form (¢y,43,...,4.) created from each permutation
<@1,42,- ... @u> such that component ¢; is an nbp:t from Q,. Product may initiate
the Emtiun of a new type along with a new class to mlﬂ“lii the product objects,
The membership type of the result collection is Ag, t0 - ® Ag.. Although this op-
erator seems structural in nature, Section 3.5.1 d!lm a hehvinnl theoretic notion

of product that is commensurate with the uaiformity of the object model,

Thérﬁ is an iﬂditiana] npﬁramr thgt ﬁts intt;n Imth thF t;rget preserving and target-
drpéndmg on thF map funttmn argumem passed to it. That is, if thP nmp funttmn is
target-creating, the operator is target-creating, otherwise it is target-preserving. Map is
defined as follows:

Map (denoted Q) »yop (Q2,...,Qn)): where mop is a mop function over the elements of
collections Qy,Q;,...,Qn, meaning it expects arguments ¢;,¢2,....¢n and that they
are type consistent with the membership types of the collections. Map is a higher
order operation accepting the mop function mop and the n collections Qy,Q3,...,Q,
as arguments. For each permutation of objects < ¢;,¢2,...,¢, > formed from the
elements of the argument collections, mop(¢;,¢a,...,qy) is applied and the resulting
object is included in the result collection. The membership type of the result collection
is the type of the mop function. Map is a generalized version of the same operator
defined in [SO90a) and is similar to the replace restructuring operator in [AB93).
However, replace operates over a single set-valued relation in contrast to map, which
is variadic over the number of argument collections. Map is also similar to the image
operator of [SZ90] except that theirs is restricted to the application of single behaviors
while the mop in a map operator is a general functional expression.

C.person, >, p_residence. B_inZone
Example 3.5 Return the proximities of water zones to the City of Edmonton:
C.water, >, B_proximity(edmonton)
Example 3.6 Return (person, person, children) triples for all combinations of people:
C.person, >, pr0i(p.e0.Bchildren(y)) C-Person,

The operators defined above form the primitive algebra (some refer to this as a physical
algebra). They are fundamental in supporting the expressive power of the calculus and the
subsequent operators can be defined in terms of them. The following operators are added to
the primitive algebra and this is called the eztended algebra (some call this a logical algebra).
These operators are detived from the primitive algebra, they support a useful functionality,
they generalize the expressive power of the algebra and some are important for higher-level
optimizations [S090a). Note that the following operators are target-creating.

Join (denoted " Mz (Qy,...,Q,)): where n > 1 and F is a predicate over the elements
of collections P,Q,...,Qu. Join produces a collection containing product objects of
the form (p,q1.....¢s) created from each permutation <p,qr,...,¢u> that satisfies

F(p,¢1,...,¢u). The membership type of the result collection is Ap®Ag, ®-:-®Ag,.
This type and its associated class may be created if they don't already exist.

The join operator can be expressed in terms of product and selection as follows:

Eg. HF (E;:aa-uEg-) = (Efl x Eg X e X Eg‘)g GP
where F is a predicate over variables # and F' is F except that every occurrence of
2; is replaced with o.p;, the inject of component 2; from product object o.

Example 3.7 Return married couples that don’t live together:
C—PE"““ ‘p.Bspouse=q A ¢.B_residence#p. B _residence C. -person,

Example 3.8 Return (map, water zone, water zone) triples where the given map
contains two different water zone that are within 100 units from each other:

C.map,, ™. em.B_sonesayem.B_tonesargyrs. B_proximity(y)<100 (C-water,, C water,)

Generate Join (denoted @, 79 (Q1,...,Qn)): g is a generating atom of the form 0 @ mop
where 0 is either = or € and mop is a mop function over the elements of collections
Q1.Q3,...,Qn. Generate join produces a collection of product objects created from
each permutation of the ¢;’s and extended by an object o in the following way. If 8 is

=, the result contains product objects of the form (¢,,¢z.....q. Moy g, .. q.,))
fc-r each permutation of the ¢;'s (i.e., each product object is a permutation of tlm ¢
extended by the result of applying tlu- mop functinn to that permutation). If # is ¢,
the result contains product objects of the form (g, ¢y, .. «y Gy 0) for each Pﬂ’]lliilalmll
of the ¢;'s and each o € mop(qy, gz, .. +qn) (i.e., for a permutation of the ¢,'s and for
each member o of the collection resulting fmm the application mop(qy,¢s.....¢,), a
product object with components (¢y,¢3,...,q..0) is created as a member of thv result
collection). Generate Join is similar to PDM’s apply-append operator except theirs
works on a single tuple while gﬂlﬂ'ité join is over an arbitrary number of collections,

Ef! 7§imgp (E!ai sety E-'r-) = E;; }ﬁ,ﬂypﬁd(f; T 3yee-Emtiopl{T)) (—Er;i AERE E-i‘n)
The membership atom based generate join can be expressed by the following series of
algebraic operations:

A g E;!§E;3!”*."§E;ﬁ
_ g .
B = A, }nﬂrpfpﬂfm@ﬂ:ﬂ NP .)
v def -
¢ = (E }Eﬂ!ﬁ‘ﬂ“i rRLEX) ll
E,, TSEmwp (Eeyy... Er,) = C, P rewprod(s.py .p1.5.01.02,..7.21.P0.5.02)

Example 3.0 Return (zone, proximity) pairs of each zone extended with its proxim-
ity to all water zones:

C_sone, 7;:;5“, oximity(y) C-Water,
Example 3.10 Return (map, zone) pairs of each map extended with the zones con-
tained in that map:

C.map, 7aep B_sones

Reduce (denoted PA,): where P is a collection of product objects and pi is an inject
behavior defined on the membership type of P. The reduce operator has the effect of

discarding the i'* component of the product objects in P. That is, product objects
of the form:
(P11 s Pi1s Pis Pid1s -4 Pn)

with inject behaviors:
Plo-cos Pim1s Pis Pidlvs -1 Puy

are mapped to product objects of the form:

(P]w--»?i-h?i*h“-v?n)

nents are removed. If P is not a product object, the empty collection is returned.

The reduce operator can be expressed by map as follows:

i

EA,, E, P 1ewprod(0.0) 1..0.011.0.8141 111x0.5m)

The effect of the map is to produce product objects that contain all the original
components of o, minus the i'* component. Map, together with the product object
creation behavior, is a generalization of the relational projection on product objects.

As a notational convenience, a series of reduce operators is coalesced into a single one
and the p symbol is dropped from the specification. The equivalence is defined as
follows:

PA,, .B,,, = PO, ..

Example 3.11 Let E be the result of Example 3.8 above. Reduce E by excluding
the first water zone of the result:

EA,

The functional nature of queries is twofold. On the one hand, a query may be thought
of as a function where collection names serve as variables representing the arguments. By
associating these names with collections in an instantiation of an objectbase, a substitution
is formed and can be evaluated. On the other hand, for a given (static) objectbase, a query
denotes a constant because it will produce the same answer over and over. Thus, a query
is a function only wlhen all possible objectbases are considered. For a given objectbase
(i.e,, interpretation), a query is an expression resembling a 0-ary function. In contrast,
behavioral compositions such as Bspecs (mops) are functions even within the instantiation
of a objectbase. When they are composed with algebraic operators select, map, join and
generale join, they denote functions that are applied to permutations of the elements from
the operand collections.
the primary concerns of the TIGUKAT project is to produce an efficient implementation
of the query model. Use of powerset causes exponential growth of collections and the costs
that this could incur is unacceptable for the implementation of the model.

The foundations of powerset and recursive query capability are present in the TIGUKAT

extensions. One extension is the addition of a primitive powerset algebraic operator (i.e.,
behavior) that accepts a collection and produces the powerset of the collection as output,
Using this, a form of generate join could be derived that creates a collection of product
objects - one for each element in the powerset of the mop function evaluation whuse
components are the operand collections appended with the element from the powerset.
Since a B_containedBy behavior (analogous to C) already exists on T_collection. only
a predicate s C t needs to be added in the calculus for this behavior. If the term s ix a
variable, then this becomes another kind of generating atom in the calculus.

A clean definition of safety with respect to powerset that complies with the efficient
translation of evaluable formulas (i.e., without forming large DOM sets) is not apparent.

The powerset property has a logical derivation as follows:

sCt

Vi(res=>r€t)

E Vz(rgavret)
2 ~dr(zesnzgl)

This derivation does not satisfy the evaluable property unless s and ¢ are further re-
stricted outside the formula. This means that s C t can not in general be used to generate
objects for s from ¢ and its only consistent use would be as a restriction atom. However,
this is already handled in TIGUKAT because the derivation is a valid formula of the cal-
culus and is safe if s and ¢ are restricted outside the formula. Thus, without heing ahle
to generate values for s from the derivation, no additional power is added by including a
C predicate and a powerset ope-ator. On the contrary, it would make the algebra more
expressive than the calculus, since the translation of the powerset operator to the calculus

A clean incorporation of powerset capability that complies with the feasible translation
properties of the evaluable class is part of the future research of the TIGUKAT project. If a
compatible derivation can be found, extending the proofs of completeness will be straight-
forward. From algebra to calculus it is simply a matter of stating the derivation of the
powerset operator and from calculus to algebra it involves carrying the C predicate through

the translation.

3.5.3 Safety of Algebra Expressions
Recall from the discussion in Section 3.4.4 that there are two forns of safety to consider.
The first form checks the domain independence of the query and was defined in that section.
The second form checks the safety of a query with respect to operand finiteness, meaning
it checks that the query does not add objects to any collections or classes that it is ranging
over. This check is defined on algebraic expressions and determines the operand finiteness
of each operator in the expression.

Since object creation and insertion occurs through the application of behaviors, the
check for operand finiteness could be combined with an algebraic type checking mechanism
such as the one defined in [SO90b] that goes through an algebraic expression and examines

The “problematic” operators of the algebra that can violate operand finiteness by adding

objects to their operands are select, map, join and generalc join because they contain mop
functions that are general behavioral applications. The oaly side effect behaviors allowed

in mop functions are insertion into a collection (i.e., Boinsert on a collection) and creation
of a new object (i.e., Honew on a clas- This is further restricted in that the iusertion or
creation behavior must be applied to a constant reference of a collection or i class (ie. not
to a variable or the result of a behavioral application) or must not occur at all.

All other behaviors in a mop function are assumed to be side-effoct free (e they do uo
create new objects or modify existing objects in any way). The reason for this assumption
is that the implementations of hehaviors are not examined to determine their safety with
respect to operand finiteness. The exceptions to thix assumption are the primitive defined
neweoll() and newprod() behaviors and the algebraic operators. They can oceur in mop
functions. but their use is restricted as defined below.

An algebraic expression is rejected if it contains an algebraic operator that is unsafe with
respect to operand finiteness. An algebraic operator @ is unsafe with respect to operand
finiteness if it is a select, map, join ot generate join operator which has a mop function
that contains one of the following:

e an application of B_new on a class that is an operand of ¢,

e an application of B.new on a class that is a subclass of an operand of ¢ and the
operand is a class ranging over its deep extent,

e an application of B.insert on a collection that is an operand of &,
o an application of newcoll() and one of the operands of & is the class C _collection,
o an application of newprod() that creates an ohject in a class that is an operaml of &,

e an application of newprod() that creates an object in a subclass of an operand of &
and the operand is a class ranging over its deep extent,

e an algebraic operator and one of the operands of ¢ is C collection,

e an algebraic operator and this algebraic operator is unsafe with respect to operand
finiteness.

3.6 Example Queries

An SQL like language called TQL (TIGUKAT Query Language) [I‘Lf)ﬁ!’):lh. Lip93) has been
developed for the model. The select-from-where clause of the language is an object-oriented
extension of SQL. The basic structure of this clause is used to present some queries that
illustrate the properties of the calculus and algebra. The queries are first expressed in TQL,
followed by the corresponding object calculus expression and then the equivalent algebraic
expression. In the algebraic expressions, operand collections are subscripted by the variables
that ranges over them. If the operand consists of product objects, the variables that make
up the components of these objects are listed. The indexed variables are used as a symbolic
reference to the elements of the collection as described in Section 3.5.2. Furthermore, the
arithmetic notation for operations like o.greaterthan(p), o.clementof(p), etc., is used instead
of their boolean Bspec equivalents. The execution of the algebraic expression is from left.
to-right, except that parenthesized expressions have higher priority and are executed first.

Example 3.12 Returp land zones valued over $100,000 or that cover an area over 1000
units.

B3

TQL: select o

from o in C_land

where (o.H_value() > 100600) or (0.B_area() > 1000)
Caleulus: { o | CJland(0) A (0.B_value > 100000 v 0.B.area > 1000)}

Algebra: Cland., a(, g yalue>100000 v . B_area>1000]

Example 3.13 Return all zones that have people living in them (the zones are generated
from person ohjects).

TQL: select o
from ¢ in C_person
where (0 = ¢.H_residence().B_inzone())
Caleulus: { o | 3g(C_person(q) A o = q.B_residence.B_inzone)}

Algebra: (Gipemnq 7§=q.B.:ésicienfp,ﬂ.jnzmm)qiu By

Example 3.14 Return the maps with areas where senior citizens live.

TQL: select 0
from o in C_map
where exists (select p
from p in C_person, g in C_dwelling
where (p.B.age() > 65 and ¢ = p.B_residence()
and g.H_inzone() € o.B_zones()))
Caleulus: { o| C.map(o) A 3p(C_person(p) A 3¢(C.dwelling(q)
A p.B.age > 65 A q = p.B_residence A q.B_inzone € o.B_zones))}

Algebra: (Cimpﬁ My (C_dwelling,, (C.pgﬁanp 0p.B_age>6s)p)) AV
- 8.9.p

where F is the predicate (¢ = p.B_residence A q.B.inzone € o.B_zones)
Example 3.18 Return all maps that describe areas strictly above 5000 feet.

TQL: select o
from o in C_.map
where forAll p in (select ¢
from q in C.altitude

p.Bow() > 5000
Calculus: { o | C.map(o) A Vp(~C.altitude(p) v ~(p € 0.B_zones) V p.B_low > 5000)}.

Algebra: C_map - ((C,mpn M ¢0.B_zones (C;hitndg, O —(p. B Jow>3000))P) A,)
, op
Example 3.16 Return the dollar values of the zones that people live in.
TQL: select p.B._residence().B_inzone().B.value()
from p in C_person
Calculus: { o | 3p(C.person(p) A 0 = p.B_residence.B_inzone.B_value)}.
Algebra: (C_persom, 12__ b egidence. B.insone B_value), , 27
Note that this has a simplier form using the map operator as follows:
C.person, >, B_residence.B_insone.B.value

Example 3.17 Return the zones that are part of some map and are within 10 units from
water. Project the result over B_title and B.area.

TQL: select o[B_title, B_area]

from p in C_map. o in p.B_zones, ¢ in C_water

where o.B_proximity(q) < 10
Calculus: { o|B_title, B_area] | 3p3g(C.map(p) A C _water(q)

Ao € p.B_zones A o.B_proximity(q) < 10)}.
Algebra: ((C_map,, 7::€r'8_1‘m")T' N N\i.ﬂgpruxilnujgl:;)giu C;\Xﬂh‘f,,) ;'\"H " B uile B s
. Pt

Example 3.18 Return pairs consisting of a person and the title of a map such that the
person’s dwelling is in the map.

TQL: select p. ¢.B_title()

from p in C_person. ¢ in C_map

where p.B_residence().B_inZone() € ¢.B zones()
Calculus: {p.o| 3¢(C_person(p) A C_.map(q)

A o = ¢.B_title A p.B_residence B_inZone € ¢.B_zones))

Alsebra: (C'personp Np.B.residcnrnBJani?Eq:H;-mﬁ (C‘m;""q 7::;,,]1 _title)_,, _,)') fli,
Example 3.19 Return (person, spouse, child) triples of all couples and their children where
the first parent is homeless. The children set of a couple is “flattened™ by grouping each
child with their parents.

TQL: select p, s, ¢
from p, s in C_person, c in p.H_children(s)
where s = p.B_spouse() and
not p.B_residence() in (select |
from /i in C_house)
Calculus: {p,s,c| C_person(p) A C.person(s) A c € p.B_children(s)
A s = p.B_spouse A p.B_residence ¢ C_house}

Algebta: ((C.person, aP.B.noidﬂltéic.hm U)P Mjgpisiilﬁﬂlif C,]WI‘S“H,)P s é—’:ép.ﬂ;‘hi“iﬂ‘ﬂ

3.7 Completeness of Calculus and Algebra

A desired property of the languages of a query model is that they be equivalent in expressive
power. That is, any expression formed in one language has an equivalent formation in the
other. In the calculus it was shown that certain queries are not “reasonable” because there
is no efficient way to process them. Thus, in defining the completeness of the languages,
only the “reasonable” or “safe” expressions are considered.

In this chapter, the completeness of the reduction from the algebra to the calculus and
from the calculus to the algebra is shown. This is sufficient to prove the equivalence of
the formal languages. A reduction of the TIGUKAT Query Language (TQL) to the formal
calculus has been reported elsewhere [PLOS93b, Lip93].

3.7.1 Theorems and Proofs

Theorem 3.2 The reduction from the object algebra to the object calculus is complete.
Proof: It mnst be shown that if E is an expression in the object algebra. then there is an
nhjm't mlrulus ﬁxprﬁ:sinn (()('E) equivalent to E. The proof is by structural induction on

Basis. Zero Operators: Then E consists of a single collection name (' or a collection
creating behavior application neweoll(cy,....r,) where each ¢, is a constant. An
equivalent OCE for E in the first case is {o | (“(0)} where (" is the pl’Fdl(‘alF for col-
lection €', In the second case an equivalent OCE for E is {0 | 0 € ncweoll(cy.....c,)}.

Induction: Assume E has at least one operator and that the theorem is true for expressions
with fewer operators than E.

Case 1: kY E, Ng. Since E; is an object algebra expression with fewer operators than
E, an OCE {o | yy(0)} equivalent to E; can be found. Then E is equivalent to
{olB] | va(0)}.

Case 2: F def Ey - E;. By renaming of variables if necessary, OCEs {o[B;] | v1(0)} and

{o[B;] | v2(0)} equivalent tn E, and E; can be found (the behavioral projections B,
and B, may be empty). Then E is equivalent to {o[B] | v1(0) A ~1(0)}.

Case 3: E ¥ l;; U E;. OCEs for E, and E; can be found as in Case 2. Then E is
equivalent to {o[B) N B;] | vu(e) V 2(0)}. Note that By N B; denotes the intersection
of the two component behavioral projections. This intersection represents the proper
behavioral projection of the result collection.

Case 4: EY E\nE;. E, and E; have equivalent OCEs as in Case 2. Then E is equivalent
to {o[B) U B,} | y1(0) A ¥72(0)}. Here By U B; denotes the union of the two component
behavioral projections.

Case 8: £ E; §. There is an equivalent OCE for E, as in Case 2. Then E is equivalent
to {o | Joy(Vi(o) Ao € 0y)}.

Case 6: £ ' E, or (Ey,...,E,). There are n OCEs equivalent to E), Ey, ..., E,. Then
Eis ﬂ]lllVik‘ill to (('[Bl] l V(o)A 302 .. '3@6(‘/"2(9‘2)’\ Avu(on)A F(Q, 02,.- iaﬂ))]

Case 7: E % E, x --- x E.. There are n OCEs equivalent to E,,...,E,. Ther E is
Pqumkm to {alsﬂ: .Jon(¥1(01) A+ -Avn(0n) Ao = newprod(o[By),. . ., 04[Bn]))}.
Here ncwprod(o[By), . ..,0u[Ba]) denotes the behavioral application that creates a
product object constant whose i » component is the object denoted by o; that is
typed according to the behavioral projection set B;.

Case 8: E ' E\ >mop (Ey....En). There are n OCEs equivalent to Ey, Ey, ..., E
Then E is equivalent to {0 | 30y30;...30,(vi(01) A ¥2(02) A ... A ¥u(on) A0
rm)p(m ﬂji ,ﬂ-))}

The other algebraic operators can be written in terms of the primitive ones above and
this completes the proof. O

Calculus — Evaluable ” Allowed — ANF .

Fﬂﬁtyuhi evalify Formula , genify F.nﬁii;ila : ANFify Formula Tramform L Wh
l REJECT

Figure 3.4: Translation steps from object caleulus to object algebra.

Theorem 3.3 The reduction from the the object calculus to the object algebra is complete,
Proof: The reduction from the calculus to the algebra is proven by a translation algorithm
that fnllgws ﬂl? sthS |llustrated in Figure 3.4. The ﬁrnl hle rallml ¢ miifu 1In¢ rmim " l|n'
evaluablhty is em:mgh fﬂl‘ safﬂi\ : lhls is p.u\rml h; th !ranslal ion ﬂlgunthm in “n‘i tion i T2
Moreover, the class of evaluable queries being translated are wide-sense cvaluable with
respect to equality and membership. meaning a broader class of safe queries are recognized
by the approach. If the input formula is not evaluable, it is rejected.

From a database point of view, only those queries considered to be safe are candidites
for translation to algebra. For evaluable formulas, the rest of the trauslation is similar to
that presented in [GT91]. except that the extended definitions of the approach in this thesis
are carried through.

The genify step converts an evaluable formula into an allowed form {Definition 3.6) that
rewrites the formula to include range “generators™ for variables in each subformula. The
ANFify step places an allowed formula into Allowed Normal Form (ANF) (Definition 3.14)
that makes each constructive subformula independent of atoms outside the quantifier for
the subformula. The ANFify step makes use of Eristential Normal Form (ENF) (Defini
tion 3.12) and simplified form (Definition 3.9). The advantage of ANF is that the transfor.
mation from this form to the algebra is straightforward. The final step of the translstion
involves simple pattern matching to transform the ANF formula into a (safe) object alg: -
bra ezpression (OAE) that is equivalent to the original formula. The complete translation
algorithm is presented in Section 3.7.2. O

3.7.2 Calculus to Algebra Translation

In this section, the complete translation algorithm for converting safe object caleulus ex-
pressions into equivalent algebraic expressions is presented. The algebra expressions should
be checked for type consistency before they are optimized and prior to an execution plan
being generated. Since every object knows its type, this step may be performed during

compilation of the query. Query optimization and execution plan generation are reported
elsewhere [Muii94).

To help understand the translation process, the following query is given as a running
example. Throughout this section, the calculus expression in Example 3.20 is translated
into an equivalent algebra expression with the intermediate steps shown along the way.

Cmnder the qnery expmed in the folhwmg w;y

{ o | 3p((C_person(p) A o = p.B.residence.B_inZone) v C_transport(v)) }

For brevity, predicate C_person is mapped to P, C_transport to T. and the behavior
application p.B_residence.B_inZone to p.a. The query can then be written as:

{o] 3p((P(p) A o=pa) V T(a))}

Let the forimula part of the query be F %3 Ip((P(p) A o=p.a) VvV T(e))O

First the gen and con rules of Figure 3.3 are extended by adding ' fun f “gener-
ators” as described in [GT91]. The extended rules are shown in Fi- “+ ~hnique
adds a third argument (;(z) that serves as a “generator” of sorts * i 1 G(r1)
“generator” is a disjunction of ¢db and gdb atoms (possibly incl - ¢ ! tale) that
generates all the needed objects for 7 in the given formula a .. i G(r)
is a range for 7 that is at least as large as the values that + . i we to-mula).
Moreover, the atoms in (;(7) were the ones used to prove tha- -« relati=n holds
for variable 7 in some formula A(z). The placeholder “L7 1 =l F:-» in the

formula A: it may be thought of as a 0-ary predicate that - -

Evalify: Syntactic Safety Check

The evalify algorithm (Algorithm 3.1) syntactically detersii:ie. whethe - gwven input for-
mula F is evaluable or not and returns an indicator SAFE = REJES T respectively. Recall
from the discussion in Section 3.4.4 that the cvaluable proge -+, '+ sition 3.4) is sufficient
for safety. A side-effect of the algorithm is that the par&i ~+1 <y for formula F is
defined. When evalify is first called, the partial order is instiadt/ i a- wadefined. The algo-
rithm incrementally builds the partial order on each pass through the repeat loop; the first
pass orders variables that are generated from edb atoms, the second pass orders variables
that are generated from variables in the first pass and so on. The gdb predicate for the gen
and con rules uses the “partially defined” partial order in each intermediate pass through
the repeat loop. Thus, the results of the previous pass are used to update the partial order
on the current pass. The temporary set V is used to temporarily store undefined elements
of the partial order that are updated after the gen and con application. This is done to
avoid misorderings since the partial order is incrementally built and always used by the
gdb predicate, If all variables in <y become ordered, the input formula is evaluable and
therefore SAFE. A fixpoint of the algorithm is reached when no changes are made to the
pll'tll] nrder At tln: pmnt the formu]n is REJECTed since ti:ere are Vlrilhles in <r that
ggneuted fmm tln- other mblg;,

The result of applying evelify to the formula F from Example 3.20 is the indicator
SAFE and the instantiation of the partial order {(p,0),(0,1)} for <p. Two passes are
made through the repeat loop. The first pass updates element (p,0) of the partial order
and the second pass updates (o, 1).

The next step of the tmsht,ion process converts an evaluable formula into an allowed form.

The definition of allowed is as follows:

gdb(r.r = y)
gdb(r.r = I{F})
gdb(r.r € y)
gdb(r.r € 3{§})

gen(r. A A)

gen(r, A, A)
gen(r,-A.G)
gen(r,3yA.G)
gen(r,VyA, i)

gen(z, AV B, V (53)
gen(z, AN B,G)
gen(r . AN B.G)

con(z, A, A)
con(z,A, A)
con(z,A, 1)

con(z,-A,G)
con(z,3yA.G)
eon(z,VyA,G)

con(x, AV B,Gi, V (+)
con(z,AA B,(5)
con(z, AN B,G)
con(z,AANB,G, VGy)

Figure 3.5: Extended rules of gen and con that produce “generators”.

if y<pr
if G<pr
if y<pr
if F<Fr

if
if

if
if
if
if
if
if

if
if
if

if
if
if
if
if
if
if

edb(A) and free(r, A)
gdi(s. A)

gen(r, pushnot(~A),(7)
distinct(r,y) and gen(r, A, (7))
distinct(r, y) and gen(r, A, ()
gen(r, A. () and gen(r, B, (7))
gen(r, A ()

gen(r, B, (7)

edb{A) and free(r, A)
gdb(r, A)

notfree(z, A)

con(z, pushnot(~A),(7)
distinct(z,y) and con(r, A, (/)
distinct{z,y) and con(r, A, (y)
con(z, A,(5y) and con(z, B,(:})
gen(z, A, ()

gen(z, B,G)

con(z,A,(})) and con(z, B,(7,)

1. For every variable z that is free in F, gen(z, F) holds.

2. For every subformula 3z A of F, gen(z, A) holds.

3. For every subformula Vz A of F, gen(z,-1A) holds.

The allowed property is stronger than evaluable since every formula satisfying the al-
lowed property satishes the evaluable property (because gen(z, F) implies con(z, F)), but
the converse does not hold. Every evaluable formula can be translated into an equivalent
allowed formula. The desired properties of allowed formulas are that all variables, free
and bound, are generated from the formula and allowed formulas are more rcbust under
certain transformations than evaluable ones. Gelder and Topor [GT91] define conservatior
transformations that include Vv and A distribution that do not always preserve the evalu.
able property, but do preserve the allowed property. T.ese transformations are used in
subsequent steps of the translation to algebra and for this reason evaluable formulas are
converted into an equivalent allowed form.

Algorithm 3.1 evaltfy:
Input: An object calculus formula F
Output: SAFE indicating that F is evaluable or REJECT

Comments: The algorithm incrementally builds the global partial order < with each pass through
the repeat loop. A temporary set V is used to store elements of <r that need to be updated
after each pass.

Imitialization

1. For every variable z, appearing in F, initialize a pair (z,,00) in <r. This indicates that
the order for z, is undefined.
2. order =0
Procedure:

reach undefined element (z,,00) in <r do
if free(s;, F) then
~ apply gen(z;, F)
else if 2; is 3 bound as 3z A then
~ apply con(zi, 4)
else z; must be ¥V bound as Vr A
apply eon(z,,~A)
if gen or con application succeeded then
V =V U{(s,00)}
endfor
foreach element (z,,00) in V do
update element (z;,00) in <f to (z;, order) which defines its order
endfor
if no more undefined elements (z;, o0) in <r then return SAFE
increment order
until no changes made to <y
return REJECT

P(p) A 39(Q(q) V(R(Q)A p.a = q.0))
which is allowed and the formula:
P(p) A Q@) V (~R(p) A p.a = p.))

which is evaluable. but not allowed because gen(q.Q(q)V (~R(P) A p.a = p.d)) does nt
ho]d

lates an exaluable farmula into one that is allmwd Thp ha-ﬂr prmnhm nf ﬂu ||gunlhm
is to identify the subformulas 37 A such that con(r, A) holds, but gen(r, A) fails and then
to rewrite these formulas as an equivalent formula, say A, so that gen(r, A’) holds. From
this point on, unless otherwise noted, it is assumed that all occurrences of Vr A in a formula
have been replaced with the logical equivalent ~3r-A. Tie genify algorithm is general in
the sense that if the input formula is not evaluable, it can identify this and returns an error.
It is necessary before applying the genify algorithm to check that gen(r,, F) holds for all
free variables z, in F. The algorithm relies on the following definitions paraphrased from
[GT91].

Nefinition 3.7 Truth Value Simplification: The operation of truth valuc simplification

consists of applying the following simplifications to a formula for as long as possible,

~false = true ~true == false
AAfalse = false | AAtrve = true
AVfalse = A AVtrue => true
Iz false = false| 3r true => true

Vzfalse = false| Vrtrue = true

Simplifications that depend on the law of the excluded middle, such as AV -~A = true,
are not part of this definition because, in general, A is a formula and this part of the
translation does not expend resources on recognizing formula equivalences.

Definition 3.8 Formula Substitution: Let G def vV P, where P, are atoms in A,
Then A[G /false] denotes a formula in which each occurrence of F, in A is replaced by false.

Steps 1-5 of the algorithm traverse the structure of the input formula and step 5 performs
the trnsfnrm;tiani into nllawed fc:rm on lhe :ubfcrmnln thn vml;h- th-n gon pmpi‘ﬂy lf
Step 5b must hgk] in (:rdgr for the formuh tu be evalu;ble and i it dm-s lmt lln-n an error
is produced. If variable z is not free in subformula A, this means that z must not appear
in A and, therefore, the existential quantifier for z can be dropped and the formula can
continue to be traversed. The key step of the algorithm is 5(b)ii where F is rewritten
into the equivalent F form. The purpose of this step is to form a conjunction of the
original subformula A with a generator G for the constrained variable z; in effect making
gen(z,G A A) sld. The role of R is to act as the “remainder” of the subformula which
moves copies of subformulas that are independent of z (i.e., don’t contain z) outside the
existential quantifier for z. This is necessary to make F and F equivalent because the
conjunction of G with A changes the meaning of the subformula.

Algorithm 3.2 gentfy:

Input: An evaluable formula F with universal quantifiers replaced.
Output: An allowed formula equivalent to F.

Procedure:

if F is an atom then return F
if F has the form ~A then return ~genify(F)
if F has the form A A B then return genify(A) A genify(B)
if F has the form A V B then return genify(A) V gensfy(B)
if F has the form 3zA then
(a) if grn(z, A(z), (i(z)) holds then return 3z genify(A(z))
(b) if con(x, A, 7) holds then
i. if notfree(z, A) and hence (i = L then return genify(A)
ii. else free(z, A) holds and G = Py(z) V ---V Pn(z) where m > | and some of
the disjuncts may be L. Let R be the truth value simplification of A[G /false].
Define:

_‘a&.’—

(=4]

FE3:(G(z)AA(z)) VR

and return genify(F)
(c) Note that if con(z, A,(5) does not hold, then F is not evaluable and an error is
returned.

The result of applying genify to the example formula F from Example 3.20 is the formula:

F < 3p(P(p) A ((P(p) A 0= pa) V T(a))) V T(o)
which is allowed. The steps that produce this formula are as follows:
e The algorithm falls through to step 5 since F has the form 3zA where:

AY (P(p) A 0=p.a) vV T(o0)

o Step 5a fails, but step 5b succeeds with con(p, A, i) where G o P(p) v L.

o Thus, the algorithm proceeds to step 5(b)ii and the result of applying this step to the
example formula defines the following:

R & T (o)

F ¥ 3p(P(p) v L) A ((P(p) A 0=p.a) V T(0))) V T(o)
F is in allowed form, and replacing all occurrences of L with false and carrying out
truth value simplification produces the output formula F.

ANFify: Making Subformulas Independent

The next step of translation is to normalize aa allowed formula by putting it into Allowed
Normal Form (ANF). The reason for converting a formula into ANF is that every proper

constructive subformula (see Definition 3.11 below) can generate objects for all the free
variables in the subformula. This. in effect, makes ev~ry constructive subformula indepen

dent of atoms that appear outside the quantifier for the subformula. This means that the
final translation to the algebra can translate subformulax independent of the atoms outside
the quantifier for the subformula. The transformation of an ANF formula into an ohject
algebra expression is straightforward by simple pattern matching starting with the inner
subformulas and moving to the outer formula. At times the following discussion assumes
a tree structured representation for a formula where the leaves represent atoms from the
calculus and the internal nodes are the connectives 3,V, A, ~. Algorithm 3.3 (ANFify) and
the definition of ANF depend on the following definitions that extend those presented in
[GT91] by including a notion for membership.

Definition 3.9 Simplified Form: A formula (with universal quantifiers replaced) is call
simplified if the following conditions are met:

1. There is no occurrence of ~—~A. It is replaced by the logical equivalent A.

2. There are no occurrences of —~(s = t),~(s # 1), ~(« € 1), (s ¢ 1). They are replaced
by their logical equivalents (s # t),(s = t),(s € 1),(s € 1), respectively.

3. The operators A, V,3 are made polyadic and are flattened, meaning:

(a) in a subformula Ay A---A A,, n > 2 and no operand A, is itsell a conjunction,
(b) in a subformula Ay V---V A,, n 22 and no operand A; is itself a disjunction,
(c) in a subformula 37A, operand A does not begin with 3.

4. In a subformula 37 A, free(z;, A) holds for every variable z;.

An algorithm to translate a formula into simplified form follows immediately from the
definition. A function simplify is assumed to exist and transforms an arbitrary formula

formalize the notion of Eristential Normal Form (ENF).

Definition 8.10 Negative/Positive Formulas: A simplified formula is negative if its root
is “~";: otherwise, it is positive. An arbitrary formula is negative (resp. positior) if its
simplified form is negative (resp. positive). Atoms of a simplified formula of the form
s ¥ 1,8 ¢ t are negative and atoms of the form s = ¢, s € t are positive.

Definition 3.11 Restrictive/Constructive Subformulas: A subformula A of a simplified
formula F is restrictive if the parent of A is “A” and either A is negative or A is an atom
and edb(A) does not hold; otherwise A is constructive.

Definition 3.12 Eristential Normal Form: A formulais in Eristential Normal Form (ENF)
if the following conditions hold:

1. The formula is simplified.
2. For each disjunction in the formula:

(a) the parent of the disjunction, if it has one, is “A”, and
(b) each operand of the disjunction is a positive formula.

95

3. The parent, if any, of a conjunction of negative formulas is 3.

The existential normal form prohibits certain parent/child combinations illustrated by
the nonblank entries in Figure 3.6. These entries specify rewrite rules that convert the
prohibited combinations into permitted ones, The s along the diagonal indicates a call to
simplify on the formula and has the highest priority. The definition of ENF in [EMHJ93a.
EMHJ93b] points to a shortcoming in [GT91) that does not properly transform conjunctions
of negated formulas with a disjunctive parent into the algebra. For this reason, condition 3
is included in the definition of ENF and rule R1B is added as a rewrite rule in Figure 3.6.

i i;ireni
Chid]| v [A] 3]~
v R3 | R2

'.;7 Rl

A

Rl : S(=A1A--cADA,) = A V---VA,
Only if every conjunct of A is negative,
RIA: ~AVByV:---VB, = ~(AA-ByA---A-B,)
RIB: (") A -A~A)VEBV---VB, = ~(AV:-VA)A-B A---A=By)
R2: Ay V--VA,) = (A A A-A,)
R3: IFAUF)V---VA(F) = (AR AUA)V -V 35LA(F))
Where variables #; do not appear in the formula on the left and

Figure 3.6: Prohibitive parent/child combinations in ENF formulas and rewrite rules to
correct the violations. The s entry indicates a call to simplify on the formula and has
highest priority.

Defining an algorithm for converting any arbitrary formula into ENF is straightforward
from Figure 3.6. Algorithms are presented in both [GT91) and [EMHJ93b). Furthermore,
Lemmas are provided stating that if the input formula to the ENF algorithm is allowed,
then so is the output formula. This means that an allowed formula can be converted to
ENF without losing the allowed property. ENF is important for the final translation into
ANF. Let ENFify be a fanction that performs ENF normalization.

The following two definitions formalize the notion of allowed normal form.

Definition 3.13 genall: The property genall(F) holds for a formula F if and only if
gen(z;, F) holds for every free variable appearing in F.

if it is in ENF, genali(F) holds, and every constructive subformula A of F is in ANF.

~ Algorithm 3.3 (ANFify) transforms an allowed ENF formula into an equivalent ANF
formula. The algorithm is based on the repeated application of the rewrite rules in Fig-
ure 3.6. Application of rules for Case 1 and Case 2 require the resulting formula to be

simplified before recursing on the formula. Case 3 may produce a non-ENF formula (e.g..
D A =((A1 V A2) A B)) and s0 a call to ENFify is necessary hefore recursing. .\ fixpoint
of the algorithm is reached when no changes are made to the input formula F and at this
point F is in allowed normal form.

The purpose of the A NFify algorithm is to rewrite every proper constructive snbformmba
so that all free variables in the subformula are generated by the subformula itself. This
~nsures that every constructive subformula is allowed and therefore cin be “evaluated™
independently of the atoms outside the guantifier for this formula. This motivates the
following Lemma that removes the recursion in Definition 3.14, but yields the same elass of
ANF formulas.

suii‘éﬁnula A of F is allowed.
Proof: Immediate from the definition of ANF and structural induction on F. The reader
is referred to [GT91) for the formal proof.

The result of applying ANFify to the allowed formula F' produced by the genify algo

F' € 3p(P(p) A 0=pa) V 3p(P(p) A T(o) vV T(0)
which is in ANF. The steps that produce this formula are as follows:

o The algorithm matches on Case 3 with the following being defined from the formnla

F':
P Py A (P(p) A o=pa) v T()
B ¥ Py
¢ (tF(p) A o=p.a) Vv T(o))
A € (P(p) A 0= pa)
Az def T(o)

Carrying out the distribution of B, over (produces two (5, formulas that are in ANF
and define the final result formula as follows:

G ¥ (P(p) A P(p) A o= pa)

E (P(p) A o=p.a)
G; ¥ (P(p) A T(0))
F, € (P(p) A o=p.a) v (P(p) A T(0))
FIR/F) € 3p((P(p) A 0=pa) vV (P(p) A T(0))) V T(o)

The call to ENFify on F distributes the 3p over the disjunct. The resulting formula
is in ANF and is the output of ANFify as formula F”.

97

Algorithmn 3.3 ANFify:
Iuput: An allowed formula F in ENF.
Output: An ANF formula equivalent to F.

Comments:
The algorithm assumes a tree structure representation of formulas. The notation F[A/B]
where A is a subtree (subformula) of F denotes an operation that replaces the subtree of A
in F by the tree representation of formula B.

In each of the cases below, F) is an allowed (not necessarily proper) subformula of F to be
replaced and Fy is the equivalent allowed formula that replaces F,. The notation “F -

means that F, matches the allowed formula pattern on the right-hand side. If none of the
patterns can be matched to some subformula of F, the algorithm falls through to the otherwise
clause which causes the procedure to terminate.

Procedure:

Case 1: F, € 3GAA B, A+ A Ba, and genall(A) does not hold:
e Let 7 be the set of variables that are free in A such that gen(z;, A) fails (since F;
is allowed, this set is disjoint from §).
e Let By A---A By be a prefix (possibly after rearrangement) of By A A By such
that genall(A A By A --- A By) holds (at worst k = n because genall(Fy) holds).
o Let ¥ 3RAABIA---ABy)ABagr A---ABn
o return ANFify(simplify(F[F\/F2)))
Case 2: F, & <~AA B, A A By. and genall(A) does not hold:
o Let Z be the set of variables that are free in A such that gen(z;, A) fails.
e Let By A---A By be a prefix (pﬂ:iblyiﬂerremgemmt) of By A---A B, such
that all #F are free in By A---A B, and genall(B, A - - - A By) holds (at worst k = n
because genall(Fy) holds).
o Let GE ANFify(By A - ABy)
o Let R ~(AAG)ABIA---AB,
o return ANFify(simplify(F[F,/F3)))
Case 3: F, €A B A---AE;,ihERGgA; V.V Am and genall(G) does not hold:
o Let By A--- A By be a prefix (possibly after rearrange rent) of By A A B, such
that genall(G A By A --- A By) bolds (at worst k = n because genall(Fy) holds).
o Distribute By A---A By over G.
o For 1 <i < mdo: let G, ™ ANFify(AiAB A---ABy)
oLt LA (GIV: VGu)ABupr A--ABy
o return ANFify{ ENFify(F(F,/F3)))
Otherwise: return F

Transform: Translating into Algebra

The final step of translation involves the transformation of an ANF formula into an equiv-
of an ANF formula. Every range atom ('(r) is translated into a name (" that represents
the collection of the range predicate. Atoms r = ¢ and r € ¢ are translated as part
of appropriate select or generate operations (see below) or into appropriate collections as
follows:

r=c¢ = neweoll(c),

TEC = ¢

The first case creates a collection containing the single constant ¢ and the second case uses ¢
as the name for the collection. Recall that the subscript s is the notation from Section 3.5.2
indicates that the result collection is a range for variable r,

Next, the transformations shown in Figure 3.7 are applied to the remaining proper
constructive subformulas and then the subformulas are combined. In the figure, 4 and H
refer to subformulas, A’ and B’ refer to the algebraic equivalents of A aud B respectively,
F refers to a predicate, mop refers to a mop function, and @ is one of = or €. Algebraic
expressions are subscripted with the variables that they represent (or that their components
represent in the case of product objects). Furthermore, A(F) is used to denote that 7 are
the only free variables in A. The same applies to F(F) and mop(F). For join terms of the
form # = Z, it is assumed that one set of ¥ refer to components of A’ while the other set
refers to components of B'.

Transformation (3.7) is known as a gencralized act difference [HHTT5] and could he
defined as a primitive derived operator in the algebra so that efficient join techniques could
be defined to process it.

Transformation (3.9) defines a join between the common variables (components) of A
and B. Transformation (3.10) defines a join using a predicate (general mop function) over
the components of A and B. Transformation (3.11) is a general case of (3.9) and (3.10) which
defines a join between an A and a B that have some variables in common (namely, o, 7),
some variables not in common (A has @, 7 and B has §, 7), and a predicate over some of
the common and uncommon variables of A and B (namely, €, ¥,). Transformation (3.13)
defines a generate join over an A and a B that have no variables in common, and have
a generating atom over some of the variables of A and B. The reason A and B cannot
have common variables is that the relationship between these variables would be lost in
the operation. If A and B have common variables, then they should be joined instead.
Transformation (3.12) is a special case of (3.13) where there is only one formula generating
the result.

Transformations of join and generate join over two operands can be generalized over
multiple operands. For example, there is the opportunity to perform the following trans-
formations on the given formula:

ADABDACDAFE G = (Ar0r (By,C1))aga
A(T)A B(i) A C(!) Ao = mop(Z, i!a = (Ag 7;;-;@ (Bi’icf))f.ﬁf.ﬂ

This groups the collections involved in the operation with the operator and may provide
some opportunities for optimization such as grouping together collections that may be
clustered on disk.

A7)V B(?) = (ApUBj)z (3.3)

AF)A B(7) = (ApN Bj)z (3.4)

AF)AB(§) = (Apx Bylag (3.5)

A(Ff)A~B(F) = (A7~ By)z (3.6)

AZ,) A-Bly) = (A,;- (AzgWy=p Bp)zg)zg (3.7)

AZ, DA F(Z) = (Ar;0r)2z (3.8)
A(F.NAB(F,5) = (A; Py Py Eg 7)20.2 (3.9)

A(Z, A B DAFGD = (Arg%r Bl segas (3.10)
A(T,5.8,7) A B(#, 7, §.) A F(I, 0, 5) => (A Maeanzaerr Baoazir (3.11)
A(Z,§) A obmop(F) == (A%zg Yosmop J270 (3.12)

A(F,) A B(&,5) A oBmop(§,2) = (A}j- Yobmop B:;ig)g‘;‘ﬁ'gig (3.13)
A(Z.§) = (Az;0p)z (3.14)

Figure 3.7: Transformations from object calculus to object algebra.

The last stage of the transformation is to apply the necessary project operation using
behavioral projections in the target list of the object calculus expression. This operation
does not change the extent of the result collection. Rather, it has the effect of generalizing
a new membership type for the collection that only includes the behaviors specified in the
projection.

The result of applying the transformations to the ANF formula F” output by the ANFify
algorithm in the previous section is the algebraic expression:

((Py Youpa Irop), U (P X Todpoldy), U T
Written using the constructs of the original query it is:

((Cmn Youp. B sressdence. B inZone)AF) U ((C_.person x C_transport)l,) U C_transport

There are opportunities for optimization on this expression, but the importance of this
section was to show the correct translation from calculus to algebra. The expression should
also be type checked to ensure that the behaviors used in the expression are actually defined
for the objects to which they're being applied. During type checking the test for operand
finiteness can also take place. The resulting example query is safe in all respects that have
been considered in this thesis.

A formal complexity analysis of the entire algorithm remains open. The completion of
this task may yield improvements to the algorithm. Termination of the algorithm is proven
in both [GT91] and [EMHJO3b). The object generation extension to the algorithm described
in this thesis does not inhibit termination. First, only non-recursive jﬂ logical rules are
added to the original gen and con rules. Second, the evalify algorithm is extended with
a repeat loop with two embedded mutually exclusive foreach loops. The foreach loops
are always guaranteed to terminate since the partial order <5 and the intermediate set 1’4
that they range over must be finite. The repeat loop must eventually terminate because
it exits when no changes are made to the partial order <y and every iteration through

the loop only changes undefined elements in the partial order to defined elements. Thus,
the number of undefined elements in the partial order (and hence possible changes to the
partial order) can only decrease with every iteration. eventually reaching the fixpoint when
no changes are made and terminating. The last if statement in the algorithm may cause
earlier termination if the formula being evaluated in safe. Finally. the algorithms genify.
ENFify. and ANFify are virtually the same as those presented in [GT91] with the ENF
extension outlined in [EMHJ93b] incorporated into the ENFify algorithm. The interested
reader is referred to those papers for the formal proofs.

The main contribution of the approach presented in this thesis is the extension of the
evaluable class (and hence the allowed class) to incorporate the notion of ohject generation
through equality and membership atoms. A second contribution is the calculation of the
partial order that defines the steps in which the object generation can be performed. Fur-
thermore, a prototype of a calculus to algebra translator based on the given algorithms has
been implemented [Lip93] and the initial indications of its performance on sample queries
are quite positive.

Chapter 4

The Meta-Model and Reflection

In this chapter', the features of the TIGUKAT meta-model (Section 2.4.6) are described
and how it provides reflective capabilitics is shown. Reflection is the ability of a system
to manage information about itself and to access (or reason about) this information using
the regular access primitives of the model. The ability of a model to manage information
about itself is a strength because meta-information (like schema) is modeled as first-class
components of the objectbase and the access primitives of the model can be uniformly used
to access all information, including the meta-information like the schema. The uniformity
built into the TIGUKAT object model is used to 1epresent the meta-model and gives a
clean semantics for reflection.

4.1 Related Work

In recent years, work on reflection in object-oriented languages (OOLs) has resulted in the
identification of two basic models of reflection [Fer89):

1. The first is called structural reflection and was advocated by Cointe [Coi87] in the
design of ObjVlisp. The model is based on a uniform instance/class/meta-class archi-
tecture where everything is an object and meta-classes are proper classes in the sense
that they can have a number of instances and can be subclassed. The discrimination
between meta-classes, classes and other instances is only a consequence of inheritance
and not a type distinction. This is in contrast to Smalltalk-80 [GR89] where meta-
classes are anonymous objects and there is a one-to-ome correspondence between a
class and its meta-class.

2. The second is called computational reflection and was pursued by Paes [Mae87] in
the development of 3-KRS. This approach essentially introduces a meta-object for
each object to handle the structural and computational aspects of the object. This
work was dome within the context of a model that does not support the traditional
class/instance structure of Smalitalk, ObjViisp, TIGUKAT, etc., and 50 the structural
aspects of objects are represeated by the meta-objects as well. In a class/instance
model, the structural aspects can be handled by the type (class) of the object and so0
meta-objects are only useful for computational aspects in these systems.

'Portions of this chapter are published in the 1003 Procesdings of the Tuelfth Internotional Conference
on Entity-Relotionship Appreach (ERA '93) (PO93).

Three models of computational reflection have heen identified for object-oriented sys-
tems:

(a) the meta-class model, where the meta-object for an object is the class of the
object;

(b) the specific meta-object model, where in addition to classes, objects also have
specific meta-objects: and

(c) the meta-communication model, which is based on the reification? of messages
sent to objects.

plrmematm cf a reﬂertwe OOL wnth mnrurfenr)

The TIGUKAT model supports !tﬂl(‘tljfal reﬂeﬂiim similar to (1) and computational
A met;-ab ject mndﬂ” (éb) was m:t rhmen becausr of the additional overhead involved,
Qne c\rtrhe;d is tlw imrmiuv:tmn uf a meta—nbrﬂ for (pmenua.lly) ea:h ﬂ‘lij‘. in lin

nhject ipprmh every beh;vmr apphc;tmn needs to perfnrm an addltmnal rln-rk tn e |f
the object has a meta-object and to dispatch the behavior to the meta-object if it exists.
This overhead was un:tceptab]e because we believe there are only a few occasions where
objects need to support the semantics of meta-objects and the additional costs for every
behavior application is too gﬂit Besides, the semantics of meta-objects can be supported
through subtyping and schema evolution (features required of an OBMSs anyway). Another
anomaly with the meta-object approach is that some information is at the type level and
some information is at the object level. The distribution of type information on a per objert
basis has implications for persistent object management (e.g., where to store the meta-
object: with the type, with the object, or somewhere else?). Finally, since behaviors are
objects in TIGUKAT, some form of the meta-communication model (2¢) could be integrated
with the system. Part of the future research is to investigate the incorporation of these
semantics into TIGUKAT.

Reflection is the ability of a system to manage information about itself and to access (or
reason about) this information through the regular “channels” of information retrieval. It
h iltil’l] fnr an OBHS to manage mﬁrmﬂm about itself since an OBMS is nothing more

. *lﬁmmimnhmmnamdg—qsnumgm It is based on the
promise that messages are objects that can be sent messages (o process themeelves. Behavions ia TIGUKAT
adbere to this semantics.

. B B — __Instance edges 1o
C_ohject = - C_person ~*®" person ohjects

é;cu‘;lleﬁibn) E;clus

e T

C_class-class

_Supenset _) - Subset

Figure 4.1: A “normal” class and instance structure for C_person.

There are several advantages in managing information within a model. One advantage is
that the primitives of the model are used to manage all forms of information including meta-
information as first-class components (uniformity of representation). Another advantage is
that information retrieval is uniformly handled by the model's access primitives regardless
of the information’s type or “status” (uniformity of accesa and manipulation). With these
two abilities, a system is capable of reflection. Relational systems provide reflective ca-
pabilities by using relations to store information (i.e., schema) about relations. However,
the attributes of relations are restricted to the atomic domains of a particular system (i.e.,
integers, strings, dates, etc.), which limits the semantic richness of the meta-information
and makes it awkward to model. With the richer type structures of object models, self
management and reflection is more natural and easier to manage.

In a uniform object model like TIGUKAT, the same structures used to manage infor-
mation about “normal” real-world objects such as persons, houses, maps, or complex appli-
cations (e.g., a geographic information system) are also used to manage meta-information
like types, classes, behaviors, and functions. Furthermore, the access primitives to all these
forms of information are uniform, meaning there is no distinction, for example, between ac-
cessing information about persons and accessing information about types. The uniformity
of TIGUKAT is the basis for its reflective capabilities.

4.3 Features of the Meta-Model

One feature of the meta-model is that it can be used to uniformly define an m?-class whose
associated type includes behaviors for creating default objects of a particular type. For
example, ~onsider the GIS objectbase of Section 2.3 and assume that type T_person and
class C_person are defined. The “normal” class and instance structure for this scenario is
shown in Figure 4.1.

the B_aew behavior used in this case is the one defined on T.class which has a generic
implementation of creating a new “empty” object as an instance of the receiver class (ie.,
a new “empty” person instance of C_person). Most existing models allow some form of
specialized new behavior on classes. However, they are usually defined in a roundabout and
non-uniform way by stating that a class can have a new behavior defined that is applicable to
itoelf (e.g., C++ [Str91b]). This is non-uniform since a class defines some behaviors that are
applicable to its instances and some that are applicable to itself. Other models get around
this by stating that every class is an instance of itself (e.g., Modular Smalltalk [WBW8Sb)),
but in A wniform model this approach raises the question: is the class of persons a persoa?

insxanceidges 1o .
E E is{“‘ Dbjg:u / _ — y Y —

C_collection Hc_ctass {C_ctassclass o,
_ Superset — - Subset
cemesesvsrvaan » Instance
Instance edge

Figure 4.2: An m? class and instance structure for C_person.

What is needed is a uniform way of defining a behavior H_new for C_person that creates
new objects of type T_person with some default information. It would not make sense to
define this hehivmr on typt Tclass, since lhl‘ll it wnuld bi‘ applirahlr m all classes and it

First, a new type ta.lled Lp:ﬂan-aln- is rregted as a subtype of 'r.ehn and will
specialize B_new. The following behavior application performs this task:

T.person-class — C_type.B.new({Tclass}.{ })

Following this, the implementation of the inherited behavior B.new is redefined to cre-
ate person objects with some default information (i.e., age set to 0, birthdate set to cur-
rent date, etc.). To accomplish this, a new function is created with the appropriate code
that performs the necessary actions, and this function is associated with B_new on type
T.person-class. In the following discussion, this task is assumed to be completed. Next,
an m3-class C_person-class is created and associated with type T_person-class so that
an instance of this type can be created. The following step creates the m?-class:

C_person-class — C_class-class. B_new (T person-class)

Now, it is semantically consistent for the instance C_person-class to have the behavior
B_new (the one defined on T_class-class) applied to it. Thus, the final step is to create
a class, called C_person, as an instance of C_person-class and associate it with the type
T_person:

C_.person — C_person-class.B_new(T_person)

This series of behavior applications results in a class and instance structure shown in
Figure 4.2. Now, the class C_person is an instance of C_person-class and thus the B.sew
behavior (the one defined on T.persoa-class) may be applied to it to create a new person
with default information (i.e., C_person.B_sew() creates a new person with defaults as
dictated by the particular implementation). This gives a uniform semaatics for the creation
and management of objects. Furthermore, the example meta-system for persons was created
ina uiforn way idng the plimiﬁvu nﬂh TIGUKAT nbjsrt mndel
ofdcubehﬂln(i.e..b&ninn thlm;ppﬁahle mdn;a:) F‘nrexmple,;hehvhr

B.averageAge can be defined on type T_person-class that computes the average age of
persons in a class. Now, this behavior is applicable to the class C.person and applying

it as C_person.B_averageAge() yields the average age of the persons in the objectbase. If
T_person is subtyped by a T_student and the same semantics should be associated with
class C_student, then C_student is created as an instance of C_person-class®. Then
B_averageAge is applicable to C_student and computes the average age of the students in
the objectbase. Any number of “person-like” classes (employee, teaching assistant, etc.) can
be created in this way and have these semantics attached to them. A similar approach can
be used to generalize this concept to collections. That is, define collection behaviors, such
as B_averageAge, which are applicable to collections and can be used to compute various
results from the elements of collections.

The meta-system architecture of TIGUKAT is similar to the meta-class structure in
ObjVlisp [0if7) and it is a generalization of the Smalltalk-80 [GRR9] parallel one-to-one
class/meta-class lattice because it is entirely uniform. Every class, including the m? classes
is a proper class which, in general, have multiple instances and can be subclassed (i.e.,
their associated types can be subtyped). Furthermore, the TIGUKAT meta-architecture is
closed, unlike the TAXIS [MBW80, LM79) and Telos [KMSB89] models which handle meta
modeling by allowing the definition of an arbitrary number of meta-class levels where each
subsequent meta-class level models the level below it. The uppermost meta-class level is
not modeled within these models since that would require another meta-class level to be
added which would not be modeled in the model, and so on.

One advantage of this approach is that there is less overhead for those classes that don’t
need additional class behaviors or don’t need to specialize class behaviors. For example, both
C_person and C._student can be defined as instances of C_person-class if C_student
doesn’t require additional class behaviors or specialization of existing ones. Furthermore,
those classes that don’t require any class behaviors can be instances of the general C_class.
This illustrates that m? classes are classes in general whose instances are class objects.

A (potential) disadvantage is that the schema needs to be reorganized if at a later time
it is decided that additional class behaviors are needed for certain classes that were grouped
as instances of one meta-class (e.g., if additional behaviors are needed which are applicable
to C.student, but not applicable to C_person). This kind of “evolution” can be viewed
as correcting design problems of an application (i.e., it was a design mistake to create
C_student as an instance of C_person-class). The problem is corrected by subtyping
T.person-class with T_student-class, defining the new behaviors and specializations on
this type, creating an associated class C_student-class, and migrating C._student as an
instance of C_student-class. This reorganization is necessary because both structural and
computational reflection are handled by the type. The frequency of this kind of schema
reorganization in existing systems seems to be low. Nometheless, with the velopment of
the schema evolution policies in Chapter 5, these kinds of changes follow naturally since
some form of them must be supported in a full-featured OBMS anyway.

Another approach is to introduce a mets-object for each object to handle the object’s
computational aspects [Mae87, Fer89]. This avoids schema reorganization by allowing be-
haviors to be redefined in the meta-objects instead of the type. However, it requires some
MMMwmﬁuobjedluangtndiﬂtks‘m
tell the meta-object to handle the behavior. If the object doesn’t have a meta-object, then
the regular type dispatch should occur. Furthermore, there are additional space require-

3 Alernatively, & type T.student~class could be crested 2s & subtype of T.persen-clase, a clam
Catudent-class conld be crested and associated with T.student-class, and C.student could be cre-
ated as an instance of C.student-class. This approach requises the crestion of additional objects, bat has
the benefit of allowing the bebaviers applicable to C.student to be specialised.

ments since every object can potentially have a meta-object. The drawback in an OBMS
application environment is that efficient query processing is a must and the overhead of the
additional dispatch processing for every behavior application can become quite significant
in queries where many behaviors are being applied. Thus, the flexibility of meta-objects
(that can be supported through subtyping instead) is traded for speed.

The goal of uniformity is that the representation and semantics of the meta-system (and
beyond) should be no different than it is for the “normal” real-world objects. TIGUKAT
achieves this goal through the meta-system architecture described in this chapter.

It is now easy to see how the tenet of uniformity carries through for all objects. For
example, the object joe is a person, joe is in the extent of class C_person, the associated
type of C_person is T_person, the behaviors defined by T_person are applicable to joe.
The object C_person is a class, C_person is in the extent of class C_class (or C_person-
class in the m? example), the associated type of C_class is T.class (or T_person-class),
the behaviors defined by T_.class (or T_person-class) are applicable to C_person. The
same line of reasoning can be applied to T_person, T_person-class, C_class, T_type and
uniformly to all objects in TIGUKAT. The base (fixpoint) of the type chain is T_type and
the base of the class chain is C_class-class. This defines the closure of the lattice and
instance structure.

In the same way as different “favors” of object equality can be defined, different kinds of
new behaviors for m?-objects can also be defined. For example, T_person-class can define
several different kinds of new behaviors that accept variations of arguments (such as name,
age, address, etc.) and create person objects with the given arguments as initial information
Furthermore, a variety of default new behaviors can be defined that create person objects
with various defaults (e.g., B.newBorn, B_newYouth, B_newSenior, etc.). This illustrates
another feature of the uniform meta-system architecture.

The beauty of a uniform approach is that the results of this chapter generalize over all
objects in TIGUKAT, including the meta-system architecture and beyond.

4.4 Reflective Capabilities

Recall that reflection is the ability of a system or model to manage information about itself
and to access this information using the regular “channels” of information retrieval in a
wniform way. The architecture of the meta-system described in Chapter 2 is consistent with
the modeling capabilities of the TIGUKAT object model and therefore the meta-system
is uniformly defined within the model itself. The access primitives of the model (which
in TIGUKAT is the application of behaviors to objects) can be uniformly applied to all
objects in the system, including the meta-system, to retrieve information about objects.
Thus, uniformity in TIGUKAT is a support mechanism for reflection.

The select-from-where clause of TQL is used to present some queries that illustrate
the reflective capabilities of TIGUKAT. First, to recap its syatax, some example queries
oa “sormal” real-world objects are given. These examples also serve to show that the
method of querying real-world objects is uniform with the method for querying schema and
meta-information (i.e., the syntax of the clause does not change with schema objects).

Example 4.1 Return land zones valued over $100,000 or that cover an ares over 1000
uaits.

select o
from oinCland
where (0.B_value() > 100000) or (o.B_area() > 1000)

Example 4.2 Return all zones that have people living in them (the zones are generated
from person objects).

select o

from pin C_person

where o = p.B_residence().B_inZone()

Example 4.3 Return all maps that describe areas strictly above 5000 feet.
select o
from oinC_.map
where forAllpin (select g
from q in C_altitude, q in 0.B_zones())
p.Bow() > 5000

Example 4.4 Return pairs consisting of a person and the title of a map such that the
person’s dwelling is in the map.

select p, q.B_title()

from pin C_person, qin C_map

where p.B_residence().B.inZone() in q.B_zones()

The above queries introduce variables (i.e., 0,p,q) that range over classes and collec-
tions. The queries apply behaviors to the variables and other object references to extract
information about the objects and return the information (in the form of objects) as part of
the query. Since everything in the model has the status of a first-class object, the paradigm
of applying behaviors to objects carries through to all objects which provides the reflective
capabilitics of the model.

The behavior application paradigm can be uniformly used on meta-objects. For example,
information about types can be retrieved by querying the class C_type. This follows directly
from the tenet of uniformity. Types are objects that are instances of the class C_type. The
class C_type is associated with type T_type. The behaviors defined on T_type are applicable
to types. Some example reflective queries on types are given below.

Example 4.5 Return the types that have behaviors B_.name and B_age defined as part of
their interface.
seloct ¢
from tinC.type
where B_same in t.B.interface()
and B.age in t.B.interface()

Exampls 4.8 Return the types that define bebavior B.age with the same impleme
as one of the supertypes.
select t
from tin C.type,rin t.Bsupertypes()
where B.age in t.B.iaterface()
and B_age in r.B.iaterface()
and B_age.B.implementation(t) = B_age.B_implementation(r)

108

Example 4.7 Return all types that inherit behavior B.age, but define a different imple-
mentation from all types in the super-lattice that define behavior H._age.
select t
from tin C_type
where B.age in t.B.inherited()
and forall r in t.B_super-lattice() (not r = t
or not B_age in r.B.interface()
or not B.age.B_implementation(t) = B._age.B_.implementation(r))

Example 4.8 Return all subtypes of T_person.
select
from rin T_person.Bsub-lattice()

Example 4.9 Return pairs consisting of a subtype of T_person and the native behaviors
that the subtype defines.

select 1, r.B_native()

from rin T _person.B.sub-lattice()

Example 4.10 Return pairs consisting of an object in collection L_stuff together with the
type of the object, but only if it is a subtype of T_zone.

select 0, 0.B_mapsto()

from oin L.stuff

where o.B.mapsto() € T_zone.B_sub-lattice()

are reflective on classes and collections.

Example 4.11 Return all the classes in the objectbase.
select o
from oinC.class

Example 4.12 Return the classes that make up the meta-meta-system.
select o
from o in C.class-class

Example 4.13 Return the collections that contain the object David. Furthermore, restrict
the result to collections with a membership type of T_person or one of its subtypes.
select ©
ftom o in C_collection
where o.B_memberType() in T_person.Bsub-lattice() and David in o

Example 4.14 Return the classes that have a greater cardinality than aay collection in
the system without considering other classes.

select o

from oinC_class

where forall p in C_collection

((wot p in C_class) or o.B.cardinality() > p.B_cardinality())

Example 4.18 Retura pairs consisting of an m?-class and the collection of mative class
behaviors defined by the m?-class.

select ¢, c.B_memberType().Bnative()

from cin C.clase-class

Example 4.16 Return the objects in L_things that exist in at least one other collection
without considering their existence in a class.

select o

from oin L_things, p in C_collection

where (not p = L_things) and (not p in C_class) and (o in p)

The uniform paradigm of behavioral application can be consistently applied to all objects
in TIGUKAT since every ohject belongs to the extent of some class and every class is
associated with a type and every type defines behaviors that are applicable to the objects
in the extent of the associated class, Notice that some of the examples intermix access to
“normal” objects with access to schema objects like types, classes and collections within the
same query. Accessing information about any object, regardless of its “status’, "is simply a
matter of applying behaviors defined by a type to the objects of that type.

The object model approach differs from relational systems that use relations to store
information about relations in that the attributes of relations are limited to the atomic
domains of a particular system (i.e., integers, strings, dates, etc.) while the object model has
a rich type system for representing complex objects and a sophisticated execution model for
applying behaviors to objects. Thus, representing schema information in a uniform objert
model is more natural and easier to manage. As a consequence, the access primitives apply
naturally to all forms of information as well. In this chapter, it is shown how TIGUKAT
supports this uniform semantics and how it is used to provide reflection.

110

Chapter 5

Schema Evolution and Versioning

In this chapter, the schema evolution policies and version control management in TIGUKAT
are presented. A time domain is proposed as a foundation for managing schema changes and
for tracking versions of objects. Temporality has been introduced into the TIGUKAT object
model [GO93] and is founded on behaviors. A behavior is created to be either temporal
or snapshot oriented. If a type defines a temporal behavior, then the type is temporal and
all of its instances are temporal on the temporal behaviors. Thus, temporality of objects
is dependent on the temporality of their type. In this chapter, only a brief overview of
temporality in TIGUKAT is presented since it is part of another doctoral thesis {Gor96]. The
focus of this chapter is how the temporal extensions are used to manage schema evolution
and version control in TIGUKAT.

Typical client applications of OBMSs experience changes to the way in which information
is organized (i.e., evolving schema). Moreover, historical tracking of the changes is usually a
requirement for these applications. For example, in an engineering design application many
components of an overall design may go through several modifications in order to produce a
final product. Furthermore, each intermediate version of the component may have certain
properties that need to be retained as a historical record of that particular component
(e.g., the different versions may have been used in other products). The inter-connection
of the various versions of components also gives rise to versions of an overall design, and
the resulting designs may be part of others and so on. Efficiency considerations is another
example of why an application may be modified to change the way in which it organizes
information. The evolutionary characteristic of these applications requires sophisticated
dynamic schema evolution policies for managing changes in schema and ensuring the overall
consistency of the system.

5.1 Issues of Schema Evolution

Typical schema changes include adding and dropping types, adding and dropping subtype
relationships between types, adding and dropping behaviors defined on a type, and, in the
context of TIGUKAT, adding and dropping classes. A typical . uema change can affect
many aspects of a system. There are two fundamental problems to consider:

1. the effects of the change on the overall way in which the system organizes information
(i.e., the effects on the schema), and

111

2. the efferts of the change on the consistency of the underlying objects (i.e., the prop-
agation of the changes to the existing instances). The object migration problem can
also be considered in this context. Object migration deals with properly updating
objects that change their type (i.e., migrate from one type to another). This can be
perceived as a change in the object’s type (i.e., a schema change) that only affects
the single object. Object migration is not specifically addressed in this thesis. An
additional problem to consider is the effects of the change on behaviors that access
migrated instances. For example, if a behavior is dropped and the affected objects no
longer respond to that behavior, then other behaviors that use the dropped behavior
in their implementation will no longer work on those objects. This secondary problem
has received some attention [SZR7), but more work is required. Version control based
on temporality as described in this chapter is a good basis for providing solutions to
this problem.

Some particular systems that have proposed solutions to these problems are examined
in more detail in Section 5.3. For the first problem, the basic approach has been to define
a number of invariants that must be satisfied by the schema and then to define rules and
procedures for maintaining these invariants for each schema change that can occur.

For the second problem, one solution is to explicitly coerce objects to coincide with
the mew definition of the schema. This technique updates the affected objects, changing
their representation as dictated by the new schema. Unless a versioning mechanism is used
in conjunction with coercion, the old representations of the objects are lost. Screcning
and conversion are two techniques for defining when coercion actually takes place. Orion
[BKKKRT, KCS8] is a system that uses the screening approach and GemStone [PSR7] uses
conversion. Other systems are discussed in Section 5.3.

In screening, schema changes generate a conversion program that is independently ca-
pable of converting objects into the new representation. The coercion is not immediate,
but rather is delayed until an instance of the modified schema is accessed. That is, object
access is monitored by the system, and whenever an outdated object is accessed, the system
invokes the conversion program to coerce the object into the newer definition. Conversion
programs resulting from multiple independent changes to a type are composed, meaning
access to an object may invoke the execution of multiple conversion programs where each
one bandles a particular change to the schema. Screening causes delays during access to
objects.

In conversion, each schema change initiates an immediate conversion of all objects
affected by the change. In contrast to screening, this approach causes delays during the
modification of schema, but no delays are incurred during access to objects.

A second solution for handling change consistency of instances is to introduce a new
version of the schema with every modification and to supplement each schema version with
additional definitions that handle the semantic differences between versions. These addi-
tional definitions are known as filters and the technique is called filtering. Error handlers
consistent access and produce error and warning messages. The Encore model [S286, S287]
uses type versioning with error handlers as a filtering mechanism.

In the filtering approach, changes are never propagated to the instances. Instead, objects
objects remain with the old version of the schema and new objects are created as instances

112

schema and handle the problems associated with behaviors written according to one version
accessing objects of a different version. For example, if a behavior is dropped from a type,
then a filter can be defined on the new version of the schema that produces a default value
if a behavior written according to the old version applies the dropped behavior to an object
created according to the new version.

A hybrid model combines two or more of the above methods. For example, a system
could use filtering as the underlying mechanism and allow explicit coercion to newer versions
of types, either through screening or conversion. Another example is a system that takes
a more active role by using screening as the default and switching to conversion whenever
the system is idle.

5.2 Issues of Version Control

Version control is the ability to manage different versions of objects. Usually, this is a
selective feature that may be set to only track versions of certain objects. In a uniform
model like TIGUKAT, where everything is an object, all forms of information are candidates
for versioning. The selectivity of versioning in TIGUKAT is based on the behaviors defined
on types. Basically, the temporal behaviors defined on a type are the aspects of all instances
of that type that are versioned over time, The non-temporal behaviors are uot versioned.
Thus, entire objects are not versioned in TIGUKAT, but only the components relating to
temporal behaviors.

Several approaches to versioning have been identified and explored. These include the
versions of objects (VOO), versions of types (VOT), versions of schema (VOS), and views
of schema (WOS) approaches.

In the versions of objects approach, it is the individual objects that are versioned. This
approach has been explored in the context of models that do not carry uniformity to the
extent that TIGUKAT does. Thus, the schema in these models are not objects and are not
versioned.

The inability to version the schema means that objects that existed before a schema
change are irreversibly modified when updated to coincide with the new schema. This
shortfall has led to the development of techniques for versioning individual types (or classes)
(SZ86) and a broader approach of versioning the entire schema [K('88]. The former manages
schema changes on a per type basis, while the latter treats the entire schema as an object
that is versioned.

In the views of schema approach, there is a single underlying schema and objects are
imstances of this schema. Any number of views can be defined on the schema and a schema
view defines the visibility of objects and their properties under that view.

The version control mechanism described in this chapter introduces another way of
managing versions called the versioned behaviors (VDB) approach. This approach stems
directly from the temporality of the object model in that temporal objects are exactly the
versioned objects. An object is temporal if its type defines at Jeast one temporal behavior.
Temporal and non-temporal behaviors are primitive elements of the temporal model. One
advantage of this approach is that entire objects are not versioned - only the components
defined by the temporal behaviors are versioned. Another advantage is that temporality is
selective on a behavioral basis. This means temporality can be turned on or off for behaviors
by defining the appropriate temporal or non-temporal bebaviors, respectively. Furthermore,
objects can be coerced to newer versions of the schema one behavior at a time. This means

that different temporal behaviors of an object can correspond to different versions of the
schema. This provides great flexibility in managing versions.

With the VDB approach, objects are instances of a single type. This is in contrast to
the VOT and VOS approaches where objects are instances of a version of a type. Using
VDB, subtype relationships between types can be modeled over time by defining behav-
jors B_subtypes and B_supertypes as being temporal behaviors. Now, at a given time of
interest!, the sub/supertypes of all types can be fonnd, and by combining these results, a

Since everything is uniformly an object in TIGUKAT, the VDB approach is similar
to VOO with schema support, but differs in that entire objects are not versioned - only
the temporal behaviors of objects are versioned. By defining temporal behaviors ou type
objects, VOT is supported, and by specifying a particular time of interest, a version of the
schema can be generated and, thus, VOS is supported as well.

5.3 Related Work

In recent years, several researchers have addressed the problem of defining schema evolution
policies and version control for OBMSs. Some systems are described below in relation to
the concepts introduced in the previous section.

The Orion [BKKK87, KC88] model is the first system to introduce the invariants and
rules approach as a more structured way of describing schema evolution in OBMSs. Orion
defines a complete set of invariants and a set of twelve accompanying rules for maintaining
the invariants over schema changes. The allowed schema changes are classified into several
categories, each of which affects different parts of the schema. These changes represent the
typical schema modifications allowed in most systems today. The changes supported in
TIGUKAT are similar to those of Orion, but vary to deal with uniformity, which is not part
of Orion. For example, stored properties and computed methods are separate concepts in
Orion and need to be handled separately, while in TIGUKAT they are treated uniformly
as behaviors and, therefore, a single mechanism suffices for both.

Schema evolution in GemStone [PS87] is similar to Orion in its definition of a number of
invariants. The GemStone model is less complex than Orion in that multiple inheritance and
explicit deletion of objects are not permitted. As a result, the schema evolution policies
in GemStone are simpler and cleaner. For example, while Orion defines twelve rules for
disambiguating the effects of schema modification, GemStone requires no such rules. It is
now generally accepted that multiple inheritance is a necessity in advanced OBMSs and,
therefore, is part of the TIGUKAT model and is considered in schema evolution. Explicit
deletion is another operation that is typical in database systems. In TIGUKAT, deletion is
addressed in the context of the temporal model extensions. The existence of an object in
its class is managed by a behavior B_lifespan that returas the interval in which the object is
valid. When an object is “deleted”, it is not removed from the system. Instead, the lifespan
of the object in its class is timestamped with the deletion time and this “effectively deletes”
the object from subsequent time. Comversion is used in GemStome to propagate changes
to the instances. Literature on GemStone mentions the possibility of a hybrid approach

"Nete that the time reforence used to specify & “time of interest” is determined by the structure of the
temporal behaviers. This is flexible and could be an sluclute time point, 2 relative time point, & version
sumber, or some other relevant time reference. Oaly the geseric “time of interest” reference is wed ia

14

that allows both conversion and screening, but it is not clear if such a system has yet been
developed. The emphasis of GemStone is to provide schema evolution without the use of
versioning. Thus, version control is not part of the system.

Skarra and Zdonik [SZ86. SZR7] define a framework for versioning types in the Encore
object model as a support mechanism for evolving type definitions. A generic type consists
of a collection of individual versions of that type. This is known as the version sct of
the type. Every change to a type definition results in the generation of a new version of
that type. Since a change to a type can also affect its subtypes because of specialization
requirements, new versions of the subtypes may also need to be generated. By default,
objects are bound to a specific type version and must be explicitly coerced to a newer
version in order to be updated. Since objects are bound to a specific type version, a problem
of missing information can arise if programs (i.e., methods) written according to one type
version are applied to objects of a different version. For example, if a property is dropped
from a type, programs written according to an older type version may no longer work on
objects created with the newer version because the newer object is missing some information
(i.e., the dropped property). Similarly, if a property is added to a type, programs written
with the newer type version in mind may not work on older objects because of missing
information. For this reason, type versions include additional definitions, called handlers,
that manage the semantic differences between versions - such as the missing information
problem. This approach is one of the first to address the issue of maintaining behavioral
consistency between versions of types.

One result of Skarra and Zdonik’s work is a design methodology for defining handlers.
A handler is defined on a type version and specifies an “on condition” that traps read and
write access to a particular property that is undefined or invalid in that particular type
version, but is valid in the generic type. Furthermore, a handler defines an appropriate
action to take if such an access occurs. Consider the missing information example above,
A handler can be defined on the type version that is the missing property so that it returns
a default value, a nil value, or simply generates an error. Using this approach, a handier
can be defined for each semantic difference between type versions in order to filter object
access and to trap any inconsistent accesses that may occur. This is the filtering approach
to change propagation. A filtering approach is also used in TIGUKAT, but the temporality
of the object model, instead of handlers, is used to manage behavioral consistency between
versions.

Skarra and Zdonik go a long way towards maintaining the semantics of behaviors be-
tween different versions of types. However, it is clear that defining handlers on various
type versions can become confusing and unmanageable in systems with a large number of
types that change often. In response to this problem, a more fundamental approach that
uses temporal behaviors to model versions of objects is proposed in this thesis. Since the
TIGUKAT model is uniform, types are objects with well-defined behavior and by defining
appropriate temporal behaviors of types (e.g., subtype and supertype relationship behav-
jors), types are naturally versioned in TIGUKAT. Versions of the schema extend naturally
from this by simply specifying a particular time of interest and then using this time reference
to index the correct versions of types. The temporal subtype and supertype relationship
behaviors at the given time reference define the structure of the particular version of the
schema at this time. Semantic consisteacy of behaviors between old and new versions of
types is also supported in TIGUKAT. Instead of defining handlers on the various versions

115

value, a nil value, or generate an error.

Nguyen and Rieu [NR89] discuss schema evolution in the Sherpa model and compare
their work to Encore, GGemstone, Orion, and one of their earlier models for CAD systems
called Cadb. The emphasis of this work is to provide equal support for evolving schema
definitions and for propagating changes to instances, The schema changes allowed in Sherpa
follow those of Orion. Schema changes are propagated to instances through conversion or
screening, which is selected by the user. However, only the conversion approach is discussed.
Change propagation is assisted by the notion of relevant classes. A relevant class is a
semantically consistent partial definition of a complete class and is bound to the class. A
relevant class is similar to a type version in [SZ86) and a complete class resembles a version
set,

The properties of relevant classes are characterized automatically by selecting from the
powerset of instance variables and constraints defined in a complete class definition. The
selection is restricted to only those combinations that are meaningful with respect to certain
semantic rules [NRR7]. Objects are instances of exactly one relevant class, which charac-
terizes a partial definition of that object. The purpose of relevant classes is to evaluate the
side-effects of propagating schema changes to the instances and to guide this propagation.

Relationships between relevant classes can be characterized as a graph where the nodes
are relevant classes and the edges are labeled with schema changes tuat take one relevant
class defimtion to another. As the schema evolves, relevant classes are used to evaluate the
changes and test their semantic consistency. Objects are migrated between relevant classes
to effect the changes made to them. This migration is essentially object coercion. The
propagation of objects within a set of relevant classes can have a large overhead, but it is
argued that relevant classes group objects into smaller sub-classifications so that the number
of objects affected by a change within a class is reduced, thereby increasing performance.
This approach is valid in systems that consider partial definitions of objects within a class.

In the Farandole 2 model [ALP91], a structure called a contezt and the maintenance
of versions within contexts are proposed as a basis for schema evolution and versioning.
A contezt is a partial view of the overall schema that serves a dual purpose: it defines a
subset of objects in the database, and a subset of operations that can be performed on these
objects. Versions can be derived from the visible schema within a given context. Thus, a
views of schema approach is used to define contexts (views) and this is combined with a
versions al‘ lﬂlﬁﬂl appmeh for each context ta deﬁne vmim: of the :chem; wntllin the

glohn.l d;tihm sclicmg can he derived fmm the ﬁt ﬂf nII mﬁtzxti 'I'he typu::l ltbem:
changes are allowed. A context is represented by a connected graph where the nodes are
classes and the edges are attributes denoting relationships between classes. Thus, contexts
are similar to entity-relationship diagrams. Schema changes are characterized into graph
operations aad rules for maintaining graph integrity are defined.

Elements of versions and coatexts can be shared by other ms and contexts. Thus,
objects must maintain information about the contexts and versions in which they partici-
pate. One must consider the amount of extra space needed to store this information in the
objects rather than the types. The focus of the work is on managing changes to schema and
no propagation technique is explicitly stated, although it seems that conversion or screening
could be used. There is a brief discussion on how the model improves independence between
mmmm;wh:hm:mm htithnel!nhw

lﬂ;ﬂﬂmpﬂﬂjﬁhtﬂlﬂdhhmﬂ&dﬂ;ﬂhﬂ“hﬂ,wﬁ&h

116

intended to improve performance.

Osborn [OsbR9] describes an algebra that utilizes inclusion polymorphism to define
equivalence of queries on different versions of schema. The work does not describe how
schema changes are propagated to the instances. Two kinds of schema modifications are
considered. The first involves changing simple atomic attributes like strings and integers to
more complex aggregates of these simple types (the opposite direction of changing aggre-
gates to simple types is also discussed). Only one level of aggregation is considered. That
is, the aggregation of aggregate types is not discussed.

The second modification considered is that of specializing aggregate types (the opposite
direction of generalizing aggregate types is also discussed). Several example queries using
strings and integers are presented. The schema is modified by specializing previous types
and it is shown how the equivalence of queries are preserved (or not preserved) through
polymorphism. The results are interesting, but the full scope of schema evolution is net
considered.

ln OTGen [Lll90] the focus shifts from dynamir srhema ﬂﬁlutiml to databm reorga-

Schema changes produce a transformation table that di-;rnba hnrw to mﬁdlfy nﬁ!ﬂrd in-

stances. Multiple schema changes are usually grouped and released as a package called
a transformer. Screening is used to apply the transformer and propagate changes to the
instances. Multiple releases are composed and, thus, access to an older object can invoke
multiple transformers to bring the object up to date. One result of the database reorganiza-
tion approach is that multiple changes are packaged into a single release and this is expected
to reduce the number of screening operations that need to be invoked for each object access,
Another result is that transformers are represented as tables that are initialized by OTGen.

A simple language is provided to describe transformations. Before releasing a transformer,
a database administrator can edit the entries in the table to override the default trans-

formations. Each release can be thought of as a separate version of the entire database.
Thus, this is similar to the versions of schema approach. Since the focus of the paper is
on database reorganization, the details of invoking and accessing individual versions is not
discussed.

Reiter [Rei92] discusses a formal approach to defining database updates using techniques
from artificial intelligence. A situational calcwlus? for a transaction model is defined and a
solution to the frame problem?® within this model is described. This requires the introduction
of second-order operations and details are not given. In a uniform model like TIGUKAT,
the schema is part of the objectbase and thus can be part of updates to the objectbase. It
seems likely that Reiter's formal model could be adapted to describe schema evolution in
a uniform model. A form of versioning is already part of his model since he describes how
a transaction modifies a database within 2 pmn:uh: state taking u to a new :tnr Thus,

is appealing because it moves from the tndntinnl pmmhr;l tmﬂmﬂt d :pdam m a
declarative one.
In the systems discussed above, if an object is coerced to coincide with a new definition

3The situational colewius [McCS8) is a first order language designed to represent dynamically changiog
w&th&*m&“dmwm-ﬂhnpﬁmhﬂmm&mﬂ
40 a new state.

3The frame problem stems from the noed for specifying the inverionts of a particular action or update
withia & world of which there are usually & large aumber.

n7

of the schema, the entire object must be converted. In systems that don’t define versioning,
the old state of the object is lost. The approach in TIGUKAT differs in that the granularity
of object coercion is based on individual behaviors. That is, individual behaviors defined on
the type of an object can be coerced to a new definition for that object, leaving the other
bebaviors to retain their old definitions. Furthermore, a historical record of the coerced

be accessed for each object. Complete object coercion can be done by explicitly coercing
all the behaviors of an object.

Substantial research has been ongoing in the past decade to support the notion of time
in various systems [Soo91, TCG*93]. Time has been introduced recently in the context of
object models [RS91, KS92, DW92, WD92]. These studies have concentrated on extending
the object model to facilitate various notions of time. Furthermore, query models have
been extended by adding new operators and constructs that range over time values and
allow for the execution of queries on temporal and non-temporal objects to be carried out
in a uniform manner. Using time to model schema evolution in an object model has not
received much attention. Given the application domains that TIGUKAT is expected to
support, temporal extensions to the TIGUKAT object model bave been introduced [G093].
In this thesis, it is show how time is used to model temporal behaviors, which is turn models
versions of objects, types, and schema.

5.4 Overview of Schema Evolution and Versioning

In this thesis, a linear model of time is proposed as a foundation for managing schema
evolution and version control. Temporality is based on behaviors and is consistently ex-
tended to include schema information like types, plus all forms of objects as well. Since
temporality is behavior based, an object is temporal if and only if it's type defines at least
one temporal behavior. Otherwise, the object is non-temporal. Therefore, temporal and
non-temporal objects co-exist in the model. Temporal bebaviors are a specialization of the
primitive, non-temporal behaviors. Thus, temporality is transparent in the modd (i.e., if
the user is not concerned with temporality, then the temporal behaviors act just as regular,
non-temporal behaviors do).

Temporal behaviors manage histories of changes to objects and therefore a version ofa
temporal object can be comstructed at any time of interest by indexing into these histories.
By defining appropriate temporal behaviors on the meta-architecture, versions of types and
versions of schema are supported. That is, changes to the schema involve updating the
history of certain behaviors. For example, adding a new behavior to a type changes the
history of the type's interface to include the new behavior. The old interface of the type
is maintained and can be accessed through temporal language features that allow behavior
in the past when applying the B.interface behavior to get an older version of the interface
of & given type. This is effectively versions of types. Similarly, the subtype relationship
behavior is defined to be temporal and, therefore, the structure of the type lattice can be

Coercion of objects to a newer version of a type is optional in TIGUKAT. Since different
objects is available and can be used to continve processing these objects in the old way. If
coercion is desired, the entire object does not need to be updated. Objects can be coerced

to a newer version one behavior at a time. This means that some behaviors of the object
may work with newer versions, while others may work with older ones. This is in contrast
to other models where an object is converted in its entirety to a newer version, thereby
losing the old information of the object. Since the old information of the object is available,
even if objects are coerced to a newer version, historical queries can be run by giving an
appropriate time point in the past history of the object.

Even though this work is within the context of the TIGUKAT object model, the results
reported here extend to any system that uses time to model histories of behaviors. Currently,
we are unaware of any other systems that use this approach.

5.5 Temporality of the Object Model
Most of the applications that OBMSs are expected to support exhibit some form of tem-

identify different versions of a design as it evolves; in multimedia systems, the video images
are timed and synchronized with audio; in office information systems, documents are or-
dered based on their temporal relationships. Thus, a temporal domain is a very natural part

overview is presented in this section to establish the foundation for using time to manage
schema evolution and versioning.

Time is added to TIGUKAT by extending the base model with time-related types and
bebaviors. Figure 5.1 shows the types added by the temporal extensions. Some of the
time-related behaviors defined on these types are discussed below.

Figure 5.1: The abstract time types.

Two aspects of modeling time are considered: the structural models of time and the
density of these models. Two structural models are represented in TIGUKAT. The first is
a linesr model where time flows from past to future in a totally ordered manner. The second
is a branching model where time flows linearly until a certain point where it can branch
into several independent, parallel linear models that can go on braaching indefinitely. The

structure of a branching model is a directed tree with the root being the start of time, the
Jeaves being the current time at the various branches, the nodes being the branch points,
and the edges being linear models that connect nodes. The type T.timemodel represents
structural models in general and the types T1inear and T.branching represent the two
specific structural models considered in TIGUKAT. Linear models are further specialized
into instantaneous models (T_instant) consisting of a single time point (e.g., 32, 1), interval
models (T_interval) consisting of specific lower and upper bound time points (e.g., [2-16),
[t4 = t9)), and spanning models (T.span) that consist of durations (e.g., 4 days, 2 months,
annually, quarterly).

The density of a structural model defines the domain over which time is perceived or
referenced in that model. In other words, it defines a scale for time in the model. Three
basic acales (i.e., domaina) of time are considered in TIGUKAT. The general density of time
models is represented by the type T_timescale. The subtypes T_continuous, T-dense, and
T_discrete represent the three basic time scales. Discrete domains map time to the set of
integers, dense Jomains map time to the set of rational numbers, and continuous domains
map time to the set of real numbers.

For the purpose of developing schema evolution and versioning, this thesis concentrates
on the T_interval and T.discrete types, which suffice for its design.

Since temporality is integrated with the base object model, it can be extended. Addi-
tional structural models and densities can be easily introduced by building on the established
types. This is a direct result of the uniformity of the model. For example, to model dates,
a type T.date can be defined as a subtype of T_instant. To mode| years, months, or day
spans (i.e., durations), appropriate subtypes of T_span can be created. These can be further
subtyped to model a finer granularity of time.

To manage temporal information about the behaviors of objects, the type T_temporalBhy
is introduced as a subtype of T.behavior. This type defines additional functionality for
representing the semantics of temporality on behaviors. An instance of T_temporalBhv is
called a temporal behavior. Temporal behaviors are prefixed by BT.. The associated class
C_temporalBhv is introduced to manage the temporal behavior instances.

The additional functionality of T_temporalBhv allows its instances to maintain a history
of updates with respect to objects they are applicable to. The history of updates is modeled
by the B_history behavior defined on T_temporalBhv’. The signature is B_history is as
follows:

B_history: T.object — T_collection(T timemodel, T.object)

B_history requires a temporal bebavior as the receiver. It accepts an object as an
argument, and returns a collection of <T_timemodel, T.object> pairs as a result. The
result represents the history of the receiver behavior with respect to the given argument
object. If the receiver behavior is not defined on the type of the argument object, an
B.value is defined as a temporal behavior (denoted BT.valve). The behavior application
heArctic. BT value returns the current value of the land and BT_value. B_history(theArctic)
returns the entire history of the land value as it has changed over time.

"Nete that Bhistory is aa instance of T.hehevier and not T.tenperalihy.

Definition 5.1 Temporality of Behariors: A behavior b is temporal if and only if it ix an
instance of T_temporalBhv (i.e., b € C.temporalBhv).

Definition 5.2 Temporality of Types: A type t is temporal if and only if it defines at least
one behavior in its interface. That is, the following condition is met:

3b | be t.B_interface A b€ C_temporalBhv

Definition 5.3 Temporality of Objects: An object o is temporal if and only if the type of
o (i.e., 0.B_mapsto) is temporal.

From these aefinitions it is clear that, in TIGUKAT, temporality of objects is not
orthogonal to their type. In other words, if a type is temporal, then all of its instances
are temporal, and if a type is non-temporal, then none of its instances are temporal. This
approach is reasonable since certain aspects (i.e., behaviors) of a similar group of objects
(i.e., of a particular type) are usually temporally maintained. For example, to track the
value of land zones (i.e, objects of type T.land), B.value would be defined as a temporal
behavior. According to the definitions, this means that a value history would be kept for
each land zone. This is reasonable since a land value history is something that would
typically be tracked for all units of land or for none.

To demonstrate the notion of timestamping objects, the type T.DiscInterval is intro-
duced as a subtype of T_interval. The behaviors of T.DiscInterval are specialized by
fixing the time scale to be discrete. In the following discussion, the term interval is used to
mean an instance of C_DiscInterval. Intervals are represented as pairs of the form [/, u)
where | and u are time instants that denote the lower and wpper bounds of the interval,
respectively. An interval is closed on [and open on u. Occasionally, such as with history
termination, an interval will be closed on both ends in which case it is represented as [[, v].
The interval [] denotes the empty interval and can be used in time comparison operations.
The time instant now is introduced as the marking symbol for the current time. An interval
whose upper bound is now expands as the clock ticks. The specification of particular units
of time is left to the user or application. This is flexible and could be given by specific time
points, relative time points, version numbers, and so on.

The time model component of the <T_timemodel,T.object> pairs is assumed to be

is represented by sets of pairs of the form <[/, u),0> where [I, x) is an interval as described
above and o is the object that is valid (or exists) over the given interval. The interval serves
as a timestamp for the validity of object o.

Now, the result of B_history is a collection of <T_.DiscInterval,T.object> pairs (that
is, T.collection(T DiscInterval, T_object)). In other words, the result collection comsists
of objects whose type is T.DiscIaterval x T.object. This type is automatically created as
a subtype of T_product (see Chapter 3) and thereby inherits all its native behaviors. Recall
that the inject behavior (p;) of T_product returns the i** component of a product object.
Hence, if ¢ is an element from a history collection, then ¢.p) returns the T.DiscInterval
component of ¢ and e.p; returns T_object component.

Another important behavior introduced by the temporal extensions is the Blifespan
behavior defined on T.object. The signature of B.lifespan in the context of the model
discussed above is as follows:

B_lifespan : T.collection — T.DiscInterval

This behavior is applied to an object, accepts a collection as an argument, and returns
a discrete interval representing the time in which the object exists in the given collection.
For example, the following behavior application returns the lifespan of the object theArctic
in class Cland:

theArctic. B ifespan(C land)

Rules are defined in [G093] to ensure the semantic consistency of lifespans in the context

of classes and inclusion polymorphism. For example, the lifespan of an object in a class is

contained within the lifespan of that object in any superclass. That is, if an object ceases to

exist in a certain class, then it must also cease to exist in the subclasses. This is reasonable

since, for example, if a certain house is demolished and ceases to be a dwelling, then it
should also cease to be a house.

An object is effectively deleted from a collection (or class) by timestamping its [ifespan
in that collection with the current time. Objects that currently exist in a collection have
the upper bound of their lifespan interval set to now.

A noteworthy point is the temporal transparency built into the model. The distinction
between temporal and non-temporal behaviors is based on type®. The specification of a
signature for a temporal bebavior and its ;ppln:;tm to objects is no different from a non-
temporal one. This is important from the user’s perspective since the utilization of temporal
and non-temporal behaviors is transparent. The history of a temporal behavior with respect
to a certain object can be retrieved by applying the B_history bebavior to it.

Two basic aspects of time are considered in databases that incorporate temporality.
Tbm are lhﬂ‘ uhd lﬁd Immdmn tlmu Tlie former denotes the time wllen an object

trn;aﬂm was pmted 10 the database. The need to dutingmnh between valid and trans-
action times arises when an update to an object is posted to the database at a time that
is different from the time when the update becomes valid. In this work, only valid times
are considered, however, the concepts introduced also apply to transaction times and can
easily be carried through to them as well.

5.6 Semantics of Schema Evolution
5.6.1 Definition of Schema

There are different kinds of objects modeled by TIGUKAT, some of which are classified as
schema objects. All objects managed by TIGUKAT can be placed into one of the following
categories: type, class, khmr.]umtmn, collection or other. These characterizsations are
used (o define the “schema” of the model and the changes that affect the schema. First, the
definition of -m constitutes schema objects is proposed. This is followed by the definition
of the “schema.

Definition 5.4 Schema Objects: The following classifications of schema objects are prim-
itive to the model:

o The class C_type forms the collection of type schema objects denoted TSO.
‘Tkplll n.nmnﬂmmm&h-u-m -
1o improve readability and could be dropped.

o Forall typest € TSO, the extended union over the behavior application t.B_interface,
that is:
U t.B_interface

forms the collection of behavior schema objects denoted BSO. Only those behaviors
defined in the interface of some type are considered to be behavior schema objects.
Note that BSO C C_behavior.

o For all behaviors b € BSO, for all types t € TSO, the extended union over the
behavior application b.B_implementation(t), that is:

U b.B_implementation(t)

forms the collection of function schema objects denoted FSO. Only those functions
defined as the implementation of some behavior for some type are considered to be
function schema objects. Note that FSO C C_function.

o The class C_collection forms the collection of collection schema objects denoted
LSO.

o The class C_class forms the collection of class schema objects denoted ('SO. Note
that CSO C LSO.

Definition 5.5 Schema: The schema of a TIGUKAT objectbase is equivalent to the
union of all schema object collections. That is:

schema = TSOU BSOU FSOU LSOu(CSO

Note that C'SO is included for completeness. It is unnecessary since (*SQ) is a subset of
LSO.

There are three basic operations that can be performed on objects: add, drop and
modify. In the context of the temporal model, adding refers to creating an object and
beginning its lifespan in its class, dropping refers to terminating the lifespan of an object
in its class, and modifying refers to updating the object, which in turn leads to versioning
the temporal aspects (i.e., temporal behaviors) of the object.

Table 5.1 shows the combinations between the various object categories and the different
kinds of operations that can be performed. The bold entries represent combinations that
implicate schema evolution modifications, while the emphasized entries denote other changes
that are not considered to be part of the schema evolution problem.

For the purpose of performing the operations in the Drop (D) column of Table 5.1, a
generic drop behavior B.drop is added to type T_object. The signature of B.drop is as
follows:

B.drop : T.object

The implementation of the behavior is redefined in the types of the various schema
objects affected by the operation. The details of each refinement are given in the sections
that follow.

Before considering each schema change in turn, the invariants of schema evolution that
must be maiatained over schema modifications are presented.

Operation

Objects Add (A) Drop (D) — Modify [M
Type (T) subtyping type jon ~add behavior(AB)
drop behiﬁor(DB)
add supertype link(ASL)
___| drop supertype link(DSL)
 C "Class (C class creation class deletion extent chenge

Behavior (B) behavior definition | behavior deletion change association(CA)

[Function (F) nction definition | function deletion implementation change
Collection (L) tion creation | collection deletion ertent change

inslence creslion tnalance deletion B inslance update

Other (0)

Table 5.1: Classification of schema changes.

§.6.2 Invariants of Schema

The following invariants bave been identified for maintaining the semantics of schema modi-
fications in TIGUKAT. The invariants are used to gauge the consistency of a schema change
in that the invariants must be satisfied both before and after a schema change is performed.

The type lattice, full inkeritance, domain compatibility, and distinet behavior
invariants are similar to those presented in other models such as Orion and GemStone. The
full implementation and direct supertype invariants are unique to the design of this
approach, and the temporal invariant is required due to the introduction of temporality
into the model.

Type Lattice Invariant: The type lattice is a connected, directed acyclic graph (DAG).
The nodes of the lattice are types and the directed edges are subtype relationships
with tail of the edge being the subtype of the type pointed to by the head. The lattice
has the single system defined type T_object as its root and the system defined type
T.null is its base. Since the lattice is connected, there are no isolated types and all
types are a subtype of the root T.object.

A chain in the type lattice is a collection of types, totally ordered by subtyping, such
that they form a single connected path through the lattice. A chain is identified as a
collection of types that are connected by sub/supertypes relationships such that they
form a connected path through the lattice. A chain of length one from a type T.a to
a supertype T.b is called a direct supertype link from T.a to T_b or a direct subtype
link from T_b to T-a. For example, in Figure 2.2 the types {T_pond, T_water, T_zone}
form a chain and 50 do {T_land, T_zone} which is a direct supertype link from T.1and
to T.zome. A single type such as {T.map) forms a chain of length zero. On the other
hand, {T.map,Tland, T_sone} does not form a chain because T.map and T_land are
ot in a sub/supertype relationship with one another. As well, {Tforest, T_sone} is
aot a chain because its connectivity is broken by the exclusion of type T.land.

Full Inheritance Invariant: A type inkerits all behaviors defined by its supertypes. The
behaviors inkerited by a type are called the inkerited behaviors of the type. A type
can define additional behaviors that are not part of its inherited behavior set. These
are called the native behaviors of the type. The union of the inherited and native
behaviors is called the interface of the type. A type's interface is a superset of the
union of interfaces of its supertypes.

124

Full Implementation Invariant: A type that has an associated class must have functions
associated with all its behaviors. If a type has an associated class, then objects of that
type may already exist and new objects can be created. In order for these objects to
have their full meaning, all behaviors defined on the type must have functions (i.e..
implementations) associated with them.

Direct Supertype Invariant: A direct supertype link between two types is the only chain
linking the typea. If another chain links the types, the direct supertype link is dropped.
This means that for any two types, say T.a and T.b, if there exists a chain from T_.a
to T.b greater than length one, then there are no direct supertype links (i.e., chains
of length one) from T.a to T_b. Furthermore, this implies that there is at most one
direct supertype link between any two types.

Domain Compatibility Invariant: The result type of a behavior in a type must gener-
alize the result typc of that behavior in all subtypes. That is, the result type of a
behavior defined on a type, say T.a, must generalize the result type of that behavior
in all subtypes of T_a. Note that the result types may be the same. This invariam
ensures substitutability.

Distinet Behavior Invariant: The behaviors in the interface of a type are unigue, That
is, the semantics of the behaviors must be unique. Since a name is part of a behavior's
semantics, the names of behaviors in the interface of a type must be unique.

Temporal Invariant: The bchaviors defined in the interface of a type at a given time arv
applicable to all inatances of that type that czist at that time. That is, if a behavior

an object of that type, then the behavior is applicable to the object. The temporal

invariant is managed automatically by temporal model through the timestamping of

temporal behaviors,
5.6.3 Semantics of Change
In this section the modifications that affect the schema (i.e., the bold entries of Table 5.1)
type definition, dropping behaviors from a type definition, changing the implementation of
a behavior in a type, and adding and dropping classes. The other schema changes, namely,
adding and dropping types, adding and dropping supertype links, dropping behaviors and
dropping functions can be defined in terms of the type-related basic operations.

Type modifications are separated into changes affecting the behaviors defined on a type

and changes affecting the relationships between types such as adding and dropping direct
supertype links. The semantics of these changes are discussed in the following sections.

Modify Type - Add Behavior (MT-AB)

This operation adds a native behavior to a type. In order to satisfy the distinct behavior in-
variant, the operation is rejected if the behavior is already defined on the type either natively
or through inheritance. The full inheritance invariant requires that the added behavior is
inberited by all subtypes of the type to which it is added. Behavior B.addBekavior defined
on T.type performs this schema change. The signature of B.addBehavior is as follows:

H_addHehavior : T_behavior — Tfunction — T_type

B.addBehavior is applied to a type object and accepts a behavior and a function as
arguments. The behavior argument is the behavior to add to the receiver type and the
function argument is the implementation to associate with the behavior for that type. For
example, the following behavior application adds a behavior B_PHlevel to the type T.water
(se» Table 2.1, page 21) and associates this behavior with a stored function:

T_water.B_addBehavior(B.PHlevel, STORED)

The function argument may be omitted if the receiver type does not have an associated
class and if all subtypes of the receiver type that have an associated class already define
the behavior being added. This restriction is imposed to satisfy the full implementation
invariant.

In order to satisfy the domain compatibility invariant, the result type of the behavior
in the type to which it is added must generalize the result type of the behavior in all the
subtypes of that type. All other invariants are satisfied.

Modify Type - Drop Behavior (MT-DB)
This operation drops a native behavior from a type. The operation is rejected if the behavior
is not defined on the type or if it is inherited by the type. Thus, only native behaviors can
be dropped. Dropping an inherited behavior would mean that the behavior must also be
dropped from all the supertypes, otherwise the behavior would be re-inherited because of
the full inheritance invariant. With the restriction of only dropping native behaviors, the
supertypes of a type retain all their original behaviors and are unaffected by the change.
Behavior B.dropBebavior defined on T_type performs this operation. The signature of
B.dropBehavior is as follows:

B.dropBehavior : T_behavior — T_type

B.dropBehavior is applied to a type and accepts the behavior to be dropped as an
argument.

When a native behavior is dropped, its native definition is propagated to all the subtypes,
unless the behavior is inherited by the subtype through some other chain in which case
the behavior will be inherited instead of native. With this approach, the interface of the
subtypes retain all their original behaviors and only the single type directly involved in the
operation actually drops the native behavior.

The reason for using this approach is that it is a fundamental approach in the sense
that other forms of behavior dropping can be defined in terms of it. For example, in
ORION the semantics of bebavior dropping (i.e., attribute and method dropping in their
model) is to recursively drop the bebavior from all the subtypes as well. With the approach
taken in TIGUKAT, a bebavior can be defined (e.g., B.dropBhvDeep) that recursively
performs B.dropBehavior on all the subtypes, which effectively drops the behavior from
the subtypes (unless the bebavior is inherited through some other chain). Other forms
of behavior dropping can be defined in terms of the fundamental B_dropBebavior. An
interesting approach would be to allow bebaviors in a type to be flagged as being semi-
native in the sease that they should not be dropped by a recursive decent drop process i.e.,
by B.dropBhvDeep), but instead should persist as native definitions in those types.

126

Modify Type - Add Supertype Link (MT-ASL)

This operation effectively adds a subtyping relationship between two types. The addition
of a type, say S, as a direct supertype of another type, say T is rejected if (a) it introduces
a cycle into the lattice, (b) T is already linked to S through some chain, or (c) there exists
a behavior, say b, defined on both § and T and the result type of the behavior in § does
not generalize the result type in T. Behavior B_addSupertype defined on T_type performs
this operation. The signature of B_addSupertype is as follows:

B_.addSupertype : T_type — T ype

B_addSupertype is applied to a type and accepts a type as an argument. Its semantics
is to add the argument type as a supertype of the receiver. To add § as a supertype of T' we
apply T.B.addSupertype(S). The behaviors of S are inkerited by T and all the subtypes
of T. This is equivalent to propagating the inheritance of added behaviors defined above
and follows all the rules established for that operation.

Modify Type - Drop Supertype Link (MT-DSL)

This operatiou drops a direct supertype link between two types. A direct supertype link to
T_object cannot be dropped. Behavior B.dropSupertype defined on T_type performs this
operation. The signature of B_dropSupertype is as follows:

B.dropSupertype : T_type — T_type

The receiver of B_dropSupertype is a type and a direct supertype of the receiver is
passed as an argument. The semantics of this operation is to drop the direct supertype
link between the receiver and the argument, reestablish links between the receiver and the
supertypes of the argument, and reestablish links between the subtypes of the receiver and
the argument.

Formally, let R; be the state of the receiver type before the change and R, be its state
after the supertype link has been dropped. Similarly, let 7, and 7, be the before and after
states of other general types. Furthermore, let A denote the argument type (the before and
after states are not important for the argument). The following super-lattice properties
hold as a result of dropping a direct supertype link®:

R;.B _super-iattice = R;.B._super-lattice — {A}
VT, € (R;.Bsuper-lattice — {R;}), T;.B_super-lattice = T,.B_super—lattice
VT, € (Ri.Bsub—lattice - {R;}), T;.B_super—iattice = T,.B _super—lattice

The semantics of this operation is clarified by the example lattice shown in Figure 5.2.
Assume that the direct supertype link from T to S is to be removed. The behavior ap-
plication T.B.dropSupertype(S) removes the direct supertype link between T and S and
modifies the type lattice in the following way:

*The corresponding seb-lattice, supertypes and subtypes properties are also updated accordingly. Osly
the super-lattice properties are given, but these are sufficient for describing the effects of the schema change.

127

> \> t>(/

Before drc:ppmg link After droppi 5 link
between T and § between T an

Figure 5.2: Effects of dropping a direct supertype link from type T to type S.

o It adds a supertype link from T to every supertype of S, unless T is linked to the
supertype(s) through another chain. In Figure 5.2, T is re-linked to A;, but not to
A, since T is already linked to A, through the chain containing B. This ensures that
the interface of T does not change by more than the native behaviors defined on .

o It adds a supertype link from each subtype of T to S, unless the subtype is linked to
S through another chain. In Figure 5.2, D, is re-linked to S, but D; is not since it is
already linked to § through the chain containing C'. This ensures that the interface
of T's subtypes are not affected by the change.

o It drops the native behaviors of S from the interface of T. These behaviors are not
dropped from the subtypes of T because the subtypes are re-linked to § by the step
above and therefore inherit its behaviors. Furthermore, the behaviors inherited by §
are not dropped from T because T was re-linked to the supertypes of § and therefore
inherits these behaviors.

With this approach, only the interface of T is affected by losing the native behaviors of
S. The interfaces of all other types remain unchanged.

ﬁhe ﬁ‘mainmg lype-rvl;trd uperatian; nf nﬂdmg ;nd dmﬁping types are dig-u:sed in
are not ;dua.lly drkted lnstead the hfesp;n uf a dmpped type in the clm E_type is
timestamped with the current time. This “effectively deletes” the type from subsequent
time,

Add Type (AT)

This operation creates a new type and integrates it with the existing lattice. Creating a
type adds it to TSO, which is turn adds it to the schema. Type creation is supported
through regular sublyping which is an operation provided by the primitive model.

Chapter 2 describes the behavior B_aew as part of the meta-system and how it can be
applied to the system supplied class C_type to create a new type. The B.aew heki’viaf
accepts a collection of types as the first argument and a collection of behaviors as the secon
one. Tkmﬂtdgpplyi:gtkhehvhrithﬂamlmhmudulnbtmnnk
types in the first argument collection and the behaviors in the second argument collection

128

A Ay

AN N
NN/

1 2

Befcrre dmppmg T After dropping T

Figure 5.3: Effects of dropping a type T.

are defined natively on the new type, unless they are inherited from one of the argument
types.

Subtypmg (and thus the AT npefatian) can be deﬁnpd in terms uf rri!ating a new t\pq-
to each ;rgnment tpr (whlrh wxll update the natmn dFﬁI‘llllﬂﬂS appmpnatrl)) fxdlnmnl h\
adding a supertype link from T.null to the new type.

Drop Type (DT)

This operation drops a given type, removing it from TSO and, therefore, removing it from
the schema as well. Dropping a type from the lattice terminates the lifespan of the type
in the class C_type. This effectively deletes the type from subsequent time. The general
B.drop behavior defined on T_object is refined in type T_type to perform type dropping,.

The primitive types of the model (i.e., those in the primitive type system T) cannot
be dropped. When a type is dropped, the type's associated class and all the instances in
the shallow extent of the class are dropped as well. If object migration techniques were
introduced into the model, the instances could be ported to some other type prior to being
dropped in order to preserve their existence. Object migration is outside the scope of this
thesis.

Every direct subtype B, of a dropped type T is re-linked to every direct supertype A,
of T unless there is a rha.m from B, to A; that does not include T. Furthermore, the
native behaviors of T are pmpaglted to the direct subtypes so that they become native
in the subtypes unless the behavior is inherited through some other chain. For example,
Figure 5.3 shows the effect of dropping a type T. The subtype B, is re-linked to both
supertypes A, and Az, while B; is re-linked to A but not A; because it is already linked
to A, through the chain that includes S. If T and S both define a native behavior b, then
a native definition of b would be propagated to By, but not to B; because B; inherits the
behavior from §.

The implementation of B_drop can be defined in terms of other operations. For example,

to drop the type T, the following sequence of operations can be performed:

1. Drop supertype links from each subtype B, to T (i.e., apply B,.B.dropSupertype(T)).

2. Add supertype links from each B; to each supertype A; of T - if not already linked
through some other chain (i.e., apply B;.B_addSupertype(A;)).

3. Drop supertype links from T to each A; (i.e., apply T.B_dropSupertype(A;)).

4. Effectively delete the type T, its associated class (', and all instances in the shallow
extent of ¢’ by timestamping their lifespan in the appropriate class.

Using this approach, dropping a type does not affect the interface of any other type
and the operation is uniform in the sense that a series of type drops will produce the same
resulting lattice regardless of the order in which the types are dropped. In contrast to this
approach, Orion only links a subtype of a dropped type to the supertypes if the subtype
becomes isolated. As a result, a series of type drops may produce a different resulting lattice
depending on the order in which the types are dropped. For example, in Figure 5.3 consider
dropping T followed by dropping S as opposed to first dropping S and then dropping 7. In
Orion, the resulting lattices are different in both cases. In the first case, By bas supertype
links to both A, and A; while B; is linked only to Aj;. In the second case, B, and B; have
links to both A, and A;. With our approach, the two resulting lattices are the same with
B, and B, linked to both A, and A;.

The semantics of schema changes affecting classes is described in the following sections.
The only two changes considered are adding and dropping classes.

Add Class (AC)

Class addition is class creation as defined by the primitive model. Creating a class adds it
to CSO, which in turn adds it to the schema. The behavior B.new defined for classes can
be applied to C_class to create a new class object. The B.new bebavior accepts a type
argument to be associated with the new class. The operation is rejected if the type already
has an associated class or if the type defines a behavior that does not have an associated
implementation — a class can only be created if the type has implementations defined for
all its behaviors. A class manages the instances of a type. The creation of a class allows
instances of its associated type to be created.

Drop Class (DC)

This operation drops a given class removing it from CSO and, therefore, removing it from

the schema as well. Dropping a class terminates its lifespan in the class C_class. The

B.drop behavior defined on T_object is refined in type T.class to perform class dropping,.
The instances of a dropped class are also dropped. As mentioned above, if the model

includes object migration techniques, instances can be migrated to another class before

dropping the class in order to preserve their existence before dropping the class.

Drop Behavior (DB)

Since explicitly dropping behaviors from a type definition (operation MT-DB) is a schema
change, dropping a behavior in its entirety is also a schema change because the behavior

The DB operation drops a given behavior, which could possibly remove it from BSO
and, therefore, remove it from the schema as well. Dropping a bebavior terminates its
lifespan in the class C_behavior. The B.drop behavior defined on T_object is refined in
type T_behavior to perform behavior dropping.

A dropped behavior is also dropped from all types that define the behavior either natively
types (operation MT-DB) defined above. Therefore, the impiementation of B_drop in type

Old Implementation | New _Implementation
computed, computed,
computed, stored,
stored, stored,
stored, computed,
undefined stored,
undefined computed,

Table 5.2: Valid implementation changes of a behavior in a type.

T_behavior can be defined in terms of dropping the given behavior from all types that
define it, followed by timestamping the lifespan of the behavior in class C_behavior.

Modify Behavior - Change Association (MB-CA)

The modification to a behavior that is considered to be a schema change is re-associating
a different function with a behavior in a particular type. Behavior B_associate defined
on T.behavior is provided as part of the primitive system to perform user-level behav-
jor/function association changes. The signature of B.associate is as follows:

B_associate : T_typy — T_function — T_behavior

B_associate is applied to a behavior and accepts a type and a function as arguments.
The behavior must be defined on the type argument and the result is to associate the
function argument as the implementation of the behavior in the given type.

Recall that stored and computed functions represent the implementations of behaviors.
The valid association changes are shown in Table 5.2. The notation computed; and storvd,
refer to computed and stored functions respectively. The subscripts i and j are used to
denote distinct functions. The term undefined is for the case when the behavior is not asso-
ciated with any function. The combinations computed; to computed, and atored; to stored,
are not included in the table because these do not reflect changes in function association.
The emphm;d rows I‘EPI'EIEI“ uner-levﬂ cll;ngu nd the bold row is a system-level change

havior with a lturrd fnnctm The detnlx nf the stored lntltlon that tln: fnnﬂm accexses
(e.g., slot number in the object) is transparent to the user and is handled internally by the
ly;tem One enmple Df nimg the bald n!ry in lhe tgble is durmg mgltlplcli !nhentnré ll
conflicts between the mnlt,!ph npeﬂyps Cllugmg a behavior fmm imeulig one slnt to
accessing another is conceptually a change in implementation. This approach is wniform
and is easily perceived to be the case if one considers each slot to have a separate stored
fnﬂm defined for it. Obviously, it is not implemented in this way (see [Ira83] for details

aplementation), but it serves as a uniform framework for characterizing implemenatation

o8 imple
Smae changing the association of a function with a behavior is considered a schema

change, dropping a function in its emtirety must also be a schema change because the
fanction may be associated as the implementation of a bebavior in some type.

Drop Function (DF)

This operation drops a given function, which could possibly remove it from FSO and, there-
fore, from the schema. Dropping a function terminates its lifespan in the class C_function.
The B.drop behavior defined on T_object is refined in type Tfunction to perform function
dropping.

Only user-defined computed functions can be dropped. The operation is rejected if the
function is associated as the implementation of a behavior in a type that has an associated
class. These behaviors must be re-associated to other functions prior to dropping the
given function. For those behaviors associated to the function in types that don't have
an associated class, the behaviors become undefined in these types when the function is

dropped.

Drop Collection (DL)

This operation drops a given collection removing it from LSO and, therefore, removing
it from the schema as well. Dropping a collection terminates its lifespan in the class
C_collection. The B_drop behavior defined on T_object is refined in type T.collection
to perform collection dropping which simply drops the collection and nothing else. That is,
the instances of a dropped collection are not affected because of their existence in a class.

Add Collection (AL)

Collection addition is collection creation as defined by the primitive model. Creating a
collections adds it to LSO, which in turn adds it to the schema. The behavior B_new
defined classes can be applied to C_collection to create a new collection object. The B.new
bebavior accepts a type argument that denotes the membership type of the new collection.
A collection is a user-defined and user-managed grouping of objects. Thus, modification of
collections is left to the user and is not considered as part of schema evolution.

The remaining entries in Table 5.1 represent changes that are not considered part of the
schema evolution problem. Each is discussed in this section to describe why it is not included
as part of schema evolution.

Creating, dropping, and updating object instances (operations AO, DO, and MO) other
than the schema instances discussed above clearly are operations concerned with the real-
world concepts modeled in the objectbase and, therefore, do not have an affect on the
schema. Defining » new behavior (operation AB) does not affect the schema because be-
haviors don’t become part of the schema uatil after they are added to the interface of some
type. Defining a new function (operation AF) does not affect the schema because fanctions
don’t become part of the schema ustil after they are associated as the implementation of
a behavior defined on some type. Modifying a fanction (operation MF) does not affect the
semantics of the behaviors it may be associated with and, therefore, this operation does not
affect the schema.

Collections are groupings of objects that are defined and maintained by the user. Mod-
ifying a collection involves changing the membership of its extent and changing its mem-
bership type. These are operations related to the conteats of the collection and, therefore,

Interface history of type T:
{<[to.ts), {b1.82}>, <[ts.t30), {b1, b2, b3}>. <[tso,now], {by.bs}>}

Figure 5.4: History of the interface of type T.

5.7 Versions of Types with Time

In this section, the incorporation of time to model versions of a type interface and imple-
mentation histories of behaviors is presented. The various changes that can occur on types,
how these changes are reflected in the time model to manage type versions, and how the
changes affect the instances of the type are described. The changes considered include:
adding a behavior to a type, dropping a behavior from a type, and changing the implemen-
tation of a behavior for a particular type. These three changes were shown in the previous
section to be the basis of most other schema changes.

5.7.1 Adding/Dropping Behaviors

As specified in Chapter 2, every type has an interface, which is the coliection of behaviors
that are applicable to the objects of that type. Recall that an interface consists of both
native and inherited behaviors. Also recall that there are three behaviors defined on T_type
that return the various components of a type’s interface: B_native returns the collection of
pative behaviors, B.inherited returns the inherited behaviors, and Blinterface returns the
entire interface of a type.

In order to version the aspects of schema evolution that deal with adding behaviors to
a type and dropping behaviors from a type, the three interface behaviors are redefined to
be temporal behaviors. Thus, to keep with naming conventions, they will be referred o as
BT .native, BT .inherited, and BT.interface.

Note that separate histories for each of these behaviors need not be explicitly maintained.
For example, in an implementation one can choose to only maintain the native behaviors
of a type. The entire interface of a type can be derived by uwnioning the native behaviors
of all the supertypes of the type. The inherited behaviors can be derived by taking the
difference of the interface and the native behaviors of the type. As another altermative,
one may choose to maintain the interface of a type and derive the native and inherited
bebaviors. In this approach, the native bebaviors of a type can be derived by unioning
the interfaces of the direct supertypes and subtracting the result from the interface of the
type. The inherited behaviors can be derived in the same way as above. Throughout the
remainder of this thesis, histories of interfaces in the abstract sense are considered and the
actual maintenance of them is left as an implementation detail.

With the time-varying interface extensions, the various aspects of a type's interface can
be determined at any time of interest. For example, Figure 5.4 shows the history of the entire
interface for a type T. A timeline representation and the result of T.B.interface are shown.
The notation +b, and —b; are used to indicate the adding and dropping of some behavior b,,
respectively. At time to, behaviors by and b, are defined on T and the initial history of T's
interface is {<[to, now], {by,8)>}. At time t5, a behavior by is added to T. To reflect this
change, the interface history is updated to {<{fo.ts), {b, 83} >, <[ts,now),{by,b3,b3}>}.
This shows that between o and t5 only behaviors b, and b; are defined and between t5
and now behaviors b,,5; and by exist. Next, at time t)o, bebavior b; is dropped from type
T. The final history of the interface of T is shown in Figure 5.4. The difference from the
previous history is that the second entry is timestamped with the open time of tyo and a
third entry < [tjo, now}, {b), 83} > is added to reflect the change of dropping behavior b;.
The native and inherited bebaviors would contain similar histories. Using this information,
the interface of a type at any time of interest can be reconstructed. For example, at time
t5 the interface of type T was {b;,5,}, at time 25 it was {b1,52,b3), and at time now it is

5.7.2 Changing Implementations of Behaviors

Each behavior defined on a type has a particular implementation for that type. The
B_implementation behavior defined on T_behavior accepts a type as an argument and
returns the implementation (function) of the receiver behavior for the given type. In order
to model the aspect of schema evolution that deals with changing the implementations of
behaviors on types, the implementation behavior is redefined to be a temporal behavior
BT _.implementation.

With this behavior being temporal, the implementation of a behavior on a particular
type at any time of interest can be determined. For example, Figure 5.5 shows the history of
the implementations for behaviors b, and b; on type T. A timeline representation and histo-
ries of BT implementation.B_history(b;) and BT .implementation.B_history(b;) are shown,
The interface history of T is also shown for clarity. The notation ¢; denotes a computed
function, &; a stored fanction, and bj:c; or b;:s; denotes the association of a computed or
stored function with behavior b,. Moreover, for stored functions, the subscript i refers to a
location (e.g., a slot number) in an object representation that the stored function accesses.
An object representation (i.e., the state of an object) comsists of a number of slots for
holding information carried by the object. The representations of objects at different times
according to the stored functions associated with behaviors at those times are depicted by
the boxes labeled with behaviors. For example, at time t4, the object representation consists
of two slots - the first slot is for the stored implementation of behavior b; and the second
is for by. At time t;, the object representation coasists of only ome slot which is for §;.

Figure 5.5 is used to describe how the implementation changes in Table 5.2 are main-
the computed function ¢) to the computed function c3. At time &4, the implementation
of b, changed from the computed fanction ¢3 to the stored function s;. At time g, the
implementation of by changed from the stored function s; to the stored function ;. At the
same time, b; changed from s; 0 5;. At time tg, the implementation of b; changed from

Note that at time t;2 the behavior §; was changed from the stored behavior #; to the

134

to t; 1, tg ts to t
l l I D | | -

I I b I I

b| M 4 b| 3 b] =] b] H. bg:i‘; b;i!g byics

o [B o iw
b b; 2

Implementation history of behavior by for type T:
{<lto.t2). 1>, <[t2.t4), €3>, <[ts.te), 82>, <[ts.t12) 81>, <[ti2. now], s>}

Implementation history of behavior b; for type T:
{<[to.t6). 1>, <[te.ts). 22>, <[ta,tio).€2>. <[tra.ti2) 52>, <[thz. now), s;>)

Interface history of type T:
{<lto, now}, {5:,55)>}

Figure 5.5: Implementation histories of behaviors §; and b, for type T and object represen:
tations

computed behavior cs. Since all object representations at time t); require only one slot, the
change to b, implies a change to b; so that at time t,; behavior b; accesses slot one instead
of slot two. Furthermore, note that the implicit implementation change of b; was from a
stored function to a stored function which is a system managed change and therefore is
transparent to the user. The implicit implementation change of b; is reflected in its history
by the two entries <[l|ogtn).—,§;} and i[iij,m]‘ 8;>. In general, the slots of an object
representation are reorganized (meaning an implicit change occurs) whenever a stored to
computed implementation change removes a slot other than the last slot of an object’s
representation. The system can also rearrange slots as part of an implementation change.

By tightly integrating temporal aspects of the TIGUKAT object model with schema
changes, the behaviors, their implementations, and the object representations for any type
can be reconstructed at any given time t. For example, the interface of type T at time
t7 is given by the bebavior application T.[t7]B.interface, which results in the collection
{51,8;). The syntax o.[t}b denotes the application of behavior b to object o at time ¢.
The implementation of by at time ¢y is given by by.[t7]B.implementation(T), which is s;.
Similarly, the implementation of §; at time t7 is given by b;.[t7]B.implementation(T'), which
is 5. Since there are two stored functions, this implies a two slot representation for objects
at time ty. That is, §; accesses slot one using stored function sy and b; accesses slot two
using stored function s;.

5.8 Change Propagation

Propagation of chaages in TIGUKAT uses a fitering approach with explicit coercion of
behaviors. That is, when a change is made to the schema, the chaage is not automatically

135

propagated to the instances. Instead, the old version of the schema is maintained and the
change is recorded in the proper behavior histories. The objects continue to maintain the
characteristics of the older schema. New objects correspond to the semantics of the newer
schema. Objects from the older schema can be coerced to the newer schema one behavior at
a time. Thus, portions of an object (i.e., some behaviors) may correspond to older schema,
while other portions correspond to newer schema. This is a novel characteristic of the
approach. Note that an object can be coerced to a newer version in its entirety by coercing
all the behaviors of that object.

When coercing an object to a newer version, if the object has temporal characteristics
(i.e., there are temporal behaviors defined on it), the old version of these temporal aspects
are maintained. In this case historical queries can be run on the object.

Recall that an object is created as an instance of a particular type. The creation time
of every object is recorded by the behavior B_created defined on T.object. Applying the
behavior returns the time that the object was created. The signature of B.created is as

follows:
B_created : T_instant

Note that B_created is not a temporal behavior. Also note that the behavior is intro-
duced for convenience and is equivalent to the lower bound of the lifespan of an object in
its class. That is, for a given object o, the following equivalence holds, where B.lb is a
behavior defined on intervals that returns the lower bound of an interval:

0.B_created = (o0.B_lifespan(o.B_mapsto.B_classof)).B_Ib

The behaviors applicable to an object are those that exist in the interface of its type
at the creation time of the object. The implementations of these behaviors are those that
exist in the implementation histories for the type at the creation time of the object. The
stored functions at the creation time of the object determine the representation of the the
initial state of the object.

As time progresses and types evolve, the interface of a type and the implementations of
its behaviors may change. Any behavior applicable to an object can be explicitly coerced to
a newer implementation of the behavior. The change is recorded in the B_changes behavior
defined on T.object. The signature for B_changes is as follows:

B.changes : T1ist(T.timemodel, T behavior)

The result of B.changes is a list of (time, behavior) pairs. When a bebavior for a
particular object is coerced into a newer implementation, the time of the coercion and the
behavior coerced is recorded in the B_chaages list of the object.

The B.changes list is used in the bebavior dispatch routine (defined in Section 5.9) to
determine the most recent coercion time of a behavior being applied to an object. This time
is used as a reference point for determining the appropriate implementation of the behavior
at that time.

An object can be coerced to a behavior with a newer implementation that chaages from
computed to stored, stored to computed, computed to computed, and stored to stored.
The first three are user-level changes, while the last is a system-level chaage that is strictly
internal and a0t accessible to the user. The change from computed to stored and vice versa
require a change to the state of an object by either adding or dropping a slot represent-
ing the stored information. A system managed change that requires state chaages is the

136

of temporal objects, the notion of an object as an (identity, statc) pair is extended to one
where an object is an (identity, statc-history) pair. Since states are not objects, the state-
history of an object is managed internally by the system. It is similar to other histories
in that time-intervals are used to record changes in the state. Whenever a change to the
representation of an object occurs due to the coercion of one of its temporal behaviors, the
change is recorded in the state-history of the object. Thus, a temporal object is generic
in the sense that it consists of all its representations over time. This is called the generie
inatance of the object. The default representation of a generic instance is the most current
representation in the state-history. The individual representations of an object denote how
the object existed at certain times in the past. Each of these representations is called a
version instance of the object. Thus, the generic instance is the most current version in-
stance of an object. Each version instance is an object in its own right in that it contains
the state-history of the object up until the given version representation.

The primitive behavior B_self defined on T_object is refined to accept a time argument
and returns the version instance of an object at the given time. That is, for an object o
and a time {, the behavior application o.B.self(t) returns the the version instance o’ of o
such that the most current representation (i.e., default) representation is the one at time
t, which includes the entire history prior to t. Using this construct, historical states of an
object’s “self” can be retrieved.

5.9 Temporal Behavior Dispatch

The previous sections established the mechanism for versioning behaviors of a type, the
implementations of behaviors for a type, and the states of objects. In this section, the
behavior dispatch process for applying a behavior b to an object o at given time t is described.
The syntax o.[t}b is used to denote this application. The time component is optional and if
left out, the current time now is assumed.

5.9.1 Overview

Figure 5.6 provides an overview of the dispatch process. A behavior application is first
checked for validity. It is considered valid if the object o exists at time ¢ and bebavior b
is defined in the interface of o's type at time {. An invalid behavior application produces
an error. For a valid application, an appropriate time reference point r is found. The time
reference point is either the time component of the most recent coerced entry for b in the
B_changes list of o going back in the history starting from time ¢ or it is the B.created
time of o if there is no appropriate entry in B.changes. The time reference point r is
used as an index into the B_implementation history of b for the type of o to retrieve the
appropriate implementation /. If there is no implementation defined at time r, then o
is coerced to the first defined implementation of b. The implicit coercion is an internal
operation that may or may not be transparent to the user. In aa interactive environment,
the system could ask the user to choose an appropriate implementation for the behavior, If
the implementation is a computed function, then the function is simply applied to object
o. However, if the implementation is a stored function, then the time reference point r is
used to retrieve the object o that has the appropriate state representation at time r. We
denote this representation of the object by o/. The object o is the same object as o, but
the state of ¢ is the state at time . The stored function [is applied to o and accesars

137

Ensurs object o exists af time t [———— Emor
Eﬁ“lyﬁﬂfﬂﬂmbi!ﬁ!l
Valid o
o,b,t
legm-gsim

Apply (o) Apply f(o’)
Figure 5.6: Dispatch process for applying a behavior b to an object o at time t.

the appropriate state of o. The implicit coercion and representation retrieval operations are
grayed in Figure 5.6 to highlight that they are internal system operations.

5.9.2 Dispatch Semantics

In order for a behavior application to be valid, object o must exist at time ¢ and the behavior
b must be defined in the interface of the type of o at time t. The validity check algorithm,
Algorithm 5.1 (Validity) performs this test in the form of a logical expression.

The first part of the expression (5.1) checks that o exists at time ¢ by testing whether
time ¢ lies within the lifespan of o in the class of its associated type. In the second part
of the expression (5.2), B.interface. B_history(o.B_mapsto) returns the interface history for
the type of object 0. This history is searched for an entry z that satisfies the third part
(5.3) of the expression, which checks that time ¢ lies within the time interval of entry z, and
the fourth part (5.4), which checks that behavior b is part of the interface of the type at this

138

Algorithm 8.1 Validity:

Input: An object o, a behavior b and a time ¢
Output: True if the application is valid, false otherwise
Procedure:

return (1.B_within(o.B_lifespan(o.B_mapsto.B_classof)) (5.1
A 3z(z € BT .interface.B_history(o.B_mapsto) (5.2)

A t.B_within(z.pm) (5.9)

A b€ 7.0;)) (5.4)

Otherwise, the behavior application is invalid and false is returned.

If the validity test is satisfied, the next step is to determine the proper time reference
point so that the appropriate implementation can be retrieved. Algorithmn 5.2 (Refirenee-
Point) performs this operation and returns the proper time reference point.

Algorithm 5.2 indexes into the B_changes list of the argument object o for the most
recent entry containing behavior b with a time point less than or equal to the time 1. If an
entry is found, the time component of the entry is returned as the time reference point. If
an entry is not found, the created time of o is returned.

Using the time reference point r, the proper implementation of the behavior is found.
Algorithm 5.3 (Implementation) finds and returns this implementation. Note that an im-
plementation may not be defined at the given reference point r. This can occur if a behavior
has been added to the interface of the type at a time later than r and older objects have not
been mer:ed to the new inteffue In thil fI!E‘ the gb_pﬂ is imp[iritiy rm-rﬂ-d to lln- ﬁrhl
coerce the beh;vmr toa newer mplemenhtmn :f desired. lli an mtrraruve q-nwmnmenL
the system could give the user the option of choosing which implementation to coeree the
behavior to or may allow the user to leave the behavior’s implementation undefined. This
gives the user the flexibility to coerce the behavior to any implementation desired.

If the function returned by Algorithm 5.3 is a stored function, the representation of
object o at reference point r must also be found since the stored function was defined for
the representation at this time. Algorithm 5.4 (Representation) performs the simple task
of returning the version instance of object o at time reference point r. This is dome using
the B_self bebavior and passing the time point r as an argument.

If the function returned by Algorithm 5.3 is a computed function, then there is no need
to determine a specific representation since computed functions apply behaviors to other
objects and do not depend on any particular representation. The behavior applications
inside computed functions go through the same behavior dispatch process and therefore
appropriate version instances will be determined as required.

As the final step, if the function returned from Algorithm 5.3 is stored, then it is
applied to the version instance returned from Algorithm 5.4. Otherwise, the function must
be computed and is simply applied to generic instance 0. The relationships between the
algorithms are shown in Algorithm 5.5 (Dispatch).

Algorithm 5.2 ReferneePoint:
Input: An object o, a behavior b and a time ¢
Output: A time reference point

Procedure:
Index into the B_changes list of o for an entry E that satisfies the following conditions:

e the behavior element of E matches b,

e the time element of E is <1,

o there does not exist another entry E’ satisfying the above two conditions whose
time element is greater than the time element of E.

if an entry E found then

else
return o.B_created

Algorithm 5.3 lmplementation:
Input: An object o, a behavior b and a time reference point r
Output: The function that implements behavior b for object o at time r
Procedure:
if biBimpkzgzém;ﬁan(ﬂ.B.,m;pg;a) has an entry at time r then
return the implementation element associated with this entry

else
return the first implementation of b as a default

Algorithm 8.4 Representation:
Imput: An object o and a time reference pcint r
Output: An object with its representation at time reference point r

return o.B_self(r)

140

Algorithm 5.8 Dispatch:

Input: An object o, a behavior b and a time ¢
Output: An object resulting from the application o.[t]b
Procedure:

if Validity(o.b.t) then
r «— Reference Point(o.b. t)
f — Implementation(o, b, r)
if f is a stored function then
o — Representation(o.r)
return f(o')
else
return f(o)
else

or behavior b not defined in the interface of o's type at time ¢

5.9.3 Examples

For the following examples, consider Figure 5.7, which extends the timeline of type 7" in
Figure 5.5 by adding a behavior by with the computed implementation cs at time)4 and
dropping the behavior b; at time t;g. Note that the object representation will not change
by adding behavior by and the representations will be empty after behavior b; is dropped.

Furthermore, consider Figure 5.8, which contains two example objects created as in-
stances of type T. The figure shows the created time, the changes list and the internal
state-history of the objects. For the state-histories the notation rep@t; is used to denote
the version instance of an object at time t;. Object 0, was created at time £y. The default
behaviors and implementations for this object are those that exist at time to. Namely, b) : ¢
and b, : s, (see Figure 5.5). The behavior b, for this object was coerced to a version at time
te, behavior b; was coerced to a version at time ¢;; and behavior b was coerced to time
t1¢. The internal state-history of 0, has three different version instances that correspond to
the entries in the changes list. Object 0; was created at time tg. Its default behaviors and
implementations are b, : s, and b; : 8;. It bas no entries in its changes list and, therefore,
has only one version instance in its state history.

Several example behavior applications using time are presented to show how the dispatch
process is followed in order to determine the proper implementation and version instance
that are appropriate at the given time of interest.

Example 8.1 Behavior application 0,.[t7}b;

Validity: Object 0, was created at time to and exists at time now. Therefore, the lifespan
of 0 is the time interval [to, now]. Since ty in within this interval (i.e., lifespan), the
object part of the behavior application is valid.

141

to iz L 7] tg !g tlm illg !I“ 1";5
S _ 1 .
| | I I | I

bi H o b] iy b]i!g b!:‘ii bgif’g b;:.‘g b] H oY +b:;§¢‘5 ibg

[b, I Vb;gr by [b; J 0 ' 752775
L — 3, ,

Implementation history of behavior 4, for type T:

{<lto.t6), 3>, <[te:!s), 82>, <[ts,t10).c2>. <[t10.t12). 82> <[t12,t16}s 31>}
Implementation history of behavior b; for type T:

{<[ti4 now), e6>}

Interface history of type T:
({[!ﬂ, i“), {b],bg}}.—, ‘:[!“. hﬁ)i {ﬁh b’;- h}}! {[tIE? ﬁ@w]i {bl‘bj}}}

Figure 5.7: Example showing effects on implementation histories of first adding and then
dropping a behavior.

Object o

B.created = 1
B.changes = {<tg,by>,<ty,by>,<tiq, bs>}
state-history = ’({[tﬂg tg). repQto>, <[tg, tyy), repGty>,
<[t1y, now), rep@ty,>}
Object o
B.created = {5
B.changes = {}
state-history = {<[ts. now), rep@te>})

Figure 5.8: Two example objects of type T.

The type of oy is T. The interface of T at time t7 is {b1,b;}. Since by is part of this
interface, the behavior part of the application is valid and thus the validity test is
satisfied.

Reference Point: The next step is to find an appropriate time reference point with respect
tots. Searching through the B_changes list of 0y, we find there is no entry that satisfies
the criteria in Algorithm 5.2. Thus, the B_created time to is returned as the reference
point.

Implementation: Using the time reference point to, we pick out the appropriate imple-
mentation of b, for type T at time to, which is the computed function ¢;.

Representation: Since the function returned in the previous step is a computed function,
this step is skipped.

Dispateh: To complete the dispatch of the bebavior, the computed fanction ¢, is executed

142

using object o as an argument.

Example 5.2 Behavior application oy.[t)o]by

the criteria of Algorithm 5.2. Thus, we use ty as the time reference point for finding the
appropriate implementation of b, for type T. The implementation chosen is the stored
function #,. Since this is a stored function, we also get the object o} with the appropriate
representation at time fg which is rep@tg. We can now apply s to o}. The function and
representation are correct for o since behavior by was coerced to the new version at time
tg for this object.

Example 5.3 Behavior application 0y.[t)ob;

The validity test is satisfied. There is no entry in the changes list for b; with a lesser time
than ;0. Therefore, we use the created time to as the time reference point. This gives the
implementation s; and the object o} with representation repaty. We can now apply s to o},
Note that this example and the previous one both apply s, for different behaviors (namely.
b, and b;). The reason they are valid is that they are applied to different representations
of object 0, as well.

The validity test is satisfied. Since there is an appropriate entry <t;4,by> in the changes
list of 0;. we use t;, as the time reference point which gives the implementation cs. Since
this is a computed function, we simply apply ¢g to 0,. This is correct for oy since behavior
b3 was coerced to the new version at time t)4 for this object.

Example 5.8 Behavior application 0y.[now]b;

This fails the validity test because behavior b; is not part of the interface of T' at time now.
Example 5.8 Behavior application o,.[t7]b;

The validity test is satisfied. There are no entries in the changes list for 0, s0 we use the
created time tg as the time reference point. This gives the implementation s; and the object
0} with representation rep@tq.

Example 5.7 Behavior application 0;.[t13]b;

The validity test is satisfied. Again, because there are no entries in the changes list for o,
we use the created time tg as the time reference point. This gives the implementation »;
and the object o} with the representation repOty.

Example 5.8 Behavior application 03.5

Since no time point is specified, the default time now is assumed. The validity test is
satisfied. There are no entries in the changes list for 0; 50 we use the created time Lg as the
time reference point. This gives the implementation sy and the object 0} with representation
repOts.

Example 5.9 Behavior application 0;.53

The validity test is satisfied. There are no entries in the changes list for o; 50 we use
the created time tg as the time reference point. There is no implementation defined for
b; on type T at time tg. Therefore, we implicitly coeree 0; to the first implementation of
by which is at time t;4. This adds the entry <t;4,b3> to the changes list of o;. Now, the
implementation chosen is cs. Since this is a computed function, no particular representation
is required and we simply apply it to 0.

143

Chapter 6
Conclusions

6.1 Summary and Contributions

The first result of the thesis is the definition of a uniform behavioral object model with
sufficient power and expressibility for supporting the data and information management
requirements of advanced applications such as geographic information systems, engineering
databases, office information systems, knowledge base systems, and multi-media databases.
These applications require the management of complex objects with complex relationships.
User access to such systems is characterized by long-running, interactive transactions that
involve large and semantically diverse units of data. Thus, the functionality required of
objectbase management systems (OBMSs) subsumes the functionality of their predecessors.

A high-level abstract bebavioral object model is integrated with a formal structural
counterpart to form a complete model definition. The reconciling of these two compo-
nents helps in understanding the semantics of the model and is a favorable basis for an

implementation.
The fundamental contributions of the object model are the following:

1. A precise specification and integration of both the behavioral and structural aspects
of an object model with sufficient power for handling advanced database functionality.

2. A clean separation and precise definition of many object model features which are
usually bundled and only intuitively defined in other studies.

3. A uniform approach to objects which models all information as first-class objects
with well-defined bebavior. The result is an extensible model capable of defining
other components of an OBMS within itself. It is shown in this thesis how uniformity
is used to define an object query model, provide reflection and define schema evolution
strategies, all within the model itself. Other work has extended this approach to an
extensible query optimizer [Mui94] and this could be extended to the view manager
as well.

In keeping with the uniformity aspects of the object model, the query model is defined in

a consistent way as type and behavior extensions to the base object model. Thus, queries are
objects with well-defined bebavior. This is a uniform object-oriented approach to developing
an extensible query model that is seamlessly integrated with the object model. This kind
of natural extension is possible due to the uniformity built into the object model which
treats everything as a first-class object and allows the comsistent abstraction of an object’s

14

“attributes” into the uniform semantics of behaviors. This specification has been used as a
foundation for implementing the query model and its user language.

The formal object calculus is a powerful declarative object creating language that in-
corporates the behavioral paradigm of the object model. Safety is based on the evaluable
class of queries [GT91] which is arguably the largest decidable subclass of the domain in-
dependent class [MakR1]. The class of evaluable queries defined is wide-sense ¢valuable
with respect to equality and membership atoms, meaning a broader class of safe queries is
recognized by the approach. The object algebra includes a powerful, complete set of the
behavioral/functional operators that fully support the object-creating nature of the calcu
lus. A novel operator is beharioral projection, which is a form of type generalization and
has applications in view support. Other notable operators include a generalized map for
applying behaviors to elements of cullections, a sclect and the derived join and generate
join operators. The calculus and algebra are proven to be equivalent in expressive power.
Furthermore, a feasible translation algorithm from calculus to algebra is presented that
does not depend on the formation of (potentially) large DOM domains. Object creating
languages require the ability to perform type inferencing because newly created objects may
not correspond to any type in the lattice. As part of the algebra, the relationship of the
operators to the schema in terms of the creation and integration of new types is defined.

The contributions and novelty of the query model are the following:

1. It incorporates a formal and powerful object calculus and object algebra with a proven
equivalence in expressive power and a complete feasible algorithmic translation from
calculus to algebra.

2. Its safety criterion is based on the cvaluable class of queries [(GT91] which is arguably
the largest decidable subclass of domain independent queries [MakX1]. An additional
form of safety with respect to the closure of a query is also defined. The class of safe
queries defined in this thesis is the largest class of any object model to date.

3. It exploits object-oriented features to extend the evaluable class by introducing notions
of object generation on equality and membership atoms which relaxes range sperifi-
cation requirements. The result is that a broader class of safe queries are recognized
by the approach.

4. It uniformly models queries as first class objects by directly defining them as type
and behavior extensions to the TIGUKAT object model. This makes for an exten-
sible query model that has a consistent uniform underlying semantics commensurate
with the object model. It is the most complete model that has defined the database
functionality of a query model and temporal schema evolution as a uniform extension
to the base object model. The uniformity extends to other components such as the
query optimizer, view manager and object manager.

5. The extensible algebra specification forms a uniform basis for processing queries and
is exploited by an extensible algebraic query optimizer and execution plan generator
which are reported elsewhere [Muii94, Ira93}.

6. It is the most advanced extensible, uniform, behavioral object query model to formally
bring together the components of an object calculus, an object algebra, proofs of
completeness between the languages, and an effective algorithmic translation from
the calculus to the algebra.

145

information about itself and the access primitive of applying behaviors to objects is uniform
over all forms of information, including the meta-information. Another result of this thesis
is how the model's uniformity provides a basis for reflective capabilities. Types in the model
support both structural and computational reflection which are seen as the two major forms
of reflection.

The tenet of uniformity is defined to describe the basic property that applies to all
objects in a uniform model: behaviors defined on a type are applicable to the objects in
the estent of the class associated with the type. Since all objects are in the extent of
some class, and every class is associated with a type, and every type defines behaviors
applicable to objects in its associated class, the paradigm of applying behaviors to objects
carries uniformly to all objects in the system, including types, classes, collections, behaviors.
functions, and so on.

Using an SQL-like query language, several “regular” queries on real-world objects are
compared with queries on meta-information and it is shown that in a uniform model. there is
no distinction between “normal” objects and meta-objects because everything has the status
of a first-class object. Queries can access information about types, classes and collections
(parts of the schema) by applying behaviors to objects in a uniform way. Queries can even
mix regular and meta-objects in a single query.

The meta-system design has similarities to ObjVlisp [C0i87] and is a uniform extension
to the Smalltalk-80 [GRR9] meta-class architecture. It is more general in the sense that it can
mimic the parallel meta-class structure of Smalltalk-80, but does not force this semantics.
Other differences are that any class in TIGUKAT can have many instances and any type
can be subtyped. Thus, the metaneas of an object is a consequence of inheritance and gives
rise to a uniform model. One advantage is reduced overhead since not all classes require
a meta-class. However, some subtype reorganization is required if later it is decided that
a particular class needs to specialize some other meta-class. These changes can be seen as
application design corrections and the schema evolution policies make these changes natural
since some form of them must be supported in a full-fledged OBMS anyway. Since behaviors
are objects in TIGUKAT, some form of the meta-communication model of computational
reflection could be integrated with the system. This is part of the future research of the
TIGUKAT project.

The novelty and contributions of the meta-model design in TIGUKAT are as follows:

1. The meta-model is a uniform component that is integrated with the design of the base
model. This means that the meta-objects such as types, classes, collections, behaviors,
and functions are uniformly objects in TIGUKAT.

2. The uniformity of the meta-model provides a basis for reflective capabilities, which
emerge naturally out of its uniform design. It was shown that the existing primitive
features of TQL and the formal query model were sufficient for performing reflective
queries, and that both “regular” and meta objects could be retrieved by these queries,

3. Types in TIGUKAT provide support for both structural and computational reflection,
which are regarded as the two major forms of reflection. This thesis focused mainly
on structural reflection.

4. The meta-model provides support for other features such as multiple new behaviors
for creating various defanlt forms of mew objects and class behaviors for defining

146

behaviors that are applicable to an entire class of objects and perform an operation
on certain properties of all objects in the class (e.g.. average volume. total age, etc.) .

Schema evolution in the TIGUKAT model consists of a number of invariants that must
be maintained over schema changes. A classification of all schema changes was made and the
semantics of each change was defined. Since the model is uniform, schema evolution is the
result of updating certain behaviors and its development was just a matter of identifying the
semantics of these updates. By adding temporality to these behaviors, a history of schema
changes is easily maintained and the entire schema can he reconstructed at any time of
interest. This lays the foundation for developing versions of types, versions of schema, and
versions of instances within the single framework of temporality.

A unique feature of the version model is that a temporal domain is introduced to implic-
itly manage histories for behaviors. Bebavior histories are used to manage the properties of
objects over time. Since everything in TIGUKAT is uniform, the schema are objects with
for versioning types is developed. This model is extended to hehavior objects and object
representations (state) as well. Since versioning occurs implicitly through the management
of behavior histories, objects are instances of a type and not instances of a version of a type,
This means that objects support the full semantics of a type instead of just a portion (ver.
sion) of the type. This approach has the major benefit of maintaining semantic consistency
between old and new versions of types and the programs that operate on their instances.

By using time to implicitly model versions of types and objects, the schema and its
instances can be reconstructed at any time of interest. That is, the type lattice, type
interfaces, behavior implementations and object representations can be recreated as they
existed at a particular time of interest. One benefit of this approach is that historical queries
can be run on the objectbase.

Another unique feature of the version model is that object coercion occurs on a “behavior
at a time” basis instead of on the entire object. This means that objects can update certain
behaviors to use those defined by a newer version of a type while allowing other behaviors to
helps in maintaining semantic consistency between old and new versions of types and the
programs that use them. Complete object coercion is possible by coercing all the behaviors
of an object.

The novelty and contributions of the design of schema evolution and version control in
TIGUKAT are as follows:

1. The integration of schema evolution and version control using a temporal domain is
a new approach in object management,

2. Temporality based on behaviors, together with the uniformity of the model, unifies
the various approaches of versioning proposed in the past. That is, by versioning
behaviors (i.e., defining temporal behaviors on types in general) one gets versions
of objects, by versioning behaviors on T_type one gets versions of types, and by
versioning behaviors on type relationships such as B_subtypes, B_supertypes, etc.,
one gets versions of schema.

3. The temporal framework supports a filtering approach where objects are not updated
to mewer versions of the schema, but rather the semantic differences between the

147

Objects can be explicitly coerced to newer versions of the schema one behavior at a
time. This means that an object may have some characteristics of older schema.
some characteristics of newer schema, and may “skip” certain generations of schema
changes. This is in contrast to other approaches where an object must be converted
in its entirety to a newer version of the schema in a stepwise fashion from generation

to generation.

6.2 Future Research

The work presented in this thesis suggests a number of interesting directions for future
research. The uniformity of the model makes it an excellent candidate for developing an
extensible view manager that is seamlessly integrated with the base model. As with the
query model, views are ohjects whose semantics are defined by type and behavior extensions
to the base model. This brings views into the model, meaning they can be operated on
by behaviors, they can be queried, and they can be uniformly used to derive other views.
The definition of a view restricts the objects that an application or user can see. Each
view must consistently maintain all the properties of the model. Therefore, a view is like
a sub-objectbase of the overall system that defines a conaet of objects. A view definition
may contain other views so that applications can easily switch from one view to another.
Defining the semantics of a consistent view manager and developing a design methodology
for creating views are major areas of research that can extend the functionality of the
TIGUKAT objectbase management system.

One interesting direction to explore in the context of views relates to extending the
temporal model to include a branching model of time and investigate how this can be used
to support views. For example, each branch of time could be seen as a separate view of
the objectbase with different objects, types, behaviors, collections, etc., visible along the
various lines. The semantics of how these lines split, interact, and possibly merge are very
interesting topics of future research.

The object-oriented approach is a suitable candidate for facilitating an integration of the
data abstraction and computation model of object-oriented programming languages with
the performance and consistency of an object query model. Traditionally, these two areas
have developed orthogonally to one other. An integration would alleviate many problems
(eg., impedance mismatch) associated with embedded languages in use today. An interest-
ing direction for future research lies in investigating how a uniform behavioral model like
TIGUKAT could lead to a merger of these two disciplines. The definition of a uniform
programming language is one possibility for bridging this gap in a seamless fashion.

Developing an object manager is another importaat area of research. An object manager
design must address many related issues including object representation, physical partition-
ing of logical entities such as classes and their extents, clustering of complex objects, object
caching, indexing, and how and when functions are bound to objects. The design is also
affected by the underlying hardware architecture (e.g., uni-processor vs. multi-processor),
and the available operating system services.

The issues related to object storage management are quite complex and require a sig-
nificant amount of research. The advent of distributed object management complicates
matters. Current approaches rely on simple client/server type architectures where there is
(usually) only ome server and many clients. With interoperability of autosomous hetero-
geneous systems becoming a big issue is database systems research, the deve

ent of an

148

OBMS with an architecture that is “open” to other systems is an active area of research
and is a direction that this research could take. The uniformity of TIGUKAT could be of
great help in this area since it may be possible to define other models as type and hehavior
extensions to the base model. This would give a seamless integration with these systems.
The research opportunities along these lines are very promising.

In this thesis, signatures were defined and used as a partial semantics for behaviors. The
development of a specification technique for defining the complete semantics of hehaviors
is left for future research. This is currently an open research topic with several candidate
approaches being identified, including the use of denotational semantics and predicative
specification techniques. Much research is required in this area. The extensible design of
the TIGUKAT object model makes it primed and ready to incorporate any advancement
in this area. Once defined. a full specification technique can easily be incorporated as part
of the B_semantics behavior of type T_behavior.

The development of the TIGUKAT object model is more precise and formal than ather
object model definitions in order to clarify its properties and the semantics of its operations.
However, an interesting and challenging exercise would be to define the features of the model
using a formal mathematical theory of functions such as category theory or typed lambda
calculus. This is sure to provide insight into the semantics of modeling objects and the
effects on other database functionality such as view management, transaction management,
distribution, and so on. It may also provide a theoretical foundation for object models in

area would clearly strengthen the object modeling approach and assert the limitations of
its modeling capability.

149

Bibliography

[ABS4)

(AB93)

[ABD*x9)

[ACH6)

[AHR4]

[AllRg)

[ALP91]

[Arosio]

[Bac78]

[Bar8l)

[BBB*88)

S. Abiteboul and N. Bidoit. Non First Normal Form Relations to Represent
Hierarchically Organized Data. In Proc. of the 3rd ACM SIGACT-SIGMOD
Symposium on the Principles of Database Systems, pages 191-200, April 1984.

S. Abiteboul and (. Beeri. On the Power of Languages for the Manipulation
of Complex Objects. Technical report, INRIA, France, 1993.

M. Atkinson, F. Bancilhon, D. DeWitt, K.Dittrich, D. Maier, and S. Zdonik.
The Object-Oriented Database System Manifesto. In Proc. of the Ist Int'l.
Conf. on Deductive and Object-Oriented Databases, pages 40-57, 1989.

G. Ariav and J. Clifford. Database Research and Systems: Key lssues in
Perspective. In G. Ariav and J. Clifford, editors, New Directions for Database
Systems, pages 1-9. Ablex Pub. Corp., 1986.

S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. In Proc.
of the 3rd ACM SIGACT-SIGMOD Symposium on the Principles of Databasc
Systemna, pages 119-132, April 1984,

L. Allison. A Prectical Introduction to Denotational Semantics. Cambridge
University Press, 1986,

J. Andany, M. Léonard, and C. Palisser. Management of Schema Evolution
in Databases. In Proc. of the 17th Int'l Conf. on Very Large Databases, pages
161-170, September 1991.

S. Aronofl. Geographic Information Systems: A Management Perspective.
WDL Publications, 1989.

J. Backus. Can Programming be Liberated from the von Neumann Style? A
Functional Style and it's Algebra of Programs. Communications of the ACM,
21(R):613-641, 1978.

Holland, 1981.

F. Bancilhon, G. Barbedette, V. en, C. Delobel, S. Gan

C. Lecluse, P. Pleffer, P. Richard, and F. Veh: The[)ﬂiglndlmpbmen
tnmafﬂz An Dbgct&rmtd Dlhh;ﬂeSyllgm lan: 0]&: “uiln!'l

Sep!mb!r l:ﬂ

[BBKVR7)

[BBMRS9]

[BCDS89)

[BCG*87]

[BCMSR9)

[BDK92]

[Beed0]

[BHI*87)

[BK90)

[BKKKS7)

[Bla91)

[BMO*89)

[Bun?7)

[Bun79)

F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD. a Powerful
and Simple Database Language. In Proc. of the 13th Intl Conf. on Very Large
Databascs, pages 97-105, September 1987,

A. Borgida, R.J. Brachman, D.L. McGuinness, and L.A. Resnick. CLASSIC:
A Structural Data Model for Objects. In Proc. of the ACM SIGMOD Int’l.
Conf. on Management of Data, June 1989.

F. Bancilhon, S. Cluet, and C. Delobel. A Query Language for the O; Object-
Oriented Database System. In Proc. of the 2nd Int'l Workshop on Database
Programming Languages, pages 122-138, June 1989.

J. Banerjee, H.T. Chou, J.F. Garza, W. Kim, D. Woelk, N. Ballou, and H.J.
Kim. Data Model Issues for Object-Oriented Applications. AC'M Transactions
on Office Information Systems, 5(1):3-26, January 1987,

R. Backhouse, P. Chisholm, G. Malcolm, and Erik Saaman. Do-it- Yourself
Type Theory. Formal Aspects of Computing, 1:19-84, 1989,

F.A. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building and (bjeci-
Oricnted Database System: The Story of O;. Morgan Kaufinann Publishers,
1992.

C. Beeri. A Formal Approach to Object-Oriented Databases. Data & Knowl-
edge Enginecring, 5:353-382, 1990.

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. Distribution and
Abstract Types in Emerald. /EEE Transactions on Software Engincering, SE-
13(1):65-76, January 1987,

J. Banerjee, W. Kim, H-J. Kim, and H.F. Korth. Semantics and Implementa-
tion of Schema Evolution in Object-Oriented Databases. In Pror. of the AC'M
SIGMOD Int’l. Conf. on Management of Data, pages 311-322, May 1987,

J.A. Blakeley. DARPA Open Object-Oriented Database Preliminary Module
Specification: Object Query Module. Technical report, Texas Instruments,
December 1991.

R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E.H. Williams,
F.H. Lochovsky, editors, Object-Oriented Concepts, Databascs, and Applica-

M. Bunge. Tveatise on Basic Philosophy: Vol 3: Ontology I: The Furniture of
the World. Reidel, Boston, 1977.

M. Bunge. Tvestise on Basic Philosophy: Vol §: Ontola

Il: A World of

151

[CarR4)

[Cars6)

L. Cardelli. A Semantics of Multiple Inheritance. In Intl Symposium on
Semantics of Data Types, pages 51-67, June 1984,

L. Cardelli. A Polymorphic A-calculus with Type:Type. Research Report 10,
DEC Systems Research Center, May 1986.

[CCCR*90) F. Cacace, S. Ceri, S. Crespi- Reghizzi, L. Tanca, and R. Zicari. Integrating

[CDF+88)

[DLR90]

[CDVRS]

[Cha92]

[Che76]

[(CM84]

[Cod70)
[Cod79)

[Coi8?)

[CPs89)

[cwas)

Object-Oriented Data Modeling with a Rule-Based Programming Paradigm.
In Proc. of the ACM SIGMOD Int’l. Conf. on Management of Data, pages
225-236, June 1990.

M. Carey, D.J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J.E. Richard-
son, and E.J. Shekita. The Architecture of the EXODUS Extensible DBMS. In
M. Stonebraker, editor, Readings in Database Systems, pages 488-501. Morgan
Kaufmann Publishers, 1988,

S. Cluet, C. Delobel, C. Lécluse, and P. Richard. RELOOP: An Algebra Based
Query Language for an Object-Oriented Database System. Data & Knowledge
Enginecring, 5:333-352, 1990.

M. Carey, D.J. DeWitt, and S.L. Vandenberg. A Data Model and Query
Lingnge for EXODUS In Fm qf lke ACM SR"MGD Int’l. Conf. on Man-

E.P.F. Chan. Containment and Minimization of Positive Conjunctive Queries
in OODB's. In Proc. of the 11th ACM Symposium on Principles of Database
Systema, pages 202-211, June 1992,

P.P.S. Chen. The Entity-Relationship Model: Towards a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9-36, March 1976.

G. Copeland and D. Maier. Making Smalltalk a Database System. In Proc. of
the ACM SIGMOD Int'l. Conf. on Management of Data, pages 316-325, June
1984.

E.F. Codd. A Relational Model for Large Shared Data Banks. Communications
of the ACM, 13(6):377-387, 1970.

E.F. Codd. Extending the Database Relational Model to Capture More Mean-
ing. ACM Transactions on Database Systems, 4(4):397-434, December 1979,
P. C‘Luilte Hmhnumﬁmcmi tthlekp Hnﬂd In Proc. of
Apﬂg-tm pgs lﬂHﬁ? Qﬂoller 1987.

W. Coock and J. Palsberg. A Denotational Semaatics aﬂlhﬁmaz ud its
Correctuess. In Proc. of the Int'l Conf. on Object-Oriented Programming: Sys-
tems, st,cﬁﬂmlnpm October lm
Polymorphism. ACM Computing Surveys, 17(4):471-522, December 1985.

[Dav90]
[Day®9)]
[Dem81]
[Dem82]
[Deu90]
[Deusl]
[DiP69]

[DKA*86]

[DW92)

[EMHJ93a)

[EMHJ93b)

[FAC*89)

K.C. Davis. A Formal Foundation for Object-Oriented Algebraic Query Pro-
cessing. PhD thesis, University of Southwestern Louisiana, 1990.

U. Dayal. Queries and Views in an Object-Oriented Data Model. In Proe. of
the 2nd Int'l Workshop on Databasc Programming Languages, pages 80 102,
June 1989.

R. Demolombe. Assigning Meaning to Ill-Defined Queries Expressed in Rela-
tional Calculus. In Advances in Database Theory. Plenum Press, 1981,

dent Formulas. Technical report, ONERA-CERT, 1952,

0. Deux, et. al. The Story of 0,. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91-108, March 1990.

0. Deux, et. al. The O; System. Communications of the ACM, 34(10):34 4R,
October 1991.

R.A. DiPacla. The Recursive Unsolvability of the Decision Problem for the

P. Dadam, K Kuespert, F. Anderson, H. Blanken, R. Erbe, J. Guenauer,
V. Lum, P. Pistor, and G. Walch. A DBMS Prototype to Support Extended
NF? Relations: An Integrated View on Flat Tables and Hierarchies. In Pror,
of the ACM SIGMOD Int'l. Conf. on Management of Data, pages 356 367,
May 1986.

U. Dayal and G. Wuu. A Uniform Approach to Processing Temporal Queries.
In Proc. of the 8th Int'l. Conf. on Data Engineering, pages 407- 418, August

M. Escobar-Molano, R. Hull, and D. Jacobs. Safety and Translation of C'alculus
Queries with Scaler Functions (Extended Abstract). In Pror. of the 12th AC'M
SIGACT-SIGMOD-SIGART Symposiyum on Principles of Database Systems,
pages 253-264, May 1993.

M. Escobar-Molano, R. Hull, and D. Jacobs. Safety and Translation of Caleulus
Queries with Scaler Functions. Technical report, Computer Science Depart-
ment, University of Southern California, March 1993.

D.H. Fishman, J. Annevelink, E. Chow, T. Connors, J.W. Davis, W. Hasan,
T. Risch, M.C. Shan, and W.K. Wilkinson. Overview of the Iris DBMS. In
W. Kim and F.H. Lochovsky, editors, Object-Oriented Concepls, Databascs,
and Applications. Addison Wesley, 1989,

R. Fagin. Horn Clauses and Database Dependencies. Journal of the ACM,
29(4), 1982,

D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W. Davis,
N. Derrett, C.G. Hoch, W. Kent, P. Lyngback, B. Mahbod, M.A. Neimat,

[Forsn)]

[FJx9)

[FRMTH]

[GOWS)

[Gord)

[GRNS)
[GRR9]

[GTR7)

[T91]
[Haa9%0)

[HHTT5)

[HK&7]

[HM78]

[HMR1]

T.A. Ryan, and M.C. Shan. Iris: An Object-Oriented Database Management
System. A('M Transactions on Office. Information Systems, 5(1):48-69. Jan-
uary 1987,

J. Ferber. Computational Reflection in Class Based Object-Oriented Lan-
guages. In Proc, of the Int’l Conf. on Qbject-Oriented Programming: Systems,
Languages, and Applications, pages 317-326, October 19%9.

B. Foote and R.E. Johnson. Reflective Facilities in Smalltalk-80. In Proc.
of the Int'l Conf. on Object-Oriented Programming: Systems, Languages, and
Applications, pages 327-335, October 1989.

E. Fong. W. Kent, K. Moore, and ('. Thompson. The X3/SPARC DB-
$$G/OODBTG Final Report. Technical report, NIST, September 1991.

I. Goralwalla and M.T. Ozsu. Temporal Extensions to a Uniform Behavioral
Object Model. In Proc. of the 12th Int'l Conf. on Entity- Relationship Ap-
proach, pages 115-127, December 1993.

Iqbal Goralwalla. A Temporal Active OBMS. PhD thesis. Department of
Computing Science, University of Alberta, Edmonton. Alberta, Canada, 1996.
Forthcoming,.

A. Goldberg and D. Robson. Smalltalk-80: The Language and its Implemen-
tation. Addison-Wesley, 1985.

A. Goldberg and D. Robson. Smalitalk-80: The Language. Addison- Wesley.
1989,

A.V. Gelder and R.W. Topor. Safety and Correct Translation of Relational
Calculus Formulas. In Proc. of the 6th ACM SIGACT-SIGMOD-SIGART
Symposium on the Principles of Database Systems, pages 313-327. ACM Press,
March 1987.

A.V. Gelder and R.W. Topor. Safety and Translation of Relational Calculus
Queries. AC'M Transactions on Database Systema, 16(2):235-278, June 1991.
tions on Knowledge and Data Eugintcr;fné; 2(1):143*160, March 1990.

P. Hall, P. Hitchcock, and S. Todd. An Algebra of Relations for Machine
(‘omputation. In Proc, of the ACM Symposium on Principles of Programming
Languages, pages 225-232, 1975.

Research Issues. ACM Computing Surveys, 19(3):201-260, September 1987.
M. Hammer and D. McLeod. The Semantic Data Model: A Modeling Mech-
anism for Database Applications. In Proc. of the ACM SIGMOD Int'l. Con/.
on Management of Deta, pages 26-36, May-June 1978.

M. Hammer and D. McLeod. Database Description with SDM: A Semaa-
tic Database Model. ACM Transactions on Detabase Systems, 6(3):351-386,
September 198].

154

[Hudsé)

(Ira93]

[15092)

[BGF*Ry]

EELP]|

[KBC*89)

[KCR6]

[KC88]
[Ken79]

[Ken90a)
[Ken90b)

[KGBW90)

[Kim89]

[Kim90a]

S.E. Hudson. CACTIS: A Database System for Specifyving Functionally-Defined
Data. In 1986 Int'l Workshop on Object-Oriented Database Syste s, pages 26
37, September 1986.

B. Irani. lmplementation Design and Development of the TIGUKAT Object
Model. Master's thesis, Department of Computing Science, University of Al
berta, Edmonton, Alberta, ("anada. 1993. Available as University of Alberta
Technical Report TR93-10.

1SO. Information Technology - Databasc Languages SQL. International
Organization for Standardization. 1992. ISO/IEC 9075:1992 (E).

D. Jagannathan. R.L. Guck, B.L. Fritchman, J.P. Thompson, and D.M. Tul

bert. SIM: A Database System Based on the Semantic Data Model. In Proe. of
the ACM SIGMOD Int'l. Conf. on Management of Data, pages 46 55, Septem:
ber 198K,

(. Jaeschke and H. Schek. Remarks on the Algebra of Non First Normal Form
Relations. In Proc. of the 1st ACM SIGACT-SIGMOD Symposium on the
Principles of Database Systems, pages 124- L3R, March 1982,

W. Kim, N. Ballou, H.T. Chou, J.F. Garza, and D). Woelk. Features of the
editors, Object-Oriented Concepts, Databases, and Applications. Addison Wes.
ley, 1989,

S.N. Khoshafian and G.P. Copeland. Object Identity. In Proc. of the Int’l
Conf. on Object-Oriented Programming: Systems, Languages, and Appliva-
tions, pages 406-416, September 1986.

W. Kim and H-T. Chou. Versions of Schema for Object-Oriented Databases.
In Proc. of the 14th Int'l Conf. on Very Large Databases, pages 148 159, 198K,

W. Kent. Limitations of Record-Based Information Models. ACM Transactions
on Database Systems, 4(1):107-131, March 1979.

W. Kent. A Framework for Object Concepts. Technical Report HPL-90-30,
Hewlett Packard Labs, April 1990.

W. Kent. A Rigorous Model of Object Reference, ldentity and Existence,
Technical Report HPL-90-31, Hewlett Packard Labs, April 1990.

W. Kim, J.F. Garza, N. Ballou, and D. Wolek. Architecture of the ORION
Next-Generation Database System. [EEE Transactions on Knowledge and

W. Kim. A Model of Queries for Object-Oriented Databases. In Proc. of the
15th Int’l Conf. on Very Large Databases, pages 423-432, August 1989,

W. Kim. Object-Oriented Databases: Definition and Research Direc-
tions. /IEEE Transections on Knowledge and Data Engineering, 2(3):327 341,
September 1990.

155

[Kim90b]

[Kinx9)

[KMSHx9]

[KS92)

[Kuh67)]

[KWK9Y]

[LH90]

(Lip93]

[LLOWS91]

[LM79]

[LRR9a]

[LR89b)

[LRVRS]

[LS86)

[MaeR7)

W. Kim. Research Directions in Object-Oriented Databases. In Proc. of the
9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systemns, pages 1-15, April 1990.

R. King. My Cat is Object-Oriented. In W. Kim and F.H. Lochovsky. editors.
Object-Oriented Concepts, Databases, and Applications. Addison Wesley, 1959.

M. Koubarakis, M. Mylopoulos, M. Stanley, and A. Borgida. Telos: Features
and Formalization. Technical Report KRR-TR-89-4, University of Toronto,
February 1989,

W. Kafer and H. Schoning. Realizing a Temporal Complex-Object Data Model.
In Proc. of the ACM SIGMOD Int'l. Conf. on Management of Data, pages
266 275, June 1992

J.L. Kuhns. Answering Questions by Computer: A Logical Study. Technical
Report RM-5428-PR, Rand Corp., 1967.

M. Kifer and J. Wu. A Logic for Object-Oriented Programming (Maier’s O-
Logic Revisited). In Proc. of the 8th ACM SIGACT-SIGMOD-SIGART Sym-
posium on the Principles of Database Systems, March 1989.

B.S. Lerner and A.N. Habermann. Beyond Schema Evolution to Database
Reorganization. In ECOOP/OOPSLA °90 Proceedings, pages 67-76, October
1990.

A. Lipka. The Design and Implementation of TIGUKAT User Languages.
Master’s thesis, Department of Computing Science, University of Alberta, Ed-
monton, Alberta, Canada, 1993. Available as University of Alberta Technical
Report TR93-11.

C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore Database
System. Communications of the ACM, 34(10):50-63, October 1991.

H. Levesque and J. Mylopoulos. A Procedural Semantics for Semantic Net-
works. In N. Findler, editor, Associative Networks. Academic Press, 1979.

C. Lécluse and P. Richard. Modeling Complex Structures in Object-Oriented
Databases. In Proc. of the 8th ACM 5IGACT-SIGMOD-SIGART Symposium
on the Principles of Database Systems, pages 360-368, March 1989,

(. Lécluse and P. Richard. The O; Database Programming Language. In Proc.
of the 15th Intl Conf. on Very Large Databases, pages 411-422, August 1989.
C. Lecluse, P. Richard, and F. Velez. O;, an Object-Oriented Data Model.
In Proc. of the ACM SIGMOD Int'l. Conf. on Management of Data, pages
424-433, September 1988,

J. Lambek and P.). Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, 1986.

P. Maes. Concepts and Experiments in Computational Reflection. In Proc.
of the Int'l Conf. on Object-Oriented Programming: Systems, Languages, and
Applications, pages 147-135, October 1987,

156

[Main9)]

[Maks1]

[MB90]

[MBWR0]

[McC6R]

[MDs6]

[ML82]

D. Maier. Why isn't there an Object-Oriented Data Model. In Proc. of the
IFIP 11th World Computer Conference, August-September 1989,

J.A. Makowsky. Characterizing Data Base Dependencies. In Provc. of the 8
Colloguium on Automata. Languages and Programming, pages 86 97. Springer
Verlag. 19R1.

F. Manola and A.P. Buchmann. A Functional/Relational Object-Oriented
Model for Distributed Object Management. Technical Memorandum TM-0431-
11-90-165. GTE Laboratories Incorporated, December 1990.

J. Mylopoulos, P.A. Bernstein, and H.K.T. Wong. A Language Facility for
Designing Database-Intensive Applications. ACM Transactions on Database
Systems, 5(2):185-207, June 1980.

J. McCarthy. Programs with Common Sense. In Semantic Information Pro-
cessing, pages 403-418. MIT Press, 1965,

F. Manola and U. Dayal. PDM: An Object-Oriented Data Model. In K.R.
Dittrich and U. Dayal, editors, Proc. of the st Int’l Workshop on Object-
Oriented Database Systems, pages 18-25. IEEE Computer Science Press, 1986.

P. Martin-Lof. Constructive Mathematics and Computer Programming. In
Proc. of the Sizth Int’l Conf. for Logic, Methodology and Philosophy of Sciener,
pages 153-175, 1982,

[MMWY92] H. Masuhara, S. Matsuoka, T. Wantanabe, and A. Yonezawa. Object-Oriented

[Mui94]

[MZO89)]

[ND82]

[Nie89]

[NR87]

(NR89)

Concurrent Reflective Languages can be Implemented Efficiently. In Pror. of
the Int"l Conf. on Object-Oriented Programming: Systems, Languages, and
Applications, pages 127-144, October 1992.

A. Muiioz. "an extensible query optimizer architecture for the tigukat object-
base management system”. Master’s thesis, Department of Computing Science,
University of Alberta, Edmonton, Alberta, Canada, 1994. Available as Uni.
versity of Alberta Technical Report TR94-01.

D. Maier, J. Zhu, and H. Ohkawa. Features of the TEDM Object Model. In
Proc. of the 1st Int'l. Conf. on Deductive and Object-Oriented Database s, pages
476-495, 1989.

J.M. Nicolas and R. Demolombe. On the Stability of Relational Queries. Tech-
nical report, ONERA-CERT, 1982.

O. Nierstrasz. A Survey of Object-Oriented Concepts. In W. Kim and F.H.
Lochovsky, editors, Object-Oriented Concepts, Databascs, and Applications,
pages 3-21. Addison Wesley, 1989.

G.T. Nguyen and D. Rieu. Expert Database Support for Consistent Dynamic
Objects. In Proc. of the 13th Int’l Conf. on Very Large Databases, pages 493
500, September 1987.

G.T. Nguyen and D. Rieu. Schema Evolution in Object-Oriented Database
Systems. Data & Knowledge Engineering, 4:43-67, 1989.

157

[OHx6)

[OP1+ 93]

[Osbss]

[OsbRr9)

[OSP94]

[OWR9]

[0Y§7]
[Piess]

[PLOS93a)

[PLOS93b]

[PM&S]

[PO93]

[PS7]

S. Osborn and T.E. Heaven. The Design of a Relational Database System
with Abstract Types for Domains. ACM Transactions on Database Systcms.
11(3):357-373, 1986.

M.T. Ozsu, R.J. Peters, B. Irani, A. _.pka, A. Muiioz. and D. Szafron.
TIGUKAT Object Management System: Initial Design and Current Direc-
tions. In Proc. of the Centre for Advanced Studies Conference (CASCON).
pages 595-611, October 1993.

S.L. Osborn. Identity, Equality and Query Optimization. In Proc. of the 2nd
Int'l Workshop on Object-Oriented Database Systems, pages 346-351. Springer
Verlag, September 198K,

S.L. Osborn. The Role of Polymorphism in Schema Evolution in an
OODB. IEEE Transactions on Knowledge and Data Engineering, 1(3):310-
317, September 1989,

M.T. Ozsu, D.D. Straube, and R.J. Peters. Query Processing Issues in Object-
Oriented Knowledge Base Systems. In F.E. Petry and L.M. Delcambre, editors,
Ewmerging Landscape of Intelligence in Database and Information Systema. JA
Press, 1994. In press.

G. Ozsoyoglu and H. Wang. A Relational Calculus with Set Operators, Its
Safety, and Equivalent Graphical Languages. JEEE Transactions on Software
Enginecring, SE-15(9):1038-1052, September 1989.

Z.M. Ozsoyoglu and L.Y. Yuan. A New Normal Form for Nested Relations.
ACM Transactions on Database Systems, 12(1):111-136, March 1987,

B.C. Pierce. A Taste of Category Theory for Computer Scientists. Technical
Report CMU-('S-88-203, Carnegie Mellon University, 1988.

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. An Extensible Query Model
and Its Languages for a Uniform Behavioral Object Management System. In
Proc. of the Second Int'l. Conf. on Information and Knowledge Management,
pages 403-412, November 1993. A full version of this paper is available as
University of Alberta Technical Report TR93-01.

R.J. Peters, A. Lipka, M.T. Ozsu, and D. Szafron. The Query Model and
Query Language of TIGUKAT. Technical Report TR93-01, Department of
Computing Science, University of Alberta, Edmonton, Alberta, Canada, June
1993.

J. Peckham and F. Maryanski. Semantic Data Models. ACM Computing
Surveys, 20(3):153-189, September 1988.

R.J. Peters and M.T. Ozsu. Reflection in a Uniform Behavioral Object Model.
In Proc. of the 12th Int1 Conf. on Entity-Relationship Approach, pages 37-49,
D.J. Penney and J. Stein. Class Modification in the GenStone Object-Oriented
DBMS. In Proc. of the Int'l Conf. on Object-Oriented Programming: Systemas,
Lenguages, and Applications, pages 111-117, October 1987.

158

[Rei02]

[RevR9]

[RKS7]

[RKR9)

[RSK7)

[RS91]

[SB85)
[Schi]
[Sch]
[Shis1]

[SK91]

{Sny90]

[SO90a)

[SO90b)

[Soo81]

R. Reiter. On Formalizing Database Updates: Preliminary Report. In Proe,
of the 3rd Int’l Conf. on Ertending Database Technology, pages 10 20, March
1992.

G.E. Revesz. Lambda-Calculus, Combinators. and Funectional Programming.
(Cambridge University Press, 1989,

M.A. Roth and H.F. Korth. The Design of =INF Relational Databases into
Nested Normal Form. In Proc. of the ACM SIGMOD Int’l. Conf. on Manage -
ment of Data, pages 143-159, May 1987,

N. Roussopoulos and H.S. Kim. ROOST: A Relational Object Oriented Sys.
tem. In Proc. of the 3rd Int’l Conf. on Foundations of Data Organization and
Algorithms, pages 404-420, June 1989,

L.A. Rowe and M.R. Stonebraker. The POSTGRES Data Model. In Proe. of
the 13th Int”! Conf. on Very Large Databases, pages K3 96, September 1987,

E. Rose and A. Segev. TOODM - A Temporal Ohject-Oriented Data Model
with Temporal Constraints. In Proc. of the 10th Int'l Conf. on Entity
Relationship Approach, pages 205-229, October 1991.

M. Stefik and D. Bobrow. Object-Oriented Programming: Themes and Vari-
ations. The Al Magazine, pages 40-62, 1985,

H. Schek. Toward a Basic Relational NF? Algebra Processor. In Prov. of the
Int’l Conf. on Foundations of Data Organization, pages 173182, May 1985,

D.A. Schmidt. Denotational Scmantics: A Mcthodology for Language Devel-
opment. Wm. C. Brown Publishers, 1988,

D.W. Shipman. The Functional Model and the Data Language DAPLEX.
ACM Transactions on Database Systems, 6(1):140-173, March 1981,

M. Stonebraker and G. Kemnitz. The POSTGRES Next-Generation Database
Management System. Communications of the ACM, 34(10):78-92, October
1991.

A. Snyder. An Abstract Object Model for Object-Oriented Systems. Technical
Report HPL-90-22, Hewlett Packard Labs, April 1990.

D.D. Straube and M.T. Ozsu. Queries and Query Processing in Object.
Oriented Database Systems. ACM Transactions on Information Systems,
8(4):387-430, October 1990.

D.D. Straube and M.T. Ozsu. Type Consistency of Queries in an Object.
Oriented Database System. In ECOOP/OOPSLA 90 Proceedings, pages 224-
233, October 1990.

M.D. Soo. Bibliography on Temporal Databases. ACM SIGMOD Record,
20(1):14-23, 1991.

159

[SRK6)

[SRHY0]

[SRL*90]

$577]
[SSK6)
[$590)
[S1077]

[StoRs]

[$tr90]

[Strola)

[Str91b]

(5296)

[SZ87)

[SZR9]

[S290)

M. Stonebraker and L.A. Rowe. The Design of POSTGRES. In Proc. of
the ACM SIGMOD Int’l. Conf. on Management of Data, pages 310-355, May
19%6.

\. Stonebraker. L.A. Rowe, and M. Hirohama. The Implementation of POST-
GRES. IEEE Transactions on Knowledge and Data Engineering, 2(1):125-142.
March 1990.

M. Stonebraker, L. Rowe, B. Lindsay. J. Gray, M. Carey. M. Brodie,
P.Bernstein, and D. Beech. Third-Generation Data Base System Manifesto.
ACM SIGMOD Record, 19(3):31-44, September 1990.

J.M. Smith and C.P. Smith. Database Abstractions: Aggregation and Gener-
alization. AC'M Transactions on Database Systems, 2(2):105-133, June 1977.

H. Schek and M. Scholl. The Relational Model with Relation-Valued At-
tributes. Information Systems, 11(2):137-147, 1986.

M. Scholl and H. Schek. A Relational Object Model. In Proc. of the 3rd Int'l
('onf. on Database Theory, pages 89-105, December 1990.

J.E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. MIT Press, 1977.

M. Stonebraker. Inclusion of New Types in Relational Data Base Systems. In
M. Stonebraker, editor, Readings in Databasc Syatems, pages 480-487. Morgan

Kaufinann Publishers, 1988,

D.D. Straube. An Introduction to Object-Oriented Databases. In Proc. of the
15th Simposium Internacional de Sistemas Computacionalc, March 1990.
D.D. Straube. Queries and Query Processing in Object-Oriented Databasc
Systems. PhD thesis, Department of Computing Science, University of Alberta,
Edmonton, Alberta, Canada, 1991.

B. Stroustrup. The C++ Programming Language. Addison Wesley, 1991.
Second edition.

A.H. Skarra and S.B. Zdonik. The Management of Changing Types in an
Object-Oriented Database. In Proc. of the Int'l Conf. on Object-Oriented Pro-
gramming: Systems, Languages, and Applications, pages 483-495, September
1986.

A.H. Skarra and S.B. Zdonik. Type Evolution in an Object-Oriented Database,
In Rescarch Directions in Object-Oriented Programming, pages 393-415. MIT
Press, 1987.

G. Shaw and S. Zdonik. An Object-Oriented Query Algebra. In Proc. of the
nd Intl Workshop on Detabase Programming Languages, pages 103112, June
1989,

G. Shaw and S. Zdonik. A Query Algebra for Object-Oriented Databases. In
Proc. of the 6th Int'l. Conf. on Data Enginecring, pages 154-162, February
1990,

[TCG*93)

[Tom90)
[Un82)

[ULR7]

[ULIRS]

[WanRr9)

[WBT92]

[WBWSSa]

[WBW88b)

[WBWR9a)

[WBWS89b)

[WD92]

[Wegs7]

[Weg90]

[WLH90)

A. Tansel, J. Clifford. S. Gadia. S. Jajodia. A. Segev, and R. Snodgrass. Tom-
poral Databases: Theory, Design, and Implementation. Benjamin/Cummings,
1993.

C.D. Tomlin. Geographic Information Systems and Cartographic Modeling.
Prentice-Hall, 1990.

J.D. Ullman. Principles of Database Systems. Computer Science Press, 1982,
2nd. Edition.

Jeffrey D. Ullman. Database Theory: Past and Future. In Proc. of the 6th
ACM SIGACT-SIGMOD-SIGART Symposium on the Principles of Database
Systems, pages 1-10. ACM Press, March 19K87.

J.D. Ullman. Principlcs of Database and Knowledge-Basc Systems. Computer
Science Press, 1988, Volume 1.

Y. Wand. A Proposal for a Formal Model of Objects. In W. Kim and F.H.
Lochovsky, editors, Object-Oricnted C'oncepts, Databases, and Applications,
pages 537-559. Addison Wesley, 1989,

D. Wells, J.A. Blakeley, and (".W. Thompson. Architecture of the Open
Object-Oriented Database Management System. IEEE Computer, 206(10):74
82, October 1992,

A. Wirfs-Brock and B. Wilkerson. An Overview of Modular Smalltalk. In Prue.
of the Int’l Conf. on Object-Oriented Programming: Systems, Languages, and
Applications, pages 123-134, September 1985,

A. Wirfs-Brock and B. Wilkerson. An Overview of Modular Smalitalk. In roe.
of the Int'l Conf. on Object-Oriented Programming: Systems, Languages, and
Applications, pages 123-134, October 1988,

A. Wirfs-Brock and B. Wilkerson. Object-Oriented Design: A Responsibility-
Driven Approach. In Proc. of the Int’l Conf. on Object-Oriented P'rogramming:
Systems, Languages, and Applications, pages 71-75, October 1989,

A. Wirfs-Brock and B. Wilkerson. Variables Limit Reusability. Journal of
Object-Oricnted Programming, 2(1):34-40, May /June 1989,

G. Wuu and U. Dayal. A Uniform Model for Temporal Object-Oriented Data-
bases. In Proc. of the 8th Int’l. Conf. on Data Engineering, pages 584 594,
Tempe, USA, February 1992.

P. Wegner. Dimensions of Object-Based Language Design. In FPror. of the

Int"l Conf. on Object-Oriented Programming: Systems, Languages, and Appli-
cetions, pages 168-182, October 1987.

P. Wegner. Concepts and Paradigms of Object-Oriented Programming. OOPS
Messenger, 1(1):7-87, August 1990.

K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris Architecture and Imple-
mentation. JEEE Transections on Knowledge and Data Engincering, 2(1):63-
75, March 1990.

[WSSHAK]

[Yan90]

[YO91]

[ZM90)

[ZWK6)

P.F. Wilms, P.M. Schwarz, H.J. Schek, and L.M. Haas. Incorporating Data
Types in an Extensible Database Architecture. In Proc. of the 3rd Int'l (‘onf.
on Data and Knowledge Bases: Improving Usability and Responsiveness, pages
1%0-192, June 1988,

M. Yannakakis. Graph-Theoretic Methods in Database Theory. In Proc. of the
9th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, pages 230-242, April 1990.

L. Yu and S.L. Osborn. An Evaluation Framework for Algebraic Object-
Oriented Query Models. In Proc. of the 7th Int’l. Conf. on Data Engincering,
pages 670-677, April 1991.

S. Zdonik and D. Maier. Fundamentals of Object-Oriented Databases. In
S. Zdonik and D. Maier, editors, Readings in Object-Oriented Database Sys-
tems, pages 1-36. Morgan Kaufmann Publishers, 1990.

S. Zdonik and P. Wegner. Language and Methodology for Object-Oriented
Database Environments. In Proc. of the 19th Annual Hawaii Int’l Conference

on System Sciences, January 1986.

Appendix A

Primitive Type System

Table A.1 shows the signatures of the behaviors for the non-atomic types (except the con-
tainer types). Table A.2 shows the signatures of the behaviors for the container types.
Table A.3 shows the signatures of the behaviors for the atomic types. The receiver type of
a behavior is excluded because the receiver must be an object of a type that is compatible
with the type defining the behavior. The notation T_collection(T) is used to define a
collection type whose members are of type T. The type specifications for the behaviors are
the most general types. Types for some of the behaviors are revised in the subtypes that
inherit them. For example, the result type of B_self is always the type of the receiver object
and the result type of B_new is always the membership type of the receiver class.

Chype [Signatwrs]
Tobject | Baell: T_object
B_mapsto: T_type
B.conformsTo: T.type — T.boolean
B.equal: T_object — T.boolean
B_notequal: T_object — T.boolean
B_drop: T.object
T-type B_interface: T-collection(Tbehavior)
B_native: T.collection(Tbehavior)
B.inherited: T_collection(T.behavior)
Bpecialize: T_type — T.boolean
B_subtype: T_type — T.boolean
Bsubtypes: T_collection(Ttype)
B_supertypes: T.collection(T.type)
B_sub-lattice: T_poset(T.type)
B_super-lattice: T_poset(T.type)
B_classof: T.class
B.addBehavior: T.behavior — Tfunction — T_type
B_dropBehavior: T behavior — T.type
B.addSupertype: T._type ~ T_type
B_dropSupertype: T_type — Ttype
T_behavior name: T_string
B.argTypes: T_type — T1ist(T-type)
B_resultType: T._type — Ttype
B.description: T._striag
B.semantics: T_object
B_associate: T.type — Tfunction — T behavior
B.implementation: T.type — Tfunction
B_primitiveApply: T_object — T.object
B.apply: Tebject — Tlist — T_object
B.defines: T_poset(Ttype)
T function B_name: Tostriag
B.argTypes: Tist(T_type)
B_resultType: T_type
B.description: Tstriag
Bsource: T.object
B.compile: T functioa
B_primitiveExecute: T.object — T.object
B_executable: T.object
B_basicExecute: Tdist — T.ebdject
B_execute: Tdist — Tobject

Table A.1: Behavior signatures of the non-atomic types of the primitive type system.

164

‘ilgnamrﬁ —

T-collection B_memberType: T_type
B.cardinality: T-matural
B.elementOf: T.object — T boolean
B.nsert: T.object — T_collection
B.remove: T.object — T.collection
B_containedBy: T _collsction — T_boolean
BsetEqual: T.collsction — T._boolean
B.isEmpty: T.boolean
B.union: T.collection — T.collection
B_difference: T_collection — T_collection
B.intersect: T_collection — T.collection
B.collapse: T.-collection
B_select: T._string — T1ist(T.collection) — T_collection
B.project: T.collection(T.behavior) — Tcollection
B.map: T.striang — T1ist(T.collection) — T.collection
B_product: T1ist(T.collection) — T.collection
B_reduce: T.collection(T.aatural) — T.collection
Bjoin: T_striag — T_list(T.collection) — T_collection
B_genjoin: T.striag — T.string —
_ Tlist(T_collection) — T.collection
T bag B.occurrences: T.object — T.natural '
B.count: T.matural
B.dropAll: T_object — T.bag
Behaviors from T_collection refined to preserve duplicates
T_poset B.ordered: T.object — T.object — T_boolean -
B.ordering: T fumctioa
Behaviors from T_collection refined to preserve ordering
Tlist BinsertAt: T-object — Tmatural — T1ist
B.dropAt: T.aatural — T.list
B.append: T.object — T.list
B.getAt: Toaatural — T.list
BsetAt: Tobject — T.aatural — Tlist
B_positions: T.object — T.list(T.natural)
B.currPosn: T.natural
B.current: T.objact
B.first: T.object
B_ast: T.object
B.next: T.object
B.previous: T.object
B.dropCurr: Tist
B.outOfBounds: T.boolean
| Behaviors refined to preserve duplicates and ordering S
Tclass Bnew: T.object ~
L B.deepExtent: T.collection)
Tclass~class Boew: T.type — Tclass B B
T_type-class ~Baew: T-collection(Ttype) — - .
- T.:-nietiuﬁﬂnhr) — T_type B
T-collection-class Bnew: _T_type — Tcellection B]

Table A.2: Behavior signatures of the container

ner types of the primitive type system.

165

[Type

T.atomic T B
T.boolean B_not: Tboolean
B_.or: T.boolean — T boolean
B.if: T.object — T.object — T.object
B.and: T.boolean — T.boolsan
B.xor: TJboolean — T_boolsan
T_character B.ord: T.aatural '
BstringOf . Tstriag B
T.string B.car: T.character -
B.cdr: Tatring
B.concat: Tstring — Tstring
Txeal Bsucc: Txeal i

B.pred: Txeal
B.add: T.xeal — T.xeal
Bsubtract: T.xeal — T.xeal
B.-multiply: Txeal — T.real
B.divide: T.xeal — T.xeal
B_trunc: T.integer
B.round: T.integer
BJessThan: T.xreal — T.boolean
B lessThanEQ: T.xeal — T boolean
B_greaterThan: T.xeal — T_boolean
B_greaterThanEQ: Txeal — T.boolean
T.integer | Behaviors from Treal refined to work on integers
Taaturals | Behaviors from T_iateger refined to work on naturals

Table A.3: Behavior signatures of the atomic types of the primitive type system.

Appendix B
Behavior Definitions

In this appendix, we define the full behavioral specification of the primitive type system of
TIGUKAT. The primitive type lattice is shown in Figure 2.1 on page 14. A summary of
the behaviors is shown in Appendix ...

In the following specifications, we use variables o, p and ¢ in examples as references
to objects of various particular types. We use the dot notation o.B_something(a,,....a,)
for the behavior application where o is the receiver of behavior B_something that uses
arguments a, through a,. Behavior applications assume left associativity in the absence of
qualifying parenthesis. That is, the following two behavior applications are equivalent:

o.R_one{p).B_two(q) = (0.B_one(p)).B_two(q)
The type specifications are divided into the following components: the name of the
type, its corresponding class, its supertypes, its subtypes, the native behaviors defined by

the type and the derived behaviors defined by the type. Native behaviors are those which
are introduced by the type (i.e., they are not inherited). Derived behaviors are those which

behaviors section.

167

T abgect

mapsto

conformsTo

equal

drop

T
T.type. T_collection. T.behavior. Tfunction, T.atomic

B_self: T.object
Example: o.B_sell
Symbol: 1,
Returns the receiver ub_lpﬂ o. This is the mathematical uiﬂmty
operation for objects.
B_mapsto: T_type
Example: o.B.mapsto
Symbol: o=
Returns the tpr of the reciever ‘object o (i.e., the most defined
tvpe). Every object in the system has a map'-'m tvpp
B_conformsTo: T typ- — T.boolean

Example: o.B_conformsTo(p)

Symbol: o~p -

If the receiver o conforms to the type argume;: ‘ v, the object true
is returned, otherwise false is returned.

B_equal stj-et — T_boolean

Example: o.B_equal(p)

Symbol: o= = p

If the receiver o is identity equal to the argument ub_yert p. the
object true is retuﬂml Dtherms fal:: is rPturned
B_drop: T-object

Example: o.B.drop

Symbol:

Drops the receiver object o, _which “effectively deletes” the object.
The object is dropped from its class and all collections in which
it appears. All references to the object become invalid. When
considering the temporality of the object model, the lifespan of
the obj _)ert in its dui. and all tnﬂeﬂmns is termintated.

B_notequal: T_object — T _boolean
Example: o.B.notequal(p)

Symbol: o#p

Derivation: ~(o=p))
This is the complement of B_equal.

168

T_type

Su pertypes:
Subtvpes:

ative Hehaviors:

classof

native

inherited

subtypes

supertypes

addBehavior

dropBehavior

T.object

none

B_classof: T.class
Example: o.B_classof
Symbol: (, -

Returns the class object that has been associated with the re-
ceiver 0. Types are associated with at most one class. For those

types not associated with a class, the object undefined i ret uruml

B_native: T collcctian(TL-hniar) o

Example: o.B_native
Symbol: o

Returns the set of behaviors that are defined by the receiver o
and not defined by any supertypes of 0. The set is empty if o

doesn’t define any native behaviors.
B_inherited: T.coili:tinn('l‘gnhiviar)
Example: o.B_inherited

Symbol:

Returns the collection of behaviors thal are inherited hy the e
ceiver 0. This set is a superset of the interface set of T_object.

Bsubtypes: T_collection(T type) -
Example: o.B_subtypes
Symbol: o

Returns the set of type objects that are a direct auhlypv- of the
receiver 0. The result set does not include the ohject o itself.
For the types that do not have any subtypes, the empty set is
returned. - B
Bsupertypes: T_collection(T.type)
Example: o.B_supertypes

Symbol:

Returns the set of type uhy-rts. that are a direct supe-rlva of the
receiver 0. The result set does not include the object o itself,
Every type object except T_object has a non-empty supertype
set. The supertype set for T_object is the empty set.

B_addBehavior: T behavior — T_function — T_type
Example: o.B_addBehavior(p,q)
Symbol:

Adds the behavior obj pﬂ pasa pative behavior of the receiver
type o. The operation is rejected if o already defines p. If o has
an associated class or if any subtype of o has an associated class
and does not already define p, then a function g must be given
as the implementation of the p in these types.

B_dropBehavior: T behavior — T.type
Example: o.B.dropBebavior(p)
Symbol:

addSupertype

dropSupertype

interface

super-lattice

sub-lattice

Drops the native behavior p from the receiver type o. The op-
eration is rejected if p is not natively defined on o. The native
definition of p is propogated to the subtypes. unless inherited
from some type other than o.

B,sdd‘:upﬂrt; pe: T_type — T_f_yp-
Example: o.B_addSupertype(p)
Symbol:

Adds the tpr argument p as a sup«\?rt;,r]:nfl "of 0. The opératmn
is rejected if it introduces a cycle into the type lattice or if p is

already an element of the super-lattice of o.
B_dropSupertype: T_type — T_type
Example: o.B_dropSupertype(p)

Symbol:

Drops the l) pe argument pasa supFrt)pP ofo. Ty pP 0is rehnkﬂl
to the supertypes of p and type p is relinked to the subtypes of

0.) - -

Example, a.ﬂ;ntér[are

Symbol:

Derivation: o.B_native U o.B_inherited

Returns the set of behavior objects resulting from the union of
the native and inherited behaviors of receiver o. This set is a
superset of the interface set of T.object.
Bsuper-lattice: T_poset(T_type)
Example: o.B_super - lattice

Svmbcﬂ

T.abj-ct is rnched partlal]y Qrdenng the mterme—
__diate results, and adding the receiver type object o.

Retums the set nf all type nbptts partlally c:irdered hy =<, that

obj Ject o ltself The resuh Iatm-é hn T_pbj-ct as the ruot and o

as the base. Every type object has a non-empty super;lattlce

Bsub-Iattice: T_poset(T.type)

Example: o.B_sub - lattice

Symbol:

Derivation: Derived by recursively applying B_subtypes until
T.null is reached, partially ordering the intermedi-
ate results, and adding the receiver type object o as

Returns the set of all type objects, partially ordered by <, which
are subtypes of the receiver 0. The result set includes the type
object o itself. The result lattice has o as the root and T.null as
the base. Ewry type ﬁijeﬂ has a non-empty subtype-lattice.
Bpecialize: T-type — T_boolean o '
Example: o.B_specialize(p)

170

Svimbol: oCp
Derivation: p. H_um-rﬁ« e C o.Hinterface

Returns true if the receiver o specializes of the npv argnmvm
object p. false otherwise.

subtype B_subtype: T_type — T_boolean
Example: o.B_subtype(p)
Symbol: eo=xp
Derivation: o € p.B_sub - lattice

Returns true if the receiver o is a suhnpv of the l\p-‘ -u;.,mm'm
object p, false otherwise.

171

T_behavior
Sijgénrtlgdﬁsz

argTypes

resultType

description

semantics

associate

implementation

primitiveApply

Tobject
fione

HB_name: T_string

Example: o.B.name

Symbol:

LRpturns the slgnaturvz name of the rerewer 0.
BargTypes: T.type — T1ist(T_type)
Example: o.B.argTypes(p)

Symbol:

Returns the list of types that are the argument ty pes of the sng
nature for the hehavior o in the type p.

BresultType: T_type — T_type

Example: o.B.resultType(p)

Symbol:

Returns the type that is the Tesult type of the signature for the
behavior o in the type p.

B.description: L:trin;

Example: o.B_description

Symbol:

Llleturns a short clestﬂptmn of beha.vmr 0.
Bsemantics: T-object

Example: o.B_semantics

Symbol: [0}
[Returns the full semantics of the behavior 0. |
B.associate: T_type — T_function — T.behavior o
Example: o.B.associate(p,q)

Symbol:

Associates the function obj ject of the argument q with the behav-
jor o for the given type object p. The behavior has the side-effect
of modifying the behavior o so that it executes the associated
function ¢ when applied to an object of type p.
Blmplementation: T_type — Tfunction

Example: o.B.implementation(p)

Symbol:

Returns the function object associated with “the behavior o for
the argument type object p.
B.pnmnweApply T-object — T_ﬁbjm;t
Example: o.B_primitiveApply(p)
Symbol:

Applies “the bebavior obp:t o to the argument ah_ptt p. One of
the requirements is that the type of p must define behavior o as
part of its interface.

B.defines: Tm(‘l‘_tjp)
Example: o.B.defines

172

Symbol:

Returns the partially ordered set of type objects (i.e.. lattice)
that define the behavior o as part of their interface.

B_apply: T_.object — T_1ist — T.object

Example: o.B_apply(p,q)

Symbol:

Derivation: If the argument list ¢ is empty, the apply works the

they are passed directly to the execution of the fune-

Applies the behavior object o to the object p using the ohjects
in the list ¢ as arguients. The requirements are that the type
of p must define behavior o as part of its interface and the type
of the objects in ¢ must conform to the argument types defined

173

T_function
'iu!poﬁrtyg’ o5
uhtpr 7

argTypes

result Type

description

source

compile

primtiveExecute

executable

basicExecute

T.object
o«

B_name: T string
Examphu o.B_name

Rﬁturns the name of the function nbpct o.
BargTypes: T-1ist(T_type)

Example: o.B.argTypes

Symbol:

Returns a list of types that denote the types and urdermg of the
argument oh jects for thp fum‘ucm o.
B_resultType: T_type

Example: o.B_resultType

Symbol:

|Rﬂurns the result type « of the fnnrtmn 0.
B_description: T_string

Example: o.B_description

Symbol:

B@turns a dPﬁl‘flpllOn of the fum:tmn c:hjﬁ't o.
B_source: T_string)
Example: B_source(o)
Symbol: .
[Returns the source code uf the functmn 0. -
B_compile: T function
Example: o.B_compile

Symbol:

("nmpllei the function o and produces an executable that is re-
turned by B_executable below.
B_primtiveExecute: T_object — Tobject
Example: o.B_primitiveExecute(p)
Symbol:

Executes the function o using the object p as an argument and
returns a result object. This requires that the argument p is
compatible with the argument type of the function o.
B_executable: T.object -
Example: o.B_executable
Symbol:

{Returns the executable of the functlon 0. -

B_basicExecute: T.1ist — T.object

Example: o.B_basicExecute(p)

Symbol:

Derivation: Function currying of the B_primitiveExecute is ab-
stracted as a list of arguments.

134

Executes the function o using the list of objects in p as i{rg}i:
ments and returns a result object. This requires that the list of
arguments in p is compatible with the argument type list for the

function o. o
B_execute: T1ist — T_object
Example: o.B_execute(p)

Symbol:
Derivation: Function currying is abstracted as a list of arguments,

For this general function type the behavior performs the same
operation as B_basicExecute above, o

execute

175

T cellectlan

memberTyp:

cardinality

elementOf

insert

difference

intersect

T-object
T.class

B_memberType: T_type

Example: o.B_memberType

Symbol: A,

Returns the type of the members in the collection o, Every col-
lection is associated with exactly one member type, but a type
object may | be associated with many collections.
B_cardinality: T_natural

Example: o.B.cardinality

Symbol: o]

Iﬁfturﬁs the number of zlements in ml]eﬂmn 0.
HB_elementOf : T.object — T.boolean

Example: o.B_elementOf(p)

Symbol: pé€o

Returns true if the object p is a “a member of collection o, false
otherwise. 7 -

B_insert: T_object — T_collection

Example: o.B.insert(p)

Symbol: _

Adds the nb jﬁ't ptothe mlleﬂmn oif pi is not a.lrem;ly a member

Exmple, nB.mmavr(p)
Symbol:
tlemu\rﬁthr object p from the collection 0. This cannot be

defined in terms of difference since difference returns a new col-
lection and this behavior modifies the extent of o.
B_union: T-collection — T_collection
Example: o.B_union(p)

Symbol: oUp

Returns the set union of cdlﬁtmn: o and .
B_difference: T_collection — T.collection
Example: o.B_difference(p)

Symbol: o-p

Returns tbe set difference of collections o and P

Blntersect: Tcollection — Tcollection
Example: o.B.intersect(p)

Symbol: onp

Returns the set intersection of enﬂeﬂhn o nd »

B collapee: Tcollection o
Example: o.B_collapee
Symbol: o}

176

select

project

product

containedBy

isEmpty

Receiver o is a collection of collections. The result is to take the
extended union of the element collections in o,
Bselect: Tstring — T1ist(T_collection) —

- T.collection
Example: o.B_select(p,q)

Symbol: o0a,q

The argument p is a predicate over the collections in q and the
receiver collection o. The result is to return objects from o that
satisfy the predicate p.

Bipmpﬂ T_ealhctien('l'.blhiviar) — T_collection
Example: o.B_project(p)

Symbol: ofl,

The argument p is a collection of behaviors defined hy the men-
bership type of 0. The result is a new collection containing all the
objects of o, but with a membership type that only defines the
behaviors in p, plus those defined on T.object. In other words,
the operator pm_pﬂ'ts over the behaviors in p.
B_map: Tstring — T1ist(T.collection) —

T.collection
Example: o.B_map(p,q)

Symbol: 03, ¢)
The argument p is a mop function over - the collections in q and the
receiver collection 0. The result consists of the objects returned
by applying the mop function p to the objects in o using the
nh;ert: in the collections of ¢ as arguments.

B.pmdurt TJilt(T.:ollcctian) — T.collection

Example: o, B_pmdurl(p)

Symbol: oxpy X ' Xpu

The lrgument pis a lm. of n collections. The result collection
contains product objects drawn from each permutation of objects
in o and objects in the collections of p. The first component is
an object from o, the second is an object from the first collection
in p (i.e., p1), the third from the second collection in p (i.e., p3),
and so on.

EIIIJP'E o. B.m!unedﬂy(p)

Symbol: oGCp

Derivation: ¥z(z € 0 — z € p)

Rgtnrn true |f all elzmenu in collection o are also members of

E_FEmpty T_bealnn

Example: o.B_isEmpty

Symbol:

Derivation: o = C_collection.B_sew

177

setEqual

reduce

genjoin

Returns true if o is an empty collection. The application of B_new
in the derivation ensures that a new empty collection is created.
This is only done to demonstrate one derivation of the behavior.
Any known empty collection would suﬂite

BsetEqual: T-collection — T.boolean
Example: o.B_setEqual(p)

Symbol: o=, p

Derivation: 0C pApGC o

Returns true if collections o and p conta:n the same elements,
false otherwise.

B_reduce: T.cullictian(l'_nltunl) — T_collection
Example: o.B_reduce(p)

Symbol: 04,

Derivation: Derived in terms of B.map as shown in Chapter 3

The receiver ois a collection of product objects and the argument
pis a list of naturals denoting components of the product objects.
The result is the objects of o with the components specified by p

B,Jam T;trin; — T1ist(T_collection) —

T.collection
Example: o.B_join(p,q)

Symbol: oM, ¢
Derivation: Deriw-d in terms of B_product and B_select as shown

The 2 nrgumem p is a predlmte over the collections in g and the
receiver collection 0. The result is to return product objects
formed (i.e., joined) from the objects in o and the objects in
the collections of ¢ such that the predicate p is satisfied by the
component objects,

B_genjoin: T_string — Tstring — T_1ist(Tcollection) —

- - T.collection ,

Example: o.B.genjoin(g,p,q)

Symbol: o09Jg¢

Derivation: Derived in terms of B_map as shown in Chapter 3

Thei:gnﬁénigii the vimhie tabegﬁmted and pii ;gener{ti
p opergtei over t,he :n[leﬂmnl in g ;nd the receiver mﬂection o.
The result is to retura product objects formed (i.e., joined) from
the objects in o and the objects in the collections of ¢, and to
append to each product object the result of applying the gen-
erating atom to the corresponding component objects. In other
words, new objects are generated and joined to each permutation
of product objects formed from the objects in o and the objects

in the collections of ¢.

178

T_bag

Sugrtxges:
Subtypes:
Native Behaviors:
occurrences
count

eriv ehaviors:
dropAll
Refined Behaviors:
cardinality

T_.collection
Tlist

B.occurrences: T_object — T_natural
Example: o.B_occurrences(p)
Symbol: é,p

Returns the number of times that argument object p appears in

the bag o.
B_count: Tnatural

Example: o.B_count
Symbol: o

Returns the total number of ~lements contained within the bag
o. Each duplicate is counted separately.

B_dropAll: T_object — T bag
Example: o.B_dropAll(p)
Symbol:

Derivation: for all p € o, o.B_drop(p)

Drops all occurrences of p in o.

B_cardinality: T_natural
Example: o.B_cardinality
Symbol: |o|

Returns the cardinality of the bag 0. The cardinality of a bag
does not take duplicates into account. Cardinality returns the
total number of unique elements in a bag.

T.collection

B_ordered: T.object — T.object — T_boolean

Example: o.B_ordered(p,q)

Symbol: p<.¢ o
This behavior uses the ordering relation defined on the receiver
poset o that returns true if the argument object p occurs before
the argument object ¢ in the poset o or if p and ¢ are equal in
the poset. The behavior returns false if p does not occur before ¢
or is not equal to g. The behavior returns unknown if no ordering
of p and ¢ is known.

ordering B_ordering: Tfunction o
Example: o.B_ordering

Symbol: <, - o

Returns the ordering relation defined on the receiver poset o.
An ordering relation is a function of the form T.object —
T.object — T.boolean and returns true if the two argument
objects are ordered, false if they are not, or unknown if no order-
ing of the arguments is known.

The behaviors inherited from T_collection are refined to always maintain the ordering of

T list

dropAt

append

getAt

setAt

positions

currPosn

current

first

T bag. T_poset
none

B.insertAt: T object — T_natural — T list
Example: o.B.insertAt(p,q)

Symbol:

gnserts the nb;eﬂ p into the list o at position g.
B_dropAt: T_natural — T.list

Example: o.B_dropAt(p)

Symbol:

Drops the object at posltmn P fmm list o.

Bappend: Tobject — T1ist
Example: o.B_append(p)

Symbol:

[_Append the uh_prt p to the end of list o.]
BgetAt: T natural — T 1ist)
Example: o.B_getAt(p)
Symbol: 7
Emrn the object at position pin list o, B HE]
B_setAr- T_object — T.natural — T 1ist o
Exampie: o.B.setAt(p,q)

Symbol:

LSH position ¢ in list o to the ﬂbpﬂ p.
B_positions: T.object — T_1ist({Tnatural)
Example: o.B_pasitions(p)

Symbol: o
Return a list containing the positions where object p "mmll
list o. o

B_currPosn: Tnatural
Example: o.B_currPosn
Symbol: s

Llletnrns the current list pummn for list pmn:ssmg I

B_current: T.object

Example: o.B_current

Symbol:

Returns the object at the cnrn‘nt list pmt.mn
first: Tobject

Example: o.B first

Returns the first object in the list and sets the current list posi-
tion to the hegnnmg af the list.

BlJast: Tobject

Example: o.B_last

Symbol:

next

dropCurr

outOfBounds

Returns the last nhy‘rt in the list and sots the current list |msmnn
to the end of the list.

B_next: T.object

Example: o.B.next

S\ mbol:

thP current hst pmllmn lf tlw e h.mnr prm N‘llh |msl Ilu- -‘ml
of the list, an “out of hounds” rumlnmn is raised.

H_prﬂ ious: ,abjm,:t
Example: o.B_previons
Symbol:)
Returns the object that prﬁ‘mlms ‘the current ul!_]d‘i‘l and decre
ments the current list position. If the behavior proceeds past the
beginning of the list, an “out of Il(“"“lh condition is ramﬁl
B_dropCurr: T1ist

Example: o.B_drop('urr
Symbol:

[Dmp the current ob} ject of hst 0.
B.outOfBounds: T_boolean
Example: o.B_outOfBounds
Symbol: B o 7
Returns true if an “out of bounds”™ condition has heen raised,
false otherwise.

The behaviors inherited from T_poset and T.bag are refined to maintain the ordering and
duplication of objects in a list.

182

T_class
Supertypes:
Subtypes:

Native Behaviors:

new

Derived Behavjors:
deepExtent

memberType

T.collection
T.class-class, T_type-class, T_collection-class

B_new: T_object
Example: o.B_new
Symbol:

Creates and returns a new object with a unique identity from all
other objects in the system. The object is created in accordance
with the member type of the class 0 and becomes part of the
shallow extent of this class. This has the effect of also including
the object in the deep extent of the class.

B.deepExtent: T_collection

Example: o.B_deepExtent

Symbol: o*

Derivation: This is the union of the class with all its subclasses

Returns a collection containing the objects in the deep extent
of class 0. The deep extent of a class consists of the objects
created using the associated member type of the class or any of
its subtypes.

B_memberType: T_type
Example: o.B_memberType
Symbol: A, o

Returns the type object associated with the class o. Every class
is associated with exactly one type and every type is associated
with at most one class.

T_elrass-;class

Supertypes: T.class
' none

B_new: T_type — T_class

Example: o.B_new(p)

Symbol: B B . o
B_new is refined from T.class to create a new instance of the
class o and associate the new instance with the type object p. If

class object, an error condition is raised. The type of the resulting
instance is the type associated with the receiver of the behavior.
The receiver o is a class object that manages other class objects.

184

i

T_type-clas

Supe

T.class

none

B_new: T_collection(T.type) —
T.collection(T behavior) — T.type

Example: o.B_new(p,q)

Symbol: S

B_new ‘s refined from T.class to create a new instance of the
class 0. The class 0 manages type objects, thus a new type is
created. The argument p represents a non-empty collection of
supertypes for the newly created type. The newly created type
inherits all the behaviors of these supertypes. The argument ¢ is
a collection (possibly empty) of behaviors to be defined natively
on the newly created type. The type of the resulting instance is

the member type associated with the receiver o.

185

T_collection-class

Sugertvges:
Subtyges:

(4
new

ed

vi

T.class
non¢

B.new: T_type — T_collection
Example: o.B_new(p)
Symbol:

B_new is refined from T_class to create a new instance of the
class 0 and associate the new instance with the type object de-
noted by the argument p. If the type argument p is omitted, the
type of the collection is derived and maintained by the system
according to the member objects of the collection. If the type
object p is given and does not exist, an error condition is raised.

ated with the receiver 0. The argument o is a class object which

manages collection objects.

T_atomic
Supertypes: T.object

$}17i1t;!7g: T.boolean, T_character, T_strir.

T_boolean

Supertypes: T.atomic
Subtypes: none
ative avjors:
not B_not: T boolean
Example: o.B.not
Symbol: -0
Returns the boolean complement of the receiver o.]
or B_or: T boolean — T._boolean
Example: o.B.or(p)
Symbol: ovp
Returns the boolean OR of the receiver o and argument p.]
if B.if: T.object — T_object — T.object

Example: o.B.if(p,q)

Symbol: o — pOg¢

If the receiver o is true, the argument p is returned, otherwise the
argument q is returned.

and B_and: T boolean — T.boolean
Example: o.B_and(p)
Symbol: oAp
Derivation: ~(-~oV ~p)
Returns the boolean AND of the receiver o and argument p. |
xor B_xor: T_boolean — T_boolean
Example: o.B _xor(p)
Symbol: o@¢»
Derivation: (o A ~p) V (~o A p)
Returns the EXCLUSIVE OR of the receiver 0 and arugment
p-

M T.atomic

Silhgz'g' o5: none

ood B_ord: Tnatural
Example: o.B.ord
Symbol: _

[Returns the ordinal value of the receiver character o.

stringOf B_stringOf: T_string]
Example: o.B_stringOf
Symbol: -

Returns the string representation of the receiver character o.

cdr

concat

e !v d
substr

T_atomic
norne
B_car: T_.character

Example: o.H_car
Symbol:

string, null is returned.

B.cdr: T.;tring

Example: o.B_cdr

Symbol: - - -
Returns the remainder of the string o with the first character
removed. If o is the empty string, null is returned. The resulting
string is always different from the I‘H‘FIVPI‘ SUTing.

B.concat: T string — T.string

Example: o.B_concat(p)

Symbol: o!lp - 7
Returns the concatenation of the receiver strmg o and argmm nt
string p. If one of the strings is the empty string, the other string
is returned. The result string is always different from the receiver
and argument strings unless one of them is the empty string.

Returns the first character of the striing; o. If ois the viiu}_l;-]

B_substr: T.natural — T.natural — T.string

Example: o.B_substr(p, q)

Symbol:

Derivation: Apply B_cdr p number of times to skip over the first
p characters of the string. Then, beginning with an
empty string, apply B_car ¢ number of times and
B_concat tln- :tring H-pﬁ-n?m;ﬁon of the resulting

Returns thertubstrmg of o lurtm; at pnmlmn pand rnnlmmng
for g number of characters. The first character is at p:nutmn zero.

Other string related behaviors can be easily defined in terms of the primitve ones.

T_real

Su pertypes:
Subtxg»s:
Native Behaviors:

suce

pred

add

subtract

multiply

divide

trunec

T.atomic
T.integer

B_succ: T_real

Example: o.B_succ

Symbol: - - i
Returns the floating point number that follows o. The successor
is rounded up to the precision of a particular system.

B_pred: T_real
Example: o.B_pred
Symbol:

Returns the floating point number that precedes 0. The prede-

cessor is truncated to the precision of a particular system.
B.add: Treal —+ Treal = = -
Example: o0.B.add(p)

Symbol: o+p

Returns the floating point addition of the two reals 0 and p.

B_subtract: T_real — T.real
Example: o.B_subtract(p)
Symbol: o-p

[Returns the floating point subtraction of théfiﬁ:ﬁgﬂs oand p.

B_multiply: Treal — Treal
Example: o.B_multiply(p)

Symbol: osep) B
Returns the floating point multiplication of the two reals o and
P
B.divide: T_real — T_real -

Example: o.B_divide(p)

Symbol: o+p o -

[Returns the floating point division of the two reals o and p.
B.trunc: T_integer - B
Example: o.B.trunc

Symbol:

Returns the integer resulting from the truncation of the fractional
part of the real 0.
B.round: T_integer
Example: o.B.rouad
Symbo:

of the real o. _ —
: Txeal — T hoolean -

Example: o.BessThas(p)

S . e<p B

Returns true if the o is less than the p and falee otherwise. This

greaterThan

greaterThanEQ

BessThanEQ: T_real — T.boolean
Example: o.B_lessThanEQ(p)
Symbol: o<p

Derivation: (0 < p) V (0 = p)

Returns true if the real o is less than or equal to the real p, false
otherwise. B

B greaterThan: T_real — T_boolean
Example: o.B_greaterThan(p)
Symbol: o>p

Derivation: ~((o < p)V (0 = p))

Returns true if the real o is greater than the real P false nl herwise,
qure;trrTb;nEQ Txeal — T boolean

Example: o.B.greaterThanEQ(p)

Symbol: ozp

Derivation: ~(e < p) - -
Returns true if the real o is grratf-r than or rqual to the real '3
false otherwise,

T_integer
Supertypes: T-real
Subtypes: T_natural

The behaviors inherited from T.xeal are refined to produce integer results when both of
the arguments are integer objects.

T_natural

Supertypes: T.integer
Subtypes: none

Natjve Behaviors:

The behaviors inherited from T_integer are refined to produce results of 1 vpe T natural
when both of the arguments are naturals and results of type T_integer when the argument
is an integer.

1M

Appendix C
Object Model Analysis

In this chapter, a brief discussion of TIGUKAT's conformance with the guidelines outlined
in the two manifesto papers [ABD*89)] and [SRL*90] is given. Futhermore, TIGUKAT's
compliance with the recommendations n [FKMT91] is considered. These references are
slightly outdated in terms of current object technology. Nevertheless, they contain many
core concepts important to the development of an object model.

C.1 Conformance to Manifestos

Following [MB90], the discussion is organized along the structure of [ABD*89] and refers
to [SRL*90] periodically. The characteristics of an OBMS are separated in [ABD*89)] into
mandatory and optional sections. There are also a number of features that the authors
were unable to agree on a classification at the time. Furthermore, they specify several open
design decisions that they thought were best handled by the model designer because no
consensus had been reached on them by the scientific community and it was uncertain at
the time which of the alternatives were more or less object-oriented. Each of their issues
are considered in turn.

C.1.1 Mandatory requirements
Complex objects. The TIGUKAT model supports complex objects. TIGUKAT is func-
tinnl in that ahjects (nd their pmpemes) are only m:cudble through the lpphl‘lp

hhvinﬁ and tlldr implﬂnenuthn Since behaviors a are mlppi;gs Ir(:m obkct; into
other objects, every object may be considered as a complex object. The TIGUKAT
model does not explicitly incorporate the notion of constructors. Instead, a type that
exhibits the behavior of a desired constructor is defined, which is uniform. For exam-
ple, the TIGUKAT model defines an atomic integer type whose instances are integers
ndﬂmbehviunmthtyﬁeﬂmmﬁhm

Object identity. The TIGUKAT model supports strong object idesatity, meaning objects
bave & unique, immutable, system managed ideatity. This contrasts [SRL*90), which
emphasises the importance of wser-specified identities. The notion of weer identities
are always supportable through bebaviors, which are defined and managed by the

Encapsulation. The TIGUKAT model fully encapsulates the state of objects whose only
access is through a set of public behaviors defined on its type. Objects may he viewed
as instances of abstract data types that define an interface for the objects.

Types and Classes. The notions of type and class are separated in TIGUKAT and a
different semantics is attached to each one. A type is defined as a specification tool
(template) for objects, whereas a class as a grouping construct for instances of a type.
A class has a number of restrictions defined on it that imposes a subset inclusion
structure on the groupings of objects. Futhermore, TIGUKAT defines collections, not
mentioned in [ABD*89), that serve as a general user-specified grouping mechanism.
We feel that the clear separation of these concepis clarifies their roles in an object
model.

Class or Type Hierarchies. First of all, the term “hierarchy” is inappropriate here since
not only strict hierarchies are supported, but general directed acyclic graph structures
such as lattices as well. The TIGUKAT model defines two categories of “inheritance.”
The first refers to the inheritance of behavior specifications on types (called behavioral
inheritance) and is defined by subtyping relationships on types. The second is an
inheritance mechanism for the methods (functions in TIGUKAT) that implement
behaviors (called implementation inheritance). We are careful to attach individual
semantics to each one. The reason being that behaviors and functions represent two
different aspects of a type and their inheritance semantics is orthogonal.

Overriding, overloading and late binding. These notions are supported in TIGUKAT
through the separation of the bchavioral and implementation inheritance hierarchies.
The semantics of behaviors are separated from their possible implementations (i.e.
functions). This means that behaviors may be defined on many types (i.e., onrrioad-
ing) and that the implementation of the behavior may be different (redefined) for each
type (i.e., overriding). Late binding is more a language support issue and is not part
of the formal model definition. Whether an implementation is bound to a behavior
for a particular application is up to a compiler for a particular access language. In
general, late binding support is a necessity and is a good idea. However, in certain
cases a compiler may choose to bind implementations to behaviors at compile time
for efficiency reasoms.

Computational completensss. Since the TIGUKAT model is functional and uniform,
any computable function can be defined and attached to any behavior of a type in
the system. Furthermore, a database programming language for the model is being
developed. We feel that this satisfies the computational completeness requirement.

Extensibility. The TIGUKAT model is fully extensible through the operations provided
by the meta-system as described in Chapters 2 and 4. The additional benefit is that
these operations are wniformly provided as behaviors on primitive types, thus the
same behavior application principles are used to apply them and create new types,
clisses, behaviors, functions and s0 on.

Persistence. The TIGUKAT model integrates persistent and transient objects. Persistent
is a characteristic of individual objects, meaning persistence is orthogonal to type. The
manner in which objects can be made persistent or transient is a language leswe that is
considered to be part of the database language methodology. The different storage and

management requirements of persistent and transient objects is an implementation
issue that is outside the object model considerations.

Secondary storage management. This is an implementation design issue and is not
part of the object model specification. [SRL*+90] explicitly states that these kinds of
issues should not be addressed in the data model and we refrain from doing so in the
TIGUKAT model.

Concurrency and recovery. This is a consideration for an object transaction model and
is not part of this proposal.

Ad hoc query facility. The query model of TIGUKAT is defined as a uniform extension
to the object model, thus cleanly integrating the two. The algebraic operations are
developed as behavior extension to the model. A calculus is defined for declarative
access to nb;ern ;.nd has a cnmplete trm;l;tion to the llgebr: for pmming fmm

llld pﬁ.WldEi thp nmqm! mntnbution nf a umfnrm mtegrlu-d query model

C.1.2 Optional Features

Multiple inberitance. The TIGUKAT model provides multiple inheritance as explained
in the manifesto papers. However, it is called multiple subtyping in this thesis. A
different meaning is attached to the term inkeritance, which refers to the reuse of
behaviors and implementations. The general consensus at present is that multiple
subtyping is a mandatory feature of an OBMS and, thus, we feel this feature should
be included as part of the previous section,

Type checking and type inferencing It has already been proven [S390a) that much of
the type checking involved in query processing can be performed at compile time.
The query model definition supports type inferencing and dynamic schema creation
for deriving type information of queries that return objects of heterogeneous types.

Distribution Distribution is an issue related to the implementation of the model and
should be transparent within the model definition itself. The problems associated
with distributed OBMSs are part of the future research.

Design transactions Design transactions are part of a transaction model for the system
which is not considered in this proposal.

Versions A versioning mechanism using time as a supplement of schema evolution has been
developed in this thesis (see Chapter 5). The results of bebaviors are defined by their
histories as they change over time. These histories allow us to version objects and

since the model is uniform, it allows us to version types, clasees, behaviors, functions
aad so forth. Thmtﬂhthhtihnnhtluthn“dbhdmm
is mew and gives a better integration of versions with other objects.

C.1.3 Undeterml y or Optional

V‘hwidﬂlﬁﬁid-hdh Views are part of the fature work of this research.
A view mechanion with update semantics is being developed for the object model.

Database administration utilities. This is an implementation consideration and is not
part of the core model definition. However, any computable function can be defined as
a behavior on objects in the system. Thus, required database administration utilities
may be supplied as behaviors on the primitive types or the type system may be
extended to include objects that facilitate these utilities.

Integrity constraints. We have not included integrity constraints in our model defini-
tion. Again, it is quatlonlbk If thm lhmild be part of thr core mndel drﬁmlmn

be helpfnl in enily suppumng certnn mtegrity romtrnnn (e. g " "the ml;rv of all
employees in this collection should be under $75,000"). Nevertheless, these predicates
are not sufficiently powerful enough to specify constraints over multiple collections
(e £ referentigl integrity) F\lrthermore, tmng the fum‘tmnﬂ n;turr uf our nmdrl
is, the type nmplementnr deﬁne: an upd;te mttrface of beh;vmra thsl mim be “!ﬂl
to modify objects and maintains the integrity of objects.

Schema Evolution. A complete classification of schema changes has been identified and
dévelnped for the madei in Chlptzr 5 Time is iued to remrd srhrm; rhngrg. which

C.1.4 Open Choices

Programming paradigm. The TIGUKAT model separates bebavior specifications from
their possible implementations, which provides implementation independence. Since
functions are a separate primitive in the model, their implementation may be specified
in practically any language. The only requirement is that they must adhere to the

Representation system. The TIGUKAT model defines a basic primitive type system
that includes the functionality to uniformly extend all parts of the type system. This
makes for a powerful and fully functional representation system.

Type system. As indicated in the point above, the primitive model definition includes a
basic type system that is fully extensible.

Uniformity The TIGUKAT model uniformly treats all entities as objects. This includes
all the primitives such as object, type, class, collection, behavior and function. Uni-
formity is an importaat feature in several respects. From the modeling perspective,
a ckn self-contained description of the model with no dependence on external meta

n Q,*mhdﬂnﬂ(m(&qﬂs?) ﬁm;mﬁntﬂm & single

uﬁ:ﬁpmdhm“d,,, *I!hﬁrmﬂhhtklyn_uih

mﬂdmamm»imh“&ﬁm';: ation hChp
ter 4, it is shown how this provides reflection in the model. lhiﬁﬁtyk:ghhn
used to extend the base model with a query optimiser [Muft4], temporality (GOe3),
schema evolution and version control (see Chapter 5), and work has begua on aa
extensible transaction manager. | feel uniformity is & major contribution of this work.

C.2 Conformance to OODB Task Group Recommendations

Many of the notions covered by the manifestos are repeated in the ODM reference model
[FKMT91]. For this reason, we only point out those recommendations which differ from
the manifestos and which are applicable to the object model component of an OODBMS.

o We use the “classical or messaging object model” paradigm where the recipient of a
behavior is always explicit.

o We define exactly the notion of identity given in the report and use object references
as the “logical identifiers” of objects.

We define a much clearer separation of type and class than given.

As a consequence of the previous point, our definitions of subtyping, behavioral inher-
itance and implementation inheritance have a much cleaner separation and semantics.

o We use the notion of “literals” to refer to atomic objects which encapsulate reference,
identity and state.

o We support the argument that the only equality needed in a model definition is that
of “identity equal.”

The other components of the ODM reference model comply with those covered in Sec-

tion C.1 or are related to non-data model issues such as storage management, query models,
transaction management and programming languages.

